Curriculum Book

and

Assessment and Evaluation Scheme

based on

Outcome Based Education (OBE)

and Choice-Based Credit System (CBCS)

in Bachelor of Technology B. Tech. (Cement Technology) 4 Year Degree Program

Revised as on 01 August 2023 Applicable w.e.f. Academic Session 2023-24

AKS University

Faculty of Engineering & Technology Department of Cement Technology Satna 485001, Madhya Pradesh, India

न हि ज्ञानेन सदृशं पवित्रमिह विद्यते।

-श्रीमद्भगवद्गीता-

Forwarding

I am thrilled to observe the updated curriculum of the Cement Technology Department for B.Tech. Cement Technology Program, which seamlessly integrates the most recent technological advancements and adheres to the guidelines set forth by AICTE. The revised curriculum also thoughtfully incorporates the directives of NEP-2020 and the Sustainable Development Goals.

The alignment of course outcomes (COs), Programme Outcome (POs) and Programme specific outcomes (PSOs) has been intricately executed, aligning perfectly with the requisites of NEP-2020 and NAAC standards. I hold the belief that this revised syllabus will significantly enhance the skills and employability of our students.

With immense satisfaction, I hereby present the revised curriculum for the B. Tech. in Cement Technology program for implementation in the upcoming session.

Pro Chancellor & Chairman AKS University, Satna

i

From the Desk of the Vice-Chancellor

AKS University is currently embarking on a transformative journey to revamp its curriculum with an outcome-based approach, aiming to enhance the teaching and learning processes. The foundation of quality education lies in implementing a curriculum that aligns with both societal and industrial needs, focusing on relevant outcomes. This requires dedicated and inspired faculty members and impactful industry internships.

Our mission begins by crafting an outcome-based curriculum in collaboration with academia and industry experts. This curriculum design is informed by the latest technological advancements, market demands, the guidelines outlined in the National Education Policy (NEP) of 2020, and sustainable goals.

I am delighted to announce that the revised curriculum has been meticulously crafted by the Cement Technology Department, in consultation with an array of experts from the cement industry, research institutes, and academia. This curriculum effectively integrates the principles outlined in the NEP-2020 guidelines and sustainable goals, while incorporating the latest advancements in cement manufacturing technology.

The curriculum is tailored to address the specific needs of the Indian cement industry, focusing on the production of cost-effective, high-quality cement. It extends its reach to optimizing power consumption by including insights on waste heat recovery systems utilized in cement plants. This inclusion not only imparts knowledge but also encourages students' independent thinking for potential enhancements in this area.

Beyond theoretical learning, the curriculum embraces practical applications by incorporating the utilization of industrial and domestic waste in cement production. To enhance students' skills, the curriculum integrates hands-on training, industrial visits, and on-job training experiences. This well-rounded approach ensures that students receive a comprehensive education, fostering their skill development and preparing them for success in the cement industry.

I am confident that the updated curriculum for cement technology will significantly enhance students' technical skills and contribute to their employability. Throughout the revision process, the Cement Technology Department has diligently adhered to the guidelines provided by the AICTE, maintaining a total credit requirement of 169 for the B. Tech Cement Technology program.

Curriculum revision is an ongoing and dynamic process, designed to address the continuous evolution of technological advancements and both local and global concerns. This ensures that the curriculum remains responsive and attuned to the changing landscape of education and industry.

AKS University warmly invites input and suggestions from industry experts, technocrats, and alumni to enhance the curriculum and make it more student-centered. Your valuable insights will greatly contribute to shaping an education that best serves the needs and aspirations of our students.

Belipade

Professor B. A. Chopade Vice-Chancellor, AKS University, Satna

ii

Preface

As part of our commitment to ongoing enhancement, the Department of Cement Technology consistently reviews and updates its B.Tech. Cement Technology program curriculum every three years. Through this process, we ensure that the curriculum remains aligned with the latest technological advancements, as well as local and global industrial and social demands.

During this procedure, the existing curriculum for the B.Tech. Cement Technology Program undergoes evaluation by a panel of technocrats, industry specialists, and academics. Following meticulous scrutiny, the revised curriculum has been formulated and is set to be implemented starting from August 01, 2023. This implementation is contingent upon the endorsement of the curriculum by the University's Board of Studies and Governing Body.

This curriculum closely adheres to the AICTE model syllabus distributed in May 2023. It seamlessly integrates the guidelines set forth by the Ministry of Higher Education, Government of India, through NEP-2020, as well as the principles of Sustainable Development Goals. In order to foster the holistic skill development of students, a range of practical activities, including Hands-On Training, Industrial Visits, Project planning and execution, Report Writing, Seminars, and Industrial On-Job Training, have been incorporated. Furthermore, in alignment with AICTE's directives, the total credit allocation for the B. Tech Cement Technology program is capped at 169 credits.

This curriculum is enriched with course components in alignment with AICTE guidelines, encompassing various disciplines such as Fundamental Science Concepts: 24 credits, Engineering Science: 25 credits, Humanities and Social Sciences: 12 credits, Core Program Courses: 66 credits, Elective Program Courses: 9 credits, Open Electives: 9 credits, Project and Practical Training: 17 credits, Seminars: 3 credits, Indian Knowledge System: 2 credits, Sustainable Development Goals: 2 credits.

To ensure a comprehensive learning experience, detailed evaluation schemes and rubrics have also been meticulously provided.

For each course, a thorough mapping of Course Outcomes, Program Outcomes, and Programme Specific Outcomes has been undertaken. As the course syllabus is being meticulously developed, various elements such as session outcomes, laboratory instruction, classroom instruction, self-learning activities, assignments, and mini projects are meticulously outlined.

We hold the belief that this dynamic curriculum will undoubtedly enhance independent thinking, skills, and overall employability of the students.

Professor G C Mishra Director (Cement Technology) AKS University, Satna

01 August 2023

iii

Faculty of Engineering and Technology Department of Cement Technology Curriculum & Syllabus of B.Tech. (Cement Technology) program (Revised as on 01 August 2023)

SI No	Volume No	Item	Page No
1		Forwarding	i
2		Vice Chancellor Message	ii
3		Preface	iii
4		Introduction	1
5		Vision & Mission of the Cement Technology Department	1
6		Programme Educational Objectives (POE)	1
7	Volume - I	Programme Outcome (POs)	2
8		General Course Structure and theme	4
9		Component of Curriculum	4
10		General Course Structure and Credit Distribution	5
11		Course code and definition	6
12		Category-wise Courses	8
13		Semester wise Course Structure	12
14		Semester I Course details	16
15		Semester -II Course details	117
16		Semester -III Course details	204
17	Volume -II	Semester -IV Course details	294
18	Volume -III	Semester -V Course details	366
19		Semester -VI Course details	486
20	Volume -IV	Semester -VII Course details	584
21		Semester -VIII Course details	727

CONTENTS

H.O.D. (Cement Tech.) Faculty of Engg. & Tech. A.K.S. University Satna (M.P.)

Dean Faculty of Engineering and Technology AKS University Satna (M.P.) 485001

receptede

Professor B.A. Chopade Vice - Chancellor AKS University Satna, 485001 (M.P.)

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Introduction:

AKS University proudly stands as a pioneer, being the first in the nation to introduce a comprehensive 4-year B. Tech program in Cement Technology back in 2012. This innovative curriculum has been meticulously crafted to align with the dynamic needs of the cement industry and the most current technological advancements. Currently, a vibrant community of 99 students is actively engaged in pursuing their B. Tech in Cement Technology within this department. The Cement Technology department boasts cutting-edge laboratories that serve as hubs for immersive hands-on training, enabling students to delve into practical applications of their learning. The program incorporates both in-plant training and sandwich apprenticeship training, vital components that enrich the educational journey. Distinguished by a faculty composed of cement industry experts who bring with them a wealth of industrial experience, the department combines robust classroom instruction with practical and industrial acumen. This unique blend empowers our students to confidently contribute to cement plants and make a significant impact in the field.

Vision:

To conduct its key programs and activities in a unique manner that promotes excellence and leadership in education, research, innovation in cement technology and fosters an environment that is safe, highly productive, cooperative and collegial, and dedicated to continual improvement.

Mission:

- M 01 : Achieve academic excellence in Cement Technology through an innovative teaching-learning process.
- M 02 : Application of sustainable cleaner technology in cement manufacture without compromising quality.
- M 03: Inculcate technical competence and collective discipline in students to excel for cement manufacturing units, higher education and societal needs.
- M 04 : Establish focus research groups in leading areas of cement technology for optimization of thermal and electrical energy in cement manufacture and environmental needs.

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

- **PEO 01:** To develop technical and managerial skills among the students with practical knowledge to work in cement manufacturing unit and able to handle day to day plant problems.
- **PEO 02:** To develop R&D temperament among the students for development, innovation and sustainable technology in cement manufacturing process.
- POE 03: To develop ethical principles among the students and commitment to fulfilling

Page 1 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

international, national and local needs and social responsibilities with his/her professional excellence.

PEO 04 : Ability to understand the impact of professional engineering solutions in societal, economic and environmental contexts and demonstrate knowledge and need for sustainable development

Program Outcomes (POs)

B Tech Cement Technology Graduate will able to perform:

- **PO 1:** .Engineering **knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO 2: Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO 3: Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4:** Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO 5**: **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO 6:** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO 7:** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8**: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO 9:** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO 10: Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- **PO 11: Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12: Life-long learning**: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

On completion of B. Tech. Cement Technology program, the students will achieve the following program specific outcomes: -

- **PSO 1:** The ability to apply technical & engineering knowledge for production quality cement with the available raw material resource.
- **PSO 2:** Ability to understand the day to plant operational problems of cement manufacture and provide economical solution to enhance the production without compromising quality of cement.
- **PSO 3:** Ability to understand the latest cement manufacturing technology and it application in conservation of electrical and thermal energy in Portland cement manufacture.
- **PSO 4 :** Ability to use the research based innovative knowledge for sustainable development in cement manufacture.

PEO	M 1	M 2	M 3	M 4
PEO 1	3	2	3	2
PEO 2	2	2	2	3
PEO 3	2	3	2	1
PEO 4	2	2	3	3

Consistency/Mapping of PEOs with Mission of the Department

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) "-": No correlation

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

GENERAL COURSE STRUCTURE & THEME

1. Definition of Credit

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
2 Hours Practical (P) per week	1 Credit

2. Range of Credits:

In the light of the fact that a typical Model Four-year Under Graduate degree program in Engineering has about 160 credits, the total number of credits proposed for the four-year B. Tech. in Cement Technology is kept as 169 considering NEP-20 and NAAC guidelines.

3. Structure of UG Program in Cement Technology:

The structure of UG program in Cement Technology shall have essentially the following categories of courses with the breakup of credits as given:

	(Program curriculum grouping based on course components)					
Sl No	Course Component	% of total number of credits of the Program	Total number of Credits			
1	Basic Sciences (BSC)	14.20	24			
2	Engineering Sciences (ESC)	14.79	25			
3	Humanities and Social Sciences (HMSC)	7.10	12			
4	Program Core (PCC)	39.05	66			
5	Program Electives (PEC)	5.33	9			
6	Open Electives (OEC)	5.33	9			
7	Project(s) (PRC)/ On job Plant Training (OJT)	10.06	17			
9	Seminar (PSC)	1.78	3			
10	Indian Knowledge System	1.18	2			
11	Sustainable Development Goal	1.18	2			
	Total	100.00	169			

Components of the Curriculum (Program curriculum grouping based on course components)

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

General Couse Structure and Credit Distribution Curriculum of B.Tech. Cement Technology

Semester -I		Semester - II	
Course Title	Credit	Course Title	Credit
1. Physics-1	3:1:2 = 5	1. Chemistry-1	3:0:2 = 4
2. Mathematics-1	3:1:0 = 4	2. Mathematics-2	3:1:0 = 4
3. Biology for Engineers	3:0:0 = 3	3. Programming for Problem Solving	3:0:4 = 5
4. Basic Electrical Engineering	2:1:2 = 4	4. Manufacturing Practice Workshop	1:0:4 = 3
5. Engineering Graphics & Design	1:0:4 = 3	5. Communication Skills (English)	3:0:0 = 3
6. Design Thinking & Idea Lab	0:0:2 = 1	6. Sports and Yoga	2:0:0 = 0
7. Introduction to Portland Cement	3:0:0 =3	7. Sustainable Development Goals	2:0:0 = 2
8. Indian Knowledge System	2:0:0=2		
Total Credit	25	Total Credit	21
Semester -III		Semester - IV	
Course Title	Credit	Course Title	Credit
1. Process Calculation	3:1:0 = 4	1. Heat Transfer & Mass Transfer	3:1:0 = 4
2. Mathematics-3	3:1:0=4	2. Thermodynamics	3:1:2 = 5
3. Environment Science (Audit)	2:0:0 = 0	3. Raw Mix Design & Cement Chemistry	3:1:0 = 4
4. Basic Electronics Engineering	3:1:2 = 5	4. Size Reduction & Commination Engineering	3:1:0 = 4
5. Engineering Mechanics	3:1:0 = 4	5. Geology and Mining of Limestone	3:1:0 = 4
6. Fluid Mechanics	3:1:2=5		
7. Universal Human Values-2	2:1:0 = 3		
Total Credit	25	Total Credit	21
Semester -V		Semester - VI	
Course Title	Credit	Course Title	Credit
1. Total Quality Management	3:0:0 = 3	1. Instrumentation Process Control	3:1:0 = 4
2. Pyro processing & Clinker Manufacture	3:1:0 = 4	2. Maintenance Practices in Cement Plant	3:1:0 = 4
3. Pollution Control in Cement Plant	3:1:0 = 4	3. Optimization Technique	3:1:0 = 4
4. Fuel and Alternate Fuel & Raw Materials	3:1:0 = 4	4. Material Handling System, safety and Occupational Health	3:1:0 = 4
5. Cement Tech Lab-I	0:0:2 = 1	5 Cement Tech Lab-II	0:0:2 = 1

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

	(Raw Materials and Fuel Testing)		(Testing Cement & Concrete)	
6.	HSS/Management Elective -I	3:0:0 = 3	6 HSS/Management Elective-2	3:0:0 = 3
7.	Open Elective -I	3:0:0 = 3	7 Engineering Project- 1(Literature Review)	1:0:2 = 2
	Total Credit	22	Total Credit	22
	Semester -VII		Semester - VIII	
	Course Title	Credit	Course Title	Credit
	1. Professional Elective-1	3:0:0 = 3	Engineering Project-3 (Prototype	
	2. Professional Elective-2	3:0:0 = 3	& Testing) / On job plant training	0:0:24 = 12
	3. Open Elective-2	3:0:0 = 3	uannig	
	4. Open Elective-3	3:0:0 = 3		
	5. Engineering Project-2 (Design &Analysis)	0:0:10 = 5		
	6. Seminar	0:0:2 = 1		
	7. Professional Elective -3	3:0:0 = 3	1	
	Total Credit	21	Total Credit	12

- i. **Humanities & Social Sciences & Mgt. Electives (HSM):** Any 2 courses from the list of those offered.
- **ii. Open Electives (OEL)**: Any 3 courses (from any department), based on individual interest and project.
- **iii. Industry internship**: Internship in industry, start-up or R&D lab in 2nd/3rd year summer is compulsory (audit). Longer internship for 6-monthy (12 credits) can be taken in VIIIth semester, in lieu of Engineering Project. The internship must be properly evaluated.

Total Credit: 169

Course code and definition:

L	=	Lecture
Т	=	Tutorial
Р	=	Practical
С	=	Credit
BSC	=	Basic Science Courses
ESC	=	Engineering Science Courses
HSM	С	= Humanities and Social Sciences including Management courses
PCC	=	Professional core courses
PEC	=	Professional Elective courses
OEC	=	Open Elective courses
LC	=	Laboratory course
MC	=	Mandatory courses

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

IKS =	Indian Knowledge System
SDGs =	Sustainable Development Goals

Course level coding scheme:

Three-digit number (odd numbers are for the odd semester courses and even numbers are for even semester courses) used as suffix with the Course Code for identifying the level of the course. Digit at hundred's place signifies the year in which course is offered. e.g.

101, 102 ... etc. for first year.

201, 202 Etc. for second year.

301, 302 ... for third year.

401. 402--- for Fourth year

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Category-wise Courses

HUMANITIES & SOCIAL SCIENCES COURSES [HS] & MANAGEMENT COURSES (2 compulsory + 2 others)

(i) Number of Humanities & Social Science Courses: 4, Credits: 12

Sl.	Code No.	Subject	Semester	Credits
1	HSMC01	Communication Skills / English (Compulsory	2	3:0:0 =3
2	HSMC- 301	Universal Human Values-2 (Compulsory course)	3	2:1:0 =3
3	HSMC- 302	Industrial Psychology	5	3:0:0 =3
4	HSMC- 303	Operations Research	5	3:0:0 =3
5	HSMC-304	Project Management	6	3:0:0 =3
6	HSMC-305	Finance & Accounting	6	3:0:0 =3
7	HSMC09	Sports and Yoga	2	2:0:0 =0
			Total Credits:	12

BASIC SCIENCE COURSE [BSC] (TOTAL 7)

Sl.	Code No.	Subject	Semester	Credits
1	BSC101/	Physics-1 (Electromagnetism)	1	3:1:2 =5
	BSC101-L			
2	BSC102	Mathematics-1 (Calculus & Linear Algebra)	1	3:1:0 =4
3	BSC103/	Chemistry-1	2	3:0:2 =4
	BSC103-L			
4	BSC104	Mathematics-2 (ODE, Complex variables)	2	3:1:0 =4
5	BSC201	Mathematics-3 (PDE, Prob/Stat)	3	3:1:0 =4
6	BSC105	Biology for Engineers	1	3:0:0 =3
7	BSC106-AU	Environment Science (Audit)	3	2:0:0 =0
			Total Credits:	24

ENGINEERING SCIENCE COURSE [ESC] (Total 7)

SI.	Code No.	Subject	Semester	Credits
1	ESC101/	Basic Electrical Engineering	1	2:1:2 =4
	ESC101-L			
2	ESC102/	Engineering Graphics & Design	1	1:0:4 =3
	ESC102-L			
3	ESC103-L	Design Thinking + Idea Lab (Audit)	1	0:0:2 =1
4	ESC104/	Programming for Problem Solving	2	3:0:4 =5
	ESC104-L			
5	ESC105/	Manufacturing Practice Workshop	2	1:0:4 =3
	ESC105-L			
6	ESC201/	Basic Electronic Engineering	3	3:1:2 =5

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

ESC201-L Science 7 ESC202 Engineering Mechanics 3 3 3:1:0 =4 Total Credits: 25

_	Code No.	Subject	Semester	Credits
Sl.				
1.	PCC-CT101	Introduction to Portland Cement	1	3:0:0 = 3
2.	PCC-CT201	Process Calculation	3	3:1:0 =4
3.	PCC-CT202	Fluid Mechanics	3	3:1:2 =5
	PCC-CT202-L			
4.	PCC-CT203	Thermodynamics	4	3:1:2 =5
	PCC-CT203-L			
5.	PCC-CT204	Heat Transfer & Mass Transfer	4	3:1:0 =4
6.	PCC-CT205	Raw Mix Design & Cement Chemistry	4	3:1:0 =4
7.	PCC-CT206	Size Reduction & Comminution Engineering	4	3:1:0 =4
8.	PCC-CT207	Geology & Mining of Limestone Deposit	4	3:1:0 =4
9.	PCC-CT301	Pyro processing & Clinker Manufacture	5	3:1:0 =4
10.	PCC-CT302	Fuel and Alternate Fuel & Raw Materials	5	3:1:0 =4
11.	PCC-CT303	Pollution Control in Cement Plant	5	3:1:0 =4
12.	PCC-CT304	Total Quality Management	5	3:0:0 =3
13.	PCC-CT305-L	Cement Tech Lab-I ((Raw Materials and Fuel Testing)	5	0:0:2 =1
14.	PCC-CT306	Instrumentation & Process Control	6	3:1:0 =4
15.	PCC-CT307	Maintenance Practices in cement Plant	6	3:1:0 =4
16.	PCC-CT308	Optimization Technique	6	3:1:0 =4
17.	PCC-CT309	Material Handling System, Safety & Occupational Health of Cement Plant	6	3:1:0 =4
18.	PCC-CT310-L	Cement Technology lab -II (Testing Cement & Concrete)	6	0:0:2 =1
			Fotal Credits:	66

PROFESSIONAL CORE COURSES [PCC] (Total 18)

PROFESSIONAL ELECTIVE [PEC]

Total 3 to be taken, at least one from each group – Technology and Industry Sector, based on Project topic and individual interest. Illustrative courses are listed here

SI.	Code No.	Subject	Semester	Credits
		TECHNOLOGY GROUP		
1	PEC-CT-01	Energy Audit in Cement plant	7	3:0:0=3
2	PEC-CT-02	Transport Phenomena	7	3:0:0=3
3	PEC-CT-03	CT-03 Special Cements 7		3:0:0 =3
		INDUSTRY SECTOR GROUP		
1	PEC-CT-04	Design of Cement Plant	7	3:0:0=3
2	PEC-CT-05	Marketing of Cement	7	3:0:0 =3
3	PEC-CT-06	EC-CT-06 Refractory Engineering 7		3:0:0 =3
		Total Credit		9

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

OPEN ELECTIVE

(Total 3 from the Open elective subjects)

Sl.	Code No.	Subject	Semester	Credits			
1	OE-CT01	Carbon Credit in Cement Manufacture	5	3:0:0=3			
2	OE-CT02	EIA & EMP of Cement Plant	7	3:0:0=3			
3	OE-CT03	Industrial Economics	7	3:0:0=3			
4	OE-CT04	Concrete Technology	5	3:0:0=3			
5	OE-CT05	Beneficiation of Low-grade limestone	7	3:0:0=3			
6	OE-CT06	Reaction Engineering	7	3:0:0=3			
	Total Credit						

RESEARCH PROJECT (3 Stages)

Sl.	Code No.	Subject	Semester	Credits				
1	PROJ-CT01	Engineering Project-1 (Literature Review)	6	0:0:4=2				
2	PROJ-CT02	Engineering Project-2 (Design & Analysis)	7	0:0:10=5				
3	PROJ-CT03	Seminar	7	0:0:2=1				
4	PROJ-CT04	Engineering Project-3 (Prototype & Testing)/ On job plant Training	8	0:0:24=12				
	Total Credit							

OTHER COURSES

Sl.	Code No.	Subject	Semester	Credits				
1	HSMC08	Sustainable Development Goals	2	2:0:0=2				
2	HSMC07	1	2:0:0=2					
	2 HSMC07 Indian Knowledge System 1 Total Credit							

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Induction Program

Induction program for students to be offered right at the start of the first year. It is mandatory. AKS University has designed an induction program for 1st year student, details are below:

- i. Physical activity
- ii. Creative Arts
- iii. Universal Human Values
- iv. Literary
- v. Proficiency Modules
- vi. Lectures by Eminent People
- vii. Visits to local Areas
- viii. Familiarization to Dept./Branch & Innovations

Mandatory Visits/ Workshop/Expert Lectures:

- i. It is mandatory to arrange one industrial visit every semester for the students.
- ii. It is mandatory to conduct a One-week workshop during the winter break after fifth semester on professional/industry/ entrepreneurial orientation.
- iii. It is mandatory to organize at least one expert lecture per semester for each branch by inviting resource persons from industry.

Evaluation Scheme:

- 1. For Theory Courses:
- i. The weightage of Internal assessment is 50% and
- End Semester Exam is 50%
 The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

2. For Practical Courses:

- i. The weightage of Internal assessment is 50% and
- End Semester Exam is 50%
 The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

3. For Summer Internship / Projects / Seminar etc.

Evaluation is based on work done, quality of report, performance in viva-voce, presentation et

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester wise Course Structure

Semester wise Brief of total Cerits and Teaching Hours

Semester	L	Т	Р	Total Hour	Total Credit
Semester -I	17	03	10	30	25
Semester -II	17	01	10	28	21
Semester -III	19	6	4	29	25
Semester - IV	15	05	02	22	21
Semester -V	18	03	02	23	22
Semester -VI	15	04	06	25	22
Semester - VII	15	0	12	27	21
Semester -VIII	0	0	24	24	12
Total	116	22	70	208	169

Details of Semester Wise Course Structure

Semester – I

SN	Category	Code	Course Title	L	Τ	Р	Total Hour	Credit
1	BSC	BSC101/ BSC101-L	Physics-1	3	1	2	6	5
2	BSC	BSC102	Mathematics-1	3	1	0	4	4
3	BSC	BSC105	Biology for Engineers	3	0	0	3	3
4	ESC	ESC101/ ESC101-L	Basic Electrical Engineering	2	1	2	5	4
5	ESC	ESC102/ ESC102-L	Engineering Graphics & Design	1	0	4	5	3
6	ESC	ESC103-L	Design Thinking & Idea Lab	0	0	2	2	1
7	РСС	PCC-CT101	Introduction to Portland Cement	3	0	0	3	3
8	IKS	HSMC07	Indian Knowledge System	2	0	0	2	2
			17	3	10	30	25	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester – II

SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
1	BSC	BSC103/ BSC103-L	Chemistry-1	3	0	2	5	4
2	BSC	BSC104	Mathematics-2	3	1	0	4	4
3	ESC	ESC104/ ESC104-L	Programming for ProblemSolving	3	0	4	7	5
4	ESC	ESC105/ ESC105-L	Manufacturing PracticeWorkshop	1	0	4	5	3
5	HSMC	HSMC01	Communication Skills (English)	3	0	0	3	3
6	SDG	HSMC08	Sustainable Development Goal	2	0	0	2	2
7	AU	HSMC09	Sports and Yoga	2	0	0	2	0
	Total					10	28	21

Semester – III

SN	Category	Code	Course Title	L	Τ	Р	Total Hour	Credit
1	PCC	PCC-CT201	Process Calculation	3	1	0	4	4
2	BSC	BSC201	Mathematics-3	3	1	0	4	4
3	ESC	ESC201/ ESC201-L	Basic Electronics Engineering	3	1	2	6	5
4	ESC	ESC202	Engineering Mechanics	3	1	0	4	4
5	PCC	PCC-CT202 PCC-CT202-L	Fluid Mechanics	3	1	2	6	5
6	BSC	BSC106-AU	Environment Science (Audit)	2	0	0	2	0
7	HSMC	HSMC- 301	Universal Human Values-2	2	1	0	3	3
	Total						29	25

Semester – IV

SN	Category	Code	Course Title	L	Τ	Р	Total Hour	Credit
1	РСС	PCC-CT204	Heat Transfer & Mass Transfer	3	1	0	4	4
2	PCC	PCC-CT203 PCC-CT203-L	Thermodynamics	3	1	2	6	5
3	РСС	PCC-CT205	Raw Mix Design & Cement Chemistry	3	1	0	4	4
4	PCC	PCC-CT206	Size Reduction & Commination Engineering	3	1	0	4	4

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

5	PCC	PCC-CT207	Geology and Mining of Limestone	3	1	0	4	4
			Total	15	5	2	22	21

Semester – V

SN	Category	Code	Course Title	L	Т	Р	Total	a n
							Hour	Credit
1	PCC	PCC-CT304	Total Quality Management	3	0	0	3	3
2	PCC	PCC-CT301	Pyro processing & Clinker Manufacture	3	1	0	4	4
3	PCC	PCC-CT303	Pollution Control in Cement Plant	3	1	0	4	4
4	РСС	PCC-CT302	Fuel and Alternate Fuel & Raw Materials	3	1	0	4	4
5	PCC	PCC-CT305-L	Cement Tech Lab-I	0	0	2	2	1
			(Raw Materials and Fuel Testing)					
			HSMC-302					
6	HSMC	HSS/Management	Industrial Psychology	3	0	0	3	3
		Elective -I	HSMC-303					
			Operations Research					
			OE-CT01					
		Open Elective -I	Carbon Credit in Cement Manufacture					
7	OEC		OE-CT04	3	0	0	3	3
			Concrete Technology					
	Total						23	22

Semester – VI

SN	Category	Code	Course Title	L	Τ	Р	Total Hour	Credit
1	РСС	PCC-CT306	Instrumentation Process Control	3	1	0	4	4
2	РСС	PCC-CT307	Maintenance Practices in cement Plant	3	1	0	4	4
3	РСС	PCC-CT308	Optimization Technique	3	1	0	4	4
4	PCC	PCC-CT309	Material Handling System, Safety and Occupational Health in cement plant	3	1	0	4	4
5	PCC	PCC-CT310-L	Cement Technology Lab-II (Testing Cement & Concrete)	0	0	2	2	1
6	HSMC	HSS/Management Elective-2	HSMC-304 Project Management HSMC-305 Finance & Accounting	3	0	0	3	3
7	PROJ	PROJ-CT01	Engineering Project- 1 (Literature Review)	1	0	2	3	2
	Total					4	24	22

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester VII

SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
Cho	ose any 3 PE	C course for th				nour	Creun	
			Professional Elective-1	3	0	0	3	3
1	PEC	PEC	Professional Elective-2	3	0	0	3	3
1			Professional Elective -3	3	0	0	3	3
2	OEC	Open Elective -II	OE-CT02 EIA & EMP of Cement Plant OE-CT03 Industrial Economics	- 3	0	0	3	3
3	OEC	Open Elective -III	OE-CT05 Beneficiation of Low-grade limestone OE-CT06 Reaction Engineering		0	0	3	3
4	PROJ	PROJ-CT02	Engineering Project-2 (Design & Analysis)	0	0	10	10	5
5	SEM	PROJ-CT03	Seminar	0	0	2	2	1
			Total	15	0	12	27	21

PROFESSIONAL ELECTIVE [PEC]

Sl.	Code No.	Subject	Credits							
		TECHNOLOGY / INDUSTRY SECTOR GROUP								
1	PEC-CT-01	Energy Audit in Cement plant	7	3:0:0 =3						
2	PEC-CT-02	Transport Phenomena	7	3:0:0 =3						
3	PEC-CT-03	Special Cements	7	3:0:0 =3						
4	PEC-CT-04	Design of Cement Plant	7	3:0:0=3						
5	PEC-CT-05	Marketing of Cement	7	3:0:0 =3						
6	PEC-CT-06	Refractory Engineering	7	3:0:0 =3						
		Total Credit 9								

Semester VIII

SN	Category	Code	Course Title	L	Τ	Р	Total Hour	Credit
1	PROJ/ OJT	PROJ-CT04	Engineering Project-3 (Prototype & Testing)/ On job plant Training in Cement Plant	0	0	24	24	12
	Total 0 0 24 24							12

Total credit: 169

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester I

Course Code:	BSC 101/ BSC 101-L
Course Title :	Physics-I
Pre- requisite:	Students should review the fundamentals of Electrostatics Magneto statics. Wave optics, and Modern physics.
Rationale:	The program aims to develop advanced problem-solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced physics expertise.

Course Outcomes:

BSC 101.1

Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems and to relate to applications to electron optic device and CRO.

BSC 101.2

Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.

BSC 101.3

Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem.

BSC 101.4

Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure

BSC 101.5

Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering.

Scheme of Studies:

Course Category	Course	Course		Scheme of studies (Hours/Week)					
	Code	Title	CI	CI LI SW SL Total Hours				Credits	
							(CI+LI+SW+SL)	(C)	
BSC	BSC 101	Physics-1	4	2	1	1	8	5	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW: Sessional Work (includes assignment, seminar, mini project etc.),SL: Self Learning,C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

					Schem	e of Asse	essment (M	larks)		
			Progressive Assessment (PRA)							
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
BSC	BSC 101	Physics -I	15	20	5	5	5	50	50	100

Practical

			Sche	eme of A	Assessment ((Marks)		
tegory Code		Title	Progressi	r (A)	ks A)			
Course Category	Course Co	Course Ti	Class/Home Assignment 5 number 7 marks each (LA)	(ΛΛ) ΥΛΙΛ	Class Attendance (TA)	Total Marks (LA+VV+ TA)	End Semester Assessment (ES	Total Marks (PRA+ESA)
BSC	BSC 101-L	Physics –I Lab	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

BSC 101.1

Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems.

Approximate Hours

Item	Appx. Hrs
CI	12
LI	6
SW	1
SL	2
Total	21

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1.1: Understand the	1. Measuring the	Unit-1: Electrostatics &	SL.1
concept of Electric charge	magnetic field for a	Magnetostatics	Define Electric
electric field intensities.	straight conductor and		charge electric
	on circular conductor	1.1 Electric charge electric field	field intensities
SO1.2: Understand the	loops	intensities	
electrostatic potential,		1.2 Electrostatic potential,	SL.2
Calculation of electric field	2. Measuring the	Calculation of electric field	Define
and electrostatic potential	magnetic field for a	and electrostatic potential for	Quantization &
for a charge distribution	straight conductor and	a charge distribution	conservation of
	on circular conductor	1.3 Introduction to. Quantization &	charge
SO1.3: Understand the	loops at small currents	conservation of charge	
Dielectrics, Dielectric		1.4 Coulomb's law, vector form of	
substance in an electric field	3. Measuring the	Coulomb's law	
	magnetic field for a	1.5 superposition principle, charge	
SO1.4: Understand Biot	straight conductor and	densities, electric field	
Savart law & its application	on Straight Wire	1.6 Dielectrics, Dielectric	
		substance in an electric field,	
SO1.5: Understand the		1.7 V-I phase dependence for ideal	
magnetic materials.	-	& real dielectrics	
		1.8 Biot Savart law & its	
		application	
		1.9 current carrying conductor	

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

moving charge in a magnetic	
field	
1.10 comparison of electric field	
and magnetic field	
1.11 magnetic induction and	
intensity, magnetization	
1.12 classification of magnetic	
materials.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Analyze and sketch the graph of a V-I phase dependence for ideal & real dielectrics
- ii. Calculation of electric field and electrostatic potential for a charge distribution
- iii. Apply Biot Savart law in different problems.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

C. Other Activities (Specify):

Quiz, Class Test.

BSC 101.2: Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.

Approximate Hours

Item	Appx Hrs
CI	12
LI	6
SW	1
SL	2
Total	21

Session Outcomes (SOs)		Laboratory Instruction (LI)				Class room In (CI)	Self Learning (SL)			
SO2.1:	Define	and	1. 7	Го det	ermine	the	Uni	t-2: Wave opt	ics	SL.1
understand	the	basic	Refractive Index of Prism				Define coherent			
concepts	of	coherent	by using spectrometer		2.1 coherent sources, principle		sources, principle			
sources, etc								of superposi	ition	of superposition.
			2. Т	Го det	ermine	the	2.2	Interference:-,	definition and	
SO2.2:	Define	and	wavel	length	of so	dium		types of inte	erference	SL.2
understand	the	basic	light	by usir	ng New	ton's	2.3	Interference	from parallel	Define Fresnel

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

concepts of Interference of	Ring apparatus	thin films	diffraction,
light.		2.4 wedge shaped films	Fraunhofer
	3. To determine the	2.5 Newton's rings	diffraction from a
SO2.3: Understand the	wavelength of prominent	2.6 Michelson's Interferometer,	single slit
Michelson's Interferometer,	lines of mercury by plane	experiments and their	diffraction.
experiments and their	transmission diffraction	applications	
applications	grating	2.7 Michelson's Interferometer,	
		experiments and their	
SO2.4: Define and		applications	
understand the basic		2.8 Diffraction:- Fresnel	
concepts of diffraction of		diffraction	
light.		2.9 Fraunhofer diffraction from a	
		single slit diffraction	
SO2.5: Understand		2.10 double slit diffraction	
dispersive power of grating		2.11 N-Slit Diffraction grating	
and, resolving power of		2.12 dispersive power of grating	
grating.		and, resolving power of	
		grating.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the application of Interference of light in daily life.
- ii. Write the application of diffraction of light in daily life.
- iii. Write a short note on Newton's rings with example.
- iv. Describe the method of calculation of Michelson's Interferometer with example

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

BSC 101.3: Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem

Appr	Approximate Hours			
Item	Appx. Hrs			
CI	12			
LI	6			
SW	1			
SL	2			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Total

21

Session Outcomes Laboratory	Class room Instruction	Self Learning
(SOs) Instruction (LI)	(CI)	(SL)
 (SOs) Instruction (L1) SO3.1 Define Quantum mechanics. SO3.2 Understand the Wave particle duality SO3.3 Explain operators in quantum mechanics. SO3.4 Understand Uncertainty principle with elementary proof and applications SO3.5 To Understand Time-dependent and time independent Schrodinger equation for wave function. I. To determine Planck's Constant and work function using photo electric effect. 2. Davisson-Germer experiment - this showed the existence of electron matter waves and that they would be diffracted by a crystal 3. Compton effect - evidence for particle nature of light 	Unit-3: Quantum mechanics 3.1 Introduction to Quantum mechanics 3.2 Wave particle duality 3.3 de-Broglie's concept of matter waves 3.4 Free-particle wave function and wave-packets	(SL) SL.1 Define Wave particle duality. SL.2 Define operators in quantum mechanics.

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the Application of Uncertainty principle with elementary proof in real life.
- ii. Explain the difference between Time-dependent and time independent Schrodinger equation for wave function.
- iii. Write the properties of wave-packets.
- iv. Define Phase & Group velocities.

b. Mini Project:

Oral presentation

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

C. Other Activities (Specify):

Quiz, Class Test.

BSC 101.4: Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure

Approximate Hours				
Item Appx. Hrs				
CI	12			
LI	6			
SW	1			
SL	2			
Total	21			

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning
	(LI)		(SL)
SO4.1: Understand the	1.To draw the	Unit-4: Introduction to solids	SL.1
Free electron theory of	characteristics curve of	& semiconductors	Define Free
metals	p-n junction.		electron theory of
		4.1 Free electron theory of	metals
SO4.2: Understand the	2.To draw the	metals	
Fermi level of Intrinsic and	characteristics curve of	4.2 Fermi level of Intrinsic and	SL.2
extrinsic	Zener diode	extrinsic	Define
		4.3 Kronig-Penney model (no	semiconductors
SO4.3: Understand the		derivation) and origin of	and it's
Kronig-Penney model and	3.Study the temperature	energy bands.	classification.
origin of energy bands.	dependence of resistivity	4.4 Classification of conductors,	
	of a semiconductor (Four	semiconductors and	
SO4.4: Understand the	probe method) and to	insulators on the basis of	
intrinsic & extrinsic	determine band gap of	energy band theory	
semiconductor	experimental material	4.5 Classification of conductors,	
	(Ge).	semiconductors and	
SO4.5: Understand the		insulators on the basis of	
tunnel diode, and it's		energy band theory	
applications		4.6 Semiconductors and it's	
		classification	
		4.7 Semiconductors and it's	
		classification	
		4.8 Intrinsic & extrinsic	
		semiconductor	
		4.9 P-N junction	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

4.10 Zener diode	
4.11 Tunnel diode, and it's	5
applications, Hall effect	
4.12 Tutorial	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain Kronig-Penney model and origin of energy bands.
- **2.** Explain free electron theory of metals.
- **3.** Explain Hall Effect with example.

b. Mini Project:

Oral presentation,

C. Other Activities (Specify):

Quiz, Class Test.

BSC 101.5: Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering.

Approximate HoursItemAppx. HrsCI12LI6SW1SL2Total21

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO5.1: Understand and	1. To study the intensity	Unit-5: Lasers	SL.1
state the Fundamental	distribution due to	5.1 Absorption	Define Absorption,
properties of laser beam	diffraction from single	5.2 Stimulated and Spontaneous	Stimulated and
	slit and to determine	emission	Spontaneous
SO5.2: Understand and	the slit width.	5.3 coherence, pumping,	emission, coherence,
state the Einstein's theory		population Inversion	pumping, population
of matter radiation	2. Study the	5.4 Principle & properties of laser	Inversion.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

interaction and A and B	characteristics of led	beam	SL.2
coefficients	and laser sources.	5.5 Einstein's theory of matter	Define Principle &
SO5.3: Understand the different types of lasers	3. Energy gap of a material of p-n junction	radiation interaction and A and B coefficients 5.6 different types of lasers: gas laser (He-Ne),	properties of laser beam.
SO5.4: Understand Solid-		5.7 different types of lasers: gas	
State laser (Ruby & Nd-		laser (He-Ne),	
YAG)		5.8 Solid-State laser (Ruby & Nd-	
		YAG)	
SO5.5: Understand		5.9 solid-state laser (Ruby & Nd-	
applications of lasers in		YAG)	
science, engineering and		5.10 applications of lasers in	
medicine.		science, engineering and medicine.	
		5.11 applications of lasers in	
		science	
		5.12 applications of lasers in	
		engineering and medicine.	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the Principle & properties of laser beam.
- ii. Write the applications of lasers in science, engineering and medicine.

b. Mini Project:

Power Point Presentation.

C. Other Activities (Specify):

Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self Learning (SL)	Total hour (CI+SW+SL)
BSC 101.1: Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems and to relate to applications to electron optic device and CRO.	12	6	1	2	21

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

BSC 101.2: Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.	12	6	1	2	21
BSC 101.3: Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem.	12	6	1	2	21
BSC 101.4: Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure	12	6	1	2	21
BSC 101.5: Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering	12	6	1	2	21
Total Hours	60	30	5	10	105

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution			
		R	U	Α	Marks
CO-1	Electrostatics & Magnetostatics	02	04	05	11
CO-2	Wave optics	03	07	04	14
CO-3	Quantum mechanics	02	06	02	10
CO-4	Introduction to solids & semiconductors	03	03	02	08
CO-5	Lasers	03	02	02	07
	Total	13	22	15	50
end:	R: Remember, U: Understand	ł,	A: Ap	ply	

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming
- 9. Seminar
- 10. Workshop

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	AICTE's Prescribed Textbook: Physics (Introduction to Electromagnetic Theory) with Lab Manual	Bhattacharya & Nag, Engineering Physics	Khanna Book Publishing Company.	2 nd Edition 2021
2	Introduction to Electrodynamics	David Griffiths	Tata McGraw Hill	11 th Reprint, 2010.
3	Physics	Halliday and Resnick	Tata McGraw Hill	10 th Edition 2018
4	Electricity, magnetism and light	W. Saslow	Academic Press	1 st Edition 2002
5	Engineering Physics	Malik, Singh	Tata McGraw Hill	10 th Edition 2020

Curriculum Development Team

1. Dr. Omkar Prasad Tripathi HOD, Department of Physics.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- 2. Dr. Lovely Singh Gaharwar, Associate Professor, Department of Physics.
- 3. Dr. C.P. Singh, Assistant Professor, Department of Physics.
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

COs. POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: BSC 101 / BSC 101-L

Course Title: Physics-I

Course Outcomes		Program Outcomes										Program Specific Outcome				
		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
		Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems and to relate to applications to electron optic device and CRO.	2	2	3	2	1	1	1	2	2	1	1	2	2	2	2	2
CO-2: Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.	3	2	1	3	1	2	1	2	2	2	2	2	2	2	2	2
CO-3: Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem.	3	3	2	1	1	2	2	2	2	1	2	3	2	2	2	2
CO-4: Recall the basic concepts of crystal structure and apply them in	2	3	1	2	1	2	1	3	2	1	2	2	2	2	3	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

solving numerical problems based on																
them in relating to applications for																
determination of crystal structure																
CO-5: Relate the basic idea of total																
internal reflection to the propagation of																
light in an optical fiber and make use of	2	2	1	1	1	2	2	2	1	2	2	2	2	2	2	2
the fiber concepts to solve numerical	2	3	1	L I	1	3	4	3	I	2	2	2	3	2	3	2
problems and relate to applications in																
engineering																

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Physics-I

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)		
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems and to relate to applications to electron optic device and CRO.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	1.1,1.2,1.3	Unit-1: Electrostatics & Magnetostatics 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9,1.10,1.11,1.12			
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5	2.1,2.2,2.3	Unit-2: Wave optics 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12			
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	3.1,3.2,3.3	Unit-3: Quantum mechanics 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8, 3.9,3.10,3.11,3.12	As mentioned in above pages		
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	4.1,4.2,4.3	4.1,4.2,4.3 Unit-4: Introduction to solid & semiconductors 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8, 4.9,4.10,4.11,4.12			
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	5.1,5.2,5.3	Unit 5: Lasers 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5 .9,5.10,5.11,5.12			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester I

Course Code:	BSC 102
Course Title :	Mathematics-I
Pre- requisite:	Students should review the fundamentals of calculus and basic knowledge of differential and integration.
Rationale:	The program aims to develop advanced problem-solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced mathematical expertise.

Course Outcomes:

BSC 102.1

Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions

BSC 102.2

Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.

BSC 102.3

Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable functions.

BSC 102.4

Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena

BSC 102.5

Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.

Scheme of Studies:

Course	Course		Scheme of studies(Hours/Week)				Total	
Category		Course Title	CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
BSC	BSC 102	Engineering Mathematics -I	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.
 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of

teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)				nt	()		
Course Category	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
BSC	BSC 102	Mathematics -I	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL).

As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

BSC 102.1

Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions

Item	Appx. Hrs
CI	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory	Class room Instruction	Self-Learning (SL)
(SOs)	Instruction (LI)	(CI)	
SO1.1: Understand the concept		Unit-1: Single-variable Calculus	SL.1
of local and global extrema.			Define the derivative
		1.1 Rolle's Theorem,	of a function at a point
SO1.2: Understand the		1.2 Mean value theorems	using the limit
geometric interpretation of the		1.3 Applications, extreme values	definition.
derivative as the slope of a	-	of functions	
tangent line		1.4 Linear approximation,	SL.2
		Indeterminate forms	Apply implicit
SO1.3: Apply implicit		1.5 L' Hospital's rule	differentiation to find
differentiation to find		1.6 Tutorial-1	derivatives of
derivatives of implicitly defined		1.7 Curvature,	implicitly defined
functions		1.8. Radius of curvature	functions
		1.9 Evolutes and involutes	SL.3
SO1.4: Understand the		1.10 Expansion of functions by	Apply derivatives to
hypothesis of L' Hospital's rule		Maclaurin's series	solve problems in
		1.11 Expansion of functions by	optimization, curve
SO1.5: Understand the concept		Taylor's series for one	sketching, and related
of curvature.		variable	rates.
		1.12 Tutorial- 2	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Analyze and sketch the graph of a function using information from its derivative.
- ii. Identify critical points, inflection points, and concavity.
- iii. Apply L'Hôpital's Rule to find limits involving indeterminate forms

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

BSC 102.2: Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.

Item	Appx. Hrs
CI	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory	Class room Instruction (CI)	Self-Learning (SL)
(SOs)	Instruction (LI)		
SO2.1		Unit-2: Matrices	SL.1
Define and understand the			Explore more advanced
basic concepts of matrices,		2.1.Rank of a Matrix	topics, such as linear
determinant, etc		2.2. Determinant,	transformations, matrix
SO2.2		2.3. Inverse of a matrix,	norms, and applications in
Perform basic matrix	-	2.4-Nullity	optimization and
operations, including		2.5 . System of linear equations,	computer graphics
addition, subtraction, and		2.6.Symmetric, skew-	SL.2
scalar multiplication		symmetric	Understand numerical
SO2.3		2.7.Orthogonal matrices	techniques for solving
Understand the connection		2.8. Eigen values and Eigen	matrix problems, such as
between matrix equations and		vectors, orthogonal	Gaussian elimination and
systems of linear equations		transformation,	iterative methods SL.3
SO2.4		2.9. Diagonalization of matrices,	Apply matrix operations
Define and compute the		Cayley-Hamilton Theorem,	and concepts to solve

A K S University Faculty of Engineering and Technology

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

determinant of a matrix	2.10.	Linear	systems	of	real-world problems in
SO2.5	e	equations,			various fields, such as
Understand numerical	2.11	Linear ind	ependence	and	physics, computer
techniques	1	inear depen	dence		science, engineering, and
	2.12 T	utorial-1			economics

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the application of Matrices in Real Life.
- ii. Write the properties of Eigen values.
- iii. Write a short note on types of matrix with example.
- iv. Describe the method of calculation of rank with example

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

BSC 102.3: Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable functions.

11				
Item	Appx. Hrs			
CL	12			
LI	0			
SW	1			
SL	1			
Total	14			

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self Learning
	Instruction (LI)		(SL)
SO3.1: Define and compute		Unit-3: Multivariable Calculus	SL.1
partial derivatives of			Apply Lagrange
functions of several variables		3.1. Limit and continuity	multipliers to solve
SO3.2: Understand the		3.2. Total derivative,	constrained
directional derivative and its		3.3. Euler's theorem on	optimization
relation to the gradient vector	-	Homogeneous function.	problems SL.2
SO3.3: Apply the chain rule		3.4. Application of Euler's theorem	Apply the second
to compute derivatives of		in approximation and errors,	derivative test to

Faculty of Engineering and Technology Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

composite functions	3.5. Application of Euler's theorem	determine local
involving multiple variables	in errors	extrema.
SO3.4: Understand mixed	3.6. Tangent plane and normal line.	SL.3
partial derivatives and	3.7. Maxima, minima	Solve optimization
Clairaut's theorem	3.8 Saddle points,	problems involving
SO3.5: Identify critical	3.9. Method of Lagrange multipliers	multiple variables
points of multivariable	3.10. Partial derivatives	
functions	3.11 Questions of partial differential.	
	3.12 Tutorial-1	

SW-3 Suggested Sessional Work (SW): a. Assignments:

- i. Write the Application of Euler's theorem in real life.
- ii. Explain the difference between differential and partial differential
- iii. Write the properties of maxima, minima.
- iv. Define saddle points, point of inflection.

b. Mini Project:

Oral presentation

c. Other Activities (Specify):

Quiz, Class Test.

BSC 102.4: Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena

Approximate Hours			
Item	Appx. Hrs		
CI	12		
LI	0		
SW	1		
SL	1		
Total	14		

Page 36 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction (LI)	(CI)	(SL)
SO4.1		Unit-4: First order ordinary	SL.1
Understand the definition of a first-		differential equations	Apply first-order
order ordinary differential equation			ODEs to model and
SO4.2		4.1 Order and degree of	analyze various
Solve separable differential equations		equation	phenomena, such as
using the separation of variables	-	4.2 Exact equations.	population growth,
technique		4.3 Questions of Exact	chemical reactions,
SO4.3		equations,	and electrical circuits
Identify and use integrating factors to		4.4 Linear equations	SL.2
solve linear first-order ODEs		4.5 Tutorial-1	Apply integrating
SO4.4		4.6 Bernoulli's equations.	factors to convert
Identify autonomous differential		4.7 Equations not of first	inexact equations into
equations and their significance		degree:	exact ones
SO4.5		4.8 Equations solvable for p,	SL.3
Recognize and solve exact		4.9 Equations solvable for y,	Analyze and interpret
differential equations		4.10 Equations solvable for x	solutions in the
		4.11 Equations Clairaut's type	context of applications
		4.12 Tutorial-2	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

Explain degree and order of differential equation with example.

b. Other Activities (Specify):

Quiz, Class Test.

BSC 102.5: Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.

Item	Appx. Hrs
CI	12
LI	0
SW	1
SL	1
Total	14

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction (LI)	(CI)	(SL)
SO5.1		Unit 5: Integral Calculus	SL.1
Understand and state the		_	Apply calculus
Fundamental Theorem of		5.1. Evaluation of definite and improper	techniques to
Calculus		integrals,	analyze curves
SO5.2		5.2. Beta and Gamma functions	defined in polar
Find antiderivatives of		5.3. Properties of Beta and Gamma	form
elementary functions		functions,	SL.2
SO5.3		5.4 Relation between Beta and Gamma	Use numerical
Understand the concept		functions	methods, such as the
of a definite integral as a		5.5. Double integrals (cartesian),	trapezoidal rule and
limit of Riemann sums		5.6 questions of double integrals	Simpson's rule, to
SO5.4		5.7. Change of order of integration in	approximate definite
Interpret definite		double integrals,	integrals
integrals as areas under		5.8 Change of order of integration	SL.3
curves		questions	Apply tests for
SO5.5		5.9. Triple integrals (cartesian),	convergence, such
Understand and evaluate		5.10. simple applications involving cubes	as the comparison
improper integrals.		and sphere	test and the integral
		5.11 Rectangular parallelepipeds	test
		5.12 Tutorial-1	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the application of double and tripal integration.
- ii. Write the Properties of Beta and Gamma functions.
- **b. Mini Project:** Power Point Presentation.
- c. Other Activities (Specify): Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
BSC-102.1 Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions	12	1	1	14

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

BSC-102.2 Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.	12	1	1	14
BSC-102.3 Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable functions.	12	1	1	14
BSC-102.4 Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena.	12	1	1	14
BSC102.5 Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.	12	1	1	14
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Mar	ks Distributio	n	Total
		R	U	Α	Marks
CO-1	Single-variable Calculus	02	04	07	05
CO-2	Matrices	03	07	14	10
CO-3	Multivariable Calculus	02	06	10	15
CO-4	First order ordinary differential equations	03	03	11	15
CO-5	Integral Calculus.	03	02	08	05
	Total	13	22	15	50

Legend: R: Remember,

U: Understand,

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming

Suggested Learning Resources:

(a)	Books	•
(a)	DOOUS	•

S.	Title	Author	Publisher	Edition & Year
No.				
1.	Engineering Mathematics-I,	D.K, Jain	Shree Ram Prakashan.	7th Edition 2015-16
2.	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	36th Edition, 2010
3.	Engineering Mathematics-I	D.C. Agrawal	Shree Sai Prakashan	10th Edition 2018
4.	Higher Engineering Mathematics	B.V. Ramana	Tata McGraw Hill	11th Reprint, 2010.

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.

- 4. Mrs. Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr. Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

.....

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech;

Course Code: BSC 102

Course Title: Mathematics-I

					P	rogram	Outco	mes					Pr	ogram Sp	ecific Ou	tcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
BSC-102.1 Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions	3	1	2	2	2	2	3	1	2	2	1	2	2	2	2	2
BSC-102.2 Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.	2	2	3	2	1	2	2	1	1	1	2	3	1	2	2	2

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

BSC-102.3 Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	1
points of multivariable functions.																
BSC-102.4 Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena.	3	2	2	2	3	1	3	1	2	1	2	2	2	3	3	2
BSC102.5 Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.	2	2	2	2	1	1	3	1	1	1	2	2	2	3	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Mathematics-I

POs & PSOs	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Single-variable Calculus 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.1 0,1.11.1.12	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2: Matrices 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable functions.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Multivariable Calculus 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.1 0,3.11,3.12	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4: First order ordinary differential equations 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10 ,4.11,4.12	

	visualize the behavior of solutions, Apply first-order	SO4.5	
	ODEs to model and analyze various phenomena.		
	CO-5: Understand and state the Fundamental	SO5.1	
PO 1,2,3,4,5,6	Theorem of Calculus, both parts and apply the	SO5.2	Unit 5: Integral Calculus
7,8,9,10,11,12	Fundamental Theorem to evaluate definite integrals.	SO5.3	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.1
PSO 1,2, 3, 4	Apply integration techniques, including substitution,	SO5.4	0,5.11,5.12
	integration by parts, and partial fractions.	SO5.5	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester I

Course Code: BSC105

Course Title: Biology for Engineers

Pre-requisite: Student should have basic knowledge of biology

Rationale: Engineering combines scientific knowledge with creative activities to move beyond current knowledge and produce original solutions to important problems. Biological systems are subject to the laws of chemistry and physics, which are also the basis of engineering, biological systems can provide excellent examples of the applications of statics, dynamics, chemical affinities, energy relations, and other concepts taught in undergraduate engineering science courses.

Course Outcomes: After completion of the course:

- **BSC105.1**: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry
- **BSC105.2**: To convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted.
- **BSC105.3**: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and understand the molecular basis of coding and decoding genetic information is universal
- **BSC105.4**: To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. To convey that without catalysis life would not have existed on earth
- BSC105.5: To convey the concept of microbes and their role in environment.

Scheme of Studies:

Course	Course	Course		Sche	me of studi	es(Hours/	Week)	Total Credits
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	(C)
BSC	BSC105	Biology for Engineers	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Scheme of Assessment: Theory

Theory	/									
			Scheme of Assessment (Marks)							
			Pr	ogressi	ve Asse	essment	(PRA))		
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3)10 marks each(CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
BSC	BSC105	Biology For Engineers	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

BSC105.1: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry

Approximate Hou				
Item	Appx. Hrs.			
CI	9			
LI	0			
SW	1			
SL	2			
Total	12			

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
(SOs)	Instruction (LI)	(CI)	(SL)
 SO1.1 Why we need to study biology SO1.2 To know the differences and similarities between human eye and camera. SO1.3 Analyze the mechanism of birds flying with Aircraft SO1.4 Gain knowledge about the role of biology with discoveries in living world. SO1.5 To understand the concept and amazing facts about living organisms. 		 Unit1. Introduction 1.1 Introduction to biology branches and scopes 1.2 Comparison between eye and camera 1.3 Comparison between Bird flying and aircraft. 1.4 Important discoveries of biology. 1.5 Living organisms, characteristics of living organism 1.6 classification of living organisms 1.7 Cell theory 1.8 Discuss how biological observations of 18th Century that lead to major discoveries. 1.9 Understanding Binomial system of nomenclature 	 1.1 Importance of Biology in engineering 1.2 Discuss how biological observations of 18th Century that lead to major discoveries

Suggested Sessional Work (SW): anyone

SW1.1 Assignments SW1.2 Mini Project SW1.3 Other Activities (Specify)

1 Compare living and non living

Make a model of camera and try to make a flying object and try to make a flying object

BSC105.2: To convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted

Арр	oroximate Hours
Item	Appx. Hrs.
CI	9
LI	0
SW	1
SL	2
Total	12

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning
(SOs)	(LI)	(CI)	(SL)
 2.1 Hierarchy of life forms at phenomenologi cal level. 2.2 Understand ultra structure of prokaryotic and eukaryotic organism, 2.3 Study mode of nutrition in organism. 2.4 To understand the major types of kingdoms 		Unit2. Classification 2.1 Discuss classification based on (a) cellularity- Unicellular or multicellular 2.2 Discuss classification based on (b)Ultra structure- prokaryotes or eukaryotes. 2.3 classification based on (c) energy and Carbon utilization 2.4Autotrophs 2.5 heterotrophs, 2.6 Lithotrophs. 2.7 Molecular taxonomy- 2.8 Three major kingdoms of life. 2.9 Diversity of living organisms	 2.1 Study different examples of uni and multicellular examples 2.2 Gain knowledge about the basic structure of cell and functions of cell organelles

Suggested
SessionalSW1.1 Assignments
SW1.2 Mini ProjectDifferentiate between prokaryotic cell and eukaryotic cell.Work (SW):SW1.2 Mini Project
SW1.3 OtherPrepare the poster explaining classification of organism
Grow yeast or fungus and observe the growth.anyoneActivities (Specify)

BSC105.3: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences and Understand the molecular basis of coding and decoding genetic information is universal

Item	Appx. Hrs.
CI	9
LI	0
SW	1
SL	4
Total	14

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
3.1 Illustrate how genetic		Unit3. Genetics &	3.1. Build-up the
material passes from parent		Information Transfer	concept on the
to offspring? Concepts of			phenotype and
recessiveness and		3.1: Mendel's laws, Concept	genotype.
dominance.		of segregation and	Concepts of
3.2 Understand the cell cycle		independent assortment.	recessiveness and
and its importance and		3.2 Concept of allele.	dominance
types of cell division.		3.3: cell cycle	3.2. Basic knowledge
3.3 Able to realize concept of		3.4 Meiosis and Mitosis	of cell and cell
mapping of phenotype to		3.5 Genome mapping	theory
genes.		3.6 Gene disorders in	3.3. Concepts of
3.4 Discuss about the single		humans	physical and
gene disorders in humans.		3.7 DNA as a genetic	genetic mapping.
3.5 Analyze the molecular basis		material. Hierarchy of	3.4. Boost your
of information transfer and		DNA structure-from	knowledge on
study the DNA structure		single stranded to	some genetic
and compacting of genome		double helix to	disorders in
3.6 Gaining knowledge about		nucleosomes.	human. And
the universality and		3.8 Concept of genetic code	mutation.
degeneracy of genetic		3.9 Universality and	
code.		degeneracy of genetic	
		code	

Suggested Sessional Work (SW): *anyone* Assignments: Mini Project: Other Activities (Specify):

Differentiate between mitosis and meiosis Explain different types of crosses of Mendelian genetics Make a model of DNA and RNA and chart of cell cycle

BSC105.4 To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. To convey that without catalysis life would not have existed on earth

Approximate Hours					
Item	Approx Hrs				
CI	9				
LI	0				
SW	1				
SL	3				
Total	13				

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning	
(SOs)	Instruction	(CI)	(SL)	
	(LI)			
4.1 In this context discuss		Unit 4- Biochemistry	4.1 Study about the	
monomeric units and		and metabolism and	various disorders	
polymeric structures.		Enzymes	related to	
4.2 To know about the			carbohydrate	
structure and functions		4.1 Molecules of life	metabolism.	
of carbohydrates.		4.2 Discuss about sugars,	4.2 Learn names of	
4.3 Able to know about the		4.3 starch	essential and non	
building blocks of		4.4 cellulose.	essential amino	
proteins.		4.5 Amino acids	acids.	
4.4 Understand proteins-		4.6 Proteins	4.3 To know about the	
structure and function.		4.7Primary, secondary,	important enzymes	
Hierarchy in protein		tertiary and	of human body and	
structure. Primary		quaternary structure	discuss two	
secondary, tertiary and		of proteins.	examples.	
quaternary structure.		4.8 Enzyme		
4.5 Analyze the how does		classification.		
an enzyme catalyze		Mechanism of		
reactions?		enzyme action.		
		4.9 Nucleotides and		
		DNA/RNA		

SuggestedAssignments:Write a detail note on Classification of Carbohydrate.Sessional WorkMini Project:Make a chart explaining bio molecules.(SW): anyoneOther Activities
(Specify):List out important enzymes of human body.

BSC105.5: To convey the concept of microbes and their role in environment.

Ар	oproximate Hours
Item	Appx. Hrs.
CI	9
LI	0
SW	1
SL	2
Total	12

Session Outcomes	Laboratory	Classroom	Self-
(SOs)	Instruction	Instruction	Learning
	(LI)	(CI)	(SL)
5.1 Gain the knowledge of different		Unit 5. Microbiology	5.1 Concept of
microscopic techniques.			single celled
5.2 To gain knowledge about different		5.1 Microscopy	organisms
bacterial species and strain.		5.2 staining methods	5.2 Ecological
5.3 Understand principle and types of		5.3 classification of	aspects of
sterilization used in		microorganisms(ty	single celled
microbiology.		pes)	organisms
5.4 Study the different components		5.4 Concept of single	
used in media and preparation of		celled organisms	
medium		5.5 Concept of species	
5.5 Analyze the microbial growth		and strains	
curve.		5.6 Sterilization	
		5.7Types of	
		sterilization.	
		5.8 media compositions.	
		5.9 Growth kinetics.	

Suggested	Assignments:	1) Draw and explain simple and compound microscope and their parts.
Sessional		2) Describe Bacterial growth curve.
Work (SW):	Mini Project:	Make a chart showing different sterilization techniques.
Anyone	Other Activities (Specify):	Try to make a simple microscope model.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Self- Learning (SL)	Sessional work (SW)	Total hour (Cl+SW+SL)
BSC105.1: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry.	9	2	1	12
BSC105.2: To convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted.	9	2	1	12
BSC105.3 : To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and Understand the molecular basis of coding and decoding genetic information is universal	9	4	1	14
BSC105. 4 To convey that all forms of life have the same building blocks and yet the	9	3	1	13

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

manifestations are as diverse as one can
imagine. To convey that without catalysis life
would not have existed on earth92112BSC105.5: To convey the concept of
microbes and their role in environment9211245130563

Suggested Specification Table (For ESA)

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Role play
- 5. Presentations
- 6. Extempore
- 7. Speeches
- 8. Brainstorming

Suggested Learning Resources:

(a) Books:

S.no.	Title	Author	Publisher	Edition & Year
1	Biology for engineers	Arthur T johanson	Taylor & Francis CRC Press	2019
2	Biology for engineers	Dr. Tanu Allen Dr. Sohini singh	Vayu Education of India	2020
3	Biology for engineers	Tanushree Chakraborti	Prentice Hall India Pvt., Limited	2022

Curriculum Development Team

- 1. Dr. Kamlesh Chaure, HOD, Department of Biotechnology.
- 2. Dr. Deepak Mishra, Professor, Department of Biotechnology.
- 3. Dr. Kamlesh Kumar Soni, Assistant Professor, Department of Biotechnology.
- 4. Mr. Paras Koshe, Assistant Professor, Department of Biotechnology.

COs, POs and PSOs Mapping

Program Title: B. Tech. Cement Tech;

Course Code: BSC105;

Course Title: Biology for Engineers

					Pro	ogram (Outcon	nes					Progr	am Spee	cific Ou	tcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry.	3	3	2	3	3	2	1	2	3	2	2	3	2	2	3	2
CO-2: To convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted.	3	3	3	2	2	2	1	2	1	2	2	2	2	2	2	2
CO-3 : To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and Understand the molecular basis of coding and decoding genetic information is universal	3	3	2	2	3	1	2	2	1	2	2	3	1	2	2	2
CO-4: To convey that all forms of life have the same building blocks and yet the																

manifestations are as diverse as one can	3	3	2	2	2	1	1	3	2	2	2	2	1	3	3	3
imagine. To convey that without catalysis																
life would not have existed on earth																
CO-5: To convey the concept of microbes	•				•		•	•	•	•	•	•	•			
and their role in environment	3	3	3	3	2	3	2	3	2	2	2	2	2	3	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Biology for Engineers

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit1: Introduction 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: To convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted.			Unit 2: Classification 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	As mentioned nabove page
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3 : To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and Understand the molecular basis of coding and decoding genetic information is universal			Unit 3: Genetics & Information Transfer 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. To convey that without catalysis life would not have existed on earth	SO4.2 SO4.3		Unit 4: Biochemistry and metabolisr and Enzymes 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: To convey the concept of microbes and their role in environment	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	Unit 5: Microbiology 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-I

Course Code:	ESC 101 / ESC 101-L			
Course Title :	Basic Electrical Engineering			
Pre-requisite:	Students should have basic knowledge of Basic Circuit Elements with brief information of AC, DC, and electromagnetic concepts.			
Rationale:	A process of introducing formal knowledge of basic electrical elements and AC, DC, and magnetic circuit in electrical and electronic devices along with necessary knowledge about single-phase Transformer and DC machine.			

Course Outcomes:

ESC 101.1: Apply network theorems to solve electrical DC circuits.
ESC 101.2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.
ESC 101.3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.
ESC 101.4: Understand the basic operating principle, types, efficiency of Transformers
ESC 101.5: Understand the basic operating principle, types of machines.

Scheme of Studies:

Course	Course	Course		Sche	Total Credits			
Category	Code	Title	CI	LI	SW	SL	Total Study Hours	(C)
							(CI+LI+SW+SL)	
ESC	ESC 101	Basic Electrical Engineering	3	2	1	1	7	4

Legend:	CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and
	Tutorial (T) and others),
	LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
	field or other locations using different instructional strategies)
	SW: Sessional Work (includes assignment, seminar, mini project etc.),
	SL: Self Learning,
	C: Credits.
Note:	SW & SL has to be planned and performed under the continuous guidance and feedback
	of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Scheme of Assessment: Theory

			Scheme of Assessment (Marks) Progressive Assessment (PRA)										
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)			
ESC	ESC 101	Basic Electrical Engineering	15	20	5	5	5	50	50	100			

Practical

				Scheme of Assessment (Marks)								
gory	Code	lle	Progressi	. (V	A)							
Course Category	Course Co	Course Title	Class/Home Assignment 5 number 7 marks each (LA)	VIVA (VV)	Class Attendance (TA)	Total Marks (LA+VV+TA)	End Semester Assessment (ES	Total Marks (PRA+ESA)				
ESC	ESC 101-L	Basic Electrical Engineering Lab	35	10	5	50	50	100				

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

ESC 101.1: Apply network theorems to solve electrical DC circuits.

Approximate Hours

1	
Item	Appx. Hrs
CI	07
LI	12
SW	2
SL	1
Total	22

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-	
(SOs)	(LI)	(CI)	Learning	
			(SL)	
SO1.1 Understand the	1. Verification of KVL.	Unit-1:DC Network	1. Learn the	
Classification of electrical	2. Verification of KCL.		theoretical	
elements.	3. Identification of	1.1 Classification of	concept of	
	different electrical and	elements – active,	circuit	
SO1.2 Understand the	electronic components.	passive, unilateral,	element.	
concept of voltage and	4. Calculation of Power,	bilateral, linear,		
current source.	Impedance and P.F. in	nonlinear, lumped and		
	R-L-C Circuits.	distributed		
SO1.3 Understand the	5. Verification of	1.2 classification of voltage		
concept of mathematical	Superposition Theorem.	& current sources		
analysis based on KCL and	6. Verification of	1.3 mesh and nodal analysis		
KVL.	Thevenin's Theorem.	1.4 Superposition theorem		
		1.5 Star-Delta		
SO1.4 Analyze different		Transformations		
network theorems.		(Numerical only).		
		1.6 Thevenin's theorem		
SO1.5 Understand the		(Only independent		
concept of star-delta		sources).		
transformation.		1.7 Numerical		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Numerical Problems on mesh and nodal analysis.

b. Mini Project:

i. Derive different network theorems.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

ESC 101.2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.

Approximate Hours

Item	Appx. Hrs
CI	7
LI	2
SW	2
SL	1
Total	12

	Session		Laborato	•		Classroom Ins	struction		Self-Lear	ning
	Outcomes	Instruction			(CI)			(SL)		
	(SOs)		(LI)							
SO2.1	To Understand	1.	Study	about	Uni	t-2Single-Phase	AC Circuits	1.	Remember	different
	the concept of		different	types	2.1	Sinusoidal	periodic	con	cept related	to the
	sinusoidal		of connec	tion in		waveforms:	frequency,	Sinu	usoidal	Periodic
	periodic		AC circuit	t.		cycle, time	period, peak	Way	veform.	
	waveforms.					value, root	mean square			
						value, average	e value, form			
SO2.2	To understand					factor and pea	k factor.			
	the concept of				2.2	Phasor repre	esentation of			
	phase					alternating qua	antities.			
	difference.				2.3	Concept of pha	ase difference,			
						The j operator	•			
SO2.3 T	o understand the				2.4	Rectangular and	polar form			
	different				2.5	Power Triangle				
	triangles.				2.6 Impedance Triangle, Power		iangle, Power			
					factor					
SO2.4 7	To understand the				2.7 Solution of s		eries, parallel,			
	different					series-parallel	network.			
	connections.									

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems on Sinusoidal Network.
- ii. Numerical Problems on Power Triangle and Impedance Triangle.
- iii. Numerical Problems on Series and Parallel Circuit.
- **b.** Mini Project: Draw the chart of Phasor Representation.

ESC 101.3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Approximate Hours

Item	Appx. Hrs
CI	9
LI	4
SW	2
SL	1
Total	16

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO3.1 To Understand the basic concept of three-phase AC circuit. SO3.2To understand the different types of connection of three-phase winding. SO3.3To Understand the three-phase power equations. SO3.4To Understand the concepts of magnetic circuit. SO3.5 To understand the concept of leakage flux and fringing. 	 Study about the different types of three-phase AC circuits. Study different concepts related with Magnetic Circuit. 	 Unit-3 :Three-Phase AC Circuit 3.1 Introduction 3.2 phase sequence,balanced load 3.3 Connection of Three-phase Windings (delta and star connection): line and phase quantities. 3.4 phasor diagrams,Three phase power equations in balanced conditions (Elementary Numerical). 3.5 Magnetic Circuits: Introduction 3.6 magneto motive force (MMF) 3.7 magnetic field strength, magnetic flux,reluctance 3.8 Comparison of the electric and magnetic circuits. 3.9 Solution of simple magnetic circuits (only for constant permeability materials).Leakage flux and fringing. 	1. Basic principle of three-phase AC Circuit.

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems on three-phase load.
- ii. Numerical Problems on Magnetic circuit.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

ESC 101.4: Understand the basic operating principle, types, efficiency of Transformers.

Approximate HoursItemAppx. HrsCI10LI8SW2SL2Total22

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO4.1 To Understand the constructional features of Single-phase Transformer.SO4.2 Understanding the classification of Transformer.SO4.2 Understand the different concept related with transformerSO4.3 Understand the different concept related with transformer.SO4.4 Derive EMF equation of transformer.SO4.5 Understand the Phasor Diagram at different loads.	 Study the construction details of transformer. Perform open circuit and Short Circuit test on single-phase transformer. Study and Verification of Transformer Ratio Polarity. Perform Back to 	 Unit-4 :Single-Phase Transformer 4.1 Introduction 4.2 principles of operation 4.3 Construction 4.4 classification of transformers 4.5 Rating of transformer 4.6 EMF equation, ideal and practical transformer 4.7 phasor diagram under no load and loaded conditions 4.8 losses, efficiency calculations, Condition of 	 i. Remember different parts of transformer. ii. Calculate Losses and Efficiency of transformer.
SO4.6 Understand the different concepts related to efficiency for single-phase	back Test on Transformer	Maximum Efficiency 4.9 All day efficiency	
transformer.		4.10 Elementary Numerical)	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Numerical Problems on transformer

b. Mini Project:

i. Draw phase diagram of transformer at different loads.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

ESC 101.5: Understand the basic operating principle, types of machines.

Approximate Hours					
Item	Appx. Hrs				
CI	12				
LI	4				
SW	2				
SL	1				
Total	19				

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO5.1 Understand the constructional details of DC machines. SO5.2Derive EMF and Torque equations. SO5.3 Evaluate different types of dc machine. SO5.4 Understanding the Electrical Installation. 	 Study different components of DC Motor and Three Phase Starter. Study of different components of Induction Motor and Star-Delta Starter. 	 Unit 5: DC Machines 5.1 Common Construction features of DC Machines 5.2 EMF equation 5.3 types of DC machines (Separately & self-excited) 5.4 Elementary numerical 5.5 Components of LT Switchgear 5.6 Switch fuse unit(SFU) 5.7 MCB, ELCB, MCCB 5.8 Types of wires 5.9 Earthing 5.10Cables 5.11Torque equation 5.12Compound DC Machine 	1. Remember the Constructional features of DC Machine.

SW-5 Suggested Sessional Work(SW):

a. Assignments:

i. Numerical Problem based on EMF and Torque equation of DC machine.

b. Mini Project:

Draw the chart of different types of cable and earthing.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Laboratory Lecture (Ll)	Sessional Work (SW)	Self Learning (SL)	Total hour (CI+LI+ SW+SI)
ESC 101.1: Apply network theorems to solve electrical DC circuits.	7	12	2	1	22
ESC 101.2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.	7	2	2	1	12
ESC 101.3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.	9	4	2	1	16
ESC 101.4: Understand the basic operating principle, types, efficiency of Transformers.	10	8	2	2	22
ESC 101.5: Understand the basic operating principle, types of machines.	12	4	2	1	19
Total Hours	45	30	10	6	91

Suggestion for End Semester Assessment

Suggested Specification Table(For ESA)

СО	Unit Titles	Marks Distribution			Total
		R	U	Α	Marks
CO-1	DC Network	03	01	01	05
CO-2	Single-Phase AC Circuit	02	03	02	07
CO-3	Three-Phase AC Circuit	02	04	04	10
CO-4	Single-Phase Transformer	03	07	05	15

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

C	CO-5	DC Machines	01	06	06	13
		Total	11	23	16	50

Legend: **R:Remember**, U:Understand, A:Apply

The end of semester assessment for Process calculation will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to electrical power plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp,Mobil e,Onlinesources)
- 9. Brainstorming

Suggested Learning Resources:

	(a) Books:			
S.	Title	Author	Publisher	Edition &
No.				Year
1	Basic Electrical	Fitzrald and	Tata McGraw	Fifth
	Engineering	Higgonbothom	Hill	
2	Theory and Problems	D.P. Kothari and I.	Prentice Hall	2016 - Second
	of Basic Electrical	J. Nagrath	India Learning	
	Engineering		Private Limited	
3	Basic Electrical	D. C.	McGraw Hill	2009
	Engineering	Kulshreshtha		
4	Fundamentals of	Ashfaq Hussain	Dhanpat Rai and	Third
	Electrical		Co	
	Engineering			
5	Lecture note provided b	oy .		
	Dept. of electrical engin	neering, AKS Univer	rsity, Satna.	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech;

Course Code: ESC 101 / ESC 101-LCourse

Title: Basic Electrical Engineering

		Program Outcomes									Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Apply network theorems to solve																
electrical DC circuits.	2	2	3	2	2	1	1	1	2	1	1	2	1	2	2	2
CO-2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.	2	2	1	3	1	2	1	1	1	1	2	2	2	2	2	2
CO-3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.	3	3	2	1	1	2	2	2	1	1	2	3	1	2	1	2
CO-4: Understand the basic operating principle, types, efficiency of Transformers.	-	3	3	2	3	2	1	3	2	1	2	2	2	3	3	3
CO-5: Understand the basic operating principle, types of machines.	2	3	3	1	2	3	2	3	1	2	2	2	2	3	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023) Course Curriculum Map: Basic Electrical Engineering

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Apply network theorems to solve electrical DC circuits.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	1.1,1.2,1.3,1.4,1.5,1.6	Unit-1:DC Network 1.1,1.2,1.3,1.4,1.5,1.6,1.7	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.	SO2.1 SO2.2 SO2.3 SO2.4	2.1	Unit-2: Single-Phase AC Circuits 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	3.1,3.2	Unit-3 :Three-Phase AC Circuit 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Understand the basic operating principle, types, efficiency of Transformers.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6	4.1,4.2,4.3,4.4	Unit-4: Single-Phase Transformer 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Understand the basic operating principle, types of machines.	SO5.1 SO5.2 SO5.3 SO5.4	5.1,5.2	Unit 5: DC Machines 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester I

Course Code: ESC102, ESC102-L

Course Title: Engineering Graphics & Design

- Pre-requisite:Student should have basic knowledge of Geometry, Geometrical Shapes,
basic knowledge of Computer, Mouse and keyboard use, navigating menus
and dialogs, managing files and directories, etc.
- Rationale: The students studying Graphics are essential in mechanical engineering, allowing engineers to visualize and communicate complex ideas clearly and concisely. Using graphics, engineers can create detailed plans for construction projects, analyses structural components, and convey design concepts to clients and stakeholders.

Course Outcomes:

- **ESC102.1:** Get introduced with Engineering Graphics and visual aspects of design.
- ESC102.2: Know and use common drafting tools with the knowledge of drafting standards.
- **ESC102.3:** Apply computer aided drafting techniques to represent line, surface or solid models in different Engineering viewpoints.
- **ESC102.4:** Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.
- **ESC102.5:** To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto CAD

Scheme of Studies:

Course	Course	Course Title		Scheme of studies(Hours/Week)					
Category	Code		CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	(C)	
ESC	ESC102/ ESC102- L	Engineering Graphics & Design	1	4	1	1	7	3	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.
 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory:

					Schen	ne of Ass	essment (Marks)		
				Progr	essive Ass	sive Assessment (PRA)				
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each(CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Marks (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
ESC	ESC102	Engineering Graphics & Design	15	20	5	5	5	50	50	100

Practical

çory	le	ع	Schem Progressiv		s (
Course Category	Course Code	Course Title	Class/frome Assignment 5 number 7 marks each (LA)	VIVA (VV)	Class Attendance (TA)	Total Marks (LA+VV+TA)	End Semester Assessment (ESA	Total Marks (PRA+ESA)
ESC	ESC102-L	Engineering Graphics & Design	35	10	5	50	50	100

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC102.1: Get introduced with Engineering Graphics and visual aspects of design.

Appr	oximate Hours
Item	Appx. Hrs
CI	03
LI	12
SW	2
SL	2
Total	19

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning
(SOs)	(LI)	(CI)	(SL)
SO.1 Proficiency in using	1.1 Construction of ellipse	Unit-1.0 Engineering Curve &	1. Construction
plain scales for	by different methods;	Scale	of Involutes
measurement and	Normal and Tangent.		
drawing and	1.2. Construction of	1.1 Introduction of Engineering	2. Construction
understanding of	parabola by different	Drawing, Drawing material	of Archimean
representative factors in	methods; Normal and	and their uses Application	Spiral
scales.	Tangent.	of mini drafter, compass,	
SO.2 Construction of ellipses,	1.3 Construction of involute	divider, French curves,	
parabolas, and	such as polygons and	pencils grades and their	
hyperbolas using various	circle	uses	
methods	1.4 Construction of	1.2 Construction of ellipse by	
SO.3 Knowledge and	Cycloid, Epi-cycloid,	different methods; Normal	
construction of special	Hypo-cycloid	and Tangent .Construction	
curves like cycloids,	1.5 Construction of Simple	of parabola by different	
epicycloids,	Scale,	methods; Normal and	
hypocycloids, involutes,	1.6 Diagonal Scale & Scale	Tangent	
and Archimedean spirals.	of Chord	1.3 Construction of Cycloid,	
SO.4 Application of these		Epi-cycloid, Hypo-cycloid	
curves in various		and Construction of	
engineering and		Simple Scale, Diagonal	
mathematical contexts.			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

	Scale & Scale of Chord	

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
- i. Ellipes by concentric circle method, Cycloid, Involutes of Circle

b. Mini Project:

i. Model of Hexagon, Pentagon, Square

ESC102.2: Know and use common drafting tools with the knowledge of drafting standards.

Ap	oproximate Hours
Item	Appx. Hrs
CL	03
LI	12
SW	1
SL	2
Total	18

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO.1 Differentiate between various types of projections when and where each type of projection is commonly used in engineering and technical design. SO.2 Be able to create orthographic projection views of objects, including front view, top view, and side views. SO.3 Able to project points and lines onto different planes using orthographic projection. SO.4 Learn how to find the traces of straight lines in orthographic projection and use these traces to determine the positions of lines in different planes. 	 2.1 Projection of Point 2.2 Projection of Point in different co-ordinate 2.3 Projection of Straight Line 2.4 Projection of Straight Line in different Position w.t.r. H.P. & V.P. 2.5 Projection of Straight Line in different Position w.t.r. H.P. & V.P. 2.6 Projection of Straight Line in different Position w.t.r. H.P. & V.P. 2.6 Projection of Straight Line in different Position w.t.r. H.P. & V.P. 2.6 Projection of Straight Line in different Position w.t.r. H.P. & V.P. 	 Unit-2.0 Projection of Point and Line 2.1 Introduction of Projection 2.2 Projection of Point 2.3 Projection of Straight Line 	 Point Projection in different co- ordinate Projection of Straight Line in different Position w.t.r. H.P. & V.P.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Projection of point & Projection of Straight Line

ESC102.3: Apply computer aided drafting techniques to represent line, surface or solid models in different Engineering viewpoints.

Approximate Hours

	11
Item	Appx. Hrs
CI	03
LI	12
SW	2
SL	2
Total	19

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning
(SOs)	(LI)	(CI)	(SL)
 SO.1 Projection of Planes like circle and polygons in different positions. SO.2 Projection of polyhedrons like prisms, pyramids, and solids of revolutions like cylinder, cones in different positions 	 3.1 Introduction ,Projection of plane 3.2 plane perpendicular to any one and parallel to other 3.3 plane perpendicular to any one and inclined to other 3.4 Introduction ,Projection of solid 3.5 Axis of solid perpendicular to any one and parallel to other 3.6 Axis of solid perpendicular to any one and inclined to other any one and inclined to other 	 Unit-3.0 Projection of Plane & Solid 3.1 Introduction of Projection Plane 3.2 Projection of Plane in different position 3.3 Introduction of projection of Solid and Projection of solid in different position 	 Projection of Plane in different Position w.t.r. H.P. & V.P. Projection of solid in different Position w.t.r. H.P. & V.P.

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Draw three problems of projection of plane
- ii. Draw three problems of projection of solid

b. Mini Project:

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

i. Make models of plane and solid by thermocol

ESC102.4: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.

Approximate Hours

	11
Item	Appx. Hrs
CI	03
LI	12
SW	2
SL	2
Total	19

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning		
(SOs)	(LI)	(CI)	(SL)		
SO.1 Learn the techniques for	4.1 Sectioning of Cone	Unit-4.0 Development of Solid	1. Development		
sectioning right solids	4.2 Sectioning of pyramid	& Section of Solid	and sectioning		
using both normal and	4.3 Sectioning of Cylinder	4.1 Introduction of Sectioning	of cylinder		
inclined planes.	& Prism	and sectioning lines	2. Development		
SO.2 Solves practical	4.4 Development of	4.2 Sectioning of Cone	and sectioning		
problems related to the	cylinder and prism	4.3 Sectioning of pyramid,	of prism		
section of solids and	4.5 Development and	Sectioning of Cylinder &			
planes.	sectioning of pyramid	Prism, Development of			
SO.3 Learn the parallel line	4.6 Development and	cylinder and prism,			
method and radial-line	sectioning of cone	Development and			
method for developing		sectioning of pyramid,			
surfaces in right solids		Development and			
including how to create		sectioning of cone			
accurate representations.					

SW-4 Suggested Sessional Work (SW):

- i. Assignments:
- a. Develop prism and cylinder
- b. Develop pyramid and Cone

ESC102.5: To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Approximate Hours

Item	Appx. Hrs
CI	03
LI	12
SW	2
SL	2
Total	19

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning
(SOs)	(LI)	(CI)	(SL)
 SO.1 Students will learn about the scale and the specific axes used in isometric drawings. SO.2 Students will learn the process of converting two-dimensional orthographic (multi view) drawings into isometric projections. SO.3 Students will learn solving practical design and projection problems using CAD software and how to use CAD tools to create detailed drawings and projections of objects. 	 5.1 Introduction of isometric scale and vies 5.2 Isometric view of circle, cylinder and cone 5.3 Isometric view of prism 5.4 Isometric view of pyramid 5.5 Isometric view by othographic view 5.6 Drawing of different orthographic view of planes and solid by Auto CAD commands 	 Unit-5.0 Isometric projection and Auto CAD 5.1 Introduction of Isometric Projection 5.2 Isometric view of circle, cylinder and cone 5.3 Isometric view of prism and pyramid, Isometric view by orthographic view, Introduction of Auto CAD, Description of Auto CAD commands, Drawing of different orthographic view of planes and solid by Auto CAD 	 Draw Isometric view of plane and solid Draw Isometric view of plane and solid by using Auto CAD command

SW-5 Suggested Sessional Work(SW):

a. Assignments:

- i. Draw Isometric view of a cone resting centrally on a cube
- ii. Explain five edit and draw commands

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Laboratory	Sessional	Self	Total hour	
	Lecture	Lecture	Work	Learning	(CI+SW+SL)	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

	(CI)	(Ll)	(SW)	(SL)	
ESC102.1: Get introduced with Engineering Graphics and visual aspects of design.	3	12	1	2	19
ESC102.2: Know and use common drafting tools with the knowledge of drafting standards.	3	12	1	2	18
ESC102.3: Apply computer aided drafting technique to represent line, surface or solid models in different Engineering viewpoints.	3	12	2	2	19
ESC102.4: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	3	12	2	2	19
ESC102.5: To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto CAD	3	12	2	2	19
Total Hours	15	60	09	10	94

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Mar	Total		
		R	U	Α	Marks
CO-1	Get introduced with Engineering Graphics and visual aspects of design.	03	01	01	05
CO-2	Know and use common drafting tools with the knowledge of drafting standards.	02	06	02	10

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

CO-3	Apply computer aided drafting technique to represent line, surface or solid models in different Engineering viewpoints.	03	07	05	15
CO-4	Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	-	10	05	15
CO-5	Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	03	02	-	05
	Total	11	26	13	50

Legend: R- Remember, U- Understand, A- Apply

The end of semester assessment for Process calculation will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to electrical power plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

	(d) DUUKS.			
S.	Title	Author	Publisher	Edition&Year
No.				
1	Computer Aided Engg	VTU Belgaum	Visvesvaraya	Revised edition21
	drawing		Tech.	edition 2020
			University	

(a) Books:

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

2	Engineering Drawing	Bhatt N.D., Panchal	Charotar Publishing	1999
		V.M. & Ingle P.R.,	House	
3	Engineering Drawing	R.K. Dawan	S. Chand	1985
			Publication.	
4	Engineering Drawing	Agrawal and	TMH	2018
		Agrawal		
5	Training Manual			

Curriculum Development Team

- 1. Professor G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha , Head of the Department, Dept. of Cement Technology
- 3. Mr. Alok Ranjan Tiwari, Assistant Professor, Dept. of Mechanical Engg.
- 4. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 6. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 7. Mr K.P Tiwari, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 13. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech;

Course Code: ESC102, ESC102-L; Cou

Course Title: Engineering Graphics and Design

					Pr	ogram	Outco	nes					Prog	ram Spe	cific Ou	itcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	I he abuilty to apply technical & engineering knowledge for production	Ability to understand the day to plant operational problems of cement manufacture	ADJULY to understand the latest cement manufacturing technology and it anylication	Ability to use the research based innovative knowledge for sustainable development
ESC102.1: Get introduced with Engineering Graphics and visual aspects of design.	1	1	2	2	2	2	3	1	2	2	1	2	2	2	2	2
ESC102.2: Know and use common drafting tools with the knowledge of drafting standards.	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	2
ESC102.3: Apply computer aided drafting technique to represent line, surface or solid models in different Engineering viewpoints.	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2
ESC102.4: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	3	2	2	1	3	1	3	1	2	1	1	2	3	3	3	3
ESC102.5: To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto CAD	1	2	2	1	1	1	3	1	1	1	2	2	3	3	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Engineering Graphics and Design

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	ESC102.1: Get introduced with Engineering Graphics and visual aspects of design.	SO1.1 SO1.2 SO1.3 SO1.4	1.1,1.2,1.3,1.4,1.5,1.6	Unit-1: Engineering Curve & Scale 1.1,1.2,1.3	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	ESC102.2: Know and use common drafting tools with the knowledge of drafting standards.	SO2.1 SO2.2 SO2.3 SO2.4	2.1, 2.2, 2.3, 2.4, 2.5, 2.6	Unit-2: Projection of Point and Line 2.1, 2.2, 2.3	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	ESC102.3: Apply computer aided drafting technique to represent line, surface or solid models in different Engineering viewpoints.	SO3.1 SO3.2	3.1,3.2,3.3,3.4,3.5,3.6	Unit-3: Projection of Plane & Solid 3.1,3.2,3.3	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	ESC102.4: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	SO4.1 SO4.2 SO4.3	4.1,4.2,4.3,4.4,4.5,4.6	Unit-4: Development of Solid & Section of Solid 4.1,4.2,4.3	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	ESC102.5: To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto CAD	SO5.1 SO5.2 SO5.3	5.1,5.2,5.3,5.4,5.5,5.6	Unit-5: Isometric projection and Auto CAD 5.1,5.2,5.3	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-I

Course Code:	ESC103-L
Course Title :	Design Thinking & Idea Lab
Pre- requisite:	There is no such pre requisite for Design Thinking and Idea. This course is intended for students from any discipline who require an understanding of design thinking for brand, product, and service development.
Rationale:	Students will learn a series of design thinking concepts, methods and techniques that are used to bring about innovation in business and in the social sector. The course will be a mix of lecture, case discussions, participative and immersive learning. It will be a predominantly student driven learning to acquire the requisite skills.

Course Outcomes:

ESC103-L CO1: Identify the problems that fall under the purview of human centered design process for creative problem solving.

ESC103-L CO2: Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.

ESC103-L CO3: Build simple prototypes for problems using gathered user requirements.

			Scheme of studies(Hours/Week)			Total		
Course Category	Course Code	Course Title	CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits
ESC	ESC103-L	Design Thinking & Idea Lab	0	2	1	1	4	1

Scheme of Studies:

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Schei	me of A	ssessm	ent (Marks)	
v			Pro	ogressiv	e Asses	sment	(PRA	A)	SA)	
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3)10 marks each(CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
ESC	ESC103-L	Design Thinking & Idea Lab	35	NA	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC103-L.1: Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.

A	pproximate Hours
Item	Appx. Hrs
CI	0
LI	10
SW	2
SL	1
Total	13

Approximate Hours

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory Instruction	Class room	Self-Learning
(SOs)	(LI)	Instruction	(SL)
		(CI)	
SO1.1 Identifying the problem	Unit-1.0 Introduction To Design		1. Develop ability to
that can be solved using Design	Thinking		express their views.
Thinking approach.	1.1 Definition of Design		
SO1.2 Obtain the insights into	Thinking,		
user's problems and make	1.2 Need & Objective of Design		
Problem statement.	Thinking		
SO1.3 Carry out Brain	1.3 Stages of Design Thinking		
storming between the groups	Process.		
and generate as many as ideas	1.4 Brainstorming		
possible.	1.5 Innovative Triangle		
SO1.4 Obtain the insights to			
creativity and innovation.			

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Detail explanation of Stages of Design Thinking

b. Mini Project:

To create a prototype of users need using Design Thinking Stages

ESC103-L.2: Identify the problems that fall under the purview of human centered design process for creative problem solving.

Approximate Hours

Item	Appx. Hrs
CL	00
LI	10
SW	2
SL	1
Total	13

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory Instruction	Class room	Self Learning
(SOs)	(LI)	Instruction	(SL)
		(CI)	
SO2.1 Differentiate between	Unit-2.0 Introduction to		Different Convergent
Design thinking and Creative	Creativity		and divergent thinking
thinking.			tools.
	2.1 Introduction of Creative		
SO2.2 Learn different types of	Thinking.		
creative thinking techniques for	2.2 Creative Thinking Process		
generating creative ideas.	2.3 Creative Problem Solving.		
	2.4 Creative Thinking		
SO2.3 Be able to solve a	Techniques and Tools.		
problem using creativity.	2.5 Divergent and Convergent		
	Thinking.		

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Presentation by student's team on their own creative work.

b. Mini Project:

To create a prototype of a product using their own creativity.

ESC103-L.3: Build simple prototypes for problems using gathered user requirement

Approximate Hours				
Item	Appx. Hrs			
CI	0			
LI	10			
SW	2			
SL	1			
Total	13			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1 Understanding of	Unit-3.0 Introduction to Prototype		1. Solving
Prototyping.	3.1 Prototyping as a mindset,		Practical
	prototype examples		Engineerin
SO3.2 Develop	3.2 Introduction to Rapid Prototyping.		g Problem
understanding of various	3.3 Process of prototyping- Minimum		through
prototype testing methods.	Viable prototype		Innovative
	3.4 Process of Engineering Product		Product
S03.3 Understanding of	Design		Design &
Product Design	3.5 Stages of Product Design		Creative
	e e		Solution

SW-3 Suggested Sessional Work (SW):

a. Assignments: Presentation by student teams on their own developed prototype.

b. Mini Project: Make a prototype using stages of product design

Brief of Hours	suggested fo	r the Course	Outcome
Differ of Hours	Suggested IV	i the course	outcome

Course Outcomes	Class Lecture (CI)	Laboratory Instruction (LI)	Sessional Work (SW)	Self Learning (SL)	Total hour (CI+SW+SL)
ESC103-L.1 : Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.	0	10	2	1	13
ESC103-L. 2: Identify the problems that fall under the purview of human centered design process for creative problem solving.	0	10	2	1	13
ESC103-L. 3: Build simple prototypes for problems using gathered user requirements.	0	10	2	1	13
Total Hours	0	30	06	03	39

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marl	Total		
CO	Unit Titles	R	U	Α	Marks
ESC103-L.1	Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.		05	03	15
ESC103-L.2	Identify the problems that fall under the purview of human centered design process for creative problem solving.	06	06	03	15
ESC103-L.3 Build simple prototypes for problems using gathered user requirements.		07	07	06	20
	Total		18	12	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming
- 9. Seminar
- 10. Workshop

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a) Books :

S.	Title	Author	Publisher	Edition & Year
No.				
1	Paul Harris, Basics Design- Design Thinking	Gavin Ambrose	AVA Publishing	2010
2	Prototyping for Designers: Developing the best Digital and Physical Products	Kathryn McElroy	O'Reilly,	2017
3	"Design Thinking – New Product Essentials from PDMA	Michael G. Luchs, Scott Swan, Abbie Griffin	Wiley,	2015

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 5. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 6. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 7. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech			Cours	e Code	ESC	C103-I			(Course	Title:	Desig	n Think	ing and	Idea L	ab
		Program Outcomes						Program Specific Outcome								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.	3	2	2	3	3	2	1	2	3	2	2	3	1	2	3	3
CO-2: Identify the problems that fall under the purview of human centered design process for creative problem solving.	1	3	3	2	2	2	1	2	1	2	2	2	2	2	2	3
CO-3: Build simple prototypes for problems using gathered user requirements.	2	3	2	2	3	1	2	2	1	2	2	3	1	2	2	2

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Design Thinking and Idea Lab

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.	SO1.1 SO1.2 SO1.3 SO1.4	Unit-1: Introduction To Design Thinking 1.1,1.2,1.3,1.4,1.5	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Identify the problems that fall under the purview of human centered design process for creative problem solving.	SO2.1 SO2.2 SO2.3	Unit-2: Introduction to Creativity 2.1,2.2,2.3,2.4,2.5	As mentioned n above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Build simple prototypes for problems using gathered user requirements.	SO3.1 SO3.2 SO3.3	Unit-3: Introduction to Prototype 3.1,3.2,3.3,3.4,3.5	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester I

Course Code:	PCC-CT101
Course Title:	Introduction to Portland Cement
Pre- requisite:	Student should have basic knowledge of Rocks, Minerals, Elements and Chemical compounds.
Rationale:	The students studying cement technology should possess foundational understanding about historical binding materials employed in construction. This encompasses familiarity with the invention and evolution of Portland cement. Additionally, students ought to acquire fundamental insights into various cement types, their applications, as well as the Indian regulatory authorities responsible for supervising production standards and quality of cement.

Course Outcomes:

- **PCC-CT101.1:** Understand the character of ancient Cementitious building materials and evolution of Portland cement.
- **PCC-CT101.2:** Acquired the knowledge of types of raw materials and fuel used in the production of Portland cement, along with its physical and chemical characteristics.
- **PCC-CT101.3:** Understanding of the various types of cement manufactured in India and their utilization in infrastructure development.

PCC-CT101.4: Familiarize with a concise overview of the cement manufacturing process.

PCC-CT101.5: Comprehend the functions of different regulatory bodies in India that oversee the production and quality of cement.

Scheme of Studies:

Course Course				Scheme of studies(Hours/Week)					
Category	Code	Course Title	СІ	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)	
PCC	PCC- CT101	Introduction to Portland Cement	3	0	1	1	5	3	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Incor	J											
			Scheme of Assessment (Marks)									
gory	de	ع Progressive Assessment (PRA)										
Course Category	Course Code	Course Title	Class/Home Assignment 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+ CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)		
PCC	CT101	Introduction to Portland Cement	15	20	5	5	5	50	50	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT101.1: Understand the character of ancient cementitious building materials and evolution of Portland cement.

Ар	proximate Hours
Item	Appx. Hrs
CI	8
LI	0
SW	2
SL	1
Total	11

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO1.1: Understand ancient binding materials use in construction.		Unit-1.0 Historical progression and advancements in binding materials for construction	1. Properties of Calcareous materials
SO1.2: Invention of Portland Cement		1.1 Evolution of Binding Substances in Early construction eras.1.2 Attributes of Natural Cement and	2. Types of rock and formation of calcareous
SO1.3: Hydration & Strength Development in Portland cement,		roman cement. 1.3 Lime as construction materials and history ancient Indian construction cementing materials	sedimentary rock
SO1.4: Type of Cement produced in India and its use.		1.4 Overview of the Evolution of Portland cement.1.5 Significance of Portland in the infrastructure development.	
SO1.5 : Evolution of Indian Cement Industry		 1.6 Clinker Minerals and its properties 1.7 Concise Explanation of Cement Hydration. Strength development. 1.8 Historical Trajectory of the 	
		Indian Cement Industry.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Ancient Binder Used for Constructions, Invention and properties of Portland, Cement strength development mechanism of Portland cement. Types of Cement produced in India.

b. Mini Project:

i. Flow diagram of Portland Cement Manufacture.

c. Other Activities (Specify):

Note on Status of Indian cement industry in world and Major cement producing companies of India

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PCC-CT101.2: Acquire knowledge regarding the types of cement raw materials and fuel in Portland cement production and its physical and chemical properties.

Approximate Hours

r .	
Item	Appx. Hrs
CI	11
LI	0
SW	2
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1: To Understand the raw materials required for Portland Cement Manufacture SO2.2: To learn about Calcareous 		Unit-2 Raw Materials and Fuelusedforcementmanufacture2.1 Types of raw materials andfuelusedforcementmanufacture	 i. Broad limestone deposit clusters in India ii. Formation of Coal deposits and its
materials and its properties, that is prime raw materials of Portland cement.		 2.2 Types, chemical and physical properties of calcareous raw materials used for cement manufacture. 2.3 Distribution of limestone 	properties
SO2.3: To understand the requirement of argillaceous raw materials for Clinker manufacture and its properties.		 deposits in India 2.4 Requirement of Argillaceous raw materials in cement Manufacture and their properties. 2.5 Types of additives used in 	
SO2.4: To understand the types of Additives used for manufacture of Portland Cement and its properties		 Portland cement clinker manufacture. 2.6 Physical and chemical properties of laterite, bauxite, iron ore etc. 	
SO2.5 : To lean about the types of fuel used in Indian Cement Industries and its properties		 2.7 Physical and chemical properties of Gypsum used in cement as additives. 2.8 Physical and Chemical properties of Fly ash and GGBF Slag. 2.9 Type of fuel used by Indian cement industries for 	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Portland cement clinker
manufacture.
2.10 Properties of Coal as fuel
for cement manufacture.
2.11 Properties of Petcoke

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Physical, Chemical and Mineralogical properties of Cement Grade Limestone
- ii. Chemical properties of Clay, Laterite, Bauxite, Irion ore and Gypsum

b. Mini Project:

Marking of major limestone belts in India map

c. Other Activities (Specify):

Types of Coal its availability in India

PCC-CT101.3: Gain an understanding of the various types of cement manufactured in India and their utilization in infrastructure development.

Approximate Hours

···P.	
Item	Appx. Hrs
CI	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO3.1: Types of	•	Unit-3: Types of cement	i. BIS specification of
cement Produced in		manufactured in India and its	OPC, PPC and PSC.
India		application	
			ii. Advantages of PPC
SO3.2: Properties and		3.1 Brief characteristics and	in construction.
use of OPC		applications of different	
		Cement Types Produced in	iii.Manufacture of
SO3.3: Properties and		accordance with BIS	Granulated slag in
advantages of use of		Standards	steel plant.
PPC and PSC and its		3.2 Ordinary Portland Cement	
advantages in use		(OPC),	
		3.3 Portland Pozzolana Cement	
SO3.4: Properties and		(PPC), Portland Slag Cement	
use of SRC, SSC, OWC		(PSC), Composite cement	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

and PWC	3.4 Ordinary & Rapid Hardening	
	Portland Cement,	
SO3.5: Properties and	3.5 Sulphate Resisting Portland	
Use of HESC, MC, LHC,	Cement,	
Composite cement.	3.6 Supersulphate cement	
	3.7 Low – Heat Portland Cement	
	and Oil Well Cement,	
	3.8 White Portland Cement, High	
	early strength cement	
	3.9 Masonry Cement	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- iii. Physical, Chemical of OPC, PPC and PSC as per BIS
- iv. Advantages of use of PPC in construction.
- v. Properties and use of low heat cement in construction.

b. Mini Project:

Make a tale containing BIS code of various Cement produced in India and Broad Specification and its application.

c. Other Activities (Specify):

Availability, properties, generation and use of Fly Ash in India

PCC-CT101.4: Familiarize with a concise overview of the cement manufacturing process.

Ар	proximate Hours
Item	Appx. Hrs
CI	11
LI	0
SW	4
SL	2
Total	17

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning
	(LI)		(SL)
SO4.1: Evaluation of		Unit-4 : Concise Explanation of the	i. Preparation of
modern cement kiln.		Portland Cement Production	process flow
		Process:	chart of Portland
SO4.2: Understanding the		4.1 Overview of Wet, Semidry & Dry	cement
process flow for		process of Portland cement	manufacture
manufacture of Portland		4.2 Flow diagram for Cement	
cement clinker		Manufacturing process in dry	ii. Draw a typical

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

	process plant for production	lay out of a
SO4 2. Understanding the		•
SO4.3: Understanding the	composite and blended cement.	cement plant
Cement Rotary kiln and kiln	4.3 Brief about component of cement	showing various
components	kiln.	sections.
	4.4 Thermochemical reaction during	
SO4.4: Preparation of raw	conversion of cement raw meal to	
meal and fuel for cement	Portland cement clinker.	
kiln. Thermo- chemical	4.5 Brief of pyroprocessing of Portland	
reaction of cement raw	cement clinker.	
meal and formation of	4.6 Unit Operations and Equipment	
cement clinker	used in cement plant	
	4.7 Raw meal preparation	
SO4.5: Manufacture of	4.8 Preparation of coal and petcoke for	
Portland cement.	cement kiln	
	4.9 Clinker grinding and production of	
	cement	
	4.10 Cement packing and dispatch	
	4.11 Typical layout of a cement plant	
	showing various sections.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Write Thermo-Chemical Reaction occurred during clinker formation
- ii. Describe briefly the dry process cement manufacture

b. Mini Project:

i. Visit to a cement a cement plant and writing a report.

c. Other Activities (Specify):

Power Point Presentation of Portland cement manufacture.

PCC-CT101.5: Comprehend the functions of different regulatory bodies in India that oversee the production and quality of cement.

Approximate Hours

Item	Appx. Hrs
CI	06
LI	0
SW	2
SL	1
Total	9

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction (LI)	(CI)	(SL)

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SO5.1: Growth of Indian	Unit 5: The Cement Sector in 1.	Guideline of
cement industry in national	India and Regulatory	pollution norm
global prospective.	Obligations:	by ministry of
	5.1 The growth of the Indian	environment,
SO5.2: Over view of various		Govt of India.
regulatory bodies in India	contribution to Nation	
dedicated for Cement Industry	Development. 2. 1	Role of BIS in
	5.2 Indian cement industry in	national
SO5.3: Role of the regulatory	global prospective	standard
bodies in Cement quality and	5.3 Overview of Regulatory bodies	development.
production	and their significance in	_
	India's Cement Industry, such	
SO5.4: Overview of pollution	as BIS, DPIIT, CPCB, SPCB,	
norms for Indian cement	NABL, and IBM.	
industry and its controlling	5.4 Essential Legal mandates for	
measures.	Establishing a Cement	
	Manufacturing Unit.	
SO5.5 : Basic requirement for	5.5 A Concise Overview of	
setting up a cement plant	Environmental Regulations	
	5.6 measures implemented by the	
	Indian Cement Industry to	
	Ensure Pollution Control.	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

List the IS codes of the Cements, Fly Ash, Granulated Slag, and Testing of cements. Pollution Control norms by CPCB for Indian Cement Industry.

b. Mini Project:

Pollution norm of European Cement Industry vs Indian cement Industry

c. Other Activities (Specify):

List of Organization/ Institution in India for regulation of Cement Production.

Brief of Hours suggested for the Course Outcome	tcome
---	-------

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (SL)	Total hour (CI+SW+SL)
PCC-CT101.1: Understand the character of ancient Cementitious building materials and evolution of Portland cement.	8	2	1	11
PCC-CT101.2: Acquired the knowledge of types of raw materials and fuel used in the production of Portland cement, along with its physical and chemical characteristics.	11	2	1	14
PCC-CT101.3: Gain an understanding of the various types of cement manufactured in India	9	2	1	12

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

and their utilization in infrastructure development.				
PCC-CT101.4: Familiarize with a concise overview of the cement manufacturing process.	11	4	2	17
PCC-CT101.5: Comprehend the functions of different regulatory bodies in India that oversee the production and quality of cement.	6	2	1	9
Total Hours	45	12	6	63

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marks Distribution		Total	
		R	U	Α	Marks
CO-1	Historical progression and advancements in binding materials for construction	03	01	01	05
CO-2	Portland Cement Raw Materials and Fuel	02	06	02	10
CO-3	Types of Cement Manufactured in India	03	07	05	15
CO-4	Concise Explanation of the Portland Cement Production Process	-	10	05	15
CO-5	The Cement Sector in India and Regulatory Obligations	03	02	-	05
	Total	11	26	13	50
Legend:	R: Remember, U: Understand,	A	: Apply	L.	1

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- **8.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books :

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

S.No.	Title	Author	Publisher	Edition & Year							
1	Chemistry Of Cement And Concrete	F M Le	Chemical Publishing Co Inc, US	Revised edition 21 edition 2020							
2	Cement Data Book:	W. H Duda	Bauverlag	1985							
3	Norms For Limestone Exploration For Cement Manufacture	National Council for Cement and Building Materials	National Council for Cement and Building Materials	1985							
4	Cement Production Principle and Practice	A K Chatterjee	CRC Press. Taylor & Francis Group	2018							
5	Holcim Training Manual	Holcim Training Manual									
6	FLS Training Manual	FLS Training Manual									
7	Lecture note provided by Dept. of Cement Technology, AKS University, Satna.										

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023) <u>COs, POs</u> and PSOs Mapping

Program Title: B. Tech Cement Tech;

Course Code: PCC-CT101;

Course Title: Introduction to Portland Cement

Course Outcomes		Program Outcomes											Program Specific Outcome			
		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
		Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement monufactures	Ability to understand the latest cement manufacturing technology and it application	
CO-1: Understand the character of ancient Cementitious building materials and evolution of Portland cement.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO-2: Acquired the knowledge of types of raw materials and fuel used in the production of Portland cement, along with its physical and chemical characteristics.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO-3: Gain an understanding of the various types of cement manufactured in India and their utilization in infrastructure development.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

CO-4: Familiarize with a concise overview of the cement manufacturing process.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO-5: Comprehend the functions of different regulatory bodies in India that oversee the production and quality of cement.	1	1	1	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023) Course Curriculum Map: Introduction to Portland Cement

POs & PSOs	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Understand the character of ancient Cementitious building materials and evolution of Portland cement.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Historical progression and advancements in binding materials for construction 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Acquired the knowledge of types of raw materials and fuel used in the production of Portland cement, along with its physical and chemical characteristics.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2: Raw Materials and Fuel used for cement manufacture 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Gain an understanding of the various types of cement manufactured in India and their utilization in infrastructure development.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Types of cement manufactured in India and its application 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11	As mentioned in above page
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Familiarize with a concise overview of the cement manufacturing process.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Concise Explanation of the Portland Cement Production Process 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Comprehend the functions of different regulatory bodies in India that oversee the production and quality of cement.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: The Cement Sector in India and Regulatory Obligations 5.1,5.2,5.3,5.4,5.5,5.6	

Semester-I

Course Code: HSMC07

Course Title: Indian Knowledge System

Pre- requisite: Creating awareness among the youths about the true history and past rich culture of India.

Rationale: India has very rich and versatile knowledge system and cultural heritage since antiquity. The Indian Knowledge systems was developed on life science, medical science, literature, drama, art, music, dance, astronomy, mathematics, architecture (Strap at yaveda), chemistry, aeronautics etc, during ancient period. In this basic course, a special attention is given to the ancient and historical perspective of ideas occurrence in the ancient society, and implication to the concept of material world and religious, social and cultural beliefs. On the closer examination, religion, culture and science have appeared epistemological very rigidly connected in the Indian Knowledge System. This land of Bharat Bhumi has provided invaluable knowledge stuff to the society and the world in all sphere of life.

Course Outcomes:

- **HSMC07.1:** To understand the ancient civilization, Indian Knowledge Systems, Concept of Panch Mahabhuta, Origin of name Bharat Varsha, Ancient Rivers, Ancient Universities and ancient agriculture.
- **HSMC07.2:** Students will have the ability to learn about ancient books, Religious places, basic concept of Indian dance, music and arts, and fundamental aspects of Sangeeta and Natyashashtra etc.
- **HSMC07.3:** Student will be able to gain knowledge on Vedic Science, Astronomy, Astrovastu, Vedic Mathematics, Aeronautics, Metallurgy, Nakhatras, Panchang, Concept of Zero, Pi and point etc.
- **HSMC07.4:** Understanding on ancient Engineering, Science and Technology, Town Planning, Temple architecture, Chemistry and Metallurgy, Metal manufacturing etc.
- **HSMC07.5:** Student will able to understand about the Life, Nature and Health through basic concept of Ayurveda and Yoga, Traditional Medicinal Systems, Ethnomedicine, Nature conservation, World Heritage Sites etc.

Scheme of Studies:

Category	Course	Course Title		Scheme of studies(Hours/Week)			Total	
of Course	Code		CI	LI	SW	SL	Total Study Hours CI+LI+SW+SL	Credits (C)
IKS	HSMC07	Indian Knowledge System	2	0	1	1	4	2

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), **SW:** Session Work (includes assignment, seminar, mini project etc.), **SL:** Self Learning, **C:** Credits.

Examination Scheme:

Proposed examination scheme (Marking) as per the recommendation of University Grant Commission (UGC) for Under Graduate Courses in Fundamentals of Indian Knowledge Systems 2022-23 onwards

Theory										
		Scheme of Assessment (Marks)								
			Progressive Assessment (PRA)							
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
HSMC	HSMC07	Indian Knowledge	15	20	5	5	5	50	50	100
		System								

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC07.1 To understand Indian Civilization and Indian Knowledge Systems

Approximate Hours			
Item Appx. Hours			
CI	6		
LI	0		
SW	2		
SL	1		
Total	9		

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self Learning
	Instruction (LI)		(SL)
SO1.1. Understand Overview of		Unit-1. Indian Civilization and	
Indian Knowledge Systems (IKS)		Indian Knowledge Systems	
SO1.2. Understand Classification of		1.1. Overview of Indian	
Ancient IKS texts		Knowledge Systems (IKS)	Golden era of
SO1.3. Understand Introduction to		1.2. Classification of Ancient IKS	ancient India
Panch Mahabhutas (Earth, Water,		texts	
Fire, Sky and Air)		1.3. Introduction to Panch	
SO1.4. Understand Origin of the name		Mahabhutas (Earth, Water,	
Bharatvarsha: the Land of Natural		Fire, Sky and Air)	
Endowments		1.4. Origin of the name	
SO1.5. Understand Rivers of ancient		Bharatvarsha: the Land of	
India (The Ganga, Yamuna,		Natural Endowments	
Godawari, Saraswati, Narmada,		1.5. Rivers of ancient India (The	
Sindhu and Kaveri)		Ganga, Yamuna, Godawari,	
SO1.6. Understand Ancient		Saraswati, Narmada, Sindhu	
Agriculture and ancient		and Kaveri)	
Universities: Takshashila and		1.6. Agriculture system in ancient	
Nalanda, Gurukul system		India, Ancient Universities:	
		Takshashila and Nalanda,	
		Gurukul system	

SW-1 Suggested Sessional Work (SW): Assignments:

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Concepts of Panch Mahabhuta, Classification of ancient texts, origin of ancient rivers

Mini Project:

Ancient Universities: Takshashila and Nalanda,

Other Activities (Specify):

HSMC07.2: Students will have the ability to apply the knowledge gained about Indian Art, Literature and Religious Places

Approximate Hours			
Item	Appx. Hours		
CI	6		
LI	0		
SW	2		
SL	1		
Total	9		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO 2.1. Understand the Ancient Indian	. ,	Unit-2. Indian Art, Literature	1. Indian Art,
Books: Vedas, Puranas, Shastras,		and Religious Places	Music and
Upanishads, Mahakavyas		2.1. Ancient Indian Books:	Dance
(Ramayana & Mahabharata),		Vedas, Puranas, Shastras,	
Smrities, Samhitas		Upanishads, Mahakavyas	
SO 2.2. Understand the Religious		(Ramayana & Mahabharata),	
places: Puries, Dhams,		Smrities, Samhitas	
Jyotiralinga, Shaktipeeths,		2.2. Religious places:	
Kumbha Mela		Puries, Dhams, Jyotiralinga,	
SO 2.3. Understand the Legendary		Shaktipeeths, Kumbha Mela	
places of Madhya Pradesh:		2.3. Legendary places of	
Ujjain, Chitrakoot, Omkareshwar,		Madhya Pradesh: Ujjain,	
Bharhut, Maihar		Chitrakoot, Omkareshwar,	
SO 2.4. Understand the Basic concept of		Bharhut, Maihar	
Indian Art, Music and Dance,		2.4. Basic concept of Indian	
Indian Musical Instruments		Art, Music and Dance, Indian	
SO 2.5. Understand the Fundamental		Musical Instruments	
aspects of Sangeeta and Natya		2.5. Fundamental aspects of	
shastra		Sangeeta and Natya shastra	
SO 2.6. Understand the different schools		2.6. Different schools of	
of music, dance and painting in		music, dance and painting in	
different regions of India		different regions of India	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Faculty of Engineering and Technology Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

i. Visit of Chitrakoot, Maihar and Bharhuta

b. Mini Project:

ii. Kumbhmela, Story of Ramayana and Mahabharata

HSMC07. 3: Student will be able to understand Ancient Science, Astronomy and Vedic Mathematics

Арј	Approximate Hours		
Item	Appx. Hours		
CI	6		
LI	0		
SW	2		
SL	1		
Total	9		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO 3.1. Understand Vedic Cosmology		Unit-3. Ancient Science,	1. Ancient
SO 3.2. Understand the Astronomy,		Astronomy, Mathematics	Science,
Astrovastu, Vedang Jyotish,		3.1. Vedic Cosmology	Astronomy
Nakshatras, Navagraha, Rashis,		3.2. Astronomy, Astrovastu,	and Vedic
Vastushastra and their related		Vedang Jyotish, Nakshatras,	Mathematics
plants		Navagraha, Rashis,	
SO 3.3. Understand the Time and		Vastushastra and their related	
Calendar, Panchang		plants	
SO 3.4. Understand the Concept of Zero,		3.3. Time and Calendar, Panchang	
Point, Pi -number system,		3.4. Concept of Zero, Point, Pi -	
Pythagoras		number system, Pythagoras	
SO 3.5. Understand the Vedic		3.5. Vedic Mathematics, Vimana-	
Mathematics, Vimana-		Aeronautics, Basic idea of	
Aeronautics, Basic idea of		planetary model of	
planetary model of Aryabhatta		Aryabhatta	
SO 3.6. Understand the Varanamala of		3.6. Varanamala of Hindi	
Hindi language based on		language based on	
classification of sounds on the		classification of sounds on	
basis of their origin, Basic		the basis of their origin, Basic	
purpose of science of Vyakarana		purpose of science of	
		Vyakarana.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Faculty of Engineering and Technology Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

1. Varanamala of Hindi language based on classification of sounds on the basis of their origin

b. Mini Project:

- 1. Nakshatras, Navagraha and their related plants
- c. Other Activities (Specify):

HSMC07.4: Understand the Engineering, Technology and Architecture

App	Approximate Hours		
Item	Item Appx. Hours		
CI	6		
LI	0		
SW	2		
SL	1		
Total	9		

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning (SL)
	(LI)		
SO 4.1. Understand the		Unit-4. Engineering,	
Engineering Science		Technology and	
and Technology in		Architecture	1 American Caliman
Vedic and Post		4.1. Engineering Science and	1.Ancient Science, Astronomy and
Vedic Era		Technology in Vedic	Vedic Mathematics
SO 4.2. Understand the Town		and Post Vedic Era	vedie mullemates
and Home planning,		4.2. Town and Home	
Sthapatyaveda		planning, Sthapatyaveda	
SO 4.3. Understand the		4.3. Chemistry and	
Chemistry and		Metallurgy as gleaned	
Metallurgy as		from archeological	
gleaned from		artifacts	
archeological		4.4. Chemistry of Dyes,	
artifacts		Pigments used in	
SO 4.4. Understand the		Paintings, Fabrics,	
Chemistry of Dyes,		Potteries and Glass	
Pigments used in		4.5. Temple Architecture:	
Paintings, Fabrics,		Khajuraho, Sanchi	
Potteries and Glass		Stupa, Chonsath Yogini	
SO 4.5. Understand the		temple	
Temple		4.6. Mining and manufacture	
Architecture:		in India of Iron, Copper,	
Khajuraho, Sanchi		Gold from ancient times	
Stupa, Chonsath			
Yogini temple			
SO 4.6. Understand the			

(Revised as on 01 August 2023)

Mining and
manufacture in India
of Iron, Copper,
Gold from ancient
times

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Varanamala of Hindi language based on classification of sounds on the basis of their origin
- b. Mini Project:
 - i. Nakshatras, Navagraha and their related plants
- c. Other Activities (Specify):

HSMC07.5: Understand about the Life, Nature and Health

Approximate Hours

Item	Appx. Hours
CI	6
LI	0
SW	2
SL	1
Total	9

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self Learning
	Instruction	(SL)	
	(LI)		
SO 5.1. Understand the Fundamentals		Unit-5. Life, Nature and Health	1. Concept of
of Ayurveda (Charaka &		5.1. Fundamentals of Ayurveda	Ayurveda and
Shushruta) and Yogic Science		(Charaka & Shushruta) and	Yoga
(Patanjali), Ritucharya and		Yogic Science (Patanjali),	2. Traditional
Dinacharya		Ritucharya and Dinacharya	system of
SO 5.2. Understand the Traditional		5.2. Traditional system of Indian	Indian
system of Indian medicines		medicines (Ayurveda,	medicines
(Ayurveda, Siddha, Unani and		Siddha, Unani and	3. Ethnobotany
Homoeopathy)		Homoeopathy)	and
SO 5.3. Understand Fundamentals of		5.3. Fundamentals of	Ethnomedicin
Ethnobotany and		Ethnobotany and	es of India
Ethnomedicines of India		Ethnomedicines of India	4. World
SO 5.4. Understand the Nature		5.4. Nature Conservation in	Heritage Sites
Conservation in Indian ancient		Indian ancient texts	
texts		5.5 Introduction to Plant Science	
SO 5.5. Understand the Introduction to		in Vrikshayurveda	
Plant Science in		5.6. World Heritage Sites of	

	(Revised as on of August 2025)											
Vrikshayurveda		Madhya	Pradesh:									
SO 5.6. Understand the World Heritage		Bhimbetka,	Sanchi,									
Sites of Madhya Pradesh:		Khajuraho										
Bhimbetka, Sanchi, Khajuraho												

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Visit to world Heritage Site Khajuraho
- b. Mini Project:
 - i. Ritucharya and Din Charya, Ethnomedicinal plants
- c. Other Activities (Specify):

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self	Total hour
	Lecture (Cl)	Work (SW)	Learning	(Cl+SW+Sl)
			(SI)	
HSMC07.1: To understand Indian Civilization and	6	2	1	9
Indian Knowledge Systems				
IKS. 101.2: Students will have the ability to apply	6	2	1	9
the knowledge gained about Indian Art, Literature				
and Religious Places				
HSMC07.3: Student will be able to understand the	6	2	1	9
Ancient Science, Astronomy and Vedic				
Mathematics				
IKS. 101.4: Understand the Engineering,	6	2	1	9
Technology and Architecture				
IKS. 5: Understand about the Life, Nature and	6	2	1	9
Health				
Total	30	10	5	45

Suggestion for End Semester Assessment:

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	Marks Distribution						
		R	U	Α	Marks				

(Revised as on 01 August 2023)

CO 1	Indian Civilization and Indian Knowledge Systems	2	5	1	8
CO 2	Indian Art, Literature and Religious Places	2	6	2	8
CO 3	Ancient Science, Astronomy and Vedic Mathematics	2	6	5	13
CO 4	Engineering, Technology and Architecture	2	4	4	10
CO 5	Life, Nature and Health	2	5	2	9
	Total	10	26	14	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Indian Knowledge Systems** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course teacher for above tasks. Teacher can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to Religious places, World Heritage Sites
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	An Introduction of Indian Knowledge Systems: Concept and	Mahadevan, B.; Bhat V. R and Payana Nagendra	Prentice Hall of India.	2022
	Applications	R. N.		
2	Indian Knowledge Systems: Vol. I	Kapoor, Kapil and	D.K. Print World Ltd	2005
	and II.	Singh, A. K.		
3	Science of Ancient Hindus: Unlocking Nature in Pursuit of Salvation	Kumar, Alok	Create pace Independent Publishing	2014
4	A History of Agriculture in India	Randhava, M.S.	ICAR, New Delhi	1980
5	Panch Mahabhuta,	Yogcharya, Jnan Dev	Yog Satsang Ashram	2021

(Revised as on 01 August 2023)

		vised as on 01 August 2023)		
6	The Indian Rivers	Singh, Dhruv Sen	Springer	2018
7	The Wonder That Was India	Basam, Arthue Llewllyn	Sidgwick & Jackson	1954
8	Ancient Cities, Sacred Skies: Cosmic Geometries and City Planning in Ancient India	Malville, J. MacKim & Gujaral, Lalit M.	IGNCA & Aryan Books International, New Delhi	2000
9	The Natya Shastra of Bharat Muni	Jha, Narendra	Innovative Imprint, Delhi	2023
10	Astronomy in India: A Historical Perspective	Padmanabhan, Thanu	Indian National Science Academy, New Delhi & Springer (India).	2010
11	History of Astronomy in India 2 nd Ed.	Sen, S.N. and Shukla, K.S.	INSA New Delhi	2001
12	History of Indian Astronomy A Handbook	Ramasubramanian, K.; Sule, Aniket and Vahia, Mayank	Science and Heritage Initiative, I.I.T. Mumbai and Tata Institute of Fundamental Research, Mumbai	2016
13	Indian Mathematics and Astronomy: Some Landmarks	Rao, Balachandra S.	Jnana Deep Publications, Bangalore, 3 rd Edition	. 2004
14	Vedic Mathematics and Science in Vedas	Rao, Balachandra S.	Navakarnataka Publications, Bengaluru	2019
15	A History of Hindu Chemistry	Ray, Acharya Prafulla Chandra	Repbl Shaibya Prakashan Bibhag, Centenary Edition, Kolkata	1902
16	Early Indian Architecture: Cities and City Gates	Coomeraswamy, Anand	Munciram Manoharlal Publishers	2002
17	Theory and Practices of Temple Architecture in Medieval India: Bhojas samrangasutradhar and the Bhojpur Line Drawings	Hardy, Adams	Dev Publishers & Distributors.	2015
18	Indian Science and Technology in Eighteenth Century	Dharmpal	Academy of Gandhian Studies, Hyderabad.	1971
19	Science in India: A Historical Perspective	Subbarayappa, B.V.	Rupa New Delhi	2013
20	Fine Arts & Technical Sciences in Ancient India with special reference to Someswvara's Manasollasa	Mishra, Shiv Shankar	Krishnadas Academy, Varanasi	1982
21	Fundamental Principles of Ayurveda, Volume One	Lad, Vasant D.	The Ayurvedic Press, Alboquerque, New Mexico.	2002
22	Charak Samhita, Chaukhamba	Pandey, Kashinath and Chaturvedi Gorakhnath	Vidya Bhawan, Varanasi	
23	Ayurveda: The Science of Self-	Lad, Vasant D.	Lotus Press: Santa Fe	1984

(Revised as on 01 August 2023)

	Healing			
24	Ayurveda: Life, Health and	Svoboda, Robert E	Penguin: London	1992
	Longevit			
25	Plants in the Indian Puranas	Sensarma, P.	Naya Prokash, Calcutta	1989
26	Indian Cultural Heritage Perspective	Singh, L. K.	Gyan Publishing House,	2008
	for Tourism		Delhi	
27	Glimpses of Indian Ethnobotany	Jain, S.K.	Oxford & IBH Publishing	1981
			Company Private Limited,	
			New Delhi	
28	Manual of Ethnobotany	Jain, S.K.	Scientific Publishers,	2010
			Jodhpur	

Curriculum Development Team:

- 1. Er. Anant Kumar Soni, Hon'ble Pro-Chancellor and Chairman, AKS University, Satna (M.P.).
- 2. Prof. B.A. Copade, Hon'ble Vice Chancellor, AKS University, Satna (M.P.).
- 3. Prof. G.C. Mishra, Director, IQAC, AKS University, Satna (M.P.).
- 4. Prof. R.L.S. Sikarwar, Director, Centre for Traditional Knowledge Research & Application, AKS University, Satna (M.P.).
- 5. Prof. Kamlesh Chaure, HOD, Department of Biotechnology, AKS University, Satna (M.P.).
- 6. Dr. Akhilesh Waoo, HoD, Department of Computer Science, AKS University, Satna (M.P.).
- 7. Dr. Shailendra Yadav, HoD, Department of Chemistry, AKS University, Satna (M.P.).
- 8. Dr. Kaushik Mukherji, HoD, Department of Management, AKS University, Satna (M.P.).
- 9. Dr. Neeraj Verma, PG Coordinator, Faculty of Agriculture Science and Technology, AKS University, Satna (M.P.)
- 10. Dr. Dilip Kumar Tiwari, HoD, Department of Yoga, AKS University, Satna (M.P.).
- 11. Shri Mirza Shamiullah Beg, Department of Arts, AKS University, Satna (M.P.).
- 12. Shri Vivek Shrivastava, Examination, AKS University, Satna (M.P.).

13. Shri	Manish	Agrawal,	Department	of	Mining,	AKS	University,	Satna	(M.P.)

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Cos. POs and PSOs Mapping

Program Title: B. Tech Cement Tech;		Course Code: HSMC07; Course Tit							Title:	: Indian Knowledge System						
		Program Outcomes									Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: To understand Indian Civilization and Indian Knowledge Systems	3	3	3	3	2	1	1	2	2	3	1	2	2	3	2	3
CO-2: Students will have the ability to apply the knowledge gained about Indian Art, Literature and Religious Places		3	2	3	1	2	1	2	1	2	2	2	3	2	3	2

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

CO-3: Student will be able to understand the Ancient Science, Astronomy and Vedic Mathematics		3	2	1	1	2	2	2	1	3	2	3	3	2	3	2
CO-4: Understand the Engineering, Technology and Architecture	3	2	3	2	3	2	1	3	2	2	2	2	3	3	3	3
CO-5: Understand about the Life, Nature and Health	3	2	3	1	2	1	2	3	1	2	2	2	3	3	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023) Course Curriculum Map:

POs & PSOs	COs No.& Titles	SOs No.	Laboratory	Classroom	Self
No.	COS No. & Thes	505 NO.	Instruction (LI)	Instruction(CI)	Learning(SL)
	CO-1: To understand Indian	SO1.1			
PO 1,2,3,4,5,6	Civilization and Indian	SO1.2		Unit-1: Indian Civilization and Indian Knowledge	
7,8,9,10,11,12	Knowledge Systems	SO1.3		Systems	
PSO 1,2, 3, 4		SO1.4		1.1,1.2,1.3,1.4,1.5,1.6	
		SO1.5			
	CO-2: Students will have the	SO2.1			
PO 1,2,3,4,5,6	ability to apply the knowledge	SO2.2		Unit-2: Indian Art, Literature and Religious Places	
7,8,9,10,11,12	gained about Indian Art,	SO2.3		2.1, 2.2,2.3,2.4,2.5,2.6	
PSO 1,2, 3, 4	Literature and Religious Places	SO2.4		2.1, 2.2, 2.3, 2.4, 2.3, 2.0	
		SO2.5			
	CO-3: Student will be able to	SO3.1			
PO 1,2,3,4,5,6	understand the Ancient Science,	SO3.2		Unit-3: Ancient Science, Astronomy and Vedic	
7,8,9,10,11,12	Astronomy and Vedic	SO3.3		Mathematics	As mentioned
PSO 1,2, 3, 4	Mathematics	SO3.4		3.1,3.2,3.3,3.4,3.5,3.6	in above page
		SO3.5			
	CO-4: Understand the	SO4.1			
PO 1,2,3,4,5,6	Engineering, Technology and	SO4.2		Unit-4: Engineering, Technology and Architecture	
7,8,9,10,11,12	Architecture	SO4.3		4.1,4.2,4.3,4.4,4.5,4.6	
PSO 1,2, 3, 4		SO4.4		4.1,4.2,4.3,4.4,4.3,4.0	
		SO4.5			
	CO-5: Understand about the Life,	SO5.1			
PO 1,2,3,4,5,6	Nature and Health	SO5.2		Unit 5: Life, Nature and Health	
7,8,9,10,11,12		SO5.3		5.1,5.2,5.3,5.4,5.5,5.6	
PSO 1,2, 3, 4		SO5.4			
		SO5.5			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-II

Course Code:	BSC103, BSC103-L
Course Title :	Chemistry-I
Pre- requisite:	Students must have fundamental knowledge of mathematics, nature of molecule, valence shell electron pair repulsion theory, and different concentration terms to understand the concept of engineering chemistry.
Rationale:	The students studying engineering chemistry should possess foundational understanding about basic mathematics, different concentration terms and valence shell electron pair repulsion theory to understand the basic principle of chromatography and spectroscopic analysis.

Course Outcomes:

BSC103.1 Apply VSEPR theory to predict the three-dimensional shapes of molecules.

BSC103.2: Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug molecule.

BSC103.3: Explain and apply the concept of Intermolecular forces, Hydrogen bond, and transition metal complexes.

BSC103.4 Predict the concept of thermodynamics, free energy & entropy and apply Nernst equation, water chemistry as well as explain concept of acid-base, metallurgy, Emf cell and corrosion.

BSC103.5: Collectively aim to equip students with a comprehensive understanding of the theoretical principles, practical methodologies, and diverse applications of various spectroscopictechniques.

Scheme of Studies:

Course	Course	Course Title		Scheme of studies(Hours/Week)				
Category	Code		CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
BSC	BSC103	Chemistry-I	3	2	2	1	8	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

					Scheme o	of Assessm	ent (Ma	rks)		
				Progre	ssive Ass	essment (PRA)			
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
BSC	BSC103	Chemistry-I	15	20	5	5	5	50	50	100

Practical

			Scheme of Assessment (Marks)					
Category	Code	Title	Progressive Assessment (PRA)		r SA)	lks (A)		
Course Cate	Course Co	Course T	Class/Home Assignment 5 number 7 marks each (LA)	VIVA(VV)	Class Attendance (TA)	Total Marks (LA+VV+ TA)	End Semester Assessment (ES	Total Marks (PRA+ESA)
BSC	BSC103-L	Chemistry-I	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL).

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

BSC103.1: Apply VSEPR theory to predict the three-dimensional shapes of molecules.

Approximate Hours				
Appx Hrs				
9				
6				
2				
1				
18				

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1.Describe the	LI.1.1.	Unit-1: Atomic and Molecular	1. History of
classification of different	Determination of	Structure & Periodic Properties	development of of
types of orbit orbitals	specific density		development of
SO1.2 Discuss the	of given liquid	1.1 Introduction of orbit, orbitals	periodic table
fundamental concept of	LI.1.2.	andelectronic configuration	2. Electronegativity
wave function and	Determination of	1.2 Schrodinger wave equation	and its application
probability of distribution	viscosity of given	and its derivation.	
curve	liquid	1.3 Hybridization and types,	
SO1.3 Explain and apply	LI.1.3	Intermixing of orbital	
Atomic Spectroscopy:	Paper	1.4 VSEPR theory, bond pair and	
Energies of atomic	chromatography,	lone pair repulsion,	
orbital's	Thin layer	1.5 Determination of geometry of	
SO1.4 Apply concept of	Chromatography.	themolecules	
VSEPR in the		1.6 Molecular orbital theory,	
determination of geometry		1.7 Molecular energy level	
of different molecules.		diagram and bond order for	
SO1.5 Restate molecular		homo and hetero atomic	
energy level diagram of		molecules	
N2, F2 and O2 molecules.		1.8 Periodicity of atomic size	
		and ionization energy	
		1.9 Electron gainenthalpy and	
		types of electron gain	
		enthalpy	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Applications of molecular orbital theory for the determination of bond order and magnetic behavior.

- **b. Mini Project:** Hybridization and its application.
- c. Other Activities (Specify): Write an essay on different type of chemical bond.

BSC103.2: Describe the concept of symmetry, chirality and optical activity and synthesize chiral drugmolecule.

Approximate Hours				
Item Appx Hrs				
CI	9			
LI	6			
SW	2			
SL	1			
Total	18			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO2.1 understand the concept of representations of 3 dimensional structures	LI.2.1. To synthesize drug molecules and determine its percentageyield	UNIT 2: Stereochemistry, Organic reactions and synthesis of a drug molecule	1. Plane of Polarized light
SO2.2 explain structural isomers and stereoisomersSO2.3 describe symmetry,	LI.2.2. To determine the acid value or saponification value of oil/fat	 2.1 Representations of 3 dimensional structures 2.2 Structural isomers and 	2. Types of symmetry
SO2.5 describe symmetry, chirality andoptical activity SO2.4 explain and identify different types of reactions with mechanisms	LI2.3. To determine partition coefficient of a organic substance between two immiscible liquids.	 stereoisomers 2.3 Symmetry and chirality, optical activity and absolute configurations 2.4 Enantiomers, diastereomers 2.5 Isomerism in transitional 	
SO2.5 apply the concept of mechanisms to synthesize drug molecules		 2.5 Isomerism in transitional metalcompounds 2.6 Introduction to reactions involving substitution reaction 2.7 Addition, elimination, 	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

oxidation, reduction reaction
2.8 cyclization and ring
openings
2.9 Synthesis of a commonly
useddrug molecule

SW-2 Suggested Sessional Work (SW):

Assignments: Conformational Isomerism and conformational analysis

BSC103.3: Understand the concept of Intermolecular forces, Hydrogen bond, Transition metal complexes by applying this concept.

Approximate Hours

L I	
Item	Appx Hrs
CI	9
LI	6
SW	2
SL	1
Total	18

Session Outcomes	Laboratory	Class room Instruction	Self Learning	
(SOs)	Instruction	(CI)	(SL)	
	(LI)			
SO3.1	LI3.1.	Unit-3: Intermolecular forces and	1. Coordination	
Describe Ionic, dipolar,	Synthesis a	Transition metal complexes	compounds	
London dispersion force,	inorganic metal	3.1. Ionic, dipolar, London	IUPAC name	
vander Waals interaction	complex	dispersion force	and Werner	
SO3.2	LI3.2.	3.2. Vander Waals interactions	theory	
Explain Hydrogen bond	Determine the two	3.3. Hydrogen bond, types of	2. The energy level	
and types of hydrogen	acid and two	hydrogen bond.	diagrams for	
bond	basics radical	3.4. Coordination compounds	transition metal	
SO3.3	LI.2.3.	3.5. Metal ligand bonding by VBT	ions and their	
Coordination compounds	Determination of	3.6. Metal ligand bonding by CFT	magnetic	
SO3.4	chloride content of	3.7. The energy level diagrams for	properties	
Describe Metal ligand	water	transition metal ions and their		
bonding by VBT		magnetic properties.		
SO3.5		3.8. The energy level diagrams for		
Explain Metal ligand		transition metal ions and their		
bonding by CFT		magnetic properties		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

VBT theory, CFT theory, The energy level diagrams for transition metal ions and their magnetic properties

b. Mini Project: applications of transition metal complexes

BSC103.4 Predict the concept of thermodynamics, free energy & entropy and apply Nernst equation, water chemistry as well as explain concept of acid-base, metallurgy, Emf cell and corrosion.

Approximate Hours				
Item	Appx. Hrs			
CI	9			
LI	6			
SW	2			
SL	1			
Total	18			

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction(LI)	(CI)	(SL)
SO4.1Restate concept of free energy, Free energy, Enthalpy Entropy and types of different thermodynamic system SO4.2Discuss the fundamental concept of cell representation standard EMF of cell SO4.3 Explain and apply different types of concepts used in softening of water and purification of water SO4.4 Understand and apply concept of corrosion for the development of green corrosion inhibitors SO4.5 Understand different acid- base concepts, ionic and solubility product of salts	LI.4.1. Determination of hardness ofwater LI.4.2. Determination of alkalinityof water LI.4.3. Chemical analysis of a salt.	 Unit 4: Use of free energy in chemical equilibrium 4.1 Introductionenergy, Enthalpy Entropy, system and surroundings 4.2 Cell notation of cell, Nernst equation and its application 4.3 Water chemistry, Hardness of water, Temporary and permanent hardness 4.4 Water softening methods 4.5 Introduction of Corrosion, Mechanism of corrosion 4.6 Factors affecting rate of corrosion 4.7 Various acid-base concepts, Arrhenius concept, 4.8 Lewis acid-base concept, Bronsted Lowry concept 4.9 Brief idea about ionic and solubility equilibria 	1-derivation of Nernst equation.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

Applications of green corrosion inhibitors

b. Mini Project:

Analysis of water quality parameters.

c. Other Activities (Specify):

Write an essay on acid-base concepts, ionic and solubility product of salts.

BSC103.5: Collectively aim to equip students with a comprehensive understanding of the theoretical principles, practical methodologies, and diverse applications of various spectroscopic techniques.

Approxim	Approximate Hours								
Item	Appx Hrs								
CI	9								
LI	6								
SW	2								
SL	1								
Total	18								

SO5.1LI.5.1.Unit5:Spectroscopic1.ApplicationsUnderstand Identification and classification of different typesLambertlawLister Lambertlawtechniques and applicationsNuclear magneticof EMR and vibrational modes inmolecules.LI5.2.Determination of absorption5.1 Introduction of spectroscopy, discovery, properties and types of electromagnetic radiation.Nuclear magneticUnderstand the fundamental principles of vibrational and rotationalmaximum of agiven organic compound.5.2 Classification of different types of vibrational modes in molecules (stretching, bending, torsional, etc.).IR activity.1. ApplicationsSO5.3 Explain and apply Atomic Spectroscopy: - Energies ofDetermination of solutions.5.3 Energies of atomic orbitals and electronic transition, frankCondon principle.1. Applications	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
atomic orbital's 5.4 Introduction of NMR,	Understand Identification and classification of different types of EMR and vibrational modes inmolecules. SO5.2 Understand the fundamental principles of vibrational and rotational spectroscopy, including the interaction of light with molecular vibrations, the concept of infrared (IR) SO5.3 Explain and apply Atomic Spectroscopy: - Energies of	Verification ofBeer- Lambertlaw L15.2. Determination of absorption maximum of agiven organic compound. L1.5.3. Determination of cell constant and conductance of	 techniques and applications 5.1 Introduction of spectroscopy, discovery, properties and types of electromagnetic radiation. 5.2 Classification of different types of vibrational modes in molecules (stretching, bending, torsional, etc.).IR activity. 5.3 Energies of atomic orbitals and electronic transition, frankCondon principle. 	Nuclear magnetic resonance and magnetic resonance

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

SO5.4	5.5. Nuclear spin, nuclear
Understand and apply concept	resonance
of NMR, Nuclear spin, nuclear	5.6 Principle and instrumentation
resonance.	of NMR
SO5.5	5.7. Shielding and de shielding
Understand introduction of X-	ofmagnetic nuclei.
ray Diffraction determination	5.8. surface characterization
crystallographic structure of	techniques
materials.	5.9. Diffraction and scattering

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Applications Nuclear magnetic resonance and magnetic resonance imaging

b. Mini Project:

Fluorescence and its applications in medicine

c. Other Activities (Specify):

Write an essay on surface characterization techniques. Diffraction and scattering.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture	Laboratory Instruction	Sessional Work	Self Learning	Total hour (Cl+LI+SW+Sl)
	(Cl)	(LI)	(SW)	(SI)	
BSC103.1: Apply VSEPR theory to predict the three-dimensional shapes of molecules.	9	6	2	1	18
BSC103.2 : Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug molecule	9	6	2	1	18
BSC103.3: Explain and apply the concept of Intermolecular forces, Hydrogen bond, and transition metal complexes	9	6	2	1	18
BSC103.4: Predict the concept of thermodynamics, free energy & entropy and apply Nernst equation, water chemistry as well	9	6	2	1	18

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

as explain concept of acid-base, metallurgy, Emf cell and corrosion.					
BSC103.5 : Collectively aim to equip students with a comprehensive understanding of the theoretical principles, practical methodologies, and diverse applications of various spectroscopic techniques.	9	6	2	1	18
Total Hours	45	30	10	5	90

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marl	ks Distributio	n	Total
		R	U	Α	Marks
CO-1	Atomic and Molecular Structure & Periodic properties	03	01	01	05
CO-2	Stereochemistry, Organic reactions and synthesis of a drug molecule	02	06	02	10
CO-3	Intermolecular forces and Transition metal complexes	03	07	05	15
CO-4	Use of free energy in chemicalequilibrium	-	10	05	15
CO-5	Spectroscopic techniques and applications	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources

• • •	Books :			
S.	Title	Author	Publisher	Edition & Year
No.				
1	A textbook of	Shyamala Sundara	S. Chand	Edition 2008
	engineeringchemistry			
2	A Textbook of	Shashi Chawla	Dhanpat Rai	Edition 2020
	Engineering		Prakashan	
	Chemistry			
3	A Textbook of	PC Jain and	Dhanpat Rai	Edition 2018
	Engineering	Monika Jain	Prakashan	
	Chemistry			

Curriculum Development Team

- 1. Dr. Rama Shankar Nigam, Professor Department, Dept. of Chemistry
- 2. Dr Shailendra Yadav, Head of the Department, Dept. of Chemistry
- 3. Dr. Dinesh Mishra, Associate Professor, Department, Dept. of Chemistry
- 4. Dr. Samit Kumar, Associate Professor, Department, Dept. of Chemistry
- 5. Dr. Manoj Kumar Sharma, Assistant Professor, Department, Dept. of Chemistry

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Cos. POs and PSOs Mapping

Ptogram Title: B. Tech Cement '	Fech			Co		Code:			BSC10)3-L		Cours	se Title	e: Cher	nistry-I	
					Pr	ogram	Outco	mes					Prog	ram Spe	ecific O	utcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Apply VSEPR theory to predict the three-dimensional shapes of molecules.	3	1	2	2	3	2	3	2	2	1	3	2	2	3	2	2
CO-2: Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug molecule	2	1	2	2	1	2	3	2	1	1	2	2	2	2	2	2
CO-3: Explain and apply the concept of Intermolecular forces, Hydrogen bond, and transition metal complexes	2	2	1	1	1	2	2	2	1	2	1	2	1	2	2	2

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

CO-4: Predict the concept of thermodynamics, free energy & entropy and apply Nernst equation, water chemistry as well as explain concept of acid-base, metallurgy, Emf cell and corrosion.		2	2	2	3	2	3	2	2	1	2	3	3	2	3	2
CO-5: Collectively aim to equip students with a comprehensive understanding of the theoretical principles, practical methodologies, and diverse applications of various spectroscopic techniques.	2	1	1	1	1	3	3	3	1	1	2	2	3	3	2	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Chemistry-I

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Apply VSEPR theory to predict the three-dimensional shapes of molecules.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	1.1,1.2,1.3	Unit-1: Atomic and Molecular Structure & Periodic properties 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug molecule	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5	2.1,2.2,2.3	Unit-2: Stereochemistry, Organic reaction andsynthesis of a drug molecule 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9	As mentioned in above page
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Explain and apply the concept of Intermolecular forces, Hydrogen bond, and transition metal complexes	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	3.1,3.2,3.3	Unit-3: Intermolecular forces and Transition metal complexes 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PO 1,2,3,4,5,6 7,8,9,10,11,12	CO-4: Predict the concept of thermodynamics, free energy & entropy and apply Nernst equation, water chemistry as well as explain concept of acidbase, metallurgy, Emf cell and corrosion.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	4.1,4.2,4.3	Unit-4: Use of free energy in chemical equilibrium 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Collectively aim toequip students with a comprehensive understanding of the theoretical principles, practical methodologies, and diverse applications of various spectroscopic techniques.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	5.1,5.2,5.3	Unit-5: Spectroscopic techniques and applications 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-II

Course Code:	BSC104
Course Title :	Mathematics-II
Pre- requisite:	Objective of this course is to familiarize the prospective engineers with techniques in Ordinary and partial differential equations and Laplace transform. It aims to equip the students to deal with advanced level of mathematics and applications that would be essential for their disciplines.
Rationale:	The program aims to develop the tool of power series and Fourier series for learning advanced engineering mathematics

Course Outcomes:

BSC104.1: Understand the importance of Laplace transform and elementary properties of Laplace transform

BSC104.2: To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions

BSC104.3: Demonstrate an understanding of the Vector Calculus

BSC104.4: Define and recognize the method to solve Sequences and series

BSC104.5: Students will create the concept of a Partial Differential Equations

Scheme of Studies:

Course	Course	Course Title		Scheme of studies(Hours/Week)				
Category	Code		CI	LI	SW	W SL Total Hours (CI+LI+SW+SL)		
BSC	BSC104	Mathematics -II	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)							
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
BSC	BSC104	Mathematics -II	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

BSC104.1: Understand the importances of Laplace transform and elementary properties of Laplace transform

Approximate Hours

Item	Appx. Hrs
CI	13
LI	0
SW	1
SL	1
Total	15

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction (LI)	(CI)	(SL)
SO1.1		Unit-1.0 Laplace Transform	1. Change of scale
Understand the concept of			property
Laplace transform of		1.1 Introduction of Laplace transform	
elementary functions		1.2 Laplace transform of elementary	
		functions	
SO1.2		1.3 Linearity property	
Understand the Laplace		1.4 Properties of Laplace transform,	
transform of derivatives		1.5 Laplace transform of derivatives	
		1.6 Laplace transform of Integral	
SO1.3		1.7 Multiplication by t ⁿ	
Understand the Inverse		1.8 Division by t	
Laplace transform		1.9 Inverse Laplace transform	
		1.10 First shifting theorem	
SO1.4		1.11 Second shifting Property	
Understand the Application		1.12 Convolution theorem	
of Laplace transform		1.13 Application of Laplace transform	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Example on Properties of Laplace transform
- 2. Example on Laplace transform of derivatives
- 3. Example on Laplace transform of Integral
- 4. Example on Multiplication by tⁿ
- 5. Example on First shifting theorem

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

BSC104.2: To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions

Approximate Hours					
Item	Appx. Hrs				
CI	11				
LI	0				
SW	1				
SL	1				
Total	13				

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory Instruction (L1)	Class room Instruction	Self Learning
Session Outcomes (SOs) SO2.1 Understand the concept Solving Second order linear differential, SO2.2 Understand the Solution by variation of parameters SO2.3 Understand the Power series solutions: SO2.4 Understand the Legendre's equations and Legendre polynomials	Laboratory Instruction (LI)	Class room Instruction (CI) Unit 2: Ordinary differential Equations 2.1 Linear differential Equation with constant coefficients 2.2 Complimentary Function and Particular integral 2.3 Solution by Inspection Method 2.4 Solution by change of dependent variable 2.5 Solution by change of Independent variable 2.6 Solution by variation of parameters 2.7 Power series	Self Learning (SL) 1. Examples of Frobenius method
		 2.7 Fower series solutions (Frobenius method): 2.8 Series for Ordinary Point 2.9 Legendre's equations and 2.10 Bessel's equation and 2.11 Tutorial 	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Example on Solution by variation of parameters
- 2. Example on Power series solutions:
- 3. Example on Legendre's equations and
- 4. Example on Legendre polynomials
- 5. Example on Frobenius method

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

BSC104.3: Demonstrate an understanding of the Vector Calculus

Approximate HoursItemAppx. HrsCI12LI0SW1SL1Total14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
(308)			(3L)
SO3.1		Unit 3: Vector Calculus	1. Examples on
Understand the scalar and vector			Stoke's theorems
point function		3.1 Differentiation of vector	
SO3.2		3.2 scalar and vector point	
Understand the Line integrals,		function	
Surface integrals Volume integrals		3.3 Directional derivatives	
SO3.3		3.4 Gradient	
Understand the Gradient, Curl,		3.5 Curl	
divergence		3.6 Divergence	
SO3.4		3.7 Line integrals,	
Understand the Gauss Divergence		3.8 Surface integrals	
theorems, Stoke's theorems		3.9 Volume integrals	
		3.10 Green's theorems	
		3.11 Gauss Divergence theorems	
		3.12 Stoke's theorems	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Example on Directional derivatives
- 2. Example on Gradient
- 3. Example on Divergence
- 4. Example on Surface integrals
- 5. Stoke's theorems

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

BSC104.4: Define and recognize the method to solve Sequences and series

Approximate HoursItemAppx. HrsCI13LI0SW1SL1Total15

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 Understand Convergence and Divergence of sequence SO4.2 Understand the Tests for convergence SO4.3 Understand Fourier series SO4.4		 Unit4: Sequences and Series 4.1 Limits of sequence of numbers 4.2 Convergence and Divergence of sequence 4.3 Cauchy sequence 4.4 Calculation of limits 4.5 Infinite series 4.6 Tests for convergence 4.7 Rabbe test and logarithmic test 	1. Some theorem on sequence
Understand and Calculation of limits		 4.8 Comparison test 4.9 Fourier series 4.10 Even and odd function 4.11 Half range sine and cosine series 4.12 Half range cosine series 4.13 Parseval's theorem. 	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Example on Cauchy sequence
- 2. Example on Tests for convergence
- 3. Example on Comparison test
- 4. Example on Fourier series
- 5. Example on Even and odd function

b. Mini Project: Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

BSC104.5: Students will create the concept of Partial Differential Equations

Approximate Hours

Appx. Hrs
11
0
1
1
13

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction (LI)	(CI)	(SL)
SO5.1 Understand the Solutions of first order linear PDE SO5.2 Understand the Solution to homogenous and Non- homogenous linear PDE SO5.3 Understand the First order PDE SO5.4 Understand PDE of Second order by particular integral method		 Unit 5: Partial Differential Equations 5.1 Definition of Partial Differential Equations 5.2 First order PDE 5.3 Solutions of first order linear PDE 5.4 Solution to homogenous PDE 5.5 Non-homogenous linear PDE 5.6 PDE of Second order by complimentary function and 5.7 PDE of Second order by particular integral method. 5.8 Lagrange's Linear equation, 5.9 Charpit's method 5.10 Separation of variable method for the solution of heat equations 5.11 wave equations 	SL.1 Problems on PDE

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- 1. Example on linear PDE
- 2. Example on Solution to homogenous PDE
- 3. Example on Lagrange's Linear equation,
- 4. Example on PDE of Second order by complimentary function and
- 5. Example on Charpit's method
- **b. Mini Project:** Oral presentation, Poster presentation, Power Point Presentation.
- c. Other Activities (Specify): Quiz, Class Test.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
BSC104.1: Understand the importance				
of Laplace transform and elementary	13	1	1	15
properties of Laplace transform				
BSC104.2: To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and	11	1	1	13
Legendre functions				
BSC104.3: Demonstrate an understanding of the Vector Calculus	12	1	1	14
BSC104.4: Define and recognize the method to solve Sequences and series	13	1	1	15
BSC104.5: Students will create the concept of a Partial Differential Equations	11	1	1	13
Total Hours	60	5	5	70

Suggestion for End Semester Assessment Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution			Total
		R	U	Α	Marks
CO-1	Laplace transforms	03	01	01	05
CO-2	Ordinary differential equations	02	06	02	10
CO-3	Vector Calculus	03	07	05	15
CO-4	Sequences and series	-	10	05	15
CO-5	Partial Differential Equations	03	02	-	05
	Total		26	13	50

Legend:R: Remember,U: Understand,A: ApplyThe end of semester assessment for Introduction to Portland cement will be held with written examination
of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming

.

Suggested Learning Resources:

/ \ D

	(a) Books :			
S.No.	Title	Author	Publisher	Edition & Year
1.	Engineering Mathematics-I ,	D.K, Jain	Shree Ram Prakashan.	7 th Edition 2015-16
2.	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	36 th Edition, 2010
3.	Engineering Mathematics-I	D.C.Agrawal	Shree Sai Prakashan	10 th Edition 2018
4.	Higher Engineering Mathematics	B.V. Ramana	Tata McGraw Hill	11 th Reprint, 2010.

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr. Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr. Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs. Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr. Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam Sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

COs. POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: BSC104

Course Title: Mathematics-II

					Pro	ogram	Outco	mes					Progr	am Spe	cific Ou	itcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Understand the importance of Laplace transform and elementary properties of Laplace transform	3	3	2	2	2	1	1	2	2	1	2	2	1	2	2	2
CO-2: To introduce effective mathematical																
tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions	3	3	3	3	2	2	1	3	2	2	2	3	1	2	3	2
CO-3: Demonstrate an understanding of the Vector Calculus	3	2	3	2	2	1	2	2	2	2	2	3	1	2	3	2

CO-4: Define and recognize the method to solve Sequences and series	3	3	2	2	2	2	2	3	2	2	2	2	2	3	2	3
CO-5: Students will create the concept of a Partial Differential Equations	3	3	3	3	2	3	2	3	2	2	2	2	2	3	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Mathematics-II

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Understand the importance of Laplace transform and elementary properties of Laplace transform	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1: Laplace transforms 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11,1.12, 1.13	2000 milling (022)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2: Ordinary differential equations 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11	
	CO-3: Demonstrate an understanding of the Vector Calculus	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3: Vector Calculus 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11,3.12	As mentioned in above pages
	CO-4: Define and recognize the method to solve Sequences and series	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4: Sequences and series 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11,4.12, 4.13	
7,8,9,10,11,12	CO-5: Students will create the concept of a Partial Differential Equations	SO5.1 SO5.2 SO5.3 SO5.4		Unit 5: Partial Differential Equations 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-II

Course Code:	ESC104, ESC104-L
Course Title :	Programming for Problem Solving
Pre-requisite:	Student should have basic knowledge programming.
Rationale:	Problem solving skills can help people develop more skills and build a promising career.

Course Outcomes:

ESC104.1: Understand the basic concept of Programming languages, software, algorithm and flowchart.

ESC104.2: Acquire knowledge regarding the building blocks of programming language.

ESC104.3: Apply python for solving basic programming solutions.

ESC104.4: Create algorithms using learnt programming skills.

ESC104.5: Understand real world problems and developing computer solutions for those.

Scheme of Studies:

Course	Course	Course Title		Scheme of studies (Hours/Week)				
Category	Code		Cl	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
ESC	ESC104	Programming for Problem Solving	3	4	2	1	10	5

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e., Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini projected.),

SL: Self-Learning, C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback teachers ensure outcome of Learning.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Scheme of Assessment: Theory

					Schem	e of Asse	ssment (M	Iarks)		
				Progressive Assessment (PRA)					(A)	
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
ESC	ESC 104	Problem Solving and Programming	15	20	5	5	5	50	50	100

Practical

				Schem	e of Assessn	nent (Marks	s)	
ory	e	e	Progress	sive Ass	RA)	A)	s (t	
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (LA)	VIVA(VV)	Class Attendance (TA)	Total Marks (LA+VV+ TA)	End Semester Assessment (ES	Total Marks (PRA+ESA)
ESC	ESC104-L	Problem Solving and Programming- Lab	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

ESC104.1: Understand the basic concept of Programming languages, software, algorithm and flowchart.

Approximate Hours							
Item	Appx. Hrs.						
CI	7						
LI	12						
SW	2						
SL	1						
Total	22						

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1.1. Understand types of programming languages. SO1.2. Utilize Operating System SO1.3. Compare compiler, linker, loader SO1.4. Create algorithm and flow charts for problem	LI.1.1. Running instructions in Interactive interpreter and a Python Script. LI.1.2. Write a program to purposefully raise Indentation Error and Correct it. LI.1.3. Create Flow chart for an organisation LI.1.4. Create Flow chart for an education system LI.1.5. Compare various operating systems LI.1.6. Write five features of Notepad	 Unit-1 Introduction to Programming 1.1 Evolution of languages: Machine languages, Assembly languages, High-level languages construction eras. 1.2 Software requirements for programming 1.3 System software like operating system 1.4 compiler, linker, loader 1.5 Application programs like editor. 1.6 Algorithm specification of algorithm 1.7 Flowcharts 	 Different types of programming languages examples. Learn about various operating systems.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Create algorithms for some real-life problems.
- 2. Create flowcharts for problems.
- **b.** Mini Project:
 - i. Flow diagram of working of a university.
- c. Other Activities (Specify):

NA

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

ESC104.2: Acquire knowledge regarding the building blocks of programming language.

Approximate Hours							
Item	Appx. Hrs.						
Cl	12						
LI	12						
SW	2						
SL	1						
Total	27						

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning
(SOs)	(LI)	(CI)	(SL)
SO2.1. To Understand the datatypes SO2.2. Identify Expressions SO2.3. Apply operators SO2.4. Use list, string tuples	 LI.2.1. Write a program to demonstrate basic data type in python. LI.2.2. Write a program to compute distance between two points taking input from the user LI.2.3. Write a program add.py that takes 2 numbers as command line arguments and prints its sum. LI.2.4. Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3, 1/4, . 1/10. LI.2.5. Write a program using a for loop that loops over a sequence. What is sequence? LI.2.6. Write a program using a while loop that asks the user for a number, and prints a countdown from that number to zero. 	 Unit-2 Datatypes and Operators, Variables, Sequences and Iteration 2.1. Data Types 2.2. Different types of Data types 2.3. Expressions, Precedence Rules 2.4. Operators 2.5. Types of Operators 2.6. Local Variables 2.7. Global Variables 2.8. List 2.9. String 2.10. Tuples 2.11. Sequence Mutations 2.12. Accumulation Patterns. 	 Operator precedence Scope of variables

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
 - 1. Compare List and Tuples.
 - 2. String functions with example.
- b. Mini Project:
- Create a Calculator.
- c. Other Activities(Specify):

NA

ESC104.3: Gain an understanding of the various types of Conditional Statements, Loops, Arrays and Strings.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Approximate Hours

Item	Appx. Hrs.
C1	10
LI	12
SW	2
SL	1
Total	25

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO2.1. To Understand the loop types SO2.2. Identify the looping Expressions SO2.3. Apply arrays SO2.4. Use of user defined data type	 LI.3.1. Write a Program for checking whether the given number is an even number or not. Using a for loop. LI.3.2. Write a program using a while loop that asks the user for a number, and LI.3.3. prints a countdown from that number to zero. LI.3.4. Write function to compute gcd, lcm of two numbers. LI.3.5. Write a program to implement Merge sort. LI.3.6. Write a program to implement Selection sort, Insertion sort 	 Unit-3 : Conditional Statements, Loops, Arrays and Strings, User Defined Data Types 3.1 If-else statement, 3.2 For loop, 3.3 While Loop, 3.4 Nested Iteration, 3.5 Concept and use of arrays 3.6 Declaration and usage of arrays, 3.7 2-dimensionalarrays, 3.8 Different types of user defined datatypes 3.9 Structure 3.10Union 	 i. Loops to access array elements ii. Member access in user defined data type.

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Compare the looping statements
- 2. Use of user defined data type with example.

b. Mini Project:

Create a stopwatch.

c. Other Activities(Specify):

NA

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

ESC104.4: Familiarize with a concise overview of the Dictionaries and methods.

Approximate Hours								
Item	Appx. Hrs.							
Cl	10							
LI	12							
SW	2							
SL	1							
Total	25							

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning
(SOs)	(LI)	(CI)	(SL)
SO2.1. Understand the concepts of Dictionaries and Dictionary Accumulation SO2.2. Identify the Functions/Methods SO2.3. Apply functions SO2.4. Use of Functions/ Methods	LI.4.1. Write a program to count the numbersof characters in the string and LI.4.2.store them in a dictionary data structure. LI.4.3.Write a program to use split and join methods in the string and LI.4.4. trace a birthday of a person with a dictionary data structure. LI.4.5 Write a program for user define function. LI.4.6. Write a program to demonstrate the use of Array.	 Unit-4 : Dictionaries and Dictionary Accumulation, Functions/Methods 4.1 Dictionary Basics 4.2 Operations 4.3 Methods, accumulation. 4.4 Advantage of modularizing program into functions. 4.5 Function definition. 4.6 Function invocation. 4.7 Positional Parameter Passing 4.8 Passing arrays to functions 4.9 Recursion 4.10 Library Functions 	 i. Preparation of process Dictionary ii. A typical Positional Parameter Passing.

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Write a program that reads a string from keyboard and prints the unique words
- 2. Use of user defined function with example.

b. Mini Project:

Map Two Lists into A Dictionary.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

c. Other Activities(Specify): NA.

ESC104.5: Comprehend the functions of different File Handling and Memory Management.

Approximate Hours

Item	Appx. Hrs.
Cl	6
LI	12
SW	2
SL	1
Total	21

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning		
(SOs)	(LI)	(CI)	(SL)		
SO2.1 Understanding the file handling task SO2.2 know the functions of file handling SO2.3 Importance of csv file SO2.4 Use of Memory Management	whether the given file is a Python program file, C program file or a text file? LI.5.3Write a program to	 Unit 5: File Handling and Memory Management 5.1 File Handling 5.2 Memory Management 5.3 Concepts of files and basic file operations. 5.4 Writing Data to a .csv File. 5.5 Reading Data to from a .csv File. 5.6 Memory Management Operations. 	1. Role of file handling. 2.Working of .csv file		

SW-5 Suggested Sessional Work (SW):

- **a.** Assignments: List the different file handling functions . **b.** Mini Project:
 - Data base management of any fields by using file handling.
- c. Other Activities(Specify):

NA.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CL)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (SL)	Total hour (CL+SW+SL)
ESC104.1: At the end of this chapter the student will know the basic concept of programming.	7	12	2	1	22
ESC104.2: At the end of this chapter the student will use Operators in programs.	12	12	2	1	27
ESC104.3 : At the end of this chapter the student will describe the control flow statements.	10	12	2	1	25
ESC104.4 : At the end of this chapter the student will make function and dictionary	10	12	2	1	25
ESC104.5 : Comprehend the functions of .csv and file handling functions.	6	12	2	1	21
Total Hours	45	60	10	5	120

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Mar	ks Distr	ibution	Total
		R	U	Α	Marks
ESC104.1	Understand the basic concept of Programming languages, software, algorithm and flowchart.	02	05	01	08
ESC104.2	Acquire knowledge regarding the building blocks of programming language.	02	03	05	10
ESC104.3	Apply python for solving basic programming solutions.	02	03	07	12
ESC104.4	Create algorithm using learnt programming skills.	1	3	7	10
ESC104.5	Understand real world problems and developing computer solutions for those.	1	05	05	10
	Total	13	26	13	50
	Legend: R: Remember, U: U	Jnderstand	,	A: Apply	

The end of semester assessment for Problem Solving and Programming will be held with written examination of 50 marks.

Page 150 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

a. Books:

S. No.	Title	Author	Publisher	Edition &Year
1	Programming for Problem Solving	R.S. Salaria, Khanna	Khanna Publishing House	2021, 4 th Edition
2	Taming Python by Programming	Jeeva Jose	Khanna Publishing House	2019, 3 rd Edition
3	Learning Python	Mark Lutz	O'Reilly Media	2013, 5 th Edition

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech. Cement Tech.

Course Code: ESC104, ESC104-L

Course Title: Programming for Problem Solving

	Program Outcomes											Pr	ogram Sp	pecific Out	come	
	P0 1	PO 2	PO 3	P0 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct studies of difficult problems	Utilization of modern tools	Engineers and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-longlearning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO 1: Understand the basic concept of Programming languages, software, algorithm and flowchart.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO 2: Acquire knowledge regarding the building blocks of programming language	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO 3: Apply python for solving basic programming	2	2	1	1	1	2 F	² Page 7	2 152	1 of 73	2	1	2	1	1	2	2

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

solutions.																
CO 4: Create algorithms using learnt programming skills	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO 5: Understand real world problems and developing computer solutions for those.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

(Revised as on 01 August 2023)

Course Curriculum Map: Programming for Problem Solving

POs & PSOs No. PO 1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2, 3, 4, 5	COs No.& Titles CO 1: Understand the basic concept of Programming languages, software, algorithm and flowchart.	SOs No. SO1.1 SO1.2 SO1.3	Laboratory Instruction (LI) LI.1.1,LI1.2	Classroom Instruction(CI) Unit-1 Introduction to Programming 1.1,1.2,1.3,1.4,1.5,1.6,1.7	Self-Learning(SL)
PO 1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2, 3, 4, 5 PO 1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 2 : Acquire knowledge regarding the building blocks of programming language. CO 3: Apply python for solving basic programming solutions.	SO1.4 SO2.1 SO2.2 SO2.3 SO2.4 SO3.1 SO3.2 SO3.3 SO3.4	LI.2.1,LI2.2,LI2. 3,LI.2.4,LI.2.5 LI3.1, LI3.2,LI3.3,LI .3.4	Unit-2 Datatypes and Operators, Variables, Sequences and Iteration 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,2.8,2.9,2.10,2.11,2.12 Unit-3 Conditional Statements, Loops, Arrays and Strings, User Defined Data Types 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3	As mentioned in Above pages
PO 1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2, 3, 4, 5 PO 1,2,3,4,5,6,7, 8,9,10,11,12	CO 4: Create algorithms using learnt programming skills. CO 5: Understand real world problems and developing computer	SO4.1 SO4.2 SO4.3 SO4.4 SO5.1 SO5.2	LI4.1,LI.4.2	.9,3.10, Unit-4 Dictionaries and Dictionary Accumulation, Functions/Methods: 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4 .9,4.10, Unit-5 File Handling and Memory Management:	
PSO 1,2, 3, 4, 5	solutions for those.	SO5.2 SO5.3 SO5.4		5.1,5.2,5.3,5.4,5.5,5.6	

AKS University Faculty of Engineering and Technology

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester II

Course Code:	ESC105, ESC105-L
Course Title :	Manufacturing Practice Workshop
Pre- requisite:	Basic knowledge of mathematical skill with some scientific temperament.
Rationale:	It is a place of work for preparing variety of jobs/products by using different kinds of Instruments, hand tools and Machines. In order to prepare the products in workshop, the workshop is divided into many branches according to nature of work. Ex: 1.Fitting shop 2. Welding shop 3. Sheet metal shop 4. M/c Shop 5. Foundry & Forging shop etc

Course Outcomes:

- **ESC105.1:** Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.
- **ESC105.2:** Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques
- **ESC105.3:** Develop fundamental skills such as measuring, cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.
- **ESC105.4:** Appreciate and access the use of casting processes in manufacturing and understand the working of various casting processes.
- **ESC105.5:** Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.

Scheme of Studies:

Course	Course	Course Title		Scheme of studies(Hours/Week)				
Category	Code		CI	CI LI	SW	SL	Total Hours	Credits
							(CI+LI+SW+SL)	(C)
		Manufacturing						
ESC	ESC105	Practice	1	4	1	1	7	3
		Workshop						

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others, LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

				S	cheme of	Assessme	ent (Mai	rks)		
			Progressive Assessment (PRA)							
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
ESC	ESC105	Manufacturing Practice Workshop	15	20	5	5	5	50	50	100

Practical

			Scheme of Assessment (Marks)					
Category	Code	Title	Progressive Assessment (PRA)			r (A)	rks (A)	
Course Cate	Course Co	Course T	Class/Home Assignment 5 number 7 marks each (LA)	VIVA(VV)	Class Attendance (TA)	Total Marks (LA+VV+ TA)	End Semester Assessment (ES	Total Marks (PRA+ESA)
ESC	ESC105	Manufacturing Practice Workshop	35	10	5	50	50	100

ESC105.1: Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.

Approximate Hours

Item	Appx. Hrs			
Cl	03			
LI	12			
SW	1			
SL	1			
Total	17			

Session Outcomes	LaboratoryInstruction	Class room	Self Learning
(SOs)	(LI)	Instruction	(SL)
		(CI)	
SO1.1	1.1 Safety aspects pertaining to	Unit-1.0	1.
Understand various	common manufacturing	Manufacturing Methods	Introduction to
manufacturing	practices.	casting, forming, machining,	additive
processes, materials	1.2 Introduction of tools and	joining, advanced	manufacturing.
and technologies.	machines used in each	manufacturing methods, CNC	
	processes.	machining, Additive	
SO1.2	1.3 Basic instructions and	manufacturing.	
Acquire knowledge in	procedures for using lathe and		
cost estimation	drilling machine.	1.1 Define manufacturing and	
resource management	1.4 Drawing of a simple workpiece	various methods.	
and sustainable	for carrying out various lathe	1.2 Introduction to casting,	
manufacturing	/drilling operations	forming, machining, joining	
practices.	1.5 Demonstration of different	and advanced manufacturing	
	operations during actual	methods.	
	performance of work.	1.3 Introduction to CNC	
	1.6 Fire Safety Instructions during	machine.	
	the work.		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Mechanical properties of engineering materials. Explain advanced manufacturing methods

ESC105.2: Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Approximate Hours

Item	AppX Hrs
Cl	03
LI	12
SW	1
SL	1
Total	17

Session Outcomes	LaboratoryInstruction	Class room Instruction	Self	
(SOs)	(LI)	(CI)	Learning	
			(SL)	
SO2.1	2.1 Safety instructions for using	Unit-2 Fitting operations &	i. Types	
Understand different cutting	various fitting hand tools.	power tools	of drilling tools	
tools like hacksaw, chisels	2.2 Tools Introduction	2.1 Tools used in fitting	and threading	
etc.	2.3 Instructions for using proper	shop	tools.	
	tools in the correct way			
SO2.2	2.4 Drawing of a simple work	2.2 types of clamping tools,		
Acquire knowledge of	piece for carrying out different	marking tools, cutting		
various fitting and	fitting operations.	tools, striking tools.		
assembly techniques.	2.5 Demonstration of different			
	inspection, checking and	2.3 Various operations		
	measuring methods used for	performed on fitting		
	proper fitting work.	shop		
	2.6 Actual performance of a small			
	simple job.			

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
- i. Explain different striking tools with neat sketch
- ii. Explain different types of vices used in fitting shop.

ESC105.3:.Develop fundamental skills such as measuring, cutting and joining wood. Gain expertise in handling various carpentry tools and machinery

Approximate Hours			
Item	Appx. Hrs		
CI	03		
LI	12		
SW	1		
SL	1		
Total	17		

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room	Self
(SOs)	Instruction	Instruction	Learning
	(LI)	(CI)	(SL)
SO3.1	3.1 Safety instructions for using	Unit-3 : Carpentry	i. Defects in
Proficiency in	various carpentry tools.	shop	timber
measuring cutting and	3.2 Carpentry tools introduction.		
assembling wood.	3.3 Instructions for using proper tools	3.1 Introduction to	ii. Conversion of
	in the correct way	carpentry shop	wood
SO3.2	3.4 Drawing of a simple work piece for	3.2 Different methods	
Acquire knowledge in	preparation of common carpentry	of seasoning of	
using various tools like	joinery work.	timber	
saws, drills and planes	3.5 Demonstration of different	3.3 Carpentry tools	
	inspection, checking and		
SO3.3	measuring methods used for proper		
Understand joinery	carpentry work.		
techniques, wood	3.6 Production of any one type of		
finishing and safety	joints listed below-		
practices	i. Dovetail Joint/Corner		
	ii. Joint/Mortise and Tenon Joint etc.		

SW-3 Suggested Sessional Work (SW):

Assignments: a.

- Explain the different operation performed in wood working i.
- Sketch and describe the different joints made in carpentry shop. ii.
- Explain the different types of wood working machines used in modern wood work. iii.

Mini Project: b.

Production of a simple utility item using different carpentry tools and methods i.

ESC105.4: Appreciate and access the use of casting processes in manufacturing and understand the working of various casting processes.

Approximate Hours			
Item	Appx. Hrs		
CI	03		
LI	12		
SW	1		
SL	1		
Total	17		

A K S University Faculty of Engineering and Technology

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Session Outcome	LaboratoryInstruction	Class room	Self Learning
(SOs)	(LI)	Instruction	(SL)
		(CI)	
SO4.1	4.1 Safety instructions for foundry	Unit-4 : Metal	i. Types of
The production of cast	shop, pattern making, mould	casting	moulding sand.
metal component,	preparation.		
quality control measures	4.2 Foundry tools introduction.	4.1 Introduction to	ii. Types of pattern
and adherence to	4.3 Instructions for using proper	foundry shop.	
manufacturing standards	tools in the correct way		
	4.4 Drawing of a simple work piece	4.2 Pattern, Mould,	
	for preparation of a pattern.	Casting, pattern	
	4.5 Instructions for sand preparation,	allowances,	
	mould preparation, melting and	moulding sand.	
	casting properly in the safe		
	manner.	4.3 Casting	
	4.6 Production of a simple casting.	procedure, core,	
		gating system.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain different defects in casting.
- ii. Explain different casting terms like runner, riser, mould etc.

ESC105.5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.

Approximate mours							
Item	Appx. Hrs						
CI	03						
LI	12						
SW	1						
SL	1						
Total	17						

Session	Laboratory Instruction	Class room Instruction	Self Learning		
Outcomes	(LI)	(CI)	(SL)		
(SOs)					
SO5.1 Performing	5.1 Safety instructions for welding shop.	Unit 5: welding shop	1. study of TIG		
set up, adjustment	5.2 Welding tools introduction for	5.1 Introduction to welding	and MIG		
of flame and gas	Electric Arc Welding process.	shop, classification of	welding process		
pressure, and	5.3 Instructions for using proper tools in	welding process			
shutdown	the correct way.	5.2 Gas welding and its	2. study of		
procedure for	5.4 Drawing of a simple welded joint viz.	equipments and	thermit welding		
oxyacetylene	Square butt joint, T joint, Lap joint	techniques	process		

Approximate Hours

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised	l as	on	01	Augus	t 2023)	

welding and	etc.	5.3 Electric arc welding and	
cutting equipment.	5.5 Demonstration of producing a square	brazing process	
	butt joint using MMAW process.		
	5.6 Actual production of a welded joint		
	as described above.		

SW-5 Suggested Sessional Work (SW):

Assignments:

What are different types of joints in welding shop?

What is the function of flux in gas welding Preparing lap joint using arc welding process?

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Laboratory Instruction (LI)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
ESC105.1: Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.	3	1	12	1	17
ESC105.2: Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques.	3	1	12	1	17
ESC105.3: Develop fundamental skills such as measuring, cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.	3	1	12	1	17
ESC105.4: Appreciate and access the use of casting processes in manufacturing and understand the working of various casting processes.	3	1	12	1	17
ESC105.5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.	3	1	12	1	17
Total Hours	15	5	60	5	85

A K S University Faculty of Engineering and Technology

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit	Ma	rks Distri	ibution	Total
	Titles	R	U	Α	Marks
CO-1	Manufacturing Methods-casting, forming, machining, joining, advanced manufacturing methods, CNC machining, Additive manufacturing	04	05	01	10
CO-2	Fitting operations & power tools	05	04	01	10
CO-3	Carpentry shop	-	05	05	10
CO-4	Metal casting	04	04	02	10
CO-5	Welding shop	05	03	02	10
	Total	18	21	11	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Manufacturing Practice Workshop will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration

7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)

8. Brainstorming

Suggested Learning Resources: (a) Books:

S.No.	Title	Author	Publisher	Edition & Year
1	Elements of Workshop	Hajra Choudhury S.K.,	Media promoters and	Vol. I 2008
	Technology	Hajra Choudhury A.K.	publishers private limited,	and Vol. II
		and Nirjhar Roy S.K.	Mumbai	2010
2	Manufacturing	Kalpakjian S. And Steven	Pearson Education India	Edition, 2002
	Engineering and	S. Schmid		
	Technology			
3	Manufacturing	Rao P.N	Tata McGraw Hill House	Vol. I and
	Technology			Vol. II
				2007
4	Processes and Materials	Roy A. Lindberg	Prentice Hall India,	4 th edition,
	of Manufacture			1998
5	Lecture note provided by	у		
	Dept. of Mechanical Eng	gineering, AKS University, S	Satna.	

Curriculum Development Team

1.	Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
2.	Mr. Alok Ranjan Tiwari, Assistant Professor, Dept. of Mechanichal Engg.
3.	Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
4.	Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
5.	Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
6.	Mr K.P Tiwari, Assistant Professor, Dept. of Mechanichal Engg
7.	Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
8.	Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
9.	Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
10.	Mr. Ram Narayan Shukla, Assistant Professor , Dept. of Mechanichal Engg
11.	Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
12.	Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: ESC105 / ESC105-L

Course Title: Manufacturing Practice Workshop

					Pro	gram (Outcon	nes					Progr	am Spe	cific Ou	tcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.	2	1	2	2	3	2	2	2	2	1	3	2	2	2	1	2
CO-2: Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques.	1	1	1	1	3	2	2	2	2	1	2	2	1	2	1	2
CO-3: Develop fundamental skills such as measuring, cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.	2	2	1	1	3	1	2	2	2	1	1	2	1	2	1	1

Faculty of Engineering and Technology Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

CO-4: Appreciate and access the use of casting processes in manufacturing and understand the working of various casting processes.	2	2	2	1	3	2	2	2	2	1	2	2	1	2	1	2
CO-5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.	2	1	1	1	1	3	2	2	2	1	2	2	1	2	1	1

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

(Revised as on of August 2023)

Course Curriculum Map: Manufacturing Practice Workshop

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.	SO1.1 SO1.2	1.1 1.2 1.3 1.4 1.5 1.6	Unit-1: Manufacturing Methods-casting, forming, machining, joining, advanced manufacturing methods, CNC machining, Additive manufacturing 1.1,1.2,1.3	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques.	SO2.1 SO2.2	2.1 2.2 2.3 2.4 2.5 2.6	Unit-2: Fitting operations & power tools 2.1, 2.2, 2.3	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Develop fundamental skills such as measuring, cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.	SO3.1 SO3.2 SO3.3	3.1 3.2 3.3 3.4 3.5 3.6	Unit-3: Carpentry shop 3.1, 3.2, 3.3	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Appreciate and access the use of casting processes in manufacturing and understand the working of various casting processes.	SO4.1	4.1 4.2 4.3 4.4 4.5 4.6	Unit-4: Metal casting 4.1, 4.2,4.3	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.	SO5.1	5.1 5.2 5.3 5.4 5.5 5.6	Unit 5: Welding Shop 5.1,5.2,5.3	

Course Code:	HSMC01
Course Title :	Communication Skills (English)
Pre- requisite:	Students must have basic knowledge of English language.
Rationale:	In order to compete in this fast growing world, LSWR skills of the students should be well developed and enhanced. Besides, they must have effective communication skills as it plays a vital role in shaping individual's personality and career. It also boosts the confidence and prepares them to face the audience fearlessly.

Course Outcomes:

HSMC01.1: Students will be able to speak confidently in public as all the topics chosen emphasis on improving speaking skills and developing self confidence amongst them.

HSMC01.2: Students will be able to interact properly with improved Leadership Skills, Problem Solving Skills, Social skills and Communication Skills. Students will also be able to understand the Importance of Team Work.

HSMC01.3: Students will be able to communicate effectively in Hindi and English languages without hindrances.

HSMC01.4: Students will be able to convey their messages accurately by understanding the significance of grammar as it plays a vital role in improving speaking and writing skills.

HSMC01.5: The Understanding of Indian Culture and English Language will be developed through the study of Dramas and Poems written by Indian Writers.

Scheme of Studies:

Course	Course	Course Title		Scheme of Studies(Hours/Week)				Total
Category	Code		CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits(C)
HSMC	HSMC01	Communication Skills (English)	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),

Page 167 of 734

SL: Self Learning, C: Credits.

SW & SL has to be planned and performed under the continuous guidance and Note: feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Theory				Se	home of	Accoccm	ont (N	(orke)		
			Scheme of Assessment (Marks) Progressive Assessment (PRA)				lai Kõ j			
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
HSMC	HSMC01	Communication Skills (English)	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including

Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL).

As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC01.1: Students will be able to speak confidently in public as all the topics chosen emphasis on improving speaking skills and developing self confidence amongst them.

Approximate Hours				
Item	Appx. Hrs			
CI	9			
LI	0			
SW	1			
SL	1			
Total	11			

Session Outcomes	Laboratory Instruction	Class room Instruction	Self-Learning
(SOs)	(LI)	(CI)	(SL)
SO1.1 Students will be		Self-grooming, Basic Etiquettes and	
able to introduce		Presentation Skill	1. Prepare a
themselves		1.1 Self-introduction	presentation on the given topics.
SO1.2 Understand the		1.2 Practice Sessions	U I
concept of Oral		1.3 Oral Presentation	2. Prepare a
Presentation		1.4 Characteristics of presentation.	play on the
SO1.3 Students will be able to dress and present effectively		1.5 Presentation topics (The importance of Education, The importance of English in Today's World and Necessity of uniforms in a college)	given topics.
SO1.4 Understand the importance of Body LanguageSO1.5 Students will be able to influence mass through skit and dramas.		 1.6 Professional dressing and grooming etiquettes. 1.7 Body Language tips and techniques. 1.8 Role play sessions on following topics: Classroom interaction, Hospital Scene and Scene at Railway station 	
		1.9 Performance by Students	

HSMC01.2: Students will be able to interact properly with improved Leadership Skills, Problem Solving Skills, Social skills and Communication Skills. Students will also be able to understand the Importance of Team Work.

Approximate	Hours
-------------	-------

L.L.	
Item	Appx. Hrs
CI	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes	Laboratory	Class room Instruction	Self Learning	
(SOs)	Instruction	(CI)	(SL)	
	(LI)			
SO2.1 Understand the		UNIT 2: Confidence building skills,	1. Prepare debate	
techniques of Group		Interview Skills and Resume Writing	on given topics	
Discussion		2.1 Group Discussion	2 D	
		2.2 Do's and Donts of GD	2. Prepare a	
SO2.2Understand the		2.3 Group Discussion sessions on impact of	Resume	
concept of Debate		Covid 19 on mental health, impact of		
		social media on lives, pros and cons of		
SO2.3 Students will be		technology		
able to design a		2.4 Difference between GD and Debate.		
professional resume and		2.5 Do's and Don'ts of Debate.		
crack interview		2.6 Debate topics on Should the Use of		
		Plastic Be Banned?		
SO2.4 Explain the		Should Parents Decide Which Career		
concept of how to ace in		Their Children Will Pursue?,		
an interview.		Is Artificial Intelligence Useful or		
		Dangerous?		
		2.7 Interviews and their Kinds		
		2.8 Mock Interview Session		
		2.9 Resume Writing.		

HSMC01.3: Students will be able to communicate effectively in Hindi and English languages without hindrances

Approximate Hours				
Item	Appx. Hrs			
Cl	10			
LI	0			
SW	1			
SL	1			
Total	12			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)	
SO3.1Students will be		Unit-3 :Public Speaking Skills&	1. Prepare a speech	
able to organize and		Conversational Skills	on the following	
prepare speeches.		3.1 Speech	topics.	
SO3.2 Students will be		3.2 Types of Speech	2. Prepare on the	
able to think and speak		3.3 Speech /Anchoring on (National	following	
		Science Day, Valedictory Speech,	ionowing	

Page 170 of 734

instantaneously.		Patriotic speech).	conversational
 instantaneously. SO3.3 To make them understand the inquiry procedure at public places. SO3.4 To enable them to communicate effectively through phones. 	3.6 3.7 3.8 3.9	Performance in the class. Extempore Extempore Topics on (Pros and Cons of Online teaching, Environment Conservation and Education of a Girl Child) Practice Session Conversational Topics (Inquiry at bank, Airport, Station and Hospitals). Telephonic Conversation (Describing about Your College Day to Your Parents from Hostel, Talking with Customer Care	conversational topics.
		Executive of Any E-Commerce Company). Revision	

HSMC01.4: Students will be able to convey their messages accurately by understanding the significance of grammar as it plays a vital role in improving speaking and writing skills.

Approximate Hours

Item	Appx. Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO4.1 Understanding about the use of Prepositions. SO4.2 Students will be able to understand the usage of Tenses SO4.3 Understand the concept of Active and Passive Voice SO4.4 To understand the usage of Modals 		 Unit-4: Functional Grammar and Vocabulary Building 4.1 Prepositions (Place, Time and Direction) 4.2 MCQ based Questions on Prepositions. 4.3 Gap filling using prepositions. 4.4 Tenses 4.5 Present Tense 4.6 Past Tense 4.7 Future Tense 	 Prepare the structure of Tenses and Active Passive. Prepare 250 vocabularies.

	4.8 Voice (Active and Passive)	
	4.9 Modals.	

HSMC01.5: The Understanding of Indian Culture and English Language will be developed through the study of Dramas and Poems written by Indian Writers.

Approximate HoursItemAppx. HrsCI8LI0SW1SL1Total10

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO5.1 Students will be able to understand the value of Indian Literature (R.K. Narayan) SO5.2 Students will be able to understand the value of Indian Literature (Nissim Ezekiel) SO5.3 Students will be able to understand the value of Indian Literature (Khushwant Singh) SO5.4 Students will be able to understand the value of Indian Literature (Mulk Raj Anand) SO5.5 Students will be able to understand the value of Indian Literature (Premchand) 		 Unit 5-Indian Writing in English & Hindi 5.1 The Axe- R.K. Narayan 5.2 About the Author - R.K. Narayan 5.3 The Night of the Scorpion- Nissim Ezekiel 5.4 About the Poet - Nissim Ezekiel 5.5 The Portrait of a Lady – Khushwant Singh 5.6 About the author- Khushwant Singh 5.7 The Lost Child- Mulk Raj Anand 5.8 The Shroud- Premchand 	Prepare the summary of all the topics (The Axe, The Night of the Scorpion, The Portrait of a Lady, The Lost Child he Shroud).

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (CI+SW+Sl)
CO101.1: Students will be able to speak confidently in public as all the topics chosen emphasis on improving speaking skills and developing self confidence amongst them.	9	1	1	11
CO101.2: Students will be able to interact properly with improved Leadership Skills, Problem Solving Skills, Social skills and Communication Skills. Students will also be able to understand the Importance of Team Work.	9	1	1	11
CO101.3: Students will be able to communicate effectively in Hindi and English languages without hindrances.	10	1	1	12
CO101.4: Students will be able to convey their messages accurately by understanding the significance of grammar as it plays a vital role in improving speaking and writing skills.	9	1	1	11
CO101.5: The Understanding of Indian Culture and English Language will be developed through the study of Dramas and Poems written by Indian Writers.	8	1	1	10
Total Hours	45	5	5	55

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marks Distribution		Total	
		R	U	Α	Marks
CO-1	Self Grooming, Basic Etiquettes and Presentation.	03	01	01	05
CO-2	Confidence Building and Interview Skills.	02	06	02	10
CO-3	Public Speaking Skills and Conversational Skills	03	07	05	15

CO-4	Functional Grammar and Vocabulary Building	-	10	05	15
CO-5 Indian Writings in English and Hindi		03	02	-	05
Total		11	26	13	50

Legend:R: Remember,U: Understand,A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books :

S.	Title	Author	Publisher	Edition & Year
No.				
1	Communication Skills	Dr. Meenu Pandey	Nirali Praksahan.	February 2019
2	A Practical Guide to English	K.P. Thakur	Bharti Bhawan	9th Edition, 2017
	Grammar		Publishers &	
			Distributors.	
3	Living English Structure	W. Stannard Allen	Dorling Kindersley India	Fifth Edition,
			Pvt. Ltd.	

4	Communication Skills	Muralikrishna C.,	Pearson, New Delhi.	Second edition(2010)
	for Engineers	Sunita Mishra		
5.	Advanced Language	Michael Vince	Macmillan Education,	2003.
	Practice,		Oxford	
6.	English Conversation	Grant Taylor	Tata McGraw Hill	2007
	Practise		Education Private	
			Limited.	
7.	Six Weeks to Words of	Wilfred Funk	W.R. Goyal Publishers	2005
	Power		and Distributors.	

Curriculum Development Team

- 1. Dr. Shubhra Mishra, Assistant Professor, Dept. of Communication Skills
- 2. Ms. Deepika Senani, Assistant Professor, Dept. of Communication Skills
- 3. Mr. Amarpreet Saluja, Teaching Associate, Dept. of Communication Skills

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: HSMC01

Course Title: Communication Skills (English)

					Pr	ogram	Outco	mes					Progr	am Spe	cific Ou	itcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Students will be able to speak confidently in public as all the topics chosen emphasis on improving speaking skills and developing self confidence amongst them.	1	1	2	2	3	3	2	2	1	1	1	1	1	1	1	1
CO-2: Students will be able to interact properly with improved Leadership Skills, Problem Solving Skills, Social skills and Communication Skills. Students will also be able to understand the Importance of Team Work.		1	1	1	3	3	2	2	2	2	1	1	1	1	1	2

CO-3: Students will be able to communicate effectively in Hindi and English languages without hindrances.		1	2	1	2	3	1	2	1	1	1	1	1	1	1	1
CO-4: Students will be able to convey their messages accurately by understanding the significance of grammar as it plays a vital role in improving speaking and writing skills.		1	1	1	1	3	1	2	1	1	1	1	1	1	1	1
CO-5: The Understanding of Indian Culture and English Language will be developed through the study of Dramas and Poems written by Indian Writers.	1	1	2	1	1	3	1	2	1	1	1	1	1	1	1	1

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Communication Skills (English)

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4 PO 1,2,3,4,5,6 7,8,9,10,11,12	 CO-1: Students will be able to speak confidently in public as all the topics chosen emphasis on improving speaking skills and developing self confidence amongst them. CO-2: Students will be able to interact properly with improved Leadership Skills, Problem Solving Skills, Students will be able to interact properly with improved Leadership Skills, Problem Solving Skills, Students Students	SO1.3 SO1.4 SO1.5 SO2.1 SO2.2 SO2.3		Unit-1: Self Grooming, Basic Etiquettes and Presentation 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9 Unit-2: Confidence Building and Intervier Skills	
PSO 1,2, 3, 4	Social skills and Communication Skills. Students will also be able to understand the Importance of Team Work.	SO2.4		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Students will be able to communicate effectively in Hindi and English languages without hindrances.	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3: Public Speaking Skills and Conversational Skills 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Students will be able to convey their messages accurately by understanding the significance of grammar as it plays a vital role in improving speaking and writing skills.	SO4.2		Unit-4: Functional Grammar an Vocabulary Building 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: The Understanding of Indian Culture and English Language will be developed through the study of Dramas and Poems written by Indian Writers.			Unit 5: Indian Writings in English and Hindi 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-II

Course Code: HSMC08

- Course Title: Sustainable Development Goals
- **Pre-requisite:** Student should have basic knowledge of Environment, Natural resources, Climate change and sustainability.
- **Rationale:** To inculcate the knowledge base on sustainable development with a view to balance our economic, environmental and social needs, allowing prosperity for now and future generations. To train students to undertake major initiatives in the efficient management of natural resources and the prevention of environmental pollution with focus on Sustainable Development.

To use environmental management tools that help to improve the quality of environment, to assess local vulnerabilities with respect to climate, natural disasters and to achieve sustainable developmental needs.

Course Outcomes:

- **HSMC08.1:** Examine critically the 17 newly minted UN Sustainable Development Goals and understand the historical evolution, key theories, and concepts of sustainable development.
- **HSMC08.2:** Identify and apply methods for assessing the achievement of sustainable development and discover the science, technology, economics, and politics underlying the concepts of sustainability.
- **HSMC08.3:** Understand the implications of overuse of resources, population growth and economic growth and sustainability and explore the challenges the society faces in making transition to renewable resource use.
- **HSMC08.4:** Develop skills to understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and apply critical thinking skills to evaluate the quality, credibility and limitations of an argument for solution.
- **HSMC08.5:** Describe the steps of the design thinking methodology and how design thinking can accelerate effective SDG implementation. Deepen knowledge and pedagogical tools to incorporate values-based education for sustainable development in educational programmers and processes.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Scheme of Studies:

Category Course				Total				
of Course	Code	Course Title	CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
SDGs	SDGs101	Sustainable Development Goal	2	0	1	1	4	2

Legend:

CI: Class room Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), **SW:** Sessional Work (includes assignment, seminar, mini project etc), **SL:** Self Learning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Sc	heme of	Assess	nent (N	farks)		
x					5A)					
Course Category	Course Code	Course Title	Class/Home Assignment 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT +AT)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
HSMC	HSMC08	Sustainable Development Goal	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

HSMC08.1: Examine critically the 17 newly minted UN Sustainable Development Goals and understand the historical evolution, key theories, and concepts of sustainable development.

Approximate Hours							
Item Appx. Hrs							
Cl	06						
LI	0						
SW	1						
SL	1						
Total	08						

Session Outcomes	Laboratory	Classroom Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1.1Understand about		Unit-1.0 Introduction to	Different SDG
Sustainable Development		Sustainable Development	goals details and its
			importance
SO1.2 Understand the Need		1.1 Need and Importance of	
and Importance of SDGs		Sustainable Development	
		1.2 Historical & Policy perspectives	
SO1.3 Understand the historical		of Sustainable Development	
evolution of SDGs		1.3 Sustainable Development: World	
		and India Perspective	
SO1.4 Gain knowledge of SDGs		1.4 Introduction to 17 SDGs	
Different goals and their		1.5 Specific learning objectives for	
importance		different SDGs	
		1.6 Challenges & strategies of	
SO1.5 Explain the Challenges		attaining SDGs in developed and	
& strategies of attaining		developing nations	
SDGs in countries			

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Overview of SDGs, Sustainable Consumption and Production, Details of 17 SDGs

b. Other Activities (Specify):

Note down the different challenges in our state and district to achieve SDG

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

HSMC08.2: Identify and apply methods for assessing the achievement of sustainable development and discover the science, technology, economics, and politics underlying the concepts of sustainability and measuring.

Approximat Hours

Item	Appx. Hrs						
Cl	06						
LI	0						
SW	1						
SL	1						
Total	8						

Session Outcomes	Laboratory	Classroom Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO2.1 Explain Sustainable		Unit-2.0 Special focus on SDG	1 NEP 2020 objectives and
Development		4-Quality Education and	concept for SDGs
-		Lifelong Learning:	
SO2.2 Understand the		2.1 Focus of NEP-2020 on	2 Concept, Tools and
NEP-2020 and SDG		SDG	techniques for
SO2.3 Discuss higher		2.2 Education for Sustainable	measuring sustainability
Education role to		Development (ESD):	
achieve SDGs		2.3 Berlin Declaration 2021 on	
SO2.4 Explain how		ESD	
education for		2.4 Integration of ESD in	
Sustainable		curriculum and textbooks	
Development		2.5 Tools, Systems, and	
Development		Innovation for	
SO2.5 Explain the		Sustainability	
measuring		2.6 Measuring Sustainability:	
techniques for		How do we measure	
Sustainability		sustainability	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Education role to achieve SDGs, The role of education in Sustainable Development, Measuring techniques of sustainability, Sustainability Indicators

b. Other Activities (Specify): Seminar and group discussion on ESD and measuring sustainability Millennium Development Goals (MDGs)

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

HSMC08.3: Understand the implications of overuse of resources, population growth and economic growth and sustainability and explore the challenges the society faces in making transition to renewable resource use.

Approximate Hours

Item	Appx. Hrs					
Cl	06					
LI	0					
SW	1					
SL	1					
Total	8					

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (CI)	Self Learning (SL)
	(LI)		
SO3.1 Understand current economic issues		Unit-3.0 Understanding	1
in the context of the global sustainable development debate.		the SDGs3.1Circulareconomy(basic model of reuse,	1. Water treatment and management practices.
SO3.2 Outline of health, hygiene and water sanitation issues.		recycle, and reduce) 3.2 Rural & urban	2. Nonrenewable energy resources.
SO3.3 Discuss the renewable energy resources and its importance in present scenario		Problems & Challenges 3.3 Sustainable production and consumption	
 SO3.4 Explain the importance of sustainable production and consumption SO3.5 Explain the problems and solution in rural and urban areas. 		 3.4 Renewable energy 3.5 Health & Hygiene, water , sanitation & water management 3.6 Waste Management 	

SW-3 Suggested Sessional Work (SW):

Smart cities Assignments:

Eco-friendly energy resources importance, types of waste and its management, Urban Problems & Challenges

Other Activities (Specify):

Visit of waste water treatment plant, Visit of water treatment process.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

HSMC08.4: Develop skills to understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and apply critical thinking skills to evaluate the quality, credibility and limitations of an argument for solution.

Approximate Hours									
Item	Appx. Hrs								
Cl	06								
LI	0								
SW	1								
SL	1								
Total	8								

	Session Outcomes	Laboratory	Classroom Instruction	Self Learning
	(SOs)	Instruction	(CI)	(SL)
		(LI)		
SO4.1	Understand environmental		Unit-4.0 Climate Change,	
	sustainability is crucial in reducing		Energy and	1. Agreement on
	the impacts of climate change		Sustainable	Climate Change,
			Development	Trade, and
SO4.2	Discuss causes of emission of			Sustainability
	GHGs and its consequences		4.1 The greenhouse effect:	Carbon Credit,
			Causes and	carbon trading.
SO4.3	Explain how climate change and sustainable development both play		Consequences	2. Kyoto Protocol
	a role in shaping the human and		4.2 Climate Change: A	
	environmental factors of the world.		Threat to Sustainable	
			Development	
SO4.4	Explain the importance of		4.3 Adaptation to Current	
	sustainable production and		and Future Climate	
	consumption		Regimes	
			4.4 The consequences:	
SO4.5	Climate change is disrupting		crop failure	
	national economies and affecting			
	lives and livelihoods, especially for		4.5 Solutions technology	
	the most vulnerable and its		and lifestyle changes	
	mitigation.		4.6 Mitigating Climate	
			Change	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

Urban Sustainability and Climate Change, Sustainable Development Policies, Agreement on Climate Change, Trade and Sustainability, Resilient cities – What makes a city sustainable, green, and resilient

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

b. Other Activities (Specify):

HSMC08.5: Describe the steps of the design thinking methodology and how design thinking can accelerate effective SDG implementation. Deepen knowledge and pedagogical tools to incorporate values-based education for sustainable development in educational programmes and processes.

Appro	oximate Hours
Item	Appx. Hrs
Cl	06
LI	0
SW	1
SL	1
Total	8

Session Outcomes	Laboratory	Classroom Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO5.1 Understand the relevance and the		Unit-5.0 Sustainable Business	
concept of sustainability and the		Practices:	
global initiatives in this		5.1 Corporate Social Responsibility	Local to the
direction			Global: Can
		5.2 Sustainable products and	Sustainable
SO5.2 Understand role of Corporations		services	Development
and Ecological Sustainability.		5.3 Business and Environment	Work
SO5.3 Explain role of CSR in		5.4 Corporations and Ecological	
Sustainability.		Sustainability	
		5.5 Life Cycle Assessment:	
SO5.4 Understand the SD challenge for		-LCA Overview and Application	
companies, their responsibility			
and their potentials for action		5.6 World peace and justice:	
		-United nations goals for peace	
SO5.5 Discuss the role of world		and justice	
government for world justice		-World Government for peace	
and peace			

SW-1 Suggested Sessional Work (SW):

a. Assignments:

.

Consumption Patterns and Lifestyles, Company Perspectives for Environmental Sustainability, An Introduction to Economic Growth

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
HSMC08.1: Examine critically the 17 newly minted UN Sustainable Development Goals and understand the historical evolution, key theories, and concepts of sustainable development.	6	1	1	8
HSMC08.2: Identify and apply methods for assessing the achievement of sustainable development and discover the science, technology, economics, and politics underlying the concepts of sustainability.	6	1	1	8
HSMC08.3: Understand the implications of overuse of resources, population growth and economic growth and sustainability and explore the challenges the society faces in making transition to renewable resource use.	6	1	1	8
HSMC08.4: Develop skills to understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and apply critical thinking skills to evaluate the quality, credibility and limitations of an argument for solution.	6	1	1	8
HSMC08.5: Describe the steps of the design thinking methodology and how design thinking can accelerate effective SDG implementation. Deepen knowledge and pedagogical tools to incorporate values-based education for sustainable development in educational programmes and processes.	6	1	1	8
Total Hours	30	5	5	40

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

	Suggested Specification		1 01 1)						
CO	Unit Titles	Mar	Marks Distribution						
		R	U	Α	Marks				
CO-1	Introduction to Sustainable Development	03	01	01	05				
CO-2	Special focus on SDG 4-Quality Education and	02	06	02	10				
	Lifelong Learning:								
CO-3	Understanding the SDGs	03	07	05	15				
CO-4	Climate Change, Energy and Sustainable	-	10	05	15				
	Development								
CO-5	Sustainable Business Practices	03	02	-	05				

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

(Iteribed up of ring)	abe =0=e)			
Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply A: Analyse E:Evaluate C:Create

The end of semester assessment for Sustainable Development Goals will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry, water treatment plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration /Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Editio
No				n &
•				Year
1	The Economics of Sustainable	Surender Kumar and	Springer Switzerland	2009
	Development: The Case of India	Shunsuke Managi		
	(Natural Resource Management and			
	Policy)"			
2	Corporate Social Responsibility in	Onyeka Osuji	Cambridge	New
	Developing and Emerging Markets			Edition
				June 2022
3	Smart Cities for Sustainable	Ram Kumar Mishra, Ch	Springer Switzerland	March
	Development	Lakshmi		2022
		Kumari, Sandeep		
		Chachra, P.S. Janaki		
		Krishna		
4	Sustainable Development: Linking	Tracey Strange and Anne		
	Economy, Society, Environment	Bayley		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

5	Management Of Resources For Sustainable Devpt	Sushma Goyal	The Orient Blackswan	2016
6	Energy, Environment and Sustainable Development: Issues and Policies	S. Ramaswamy Sathis G. Kumar	Regal Publications	2009
7	The New Map: Energy, Climate, and the Clash of Nations	Daniel Yergin	Penguin Press	September 2015
8	Contributions of Education for Sustainable Development (ESD) to Quality Education:	Laurie, R., Nonoyama- Tarumi, Y., Mckeown, R., & Hopkins, C.	A Synthesis of Research. Journal of Education for Sustainable Development, 10(2), 226–242.	2016
9	Sustainable Results in Development: Using the SDGs for Shared Results and Impact	OECD	OECD Publishing, Paris	2019
10	Development Discourse and Global History from colonialism to the sustainable development goals	Ziai, Aram	Routledge, London & New York	2016
11	Sustainable Development Goals An Indian Perspective,	Hazra, Somnath., Bhukta, Anindya	Springer Switzerland	2020
12	Environmental Ecology, Biodiversity and Climate Change	HM Saxena	Rawat Publication	January 2021
13	https://www.un.org/sustainabledevelopment	t/		
14	https://www.aiu.ac.in/documents/AIU_Publ	ications/UN-SDG goals		
15	https://www.unesco.org/en/education-sustai	nable-development		
16	https://onlinecourses.nptel.ac.in/noc23_hs57	7/preview		
17	ttps://www.iau-hesd.net/news/5180-berlin-d esd-conference-17-19	eclaration-education-sustain	able development-adopte	ed-unesco-

Curriculum Development Team

- 1. Professor G C Mishra, Director Cement Technology, AKS University
- 2. Professor Kamlesh Choure, Head Dept of Biotechnology AKS University
- 3. Professor Mahendra Kumar Tiwari, Head Deptt of Environmental Science, AKS University

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Cos. POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: HSMC08

Course Title: Sustainable Development Goals

				-	Prog	ram (Outcon	ies					Progra	am Spec	ific Ou	tcome
	PO1	PO2	PO3	PO4	PO 5	PO 6	PO7	PO 8	PO9	PO 10	РО 11	PO 12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	technical & engineering knowledge for production quality	the day to plant operational problems	the latest cement manufacturing technology and it	research based innovative knowledge for sustainable
CO-1: Examine critically the 17 newly minted UN	1	1	1	2	3	2	3	2	2	1	3	3	1	2	2	3
Sustainable Development Goals and understand the																
historical evolution, key theories, and concepts of																
sustainable development. CO-2: Identify and apply methods for assessing																
the achievement of sustainable development and	1	1	2	2	1	2	3	2	1	1	2	3	2	2	2	2
discover the science, technology, economics, and																
politics underlying the concepts of sustainability.																
CO-3: Understand the implications of overuse of	2	2	1	1	1	2	2	2	1	2	1	2	1	1	1	1
resources, population growth and economic growth	2	2	1	1	1	2	2	2	1	2	1	2	1	1	1	1
and sustainability and explore the challenges the																
society faces in making transition to renewable																
resource use.																
CO-4: Develop skills to understand attitudes on	3	2	2	2	3	2	3	2	2	1	2	2	2	2	3	3
individuals, society and their role regarding causes	5	-	-	2	5	2	5	4	-	1	4	4	2	4	5	3
and solutions in the field of sustainable																
development and apply critical thinking skills to																
evaluate the quality, credibility and limitations of																
			Pag	e 189	of of	734	•									

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

an argument for solution.																
CO-5: Describe the steps of the design thinking	1	1	1	1	1	3	3	3	1	1	2	2	1	2	3	3
methodology and how design thinking can	-	-	-	-	-	č	e	Ũ	-	-	-	-	-	-	U	
accelerate effective SDG implementation. Deepen																
knowledge and pedagogical tools to incorporate																
values-based education for sustainable development																
in educational programmes and processes.																

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Course Curriculum Map: Sustainable Development Goals

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4 PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	 CO-1: Examine critically the 17 newly minted UN Sustainable Development Goals and understand the historical evolution, key theories, and concepts of sustainable development. CO-2: Identify and apply methods for assessing the achievement of sustainable development and discover the science, technology, economics, and politics underlying the concepts of sustainability. 	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO2.1 SO2.2 SO2.3 SO2.4		Unit-1: Introduction to Sustainable Development 1.1,1.2,1.3,1.4,1.5,1.6 Unit-2: Special focus on SDG 4- Quality Education and Lifelong Learning: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Understand the implications of overuse of resources, population growth and economic growth and sustainability and explore the challenges the society faces in making transition to renewable resource use.	SO2.5 SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Understanding the SDGs 3.1,3.2,3.3,3.4,3.5,3.6	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Develop skills to understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and apply critical thinking skills to evaluate the quality, credibility and limitations of an argument for solution.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Climate Change, Energy and Sustainable Development 4.1,4.2,4.3,4.4,4.5,4.6	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Describe the steps of the design thinking methodology and how design thinking can accelerate effective SDG implementation. Deepen knowledge and pedagogical tools to incorporate values-based education for sustainable development in educational programmers and processes.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: Sustainable Business Practices: 5.1,5.2,5.3,5.4,5.5,5.6	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester II

Course Code:	HSMC09
Course Title :	Sports and Yoga
Pre- requisite:	Student should have basic knowledge of Sports and Yoga concepts
Rationale:	Students of Yoga should have a legal understanding of Yoga and its original text Yoga. At the same time, they should also have adequate knowledge Yoga practices in which they should have knowledge of its basic principles and elements.

Course Outcomes:

HSMC09.1: A makes the students understand the importance of Introduction of Yog.

HSMC09.2: To make the students understand the importance of Fundamentals of Yog.

HSMC09.3: To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.

HSMC09.4: To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury and Yoga & Lifestyle

HSMC09.5: To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health

Course	course	Course Course Scheme of Studies (Hours/Week)				s/Week)	Total	
Categor		Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
HSMC	HSMC09	Sports and Yoga	2	0	0	0	2	0

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others, **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), **SW:** Sessional Work (includes assignment, seminar, mini project etc.), **SL:** Self Learning, **C:** Credits. 2

Theory										
			Scheme of Assessment (Marks)							
				Progre	ssive Ass	essment (PRA)			
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
HSMC	HSMC09	Sports and Yoga	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC09.1: To make the students understand the importance of Introduction of Yoga.

Approximate Hours		
Item	Appx. Hrs	
CI	06	
LI	0	
SW	0	
SL	0	
Total	06	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self-Learning (SL)
	Instruction (LI)		
SO1.1		Unit-1. Introduction of Yoga	1. Meaning &
Student will able to			Importance of Yoga
Understand the Meaning &		1.1. Meaning & Importance of	2. Introduction - Asanas,
Importance of Yoga		Yoga	Pranayama,
SO1.2		1.2. Introduction - Asanas,	Meditation & Yogic
Student will able to Describe		Pranayama, Meditation & Yogic	Kriyas
the Elements of Yoga,astang		Kriyas	3. Relaxation
yoga		1.3. Yoga for concentration &	Techniques for
SO1.3		related Asanas (Sukhasana;	improving
Student will able to Describe		Tadasana; Padmasana &	concentration - Yog-
Introduction - Asanas,		Shashankasana)	nidra
Pranayama, Meditation &		1.4. Relaxation Techniques for	
Yogic Kriyas		improving concentration - Yog-	
SO1.4		nidra	
Student will able to		1.5. Relaxation Techniques for	
Understand the Concept of		improving concentration - Yog-	
Yoga for concentration &		nidra	
related Asanas		1.6. Relaxation Techniques for	
SO1.5		improving concentration - Yog-	
Student will able to		nidra	
Understand the Concept of			
Relaxation Techniques for			
improving concentration -			
Yog-nidra			

HSMC09.2: To make the students understand the importance of Fundamentals of Yoga

A	Approximate Hours
Item	Appx. Hrs
CI	06
LI	0
SW	0
SL	0
Total	06

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instructi (LI)	Class room Instruction (CI)	Self Learning (SL)
SO2.1.		Unit-2. Fundamentals of Yoga	1. Effect of
Student will able to			Yoga on the
Understand Fundamentals		2.1 Purpose yoga, definition of yoga, need	functioning
of Yoga		and use of Yoga for students.	of Various
		2.2 Effect of Yoga on the functioning of	Body
SO2.2.		Various Body Systems.	Systems
Student will able to		2.3 Effect of Yoga on the functioning of	
Understand the Effect of		Various Body Systems	2. Fundamental
Yoga on the functioning of		2.4 Circulatory System,	s of Yoga
Various Body Systems		2.5 Respiratory System,	
		2.6 Neuro- System , Muscular System etc.	

HSMC09.3: To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.

Approximate H	ours
---------------	------

Item	Appx. Hrs
CI	6
LI	0
SW	0
SL	0
Total	6

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO3.1 Student will able to	(11)	Unit-3. Physical Fitness,	1. Physical Fitness
Understand Meaning &		Wellness & Lifestyle	1. Thysical Thicss
Importance Physical Fitness,		•	2. Wellness &
Wellness & Lifestyle		Physical Fitness &	Lifestyle
SO3.2Student will able to		Wellness	
Understand the Components of		3.2 Components of Physical	
Physical fitness		fitness	
SO3.3 Student will able to		3.3 Components of Health	
Describe		related fitness	
SO3.4 Student will able to		3.4 Components of wellness	
Understand of Health related		3.5 Preventing Health Threats	
fitness		through Lifestyle Change	
SO3.5 Student will able to		3.6 Concept of Positive	

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Understand of Preventing Health	Lifestyle	
SO3.6 Student will able to		
Describe Concept of Positive Life		

HSMC09.4: To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury and Yoga & Lifestyle

	Approximate Hours
Item	Appx. Hrs
CI	6
LI	0
SW	0
SL	0
Total	6

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO4.1 Student will able to Understand Asanas as preventive measures SO4.2 Student will able to Understand the Hypertension, Obesity, Back Pain, Diabetes, Asthema 		 Unit-4. Yoga & Lifestyle 4.1 Asanas as preventive measures. 4.2 Hypertension: Tadasana, Vajrasana, Pavan Muktasana, ArdhaChakrasana,Bhujangasana, Sharasana. 4.3 Back Pain: Tadasana, Ardh Matsyendrasana, Vakrasana, Shalabhasana, Bhujangasana 4.4 Diabetes: Procedure, Benefits & contraindications for Bhujangasana, Paschimottasana, Pavan Muktasana, Ardh Matsyendrasana 4.5 Asthema: Procedure, Benefits & contraindications for Sukhasana, Chakrasana, 4.6 Gomukhasana, Parvatasana, Bhujangasana, Paschimottasana, Matsyasana. And Obesity: Procedure, Benefits & contraindications for Sukhasana, Paschimottasana, Matsyasana. And The Matsyendrasana, And Matsyasana, And Matsyasana, And Natsyasana, And The Matsyendrasana, And Natsyasana, And Natsyasana, And The Matsyendrasana, And Matsyendrasana, Ardh Matsyendrasana, And The Matsyendrasana, Ardh Matsyendrasana, Ardh Matsyendrasana, Ardh Matsyendrasana, Ardh Matsyendrasana, Ardh Matsyendrasana, Hastasana, Trikonasana, Ardh Matsyendrasana. 	1. Asanas as preventive measures

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

HSMC09.5: To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health &Postures.

	Approximate Hours
Item	Appx. Hrs
CI	6
LI	0
SW	0
SL	0
Total	6

Session Outcomes	Laboratory	Class room	Self-Learning
(SOs)	Instruction	Instruction	(SL)
	(LI)	(CI)	
	•	Unit-5. Postures	
SO5.1 Student will able to			1. Meaning and
Understand the Meaning and		5.1 Meaning and Concept of	Concept of
Concept of Postures		Postures.	Postures
SO5.2: Student will able to		5.2 Causes of Bad Posture	
Understand the Causes of Bad		5.3 Advantages & disadvantages	
Posture		of weight training	
SO5.3 Student will able to		5.4 Concept & advantages of	
describe Concept & advantages of		Correct Posture.	
Correct Posture		5.5 Common Postural	
		Deformities – Knock Knee;	
		Flat Foot; Round Shoulders	
		5.6 Lordosis, Kyphosis, Bow	
		Legs and Scoliosis.	

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
- i. Yoga & Lifestyle
- ii. Physical Fitness, Wellness & Lifestyle

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self-	Total hour
	Lecture	Work	Learning	(CI+SW+SI)
	(CI)	(SW)	(SI)	
HSMC09.1: To make the students understand the	6	0	0	C
importance of Introduction of Yoga	0	0	0	6
HSMC09.2: To make the students understand the	6	0	0	C
importance of Fundamentals of Yoga	0	0	0	6
HSMC09.3: To expose the students to a variety of				
physical and yogic activities aimed at stimulating their	6	0	0	6
continued inquiry about Yoga, physical education,	0	0	0	0
health and fitness.				
HSMC09.4: To create a safe, progressive, methodical				
and efficient activity based plan to enhance	6	0	0	6
improvement and minimize risk of injury and Yoga &	0	0	0	0
Lifestyle				
HSMC09.5 To develop among students an				
appreciation of physical activity as a lifetime pursuit	6	0	0	6
and a means to better health &Postures				
Total Hours	30	0	0	30

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Mar	ks Distrib	ution	Total
		R	U	Α	Marks
CO-1	Introduction of Yoga	10	10	00	20
CO-2	Fundamentals of Yoga	10	10	00	20
CO-3	Physical Fitness, Wellness & Lifestyle	05	05	00	20
CO-4	Yoga & Lifestyle	05	05	00	20
CO-5	Postures	05	05	00	20
	Total	25	25	00	100

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Yoga will be held with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- **8.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books

TEXT BOOKS

Text Books/References:

S.No.	Title	Author	Publisher	Edition &
				Year
1	Modern Trends and Physical	Prof. Ajmer Singh	New publication	1st edition/2019
	Education		house Delhi	
2	Asan pranayama mudra bandh	Swami satyanand	Shivanand	1 st edition 2003
		sarswati	publication	
			Munger Bihar	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

3	Light On Yoga	, 0	Iyengar publication	1 st edition 2001
4	Health and Physical Education	NCERT	NCERT	1 st edition 2003

Curriculum Development Team

- 1. Dr. Dileep Kumar Tiwari, Head of Deptt. Yoga., AKS University
- 2. Dr. Ganesh Prasad, Assistant Professor, Dept. of Yoga.

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech. Cement Tech.

Course Code: HSMC09

Course Title: Sports and Yoga

					Prog	ram Ou	tcome	5					Prog	am Spec	cific Ou	tcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes		Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
HSMC09.1: To make the students understand the importance of Introduction of Yoga	1	2	1	1	1	1	1	1	2	1	1	1	1	1	1	2
HSMC09.2: To make the students understand the importance of Fundamentals of Yoga	1	2	1	1	1	1	1	1	2	1	1	1	1	1	1	2
HSMC09.3: To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.	1	2	1	1	2	1	2	1	2	2	1	2	1	1	1	2
L				Pan	e 20	1 of 7	734									

HSMC09.4: To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury and Yoga & Lifestyle	1	2	1	1	1	1	1	1	2	1	1	1	1	1	1	1
HSMC09.5 To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health &Postures	1	2	1	1	2	1	3	1	2	1	2	2	1	1	1	2

Legend: 1 – Low, 2 – Medium, 3 – High

Curriculum of B. Tech. (Cement Technology) (Revised as on 01 August 2023)

Course Curriculum Map: Sports and Yoga

POs & PSOs No.	COs No.& Titles	SOs No.	LI	Classroom Instruction (CI)	Self- Learning (SL)
РО	HSMC09.1: To make the students understand the	SO1.1		Unit-1.0 Introduction of Yoga	
1,2,3,4,5,6,7,8,9	importance of Introduction of Yoga	SO1.2		1.1,1.2,1.3,1.4,1.5,1.6	
PSO 1,2, 3, 4, 5		SO1.3			
		SO1.4			
		SO1.5			
PO 1,2,3,4,5,6,	HSMC09.2: To make the students understand the	SO2.1		Unit-2 Fundamentals of Yoga	
7,8,9 PSO 1,2, 3, 4, 5	importance of Fundamentals of Yoga	SO2.2		2.1, 2.2, 2.3, 2.4, 2.5, 2.6	
PO 1,2,3,4,5,6,	HSMC09.3: To expose the students to a variety of	SO3.1		Unit-3 : Physical Fitness,	
7,8,9	physical and yogic activities aimed at stimulating	SO3.2		Wellness & Lifestyle	
PSO 1,2, 3, 4, 5	their continued inquiry about Yoga, physical	SO3.3		3.1, 3.2, 3.3, 3.4, 3.5, 3.6	
	education, health and fitness.	SO3.4			As mentioned in
		SO3.5			above pages
		SO3.6			10
PO 1,2,3,4,5,6,	HSMC09.4: To create a safe, progressive, methodical	SO4.1		Unit-4 Yoga & Lifestyle	
7,8,9	and efficient activity based plan to enhance	SO4.2		4.1, 4.2, 4.3, 4.4, 4.5, 4.6	
PSO 1,2, 3, 4, 5	improvement and minimize risk of injury and Yoga & Lifestyle				
РО	HSMC09.5 To develop among students an	SO5.1		Unit 5- Postures	
1,2,3,4,5,6,7,8,9,	appreciation of physical activity as a lifetime pursuit	SO5.2		5.1,5.2,5.3,5.4,5.5,5.6	
PSO 1,2,3,4,5,	and a means to better health &Postures	SO5.3			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-III

Course Code:PCC-CT201Course Title :Process CalculationPre-requisite:Student should have basic knowledge of Chemistry, Physics and
Mathematics.Rationale:A process calculation introduces the basic calculation techniques for
analyzing and designing chemical processing equipment. Data sources
containing relevant physical and chemical properties are introduced. In
addition, training in group and collaborative working and communication
skills is undertaken as part of this course. To enables the students to
acquire knowledge on laws of chemistry and its application to solution of
mass and energy balance equations.

Course Outcomes:

- **PCC-CT201.1:** Understand the concepts of dimensional consistency and effective application of units and dimensions.
- PCC-CT201.2: Apply mole concept and ideal gas equation to express the composition of mixtures.
- **PCC-CT201.3:** Carry out material balance calculations of distillation, evaporator, crystallization and drying processes. Analyze the behavior of recycle processes, performing approximate material balances, Solve material balance problems with chemical reactions.
- PCC-CT201.4: Understand the concept of humidity and usage of psychometric chart.
- **PCC-CT201.5:** Understand general energy balance, simplify and apply to open and closed systems. Write material and energy balance for unsteady state how material and energy balances are formulated for equation.

Scheme of Studies:

Course Course	Course		Total					
Category	Code	Course Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
PCC	PCC-CT201	Process Calculation	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others,

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini-project etc.),
SL: Self Learning,
C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Theory												
			Scheme of Assessment (Marks)									
				Progressive Assessment (PRA)								
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)		
PCC	PCC-CT201	Process Calculation	15	20	5	5	5	50	50	100		

Scheme of Assessment:

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT201.1: Understand the concepts of dimensional consistency and effective application of units and dimensions.

Approximate Hours	
Item	Appx. Hrs
CI	08
LI	0
SW	2
SL	1
Total	11

Session Outcomes (SOs)	Laboratory	Classroom Instruction (CI)	Self-Learning (SL)
	Instruction		
	(LI)		
SO1.1		Unit-1:Units and Dimensions	1. Conversion
Understand the concept of		1.1 Base units	factor to SI units
Base units		1.2 Derived units	
SO1.2		1.3 Derived quantity: Force, Pressure,	
Understand the concept of		Work and Heat	
Derived units		1.4 System of units	
SO1.3		1.5 Conversion of units	
Understand the concept of		1.6 Dimensional Consistency	
System of units		1.7 Numerical Problems on Derived	
SO1.4		units	
Solving the Conversion of		1.8 Numerical Problems on	
units		Conversion of units	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Numerical Problems on Derived units and Conversion of units

b. Mini Project:

Draw the table of System of units and dimensions.

PCC-CT201.2: Apply mole concept and ideal gas equation to express the composition of mixtures.

Approximate Hours

Item	Appx. Hrs
CI	14
LI	0
SW	2
SL	1
Total	17

Session Outcomes	Laboratory	Classroom Instruction (CI)	Self Learning
(SOs)	Instruction (LI)		(SL)
SO2.1		Unit-2: Basic chemical calculation	1. Remember the
To Understand the basic			Periodic Table
chemical calculation.		2.1 Gram mole	including the
		2.2 Normality	atomic number
SO2.2		2.3 Molarity	and atomic
To apply the methods		2.4 Molality	weight
of expressing the		2.5 Methods of expressing the compositions	
compositions of mixture		of mixture and solutions: Weight	
and solutions.		percent	
		2.6 Methods of expressing the compositions	
SO2.3		of mixture and solutions: Mole	
To understands the		percent	
different law for		2.7 Methods of expressing the compositions	
chemical calculation.		of mixture and solutions: Volume	
		percent	
		2.8 Ideal gas law	
		2.9 Dalton law and Amagat's law	
		2.10 Raoult's law and Henry law	
		2.11 Relationship between partial pressure	
		& mole fraction of component gas to	
		total pressure	
		2.12 Numerical Problems on Normality,	
		Molarity and Molality	
		2.13 Numerical Problems on Methods of	
		expressing the compositions of	
		mixture and solutions	
		2.14 Numerical Problems on Ideal gas law	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems on Normality, Molarity and Molality
- ii. Numerical Problems on Methods of expressing the compositions of mixture and solutions
- iii. Numerical Problems on Ideal gas law

b. MiniProject:

- a. Draw the chart of Periodic Table
- c. Other Activities (Specify):

Calculation of Molecular weight and Valence

PCC-CT201.3: Carry out material balance calculations of distillation, evaporator, crystallization and drying processes. Analyze the behavior of recycle processes, performing approximate material balances, Solve material balance problems with chemical reactions.

Approximate Hours		
Item Appx. Hrs		
CI	13	
LI	0	
SW	2	
SL	1	
Total	16	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO3.1	Instruction (L1)	Unit-3 :Stoichiometric and Materials	1. Basic principle of
To Understand the basic		Balance to Unit Operation	Chemical reaction
Stoichiometric		-	balance
principles.		3.1 Stoichiometric principles	
		3.2 Application of material balance to	
SO3.2		unit operation: Distillation	
To apply the Application		3.3 Application of material balance to	
of material balance to		unit operation: Evaporation	
unit operation		3.4 Application of material balance to	
		unit operation: Drying	
SO3.3		3.5 Material balance with chemical	
To Understand the		reaction	
Material balance with		3.6 Limiting reactants and Excess	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

chemical reaction	reactants	
	3.7 Recycle operation	
SO3.4	3.8 Bypass operation	
To Understand the	3.9 Purging operation	
Recycle, Bypass and	3.10 Numerical Problems on material	
Purging operation	balance to unit operation:	
	Distillation	
	3.11Numerical Problems on material	
	balance to unit operation:	
	Evaporation	
	3.12Numerical Problems on material	
	balance to unit operation: Drying	
	3.13Numerical Problems on Material	
	balance with chemical reaction	

SW-3 Suggested Sessional Work(SW):

- a. Assignments:
 - i. Numerical Problems on material balance to unit operation
 - ii. Numerical Problems on Material balance with chemical reaction

PCC-CT201.4: Understand the concept of humidity and usage of psychometric chart.

Approximate Hours		
Item Appx. Hrs		
CI	13	
LI	0	
SW	4	
SL	2	
Total	19	

Session Outcomes	Laboratory	Classroom Instruction (CI)	Self-Learning (SL)
(SOs)	Instruction (LI)		
SO4.1		Unit-4 :Humidity & Flow Calculation	i. Preparation of
Evaluation of Humidity SO4.2 Understanding the Flow Calculations in cement plant		 4.1 Molal humidity 4.2 Absolute humidity 4.3 Relative Humidity 4.4 Percent Humidity 4.5 Dry-bulb temperature, Wet-bulb temperature 	psychometric chart of normal temperature ii. Preparation of psychometric chart of high

Page 209 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

		4.6 Dew point, Humidity chart	temperature
SO4.3		4.7 Humid Volume and Humid heat	
Calculations of H	Flow	4.8 Flow Calculations	
Conversion		4.9 Flow Conversion	
		4.10 Numerical Problems on Molal	
		humidity	
		4.11 Numerical Problems on Absolute	
		humidity	
		4.12 Numerical Problems on Relative	
		Humidity and Percent Humidity	
		4.13 Numerical Problems on Humid	
		Volume and Humid heat	

SW-4 Suggested Sessional Work(SW):

- a. Assignments:
 - i. Numerical Problems on humidity

b. MiniProject:

i. Draw a chart of Flow Calculations and Flow Conversion formula

PCC-CT201.5: Understand general energy balance, simplify and apply to open and closed systems. Write material and energy balance for unsteady state how material and energy balances are formulated for equation.

Approximate mours		
Item	Appx. Hrs	
CI	12	
LI	0	
SW	2	
SL	1	
Total	15	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO5.1 Understand general energy balance, simplify and apply to open and closed systems.		 Unit 5: Heat Capacity and Energy Balance 5.1 Heat Capacity 5.2 Heat Capacities of Solids and Liquids 	1. Remember the Enthalpy changes accompanying chemical reactions such as heat of

Approximate Hours

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SO5.2 Write material and	5.3 Relationship between specific	reaction, heat of
	1 1	formation and heat
energy balance for unsteady	heat at constant pressure and	
state how material and energy	constant volume	of combustion.
balances are formulated for	5.4 Mean heat capacity	
equation.	5.5 Heat capacity of mixtures of gases	
	5.6 Hess's Law of Constant Heat	
SO5.3 Evaluation of Heat	Summation	
Capacity and mean heat	5.7 Heat of Reaction at Constant	
capacity data	Pressure	
	5.8 Heat of Reaction at Constant	
SO5.4 Understanding the	Volume	
Heat of Reaction at Constant	5.9 Effect of Temperature on Heat of	
Pressure and Constant	Reaction	
Volume	5.10 Energy balance in cyclic and	
	non-flow processes	
	5.11 Numerical Problem based on	
	heat capacity	
	5.12 Numerical Problem based on	
	mean heat capacity	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problem based on heat capacity.
- ii. Numerical Problem based on mean heat capacity

b. Mini Project:

Draw the chart of basis formula using in energy balance calculation

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self-	Total Hour
	Lecture	Work	Learning	(CI+SW+Sl)
	(CI)	(SW)	(Sl)	
PCC-CT201.1: Understand the concepts of dimensional consistency and effective application of units and dimensions.	8	2	1	11
PCC-CT201.2: Apply mole concept and ideal gas equation to express the composition of mixtures.	14	2	1	17
PCC-CT201.3: Carry out material balance calculations of distillation, evaporator, crystallization and drying processes. Analyze the behavior of recycle processes, performing approximate material balances, Solve material balance problems with chemical reactions.	13	2	1	16
PCC-CT201.4: Understand the concept of humidity and usage of psychometric chart.	13	4	2	19
PCC-CT201.5: Understand general energy balance, simplify and apply to open and closed systems. Write material and energy balance for unsteady state how material and energy balances are formulated for equation.	12	2	1	15
Total Hours	60	12	6	78

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution			Total
		R	U	Α	Marks
CO-1	Units and Dimensions	03	01	01	05
CO-2	Basic chemical calculation	02	06	02	10
CO-3	Stoichiometric and Materials Balance to Unit Operation	02	07	06	15
CO-4	Humidity & Flow Calculation	03	07	05	15
CO-5	Heat Capacity and Energy Balance	01	02	02	05
	Total	11	23	16	50

Legend: R: Remember, U: Understand, A:Apply

The end of semester as assessment for Process calculation will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. RolePlay
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.No.	Title	Author	Publisher	Edition & Year
1	Stoichiomentry	Bhatt, B.L., VORA,	Tata	1976
		S.M	McGraw-Hill	
2	Chemical Process Principles	Hougen, O.A.,	John Wiley and Asia	1970
	Part-I	Watson, K.M and	Publishing	
		Ragatz, R.A		
3	Basic Principles and	Himmelblau, D.M	Prentice Hall Inc	Fourth Edition,
	Calculations in Chemical			1982
	Engineering			
4	Conservation of Mass and	Whitwell, J.C.,	McGraw-Hill	1973
	Energy	Tone, R.K.		
5	Introduction to Process	Gavhane, K A	NiraliPrakashan	Twenty Seven
	calculations (Stoichiomentry)			Edition, 2012
5	Holcim Training Manual			
6	FLS Training Manual			
7	Lecture note provided by Dept.	of Cement Technology,	AKS University, Satna	a.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Cos. POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: PCC-CT201

Course Title: Process Calculation

					Pro	ogram	Outcor	nes					Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	to plant operational problems of cement	Ability to understand the latest cement manufacturing technology and it application	
CO1: Understand the concepts of dimensional consistency and effective application of units and dimensions.	3	3	2	2	3	2	1	1	2	1	3	2	2	3	2	3
CO 2: Apply mole concept and ideal gas equation to express the composition of mixtures.	3	3	2	2	2	2	1	1	1	1	2	2	2	2	3	2
CO3: Carry out material balance calculations of distillation, evaporator, crystallization and drying processes. Analyze the behavior of recycle processes, performing approximate material balances, Solve material balance problems with chemical reactions.	2	3	2	2	2	2	1	1	2	2	2	3	3	2	2	3
CO 4: Understand the concept of humidity and usage of psychometric chart.	3	2	3	2 - P 20	3	2 5 of	2 724	1	2	1	2	3	3	3	3	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

CO 5: Understand general energy balance,	2	n	2	1	1	2	2	2	1	1	2	2	2	2	1	2
CO 5. Understand general energy balance,	3	2	5	1	1	5	2	2	1	1	2	3	5	5	1	3
simplify and apply to open and closed																
systems. Write material and energy balance																
for unsteady state how material and energy																
balances are formulated for equation.																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Process Calculation

POs & PSOs	COs No.& Titles	SOs No.	Laboratory	Classroom	Self
No.	COS No. & Thes	SUS NO.	Instruction (LI)	Instruction(CI)	Learning(SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Understand the concepts of dimensional consistency and effective application of units and dimensions.			Unit-1: Units and Dimensions 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Apply mole concept and ideal gas equation to express the composition of mixtures.			Unit-2 Basic chemical calculation 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12,2.13,2.14	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Carry out material balance calculations of distillation, evaporator, crystallization and drying processes. Analyze the behavior of recycle processes, performing approximate material balances, Solve material balance problems with chemical reactions.	SO3.2 SO3.3 SO3.4		Unit-3 : Stoichiometric and Materials Balance to Unit Operation 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11 ,3.12,3.13	As mentioned in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Understand the concept of humidity and usage of psychometric chart.			Unit-4 : Humidity & Flow Calculation 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10, 4.11,4.12,4.13	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Understand general energy balance, simplify and apply to open and closed systems. Write material and energy balance for unsteady state how material and energy balances are formulated for equation.	SO5.2 SO5.3 SO5.4		Unit 5: Heat Capacity and Energy Balance 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11, 5.12	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-III

Course Code:	BSC201
Course Title:	Mathematics -3
Pre- requisite:	Students should review the fundamentals of calculus, linear algebra, and differential equations, and matrix operations
Rationale:	The program aims to develop advanced problem-solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced mathematical expertise.
Course Outcome :	

BSC201.1 By the end of the course students are expected to have deep understanding in complex analysis with a focus on Cauchy-Riemann equations, analytic functions, harmonic functions, and conformal mappings.

BSC201.2 By the end of the course students are expected to understand the concept of a contour integral in the complex plane, concept of zeros of analytic functions and behavior of functions near essential singularities.

BSC201.3 The course provides a comprehensive overview of the skills and understanding that students are expected to gain from a course in elementary probability theory and random variables.

BSC201.4 The course provides a comprehensive overview of the skills and understanding that students are expected to gain from a course covering measures of central tendency and measures of dispersion.

BSC201.5- The course provides a comprehensive overview of the skills and understanding that students are expected to gain from a course covering correlation and regression, rank correlation, curve fitting, and various tests of significance.

Scheme of Studies:

Course Category	Course Code	Course Title		Total Credits						
Category	Couc		CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	(C)		
BSC	BSC201	Mathematics-3	4	0	1	1	6	4		

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Theory						of Assess						
				1								
				Progressive Assessment (PRA)								
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)		
BSC	BSC201	Mathematics - 3	15	20	5	5	5	50	50	100		

Scheme of Assessment:

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

BSC201.1 By the end of the course students are expected to have deep understanding in complex analysis with a focus on Cauchy-Riemann equations, analytic functions, harmonic functions, and conformal mappings.

Page 219 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Approximate Hours

Item	Appx. Hrs
CI	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
S01.1		Unit-1.0	SL.1
Understand and state the		Complex Variable :	Apply the
Cauchy-Riemann equations for		1.1 Definition of Analytic function	Cauchy-Riemann
a complex-valued function		1.2 Cauchy-Riemann equations in	equations to verify
SO1.2		Cartesian form and polar form	the analyticity of a
Determine the real and		1.3 Questions of Analytic function	given function.
imaginary parts of a complex		based on Cartesian form	SL.2
function and check for		1.4 Questions of Analytic function	Explore the
analyticity using the Cauchy-		based on polar form	properties of
Riemann equations		1.5 Harmonic function and orthogonal	trigonometric
SO1.3		functions	functions in the
Identify and define analytic		1.6 Conjugate Method for construction	context of
functions in the complex plane		of an analytic function	complex analysis
SO1.4		1.7 Milne's method for construction of	SL.3
Understand the concept of		an analytic function	Define
Represent functions as Taylor		1.8 Totorial- 1	logarithmic
and Laurent series; classify		1.9 Conformal mappings,	functions and
singularities and poles; find		1.10 questions of Conformal mappings	explore their
residues and evaluate complex		1.11 Mobius transformations	behavior in the
integrals using the residue		1.12 properties of Mobius	complex plane
theorem.		transformations	

SW-1 Suggested Sessional Work (SW):

- i. write the application of complex function.
- ii. Properties of Complex Variables.
- iii. Write all formula of complete unit.
- **b.** Other Activities (Specify):

Quiz, Class Test.

BSC201.2 By the end of the course students are expected to understand the concept of a contour integral in the complex plane, concept of zeros of analytic functions and behavior of functions near essential singularities.

Approximate Hours					
Item	Appx. Hrs				
CI	12				
LI	0				
SW	1				
SL	1				
Total	14				

Session	Laboratory	Class room	Self Learning
Outcomes (SOs)	Instruction	Instruction	(SL)
	(LI)	(CI)	
SO2.1		Unit-2.0: Complex Variable	SL.1
Understand the concept of a		(Integration).	Apply contour
contour integral in the			integrals to evaluate
complex plane.		2.1 Cauchy's integral formula for	complex integrals.
SO2.2		analytic function	SL.2
Evaluate contour integrals		2.2 Questions of Cauchy's integral	Compute Taylor
using parametrization and		formula for simple poles.	series expansions for
integration techniques.		2.3 Questions of Cauchy's integral	given functions
SO2.3		formula for order poles.	SL.3
Apply contour integrals to		2.4 Residues of an analytic function	Define residues of
evaluate complex integrals.		2.5 Questions of Residues for simple	complex functions
SO2.4		poles	and understand their
State and understand the		2.6 Questions of Residues for order	significance
Cauchy Integral formula for		poles	
analytic functions		2.7 Residue theorem and based	
		questions	
SO2.5		2.8 Poles and singularities of analytic	
Apply the Cauchy Integral		function	
formula to calculate values of		2.9 Zeros of analytic function	
analytic functions		2.10 questions of Singularity.	
		2.11 tutorial 1	
		2.12 tutorial 2	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. write a short notes on singularities.

ii. Define poles and zeros with example.

b. Mini Project:

Oral presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

BSC201.3 The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course in elementary probability theory and random variables

Approximate Hours

Item	Appx. Hrs
CI	12
LI	0
SW	1
SL	1
Total	14

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction	Self-Learning (SL)
	(LI)	(CI)	
SO3.1 Understand the		Unit-3.0: Probability and	SL.1 Analyze compound
fundamental concepts of		Random Variable	probability involving
probability theory			multiple events
		3.1 definition of probability	SL.2 Define and
SO3.2		3.2 Mathematical definition	understand conditional
Develop an appreciation		of probability	probability
for the role of probability		3.3 Various types of events	
in modeling uncertainty		3.4 Additive law of	SL.3 Define and
and randomness		probability	understand the concept of
		3.5 Multiplicative law of	a random variable
SO3.3		probability	
Define probability using a		3.6 Compound probability	
mathematical framework		3.7 Conditional probability	
		3.8 Bays rule of probability	
SO3.4		3.9 Discrete random	
Understand probability		variable	
axioms and laws		3.10 Continuous random	
governing probability		variable	
measures		3.11 Binomial distribution	
		3.12 Poisson distribution	
SO3.5			
Classify events as			
mutually exclusive,			
exhaustive, dependent, or			
independent			

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i) Define probability using a mathematical framework.
- ii) Write the application of probability in daily life.

b. Mini Project:

Oral presentation, Power Point Presentation.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

BSC201.4 Students will compute the expression of permutation groups by using permutation multiplication.

Approximate Hours					
Item	Appx. Hrs				
CI	12				
LI	0				
SW	1				
SL	1				
Total	14				

Session Outcomes	Laboratory	Class room	Self
(SOs)	Instruction (LI)	Instruction (CI)	Learning (SL)
SO4.1		Unit-4.0 Measures of Central	SL.1
Define arithmetic mean and		Tendency	Define mode and
understand its significance		4.1 Methods of calculating	recognize its applications
SO4.2		Arithmetic mean	SL.2
Compute the arithmetic mean		4.2 Methods of calculating	Understand the concept
for both grouped and ungrouped		median	of unimodal, bimodal,
data		4.3 Properties of mean and	and multimodal
SO4.3		median	distributions
Apply different methods (direct		4.4 Numericals of mean for	SL.3
method, assumed mean method)		different data	Explore the relationships
for calculating the arithmetic		4.5 Numericals of median for	and patterns among the
mean.		different data	mean, median, and mode
SO4.4		4.6 Methods of calculating mode	
Understand the properties of the		4.8 Relation based question of	
arithmetic mean, including its		mean median and mode	
sensitivity to extreme values		4.9 Measures of dispersion	
SO4.5		4.10 Range	
Define the median and		4.11 Quartile deviation	
understand its interpretation		4.12 Standard deviation and its	
		properties	

SW-4 Suggested Sessional Work (SW):

- i. write the application of mean median and mode .
- ii. Explain mean with real life example.
- **b.** Other Activities (Specify): Quiz, Class Test.

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

BSC201.5 The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering correlation and regression, rank correlation, curve fitting, and various tests of significance.

Approximate Hours							
Item	Appx. Hrs						
CI	12						
LI	0						
SW	1						
SL	1						
Total	14						

		10	14				
Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)				
S05.1		Unit-5.0 Statistics	SL.1				
Define correlation and understand its significance in statistical analysis. SO5.2 Recognize the types of relationships between variables (positive, negative, or none) based on correlation SO5.3 Calculate and interpret Pearson's correlation coefficient. SO5.4 Define and calculate rank correlation coefficients SO5.5 Understand the use of rank correlation in cases where variables may not have a		 5.1 Defination of Correlation 5.2 Formula of correlation coefficient 5.3 Questions of correlation coefficient 5.4 Defination of regrattion 5.5 Question of line of regrattion 5.6 Rank correlation 5.7 Fitting of a straight line 5.7 Fitting of a second degree parabola 5.8 Fitting of different curves 5.9 Tutorial-1 5.10 Test of significance for large sample 5.11 Test of significance for small sample 5.12 Tutorial-2 	Define regression analysis and understand its purpose in modeling relationships between variables SL.2 Apply the method of least squares to fit straight lines, second- degree parabolas, and more general curves to datasets SL.3 Test the difference between two proportions				
linear relationship							

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (CI+SW+Sl)
BSC201.1: By the end of the course students are expected to have deep understanding in complex analysis with a focus on Cauchy-Riemann equations, analytic functions, harmonic functions, and conformal mappings.	12	1	1	14
BSC201.2: By the end of the course students are expected to understand the concept of a contour integral in the complex plane, concept of zeros of analytic functions and behavior of functions near essential singularities	12	1	1	14
BSC201.3: The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course in elementary probability theory and random variables.	12	1	1	14
BSC201.4: The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering measures of central tendency and measures of dispersion	12	1	1	14
BSC201.5: The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering correlation and regression, rank correlation, curve fitting, and various tests of significance.	12	1	1	14
Total Hours	60	5	5	70

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	T 14 (D)(4)	Mar	ks Distribut	T-4-1 M	
CO	Unit Titles	R	U	Α	Total Marks
CO-1	Complex Variable Differentiation	03	01	01	05
CO-2	Complex Variable Integration	02	05	01	08
CO-3	Probability and Random Variable	03	05	05	13
CO-4	Measures of Central Tendency and Measures of Dispersion	02	08	05	15
CO-5 Statistics		03	04	02	05
Total	·	13	23	14	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6. Seminar
- 7. Workshop

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

a) Books :

S. No.	Title	Author	Publisher	Edition & Year
1	Engineering Mathematics-III	D. K. Jain. Engineering	Shree Ram Prakashan.	1st edition, 2018
2	Engineering Mathematics-III	D.C. Agrawal	Shree Sai Prakashan	2022
3	Introduction to Engineering	H.K.Dass Sonendra Gupta	S Chand Prakashan. Dhanpat Rai Publishing	2nd edition, 2014
4	Engineering Mathematics-III			

Curriculum Development Team:

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava, Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs. Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr. Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: BSC201

Course Title: Mathematics-3

		Program Outcomes											Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: By the end of the course students are expected to have deep understanding in complex analysis with a focus on Cauchy-Riemann equations, analytic functions, harmonic functions, and conformal mappings.	3	3	2	2	2	1	1	2	2	1	2	2	2	3	2	2
CO-2: By the end of the course students are expected to understand the concept of a contour integral in the complex plane, concept of zeros of analytic functions	3	3	3	3	1	2	1	3	2	2	2	3	3	2	3	2

and behavior of functions near essential singularities																
CO-3: The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course in elementary probability theory and random variables.	3	2	3	2	2	1	2	2	2	2	2	3	3	2	3	2
CO-4: The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering measures of central tendency and measures of dispersion	3	3	2	2	2	2	2	3	2	2	2	2	2	3	3	2
CO-5: The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering correlation and regression, rank correlation, curve fitting, and various tests of significance.	3	3	3	3	2	3	2	3	2	2	2	2	3	3	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Mathematics-3

POs & PSOs	COs No.& Titles	SOs	Laboratory	Classroom Instruction	Self Learning
No.		No.	Instruction (LI)	(CI)	(SL)
PO 1,2,3,4,5,6	CO-1: By the end of the course students are expected to	SO1.1		Unit-1 Complex Variable	SL1.1
7,8,9,10,11,12	have deep understanding in complex analysis with a focus	SO1.2		(Differentiation)	SL1.2
PSO 1,2, 3, 4	on Cauchy-Riemann equations, analytic functions,	SO1.3		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.	SL1.3
	harmonic functions, and conformal mappings.	SO1.4		8,1.9,1.10,1.11,1.12	
		SO1.5			
PO 1,2,3,4,5,6	CO-2: By the end of the course students are expected to	SO2.1		Unit-2 Complex Variable –	SL2.1
7,8,9,10,11,12	understand the concept of a contour integral in the complex	SO2.2		(Integration) 2.1, 2.2, 2.3,	SL2.2
PSO 1,2, 3, 4	plane, concept of zeros of analytic functions and behavior	SO3.3		2.4, 2.5, 2.6, 2.7,	SL2.3
	of functions near essential singularities	SO4.4		2.8,2.9,2.10 2.11,2.12	
		SO4.5			
PO 1,2,3,4,5,6	CO-3: The course provide a comprehensive overview of	SO3.1		Unit-3 Probability and	SL3.1
7,8,9,10,11,12	the skills and understanding that students are expected to	SO3.2		Random	SL3.2
PSO 1,2, 3, 4	gain from a course in elementary probability theory and	SO3.3		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.	SL3.3
	random variables.	SO3.4		8,3.9,3.10,3.11,3.12	
		SO3.5			
PO 1,2,3,4,5,6	CO-4: The course provide a comprehensive overview of	SO4.1		Unit-4 Measures of	SL4.1
7,8,9,10,11,12	the skills and understanding that students are expected to	SO4.2		Central Tendency and	SL4.2
PSO 1,2, 3, 4	gain from a course covering measures of central tendency	SO4.3		Measures of Dispersion	SL4.3
	and measures of dispersion	SO4.4		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.	
		SO4.5		8,4.9,4.10,4.11,4.12	
PO 1,2,3,4,5,6	CO-5: The course provide a comprehensive overview of	SO5.1		Unit-5 Statistics	SL5.1
7,8,9,10,11,12	the skills and understanding that students are expected to	SO5.2		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.	SL5.2
PSO 1,2, 3, 4	gain from a course covering correlation and regression,	SO5.3		8,5.9,5.10,5.11,5.12	SL5.3
	rank correlation, curve fitting, and various tests of	SO5.4			
	significance.	SO5.5			

Semester-III

Course Code:	ESC201, ESC201-L
Course Title:	Basic Electronics Engineering
Pre-requisite:	Student should have knowledge of fundamental principles of analog electronics.
Rationale:	In current scenario the diode, transistors, op-amp is extensively used in various electronic circuits. Such systems are required to design and maintain by engineer. Therefore, the goal of this course is for students to become competent to understand design and maintenance of such type of systems.

Course Outcomes:

ESC201.1: Understanding of the concept of semiconductor materials, pn junction junction diodes and BJT and its types.

ESC201.2: Understanding of Operational amplifier its construction working and its different types.

ESC201.3: Explain the principle, construction and working of different timing circuits and oscillator with its types.

ESC206.4: Explain the basic concepts of digital electronics, Boolean algebra, logic gates and different logic circuits

ESC201.5: Explain the principle of Electronics Communication System its types and different modulation techniques

Scheme of Studies:

Course	Course	Course Title		Scher	Total Credits			
Category	Code		Cl	LI	SW	SL	Total Hours (CI+LI+SW+SL)	(C)
ESC	ESC201/ ESC201- L	Basic Electronics Engineering	4	2	1	1	8	5

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), SW:

Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
				Progress	ive As	sessment	(PRA)			
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total, Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
ESC	ESC201	Basic Electronics Engineering	15	20	5	5	5	50	50	100

Practical

gory	gory de de			Scheme of Assessment (Marks) Progressive Assessment (PRA)						
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (LA)	VIVA(VV)	Class Attendance (TA)	Total, Marks (LA+VV+ TA)	End Semester Assessment (ES	Total Marks (PRA+ESA)		
ESC	ESC201-L	Basic Electronics Engineering	35	10	5	50	50	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),

culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC201.1: Understanding of the concept of semiconductor materials, pn junction junction diodes and BJT and its types

Approximate Hours					
Item	Appx. Hrs.				
Cl	10				
LI	6				
SW	1				
SL	1				
Total	18				

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)		Self- Learning (SL)
concept of semiconductor material	junction diode. 2. Study of half wave and full wave rectifier. 3. study of CB CE CC of BJT.	Devices and Applications 1.1 Introduction to semiconductor 1.2 Introduction to P-N Junction Diode and V-I characteristics, 1.3 Half wave and Full-wave rectifiers, capacitor filter. 1.4 Tutorial-1 1.5 Zener diode and its characteristics, Zener diode as voltage regulator. 1.6 Regulated power supply IC based on 78XX and 79XX series, 1.7 Introduction to BJT, its input- output and transfer characteristics, 1.8 Tutorial-2 1.9 BJT as a single stage CE amplifier, frequency response and bandwidth. 1.10 Tutorial-3	2.	Semiconductor and its types Concept of PN junction

SW-1 Suggested Sessional Work (SW):

- i. Explain forward biasing and reverse biasing of PN junction.
- ii. Describe the application of rectifier.

ESC201. 2: Understanding of Operational amplifier its construction working and its different types.

Approximate Hours					
Item	Approx Hrs				
CI	11				
LI	6				
SW	1				
SL	1				
Total	19				

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO2.1 Understanding of operational amplifier SO2.2Learn the working of OP-AMP as open loop and feedback circuit SO2.3Understandthe construction and working of OP-AMP as inverting non inverting amplifier SO2.4 Understand the different application of OP-AMP 	as integrator and differentiator 3. Study of OP- AMP as inverting and non-inverting amplifier.	Unit-2: Operational amplifier and its applications 2.1 Introduction to operational amplifiers, 2.2 Op-amp input modes and parameters, 2.3 Op-amp in open loop configuration, op-amp with negative feedback, 2.4 Tutorial-1 2.5 study of practical op-amp IC 741, 2.6 inverting and noninverting amplifier 2.7 applications: summing and difference amplifier, 2.8 unity gain buffer, comparator, 2.9 Tutorial-2 2.10 integrator and differentiator. 2.11 Tutorial-3	 Concept of BJT as an amplifier Concept of feedback circuit Operation Of integrators and differentiators

SW-2 Suggested Sessional Work (SW):

- i. Theoretical Assignment related to different types of OP-AMP
- ii. Explain the working principle of OP-AMP as inverting and Non inverting OP-AMP

b. Mini Project:

i. Draw a Poster of different operations of OP-AMP

EE202.3: Explain the principle, construction and working of different timing circuits and oscillator with its types.

Approximate Hours						
Item Approx Hrs						
CI	11					
LI	6					
SW	1					
SL	1					
Total	19					

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (CI)	Self- Learning
Session Outcomes (SOs) SO3.1To study of timing circuits and their types SO3.2 To understand the Design and Characteristic of Timing circuit SO3.3 To learn about the Oscillator SO3.4 To understand the Design and Characteristic of oscillator and its types.	Laboratory Instruction (LI) 1. study of A stable multi vibrator 2.study of R-C phase shift oscillator 3. study of Wein bridge oscillator	Unit-3 Timing Circuits and Oscillators 3.1 RC-timing circuits, 3.2 Introduction to IC 555 3.3 IC 555 and its	Self- Learning (SL) 1. Significance of timing circuits 2. Uses of oscillator
		3.10 R-C phase shift and Wein bridge oscillator. 3.11 Tutorial-3	

SW-3 Suggested Sessional Work (SW):

- i. Make a poster of IC 555 timer
- ii. Explain different types of oscillators

ESC201.4: Explain the basic concepts of digital electronics, Boolean algebra, logic gates and different logic circuits

Approximate Hours						
Item	Approx Hrs					
CI	15					
LI	6					
SW	1					
SL	1					
Total	23					

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO4.1Understand the building Blocks of digital electronics SO4.2 Understand the building Blocks of Boolean algebra SO4.3Understand the concepts of logic gates and circuits SO4.4Understand the applications of logic gates and circuits	Microprocessor. 4.2. Study of Microcontroller 4.3. Identification of different logic gates.	 Unit-4 : Digital Electronics Fundamentals 4.1 Difference between analog and digital signals, 4.2 Boolean algebra, 4.3 examples of Boolean algebra 4.4 Tutorial-1 4.5 Basic and Universal Gates, Symbols, Truth tables, logic expressions, 4.6 Logic simplification using K- map, 4.7 Logic ICs, 4.8 half and full adder, half and full subtractor 4.9, Tutorial-2 4.10 multiplexers, de-multiplexers, 4.11 flip-flops and its types 4.12 shift registers, counters, 4.13 Tutorial-3 4.14 Block diagram of microprocessor and their applications. 4.15 microcontroller and their applications. 	 Difference between analog electronics and digital electronics Difference between logic gates and logic circuits

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignments Based on Different types logic gates and circuits
- ii. Numerical Problems Based on Boolean algebra

ESC201.5: Explain the principle of Electronics communication System its types and different modulation techniques

Approximate Hours

Item	Approx Hrs
CI	13
LI	6
SW	1
SL	1
Total	21

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO5.1 Discussion about the communication system and its types	modulation 5.3. Study of AM and FM	Unit 5: Electronic Communication Systems 5.1 intoduction of communication system 5.2 block diagram of communication system	 Basic Structure and operation of communication system Types of communication
SO5.2Understand the concept of modulation techniques SO5.3Understand the	modulators	 5.3 The elements of communication systemise frequency spectrum 5.4 Tutorial-1 5.5 Transmission media: wired and wireless, 5.6 Introduction of Modulation 	system
building blocks of communication system		5.7 need of modulation, types of modulation5.8 Tutorial-25.9 Introduction to AM	
SO5.4Study of different types of modulation techniques,		 5.10 Introduction FM modulation schemes, 5.11 Mobile communication systems, cellular concepts 5.12 Tutorial-3 5.13 block diagram of GSM system. 	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignment based on Different types of communication system
- ii. Explain different types of modulation techniques.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Lab Instruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (CI+SW+ Sl)
ESC201.1: Understanding of the concept of semiconductor materials, pn junction diodes and BJT and its types	10	6	1	1	18
ESC201.2: : Understanding of Operational amplifier its construction working and its different types.	11	6	1	1	19
ESC201.3: Explain the principle, construction and working of different timing circuits and oscillator with its types.	11	6	1	1	19
ESC206.4: Explain the basic concepts of digital electronics, Boolean algebra, logic gates and different logic circuits	15	6	1	1	23
ESC201.5: Explain the principle of Electronics communication System its types and different modulation techniques	13	6	1	1	21
Total Hours	60	30	5	5	100

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marl	ks Distri	bution	Total
	Omt Thies	R	U	Α	Marks
CO-1	Semiconductor Devices and Applications	04	03	01	8
CO-2	Operational amplifier and its applications	06	03	02	11
CO-3	Timing Circuits and Oscillators	04	03	01	8
CO-4	Digital Electronics Fundamentals	05	04	02	11
CO-5	Electronic Communication Systems	04	04	04	12
	Total	23	17	10	50

Legend:R: Remember,U: Understand,A: Apply

The end of semester assessment for Process calculation will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional / Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Design Demonstration
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources: (a)

Books:

S.No.	Title	Author	Publisher	Edition & Year
1	Integrated Electronics	Millman and Halkias	McGraw Hill	2017
2	Electronics Devices and Circuits	R. Boylestedand L. Nashelsky	Prentice Hall India	2009
3	Electronics Devices and Circuits	Millman and Halkias	TMH Edition	2017
4	Analog Electronics	Malcolm Goodge	TMH Edition	1990
5	Communication Electronics: Principles	Frenzel,	Tata Mc Graw Hill,	2001
6	Lecture note provided by Deptt. of	Electrical Engineering, AKS	S University, Satna.	

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs. POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: ESC201 / ESC201-L

Course Title: Basic Electronics Engineering

					Pr	ogram	Outco	mes					Progr	am Spe	cific Ou	ıtcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Understanding of the concept of semiconductor materials, pn junction diodes and BJT and its types	3	3	2	2	3	2	1	1	2	1	1	2	2	2	2	3
CO-2: Understanding of Operational amplifier its construction working and its	2	3	3	2	1	2	1	1	1	1	2	2	2	2	2	2

different types.																
CO-3 Explain the principle, construction and working of different timing circuits and oscillator with its types.	3	3	2	1	1	2	1	2	1	2	2	2	1	2	2	3
CO-4: Explain the basic concepts of digital electronics, Boolean algebra, logic gates and different logic circuits	3	2	2	2	3	2	1	2	2	1	2	2	3	3	3	1
CO-5: Explain the principle of Electronics Communication System its types and different modulation techniques	2	3	3	1	1	3	2	2	1	2	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Basic Electronics Engineering

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (L I)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Understanding of the concept of semiconductor materials, pn junction diodes and BJT and its types	SO1.1 SO1.2 SO1.3 SO1.4	1.1,1.2,1.3	UNIT-1: Semiconductor Devices and Applications 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Understanding of Operational amplifier its construction working and its	SO2.1 SO2.2 SO2.3 SO2.4	2.1,2.2,2.3	UNIT-2: Operational amplifier and its applications 2.1,2.2,2.3,2.4, 2.5,2.6,2.7,2.8,2.9,2.10,2.11	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Explain the principle, construction and working of different timing circuits and oscillator with its types.	SO3.1 SO3.2 SO3.3 SO3.4	3.1,3.2,3.3	Unit-3: Timing Circuits and Oscillators 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11	

PO 1,2,3,4,5,6	CO-4: Explain the basic concepts of digital electronics, Boolean algebra, logic gates and different logic circuits.	SO4.1 SO4.2 SO4.3 SO4.4	4.1,4.2,4.3	UNIT-4: Digital Electronics Fundamentals 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11,4.12,4.13,4.14,4.15
	CO-5: Explain the principle of Electronics Communication System its types and different modulation techniques	SO5.1 SO5.2 SO5.3 SO5.4	5.1,5.2,5.3	UNIT-5: Electronic Communication Systems 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12,5.13

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

....

Semester-III

Course Code:	ESC202
Course Title:	Engineering Mechanics
Pre- requisite:	Student should have basic knowledge of mathematics and Physics up to higher secondary level.
Rationale:	As a bridge between theory and application, engineering mechanics is used to formulate new ideas and theories, discover and interpret phenomena and develop experimental and computational tools.

Course Outcomes:

ESC202.1: Understanding of term Mechanics and its classification.

- ESC202.2: Understanding Resolution and composition of force acting on the rigid body.
- **ESC202.3:** Compute the resultant of force for different system of force and study of different laws related to different force system.
- **ESC202.4:** Compute the different types of load acting on different types of beam.
- **ESC202.5:** Compute the centroid, second moment of area, center of gravity, moment of inertia and mass moment of inertia.

Scheme of Studies:

Course Category	Course Code	Course Title	Scheme of studies(Hours/Week)					Total
			CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
ESC	ESC202	Engineering Mechanics	4	0	1	1	6	4

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), **SW:** Sessional Work (includes assignment, seminar, mini project etc.), **SL:** Self Learning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

....

Scheme of Assessment: Theory

Scheme of Assessment (Marks) Progressive Assessment (PRA) **End Semester Assessment** Total Marks (PRA+ESA) S **o** (HA+CT+TSN+TCA+TA) **Course Category** Class Activity any one Class Attendance (TA) **Class/Home Assignment Course Code** number 3 marks each Class Test 2 (2 best out **Course Title** 3)10 marks each (CT) Seminar one (TSN) **Total Mark** (ESA) (TCA) (HA) Engineering 20 5 5 50 50 100 ESC 15 5 **ESC202** Mechanics

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminatingin the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC202.1: Understanding of term Mechanics and its classification.

Approximate Hours		
Item Appx. Hr		
CI	9	
LI	0	
SW	2	
SL	2	
Total	13	

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session	Laboratory	Class room Instruction (CI)	Self-Learning(SL)
Outcomes (SOs)	Instruction		
	(LI)		
SO1.1 Understanding of basic		Unit-1.0 Introduction to	1. Numerical
knowledge of term Mechanics.		Mechanics	problem related
SO1.2 Understanding how			to classification
objects move when forces are		1.1 Introduction of term	of mechanics
applied to them. Newton's laws		mechanics	2. Numerical
lay the foundation for		1.2 classification of	problem related
comprehending how forces		mechanics	to basic laws
interact with objects to cause		1.3 static and dynamics	
motion.			
SO1.3 Describing motion		1.4 classification of	
without considering its causes.		dynamics	
This includes concepts like		1.5 Kinetic and kinematic	
velocity, acceleration,			
displacement, and time.		1.6 Fundamental laws of	
SO1.4 Understanding the		mechanics	
causes of motion, mainly		1.7 Gravitational law	
through the study of forces.			
This involves concepts like		1.8 Newton Laws	
friction, tension, gravitational			
forces, and how they affect		1.9 Numerical	
objects.			

SW-1 Suggested Sessional Work (SW):

a. Assignments:

....

- 1. Explain Newton 2nd law of motion and its application
- 2. Write the definition of basic term related to static and dynamic

ESC202.2: Resolution and composition of force acting on the rigid body.

Approximate Hours		
Item AppX Hrs		
CI	13	
LI	0	
SW	2	
SL	2	
Total	17	

Approximate Hours

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session	Laboratory	Class room	Self
Outcomes (SOs)	Instruction	Instruction (CI)	Learning (SL)
	(LI)		
SO2.1 Ability to break down a single		Unit-2.0 Resolution and	1. Numerical of
force into its horizontal and vertical		Composition of Forces	resolution of
components. This involves			forces
understanding trigonometric concepts		2.1 Forces and its type	2. Numerica
like sine and cosine functions to		2.2 Pressure and Stress	l problem of
determine the components of a force		2.3 Concept of free body	Law of
along different axes.		diagram	Parallelogram
SO2.2 Ability to determine the		2.4 Characteristics and Effects	of Forces
resultant of multiple forces acting on		of a Force	
an object. This includes finding the		2.5 System of Forces	
net force and direction when multiple		2.6 Resolution of a Force	
forces are applied simultaneously.		2.7 Composition of Forces,	
SO2.3 Applying these concepts to		Resultant / Equilibrant	
real-world scenarios, such as		Force,	
analyzing the forces acting on		2.8 Law of Parallelogram of	
structures, machines, or systems.		Forces,	
This could involve calculating the		2.9 Law of Triangle of Forces,	
forces involved in bridges, buildings,		Polygon Law of Forces.	
or mechanical devices		2.10 Lami's Theorem	
SO2.4 Understanding how to add		2.11 Equilibrium of a Body	
multiple vectors together using the		Under Two / Three/More	
Polygon Law. This involves		Than Three Forces	
arranging vectors head-to-tail to form		2.12 Law of Superposition of	
a closed polygon, where the resultant		Forces.	
vector is the vector closing the		2.13 Practice class	
polygon from the starting point to the			
end point.			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

....

- 1. Derivation of lamis theorem and its numerical problem
- 2. Derivation of Parallelogram and its numerical

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

....

ESC202.3: Apply computer aided drafting techniques to represent line, surface or solid models in different Engineering viewpoints.

	Approximate Hours			
	Item Appx. Hrs			
	CI 11			
	LI 0			
	SW 2			
	SL 2			
	Total	15		
_				

Approximate Hours

Session Outcomes	Laboratory	Class room Instruction (CI)	Self Learning
(SOs)	Instruction		(SL)
	(LI)		
SO3.1 Calculating the resultant		Unit-3.0 System of forces	1. Explanation of
force by summing up all the			nature of moment
individual forces acting on an		3.1 Introduction of system of	and its types
object. The resultant force		forces	
represents the net effect of all		3.2 Moment of a force	2. Numerical on
forces combined.		3.3 Varignon's Theorem	resultant force
		3.4 Resultant of Parallel	
SO3.2 Identifying the point where		Forces	
the resultant force is applied on		3.5 Moment of a Couple	
the object or structure. This may		3.6 Resolution of Force into a	
involve finding the moment or		Couple	
torque caused by the forces and		3.7 Resultant of Coplanar, Non	
locating the resultant force's line		Con-Current Forces	
of action.		3.8 Numerical on Moment	
SO3.3 Checking whether the		3.9 Numerical on Couple	
system of forces is in equilibrium.		3.10 Numerical on system of	
If the resultant force is zero, the		forces	
system is in equilibrium;		3.11 Practice class	
otherwise, the object or structure			
will experience acceleration or			
movement in the direction of the			
resultant force.			

SW-3 Suggested Sessional Work (SW):

a. Assignments:

1. Classify system of forces

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

••••

2. Explain the concept of couple

ESC202.4: Compute the different types of load acting on different types of beam.

Approximate Hours			
Item Appx. Hrs			
CI 13			
LI	0		
SW	2		
SL	2		
Total	17		

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SO)	Instruction	(CI)	(SL)
	(LI)		
SO4.1 Calculating the forces and		Unit-4.0 Beams and	
moments at support points. This		Trusses	1. Numerical problem of
includes determining the vertical			support reaction
and horizontal reactions, as well		4.1 define beam and its type	calculation in cantilever
as any moments generated at		4.2 Simply Supported	beam and simply
these locations due to applied		Beam, Overhanging	supported beam.
loads.		Beam, Cantilever	
		Beam	2. Numerical problem of
SO4.2 Supported at both ends and		4.3 Simply Supported	truss analysis by joint
can carry loads between the		Beam, Overhanging	method.
supports. They experience		Beam, Cantilever	
maximum bending moment at the		Beam	
center and zero shear at the ends.		4.4 concept of load	
		4.5 Load on the Beam or	
SO4.3 Fixed at one end and free		Frame	
at the other. They carry loads at		4.6 Load on the Beam or	
the free end and experience		Frame	
maximum shear at the fixed end.		4.7 Calculation of support	
		reaction and its type	
SO4.4 Assemblies of beams		4.8 Support reaction	
connected by joints, commonly		calculation in	
used in bridges and roofs. They		cantilever beam	
rely on the framework of triangles		4.9 Support reaction	
to distribute loads efficiently.		calculation in simple	
		supported beam	
		4.10 Concept of truss	
		4.11 Analysis of truss by	
		analytical method	

Page 251 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

(Joint method)	
4.12 Analysis of truss by	
analytical method	
(Section method)	
4.13 Practice class	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

....

- **1.** Classify Beams and Load acting on it.
- 2. Explain types of truss.

ESC 102.5: Compute the centroid, second moment of area, center of gravity, moment of inertia and mass moment of inertia.

Approximate Hours			
Item Appx. Hrs			
CI 14			
LI	0		
SW	3		
SL 2			
Total	19		

Session Outcomes	Laboratory	Class room Instruction		Self Learning
(SOs)	Instruction	(CI)		(SL)
	(LI)			
SO5.1 Determining the		Unit-5.0 Center of gravity and	1.	Numerical
point where the entire		moment of inertia		problem related
weight of an object or		5.1 Concept of Centroid, Centre of		to center of
system appears to act.		Gravity.		gravity
		5.2 Difference between Centroid, Centre	2.	Numerical of MI
SO5.2 Quantifying an		of Gravity		of T section
object's resistance to		5.3 Centroid of Trianle	3.	Numerical of I
rotational motion around a		5.4 Centroid of I section		section.
specific axis.		5.5 Centroid of angle section, Centroid		
		of channel section		
		5.7 Theorems of Moment of Inertia		
		5.8 Radius of Gyration		
		5.9 Polar Moment of Inertia of Standard		
		Sections		
		5.10 Moment of Inertia of Composite		
		Section		
		5.11 Principal Moment of Inertia		

Approximate Hours

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

5.12 Concept of mass moment of inertia	
5.13 Mass moment of inertia of basic	
solid figures.	
5.14 Practice class	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

1. Find the CG and MI of Circle, semi circle, and Rectangle and Triangle.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Lab	Sessional	Self	Total hour
	Lecture (Cl)	Lecture	Work	Learning	(CI+LI+SW+SI)
		(LI)	(SW)	(Sl)	
ESC202.1: Understanding of term Mechanics and its classification	9	0	2	2	13
ESC202.2: Understanding Resolution and composition of force acting on the rigid body.	13	0	2	2	17
ESC202.3: Compute the resultant of force or different system of force and study of different laws related to different force System.	11	0	2	2	15
ESC202.4: compute the different types of load acting on different types of beam.	13	0	2	2	17
ESC202.5: Compute the centroid, second moment of area, center of gravity, moment of inertia and mass moment of inertia.	14	0	3	2	19
Total Hours	60	0	11	10	81

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

••••

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution				
		R	U	Α	Total Marks	
CO-1	Introduction to Mechanics	03	01	01	05	
CO-2	Resolution and Composition of Forces	02	06	02	10	
CO-3	System of forces	03	07	05	15	
CO-4	Beams and Trusses	-	10	05	15	
CO-5	Center of gravity and moment of inertia	03	02	-	05	
	Total	11 26 13 50		50		

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Engineering Graphics & Design will be held with writtenexamination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

....

Suggested Learning Resources:

(a) Books :

S.No.	Title	Author	Publisher	Edition & Year
1	Engineering Mechanics	Dr.R.K bansal	Laxmi Publication(p) ltd.	4rth and 2016
2	Engineering Mechanics	R.K Rajpoot	Laxmi Publication(p) ltd.	3 rd and 2016
3	Engineering Mechanics: Static & Dynamics	Russell C. Hibbeler	Pearson	14th Edition, 2015
4	Engineering Mechanics	Timoshenko, and Young	ТМН	5 th 2017
5	Training Manual			
6	Lecture note provided by Dept. of Mechanical Engineering, A	KS University, Satna	a .	

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10.Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11.Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg

12.Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

COs, PSo, and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: ESC202 **Course Title: Engineering Mechanics Program Outcomes Program Specific Outcome** PO9 PO10 PO11 PO12 PS01 **PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8** PSO₂ PSO3 **PSO4** Conduct investigations of complex cement manufacturing technology **Project management and finance** Ability to use the research based Design/development of solutions Ability to understand the day to **Environment and sustainability** The ability to apply technical & Ability to understand the latest plant operational problems of Individual and team work engineering knowledge for production quality cement innovative knowledge for The engineer and society sustainable development **Engineering knowledge** cement manufacture Modern tool usage Life-long learning and it application **Problem analysis Course Outcomes** Communication problems Ethics CO-1: Understanding of term Mechanics and 2 2 2 2 3 2 2 2 1 1 1 its classification **CO-2:** Understanding Resolution and 2 2 1 1 2 2 1 2 1 1 2 3 2 composition of force acting on the rigid body. CO-3: Compute the resultant of force or different system of force and study of different 2 2 1 1 2 2 2 1 1 2 2 laws related to different force System. CO-4: compute the different types of load 3 2 2 3 1 3 1 2 1 2 3 -2 acting on different types of beam. CO-5: Compute the centroid, second moment of area, center of gravity, moment of inertia 2 1 2 1 1 3 1 1 2 2 3 and mass moment of inertia.

Legend: 1-Low, 2-Medium, 3-High

....

(Revised as on 01 August 2023)

Course Curriculum Map: Engineering Mechanics

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO-1: Understanding of term Mechanics and its classification	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1.0 Introduction to Mechanics 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO-2: Understanding Resolution and composition of force acting on the rigid body.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 Resolution and Composition of Forces 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12,2.13	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO-3: Compute the resultant of force or different system of force and study of different laws related to different force System.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: System of forces 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO-4: compute the different types of load acting on different types of beam.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Beams and Trusses 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11,4.12,4. 13	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	second moment of area, center of gravity moment of inertia			Unit 5: Center of gravity and moment of inertia 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8, 59,5.10,5.11,5.12,5.13,5.14	

• • • • •

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

Semester-III

Course Code:	РСС-СТ202, РСС-СТ202-L
Course Title:	Fluid Mechanics
Pre-requisite:	Student should have basic knowledge of mathematics, physics related terms such as, pressure, temperature and velocity.
Rationale:	The students studying cement technology should possess fluid properties about pressure and its measurement employed in construction.

Course Outcomes:

PCC-CT202.1: The student will understand stress-strain relationship in fluids, classify their behavior and also establish force balance in static systems.

PCC-CT202.2: Understanding about kinematics, dynamics and application of mass, momentum and energy equation in fluid flow.

PCC-CT202.3: Students will be able to apply dimensional analysis of physical quantities and methods of dimensional analysis.

PCC-CT202.4: Students will compute loss of energy in pipes, frictional loss in pipe flow.

PCC-CT202.5: Students will be able to describe function of flow metering devices and apply Bernoulli equation to determine the performance of flow-metering devices.

Scheme of Studies:

Course	Course	Course Title		Scheme of studies (Hours/Week)				Total
Categor	Code		CI	LI	SW	SL	Total Hours	Credits
У							(CI+LI+SW+SL	(C)
PCC	PCC-CT202	Fluid & Fluid Particle Mechanics	4	2	1	1	8	5

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), **LI:** Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), **SW:** Sessional Work (includes assignment, seminar, mini project etc.), **SL:** Self Learning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

Scheme of Assessment: Theory

					Scheme o	of Assessm	ent (Ma	rks)		
				Progre	ssive Ass	essment (PRA)			
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
РСС	PCC- CT202	Fluid & Fluid Particle Mechanics	15	20	5	5	5	50	50	100

Practical

			Sche					
			Progressive Assessment (PRA)					
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (LA)	VIVA(VV)	Class Attendance (TA)	Total Marks (LA+VV+ TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PCC	PCC-CT202	Fluid & Fluid Particle Mechanics	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

PCC-CT202.1: The student will understand stress-strain relationship in fluids, classify their behavior and also establish force balance in static systems.

Approximate Hours				
Item	Appx Hrs			
CI	12			
LI	6			
SW	2			
SL	1			
Total	21			

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1.1 Understand properties of fluid like density, specific weight.	1. Determination of discharge through a Venturimeter.	 Unit-1.0 Properties of Fluids 1.1 Fluid introduction. 1.2 Properties of Fluids. 1.3 Thermodynamic Properties of 	1. Properties of fluid, vapor pressure and compressibility.
SO1.2 Viscosity, kinematic viscosity, Newton's law of viscosity.	2. Determination of discharge through a given Orifice meter.	 Fluids. 1.4 Viscosity, Types of Fluid. 1.5 Compressibility and Bulk Modulus. 1.6 Surface Tension and 	2. Types of flow, rigid and bulk modulus.
SO1.3 Thermodynamic properties, isothermal process, adiabatic process.	3. Determination of Flow through Rotamater.	 Capillarity. 1.7 Vapor Pressure and Cavitations. 1.8 Types of Flow, Rigid Body Motion. 1.9 Buoyancy and Floatation, Fluid 	
SO1.4 Compressibility, surface tension.		Pressure at a Point. 1.10 Pascal's Law, Forces on Submerged Bodies.	
SO1.5 Capillarity, surface tension on hollow bubble.		1.11 Absolute Gauge, Atmospheric, Vacuum Pressure.1.12 Manometers- Simple and Differential.	

SW-1 Suggested Sessional Work (SW):

•

- **a. Assignments:** Fluid properties for Constructions, different properties of fluid, Cement strength depends on fluid and their properties.
- **b.** Mini Project: Chart prepared for different thermodynamic properties of fluids.
- **c.** Other Activities (Specify): Note on fluid properties related to Indian cement industry in world and Major cement producing companies of India.

PCC-CT202.2: Understanding about kinematics, dynamics and application of mass, momentum and energy equation in fluid flow.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

Approximate Hours

Item	AppX Hrs
CI	17
LI	6
SW	2
SL	1
Total	26

Session Outcomes Lab	ooratory Instruction	Classroom Instruction	Self-Learning
(SOs)	(LI)	(CI)	(SL)
SO2.11. DTo Understand the types of fluid flow such as steady and unsteady flows, uniform and non- uniform flows, laminar and turbulent.2. DSO2.2CTo learn about rate of flowC	(L1) Determination of ischarge through Pitot tube. Determination of Cc, Cv, and Cd for ifferent type of rifices. Determination of Cc, Cv, and Cd for ifferent type of mouth ieces.	 Unit-2 Fluid Kinematics, Fluid Dynamics, Fluid Flow Measurement. 2.1 Introduction to fluid kinematics. 2.2 Method of Describing Fluid Motion. 2.3 One/Two/Three Dimensional Flows. 2.4 Rate of Flow or Discharge 2.5 Continuity Equation. 2.6 Description Of Velocity Field and Acceleration. 2.7 Velocity Potential and Stream Functions 2.8 Fluids in Circulation. 2.9 Irrotational Flow. 2.11 Types of Motion. 2.12 Vortex Flow. 2.13 Introduction to fluid dynamics. 2.14 Equation of Motion, Bernoulli's Equation. 2.15 Bernoulli's Equation from Euler's Equation. 	 Problems on kinematics and continuity equation. Study on equation of motion and dynamics of flow.

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

- i. Explanation about different types of fluid flow.
- ii. Continuity equation and velocity and acceleration.
- b. Mini Project:

Differentiate between Venturimeter, orifice meter and Pitot tube.

c. Other Activities (Specify): Types of merurement devices used in different cement plant.

PCC-CT202.3: Students will be able to apply Dimensional Analysis of physical quantities and methods of dimensional analysis.

Approxim	ate Hours
Item	Appx. Hrs
CI	09
LI	6
SW	2
SL	1
Total	18

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning
(SOs)	(LI)	(CI)	(SL)
 SO3.1 Introduction to secondary or derived quantities. SO3.2 Methods of dimensional analysis. SO3.3 Methods of selecting repeating variables. SO3.4 Types of forces acting in moving fluids. SO3.5 Model laws or similarity. 	 To find out Reynolds Number. To verify Bernoulli's Theorem. Comparison between Reynolds number and Bernoulli's theorem. 	 analysis. 3.2 Dimensions of Physical Quantities. 3.3 Dimensional Homogeneity. 	 i. Dimensions of units used in fluid mechanics. ii. Dimensionless numbers, such as Reynolds number, Weber numbers. .

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- (i) Solving problems on Rayleigh's numbers.
- (ii) Model laws of different units like Reynolds model law, Froude model law etc.

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

b. Mini Project:

Make a table of different properties of fluids like viscosity, acceleration, velocity etc.

PCC-CT202.4: Students will compute loss of energy in pipes, frictional loss in pipe flow.

Appro	oximate Hours
Item	Appx. Hrs
CI	13
LI	6
SW	2
SL	2
Total	23

Session Outcomes (SOs)		Laboratory Instruction	Classroom Instruction Self (CI) Learning
		(LI)	(SL)
SO4.1 Introduction to loss of	1.	Determination of	Unit-4 Flow Through Pipes
energy in pipes.		loss of head due to friction in pipe.	4.1 Overview of flow through pipes. 1. Preparation different heat
SO4.2 Minor energy (head)		menon m prper	4.2 Loss Of Energy In Pipes. losses in th
losses.	2.	Determination of	4.3 Frictional Loss In Pipe comparison
		loss of head due to	Flow. form
SO4.3 loss of head due to		sudden enlargement	4.4 Loss Of Head Due To
sudden enlargement,		in pipe.	Friction In Pipe (Friction 2. Draw
sudden contraction, due			Factor),. typical lay o
to entrance of a pipe,			4.5 Viscous Flow. of a fluid flo
loss of head at the exit	3.	Determination of	4.6 Boundary Layer Flow. in serie
of pipe.		loss of head due to	4.7 Separation Of Boundary Layer. connected
		sudden contraction	4.8 Drag And Lift, pipe
SO4.4 Flow through pipes in a		in pipe	4.9 Flow In Open Channels. parallel
series, or flow through			4.10 Laminar And Turbulent Flow connected
compound pipes.			Explanation. pipe.
			4.11 Reynolds Experiment,
SO4. 5 Flow through			4.12 Motion of Particles Through
branched pipes.			Fluid.
			4.13 Packed And Fluidized Bed.

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Explanation about different energy (Head) losses.
- Describe briefly power transmission through pipes. ii.

b. Mini Project:

Visit to a cement plant and writing a report on fluid flow in how many types.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

PCC-CT202.5: Comprehend the functions of different regulatory bodies in India that oversee the production and quality of cement.

Approxir	nate Hours
Item	Appx. Hrs
CI	09
LI	6
SW	3
SL	1
Total	19

Approximate Hours

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO5.1 Introduction the main parts of a reciprocating pump.	 Study of	Unit 5 Pumping and	1. Learning about main
	reciprocating pump. Study of Centrifugal	Compressing of	parts and working of
	pump.	Chemicals and Gases:	Reciprocating pump.
 SO5.2 Over view of Discharge through a Reciprocating pump. SO5.3 Role of the work done in terms of Reciprocating pump. SO5.4 Slip of Reciprocating pump and priming of 	 3. Check and compare performance of Reciprocating pump and centrifugal pump. 	 5.1 Reciprocating Pumps. 5.2 Slip Of Reciprocating Pumps 5.3 Rotary Pumps, Centrifugal Pumps 5.4 Blowers.Priming Of Centrifugal Pumps, 5.5 Cavitations, Suction Lift. 5.6 NPSH,Calibrations 	2. Minimum speed for starting a centrifugal pump.
centrifugal pump.		 5.6 NPSH, Calibrations 5.7 Mixing And Agitation 5.8 Types Of Mixers And Their Selection. 5.9 Power Requirement, Compressible Fluid Flow. 	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

List the Main parts of a Centrifugal pump and reciprocating pump.

Definitions related to Reciprocating pump as well as Centrifugal pump.

b. Mini Project:

Making a chart for different types of casing of centrifugal pump.

c. Other Activities(Specify):

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

List of Organization/cement plant in India what types of reciprocating pump and centrifugal pump used.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Laboratory	Sessional	Self	Total hour
	Lecture	Instruction	Work	Learning	(Cl+LI+SW+Sl)
	(Cl)	(LI)	(SW)	(SI)	
PCC-CT202.1: The student will					
understand stress-strain relationship					
in fluids, classify their behavior and	12	6	2	1	21
also establish force balance in static					
systems.					
PCC-CT202.2: Acquired the					
knowledge of types of raw materials					
and fuel used in the production of	17	6	2	1	26
Portland cement, along with its	17	0	2	1	20
physical and chemical					
characteristics.					
PCC-CT202.3 Students will be able					
to apply Dimensional Analysis of	9	6	2	1	18
physical quantities and methods of	,	0	2	1	10
dimensional analysis.					
PCC-CT202.4: Students will					
compute loss of energy in pipes,	13	6	2	2	23
frictional loss in pipe flow.					
PCC-CT202.5 Students will be able					
to describe function of flow					
metering devices and apply	9	6	3	1	19
Bernoulli equation to determine the	-		-	_	
performance of flow-metering					
devices					
Total Hours	60	30	11	6	107
		50	11	0	107

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Properties of Fluids.	04	03	03	10
CO-2	Fluid Kinematics, Fluid Dynamics, Fluid Flow Measurement.	05	03	02	10
CO-3	Dimensional Analysis.	03	04	03	10

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

CO-4	Flow Through Pipes.	07	02	01	10
CO-5	Pumping And Compressing Of Chemicals And Gases	03	02	05	10
	Total	22	14	14	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- **3.** Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Edition & Year
No.				
1	A Textbook of Fluid	R. K. Bansal	Laxmi Publications	2005
	Mechanics		Pvt Limited	
2	Fluid Mechanics Part-1	R K Rajput	S Chand Publication	1999
3	Engineering Fluid Mechanics	K. L. Kumar	S. Chand Limited	2008
4	Fluid Mechanics	H.Joseph Spurk , Nuri Aksel	Springer	2008
5	Fluid Mechanics Lab Manual	·	·	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

Lecture note provided by Dept. of Cement Technology, AKS University, Satna .

Curriculum Development Team

7

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

.....

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

COs. POs and PSOs Mapping

Program Title: B. Tech Cement Tech;

Course Code: PCC-CT202 / PCC-CT202-L;

Course Title: Fluid Mechanics

					Pr	ogram	Outc	omes					Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: The student will understand stress-strain relationship in fluids, classify their behavior and also establish force balance in static systems.	3	3	2	2	3	2	2	1	2	2	1	2	1	2	1	3
CO-2: Acquired the knowledge of types of raw materials and fuel used in the production of Portland cement, along with its physical and chemical characteristics.	5	3	2	2	1	2	1	1	2	1	2	2	3	2	2	2
CO-3 Students will be able to apply	3	3	2	2	1	3	2	2	1	1	2	3	2	2	2	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

Dimensional Analysis of physical																
quantities and methods of dimensional																
analysis.																
CO-4: Students will compute loss of energy in pipes, frictional loss in pipe	•	2	2	2	3	2	1	3	2	1	2	2	3	3	2	2
flow.																
CO-5 Students will be able to describe function of flow metering devices and apply Bernoulli equation to determine the performance of flow-metering devices	_	3	3	1	1	3	2	3	1	2	2	3	3	3	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. in Cement Technology (Revised as on 01 August 2023)

Course Curriculum Map: Fluid Mechanics

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO-1: The student will understand stress-strain relationship in fluids, classify their behavior and also establish force balance in static systems.	SO1.1. SO1.2 SO1.3 SO1.4 SO1.5	1.1,1. 2,1. 3	Unit-1: Properties of Fluids 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9,1.10,1.11,1.12	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO-2: Acquired the knowledge of types of raw materials and fuel used in the production of Portland cement, along with its physical and chemical characteristics.	SO2.1 SO2.2 SO2.3 SO2.4	2.1, 2.2, 2.3	Unit-2: Fluid Kinematics, Fluid Dynamics, Fluid Flow Measurement 2.1,2.2,2.3,2.4,2.5,2.6, 2.7, 2.8,2.9, 2.10,2.11,2.12,2.13, 2.14,2.15,2.16,2.17	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO-3 Students will be able to apply Dimensional Analysis of physical quantities and methods of dimensional analysis.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	3.1, 3.2, 3.3	Unit-3 : Dimensional Analysis 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO-4: Students will compute loss of energy in pipes, frictional loss in pipe flow.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	4.1, 4.2, 4.3	Unit-4 : Flow Through Pipes 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10, 4.11, 4.12,4.13	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO-5 Students will be able to describe function of flow metering devices and apply Bernoulli equation to determine the performance of flow-metering devices	SO5.1 SO5.2 SO5.3 SO5.4	5.1, 5.2, 5.3	Unit 5: Pumping And Compressing Of Chemicals And Gases 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-III

Course Code: BSC106-AU

Course Title : Environmental Science (Audit)

Pre-requisite: To study this course, the student must have a knowledge about the environmental components, pollution, biodiversity and ecosystem at senior secondary, Class 12th level.

Rationale: Environmental awareness is today's need as pollution impact is highly increasing. Environmental legislation and Audit is the mechanism to enforce environment friendly techniques/methods to business and industries. And hence knowledge of environmental legislation and audit is an essential requirement for environment engineers. This course therefore aims to develop in students, knowledge of the legal concepts, procedures and techniques which have evolved. The course also provides knowledge of tools about the environmental audit. The course will also help students to understand and carry out the environmental auditing and life cycle assessment.

Course Outcomes:

- **BSC106-AU.1:** Gain an understanding of the fundamental principles and components of environmental auditing.
- BSC106-AU.2: Train in conducting an environmental audit in any organization/ institution
- **BSC106-AU.3:** Implement critical thinking toward environmental problems and formulate local solutions for their Mitigation.
- **BSC106-AU.4:** Develop, Implement, maintain and Audit Environmental Management systems for Organizations.

BSC106-AU.5: For environmental protection, social equity and sustainable development

Scheme of Studies:

Course	Course Code	Course Title		Scheme of studies (Hours/Week)				Total
Category			CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
BSC	BSC106-AU	Environmental Science (Audit)	2	0	1	1	4	0

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Page 271 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Sch	eme of	Assessn	nent (I	Marks)		
			Progressive Assessment (PRA)							
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
BSC	BSC106-AU	Environmental Science (Audit)	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

BSC106-AU.1: Gain an understanding of the fundamental principles and components of environmental auditing.

Approximate Hours				
Item	Appx.Hrs			
CI	07			
LI	0			
SW	1			
SL	2			
Total	10			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	SelfLearning
(SOs)	Instruction (LI)	(CI)	(SL)
SO1.1		Unit-1 Industrial pollution and its	1. Difference
Understand air pollution and		mitigation	between pollution
its sources.		1.1 Air Pollution: Sources,	and pollutants.
SO1.2		classification of air pollutants	2. Water quality
Know about gaseous and		1.2 Mitigation and control	standards.
particulate pollutants.		measures of Particulate matters	
		and gaseous pollutants	
SO1.3		1.3 Water Pollution: sources,	
Observe the sources of water		classification	
pollution.		1.4 Water quality parameters,	
SO1.4		1.5 Control measures of water	
		pollution	
Learn about water quality		1.6 Soil pollution and impacts, soil	
parameter.		conservation,	
501 5		1.7 Noise pollution: sources, effects	
SO1.5 Evaluate the effects of noise		and control measures.	
pollution.			

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Classify the air pollutants on different basis.
- ii. Describe control measures of noise pollution.

b. Mini Project:

- i. Enlist the PPEs which used to minimize the effects of noise pollution.
- c. Other Activities (Specify):
- ii. Measure the air quality of different places by using Sammer App.

BSC106-AU.2: Train in conducting an environmental audit in any organization/institution

Approximate Hours

Item	Appx.Hrs
CI	6
LI	0
SW	1
SL	1
Total	08

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (CI)	SelfLearning (SL)
	(LI)		
SO2.1Know about the environmental acts.SO2.2To learn about Water Pollution act.SO2.3To understand the air Pollution Act.SO2.4To discuss about Environmental protection act SO2.5To learn about the waste		 Unit-2Environmental Law and Policy 2.1 Highlights of the Environmental Acts, 2.2 Institutional arrangements for The water (Prevention & Control of pollution) Act 1974, 2.3 The Air (Prevention & Control of pollution) Act 1981 2.4 The Environmental Protection Act 1986, 2.5 The waste management Act 1996 2.6 The National Green Tribunal Act 2010. 	i. What is the difference between law and policies?
management act.			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Mention the measure provisions of air pollution control act.
- ii. Describe waste management act.

BSC106-AU.3: Implement critical thinking toward environmental problems and formulate local solutions for their Mitigation

Approximate Hours

Item	Appx,Hrs
CI	06
LI	0
SW	1
SL	1
Total	8

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	SelfLearning (SL)
SO3.1 Know about ISO 14000 & 14001		Unit-3:EnvironmentalManagement System3.1ISO 14000 - EMS as per	ISO Certification
SO3.2 Learn applications of EMS SO3.3		 ISO 14000 - END as per ISO 14001 - benefits and barriers of EMS 3.2 Concept of continual improvement and 	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Know the methods of EIA	pollution prevention,
	3.3 Applications of EMS,
SO3.4	Environmental
Apply the methods of EIA	Management plan.
Apply the methods of LIA	3.4 Introduction and
5025	Principle – purpose of
SO3.5	EIA
Discuss about sustainable	3.5 Sustainable development
development.	and EIA
	3.6 The EIA Process –
	methodologies and
	practice.

SW-3 Suggested Sessional Work(SW):

a. Assignments:

- i. Methods of EIA
- ii. Applications of EMS
- iii. Environmental Management Plan
- **b. Mini Project:** Study the EIA reports of different developmental Projects and create a EIA report for cement plant.

BSC106-AU.4:Develop, Implement, maintain and Audit Environmental Management systems for Organizations.

Approximate Hours				
Item	Appx,Hrs			
CI	5			
LI	0			
SW	1			
SL	1			
Total	7			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO4.1		Unit-4: Environmental Audit- Scope and	i. Basic
Define environmental auditing.		Requisites	introduction of environmental
SO4.2 Know the Scopes of Environmental auditing.		 4.1 Introduction to Environmental Auditing, 4.2 Objectives and scope, Types, Basic structure of Environmental Auditing, General Audit Methodology 	auditing.
SO4.3 Learn the objectives of environmental auditing.		4.3 Elements of Audit Process: coverage-GOI notification on environmental audit-benefits to industry.4.4 Reporting environmental audit findings-	

Page 275 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SO4.4 Apply the methods of Auditing.	4.5 Importance of environmental audit report to industry, public and the government.	
SO4. 5 Create the auditing reports.		

SW-4 Suggested Sessional work (SW):

a. Assignments:

- i. Objectives, scope& Typesof environmental auditing.
- **b.** Other Activities (Specify): Create an environmental audit report for cement plant.

BSC106-AU.5: For environmental protection, social equity and sustainable development

Approximate Hours

Item	Appx,Hrs
CI	6
LI	0
SW	1
SL	1
Total	8

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning
	()		(SL)
SO5.1 Know about Environmental		Unit 5: Tools and Techniques for Environmental Auditing	1. How to prepare
performance indicators		5.1 Environmental performance indicators	audit report of Energy, water and
SO5.2 Understanding sustainability in the context of environmental auditing		5.2 Understanding sustainability in the context of environmental auditing5.3 Introductory Risk Assessment and Management	Waste
SO5.3 Learn about Risk Assessment and Management		5.4 Introductory Life Cycle Assessment (LCA)5.5 Brief about Water audit	
SO5.4 Understanding Life Cycle Assessment		5.6 Brief about Energy audit	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

(LCA)		
SO5.5 Create report		
of Energy audit.		

SW-5 Suggested Sessional Work(SW):

a. Assignments:

Prepare an interpretive electricity consumption report of the organization/ institution over a five-year period (either actual or arbitrary data can be used).

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (CI+SW+SI)
BSC106-AU.1 :Gain an understanding of the fundamental principles and components of environmental auditing	7	-	1	2	10
BSC106-AU.2 : Train in conducting an environmental audit in any organization/ institution	6	-	1	1	8
BSC106-AU.3 :Implement critical thinking toward environmental problems and formulate local solutions for their Mitigation	6	-	1	1	8
BSC106-AU.4 :Develop, Implement, maintain and Audit Environmental Management systems for Organizations	5	-	1	1	7
BSC106-AU.5 : For environmental protection, social equity and sustainable development	6	-	1	1	8
Total Hours	30	0	5	6	41

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Their Tisles	Marl	Total		
	Unit Titles	R	U	Α	Marks
CO-1	Gain an understanding of the fundamental principles and components of environmental auditing.	03	01	01	05
CO-2	Train in conducting an environmental audit in any organization/ institution	02	06	02	10
CO-3	Implement critical thinking toward environmental problems and formulate local solutions for their Mitigation	03	07	05	15
CO-4	Develop, Implement, maintain and Audit Environmental	-	10	05	15

Page 277 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

	Management systems for On	ganizations.				
CO-5	For environmental protectio development	03	02	-	05	
	Total		11	26	13	50
Legend:	R: Remember,	U: Understand,	A: Apply			

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- **8.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.No.	Title	Author	Publisher	Edition&Year
1	Environmental Health and Safety Audits: A Compendium of Thoughts and Trends	Cahill, L.B	Bernan Press.	2017
2	Handbook of Energy Audits	Thuman, A., Niehus, T., Younger, W.J.	River Publishers	2012
3	Environmental Audits. Mercury Learning & Information.	Taylor and Francis Van Guilder, C.V.,	Mercury Learning and Information	2014
4	A Guide to Local Environmental Auditing	Barton, H., and Bruder N.,	Routledge	1993
5	Lecture note provided by Dept. of Enviro	nmental Science, A	KS University, Satna .	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Curriculum Development Team

- 1. Prof. G C Mishra, Director IQAC, AKS University
- 2. Dr Mahendra Kumar Tiwari, Professor & Head, Dept. Environmental Science
- 3. Dr. RLS Sikarwar, Professor Dept. Environmental Science
- 4. Mrs Suman Patel Dept. Environmental Science
- 5. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Cos. Pos and PSOs Mapping

ProgramTitle:B.Tech Cement Tech

Course Code:BSC106-AU

CourseTitle:Environmental Science (Audit)

		ProgramOutcomes											ProgramSpecificOutcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1 : Gain an understanding of the fundamental principles and components of environmental auditing																
CO-2 : Train in conducting an environmental audit in any organization/ institution	1	3	2	2	2	3	3	2	2	2	2	3	2	3	2	3
	3	3	3	3	1	2	3	3	2	2	2	3	3	2	3	3
CO-3 : Implement critical thinking toward environmental problems and formulate local solutions for their Mitigation	3	2	3	2	2	1	3	2	2	2	2	3	3	2	3	3
CO-4 : Develop, Implement, maintain and Audit Environmental Management systems for Organizations	3	3	2	2	2	2	3	3	2	2	2	2	2	3	3	3
CO-5 : For environmental protection, social equity and sustainable development	3	3	3	3	2	3	3	3	2	2	2	2	3	3	3	3

Legend:1-Low,2-Medium,3-High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

CourseCurriculumMap:Environmental Science (Audit)

DOg & DSOg No	Os&PSOsNo. COsNo.&Titles		Laboratory	Classroom	Self	
		SOsNo.	Instruction (LI)	Instruction (CI)	Learning (SL)	
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO-1 : Gain an understanding of the fundamental principles and components of environmental auditing			Unit-1.0Gain an understanding of the fundamental principles and components of environmental auditing. 1.1,1.2,1.3,1.4,1.5,1.6,1.7		
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO-2 : Train in conducting an environmental audit in any organization/ institution	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2Train in conducting an environmental audit in any organization/ institution 2.1,2.2,2.3,2.4,2.5,2.6,		
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO-3 :Implement critical thinking toward environmental problems and formulate local solutions for their Mitigation			Unit-3:Implement critical thinking toward environmental problems and formulate local solutions for their Mitigation 3.1,3.2,3.3,3.4,3.5,3.6	As mentioned, in above pages	
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	12 systems for Organizations			Unit-4: Develop, Implement, maintain and Audit Environmental Management systems for Organizations. 4.1,4.2,4.3,4.4,4.5		
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO-5 : For environmental protection, social equity and sustainable development	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit5:For environmental protection, social equity and sustainable development 5.1,5.2,5.3,5.4,5.5,5.6		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester III

Course Code:	HSMC-301
Course Title:	Universal Human Values-2
Pre- requisite:	Creating awareness among the students on a holistic perspective about life.
Rationale:	The purpose is to help develop a holistic perspective about life. A self-reflective methodology of teaching is adopted. It opens the space for the student to explore his/her role (value) in all aspects of living $-$ as an individual, as a member of a family, as a part of the society and as an unit in nature. Through this process of self-exploration, students are able to discover the values intrinsic in them.

Course Outcomes: HSMC301.1

To understanding Value Education

HSMC301.2

Students will have the ability to learn about Harmony in the Human Being.

HSMC301.3

Student will be able to gain knowledge on Harmony in the Family and Society.

HSMC301.4

Understanding Harmony in the Nature/Existence.

HSMC301.5

Student will able to understand about Implications of Holistic Understanding- A Look at Professional Ethics.

Scheme of Studies:

Course Category	Course	Course		Scheme of studies (Hours/Week)						
	Code	Title	CI	LI	SW	SL	Total Hours	Credits		
							(CI+LI+SW+SL)	(C)		
HSMC	HSMC-301	Universal	3	0	0	1	4	3		
		Human	_							
		Values-2								

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,

C: Credits.

Note: Proposed examination scheme (Marking) as per the recommendation of University Grant Commission (UGC) for Under Graduate Courses in Fundamentals of Universal Human Values 2022-23 onwards SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

		Scheme of Assessment (Marks)								
				Progress	ive As	sessmei	nt (PRA	.)		
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
HSMC	HSMC-301	Universal Human Value-2	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC301.1: To understanding Value Education

Approximate Hours		
Item	Appx. Hrs	
CI	9	
LI	0	
SW	0	
SL	2	
Total	11	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1.1. Understand Self-		Unit -1 Understanding Value	SL.1
exploration as the Process		Education	Human values to
for Value Education		1.1 Self-exploration as the Process	become a good
		for Value Education	man
SO 1.2. Understand		1.2 Continuous Happiness and	
Continuous Happiness and		Prosperity – the Basic Human	SL2.
Prosperity – the Basic		Aspirations	Identify Core
Human Aspirations		1.3 Recognizing and articulating	Human Values
		fundamental human values	
SO 1.3. Understand Right		1.4 Right Understanding	
Understanding		1.5 Relationship and Physical	
		Facility	
SO1.4. Understand		1.6 Happiness and Prosperity –	
Relationship and Physical		Current Scenario	
Facility		1.7 Method to Fulfill the Basic	
		Human Aspirations	
SO 1.5. Understand		1.8 Connect values education to	
Happiness and Prosperity –		community service	
Current Scenario		1.9 Understanding of values	
		through various assessment	
		methods	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Continuous Happiness and Prosperity – the Basic Human Aspirations

b. Mini Project:

•

- i. Relationship and Physical Facility
- c. Other Activities (Specify):
 - i. Quiz, Class Test.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

HSMC301.2: Students will have the ability to apply the gained knowledge on Harmony in the Human Being

Item	Appx Hrs
CI	9
LI	0
SW	0
SL	2
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO2.1. Understanding Human being as the Co- existence of the Self and the Body		Unit-2: Harmony in the Human Being2.1Module-II Harmony in the	
SO2.2. Understand the Distinguishing between the Needs of the Self and BodySO 2.3. Understand the Body as an Instrument of		 Human Being 2.2 Human being as the Co- existence of the Self and the Body 2.3 Distinguishing between the Needs of the Self and Body 	SL.1 Harmony in and among human being
the Self SO 2.4. Understanding		2.4 Body as an Instrument of the Self2.5 Harmony in the Self	SL.2 Mindfulness and
Harmony in the Self SO 2.5 . Understanding Harmony of the Self with		 2.6 Harmony of the Self with the Body 2.7 Programme to ensure self- regulation and Health 2.8 Explore techniques for 	Self-Awareness
the Body		 2.8 Explore techniques for improving concentration and mental clarity 2.9 Discuss the impact of positive emotions and strategies 	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Harmony in the self

- b. Mini Project:
 - Body an instrument
- c. Other Activities (Specify): Quiz, Class Test.

HSMC301.3: Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem

5

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction (LI)	(CI)	(SL)
SO3.1. Understand		Unit-3: Harmony in the Family	SL.1
Harmony in the Family –		and Society	Harmony in the
the Basic Unit of Human		3.1 Harmony in the Family – the	society
Interaction	-	Basic Unit of Human	
		Interaction	SL.2
SO3.2. Understand the		3.2 Values in Human-to- Human	Reflect on Social
Values in Human-to-		Relationship	Responsibilities
Human Relationship		3.3 'Trust' – the	
		3.4 Foundational Value in	
SO3.3. Understand the		Relationship	
'Trust' – the Foundational		3.5 'Respect' – as the Right	
Value in Relationship		Evaluation	
1		3.6 Understanding Harmony in the	
SO3.4. Understand the		Society	
'Respect' - as the Right		3.7 Vision for the Universal	
Evaluation		Human Order	
		3.8 Role of Empathy and	
SO3.5. Understanding		Understanding	
Harmony in the Society		3.9 Conflict Resolution Skills	
in the society			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

1. Respect the right evaluation

b. Mini Project:

- 1. Trust is the fundamental value of relationships
- c. Other Activities (Specify):

Quiz, Class Test.

HSMC301.4: Student will be able to understand Harmony in the Nature/Existence

Appx. Hrs
9
0
0
2
11

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self-Learning
	(LI)		(SL)
		Unit-4: Harmony in the	SL.1
		Nature/Existence	Harmony in the
SO4.1. Understanding		4.1 Harmony in the Nature,	nature
Harmony in the Nature,		Interconnectedness	
Interconnectedness		4.2 Self-regulation and Mutual	SL.2
		Fulfillment among 4 orders	Study Ecological
SO4.2. Understand self-		of Nature	Principles.
regulation and Mutual		4.3 Exploring Four Orders of	
Fulfillment among 4 orders		Nature	
of Nature		4.4 Realizing Existence as Co-	
		existence at All Levels	
SO 4.3. Understand the		4.5 The holistic Perceptions of	
Exploring Four Orders of		Harmony in Existence	
Nature		4.6 The Exploring Co-	
		Existence in Existence	
SO 4.4. Understand the		4.7 Introduce environmental	
Realizing Existence as Co-		ethics principles	
existence at All Levels		4.8 Study different	
		ecosystems	
		-	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SO 4.5. Understand the
holistic Perceptions of
Harmony in Existence4.9Address
posed
and human activities on
natural harmony

SW-4 SW-2 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Harmony in nature
- b. Mini Project:
 - i. Exploring 4 orders of nature
- c. Other Activities (Specify): Quiz, Class Test.

HSMC301.5: Students will have the ability to apply the gained knowledge in Implications of Holistic Understanding- A Look at Professional Ethics.

Approximate Hours			
Item	Appx. Hrs		
CI	9		
LI	0		
SW	0		
SL	2		
Total	11		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO5.1. Understand		Unit 5 Implications of Holistic	SL.1
Natural acceptance of		Understanding- A Look at	Holistic
Human Values		Professional Ethics	understanding of
		5.1 Introduce the concept of	human values
SO5.2 Understand		professional ethics	
Definitiveness of (Ethical)		5.2 Natural acceptance of	SL.2
Human Conduct		Human Values	Read case studies
		5.3 Definitiveness of (Ethical)	and real-life
SO5.3. Understand A		Human Conduct	examples from
Basis for Humanistic		5.4 A Basis for Humanistic	various profession
Education		Education	
		5.5 Humanistic Constitution and	
SO5.4. Understand the		Universal Human Order	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Humanistic Constitution	5.6 Competence in Professional
and Universal Human	Ethics
Order	5.7 Strategies for Transition
	towards value based Life
SO 5.5. Understand	and Profession
Competence in	5.8 Explore major ethical
Professional Ethics	theories
	5.9 Analyze case studies to
	illustrate ethical decision-
	making using different
	frameworks

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Human conduct
- b. Mini Project:
 - i. Humanistic constitution
- c. Other Activities (Specify): Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (SL)	Total hour (CI+SW+SL)
HSMC301.1 To understanding Value Education	09	0	0	2	11
HSMC301.2 Students will have the ability to learn about Harmony in the Human Being.	09	0	0	2	11
HSMC301.3 Student will be able to gain knowledge on Harmony in the Family and Society.	09	0	0	2	11
HSMC301.4 Understanding Harmony in the Nature/Existence.	09	0	0	2	11

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

HSMC301.5 Student will able to understand about Implications of Holistic Understanding- A Look at Professional Ethics.	09	0	0	2	11
Total Hours	45	0	0	10	55

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marl	ks Distributio	n	Total
		R	U	Α	Marks
CO-1	Understanding Value Education	02	04	05	11
CO-2	Harmony in the Human Being	03	07	04	14
CO-3	Harmony in the Family and Society	02	06	02	10
CO-4	Harmony in the Nature/Existence	03	03	02	08
CO-5 Implications of Holistic Understanding- A Look at Professional Ethics		03	02	02	07
	Total	13	22	15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming
- 9. Seminar
- 10. Workshop

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	JeevanVidya: EkParichaya	A Nagaraj	JeevanVidyaPrakashan, Amarkantak	1998
2	Human Values	A.N. Tripath	New Age Intl. Publishers, New Delhi,	2004
3	Universal Human Values	-	AICTE	2021
4	Human Values and Professional Ethics	R.R. Gaur, R Sangal and G P Bagaria	Excel Book Publisher	2009
5	Vyavaharvadï. Samajshastra	A Nagaraj	Jeevan Vidya Prakashan, Amar kantak	1999
6	Manava Vyavahara Darsana	A Nagaraj	Jeevan VidyaP rakashan, Amarkantak	2003
7	Foundations of Ethics and Management,	B P Banerjee	Excel Book	2005
8	Fundamentals of Ethics for Scientists & Engineers	E G Seebauer & Robert L. Berry	Oxford University Press.	2000
9	Engineering Ethichs (including Human Values)	M Govindrajran, S Natrajan and V.S. Senthil Kumar	Eastern Economy Edition, Prentice Hall of India Ltd.	-

Curriculum Development Team

- 1. Prof. G C Mishra, Director IQAC, AKS University
- 2. Dr Mahendra Kumar Tiwari, Professor & Head, Dept. Environmental Science
- 3. Dr. RLS Sikarwar, Professor Dept. Environmental Science
- 4. Mrs Suman Patel Dept. Environmental Science

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs. POs and PSOs Mapping

Program Title: B. Tech Cement Tech			Со	urse C	ode:	HSMO	C 301			С	ourse '	Title:	Univer	sal Hu	man Va	alues-2
					Pr	ogram	Outco	mes					Prog	ram Spe	cific O	utcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The abulty to apply technical & engineering knowledge for production	Ability to understand the day to plant operational problems of cement	ADJING TO UNDERSIAND THE latest cement manufacturing technology	Amility to use the research based innovative knowledge for sustainable develomment
HSMC301.1 To understanding Value Education	2	2	3	2	1	1	1	3	2	1	1	2	2	2	2	2
HSMC301.2 Students will have the ability to learn about Harmony in the Human Being	2	2	1	3	1	2	1	3	2	2	2	2	2	2	2	2
HSMC301.3 Student will be able to gain knowledge on Harmony in the Family and Society.	2	1	2	1	1	2	2	3	2	1	2	3	2	2	2	2
HSMC301.4 Understanding Harmony in the Nature/Existence.	1	1	1	2	1	2	1	3	2	1	2	2	2	2	3	3
HSMC101.5: Student will able to understand about Implications of Holistic Understanding- A Look at Professional Ethics.	1	1	1	1	1	2	2	3	1	2	2	2	3	2	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Universal Human Values-2

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4 PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	HSMC301.1 To understanding Value EducationHSMC301.2 Students will have the ability to learn about Harmony in the Human Being	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO2.1 SO2.2 SO2.3 SO2.4		Unit-1: Understanding Value Education 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9 Unit-2: Harmony in th Human Being 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	HSMC301.3 Student will be able to gain knowledge on Harmony in the Family and Society.	SO2.5 SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		2.8,2.9 Unit-3: Harmony in the Family and Society 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8, 3.9	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	HSMC301.4 Understanding Harmony in the Nature/Existence.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Harmony in th Nature/Existence Implications of Holistic 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8, 4.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	HSMC101.5 Student will able to understand about Implications of Holistic Understanding- A Look at Professional Ethics.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: Understanding- A Look at Professional Ethics 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8, 5.9	

Semester-IV

Course Code:	PCC-CT204
Course Title :	Heat Transfer & Mass Transfer
Pre-requisite:	Student should have basic knowledge of Physics and Mathematics.
Rationale:	This course follows a unified approach to introduce the physical origins and rate equations of heat and mass transfer. The principal topics covered include identification of the driving forces for heat and mass transfer. The students will learn how to identify the fundamental heat and mass transfer mechanisms.

Course Outcomes:

PCC-CT204.1: Explain different modes of heat transfer and Calculate heat transfer for one-dimensional steady state conduction in solids.

- **PCC-CT204.2:** Explain and solve heat transfer by forced and natural convection.
- PCC-CT204.3: Discuss and solve heat transfer by radiation. Analyze the performance of heat exchange equipment.
- **PCC-CT204.4:** Find the mass transfer coefficient and solve problems related to inter phase mass transfer.
- **PCC-CT204.5:** To find time required for drying and to understand the operation of various types of drying equipment.

Scheme of Studies:

ſ	Course	Course	Course	:	Total				
			Title	CI	LI	SW	SL	Total Hours	Credits
	Category	tegory Code Title Cl	U	LI	31	SL	(CI+LI+SW+SL)	(C)	
	PCC	PCC-CT204	Heat Transfer & Mass Transfer	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), **SW:** Sessional Work (includes assignment, seminar, mini project etc.), **SL:** Self Learning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Scher	ne of A	Assessme	nt (N	larks)		
			Pro	gressive	Assess	ment (I	PRA)		(ESA)	
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ES	Total Marks (PRA+ESA)
PCC	PCC-CT204	Heat Transfer & Mass Transfer	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT204.1: Explain different modes of heat transfer and Calculate heat transfer for onedimensional steady state conduction in solids.

L'.	
Item	Appx. Hrs
CI	12
LI	0
SW	2
SL	1
Total	15

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
 SO1.1 Ability to understand the concept of heat and mas transfer, explain the different mode of heat transfer and their applications SO1.2 Understand and Solve heat transfer by conduction in solids for steady state conditions. SO1.3 The students will be able to perform economic analysis for process to calculate equipment cost, and profitability for process. 	(LI)	 Unit-1: Heat Transfer By Conduction 1.1 Introduction to heat transfer 1.2 General concepts of heat transfer by conduction, convection and radiation 1.3 Steady state temperature fields (Fourier's Law) 1.4 One dimensional conduction without heat generation: through plain walls 1.5 One dimensional conduction without heat generation: cylindrical surfaces 1.6 One dimensional conduction without heat generation: spherical surfaces 1.7 One dimensional conduction without heat generation: spherical surfaces 1.7 One dimensional conduction without heat generation: composite layers 1.8 Insulation materials 1.9 Critical and optimum insulation thickness 1.10 Extended surfaces, fins and their applications 1.11 Problems based on Fourier's Law 1.12 Problems based on one 	 Application of general concepts of heat transfer by conduction, convection and radiation Remember the Fourier's Law
		dimensional conduction without heat generation	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems on Fourier's Law
- ii. Numerical Problems on one dimensional conduction without heat generation

b. Mini Project:

Derivation of one dimensional conduction without heat generation for through plain walls, composite layers, cylindrical surfaces and spherical surfaces

PCC-CT204.2: Explain and solve heat transfer by forced and natural convection.

Approximate Hours					
Item	Appx. Hrs				
CI	9				
LI	0				
SW	2				
SL	1				
Total	12				

Session Outcomes	Laboratory	Classroom	Self-Learning
(SOs)	Instruction	Instruction	(SL)
	(LI)	(CI)	
SO2.1Explain and solve heat		Unit-2: Heat Transfer By	
transfer by forced and natural		Convection	1. Application
convection.			of Natural and
		2.1 Fundamentals of convection: Basic	Forced
SO2.2 The students will be able to		concepts and definitions	convection
understanding the empirical		2.2 Natural and Forced convection	
equation for calculation of heat		2.3 Application of dimensional analysis	2. Remember
transfer coefficient.		to heat transfer by convection	the Empirical
		2.4 Empirical equation for calculation	equation for
SO2.3The students will be able		of heat transfer coefficient in	calculation of
to perform determination of		Laminar, turbulent and transition	heat transfer
individual and overall heat		region in forced convection	coefficient
transfer coefficients.		2.5 Determination of individual and overall heat transfer coefficients	
SO2.4 The students will be able		2.6 Derivation of Determination of	
		individual and overall heat transfer	
to perform Log mean temperature difference.		coefficients	
		2.7 Flow arrangement in heat exchanger	
		2.8 Log mean temperature difference	
		2.9 Derivation of Log mean	
		temperature difference	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Derivation of Determination of individual and overall heat transfer coefficients
- ii. Derivation of Log mean temperature difference

b. Mini Project:

a. Draw the chart of Empirical equation for calculation of heat transfer coefficient

PCC-CT204.3: Discuss and solve heat transfer by radiation. Analyze the performance of heat exchange equipment.

Approximate Hours				
Item	Appx. Hrs			
CI	14			
LI	0			
SW	4			
SL	2			
Total	20			

Session Outcomes (SOs)	Laboratory	Classroom	Self-Learning
	Instruction	Instruction	(SL)
	(LI)	(CI)	
SO3.1: Discuss and solve	•	Unit-3 :Heat Transfer By	1. Remember
heat transfer by radiation.		Radiation and Heat	the Basic
		Exchange Equipment	principle of
SO3.2 Analyze the			Absorptivity,
performance of heat		3.1 Heat transfer by radiation	Reflectivity,
exchange equipment.		3.2 Absorptivity, Reflectivity,	Transmissivity
		Transmissivity	2. Remember
SO3.3The students will be		3.3 Black body concept	the Basic law of
able to design of shell &		3.4 Gray body concept	Heat transfer by
tube heat exchanger.		3.5 Kirchhoff's law	radiation
		3.6 Steafan Boltzmann law	
		3.7 Planck's law	
		3.8 Wiens displacement law	
		3.9 Heat Transfer by radiation	
		3.10 Problem based on heat	
		transfer coefficients by	
		radiation	
		3.11 Problem based on	
		combined heat transfer	
		coefficients by convection	

exchangers: Basic Definitions 3.13 Shell and tube heat exchangers: Shell side and tube side passes 3.14 Classification of Shell	and radiation 3.12 Shell and tube heat
 3.13 Shell and tube heat exchangers: Shell side and tube side passes 3.14 Classification of Shell 	e
and tube side passes 3.14 Classification of Shell	3.13 Shell and tube heat
	<u> </u>
and tube heat exchanger	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems on heat transfer coefficients by radiation
- ii. Numerical Problems on combined heat transfer coefficients by convection and radiation

b. Mini Project:

b. Draw the chart of classification of Shell and tube heat exchanger

PCC-CT204.4: Find the mass transfer coefficient and solve problems related to interphase mass transfer.

Appro	oximate Hours
Item	Appx. Hrs
CI	12
LI	0
SW	2
SL	1
Total	15

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO4.1: To understand the		Unit-4 :Molecular diffusion	Remember the
knowledge of mass			Fick's Law of
transfer by applying		4.1 Molecular Diffusion:	Diffusion
principles of diffusion		Definition	Application the
and mass transfer		4.2 Fick's Law of Diffusion	concept of inter-
coefficients.		4.3 Flux equation	phase mass
		4.4 Molecular diffusion in	transfer

SO4.2: Explain the	gases		
principles of molecular	4.5 Steady state diffusion of		
diffusion and basic laws of	A through non		
mass transfer.	diffusing B		
	4.6 Steady state eqimolar		
SO4.3: Understand the	counter diffusion		
theories of mass transfer	4.7 Problems based on		
and the concept of inter-	diffusion		
phase mass transfer	4.8 Analogy between mass		
	transfer and heat		
SO4.4: Analyze the	transfer		
Similarity of mass, heat	4.9 Film theory		
and momentum transfer –	4.10 Surface renewal theory		
Analogy	4.11 Penetration theory		
	4.12 Equilibrium		

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Numerical Problems on diffusion
 - ii. Derivation of Steady state diffusion of A through non diffusing B
 - iii. Derivation of Steady state eqimolar counter diffusion
- b. Mini Project:
 - i. Draw a chart of Analogy between mass transfer and heat transfer

PCC-CT204.5: To find time required for drying and to understand the operation of various types of drying equipment.

Appro	oximate Hours
Item	Appx. Hrs
CI	13
LI	0
SW	2
SL	1
Total	16

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
 SO5.1: To find time required for drying and to understand the operation of various types of drying equipment's. SO5.2: Perform calculations on humidification and dehumidification processes using psychometric chart. SO5.3: Design staged and continuous contactors for gas absorption system. 		 Unit 5: Drying and mass transfer operations 5.1 Drying: Concepts 5.2 Drying: General principles 5.3 Equilibrium rate of drying curve 5.4 Time of drying 5.5 Problems based on drying 5.6 Drying equipment: Tray drier 5.7 Drying equipment: Rotary drier 5.8 Drying equipment: Drum drier 5.9 Drying equipment: Fluidized bed drier 5.10 Drying equipment: Pneumatic drier 5.11 Important mass transfer operations: Absorption 5.12 Important mass transfer operations: Adsorption 5.13 Important mass transfer operations: Humidification 	 i. Application the concept of Drying operation ii. Remember the Basic formula of Time of drying.

SW-5 Suggested SessionalWork(SW):

a. Assignments:

- i. Numerical Problem based on drying.
- b. Mini Project:

Draw the chart of drying equipment's

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (CI+SW+SI)
PCC-CT204.1: Explain different modes of heat transfer and Calculate heat transfer for one-dimensional steady state conduction in solids.	12	2	1	15
PCC-CT204.2: Explain and solve heat transfer by forced and natural convection.	9	2	1	12
PCC-CT204.3: Discuss and solve heat transfer by radiation. Analyze the performance of heat exchange equipment.	14	4	2	20
PCC-CT204.4: Find the mass transfer coefficient and solve problems related to interphase mass transfer.	12	2	1	15
PCC-CT204.5: To find time required for drying and to understand the operation of various types of drying equipment.	13	2	1	16
Total Hours	60	12	6	78

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution		Total	
		R	U	А	Marks
CO-1	Heat Transfer By Conduction	03	01	01	05
CO-2	Heat Transfer By Convection	02	06	02	10
CO-3	Heat Transfer By Radiation and Heat	02	07	06	15
	Exchange Equipment				
CO-4	Molecular diffusion	02	07	06	15
CO-5 Drying and mass transfer operations		01	02	02	05
	Total	10	23	17	50

Legend:R: Remember,U: Understand,A: ApplyThe end of semester assessment for Process calculation will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- **2.** Tutorial
- **3.** Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- **8.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

	(a) Books:			
S.No.	Title	Author	Publisher	Edition&Year
1	Heat Transfer	Holman, J. P.	McGraw Hill	9th Edition, 2004
2	Process Heat Transfer	Kern, D.Q.	McGraw-Hill	1999
3	Heat Transfer - A Practical Approach	Cengel, Y.A.	McGraw-Hill	1998
4	Fundamentals of Heat and Mass Transfer	Incropera, F.P. and Dewitt, D.P.	John Wiley	5th Edition, 2002
5	Unit Operations in Chemical Engineering	McCabe, W.L., Smith, J.C., and Harriot, P.	McGraw-Hill	6thEdition,2001
6	Chemical Engineering- Vol. I	Coulson, J.M. and Richardson, J.F.	Asian Books Pvt. Ltd., India,	4th Edition, 1998
7	Mass Transfer Operations	Treybal, R.E.	McGraw Hill	1981
8	Holcim Training Manual			

9	FLS Training Manual
10	Lecture note provided by
	Dept. of Cement Technology, AKS University, Satna.

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- **11.** Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023) COs, POs and PSOs Mapping

Course Title: B. Tech Cement Tech

Course Code: PCC-CT204

Course Title: Heat Transfer & Mass Transfer

]	Progra	ım Ou	tcome	s				Pr	ogram Spe	ecific Outco	ome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
PCC-CT204.1: Explain different modes of heat transfer and Calculate heat transfer for one-dimensional steady state conduction in solids.	3	3	2	2	3	2	1	1	2	1	1	2	2	2	2	3
PCC-CT204.2: Explain and solve heat transfer by forced and natural convection.	2	3	3	2	1	2	1	1	1	1	2	2	2	2	2	2

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

PCC-CT204.3: Discuss and																
solve heat transfer by																
radiation.Analyze the	3	3	2	1	1	2	1	2	1	2	2	2	1	2	2	3
performance of heat exchange																
equipment.																
PCC-CT204.4: Find the																
mass transfer coefficient and	3	2	2	2	3	2	1	2	2	1	2	2	3	3	3	1
solve problems related to	5	-	-	-	5	-	-	-	-	1	-	-	5	5	5	-
interphase mass transfer.																
PCC-CT204.5: To find time																
required for drying and to																
understand the operation of	2	3	3	1	1	3	2	2	1	2	2	2	3	3	1	3
various types of drying																
equipment.																

Legend: 1 – Low, 2 – Medium, 3 – High

Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Heat Transfer & Mass Transfer

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning(SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT204.1: Explain different modes of heat transfer and Calculate heat transfer for one-dimensional steady state conduction in solids.	SO1.1 SO1.2 SO1.3		Unit-1: Heat Transfer By Conduction 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9,1.10,1.11,1.12	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT204.2: Explain and solve heat transfer by forced and natural convection.	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2: Heat Transfer By Convection 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT204.3: Discuss and solve heat transfer by radiation. Analyze the performance of heat exchange equipment.	SO3.1 SO3.2 SO3.3		Unit-3 : Heat Transfer By Radiation and Heat Exchange Equipment 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10 ,3.11,3.12,3.13,3.14	As mentioned in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT204.4: Find the mass transfer coefficient and solve problems related to interphase mass transfer.	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4 : Molecular diffusion 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10, 4.11,4.12	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT204.5: To find time required for drying and to understand the operation of various types of drying equipment.	SO5.1 SO5.2 SO5.3		Unit 5: Drying and mass transfer operations 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10 ,5.11,5.12,5.13	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-IV

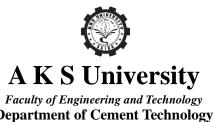
Course Code: PCC-CT203, PCC-CT203-L

Course Title: Thermodynamics

Pre-requisite: Student should have basic knowledge of physics and basic laws. Understanding concepts such as energy, heat and basic principles of chemical reactions is crucial.

Rationale: In cement technology, thermodynamics plays a crucial role in understanding the energy-related processes involved in the production of cement. It helps analyze the heat transfer, reactions, and overall energy efficiency within the system. Thermodynamics enables engineers to optimize the production process, ensuring cost-effectiveness and environmental sustainability by minimizing energy consumption and emissions. Additionally, a thorough understanding of thermodynamics aids in designing and controlling the various stages of cement production, ultimately influencing the quality and properties of the final product.

Course Outcomes:


- **PCC-CT203.1:** To understand the thermodynamic fundamentals before studying their application in applied thermodynamics.
- PCC-CT203.2: To determine the thermodynamic efficiency of different energy related processes.

PCC-CT203.3: To learn the device a technically feasible refrigerator for wide applications.

- **PCC-CT203.4:** To understand fundamental concepts related to vapor-liquid equilibrium including vapor pressure, boiling points and phase diagrams.
- **PCC-CT203.5:** To apply concepts related to thermodynamic properties of solutions such as entropy, enthalpy, and Gibbs free energy.

Scheme of Studies:

Course	Course	Course		Scheme of studies(Hours/Week)							
Course	Code	Title	CI	LI	SW	SL	Total Hours	Credits			
Category	Coue	IIIC	CI	LI	5 11	SL	(CI+LI+SW+SL)	(C)			
PCC	PCC-CT203	Thermodynamics	4	2	1	1	8	5			

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Legend:

CI: Classroom Instruction (Includes different in structional strategies i.e. Lecture (L) and Tutorial (T) and others), **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), **SW:** Sessional Work (includes assignment, seminar, mini project etc.), **SL:** Self Learning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

	J		Scheme of Assessment (Marks)							
			P			-				
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PCC	PCC-CT203	Thermodynamics	15	20	5	5	5	50	50	100

Practical

ory le		Ð		Scheme of Assessment (Marks) Progressive Assessment (PRA)					
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (LA)	VIVA (VV)	Class Attendance (TA)	Total Marks (LA+VV+ TA)	End Semester Assessment (ESA	Total Marks (PRA+ESA)	
PCC	PCC-CT203-L	Thermodynamics	35	10	5	50	50	100	

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT203.1: To understand the thermodynamic fundamentals before studying their application in applied thermodynamics.

Ap	proximate Hours
Item	AppX Hrs
CI	14
LI	6
SW	2
SL	1
Total	23

Session Outcomes	Laboratory	Classroom Instruction (CI)	Self-Learning
(SOs)	Instruction (LI)		(SL)
SO1.1: To understand	1. To verify the	Unit-1: Fundamental concepts in	i. Different
the basic terms of	Boyle's law.	thermodynamics	conditions of
thermodynamics.			equilibrium
SO1.2: To employ	2. To determine	1.1 Heat and Work	
application of zero and	Joule Thomson	1.2 Thermodynamic System and Processes	ii. Degree of
first law of	coefficient of	1.3 Zeroth law of Thermodynamics	Freedom for
thermodynamics.	Carbon dioxide	1.4 First law of Thermodynamics	different
SO1.3: To recognize		1.5 Joule's Experiment	processes used
different types of	3. To determine the	1.6 Internal Energy, State Functions,	in cement
thermodynamic	specific heat	Enthalpy	plant
equilibrium.	capacity of water	1.7 Steady-state Steady-flow Processes	
SO1.4: To solve the		1.8 Thermodynamic Equilibrium	
problems for specific		1.9 Phase rule, Reversible Processes	
heat at constant		1.10 Processes at Constant Volume and	
pressure and constant		Constant Pressure	
volume.		1.11 Heat Capacity	
SO1.5: To employ		1.12 Thermodynamics analysis of Control	
application of unsteady		Volume	
flow processes.		1.13 Unsteady Flow Processes	
		1.14 Charging and Discharging of Vessel	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Thermodynamics analysis of control volume.
- ii. Real life application for unsteady flow processes in cement plant.

b. Mini Project:

Specific applications for different steady-state steady-flow processes in cement plant.

c. Other Activities (Specify):

Difference between state function and path function.

PCC-CT203.2: To determine the thermodynamic efficiency of different energy related processes.

Ap	proximate Hours
Item	Appx. Hrs
CI	13
LI	6
SW	2
SL	1
Total	22

Session Outcomes	Laboratory	Classroom Instruction (CI)	Self-Learning
(SOs)	Instruction (LI)		(SL)
SO2.1: To understand	1. Experimental	Unit-2:Volumetric properties of pure	i. Ideal gas
Pressure-volume (P-V),	Measurement of P-	fluids and Thermal Effects	and Van der
Temperature-Volume	V-T data		Waals
(T-V) and Pressure-	Experiment.	2.1 P-T diagram	equation
Temperature (P-T)		2.2 P-V and T-V diagrams	
diagram for water.	2. Determination of	2.3 Ideal Gas, Virial Equation and its	ii. Correlations
	partial molar	applications	between
SO2.2: To differentiate	enthalpies by	2.4 Cubic Equations of State	gases and
between sensible heat	adiabatic	2.5 Generalized Correlations for Gases	liquids
and latent heat.	Calorimetry.	and Liquids	-
		2.6 Sensible heat and Latent heat	
SO2.3: To determine the	3. To measure the	2.7 Standard Heat of Formation, Heat	
heat of reaction, heat of	specific latent heat	of Reaction and Heat of	
formation and heat of	of vaporization	Combustion	
combustion.	using electric	2.8 Effect of the Temperature on Heat	
	method.	of Reaction	
SO2.4: To solve the		2.9 Second law of Thermodynamics,	
problems for		Statement of the second law	

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

determining the power	2.10 Heat Engines			
output and efficiency of	2.11 Carnot cycle			
heat engine.	2.12 Thermodynamic	Scale	of	
	Temperatures			
SO2.5: To analyze the	2.13 Entropy, Third	law	of	
entropy change for the	Thermodynamics			
system and				
surroundings.				

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Study the effect of temperature on heat of reaction.
- ii. Different processes for Carnot Heat Engine cycle and their P-V and T-S diagram.

b. Mini Project:

Discuss the application of Second law of thermodynamics for different processes used in cement plant.

c. Other Activities (Specify):

Describe the isotherms for cubic equation of state.

PCC-CT203.3: To learn the device a technically feasible refrigerator for wide applications.

Approximate Hours				
Item	Appx. Hrs			
CI	11			
LI	6			
SW	3			
SL	2			
Total	22			

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self- Learning	
(SOs)	(LI)	(CI)	(SL)	
SO3.1: To derive	1. To study refrigeration test	Unit-3: Thermodynamic	i. Fundamental	
Maxwell's equations from	ring and to study the	properties of pure fluids	relations for	
fundamental property	vapour compression		thermodynam	
relations of thermodynamic	refrigeration cycle.	3.1 Property relations for	ic properties	
properties.	2. To study the vapour	To study the vapour homogeneous phases		
SO3.2: To understand the	compression air	3.2 Maxwell's Equations	ii. Properties of	
working of Otto cycle and	of Otto cycle and conditioning cycle 3.3 Helmholtz Energy		substances at	
Diesel cycle for	3. To calculate the	3.4 Gibbs Energy as the	non-ideal gas	

Annuavimata Hauna

Page 312 of 734

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

conversion of heat into	Coefficient of	generating function	states.
power.	Performance (COP) of	3.5 Residual properties	
SO3.3: To calculate the	water to water Heat Pump	3.6 Two-phase systems	iii.P-H and T-S
values of thermodynamic		3.7 Tables and Diagrams of	diagram for
properties using steam		Thermodynamic	ideal vapor-
table.		properties of Gases and	compression
SO3.4: To determine the		Liquids	refrigeration
power requirement of		3.8 Otto cycle and its P-V, T-	cycle
compressor for vapor-		S diagram	
compression refrigeration		3.9 Diesel cycle and its P-V,	
system.		T-S diagram	
SO3.5: To analyze other		3.10 Refrigeration and	
thermodynamic properties		Liquefaction	
using Gibbs energy as a		3.11 Thermodynamic analysis	
generating function.		of Processes	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Derive the Clausius-Clapeyron equation for two-phase systems.
- Short notes on thermodynamic analysis of separation systems. ii.
- Application of Residual properties. iii.

b. Mini Project:

Describe the different methods for liquefaction of gases. Explain in detail about Linde process for gas liquefaction.

c. Other Activities (Specify):

Prove that decrease in the work function accompanying a process at constant temperature is equal to the reversible work done by the system during the process.

PCC-CT203.4: To understand fundamental concepts related to vapor-liquid equilibrium including vapor pressure, boiling points and phase diagrams.

Арр	Approximate Hours				
Item	Appx. Hrs				
CI	11				
LI	6				
SW	2				
SL	1				
Total	20				

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction (CI)	Self-Learning
(SOs)	Instruction (LI)		(SL)
SO4.1: To understand	1. Measurement of	Unit-4 :Introduction of Vapour-Liquid	
the qualitative	Vapor-Liquid	Equilibrium	i. T-x-y and P-x-y
behaviour of vapour-	Equilibrium		diagrams.
liquid equilibrium.	Data.	4.1 Qualitative Behaviour of Vapour-	
	2. Ebulliometric	Liquid Equilibrium (VLE)	ii. Minimum and
SO4.2: To recall	determination	4.2 Simple Models for Vapour-Liquid	maximum
Raoult's law and	of vapour	Equilibria: Raoult's and Henry's	boiling
Henry's law for their	pressure	Law	azeotrope.
application.	3. To determine the	4.3 Bubble Point calculations with	
	Vapor-Liquid	Raoult's Law	
SO4.3: To understand	Equilibrium	4.4 Dew point calculations with	
Bubble point and Dew	(VLE) curve	Raoult's Law	
point for different	for the CCl ₄ -	4.5 Steps for calculating bubble	
processes.	toluene	pressure, dew pressure, bubble	
	mixture	temperature and dew temperature	
SO4.4: To calculate the		4.6 Numerical problem for Bubble	
problems for bubble		pressure and Dew pressure	
temperature, dew		calculation	
temperature, bubble		4.7 Numerical Problem for Bubble	
pressure and dew		temperature and Dew temperature	
pressure.		calculation	
		4.8 VLE by Modified Raoult's law	
SO4.5: To understand		4.9 K-Value Correlations	
K-value correlations		4.10 Flash Calculations	
and Flash calculations.		4.11 Numerical Problem Based on K-	
		Value Correlations and Flash	
		Calculations	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Find out the expression of pressure for binary systems for dew point and bubble point calculation with Raoult's law.

ii. Write down the steps required for calculating flash calculation.

b. Mini Project:

Visit the cement plant, collect the data required for calculating the bubble and dew temperature for binary system of benzene and toluene.

c. Other Activities (Specify): Power Point Presentation to describe the qualitative behaviour of Vapor-liquid Equilibrium.

PCC-CT203.5: To apply concepts related to thermodynamic properties of solutions such as entropy, enthalpy, and Gibbs free energy.

Approximate Hours				
Item	Appx. Hrs			
CI	11			
LI	6			
SW	2			
SL 1				
Total	20			

Session Outcomes	Laboratory Instruction	Classroom Instruction (CI)	Self-Learning
(SO)	(LI)		(SL)
SO5.1: To derive	1. Measurement of	Unit 5: Solution Thermodynamics	1.Difference
fundamental property	activity coefficient at		between fugacity
relation for Gibbs Free	infinite dilution by	5.1 Fundamental Property Relation	and pressure
Energy	using gas	5.2 Chemical Potential and Phase	
SO5.2: To understand	chromatograph.	Equilibria	
equations relating		5.3 Partial properties	2. Use of
partial and molar	2. Ebulliometric	5.4 Equations relating partial and	Chemical
properties	determination of	molar properties	Potential
SO5.3: To determine	infinite dilution	5.5 Partial Properties in Binary	
the fugacity of pure	activity coefficient.	Solutions	
components	3. To calculate the partial	5.6 Fugacity, Fugacity of pure gases,	
SO5.4: To understand	molar volume of	Fugacity coefficient	
the heat effect of	sodium chloride	5.7 Determination of fugacity of pure	
mixing processes	solution.	component	
SO5.5 : To analyze the		5.8 Lewis-Randall Rule	
properties of ideal		5.9 Activity and Activity coefficient	
liquid solution using		5.10 Property change of mixing	
Lewis-Randall rule		5.11Excess properties	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Describe the Lewis-Randall equation for ideal liquid solution.

ii. Define fugacity coefficient for a pure component and a component in solution mixture.

- **b. Mini Project:** Visit the cement plant and analyze the excess properties related to cement production process.
- **c.** Other Activities (Specify): Power Point Presentation to describe the heat effect of mixing processes.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Laboratory	Sessional	Self	Total hour
	Lecture	Instruction	Work	Learning	(CI+SW+SL)
	(CI)	(LI)	(SW)	(SL)	
PCC-CT203.1: To understand the					
thermodynamic fundamentals before	14	6	2	1	23
studying their application in applied	14	0	2	1	23
thermodynamics					
PCC-CT203.2: To determine the					
thermodynamic efficiency of different	13	6	2	1	22
energy related processes					
PCC-CT203.3: To learn the device a					
technically feasible refrigerator for wide	11	6	3	2	22
applications.					
PCC-CT203.4: To understand					
fundamental concepts related to vapor-					
liquid equilibrium including vapor	11	6	2	1	20
pressure, boiling points and phase					
diagrams.					
PCC-CT203.5: To apply concepts related					
to thermodynamic properties of solutions	11	6	2	1	20
such as entropy, enthalpy, and Gibbs free	11	0	2	1	20
energy.					
Total Hours	60	30	11	6	107

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution			Total
		R	U	Α	Marks
CO-1	To understand the thermodynamic fundamentals before studying their application in applied thermodynamics	03	05	02	10
CO-2	To determine the thermodynamic efficiency of different energy related processes	02	06	02	10
CO-3	To learn the device a technically feasible refrigerator for wide applications.	02	07	01	10
CO-4	To understand fundamental concepts related to vapor- liquid equilibrium including vapor pressure, boiling points and phase diagrams.	02	04	04	10
CO-5	To apply concepts related to thermodynamic properties of solutions such as entropy, enthalpy, and Gibbs free energy.	02	05	03	10
	Total	11	27	12	50

Legend: R: Remember, U: Understand, A:Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration /Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition&Year
1	Introduction to Chemical Engineering Thermodynamics	J. M. Smith, H. C. Van Ness and M. M. Abbott	McGraw Hill Education	8 th Edition, 2019
2	Thermodynamics an engineering approach	Yunus A. Cengel and Michael A. Boles	McGraw Hill Education	5 th Edition, 2006
3	Chemical Engineering Thermodynamics	D. C. Sikdar	Khanna Publishers	1 st Edition, 2015
4	Chemical Engineering Thermodynamics-I	K. A. Gavhane	NiraliPrakashan	1 st Edition, 2016
5	Practical Thermodynamics: A Treatise on the Theory and Refrigeration Machinery, and Other Power-Plant Apparatus	Forrest E. Cardullo	Legare Street Press	2022

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Course Title: B. Tech Cement Tech

Course Code: PCC-CT203

Course Title: Thermodynamics

]	Progra	ım Ou	tcome	5				Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
PCC-CT203.1: To understand the thermodynamic fundamentals before studying their application in applied thermodynamics	3	3	2	2	3	2	1	1	2	1	1	2	2	2	2	3
PCC-CT203.2: To determine the thermodynamic efficiency of different energy related processes	2	3	3	2	1	2	1	1	1	1	2	2	2	2	2	2
PCC-CT203.3: To learn the device a technically feasible refrigerator for wide applications.	3	3	2	1	1	2	2	2	1	1	2	3	1	2	2	3
PCC-CT203.4: To understand fundamental concepts related to vapor- liquid equilibrium including	3	2	2	2	3	2	1	3	2	1	2	2	3	3	3	1

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

vapor pressure, boiling points and phase diagrams.															
PCC-CT203.5: To apply concepts related to thermodynamic properties of solutions such as entropy, enthalpy, and Gibbs free energy.	3	3	1	1	3	2	3	1	2	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023) Course Curriculum Map: Thermodynamics

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory	Classroom	Self
r US & r SUS NO.	COSNO.& Thies	505 110.	Instruction (LI)	Instruction(CI)	Learning(SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12	CO-1: To understand the thermodynamic fundamentals before studying their	SO1.1 SO1.2 SO1.3	1, 2, 3	Unit-1: Fundamental concepts in thermodynamics 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,	
PSO 1,2, 3, 4	application in applied thermodynamics	SO1.4 SO1.5		1.9,1.10,1.11,1.12,1.13,1.14	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: To determine the thermodynamic efficiency of different energy related processes.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5	1, 2, 3	Unit-2: Volumetric properties of pure fluids and Thermal Effects 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9, 2.10,2.11,2.12,2.13	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: To learn the device a technically feasible refrigerator for wide applications.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	1, 2, 3	Unit-3 : Thermodynamic properties of pure fluids 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10, 3.11	As mentioned in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: To understand fundamental concepts related to vapor-liquid equilibrium including vapor pressure, boiling points and phase diagrams.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	1, 2, 3	Unit-4 : Introduction of Vapour- Liquid Equilibrium 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10, 4.11	
PO:1,2,3,4,5,6, 7,8,9,10,11,12	CO-5: To apply concepts related to thermodynamic properties of solutions such as	SO5.1 SO5.2 SO5.3		Unit 5: Solution Thermodynamics 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10, 5.11	
PSO 1,2, 3, 4	entropy, enthalpy, and Gibbs free energy	SO5.4 SO5.5	1, 2, 3	5.11	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-IV

- Course Code: PCC-CT205
- Course Title: Raw Mix Design & Cement Chemistry
- **Pre-requisite:** Students should possess fundamental knowledge of the chemical and physical properties of raw materials used in cement production.
- **Rationale:** Students will be familiar with the process of proportioning cement raw materials for the production of Portland cement clinker. They will also comprehend how different minerals and chemical constituents affect the manufacturing process and the quality of cement clinker. Furthermore, students will gain an understanding of the chemistry of Portland cement minerals and their significance in the development of concrete strength.

Course Outcomes:

- **PCC-CT205.1:** Learn the Raw mix design prerequisites within the cement manufacturing process and perform calculations for different modulus values to ensure the production of quality clinker
- **PCC-CT205.1:** Comprehend the principles of phase behaviour in the formation of clinker minerals, including their morphology, distribution, and phase relationships.
- **PCC-CT205.1:** Determine the amount of clinker minerals from the Raw mix design and the formation of clinker phases. Additionally, grasp the thermo chemistry in formation of cement minerals.
- **PCC-CT205.1:** Gain insight into the significance of fluxes and mineralisers in the manufacturing of Portland cement clinker, as well as their impact on the burn ability mechanism.
- **PCC-CT205.1:** Understand the process of cement hydration and the contribution of clinker minerals to the development of strength in cement concrete.

Scheme of Studies:

Course	Course	Course		Scheme of studies(Hours/Week)						
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)		
PCC	PCC-CT205	Raw Mix Design & Cement Chemistry	4	0	1	1	8	4		

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), SW: Seasonal Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)									
				Progressive Assessment (PRA)								
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)		
PCC	PCC-CT205	Raw Mix Design & Cement Chemistry	15	20	5	5	5	50	50	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

PCC-CT205.1: Learn the Raw mix design prerequisites within the cement manufacturing process and perform calculations for different modulus values to ensure the production of quality clinker.

Approximate Hours						
Item	Appx. Hrs					
CI	13					
LI	0					
SW	2					
SL	2					
Total	17					

Approximate Hours

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
	Instruction (L1)		
SO1.1Understand the		Unit-1.0 Raw Mix Design and its	1. Chemical
Significance of Raw mix		role in Portland Cement	Properties of
Design in Clinker		Manufacture	various Cement
Manufacturing.		1.1 Importance of Raw mix in clinker manufacture	Raw materials
SO1.2 Estimation of		1.2 Chemical composition of various	2. Coal Ash
Moduli values		Raw materials for estimation of moduli values	constituents.
SO1.3 Estimation of Raw		1.3 Estimation of various moduli	3. Fundamentals of
mix design considering		values and liquid content	chemical phase
fuel ash content		1.4 Tutorial -1	rules
		1.5 Method of propositioning of Raw	
SO1.4. Proportioning of		materials	4. About Excel
cement raw materials and		1.6 Estimation of Raw mix design	Spreadsheet
optimization of Raw mix		considering fuel ash content	
design.		1.7 Estimation of moduli values	
		considering MgO and SO3	
SO1.5. Engaging in Raw		content of raw mix	
mix Design Calculations		1.8 Tutorial -2	
Using an Excel		1.9 Impact of moduli values on	
Spreadsheet		process of manufacture	
		1.10 Impact of Raw mix on	
		burnability of clinker	
		1.11 Impact of moduli values on	
		quality of clinker	
		1.12 Demonstrations on estimation of	
		moduli value on excel	
		spreadsheet. 1.13 Tutorial 3	
		1.13 1 utorial 3	

Page 324 of 734

SW-1 Suggested Sessional Work(SW):

a. Assignments:

Impact of LSF, SM and AM in the process and quality of Portland cement, Estimation of limestone consumption factor.

b. Mini Project:

Poster having formula for estimation of LSF, Silica Modulus ,Alumina Modulus and liquid content of the Raw Mix. Preparation Excel spread sheet for estimation of Modulai values of raw mix.

c. Other Activities (Specify):

Composition of Fuel Ash and its impact of modular value of ram mix.

PCC-CT205.2: Comprehend the principles of phase behaviour in the formation of clinker minerals, including their morphology, distribution, and phase relationships.

Approximate Hours						
Item	Appx. Hrs					
CI	13					
LI	0					
SW	2					
SL	1					
Total	16					

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO2.1 Understand the phase		Unit-2 Phase Rule and Portland	i. Drawing of
rules		Cement clinker Phases	various phase
			diagrams.
SO2.2 Understand the phase		2.1 Introduction to phase rule,	Ii. composition of
rule of CaO-SiO2 and		2.2 phase diagram CaO-SiO ₂	clinker minerals
formation of belie and elite		system,	
clinker minerals		2.3 CaO-Al ₂ O ₃ system,	
		2.4 CaO-SiO ₂ -Al ₂ O ₃ System,	
SO2.3 Understand the phase		$2.5 CaO-SiO_2-Al_2O_3- Fe_2O_3$	
rule of CaO-SiO2-Al2O3		system:	
phases and formation of		2.6 Tutorial -1	
Cacium aluminate		2.7 Alite, Belite, Aluminate and	
		Ferrite phase,	
SO2.4 Understand the phase		2.8 Effect of MgO on equilibrium	
rule of CaO- Al2O3 – Fe2O3		CaO Al_2O_3 - Fe_2O_3 - SiO_2	
phases and formation of		System,	
Cacium alumino ferrite		2.9 Size Shape distribution of	
minerals (C4AF)		clinker minerals.	

Page 325 of 734

	2.10 Tutorial -2
SO2.5 Study the	2.11 polymorphism, properties
polymorphism property of	cement component and their
Clinker mineral and eutectic	phase relation,
points	2.12 Binary and ternary compounds
	of cement and formation of
	eutectic.
	2.13 Tutorial -3

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Properties of Clinker mineral,
- ii. Role of MgO in phase formation
- **b.** Mini Project: Draw the phase diagram of i. CaO-SiO₂, ii. CaO-Al₂O₃ iii. CaO-Al₂O₃- F_2O_3

c. Other Activities (Specify): Size and distribution of clinker minerals and their impact on cement manufacture

PCC-CT205.3: Determine the amount of clinker minerals from the raw mix design and the formation of clinker phases. Additionally, grasp the thermo chemistry in formation of cement minerals.

Approximate Hours						
Item	Appx. Hrs					
CI	11					
LI	0					
SW	2					
SL	1					
Total	14					

Session Outcomes	Laboratory	Classroom Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO3.1: Methods of	•	Unit-3 :Estimation of Clinker Minerals by	I. Properties of
estimation of clinker		Boug's methods and role of miner	clinker minerals
minerals.		constituents	II. Miner Minerals
SO3.2: Estimation of		3.1 Bauge's calculation for estimation of	present in the
C3S,C2S,C3A and C4AF		minerals in Portland cement clinker	raw meal and
% in clinker for		3.2 Estimation of C ₃ S with example	coal
particular Raw mix		3.3 Estimation of C ₂ S with example	
SO3.3: Thermochemical		3.4 Estimation of C_3A and C_4AF with	
Reaction occurred during		example	
clinker formation		3.5 Tutorial -1	

Page 326 of 734

SO3.4: Role of miner	3.6 Absorption of constituents in clinker
constituents in formation	phases,
of clinker minerals	3.7 Chemical reaction during clinkerisation,
SO3.5: Formation of free	3.8 Role of minor constituents in
lime and role of MgO in	clinkerization,
clinker mineral formation	3.9 Thermo chemistry of clinker formation.
	3.10 Role of MgO in clinker formation and
	control in formation of periclase.
	3.11 Tutorial -2

SW-3 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Write the formula for estimation of C_2S , C_3S , C_3A , C_4AF .
 - ii. Write the role of MgO in clinker formation.
 - iii. iii. Measure to control in formation in clinker.
- b. Mini Project: Physical and chemical properties of Clinker minerals poster

PCC-CT205.4: Gain insight into the significance of fluxes and mineralisers in the manufacturing of Portland cement clinker, as well as their impact on the burnability mechanism.

Approximate Hours								
Item	Appx. Hrs							
CI	11							
LI	0							
SW	2							
SL	1							
Total	14							

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO4.1Role of additives		Unit-4: Role of Fluxes Mineraliser	
in clinker formation		in clinker formation	i. Types of
SO4.2Use of mineralizer			mineralizer
in clinker manufacture		4.1 Role of additive in clinker	used in Portland
SO4.3Estimation of		formation,	clinker
Burnability index and		4.2 Types of fluxes used for	manufacture.
evaluation of burnability		manufacture of Portland clinker,	
of clinker.		and its role	
SO4.4Build-up and		4.3 Types of mineraliser used for	ii. Effect of
coating formation cause		clinker manufacture and its role in	mineralizer on
and remedial measure		process.	property of

Page 327 of 734

SO4.5 Advantages	4.4 Tutorial -1	clinker
and disadvantages of	4.5 Clinker burnabilty, Burnability	
use of mineralizer in	Index.	
clinker formation.	4.6 Procedure to evaluate the	
	burnability of Clinker (liter weight)	
	4.7 Coating formation in	
	manufacturing process its cause	
	4.8 Tutorial -2	
	4.9 Estimation of liquid content in	
	various temp,	
	4.10 Advantages and disadvantages of	
	use of mineraliser in clinker	
	manufacture.	
	4.11 Tutorial -3	

SW-4: Suggested Sessional Work (SW):

Assignments:

- **i.** Mineralizer used in clinker manufacture and its effect on properties of clinker mineral and process of manufacture.
- ii. Burnability of clinker
- **iii.** Build-up coating formation in clinker manufacturing process.

Mini Project: Figure showing build-up coating in cement kiln

PCC-CT205.5: Understand the process of cement hydration and the contribution of clinker minerals to the development of strength in cement concrete.

Approximate Hours								
Item Appx. Hrs								
CI	12							
LI	0							
SW	2							
SL	1							
Total	15							

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction (CI)	Self-Learning
(SOs)	Instruction		(SL)
	(LI)		
SO5.1: Hydration		Unit 5: Portland Cement Hydration:	
Mechanism of C2S and			
C3S in strength		4.1 Hydration of calcium silicate phases	i. Clinker
development of		& Structural model of C-S-H gel	minerals and its
Portland cement		4.2 Hydration of C3A, C4AF	properties
concrete and mortar		4.3 Hydration products of Portland	
SO5.2: Hydration		cement and strength development	
mechanism of C3A and		in concrete and mortar	ii. Chemical
C4AF of Portland		4.4 Tutorial -1	composition of
cement clinker.		4.5 Role of gypsum in cement hydration	pozzolanic
SO5.3: Role of Gypsum		process	materials used
in cement hydration		4.6 Factors that affect the hydration	for Portland
SO5.4: Portland cement		process of Portland cement.	cement
hydration product and		4.7 Hydration of Portland cements at	manufacture
role on hydration		high and low temperature.	
process.		4.8 Tutorial 2	
SO5.5: Hydration of		4.9 Hydration chemistry of fly Ash	
blended and		cement.	
composite cement.		4.10 Hydration of blended and	
		composite cement	
		4.11 Overview of hydration reaction	
		(strength development)	
		4.12 Tutorial -3	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Chemical and physical properties of clinker minerals fly Ash and GGBF Slag, Hydration mechanism and strength Development

b. Mini Project:

Type of Ash produced in thermal power plant, manufacturing process Granulated Slag in steel plant

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self-	Total hour
	Lecture	Work (SW)	Learning	(CI+SW+SL)
	(CI)		(SL)	
PCC-CT205.1: Learn the Raw mix design prerequisites				
within the cement manufacturing process and perform	13	2	1	16
calculations for different modulus values to ensure the	15	2	1	10
production of quality clinker.				
PCC-CT205.2: Comprehend the principles of phase				
behavior in the formation of clinker minerals, including	13	2	1	16
their morphology, distribution, and phase relationships.				
PCC-CT205.3: Determine the amount of clinker minerals				
from the Raw mix design and the formation of clinker	11	2	1	14
phases. Additionally, grasp the thermo chemistry in	11	2	1	14
formation of cement minerals.				
PCC-CT205.4: Gain insight into the significance of fluxes				
and mineralizers in the manufacturing of Portland cement	11	2	1	14
clinker, as well as their impact on the burnability	11	2	1	14
mechanism				
PCC-CT205.5: Understand the process of cement				
hydration and the contribution of clinker minerals to the	12	2	1	15
development of strength in cement concrete.				
	60	10	5	75
Total Hours	00	10	5	15

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Mar	Total		
		R	U	Α	Marks
CO-1	Unit-1: Raw Mix Design and its role in Portland Cement Manufacture	02	03	02	07
CO-2	Unit-2: Phase Rule and Portland Cement clinker Phases		08	02	10
CO-3	Unit-3 : Estimation of Clinker Minerals by Boug's methos and role of miner constituents	01	06	04	11
CO-4	Unit-4: Role of Fluxes Mineraliser in clinker formation	-	08	07	15
CO-5	Unit 5: Portland Cement Hydration	-	03	004	07
	Total	03	28	19	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture, Tutorial
- **2.** Case Method
- **3.** Group Discussion, Role Play
- **4.** Visit to cement plant
- 5. Demonstration
- **6.** ICT Based Teaching Learning (Video Demonstration /Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 7. Brainstorming

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition & Year
1	Chemistry Of Cement And Concrete	F M Le	Chemical Publishing Co Inc, US	Revised edition 21 edition 2020
2	Cement Chemistry	F W Taylor	Academic Press	2 nd Edition, 1990
3	Cement Data Book:	W. H Duda	French & European Pubns	1999
4	Norms For Limestone Exploration For Cement Manufacture	National Council for Cement and Building Materials	National Council for Cement and Building Materials	1985
5	Cement Production Principle and Practice	A K Chatterjee		2018
6	Holcim Training Manual	1		
7	FLS Training Manual			

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Course Title: B. Tech. Cement Tech

Program Code: PCC-CT205

Course Title: Raw Mix Design & Cement Chemistry

					I	Pr	Program Specific Outcome									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
PCC-CT205.1: Learn the Raw mix design prerequisites within the cement manufacturing process and perform calculations for different modulus values to ensure the production of quality clinker.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
PCC-CT205.2: Comprehend the principles of phase behavior in the formation of clinker minerals, including their morphology, distribution, and phase relationships.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1

Faculty of Engineering and Technology **Department of Cement Technology**

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

PCC-CT205.3: Determine the amount of clinker minerals from the Raw mix design and the formation of clinker phases. Additionally, grasp the thermo chemistry in formation of cement minerals.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
PCC-CT205.4: Gain insight into the significance of fluxes and mineralizers in the manufacturing of Portland cement clinker, as well as their impact on the burnability mechanism	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
PCC-CT205.5: Understand the process of cement hydration and the contribution of clinker minerals to the development of strength in cement concrete.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Raw Mix Design & Cement Chemistry

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PCC-CT205.1: Learn the Raw mix design prerequisites within the cement manufacturing process and perform calculations for different modulus values to ensure the production of quality clinker.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Raw Mix Design and its role in Portland Cement Manufacture 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9,1.10,1.11,1.12,1.13	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PCC-CT205.2: Comprehend the principles of phase behavior in the formation of clinker minerals, including their morphology, distribution, and phase relationships.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2: Phase Rule and Portland Cement clinker Phases 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12,2.13	As mentioned, in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PCC-CT205.3: Determine the amount of clinker minerals from the Raw mix design and the formation of clinker phases. Additionally, grasp the thermo chemistry in formation of cement minerals.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Estimation of Clinker Minerals by Boug's methos and role of miner constituents 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10 3.11	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PCC-CT205.4: Gain insight into the significance of fluxes and mineralizers in the manufacturing of Portland cement clinker, as well as	SO4.1 SO4.2 SO4.3		Unit-4: Role of Fluxes Mineraliser in clinker formation 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

	their impact on the burnability mechanism	SO4.4 SO4.5	4.11
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PCC-CT205.5: Understand the process of cement hydration and the contribution of clinker minerals to the development of strength in cement concrete.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	Unit 5: Portland Cement Hydration 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10 5.11,5.12

Semester-IV

Course Code:	PCC-CT206
Course Title:	Size Reduction and Comminution Engineering
Pre-requisite:	Student should have fundamental understanding of mineral processing, grinding systems and particle size reduction. Additionally, students should familiarize with cement production processes and relevant technologies.
Rationale:	Comminution processes significantly impact energy consumption in cement manufacturing. Efficient comminution engineering helps minimize energy usage, contributing to sustainability and cost-effectiveness. Controlling particle size is essential for achieving desired cement properties. Comminution engineering ensures precise control over the size distribution of raw materials, influencing the final product's strength and characteristics. By optimizing comminution processes, it's possible to minimize waste and emissions associated with cement production. This contributes to environmentally friendly practices and compliance with regulatory standards.
0 0 1	

Course Outcomes:

PCC-CT206.1: To understand the fundamental principles underlying size reduction processes in cement manufacturing.

PCC-CT206.2: To understand the principles and functionality of separators used in cement plants. Additionally, to understand and analyze various techniques for particle size analysis.

PCC-CT206.3: To learn how to select and apply tube mills, roller mills and raw grinding systems based on raw material characteristics and production requirements.

PCC-CT206.4: To learn various strategies for pre-blending raw materials, considering factors such as chemical composition, particle size distribution and physical properties.

PCC-CT206.5: To analyze various homogenization techniques and equipments used in cement plants such as silos, blending beds and automated systems.

Scheme of Studies:

Course	Course	Course	Scheme of studies(Hours/Week)				Total	
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
PCC	PCC-CT206	Comminution Engineering	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

		Scheme of Assessment (Marks)						arks)		
			Progressive Assessment (PRA)							
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PCC	PCC-CT206	Comminution Engineering	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT206.1: To understand the fundamental principles underlying size reduction processes in cement manufacturing.

	Approximate Hours
Item	Appx. Hrs
CI	13
LI	0
SW	2
SL	1
Total	16

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1.1: To understand how to		Unit-1: Size Reduction	i. Applications
apply comminuting laws in the		(Crushing)	of Size
selection and optimization of size		1.1 Concept and	Reduction in
reduction equipments such as		Importance of Size	cement plants
crushers and mills within the		Reduction	
cement plant.		1.2 Laws of Size	ii. Concept of
SO1.2: To learn the techniques		Reduction: Rittinger's	reduction ratio
and procedures for measuring the		Law and Kick's Law	for crushers.
Hardgrove Grindability Index.		1.3 Bond's Law and Work	
SO1.3: To understand the		Index	
specific applications of each		1.4 Hardgrove Index	
crusher type in the cement		1.5 Crushing Efficiency	
industry, including their roles in		1.6 Crushing Stages	
the crushing and size reduction		1.7 Gyratory crusher	
of raw materials.		1.8 Cone and Jaw crushers	
SO1.4: To learn how material		1.9 Roller and Impact	
characteristics influence the		crushers	
selection of the appropriate		1.10 Mobile Crushing Plant,	
mobile crushing plant for a given		Semi Mobile Crusher	
application.		1.11 Closed Circuit	
SO1.5: To Understands how		Crushing	
closed-circuit systems contribute		1.12 Choke or Regulated	
to efficiency and throughput,		Crushing	
optimizing the overall material		1.13 Selection of Crusher	
processing workflow.		System	

SW-1 Suggested Sessional Work(SW):

a. Assignments:

- i. Explain the working operation of vibrating screen with diagram.
- ii. Define Hardgrove Grindability Index (HGI). Describe the procedure of its measurement.

b. Mini Project:

Discuss about different factors for selecting a crusher system:

(a) Characteristics of the material, (b) Capacity, (c) Product size, (d) Quarry equipment

c. Other Activities(Specify):

Prepare the power point presentation on the working of mobile crushing plant.

PCC-CT206.2: To understand the principles and functionality of separators used in cement plants. Additionally to understand and analyze various techniques for particle size analysis.

Ap	Approximate Hours			
Item	Appx. Hrs			
CI	13			
LI	0			
SW	2			
SL	1			
Total	16			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO2.1: To understand the principles of separation employed by static separators, including the separation of particles based on size, density and other relevant factors. SO2.2: To learn about different types of dynamic separators, including high-efficiency separators, air classifiers and other designs commonly used in cement plants. SO2.3: To understand how sieve analysis contributes to quality assurance in raw materials, facilitating 	(LI)	 (CI) Unit-2:Separators and Particle Size Analysis 2.1 Cyclone separator 2.2 Grit separator 2.3 VS Separator 2.4 Dynamic Separators 2.5 Closed grinding circuit 2.6 Separator efficiency 2.7 Sieve analysis 	(SL) i.Difference between ideal and actual screen ii.Mass balance for closed grinding circuit
effective blending and pre-blending strategies.		2.8 Sphericity2.9 Screening and	

SO2.4: To learn different types of	Classification of
screens used in cement plants such as	screens
vibrating screens, trammel screens and	2.10 Grizzlies and
other designs, understanding their	Trommel screens
specific functions.	2.11 Gyratory and
SO2.5: To understand and analyze the	Vibrating screens
key factors that influences the screen	2.12 Screen Capacity
capacity and effectiveness.	2.13 Screen Efficiency

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Find the sphericity of cuboid whose length is 1 mm, breadth is 2 mm and height is 3 mm.

ii.Describe the principle of operation and application for cyclone separator.

b. Mini Project:

Find out the Fineness Modulus (FM) for different IS sieves to analyze the sieve analysis of fine aggregate.

c. Other Activities (Specify):

Prepare the power point presentation on the working of vibrating screen with diagram.

PCC-CT206.3: To learn how to select and apply tube mills, roller mills and raw grinding systems based on raw material characteristics and production requirements.

Ap	Approximate Hours			
Item	Appx. Hrs			
CI	11			
LI	0			
SW	2			
SL	1			
Total	14			

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1: To understand the	•	Unit-3 :Tube Mill, Roller Mill	i. Critical speed of
principles of material grinding		and Raw Grinding System	tube mill
within tube mill, focusing on the			
impact of grinding media and the		3.1 Dimensions and Operation	ii.Design features
resulting particle size reduction.		for tube mill	for different
SO3.2: To understand the		3.2 Filling Degree for tube mill	suppliers of
function of roller mill, including		3.3 Weight of grinding media	roller mills

Page 341 of 734

		·
their role in grinding and milling	and mill speed for tube mill	
processes for various materials.	3.4 Driving Power for tube	
SO3.3: To understand the	mill	
principles of material grinding	3.5 Roller Mill: Introduction	
within the end discharge and air	and Function	
swept mills, emphasizing the	3.6 Roller Mill Design	
interaction between grinding	3.7 Roller Mill: Operational	
elements and the resulting	Aspects and Performance	
particle size reduction.	3.8 Manufacture and Suppliers	
SO3.4: To learn how to conduct	of Roller Mills	
a comparative analysis of	3.9 Raw grinding system with	
different roller mill suppliers,	end discharge/ Gravity	
considering factors such as cost,	Discharge mill	
delivery time, warranty and	3.10 Raw grinding system with	
after-sales support.	air swept mill	
SO3.5: To understand the	3.11Comparison among vertical	
principles of operation for roller	roller mill, ball mill and	
presses, emphasizing their role in	roller press	
material grinding and	-	
compaction.		

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain the working principle of Vertical Roller Mill (VRM) with neat and clean diagram.
- ii. Describe the working of raw grinding system with air swept mill.

b. Mini Project:

Describe the operational aspects for grinding and separation of roller mill.

c. Other Activities (Specify):

Prepare the power point presentation on the working of roller press with diagram.

PCC-CT206.4: To learn various strategies for pre-blending raw materials, considering factors such as chemical composition, particle size distribution and physical properties.

Approximate Hours											
Item	Appx. Hrs										
CI	11										
LI	0										
SW	2										
SL	1										
Total	14										

Session	Laboratory	Classroom	Self
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
SO4.1: To understand the key		Unit-4 :Pre-blending	
components of pre-blending		of Raw materials	i. Pile geometry for
systems such as			longitudinal pre-
stacker/reclaimer systems,		4.1 Introduction of Pre-	blending.
blending beds and associated		blending	
equipment, explaining their role		4.2 Homogenizing	ii. Automatic
in the process.		Efficiency of Pre-	storage pre-
SO4.2: To understand the		blending	blending system
principles behind longitudinal		4.3 Longitudinal Pre-	concept.
pre-blending, including the		blending - Stacking	
systematic layering of materials		Method	
and the utilization of		4.4 Longitudinal Pre-	
stacker/reclaimer systems for		blending –	
consistent blending.		Reclaiming Method	
SO4.3: To understand the		4.5 Circular Pre-	
principles behind circular pre-		blending System	
blending, emphasizing the		4.6 Materials	
circular motion of		Segregation in Pre-	
stacker/reclaimer systems and		blending	
its impact on material		4.7 Pre-blending layouts	
homogeneity.		for parallel stockpile	
SO4.4: To recognize the		4.8 Pre-blending layouts	
importance of site analysis and		for inline stockpile	
planning in determining the		4.9 Pre-blending layouts	
optimal location and layout for		for circular stockpile	
pre-blending systems within the		4.10Pre-blending layouts	
cement plant.		for Homogenizing	
SO4.5: To understand the		pit	
various applications of pre-		4.11Pre-blending	

Page 343 of 734

blending	in	cement
manufacturing	and	its role in
optimizing	raw	material
composition.		

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Describe Chevron and Windrow stacking with diagram.
- ii. Discuss about material segregation in the pre-blending system

b. Mini Project:

Describe the advantages and disadvantages of pre-blending layouts for parallel stockpile, inline stockpile, circular stockpile and homogenizing pit.

c. Other Activities (Specify):

Prepare the power point presentation for different stacking and reclaiming machines of longitudinal pre-blending.

PCC-CT206.5: To analyze various homogenization techniques and equipments used in cement plants such as silos, blending beds and automated systems.

Item	Appx. Hrs
CI	12
LI	0
SW	2
SL	1
Total	15

Session	Laboratory	Classroom	Self		
Outcomes	Instruction	Instruction	Learning		
(SOs)	(LI)	(CI)	(SL)		
SO5.1: To understand the key		Unit 5: Blending &	1.General		
components and equipments involved		Homogenization	composition of		
in blending and homogenization.		5.1 Introduction of	cement raw		
SO5.2: To understand the principles		blending and	materials		
of operation for each types of		homogenization			
homogenizing silo, emphasizing how		5.2 Reactivity of raw mix	2.Reasons for the		
their design contributes to the		5.3 Preparation of cement	necessity of		
homogenization of raw materials.		raw meal as per raw	blending and		
SO5.3: To understand the fundamental		mix design	homogenization in		
principles underlying blending beds,		5.4 Methods of	modern cement		
emphasizing the layering and		homogenization;	plants		

reclaiming processes that contribute to	Fuller's one-eight
material mixing.	blending method
SO5.4: To understand the fundamental	5.5 Basics of
principles underlying batch	homogenization silos
homogenization, highlighting the	5.6 Fluidized
process of mixing and blending	homogenizing systems
materials in discrete batches	5.7 Continuous blending
SO5.5: To understand the fundamental	silos
principles underlying continuous	5.8 Multi pack systems
homogenization, emphasizing the	5.9 Stacking of blending
uninterrupted and steady blending of	beds
materials in a continuous flow.	5.10 Blending bed theory
	5.11Batch homogenization
	5.12Continuous
	homogenization

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Discuss the advantages of blending bed as an intermediate storage and as a raw material homogenization unit.
- ii. Describe the Fuller's one-eight blending method with diagram.
- b. Mini Project:

Explain in detail about continuous, alternate and axial stockpiling for cement plants.

c. Other Activities (Specify):

Prepare the power point presentation for working of batch and continuous homogenization.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (CI+SW+SI)
PCC-CT206.1: To understand the fundamental principles underlying size reduction processes in cement manufacturing.	13	2	1	16
PCC-CT206.2: To understand the principles and functionality of separators used in cement plants. Additionally, to understand and analyze various techniques for particle size analysis.	13	2	1	16
PCC-CT206.3: To learn how to select and apply tube mills, roller mills and raw grinding systems based on raw material characteristics and production requirements.	11	2	1	14
PCC-CT206.4: To learn various strategies for pre- blending raw materials, considering factors such as	11	2	1	14

chemical composition, particle size distribution and physical properties.				
PCC-CT206.5: To analyze various homogenization techniques and equipments used in cement plants such as silos, blending beds and automated systems.	12	2	1	15
Total Hours	60	10	5	75

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks	Total		
co	Unit Thes	R	U	Α	Marks
CO-1	Unit-1: Size Reduction (Crushing)	04	05	01	10
CO-2	Unit-2: Separators and Particle Size Analysis	02	06	02	10
CO-3	Unit-3: Tube Mill, Roller Mill and Raw Grinding System	02	06	02	10
CO-4	Unit-4: Pre-blending of Raw materials	03	05	02	10
CO-5	Unit 5: Blending & Homogenization	03	04	03	10
Total		14	26	10	50
Legend:	R: Remember, U: Understand,	A: A	pply	•	

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- **6.** Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)

Page 346 of 734

9. Brainstorming

Suggested Learning Resources:

	(a) Books:			
S.No.	Title	Author	Publisher	Edition&Year
1	Cement Engineers Hand Book	B. Kolhaans and	Intl Public Service	4 th Edition,
		Otto Labahn		1982
2	Cement Data Book	W. H. Duda	Bauverlag GmbH,	1999
			Berlin	
3	Cement Production Technology	Anjan Kumar	CRC Press, London	1 st Edition,
	Principle and practice	Chatterjee		2018
4	Innovations in Portland Cement	J. I. Bhatty, F. M.	Portland Cement	2 nd Edition,
	Manufacturing	Miller, R. P. Boahn	Association	2011
5	Unit Operations – I: Fluid Flow	K. A. Gavhane	NiraliPrakashan	26 th Edition,
	And Mechanical Operations			2015
6	Operational Norms for cement		NCCBM publication	5 th Edition,
	plant			2004

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Course Title: B. Tech Cement Tech Program Code: PCC-CT206

Course Title: Size Reduction and Comminution Engineering

	Program Outcomes									Pr	Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
PCC-CT206.1: To understand the fundamental principles underlying size reduction processes in cement manufacturing.	3	3	2	2	3	2	1	1	2	1	1	2	2	2	2	3
PCC-CT206.2: To understand the principles and functionality of separators used in cement plants. Additionally to understand and analyze various techniques for particle size analysis.	2	3	3	2	1	2	1	1	1	1	2	2	2	2	2	2
PCC-CT206.3: To learn how to select and apply tube mills,	3	3	2	1	1	2	2	2	1	1	2	3	1	2	2	3

Faculty of Engineering and Technology **Department of Cement Technology**

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

roller mills and raw grinding systems based on raw																
material characteristics and																
production requirements.																
PCC-CT206.4: To learn																
various strategies for pre-																
blending raw materials,																
considering factors such as	3	2	2	2	3	2	1	3	2	1	2	2	3	3	3	1
chemical composition,																
particle size distribution and																
physical properties.																
PCC-CT206.5: To analyze																
various homogenization																
techniques and equipments	2	3	3	1	1	3	2	3	1	2	2	2	3	3	1	3
used in cement plants such as	4	5	3			5	2	5	1	4	2	2	5	5	1	5
silos, blending beds and																
automated systems.																

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology **Department of Cement Technology**

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Course Curriculum Map: Size Reduction and Comminution Engineering

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12	PCC-CT206.1: To understand the fundamental principles underlying size reduction processes in cement	SO1.1 SO1.2 SO1.3		Unit-1: Size Reduction (Crushing) 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,	
PSO 1,2, 3, 4, 5	manufacturing.	SO1.4 SO1.5		1.11,1.12,1.13	
PO 1,2,3,4,5,6 7,8,9,10,11,12	PCC-CT206.2: To understand the principles and functionality of separators used in cement plants. Additionally to understand and analyze various techniques	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2: Separators and Particle Size Analysis 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,	
PSO 1,2, 3, 4, 5	for particle size analysis.	SO2.5		2.10,2.11,2.12,2.13	
PO 1,2,3,4,5,6 7,8,9,10,11,12	PCC-CT206.3: To learn how to select and apply tube mills, roller mills and raw grinding systems based on raw material	SO3.1 SO3.2 SO3.3		Unit-3 : Tube Mill, Roller Mill and Raw Grinding System 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10	As mentioned n above pages
PSO 1,2, 3, 4, 5	characteristics and production requirements.	SO3.4 SO3.5		3.11	above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12	PCC-CT206.4: To learn various strategies for pre-blending raw materials, considering factors such as chemical	SO4.1 SO4.2 SO4.3		Unit-4 : Pre-blending of Raw materials 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,	
PSO 1,2, 3, 4, 5	composition, particle size distribution and physical properties.	SO4.4 SO4.5		4.11	
PO 1,2,3,4,5,6 7,8,9,10,11,12	PCC-CT206.5: To analyze various homogenization techniques and equipment used in cement plants such as	SO5.1 SO5.2 SO5.3		Unit 5: Blending & Homogenization 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10, 5.11,5.12	
PSO 1,2, 3, 4, 5	silos, blending beds and automated systems.	SO5.4 SO5.5			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-IV

Course Code: PCC-CT207

Course Title : Geology and Mining of Limestone

Pre- requisite: Student should have basic knowledge of Geology, Chemistry and Statistics.

Rationale: Limestone is the primary raw material for Portland cement manufacture, making knowledge of its quality and quantity crucial for a cement plant's success. This course aims to provide comprehensive knowledge of the geology of limestone deposits, including the quality and assessment of cement-grade limestone deposits. It details the origin, geographical, and geological distribution of limestone deposits in India, along with basic limestone mining methods. The course covers the quantitative assessment of limestone deposits and describes both conventional and advanced surface mining technologies, including computer-aided deposit evaluation and mine planning. Additionally, the syllabus offers insights into maintaining consistent pit-head limestone quality to ensure uniformity in cement production. Understanding these aspects is essential for the efficient and successful operation of a Portland cement plant.

Course Outcomes:

PCC-CT207.1:	Gain fundamental	knowledge	of	geology,	rock	formation	processes,	including
	limestone, and its d	istribution in	Ind	ian stratig	raphy.			

- **PCC-CT207.2:** Understand the physical and chemical properties of cement-grade limestone, along with the classification of limestone deposits.
- **PCC-CT207.3:** Explore the geographical distribution of cement-grade limestone in India, its properties, and its influence on cement quality and manufacturing processes.
- **PCC-CT207.4:** Acquire knowledge of exploration and evaluation techniques for limestone deposits, including deposit modeling and UNFC classification.
- **PCC-CT207.5:** Learn about basic surface mining techniques, Computer-Aided Deposit Evaluation and Mine Planning, mine production scheduling, pit-head quality control, and the procedures for approving mining plans.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Scheme of Studies:

Course Course		Course	Scheme of studies(Hours/Week)					Total
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
PCC	PCC-CT207	Geology and Mining of Limestone	4	0	1	1	6	4

- Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.
- **Note:** SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Theory										
			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)							
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PCC	PCC-CT207	Geology and Mining of Limestone	15	20	5	5	5	50	50	100

Scheme of Assessment:

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Page 352 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PCC-CT207.1: Gain fundamental knowledge of geology, rock formation processes, including limestone, and its distribution in Indian stratigraphy.

Appr	oximate Hours
Item	Appx. Hrs
CI	14
LI	0
SW	2
SL	1
Total	17

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO1.1: Understand the geology of the Earth and rock formation processes. SO1.2: Acquire knowledge of limestone deposit formation and the sand-clay-carbonate system. SO1.3: Gain an overview of structural geology and its significance. SO1.4: Explore the geological time scale and the history of rock formation. SO1.5: Study the distribution and availability of cement-grade limestone in Indian stratigraphy.		 . Unit -1: Introduction to Geology of Limestone : Importance of geology in the mineral processing industry Structure of the Earth and composition of the lithosphere Chemical composition of the Earth, lithosphere, and Portland cement Basics of global plate tectonics Rock classification: igneous, sedimentary, and metamorphic Tutorial -1 Geological processes and rock formation Formation and diagenesis of limestone deposits Classification of limestone Tutorial -2 Sand-clay-carbonate system. Overview of structural geology: dip, strike, fold, fault, joint, and unconformities Geological time scale and distribution of cement-grade limestone in Indian stratigraphy. 	 Geology of earth formation Types of Rock and rock forming minerals

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. . Origin and distribution of limestone deposits in India
- ii. Geological time scale and the distribution of limestone in Indian stratigraphy
- iii. Classification of limestone deposits
- iv. Overview of structural geology and its importance

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Mini Project:

Marking of major limestone belts in India map

PCC-CT207.2: Understand the physical and chemical properties of cement-grade limestone, along with the classification of limestone deposits.

Ap	Approximate Hours					
Item	Appx. Hrs					
CI	10					
LI	0					
SW	2					
SL	1					
Total	13					

Session Outcomes	Laboratory	Class room Instruction (CI)	Self-Learning
	Instruction		(SL)
	(LI)		
SO2.1: Understand the		Unit -2 : Characteristic Cement Grade	
characteristics of		Limestone :	
cement-grade		1. Physical and chemical characteristic of	
limestone.		cement grade limestone,	1. Mineral
SO2.2: Study the		2. Mineralogical composition of cement	present in
mineralogical		grade limestone	limestone and
composition of		3. Presence of impurities in limestone and its	its composition
limestone using a		impact on quality	
microscope.		4. Tutorial -1	
SO2.3: Explore the		5. Major and Minor chemical components of	
major and minor		cement grade limestone	
chemical		6. Impact of major and minor minerals of	
compositions of		limestone on manufacturing process and	
cement-grade		cement quality	
limestone and their		7. Petrographic study of limestone,	
effects on processes		8. Classification cement grade limestone	
and quality.		deposits,	
SO2.4: Classify		9. Geographical distribution of cement grade	
cement-grade		limestone deposits in India	
limestone based on		10. Tutorial -2	
its properties.			
SO2.5: Examine the			
distribution of			
cement-grade			
limestone deposits			
across India.			

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW): Assignments:

- a. . Mineralogical and chemical composition of cement-grade limestone
- **b.** Distribution of limestone deposits in India and logistics of supplying limestone to cement plants
- c. Potential impurities in limestone and their effects on cement quality and production
- Mini Project: Write a table on geographical and geological distribution of limestone in Inda

PCC-CT207.3: Explore the geographical distribution of cement-grade limestone in India, its properties, and its influence on cement quality and manufacturing processes.

Ap	proximate Hours					
Item	Appx. Hrs					
CI	8					
LI	0					
SW	2					
SL	1					
Total	11					

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self Learning
	Instruction		(SL)
SO3.1: Distribution of limestone in Indian stratigraphy with quality considerations SO3.2: Geographical distribution of limestone	(LI)	 Unit 3: Limestone Deposits and its distribution in India 1. National inventory of cement grade limestone deposits of India, 2. Zone wise distribution of limestone deposits in India 3. Distribution of limestone Indian 	1. Geology of different states and rocks/mineral/ ore available in India
deposits in India SO3.3: Estimation of limestone requirements for cement plants of various capacities.	4. 5. 6. 7.	 Distribution of finitestone fidual stratigraphy and its physical and chemical properties Tutorial 1 Estimation of requirement of limestone for various capacity of cement plants , Presence of minor constituents in limestone Impact minor constituents of limestone in quality of cement properties Tutorial -2 	

Page 355 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i i. Status of cement-grade limestone in India

- ii. Quality and availability of cement-grade limestone in India
- iii. Norms for cement-grade limestone in cement manufacture.

b. Mini Project:

Estimation of quantity of limestone requirement for various capacity of cement plants

PCC-CT207.4: Acquire knowledge of exploration and evaluation techniques for limestone deposits, including deposit modeling and UNFC classification.

Approximate HoursItemAppx. HrsCI12LI0SW2SL1

15

Total

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO4.1: Exploration methods for limestone deposits SO4.2: Techniques for sampling and recording exploration data SO4.3: Preparation of maps and sections for reserve estimation SO4.4: Statistical and geostatistical evaluation of limestone deposits SO4.5.UNFC classification of limestone deposits		 Unit 4: Limestone Exploration and Deposit Evaluation: Phases of geological exploration with reference to limestone deposits, Brief idea about geological Mapping and Surveying Sampling practices in limestone exploration. Recoding of exploration data, Tutorial -1 Preparation of geological maps and section, Methods of reserve estimation, Category of limestone reserve Statistical Evaluation of bore hole dat Computer Aided Deposit Evaluation and 3-D deposit model. United Frame Work Classification (UNFC) of limestone deposits. 	 Calculation of volume of various geometrical shape Specific gravity of various limestone Basic statistics

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Exploration and prospecting of limestone
- 2. Category of limestone reserves
- 3. Geostatistical evaluation of limestone deposit
- 4. Methods for estimation of limestone reserves

c. Mini Projects

UNFC of various category of Limestone Deposits

PCC-CT207.5: Learn about basic surface mining techniques, Computer-Aided Deposit Evaluation and Mine Planning, mine production scheduling, pit-head quality control, and the procedures for approving mining plans.

Item	Appx. Hrs
CI	16
LI	0
SW	2
SL	2
Total	20

Session Outcomes	Laboratory Instruction	Class room Instruction	Self-Learning
(SOs)	(LI)	(CI)	(SL)
SO5.1: Surface mining technology and limestone extraction methods.		 Unit -5: Mining of Limestone 1. Introduction to surface mining technology 	1. Introduction to surface mining technology
SO2.2: Block-wise and bench-wise reserve estimation and mine production planning.		 Method of mining of limestone deposits, Estimation of block size and bench height, Estimation of block wise 	2. Mining equipment selection for surface mining
SO3.3: Advanced surface mining technologies.		bench wise grade and tonnage,5. Tutorial -16. Selection of mining	
SO4.4: Pit head quality control and the supply of uniform materials.		equipment (excavator, dozer, dumper etc.) 7. Blasting techniques, type	
CO5.5: Requirements for mine plan approval, including Environmental Impact Assessment (EIA) and Environmental		 of explosive use 8. Advance method of limestone mining, 9. Brief about surface miner mining 10. Tutorial -2 	
Management Plan (EMP)		10. Tutonal -2 11. Mine production	

Page 357 of 734

A K S University *Faculty of Engineering and Technology*

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

. 1	1 1 1 1 1 1	
studies.	scheduling and planning,	
	(Long term and short	
	term)	
	12. Mining plan for approval	
	from IBM	
	13. Pit head quality control	
	practices,	
	14. Brief idea about PL and	
	ML and statutory	
	requirement to obtain for	
	clearance from Govt	
	15. EIA and EMP of	
	limestone mines.	
	16. Tutorial -3	

SW-5 Suggested Sessional Work (SW): Assignments:

- a. Selection of bench height and bench-wise categorization of grade and tonnage.
- b. Short-term and long-term mining plans for limestone extraction.
- c. EIA (Environmental Impact Assessment) and EMP (Environmental Management Plan) for mining operations.
- **d.** Utilization of surface miners for limestone extraction.

Mini Project:

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PCC-CT207.1: Gain fundamental knowledge of geology, rock formation processes, including limestone, and its distribution in Indian stratigraphy.	14	0	2	1	17
PCC-CT207.2:Understandthephysical and chemical propertiesofcement-grade limestone, along withtheclassification of limestone deposits.	10	0	2	1	13
PCC-CT207.3: Explore the geographical distribution of cement-grade limestone in India, its properties, and its influence on cement quality and manufacturing processes.	8	0	2	1	11

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PCC-CT207.4: Acquire knowledge of exploration and evaluation techniques for limestone deposits, including deposit modeling and UNFC classification.	12	0	2	1	15
PCC-CT207.5: Learn about basic surface mining techniques, Computer-Aided Deposit Evaluation and Mine Planning, mine production scheduling, pit-head quality control, and the procedures for approving mining plans.	16	0	2	2	20
Total Hours	60	0	10	6	76

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Mar	Marks Distribution						
		R	U	Α	Marks				
CO-1	Unit -1: Introduction to Geology of	04	05	01	10				
	Limestone								
CO-2	Unit -2: Characteristic Cement Grade	03	01	01	05				
	Limestone:								
CO-3	Unit 3: Limestone Deposits and its	04	05	06	15				
	distribution in India								
CO-4	Unit 4: Limestone Exploration and	03	06	06	15				
	Deposit Evaluation								
CO-5	Unit -5: Mining of Limestone	03	02	-	05				
	Total	17	19	14	50				
Legend: R: Remember, U: Understand, A: Apply									

The end of semester assessment for Geology and Mining of Limestone will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Edition &
No.				Year
1	A Textbook of Geology	P.K. Mukerjee	World	1999
			Press	
2	Cement Production Technology	A. K. Chatterjee	CRC Press,	2018
	Principles and Practice		Taylor &	
			Francis Group	
3	Handbook on Surface Mining	Samir Kumar Das	Sagar Deep	2018
	Technology		Prakashan	
			Kharagpur	
4	Raw materials selection, in	A. K. Chatterjee,	Portland	2004
	Innovations in		Cement	
	Portland Cement Manufacturing (Eds		Association,	
	J. I. Bhatty, E. M. Miller and		USA	
	S. Kosmatka).			
5	Chemico-mineralogical	A. K. Chatterjee,	Pergamon Press,	1983
	Characteristics of Raw Materials,"		Oxford, pages	
	Advances in Cement. Technology,		39-68.	
	Ed. Ghosh, S. N.,			
6	Guidelines under MCDR for United		Indian Bureau of	2003
	Nations		Mines, Nagpur,	
	Framework Classification of Mineral			
	Reserves/Resources,			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

7	Norms for Limestone Exploration for		NCCBM		
	Cement Manufacture				
8	Norms for Proving Limestone		NCB, New	2003	
	Deposits for Cement Manufacture,		Delhi		
9	National Inventory of Cement Grade		NCCBM		
	Limestone Deposits in India				
10	SME Mining Engineering Handbook,	Arthur B.	Society of	1973	
	Volume 1	Cummins, Ivan	s, Ivan Mining		
		A. Given	Engineers,		
			American		
			Institute of		
			Mining,		
			Metallurgical,		
			and Petroleum		
			Engineers		

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- **11.** Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Course Title: B. Tech Ceme	Course Title: B. Tech Cement Tech Course Code: PCC-CT207 Course Title: Geology and Mining of Limestone															
		Program Outcomes								Pi	Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
PCC-CT207.1: Acquire the basic knowledge of Mineralogy, Petrology and Stratigraphy for better understanding of genesis, nature and their distribution of cement raw materials.	2	1	1	1	1	3	3	1	1	1	1	2	2	1	1	3
PCC-CT207.2: Apply the basic knowledge of geology and dynamic earth process to understanding the rock deformation in the earth's crust.	3	1	2	2	2	3	3	1	1	1	1	2	2	2	1	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PCC-CT207.3: Understanding of the various activities of geological prospecting and exploration for the evaluation of reserve and their categorization of limestone deposit.	3	3	3	3	3	3	3	2	3	1	3	3	3	2	3	1
PCC-CT207.4: Familiarize with the mining activities for better planning of raw material for the production of quality cement.	3	3	3	3	3	3	3	2	3	2	3	2	3	3	3	1
PCC-CT207.5: Role of environmental regulatory bodies for mining and understand the zone-wise distribution of cement grade of limestone in India.	2	2	2	1	1	3	3	3	1	2	2	3	2	1	2	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Geology and Mining of Limestone

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT207.1: Acquire the basic knowledge of Mineralogy, Petrology and Stratigraphy for better understanding of genesis, nature and their distribution of cement raw materials.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO1.6 SO1.7	1.1 1.2	Unit-1: Mineralogy & Petrology Limestone & Other Raw Cement Materials 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT207.2: Apply the basic knowledge of geology and dynamic earth process to understanding the rock deformation in the earth's crust.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5 SO2.6	2.1 2.2	Unit-2: Geology & Dynamic Earth 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.13, 1.14	As mentioned in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT207.3: Understanding of the various activities of geological prospecting and exploration for the evaluation of reserve and their categorization of limestone deposit.	SO3.1 SO3.2 SO3.3 SO3.4	3.1 3.2 3.3	Unit-3 : Exploration & Deposit Evaluation 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT207.4: Familiarize with the mining activities for better planning of raw material for the production of quality cement.	SO4.1 SO4.2 SO4.3 SO4.4	4.1 4.2 4.3	Unit-4 : Mining of Limestone 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12	

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

		SO4.5 SO3.6	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT207.5: Role of environmental regulatory bodies for mining and understand the zone-wise distribution of cement grade of limestone in India.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	Unit-5: Characteristic and Distribution Cement Grade Limestone 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,

Course Code: PCC-CT304

- Course Title: Total Quality Management
- **Pre- requisite:**Students ought to be knowledgeable about the BIS standards for the quality of
Portland cement.
- **Rationale:** Students will gain an understanding of quality control fundamentals for Portland cement, including the practices adopted in cement manufacturing facilities. They will learn about various statistical quality control methods, such as control charts, types of errors, and sampling techniques. The course includes a study of Quality Management Plans, detailing the criteria for quality control labs. This will enable students to comprehend the processes and uses of quality control methods in Portland Cement production.

Course Outcomes:

- **PCC-CT304.1**: Students will grasp the significance of product quality and the statistical techniques used for quality control.
- PCC-CT304.2: Students will acquire skills to construct control charts for quality control, comprehend error types, and understand process capability.
- PCC-CT304.3: Students will be educated on sampling methods and the implementation of quality control measures in the production of Portland cement.
- PCC-CT304.4: Students will learn about the quality assurance system and the correlation between quality costs and sales.
- **PCC-CT304.5**: Students will explore various quality system parameters relevant to the cement manufacturing process and operational practices in a cement plant.

Scheme of Studies:

Board of	Course Cade	Course Title	Scheme of studies (Hours/Week)					Total Credits (C)
Study			Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	
PCC	PCC-CT304	Total Quality Management	3	0	2	2	7	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)							
			F	Progressive Assessment (PRA)						
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+T A)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PCC	PCC-CT304	Total Quality Management	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT304.1: Students will grasp the significance of product quality and the statistical techniques used for quality control.

Approximate Hours

Item	Appx. Hrs
CI	11
LI	0
SW	1
SL	1
Total	13

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1.1: Understand need		Unit-01: Importance of Quality control in	
of quality control.		cement manufacture and Statistical Quality	1. Fundamental
SO1.2 : Understand		control techniques.	of Statistics,
quality function and		1.1 Definition and Need of quality	
economics of quality.		1.2 Aspects of quality & Quality characteristic,	
SO1.3 : To understand the		1.3 Quality function, and Economics of quality.	
types of inspection and its		1.4 Inspection and its objectives and types,	
role in quality control.		1.5 Inspection versus Quality Control,	
SO1.3 : Statistical Quality		1.6 Statistical Quality Control, its Tools,	
Control Techniques and		1.7 Definition, Measures of Central tendency &	
its importance		Dispersion,	
SO1.4: Estimation of		1.8Concept of Variation, Variable and attribute	
various statistical		data,	
parameters in quality		1.9 Correlation & regression analysis,	
control.		1.10 Test of hypothesis: F test, t test and X^2 test.	
SO1.5. Concept of six		1.11 Application of six sigma in quality control	
sigma technique in quality			
control.			

SW-1 Suggested Sessional Work (SW):

- **a.** Assignments: Estimation Standard Deviation, F test , t test , X² test with examples of Portland cement data
- b. Mini Project: Requirement for NABL accreditation of testing laboratory
 - **c. Other Activities (Specify):** Note on advantages of six sigma technique in quality control
- PCC-CT304.2: Student will learn to draw control chart for quality control, understand the types of error and process capability.

Approximate Hours					
Item	Appx. Hrs				
CI	9				
LI	0				
SW	1				
SL	1				
Total	11				

Session Outcomes	Laboratory	Class room Instruction	Self Learning
------------------	------------	-------------------------------	---------------

(SOs)	Instruction	(CI)	(SL)
	(LI)		
	•	Unit-2 Process Control Charts	i. Portland cement
SO2.1 To comprehend sample		and types of error .	manufacturing process
variability and tolerance thresholds.		2.1 Concept of variability,	and Raw materials
SO2.2 . Introduction to control chart		2.2 Assignable & chance causes,	quality.
and objective various control chart		2.3 Concept of specifications and	ii. Various process
SO2.3 Design the control Chart of		tolerances,	parameters of cement
variable for quality control in		2.4 Definition and objectives of	manufacture
cement production		control charts,	
SO2.4 To evaluate type $-I$ and		2.5 Control charts for variables and	
Type -II error in process control		attributes & related problems,	
SO2.5: Estimation of various		2.6 Variable charts vs attribute	
process capability		charts,	
		2.7 Patterns on control charts,	
		2.8 Type–I & Type-II Errors,	
		Process capability	
		2.9 Methods of determination of	
		process variability	

SW-2 Suggested Sessional Work (SW):

- **a.** Assignments: i. Draw of control charts for mean, standard deviation ii Draw of attribute chart. Ii. Types of error in cement manufacturing process.
- **b.** Mini Project: Draw of control chart with a case study for manufacture of Portland cement.
- **PCC-CT304.3**: Students will be educated on sampling methods and the implementation of quality control measures in the production of Portland cement.

Approximate Hour			
Item	Appx. Hrs		
CI	10		
LI	0		
SW	01		
SL	01		
Total	12		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1 Learn about sampling	•	Unit -3 Sampling method, scheme	i. BIS Specification of
practices and determine the		and process and materials	Portland cement.
appropriate sample size for quality		measurement for quality control.	ii. Various process
control in cement manufacturing.		3.1 Methods of taking samples,	parameters in cement
		3.2 Guideline for sample size and	production

Curriculum of D. rech. (Cement Technology) i Togram						
SO3.2 Understand the sampling	sample frequency,					
scheme and frequency required for	3.3 Establishing sampling scheme,					
quality control in a cement plant.	3.4 Sampling stations in cement plant,					
	3.5 Computer Aided Run of Mines					
SO3.3 Gain insights into online	Quality control,,					
quality control methods in cement	3.6 Raw mix control, monitoring raw					
production.	mix homoginity,					
	3.7 Online quality control in cement					
SO3.4 Get introduced to reference	plant,					
standards necessary for calibrating	3.8 Reference materials for calibration,					
testing methods and equipment.	3.9 .Flue gas analysis, Sampling					
	technique for gas					
SO3.5 Explore process	3.10 Process measurements for quality					
measurements used in quality	control.					
control for the production of						
Portland cement.						

SW-3 Suggested Sessional Work (SW)

a. Assignments:

i. Pit head quality control in limestone mines for cement production ii. Online and off line control measures in cement production, iii. Advance Quality control process in cement manufacture

b. Mini projects: Computer aided mine planning and quality control of limestone in mines.

Other Activities (Specify): Visit a large capacity cement plant to see the quality control measures.

PCC-CT304.4: Students will learn about the quality assurance system and the correlation between quality costs and sales.

Appro	oximate Hours
Item	Appx. Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning (SL)
	(LI)		
SO-4.1 : Understand the		Unit – 4: Quality assurance and	i. Cost of cement
principles of quality assurance		Quality Cost concept	production
and its importance.		4.1 Need, Principles Quality	ii. Marketing cost of
SO-4.2 Evaluate the quality plan		Assurance	cement
within the cement manufacturing		4.2 Essentials objective QAS	iii. Cement Quality
process.		4.3 Advantages of Quality	requirement of client

тт

Current of Directic (Cement Teemotogy) Trogram						
SO-4.3 Outline the procedures	Assurance System					
and plans for conducting a quality	4.4 Activities in Quality Assurance,					
audit of processes and parameters.	4.5 Quality plan, Quality control,					
SO-4.4 Learn about the concept	4.6 Quality Audit, Quality Manual,					
of quality costs and their effects.	4.7 Quality Control vs Quality					
SO-4.5 Examine the impact of	Assurance,					
quality costs on cement	4.8 Quality Cost, Elements of					
production and sailing cost of	Quality Cost,					
cement.	4.9 Relationship of Quality Costs to					
	Sales.					

SW-4 Suggested Sessional Work (SW):

- **a.** Assignments: i. Quality plan in quality cement quality control. Ii. Quality audit in cement plant for cement production. Ii. Sampling scheme for quality control in cement plant.
- **PCC-CT304.5**: Students will explore various quality system parameters relevant to the cement manufacturing process and operational practices in a cement plant.

Appro	oximate Hours
Item	Appx. Hrs
CI	06
LI	0
SW	2
SL	2
Total	10

Session Outcomes	Laboratory	Class room Instruction	Self Learning				
(SOs)	Instruction	(CI)	(SL)				
	(LI)						
SO-5.1 Brief about ISO -9001:		Unit -5: ISO guideline for					
2015 Quality Management		quality control and TQM	i. Various chemical				
System		quality circle	and physical testing of				
SO-5.2. To understand ISO -		cement by BIS					
14040 and ISO 14044 on life		method					
cycle Assessment of cement		System					
plant		5.2 ISO: 14040 on Life					
SO-5.3 Introduction to ISO;		cycle assessment					
IS:17025 : Testing and		5.3 Iso IS 17025 : Testing					
Calibration laboratory system		and calibration					
and its importance in cement		laboratories.					
manufacture		5.4 Procedure for NABL					
SO-5.4 Procedure for NABL		accreditation.					
Accreditation of Testing and		5.5 Practices of quality					
Calibration laboratory of		Control system in a cement					
cement plant.		plant. Brief about					

SO-5.5 :TQM concept and	laboratory quality control
quality circle of cement	system (NABL).
production.	5.6 Description of TQM
	Concept of quality circles

SW-5 Suggested Sessional Work (SW):

- a. **Assignments:** I. Life cycle assessment of cement plant. ii Procedure for NABL accreditation of Cement plant Quality Control Laboaratory,
- b. Measurement of Uncertainty in testing

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self-Learning (Sl)	Total hour (Cl+SW+Sl)
PCC-CT304.1 : Students will grasp the significance of product quality and the statistical techniques used for quality control.	11	01	01	13
PCC-CT304.2: Students will acquire skills to construct control charts for quality control, comprehend error types, and understand process capability.	09	01	01	11
PCC-CT304.3: Students will be educated on sampling methods and the implementation of quality control measures in the production of Portland cement.	10	01	01	12
PCC-CT304.4: Students will learn about the quality assurance system and the correlation between quality costs and sales.	09	02	01	12

PCC-CT304.5 : Students will explore various quality system parameters relevant to the cement manufacturing process and operational practices in a cement plant.	06	02	02	10
Total Hours	45	07	6	58

Suggestion for End Semester Assessment

СО	Suggested Specification Table Unit Titles		rks Distribi	ition	Total	
00	-	R	U	A		
CO-1	Unit-01 : Importance of Quality control in cement manufacture and Statistical Quality control techniques	1	6	7	14	
CO-2	Unit-02 Process Control Charts and types of error.	0	5	6	11	
CO-3	Unit -03 Sampling method, scheme and process and materials measurement for quality control	1	4	5	10	
CO-4	Unit – 4: Quality assurance, quality audit and Quality Cost concept	1	4	4	9	
CO-5 Unit -5: ISO guideline for quality control and TQM quality circle		1	2	3	6	
	Total	4	21	25	50	
egend:	R: Remember, U: Understand,		A: Apply			

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture, Tutorial
- 2. Cased study Method
- 3. Group Discussion, Role Play
- 4. Visit to cement plant
- 5. Demonstration
- 6. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 7. Brainstorming

Suggested Learning Resources:

S.No.	Title	Author	Publisher	Edition & Year
1	Total Quality Management	Poornima M. Charantimath	Pearson India	3 rd edition 2017
2	Total Quality Management Key Concepts and Case Studies	D.R. Kiran	Elsevier Science	2017
3	Total Quality Management	Sunil Luthra, Dixit Garg, Ashish Agarwal, Sachin K. Mangla	CRC Press	2020
4	Holcim Training Mar	nual	•	
5	FLS Training Manua	1		

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

A K S University Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program <u>COs,POs and PSOs Mapping</u>

Program Title: B. Tech. Cement Technology			(Course	Code	: PCC	C-CT3	04			Course	Title:	Total Q	Total Quality Management		
		Program Outcomes							Progr	Program Specific Outcome						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1 : Students will grasp the significance of product quality and the statistical techniques used for quality control.	1	1	2		1	2	2	1	3	1	3	2	2	3	3	2
CO-2 : Students will acquire skills to construct control charts for quality control, comprehend error types, and understand process capability.	2	2	2	1	1	1	2	1	2	1	3	1	1	2	1	1

CO-3 : Students will be educated on sampling methods and the implementation of quality control measures in the production of Portland cement.	1	1	1	3	2	1	1	1	2	1	1	3	3	2	2	2
CO-4 : Students will learn about the quality assurance system and the correlation between quality costs and sales.	2	2	2	1	1	1	2	2	2	2	1	2	3	3	2	1
CO-5 : Students will explore various quality system parameters relevant to the cement manufacturing process and operational practices in a cement plant.	1	2	2	2	3	2	3	1	1	2	2	2	2	1	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

A K S University Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program Course Curriculum Map: Total Quality Management

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1 : Students will grasp the significance of product quality and the statistical techniques used for quality control.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-01 : Importance of Quality control in cement manufacture and Statistical Quality control techniques 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.1 0,1.11	
PO 1,2,3,4,5,6 7,8,9,10,11,12	CT 203.CO-2: Students will acquire skills to construct control charts for quality	SO2.1 SO2.2		Unit-2 Process Control Charts and types of error 2.1, 2.2, 2.3, 2.4,2.5,2.6,2.7,2.8,2.9	
PSO 1,2, 3, 4	control, comprehend error types, and understand process capability.	SO2.3 SO2.4 SO2.5			As mentioned
PO 1,2,3,4,5,6 7,8,9,10,11,12	CT 203.CO-3: Students will be educated on sampling methods and the	SO3.1 SO3.2		Unit -3 Sampling method, scheme and process and materials measurement for quality control.	in the above pages
PSO 1,2, 3, 4	implementation of quality control measures in the production of Portland cement.	SO3.3 SO3.4 SO3.5		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3. 10	
PO 1,2,3,4,5,6 7,8,9,10,11,12	CT 203.CO-4: Students will learn about the quality assurance system and the	SO4.1 SO4.2		Unit – 4: Quality assurance and Quality Cost concept 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	
PSO 1,2, 3, 4	correlation between quality costs and sales.	SO4.3 SO4.4 SO4.5			
PO 1,2,3,4,5,6 7,8,9,10,11,12	CT 203.CO-5: Students will explore various quality system parameters relevant to the cement manufacturing	SO5.1 SO5.2 SO5.3		Unit -5 : ISO guideline for quality control and TQM quality circle 5.1, 5.2,5.3,5.4,5.5,5.6	
PSO 1,2, 3, 4	process and operational practices in a cement plant	SO5.4 SO5.5		5.1, 5.2,5.5,5.7,5.5,5.0	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester V

Course Code:	PCC-CT301
Course Title :	Pyro processing & Clinker manufacture
Pre-requisite:	Student should have basic knowledge of Pyro processing and Clinker manufacturing.
Rationale:	Pyro processing describes the burning process for Clinker manufacture. The requirement of the thermal energy to maintain a temperature profile so that the raw meal that ground in the Raw meal is gradually calcined during the preheating & calcination stage, which is then converted into Clinker in the Clinkerisation process. The Clinkerisation process needs high temperature intensity with controls so that desired minerology is obtained in the Clinker. It also involves a suitable mineral composition in the Raw meal which is known as "Raw Mix Design" for given fuel composition. As the requirement of Cement increased exponentially, technological upgradations with increased productivity came up, with state of art technologies. Process cost reduction, involving thermal & electrical energy became one of the vital factors for optimization and operation with improved Quality assurance. The course, teaches the development of process technology from very initial stages to latest state of art.

Course Outcomes:

- **PCC-CT301.1:** Understand formation of Clinker mineral phases with respect to the temperature profile, property of each phase, Development of Clinkerisation process from initial stage of wet process to dry process
- **PCC-CT301.2:** Further developments in dry process kiln. Calculation of most critical parameters for process development like Calciner residence time, parameters for Kiln Design & maximum potential capacity of a pyro-process.
- **PCC-CT301.3:** Process fans and their vital importance in pyro-process. Capacity assessment for matching process capacity, flow measurement & fan efficiency determination. Fan curves & fan laws for capacity adjustments.
- **PCC-CT301.4:** Understand Clinker cooling and its purpose, Gradual development of cooling technology along with the development of Pyro process, Calculation of Cooler heat recuperation efficiency

PCC-CT301.5: Learn Cement milling technologies, Comparative study of Cement milling technologies, Open & Closed-circuit ball mills, VRMs, Finish & semi-finish mode of grinding in Roller press, Recirculation factor, circulating load & Separator efficiency determination in closed circuit ball mills.

Scheme of Studies:

Course	Course	Course		Total				
	Code	Title	CI	LI	SW	SL	Total Hours	Credits
Category	Coue	THE	CI	LI	3 **	SL	(CI+LI+SW+SL)	(C)
PCC	PCC-CT301	Pyro processing & Clinker manufacture	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.
 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)							
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PCC	PCC-CT301	Pyro processing & Clinker manufacture	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT301.1: Understand formation of Clinker mineral phases with respect to the temperature profile, property of each phase, Development of Clinkerisation process from initial stage of wet process to dry process

oroximate Hours
Appx. Hrs
9
0
3
2
14

Session Outcomes (SOs)	Laboratory	Classroom Instruction (CI)	Self-Learning
	Instruction (LI)		(SL)
SO1.1	•	Unit-1:Chronological Development of	1. Requirements
Learnt reaction sequence in		Cement process & processing	and gradual
rotary kilns & formation of		equipment	development to
various mineral phases in			latest technology.
Clinker.		1.1 Clinker phases and related	
		properties	2. Work zones in
SO1.2		1.2 Type of kilns based on Moisture	wet-process,
Understand the types of		content in Raw Meal	semi-wet
Clinkerisation process.		1.3 Additional thermal energy cost	process, Semi-
		due to moisture content in the	dry process and
SO1.3		Raw meal	Dry process.
Understand the comparative		1.4 Kiln design & type, dependence	
study of types of kilns.		on moisture content of Raw meal.	3. Most critical
		1.5 Latest kiln type in operation	parameters for
SO1.4		1.6 Comparison of Critical	development of
Approach and calculation of a		Parameters-Thermal& Electrical	pyro-process
Dry process kiln design.		Energy consumption.	
SO1.5		1.7 Calculation of kiln % filling,	
Understand the Modern-day		variable control and healthy	
Dry kiln: Kiln float support,		operating range	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

riding rings, nose ring and	1.8 Calculation of critical parameters	
Air seals.	for kiln sustainable operation.	
	1.9 Material retention time in Kiln	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Formation of Clinker phases at required temperatures, Determination of Heat of reaction in Clinkerisation process, Function of Kiln Inlet & Outlet seals, Riding ring relative movement & limiting value.

b. Mini Project:

Verification of specific heat consumption.

c. Other Activities (Specify):

Control of floating movement of kiln

PCC-CT301.2: Further developments in dry process kiln. Calculation of most critical parameters for process development like Calciner residence time, parameters for Kiln Design & maximum potential capacity of a pyro-process.

Ap	proximate Hours
Item	Appx. Hrs
CI	10
LI	0
SW	2
SL	1
Total	13

Session Outcomes	Laboratory	Classroom	Self-
(SOs)	Instruction	Instruction	Learning
	(LI)	(CI)	(SL)
SO2.1	•	Unit-2: Chronological Development of	1. Requirement of
Learn the history &		Suspension Preheater and Separate line	Calciner for
development of		Calciner, Inline Calciner Kilns, SLC_ILC	optimum
Preheater system		Kilns	productivity of
		2.1 Requirement & development of various	kiln.
SO2.2		type of Preheaters with Kiln process	2. Understanding
Understand the Heat		2.2 Difference between SLC, ILC Kilns and	Calciner
exchange between Hot		SLC-ILC Kilns and their layout & Circuit	residence time
flue gas and Kiln feed in		diagram	and Calciner
		2.3 Kiln Inlet Hot meal characteristics	sizing for

Riser ducts corresponding to Calciner type Capacity 2.4 Kiln feed Quality parameters specific to enhancement. **SO2.3** the Kiln process requirements. 3. Preheater Precalcining System, 2.5 Mechanical arrangement & Refractory outlet specific Features of Calciner requirements for de-coating in the gas and Preheater absolute gas **SO2.4** 2.6 Fuel type and fineness for complete volume with Kiln heat balance study combustion in Calciner. targeting excess false air for & its verification of oxygen at Calciner outlet required Specific heat 2.7 Calculation of Kiln Inlet flue gas with venting. consumption targeted excess Oxygen & air and corresponding Flue gas volume at **SO2.5** Calciner outlet with targeted excess Determination of false oxygen & air air in the Preheater 2.8 Calculation of Calciner sizing/design system based on fuel type & Residence time **2.9** Determination "Degree of, of Calcination" in various stages & in Hot meal to Kiln 2.10Factors influencing kiln output

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Calculation of Kiln Inlet flue gas volume & Specific gas volume on basic data,
- ii. Determination of Calciner Residence time based on basic data of Kiln TPD, Fuel type, Specific fuel consumption & Calciner ID& Height.

b. Mini Project:

Line diagram of SLC, ILC & ILC_SLC Dry process Cement Kilns.

c. Other Activities (Specify):

Optimization techniques in Cement Kilns

PCC-CT301.3: Process fans and their vital importance in pyro-process. Capacity assessment for matching process capacity, flow measurement & fan efficiency determination. Fan curves & fan laws for capacity adjustments.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Approximate Hours

11	
Item	Appx. Hrs
CI	13
LI	0
SW	2
SL	1
Total	16

Session	Laboratory	Classroom Instruction	Self Learning
Outcomes	Instruction	(CI)	(SL)
(SOs)	(LI)		
SO3.1	•	Unit-3: Process fan location and its suitability	1. Effect of RPM
Understand the purpose		in Process with Chronological Process	& Impeller
of Process fans.		Technology Development	modifications
			on Fan capacity
SO3.2		3.1 Determination of Flue gas flow at	
Learnt Fan types &		Preheater Outlet, based on kiln capacity	2. Understanding
types of fan impellers.		and type of fuel	Fan
		3.2 Determination of false air in the	performance &
SO3.3		Preheater system	operating
Determination of Fan		3.3 Impacts of high PH outlet flow due to	capacity on
capacity requirements		false air, LOI of Kiln Feed and excess	productivity
based on location and		air for combustion	
purpose.		3.4 Fan type with related efficiency, Fan	3. Possible
		Impeller type and related efficiency, best	problems in the
SO3.4		operating efficiency of Process fans	fans-Vibration,
Understand Fan		corresponding to location	buildups,
behavior & System		3.5 System pressure development in an	erosion, wear
Characteristics.		induced system	protection,
		3.6 Suitability of fan with system	troubleshooting
SO3.5		characteristics & related fan static	in fans
Determination of Fan		efficiency	
operating performance		3.7 Measurement techniques of velocity	
&requirements for fan		pressure, static pressure & total pressure	
capacity adjustments.		of Gas/Air stream, Dust laden gas/Air	
		stream & Calculation of flow	
		3.8 Fan static efficiency: Depending factors	
		& parameters	
		3.9 Understood Fan Laws for fan operating	
		behavior	
		3.10 Fan Control loops, parameter controls	
		for optimum and safe operation of kiln	

Page 383 of 734

3.11 Knowledge of possible fan operation and
performance problems
3.12 General maintenance of PH fan for best operating efficiency
3.13 Energy saving drives in Process fans

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Calculation of PH outlet flow& Specific gas volume on basic data by flow measurement
- 2. Determination of fan flows with corresponding variation of fan rpm

b. Mini Project:

Cooler fan control parameters and controlling loops

c. Other Activities (Specify):

General maintenance in Process fans

PCC-CT301.4: Understand Clinker cooling and its purpose, Gradual development of cooling technology along with the development of Pyro process, Calculation of Cooler heat recuperation efficiency

Approximate Hour			
Item	Appx. Hrs		
CI	13		
LI	0		
SW	2		
SL	1		
Total	16		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO4.1		Unit-4: Factors affecting Clinker quality	1. Grate Cooler
Understand "Purpose of		due to Cooling with primary aspect of	fans control
clinker cooling"		Cement mill grindability and Cement	loops-
SO4.2		expansion after casting.	action/reaction.
Learnt "Technological		4.1 Clinker Grate Cooler operating	2. Understanding
development of Cooling		circuit & layout	grate Cooler
technology"		4.2 Cooler Internals & auxiliaries	Vent fan

Approximate Hours

(Revised as on 01 August 2023)

	13 Difference between environment	energetion Q its
	4.3 Difference between various types of	operation & its
SO4.3	Coolers and its development to latest	control loop
Understand	design	operation.
"Development of Grate	4.4 Cooler air balance & air distribution	
plate design"	for heat recuperation and combustion	3. Impact of false
SO4.4	4.5 Cooler Heat balance and recuperation	air in the
Learnt "OPEX &	efficiency	Cooler vent on
CAPEX" of Cooler	4.6 Control loops in Grate cooler for	Cooler heat
	optimum operation & operating	loss
SO4.5	efficiency	
Aspects of WHPRS for	4.7 Indicators of heat recuperation	
AQC boiler in Cooler	efficiency during operation	
	4.8 Operating actions to increase the	
	Heat recuperation efficiency	
	4.9 OPEX costs of Cooler: Electrical	
	energy consumption & General	
	maintenance;	
	4.10Feasibility of CAPEX based on Heat	
	& Electrical energy savings &	
	reduction in stoppages	
	4.11 High temperature & Medium	
	temperature Mid-air taps not	
	affecting the heat recuperation for	
	pyro process	
	4.12 False air determination method in	
	Cooler vent and its impacts	
	4.13 Cooler vent, dedusting and clinker	
	conveying	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Calculation of Cooler heat recuperation efficiency from basic data and measured parameters
- 2. Determination of air balance in Cooler, with air requirement for combustion in Kiln firing and Calciner firing

b. Mini Project:

Cooler control parameters and controlling loops

c. Other Activities (Specify):

Possibility of increase in Cooler heat recuperation efficiency

PCC-CT301.5: Learn Cement milling technologies, Comparative study of Cement milling technologies, Open & Closed-circuit ball mills, VRMs, Finish & semi-finish mode of grinding in Roller press, Recirculation factor, circulating load & Separator efficiency determination in closed circuit ball mills.

Approximate Hours			
Item Appx. Hrs			
CI	15		
LI	0		
SW	3		
SL	1		
Total	19		

Session Outcomes	Laboratory	Classroom Instruction	Self Learning	
(SOs)	Instruction	(CI)	(SL)	
	(LI)			
SO5.1		Unit-5: Cement grinding systems, suitability in	1. Factors	
Understand Gantry &		terms of Cement fineness and Specific	influencing	
Silos for Clinker		Electrical energy consumption.	selection of	
storage: Stacking &			"Most	
Extraction.		5.1 Factors for determination of Capacities of	suitable	
		Clinker storage yard and/or Clinker silos.	grinding	
SO5.2		5.2 Clinker stacking & reclaiming methods for	system"	
Requirement of		Cement grinding in Gantry & Silos	2. Feasibility of	
Cement raw materials		5.3 Impacts of Fly ash addition system at Mill	Grinding aid	
& additives, and their		Inlet & outlet in Closed circuit Ball Mill. Its	usage	
purpose. Location of		advantages & disadvantages	3. Determinatio	
addition.		5.4 Conceptual circuit diagram of Open Circuit	n of false air	
		Ball Mill, &Closed-Circuit Ball Mill	in the	
SO5.3		5.5 Control parameters in open circuit Ball mill	Cement	
Types of Cement		with intended effects	Grinding	
grinding mills,		5.6 Control parameters in Closed Circuit Ball	system	
Comparison.		Mill with intended effects		
		5.7 Purpose & advantages of Closed-circuit Ball		
		mill w.r.t. Open circuit		
SO5.4		5.8 Determination of Circulating load and		
Critical parameters in		Separator efficiency in a Closed-Circuit Ball		
Closed circuit Ball Mill		mill		
for performance		5.9 Impact of circulating factor & separator		
assessment.		efficiency as recovery of fines and reduction		
		in power consumption		
SO5.5		5.10VRM layout & circuit diagram		
Cement packing and		5.11 VRM internals		

loading.	5.12Blender for fly ash addition for PPC in	
	VRM ground OPC	
	5.13Finish & Semi-finish Roll Press system,	
	layout, circuit diagram	
	5.14Grinding aid purpose & feasibility of usage	
	5.15Cement conveying systems to Silos,	
	Packing plant	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- 1. Determination of minimum increase in additive fly ash for given grinding aid usage %
- 2. Calculation of Circulating factor and Separator efficiency
- 3. Control loop operation in Closed Circuit Ball mill for intended values of variables

b. Mini Project:

Demonstration of advantages of Fly ash addition at Mill outlet in Closed circuit Ball Mill

c. **Other Activities (Specify):**

Modes of Cement conveying to Cement Silos

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (CI+SW+Sl)
PCC-CT301.1: Understand formation of Clinker mineral phases with respect to the temperature profile, property of each phase, Development of Clinkerisation process from initial stage of wet process to dry process	09	3	2	14
PCC-CT301.2: Further developments in dry process kiln. Calculation of most critical parameters for process development like Calciner residence time, parameters for Kiln Design & maximum potential capacity of a pyro-process.	10	2	1	13
PCC-CT301.3: Process fans and their vital importance in pyro-process. Capacity assessment for matching process capacity, flow measurement & fan efficiency determination. Fan curves & fan laws for capacity adjustments.	13	2	1	16
PCC-CT301.4: Understand Clinker cooling and its purpose, Gradual development of	13	2	1	16

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

cooling technology along with the development of Pyro process, Calculation of Cooler heat recuperation efficiency				
PCC-CT301.5: Learn Cement milling technologies, Comparative study of Cement milling technologies, Open & Closed-circuit ball mills, VRMs, Finish & semi-finish mode of grinding in Roller press, Recirculation factor, circulating load & Separator efficiency determination in closed circuit ball mills.	15	3	1	19
Total Hours	60	12	6	78

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marks Distribution		Total	
		R	U	Α	Marks
CO-1	Chronological Development of Cement process & processing equipment	03	02	05	10
CO-2	Chronological Development of Suspension Preheater and Separate line Calciner, Inline Calciner Kilns, SLC_ILC Kilns	03	03	06	12
CO-3	Process fan location and its suitability in Process with Chronological Process Technology Development	03	02	05	10
CO-4	Factors affecting Clinker quality due to Cooling with primary aspect of Cement mill grindability and Cement expansion after casting.	03	02	05	10
CO-5	Cement grinding systems, suitability in terms of Cement fineness and Specific Electrical energy consumption.	03	02	03	08
	Total	15	11	24	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Pyroprocessing and Clinker Manufacture will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.No.	Title	Author	Publisher	Edition&Year
1	Cement Plant Operations Handbook	Philip A Alsop, Hung Chen, Arthur L Chin, Andrew J Jackura, Michael I McCabe, Merman H Tseng	Tradeship Publications Ltd	Tradeship Publications Ltd
2	Cement Data Book	W.H Duda, VerlagGmBh, Berlin	-	-
3	Process technology	Holcim	Holcim	Volume 4, Process Technology II
4	FL Smidth Comminution manual	FLS	FLS	2007
5	Book 3- Energy Efficiency in Electrical Utilities	Bureau of Energy Efficiency	BEE	Third Edition 2010

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology

- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech.

Course Code: PCC-CT301

Course Title: Pyroprocessing and Clinker Manufacture

					Pı	ograr	n Out	come	5				P	rogran Out	n Specif come	fic
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Understand formation of Clinker mineral phases with respect to the temperature profile, property of each phase, Development of Clinkerisation process from initial stage of wet process to dry process	3	3	3	2	3	2	2	1	3	3	1	2	3	3	3	2
CO-2: Further developments in dry process kiln. Calculation of most critical parameters for process development like Calciner residence time, parameters for Kiln Design & maximum potential capacity of a pyro-process.	3	3	3	2	3 91 o	2 f 73	2	1	3	2	1	2	3	3	1	2

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

		()	1001150	u ub 01	1 01 110	igust 2	040)									
CO-3: Process fans and their vital importance in pyro-process. Capacity assessment for matching process capacity, flow measurement & fan efficiency determination. Fan curves & fan laws for capacity adjustments.	3	3	2	3	2	2	2	2	3	2	2	3	2	3	3	3
CO-4: Understand Clinker cooling and its purpose, Gradual development of cooling technology along with the development of Pyro process, Calculation of Cooler heat recuperation efficiency	3	3	3	2	3	2	2	2	3	2	2	2	2	3	2	2
CO-5: Learn Cement milling technologies, Comparative study of Cement milling technologies, Open & Closed-circuit ball mills, VRMs, Finish & semi-finish mode of grinding in Roller press, Recirculation factor, circulating load & Separator efficiency determination in closed circuit ball mills.	3	2	3	3	2	3	2	1	2	2	2	3	3	2	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Pyro processing & Clinker Manufacture

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Understand formation of Clinker mineral phases with respect to the temperature profile, property of each phase, Development of Clinkerisation process from initial stage of wet process to dry process			Unit-1 Chronological Development of Cement process & processing equipment 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Further developments in dry process kiln. Calculation of most critical parameters for process development like Calciner residence time, parameters for Kiln Design & maximum potential capacity of a pyro-process.	SO2.3		Unit-2 Chronological Development of Suspension Preheater and Separate line Calciner, Inline Calciner Kilns, SLC_ILC Kilns 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10	As mentioned n above
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Process fans and their vital importance in pyro-process. Capacity assessment for matching process capacity, flow measurement & fan efficiency determination. Fan curves & fan laws for capacity adjustments.	SO3.1 SO3.2		Unit-3: Process fan location and its suitability in Process with Chronological Process Technology Development 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11 ,3.12,3.13	pages

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

	(- /
PO 1,2,3,4,5,6 7,8,9,10,11,12		SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	Unit-4: Factors affecting Clinker quality due to Cooling with primary aspect of Cement mill grindability and Cement expansion after casting. 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11, 4.12,4.13
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	$1000000 \times 10000000000000000000000000000$	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	Unit 5: Cement grinding systems, suitability in terms of Cement fineness and Specific Electrical energy consumption5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.1 1,5.12,5.13,5.14,5.15

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-V

Course Code:	PCC-CT303
Course Title :	Pollution Control in Cement Plant
Pre-requisite:	Student Should have basic knowledge on Manufacturing process of Portland cement and different types of pollution.
Rationale:	Cement plants can present notable environmental challenges due to pollution, but the good news is that there are several control measures available to address these issues. This course covers the diverse sources of pollution and the corresponding control measures to tackle them. The course curriculum incorporates the government's periodic imposition of various acts, rules, and regulations to control pollution caused by the cement process. Air pollution in cement manufacturing arises from the grinding and heating of raw materials, releasing particulate matter into the atmosphere. Elevated temperatures in cement kilns can also give rise to nitrogen oxides (NOx) and SOx, contributing to air pollution and smog formation. Additionally, cement production produces wastewater containing contaminants like heavy metals and suspended solids. Improper disposal or runoff can lead to water pollution in nearby water bodies. The machinery used in cement plants, including crushers and mills, can generate substantial noise levels, impacting the surrounding environment and communities. Addressing these pollution sources is crucial to reducing pollution levels and promoting a cleaner environment in cement plants.

Course Outcomes:

- PCC-CT303.1: Pollution during manufacture of Portland cement and its impact on environment.
- PCC-CT303.2: Source of pollution in cement plant and its measurement.
- PCC-CT303.3: Various pollution control measures in cement plant for environmental improvement
- PCC-CT303.4: Pollution control measures of limestone mines of cement plant.
- PCC-CT303.5: Environmental Management for pollution control in cement plant and Clean Development Mechanism.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Scheme of Studies:

Course Course C		Course		Scheme	of stu	dies(H	ours/Week)	Total
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
PCC	PCC-CT303	Pollution Control in Cement Plant	4	0	2	1	7	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.
 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of

teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Theory				~ 1		Assessm				
			P	Progressiv	e Asses	sment (PRA)			_
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PCC	PCC-CT303	Pollution Control in Cement Plant	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PCC-CT303.1: Pollution during manufacture of Portland cement and its impact on environment.

Approximate Hours

Item	Appx. Hrs
CI	10
LI	0
SW	2
SL	1
Total	13

Session Outcomes (SOs)	Laboratory	Classroom Instruction (CI)	Self-Learning
	Instruction (LI)		(SL)
SO1.1	•	Unit-1: Introduction Environment pollution	1. Quality of
Environment Pollution and Role of engineer in cement plant.		1.1 Interaction of Humans and Environment and Role of an engineer in Environmental improvement,	air, water, noise for the human to sustain
SO1.2		1.2 Types of pollution,	
Types of pollution in cement industry		1.3 Air quality-sources and classification of pollutants,	
SO1.3		1.4 Influence of meteorological phenomena on air quality,	
Impact of pollution on		1.5 Tutorial -1	
environment and human SO1.4		1.6 Water Quality - physical, chemical & biological parameters,	
SO1.4 Standards and limits of		1.7 Noise and ground vibration,	
pollutants for Cement plant		1.8 Standards & limits for air, water, waste water, noise,	
plant		1.9 MOEF limits of pollutants for Cement	
		Plant 1.10 Tutorial -2	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Types of pollutant and its impact on environment
- 2. Limits of air, noise, and gaseous pollutant by MOEF for cement industry
- 3. Noise and ground vibration in cement plant
- 4. Air Pollutant and influence on meteorological phenomena.

PCC-CT303.2: Source of pollution in cement plant and its measurement.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Approximate Hours

P	p. 0
Item	Appx. Hrs
CI	10
LI	0
SW	2
SL	1
Total	13

Session Outcomes	Laboratory	Classroom	Self-Learning
(SOs)	Instruction	Instruction	(SL)
	(LI)	(CI)	
SO2.1	•	Unit-2: Sources of Pollution in Cement	1. Different
Source of pollution in		Industry	types of
cement plant.			pollution in
SO2.2		2.1 Ambient Air Quality and Fugitive	Cement
Fugitive dust and Gaseous		dust, Point Source 2.2 Green House Gas in cement plant	manufacturing
pollution in plant.		2.2 Green House Gas in cement plant2.3 Particulate matter (PM), SO₂, NOx,	process
SO2.3		CO, HCl, HF,	
Water pollution in Cement		2.4 Heavy Metals,	
plant		2.5 Tutorial -1	
-		2.6 Dioxins, Furans, TOC, TVOC etc.	
SO2.4		2.7 Water – Consumption, sources of	
Noise pollution in cement		water, waste water generation,	
plant.		2.8 Noise – Sources,	
SO2.5		2.9 Solid and Hazardous Waste in	
Solis and Hazardous waste in cement plant.		cement plant 2.10 Tutorial -2	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Ambient air quality and fugitive dust generation in cement plant
- 2. Greenhouse gases generation in cement manufacturing process
- 3. Noise pollution in cement plant
- 4. Particulate matter generation in cement manufacturing process.

PCC-CT303.3: Various pollution control measures in cement plant for environmental improvement

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Approximate Hours

Item	Appx. Hrs
CI	15
LI	0
SW	2
SL	1
Total	18

Session Outcomes	Laboratory	Classroom Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO3.1		Unit-3: Control measures in cement plant for	1. Different
Monitoring method of		environmental improvement.	alternate fuels
fugitive dust in cement plant		3.1 Control measures for improving ambient air quality (AAQ)	in cement plants.
SO3.2		3.2 Fugitive dust, AAQ – Monitoring methods,	
Function of bag filter, its advantages and		3.3 Air Pollution Control Equipment for controlling Point Source Emissions	
disadvantages		3.4 Bag Filter / Bag House,	
SO3.3 Function and mechanism of ESP		 3.5 Tutorial -1 3.6 ESP, 3.7 Hybrid Filter, 	
SO3.4		3.8 Multi Cyclones,3.9 Wet Scrubber, Gravity Setling chamber,	
Control of gaseous		3.10 Tutorial 2	
emission in cement plant		3.11 Control of gaseous emissions by primary and secondary (SCR/ SNCR) techniques.	
SO3.5		3.12 Stack monitoring for particulate matter and gases.	
Continuous emission		3.13 GHG control - Blended cement, use of	
monitoring system in cement plant		alternate fuels, carbon sequestration. 3.14 Continuous emission Monitoring (CEM) in	
		cement plant 3.15 Tutorial -3	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Stack monitoring system in cement plant
- 2. Control of gaseous pollution in cement plant
- 3. ESP function in plant
- 4. Pollution monitoring equipment in cement plant.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PCC-CT303.4: Pollution control measures of limestone mines of cement plant.

Approximate Hours

Item	Appx. Hrs
CI	13
LI	0
SW	2
SL	1
Total	16

Session Outcomes	Laboratory	Classroom Instruction	Self -Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO4.1 Source of Pollution due to limestone mining operation. SO4.2 Air pollution during mining of limestone deposit and its control measure. SO4.3 Noise Pollution due to limestone mining activity and control measure. SO4.4 EIA and EMP of Limestone mines SO4.5	(LI)	 Unit-4: Pollution control at limestone mines. 4.1 Pollution due to Mining of limestone 4.2 Air Pollution due to mining and dust generation. 4.3 Measures for dust control during mining operation 4.4 Noise pollution due to mining activities 4.5 Tutorial -1 4.6 Control blasting and noise control 4.7 Ground vibration due to the mining activity and control measures. 4.8 Waste water – treatment methods and reuse in mines 4.9 Tutorial 2 4.10EIA study of Mines. 4.12Dust control at the crusher 4.13Tutorial -3 	1. Methods of Limestone mining
EIA and EMP of Limestone mines		 4.9 Tutorial 2 4.10EIA study of Mines. 4.11EMP of Mines 4.12Dust control at the crusher 	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Limestone mining methods and source of pollution.
- 2. Noise and vibration control in the limestone mining
- 3. EIA and EMP study of limestone mines
- 4. Generation of dust and control measure at the crusher.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

PCC-CT303.5: Environmental Management for Pollution control in cement plant and Clean Development Mechanism

Approximate Hours

11	
Item	Appx. Hrs
CI	12
LI	0
SW	2
SL	1
Total	15

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1		Unit-5: Environment Management:	1. MOEF
Various acts for			functions in
Environmental control.		5.1 Introduction to various Environmental Act &	environmental
0050		Regulations, Environment Protection Act 1986,	control.
SO5.2		5.2 Water Prevention and Control of Pollution act,	2. Various
Environmental Audit for		5.3 Air (Prevention and Control of Pollution) act,	statutory
control of plant		5.4 Hazardous Waste Management, rules,	bodies for
environment.		5.5 Tutorial -1	environment
SO5.3		5.6 Solid Waste Management Rules,	al Control.
Corporate Responsibility		5.7 Corporate Responsibility for ENV Protection	
for ENV protection		(CREP).	
_		5.8 Environment Management Tools and EMS –	
SO5.4		ISO 14001	
Various Environmental		5.9 Tutorial -2	
Management Tools		5.10 Environmental Audit	
SO5.5		5.11Clean Development Mechanism (CDM)	
CDM for cement plant.		5.12 Tutorial -3	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- 1. ENV acts for pollution control
- 2. ENV management tools
- 3. Clean Development Mechanism
- 4. ENV audit of cement plant
- 5. Solid waste management in cement plant.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (CI+SW+SI)
PCC-CT303.1: Pollution during manufacture of Portland cement and its impact on environment.	10	2	1	13
PCC-CT303.2: Source of pollution in cement plant and its measurement	10	2	1	13
PCC-CT303.3: Various pollution control measures in cement plant for environmental improvement	15	2	1	18
PCC-CT303.4: Pollution control measures of limestone mines of cement plant.	13	2	1	16
PCC-CT303.5: Environmental Management for Pollution control in cement plant and Clean Development Mechanism	12	2	1	15
Total Hours	60	10	5	75

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marks	Total		
		R	U	Α	Marks
CO-1	Introduction Environment pollution	02	03	02	07
CO-2	Sources of Pollution in Cement Industry		08	02	10
CO-3	Control measures in cement plant for environmental improvement	01	06	04	11
CO-4	Pollution control at limestone mines.	-	08	07	15
CO-5	Environment Management	-	03	04	07
	Total	03	28	19	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Pollution Control in Cement Plant will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a)	Books:
------------	--------

S.No.	Title	Author	Publisher	Edition&Year
1	Environmental Pollution Control Engineering	C S Rao	New Age International Publishers	3 rd Edition,2018
2	Air Pollution:	M N Rao, H.V.N. Rao	McGraw Hill Education	1 st Edition, 2017
3	Environmental Engineering	Peavy and Rowe	McGraw Hill Education	1 st Edition, 2017
4	Air Pollution Control	S P Mahajan, T.V. Ramachandra	The Energy and Resources Institute, TERI	2019
5	Pollution Control in Process Industries	S P Mahajan	McGraw Hill Education	2017
6	Holcim Training Manua	1		
7	FLS Training Manual			

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: PCC-CT303

Course Title: Pollution Control in Cement Plant

		Program Outcomes										Program Specific Outcome				
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	ADMRY to understand the day to plant operational problems of cement	Ability to understand the latest cement manufacturing technology and it application	o use the ovative able de
CO-1: Pollution during manufacture of Portland cement and its impact on environment.	3	3	3	2	3	2	2	1	3	3	1	2	2	3	3	2
CO-2: Source of pollution in cement plant and its measurement	3	3	3	2	3	2	2	1	3	2	1	2	3	3	1	2
CO-3: Various pollution control measures in cement plant for environmental improvement	3	3	2	3	2	2	2	2	3	2	2	3	2	3	3	3
CO-4: Pollution control measures of limestone mines of cement plant.	3	3	3	2	3	2	2	2	3	2	2	2	2	3	2	2
CO-5: Environmental Management for Pollution control in cement plant and Clean Development Mechanism	3	2	3	3	2	3	2	1	2	2	2	3	3	2	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Pollution Control in Cement Plant

POs & PSOs No.	PSOs COs No. & Titles S		Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Pollution during manufacture of Portland cement and its impact on environment.	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1: Introduction Environment pollution 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Source of pollution in cement plant and its measurement	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2: Sources of Pollution in Cement Industry 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10	As
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Various pollution control measures in cement plant for environmental improvement	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Control measures in cement plant for environmental improvement 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11, 3.12,3.13,3.14,3.15	nabove
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Pollution control measures of limestone mines of cement plant.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Pollution control at limestone mines. 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11, 4.12,4.13	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

	CO-5: Environmental Management for Pollution	SO5.1		
PO 1,2,3,4,5,6	control in cement plant and Clean Development	SO5.2	Unit-5: Environment Management	
7,8,9,10,11,12	Mechanism	SO5.3	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,	
PSO 1,2, 3, 4		SO5.4	5.12	
		SO5.5		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester V

Course Code: PCC-CT302

Course Title : Fuel and Alternate Fuel & Raw Materials

- **Pre-requisite:** Student should have knowledge of Organic chemistry, Pyro-processing and Portland clinker formation.
- **Rationale:** The cement industry has always been concerned with selecting and using the right type of fuel. This essential material is crucial for the clinkering process in the kiln and is also used in dryers for raw materials or additives, as well as in hot gas generators. With intense competition in the cement market and the significant impact of fuel costs on the final product price, companies are seeking the most cost-effective fuel mix for their kilns. However, it's important for this search to prioritize the quality of the clinker and also be environmentally friendly.

Course Outcomes:

- **PCC-CT302.1:** Fuel for Portland cement clinker manufacture and its impact of the manufacturing process and Quality of cement.
- **PCC-CT302.2:** Characteristic and preparation of conventional and alternate fuel for cement kiln and its safety measures.
- PCC-CT302.3: Combustion mechanism and control system in cement kiln.
- PCC-CT302.4: Coprocessing of Hazardous waste fuel of cement kiln and WHR system for thermal fuel efficiency
- PCC-CT302.5: Cement kiln burners and efficiency of burning system.

Scheme of Studies:

Course	Course	Course	Scheme of studies (Hours/Week)			Total		
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
PCC	PCC-CT302	Fuel and Alternate Fuel & Raw Materials	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Note:

SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)					(V)		
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PCC	PCC-CT302	Fuel and Alternate Fuel & Raw Materials	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT302.1: Fuel for Portland cement clinker manufacture and its impact of the manufacturing process and Quality of cement.

Approximate Hours

Item	Appx. Hrs
CI	10
LI	0
SW	02
SL	01
Total	13

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction (CI)	Self Learning
(SOs)	Instruction (LI)		(SL)
SO1: Type and		Unit -I Introduction to fuel of	1. Geology of
characteristic of fuel		cement kiln	India and
used for cement		1.1 Type of fuels, Coal, Lignite, Oil	Indian
manufacture		and Natural Gas and its use as fuel	stratigraphy
		for cement manufacture.	
SO2:Alternate fuel for		1.2 Geological Origin of coal and	
cement manufacture		Lignite	
		1.3 Distribution of coal and lignite	
SO3: Analysis of Coal		deposits in India with its	
and lignite		characteristic.	
		1.4 Introduction to alternative fuels	
SO4: Estimation of		for cement manufacture.	
GCV and NCV of coal		1.5 Tutorial -1	
and lignite		1.6 Physical and Chemical	
SOF Influence of East		characteristics of different types	
SO5: Influence of Fuel		of fuel and alternate fuel	
in process and quality of clinker.		1.7 Ultimate and Proximate analysis	
chinker.		of fuels	
		1.8 Estimation of gross calorific value	
		and net calorific value of fuel	
		1.9 Influence of fuel in burning and	
		quality of Portland cement	
		clinker.	
		1.10 Tutorial-2	

SW-1 Suggested Sessional Work (SW):

Assignments: Distribution of Coal and lignite in India, Proximate and Ultimate analysis of Fuel, Alternate fuel for cement manufacture and its advantages, Influence of fuel in pyro-processing and quality of clinker.

PCC-CT302.2: Characteristic and preparation of conventional and alternate fuel for cement kiln and its safety measures.

Item	Appx Hrs
CI	15
LI	0
SW	2
SL	1
Total	18

Approximate Hours

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO1: Storage and preparation of fuel and alternate fuel for cement kiln.		Unit -II: Characteristic and preparation of conventional and alternate fuel for cement	
SO2: Safety in coal handling and coal mill		 kiln 2.1 Coal Storage coal, lignite & preparation for firing in rotary kiln 	
SO3: Characteristic of alternate fuel.		2.2 Preparation of coal for cement kiln.	
SO4 : Handling and preparation of alternate fuel.		2.3 Storage of Pulverised coal, lignite and safety in handling of Pulverised coal and lignite	
		 2.4 Coal mill explosion and its prevention 2.5 Tutorial - 1 	
		2.6 Alternative Fuels: Chemical & physical characteristics of alternate	
		fuels for cement kiln: Refused Derived Fuel(RDF) from Municipal Solid Waste (MSW)	
		2.7 Used tyres as alternate fuel for cement kiln	
		2.8 Biomass, saw dust, rice husk, spent wash, Domestic waste as cement kiln fuel	
		2.9 Industrial plastics types and characteristic as fuel2.10 Tutorial 2	
		2.11 Waste oils and solvents as fuel for cement kiln	
		2.12 Use Pharmaceutical waste in cement kiln as fuel.2.13 Various handling ⪯	
		processing equipment of alternate fuels 2.14 Advantages and	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

disadvantages of alternate	
fuels for cement	
manufacture	
2.15 Tutorial-3	

SW-2 Suggested Sessional Work (SW):

Assignments: Handling of coal and lignite in cement plant, Coal mill explosion and safety measures, Alternate fuel characteristic for cement manufacture. Advantages and disadvantages of alternate fuels, RDF as fuel for cement manufacture.

PCC-CT302.3: Combustion mechanism and control system in cement kiln

Ap	Approximate Hours				
Item	Appx Hrs				
CI	15				
LI	0				
SW	2				
SL	1				
Total	18				

Session Outcomes	Laboratory Instruction	Classroom Instruction (CI)		Self Learning
(SOs)	(LI)			(SL)
SO1: Mechanism of solid		Unit	-III Combustion Theory	1.Firing system of
fuel combustion and heat				dry process
generation.		3.1	Mechanism combustion,	cement rotary
			Combustion air	kiln
SO2: Estimation of air		3.2	Estimation of theoretical air	
requirement for complete			and excess air.	
combustion in cement kiln		3.3	Impact of fuel change on	
			flame & combustion,	
SO3: False air and its		3.4	Fuel Air Mixing & its Effect	
influence in combustion.			on Flame	
		3.5	Tutorial –I	
SO4: Combustion		3.6	Change in Air inputs For	
indicators for complete			Petcoke	
combustion		3.7	Firing of petcoke in calciner	
			and kiln	
SO5: Optimization of heat		3.8	Calculation flame momentum	
consumption			and optimization of heat	
			consumption	
		3.9	Influence of false air in SP and	
			ILC kiln and steps to reduce	
			leakage air	
		3.10	Combustion indicators:	

A K S University Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

alinkar quality sintaring zona
clinker quality, sintering zone
temp., coating formation
3.11 Exhaust gas analysis, SO ₃ &
NOx formation
3.12 Tutorial -2
3.13 MOEF Guide line for
collection, storage and
transportation of hazardous
waste
3.14 Recovery of thermal energy
in cement industry-Possible
utilization
3.15 Tutorial -3

SW-3 Suggested Sessional Work (SW):

Assignments: Estimation of combustion air, Influence of false air in ILC kiln, Use of Alternate fuel and Thermal substitute rate of India, Combustion indicator of cement process.

PCC-CT302.4: Co-processing of Hazardous waste fuel of cement kiln and WHR system for thermal fuel efficiency

1	Approximate Hours
Item	Appx Hrs
CI	10
LI	0
SW	2
SL	1
Total	13

Session	Laboratory	Classroom	Self
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
SO1: Hazardous waste		Unit IV: Guidelines for Co-Processing	
fuel and MOEF Guide		of Hazardous Waste and WHR system	
line to use in cement kiln		in cement plant	
SO2: Coprocessing AF in cement kiln		4.1 Hazardous waste fuel, Biological parameter in clarifying hazardous wastes	
SO3. WHR system in cement kiln		4.2 MOEF Guide line for collection, storage and transportation of hazardous waste	
SO4: Kalina cycle, &		4.3 Preprocessing to prepare	
Rankine Cycle, Organic		homogeneous waste mixes suitable for	
Rankin cycle for efficient		co-processing	

Page 413 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

waste heat i	recovery	4.4	Emission standards for co-processing	
system.			of alternate fuel in cement plant,	
			monitoring	
		4.5	Tutorial – 1	
		4.6	Waste Heat Recovery in cement kiln	
		4.7	Recovery of thermal energy from in	
			cement industry-Possible Heat	
			Sources	
		4.8	Waste heat recovery/thermal energy	
			storage applications :Kalina cycle, &	
			Rankine Cycle	
		4.9	Organic Rankin cycle.	
		4.1	0Tutorial – 2	

SW-4 Suggested Sessional Work (SW):

Assignments:MOEF Guide line for collection, storage and transportation of hazardous waste, Pre processing to prepare homogeneous waste mixes suitable for co-processing, Emission standards for co-processing of alternate fuel in cement plant, monitoring, Recovery of thermal energy from in cement industry-Possible Heat Sources.

PCC-CT302.5: Cement kiln burners and efficiency of burning system.

App	proximate Hours
Item	Appx Hrs
CI	10
LI	0
SW	2
SL	1
Total	13

Session Outcomes	Laboratory	Classroom Instruction	Self Learning
(SOs)	Instruction (LI)	(CI)	(SL)
SO1: Flame requirement		Unit -V: Flame & Burners of cement	1. Cement rotary
in cement kiln and its		kiln	kiln and heat
impact		5.1 Types of flame, flame characteristics,	requirement for
		flame adjustment, flame momentum	pyroprocessing
SO2: Types of cement		5.2 Effects on Refractory Lining of Kiln	
kiln burner.		due to different flame shapes, Effect	
		of flame on protective coating	
SO3: Multichannel fuel		5.3 Combustion in Secondary firing in	
efficient burner		pre-calcinator	
		5.4 Mono-channel burner and	
SO4: Burner alignment in		multichannel burner	
cement kiln and burning		5.5 Tutorial -1	

Page 414 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

efficiency	5.6 Pillard Rota flam burner, FLS
	Duoflex Burnerr and KHD Project
	Burner
	5.7 Burner alignment, Burner
	adjustments
	5.8 Special types of burner used for
	Alternate fuel (hot disc plate)
	5.9 Control of axial and radial air flow.
	5.10 Tutorial -2

SW-5 Suggested Sessional Work (SW):

1. **Assignments:** Types of burner and alignment in cement kiln, Flame and flame adjustment in cement kiln, FLS Duoflex Burner, KHD Project Burner, Effect of burner on Rotary kiln lining.

Course Outcomes	Class	Sessional Work	Self Learning	Total hour
Course Outcomes	Lecture (CI)	(SW)	(SL)	(CI+SW+SL)
PCC-CT302.1: Fuel for Portland cement clinker manufacture and its impact of the manufacturing process and Quality of cement.	10	2	1	13
PCC-CT302.2: Characteristic and preparation of conventional and alternate fuel for cement kiln and its safety measures.	15	2	1	18
PCC-CT302.3: Combustion mechanism and control system in cement kiln	15	2	1	18
PCC-CT302.4: Co-processing of Hazardous waste fuel of cement kiln and WHR system for thermal fuel efficiency.	10	2	1	13
PCC-CT302.5: Cement kiln burners and efficiency of burning system	10	2	1	13
Total Hours	60	10	5	75

Brief of Hours suggested for the Course Outcome

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Mark	Total		
		R	U	Α	Marks
CO-1	Fuel for Portland cement clinker manufacture and its impact of the manufacturing process and Quality of cement.	02	03	02	07
CO-2	Characteristic and preparation of conventional and alternate fuel for cement kiln and its safety measures.	0	08	02	10

Page 415 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

CO-3	Combustion mechanism and control system in cement kiln	01	06	04	11
CO-4	Co-processing of Hazardous waste fuel of cement kiln and WHR system for thermal fuel efficiency.	-	08	07	15
CO-5	Cement kiln burners and efficiency of burning system	-	03	04	07
	Total	03	28	19	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Engineering Graphics & Design will be held with writtenexamination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources: (a) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	Cement Production Technology Principle and Practice	AK Chatterjee	CRC Press	2018
2	Case Study Manual on Alternative Fuels & Raw Materials Utilization in Indian Cement Industry	G Jayaraman Ulhas V Parlikar	Confederation of Indian Industry - CII	2011
3	Increasing The Use of Alternative Fuels at Cement Plants: International Best Practice	S.N. Ghosh	International Finance Corporation	2017
4	Fuels and combustion:	Samir Sarkar	Universities Press	2009
5	Firing System: Process		Holderbank	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

	Technology: Cement Seminar,										
6	Flame & Burners: Process Technology: Cement Seminar,		Holderbank								
7	Cement Plant operation handbook	Philip A. Alsop	Tradeship Publications Ltd,	2007							
8	Holcim Training Manual										
9	FLS Training Manual	LS Training Manual									
	https://www.cementequipment.org/l	nome/alternative-fuel	s-and-raw-materials/								

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Course Title: B. Tech Cement Tech

Course Code: PCC-CT302

Course Title: Fuel and Alternate Fuel & Raw Materials

					I	Progra	m Out	tcomes	5				Pr	ogram Spe	cific Outco	me
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
PCC-CT302.1: Fuel for Portland cement clinker manufacture and its impact of the manufacturing process and Quality of cement.	2	1	1	1	1	3	3	1	1	1	1	2	2	1	1	3
PCC-CT302.2: Characteristic and preparation of conventional and alternate fuel for cement kiln and its safety measures.	3	1	2	2	2	3	3	1	1	1	1	2	2	2	1	3

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

PCC-CT302.3: Combustion mechanism and control system in cement kiln	3	3	3	3	3	3	3	2	3	1	3	3	3	2	3	1
PCC-CT302.4: Co- processing of Hazardous waste fuel of cement kiln and WHR system for thermal fuel efficiency.	3	3	3	3	3	3	3	2	3	2	3	2	3	3	3	1
PCC-CT302.5: Cement kiln burners and efficiency of burning system	2	2	2	1	1	3	3	3	1	2	2	3	2	1	2	3

Legend: 1 – Low, 2 – Medium, 3 – High

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023) Course Curriculum Map: Fuel and Alternate Fuel & Raw Materials

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction (CI)	Self- Learning (SL)	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PCC-CT302.1: Fuel for Portland cement clinker manufacture and its impact of the manufacturing process and Quality of cement.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Fuel for Portland cement clinker manufacture and its impact of the manufacturing process and Quality of cement. 1.1,1.2,1.3,1.4,1.5,1.6,1.7, 1.8, 1.9, 1.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PCC-CT302.2: Characteristic and preparation of conventional and alternate fuel for cement kiln and its safety measures.	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2: Characteristic and preparation of conventional and alternate fuel for cement kiln and its safety measures. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	As mentioned, in
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PCC-CT302.3: Combustion mechanism and control system in cement kiln	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Combustion mechanism and control system in cement kiln 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15	above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PCC-CT302.4: Co- processing of Hazardous waste fuel of cement kiln and WHR system for thermal fuel efficiency.	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4: Co-processing of Hazardous waste fuel of cement kiln and WHR system for thermal fuel efficiency. 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.1 0,	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

PSO 1,2, 3, 4, 5 SO5.4 5.10	7,8,9	9,10,11,12	PCC-CT302.5: Cement kiln burners and efficiency of burning system	SO5.1 SO5.2 SO5.3 SO5.4	Unit 5: Cement kiln burners efficiency of burning system 5.1,5.2,5.3,5.4,5.5, 5.6, 5.7, 5.8, 5.10	
-----------------------------	-------	------------	--	----------------------------------	--	--

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-V

Course Code:	PCC-CT305-L	
Course Title:	Cement Tech Lab I (Raw Material and Fuel Testing)	
Pre- requisite:	Student should have basic knowledge of Mineralogical and chemical composition of limestone and Coal.	

Rationale: The manufacture of Portland cement relies on the chemical composition of limestone and coal, the primary raw material and fuel. This composition is crucial for the raw mix design used in cement clinker production. Additionally, understanding the properties of coal is necessary for the pyroprocessing of Portland cement clinker. It is also important to assess the impact of minor minerals on the process and the quality of the cement. This practical outline the procedures for analyzing and estimating various chemical parameters of limestone and coal.

Course Outcomes:

PCC-CT305-L.1:	Gain the knowledge and hands on training on chemical testing of limestone and
	determination of various chemical constituents.

- **PCC-CT305-L.2:** Gain the knowledge and hands on training on physical testing of limestone and coal on determination of various chemical constituents.
- PCC-CT305-L.3: Gain the knowledge and hands on training on proximate analysis of coal
- **PCC-CT305-L.4:** Gain the knowledge and hands on training on ultimate analysis of coal and determination of gross and net calorific value of coal.

Scheme of Studies:

Course	Course	Course Course -	Scheme of studies(Hours/Week)					Total
Category	Code	Title	CI	LI	SW	SL	Total Hours	Credits
8.			-				(CI+LI+SW+SL)	(C)
PCC	PCC-CT305-L	Cement Tech Lab I (Raw	0	2	1	1	4	1
ice	100-01505-L	Material and Fuel Testing)	0	2	1	1		1

- Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.
- **Note:** SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Scheme of Assessment: Practical

			Scheme of Assess			essment (Marks)		
ory	е	പ	Progressiv	e Assess	sment (PR	(A)	Ţ.	
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (LA)	VIVA (VV)	Class Attendance (TA)	Total Marks (LA+VV+ TA)	End Semester Assessment (ESA	Total Marks (PRA+ESA)
РСС	PCC-CT305-L	Cement Tech Lab I (Raw Material and Fuel Testing)	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT305-L .1: Gain the knowledge and hands on training on testing of limestone and determination of various chemical constituents.

Approximate Hours				
Item	Appx. Hrs			
CI	0			
LI	12			
SW	2			
SL	2			
Total	16			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room	Self Learning (SL)
		Instruction (CI)	
	Unit -1: Chemical analysis of		1. Basic knowledge
	Limestone:		on chemical and
SO1.1: Hand on training on	1. Determination of moisture		physical
_	content and LoI of coal and		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

determination of moisture and LOI of Limestone	limestone 2. Determination of Calcium carbonate, magnesium carbonate, and total carbonate	composition of limestone 2. Basic knowledge
SO1.2: Hand on training on analysis of Calcium and Magnesium Collaborate of limestone.	 of limestone 3. Determination of SiO₂ content of limestone 4. Determination of Al₂O₃ content of limestone 	of chemistry of various element (Periodic Table)
SO1.3: Hands on training on analysis of SiO2, AL2O3, Fe2O3 and MgO of limestone	 Determination of Fe₂O₃ content of limestone Determination of MgO content of limestone 	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Procedure for analysis of various chemical constituents of limestone such as
 - Total carbonate
 - CaO
 - SiO2
 - Al2O3
 - Fe2O3
 - MgO

PCC-CT305-L.2: Gain the knowledge and hands on training on testing of limestone and coal on determination of various chemical constituents.

Approximate Hours				
Item	Appx. Hrs			
CI	0			
LI	8			
SW	2			
SL	1			
Total	11			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO2.1: Hand on training on determination of bulk density	Unit -2: Analysis of Physical		1. Basic knowledge

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

and Sp. gravity of limestone SO2.2: Hand on training on determination of compressive strength of limestone. SO2.3: Hands on training for identification of Calcite and quartz under microscope SO2.4: Determination of Bond index of limestone	and bulk density of limestone 2. Determination of compressive	on chemical and physical composition of limestone 2. Basic knowledge of chemistry of various element (Periodic Table)
--	--	--

SW-2 Suggested Sessional Work (SW): Assignments:

a. Procedure to determine the following

- i. Compressive strength of limestone
- ii. Bond index of limestone
- iii. Microscopic procedure for identification of calcite and quartz in limestone thin section

PCC-CT305-L.3: Gain the knowledge and hands on training on proximate analysis of coal

Approximate Hours					
Item	Appx. Hrs				
CI	0				
LI	6				
SW	2				
SL	1				
Total	9				

Session Outcomes	Laboratory Instruction	Class room	Self-Learning	
(SOs)	(LI) Instruction (C		(SL)	
SO3.1: Hand on training on determination of Moisture and ash content of coal SO3.2: Hand on training on determination of Volatile matter of coal and fix carbon of coal.	 Unit -3: Proximate analysis of coal Determination of following parameters of coal 1. Moisture and Ash content 2. Volatile matter and fix carbon 3. Coal ash analysis 		1. Basic knowledge on chemical and physical composition of coal	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. determination of following parameters of coal and lignite

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- Moisture content
- Ash content
- Volatile matter
- Fix carbon

PCC-CT305-L .4: To gain the knowledge and hands on training on ultimate analysis of coal

Approximate Hours				
Item	Appx. Hrs			
CI	0			
LI	4			
SW	2			
SL	1			
Total	7			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO4.1: Hand on training on determination of Carbon, Hydrogen, Nitrogen, Sulphur, and Oxygen content of coal SO4.2: Hand on training on determination of calorific vale (Gross and Net) of coal. 	Unit -4: Ultimate analysis and determination of Calorific value of coalDetermination of following parameters of coal1.Carbon, Hydrogen, Nitrogen, Sulphur, and Oxygen content present in solid fuel.2.Determination of gross 		1. Basic knowledge on calorific value

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Exploration and prospecting of limestone
- 2. Category of limestone reserves
- 3. Geostatistical evaluation of limestone deposit
- 4. Methods for estimation of limestone reserves

b. Mini Projects

UNFC of various category of Limestone Deposits

Brief of Hours suggested for the Course Outcome

Course Outcome 0	Class	Laboratory	Sessional	Self-	Total hour
------------------	-------	------------	-----------	-------	------------

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

	Lecture (Cl)	Instruction (LI)	Work (SW)	Learning (Sl)	(Cl+SW+Sl)
PCC-CT305-L.1: Gain the	(01)	(===)	(011)	(01)	
knowledge and hands on training on chemical testing of limestone and determination of various chemical constituents.	0	12	2	1	15
PCC-CT305-L.2:Gain the knowledge and hands on training on physical testing of limestone and coal on determination of various chemical constituents.	0	8	2	1	11
PCC-CT305-L .3: Gain the knowledge and hands on training on proximate analysis of coal.	0	6	2	1	9
PCC-CT305-L.4:Gain the knowledge and hands on training on ultimate analysis of coal and determination of gross and net calorific value of coal.	0	4	2	1	7
Total Hours	0	30	8	4	42

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marl	on	Total	
		R	U	Α	Marks
CO-1	Unit -1: Chemical analysis of Limestone	04	05	04	13
CO-2	Unit -2: Analysis of Physical parameter of Limestone	04	05	03	12
CO-3	Unit 3: Proximate analysis of coal	04	05	04	13
CO-4	Unit 4: Ultimate analysis and determination of Calorific value of coal	06	05	03	12
	Total	16	20	14	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Geology and Mining of Limestone will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

1. Improved Lecture

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

-

(a)	Books :			
S.No.	Title	Author	Publisher	Edition
				&Year
1	Ordinary Portland Cement	IS 269-2015	6 th Edition	2015
			BIS	
2	Concrete Technology Lab	Dr. Bharadwaj	Concrete	
	Manual	Nanda and Prof.	Technology Lab	
		A.N. Nayak	Manual	
3	Concrete Technology Lab	Nanditha	MLRITM	2022
	Manual	Mandava,		
4	Methods of physical tests for	IS 4031-1	BIS	1996
	hydraulic			
	cement			
5	Method of chemical analysis of	IS 4032	BIS	1985
	hydraulic cement			

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Page 428 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Course Title: B. Tech Cement Tech Course Code: PCC-CT 206 Course Title: Cement Tech Lab I (Raw Material and Fuel Testing)

Course True. D. Tech Cement Tech					iw whatem		r resting)									
					F	Progra	m Ou	tcome	S				Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
PCC-CT305-L.1:Gain the knowledge and hands on training on chemical testing of limestone and determination of various chemical constituents	2	1	1	1	1	3	3	1	1	1	1	2	2	1	1	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PCC-CT305-L.2: Gain the knowledge and hands on training on physical testing of limestone and coal on determination of various chemical constituents	3	1	2	2	2	3	3	1	1	1	1	2	2	2	1	3
PCC-CT305-L.3: Gain the knowledge and hands on training on proximate analysis of coal	3	3	3	3	3	3	3	2	3	1	3	3	3	2	3	1
PCC-CT305-L.4: Gain the knowledge and hands on training on ultimate analysis of coal and determination of gross and net calorific value of coal.	3	3	3	3	3	3	3	2	3	2	3	2	3	3	3	1

Legend: 1 – Low, 2 – Medium, 3 – High

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Cement Tech Lab I (Raw Material and Fuel Testing)

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT305-L.1: Gain the knowledge and hands on training on chemical testing of limestone and determination of various chemical constituents	SO1.1 SO1.2 SO1.3	Unit-1: Chemical analysis of Limestone 1.1, 1.2, 1.3, 1.4, 1.5, 1.6		
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT305-L.2: Gain the knowledge and hands on training on physical testing of limestone and coal on determination of various chemical constituents	SO2.1 SO2.2 SO2.3 SO2.4	Unit-2: Analysis of Physical parameter of Limestone 2.1, 2.2, 2.3, 2.4		As mentioned,
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT305-L.3: Gain the knowledge and hands on training on proximate analysis of coal	SO3.1 SO3.2	Unit-3: Proximate analysis of coal 3.1, 3.2, 3.3		above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC-CT305-L.4: Gain the knowledge and hands on training on ultimate analysis of coal and determination of gross and net calorific value of coal.	SO4.1 SO4.2	Unit 4: Ultimate analysis and determination of Calorific value of coal 4.1,4.2		

Semester V

Course Code:	HSMC302
Course Title:	Industrial Psychology
Pre- requisite:	Student should have basic knowledge General Psychology, Research Methods and Statistics, Human Resource Management (HRM) etc.
Rationale:	Workplaces worldwide are rapidly evolving to meet the increasing expectations of their employees and cultural changes that prioritize well- being and retention as much as productivity. Industrial-organizational psychology is a field that equips companies with the tools to adapt to this ever-changing environment. The aim of this course is to develop an awareness of the major perspectives underlying industrial psychology and to

understand the potential that it holds for society and organizations in the

Course Outcomes: After the completion of this subject, students will be able to

HSMC302.1: Understand key concepts, theoretical perspectives, and trends in industrial psychology.

HSMC302.2: Create a better work environment for better performance.

present and future.

HSMC302.3: Understand customer behavior.

HSMC302.4: Apply different work methods to improve industrial efficiency.

HSMC302.5: Understand Criteria's in evaluation of job-related factor

Scheme of Studies:

Course	Course	Course		Total					
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)	
HSMC	HSMC302	Industrial Psychology	3	0	1	1	5	3	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory											
				larks)							
			P	Progressive Assessment (PRA)							
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)	
HSMC	HSMC302	Industrial Psychology	15	20	5	5	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC302.1: Understand key concepts, theoretical perspectives, and trends in industrial psychology.

Approximate Hours

Item	Appx. Hrs
CI	08
LI	0
SW	1
SL	1
Total	10

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self Learning (SL)
	Instruction (LI)		
SO1.1 Role of the		Unit-1 : Introduction:	1. General
psychologist in		1.1 The role of the psychologist in	Psychology
industry		industry,	
		1.2 The field of occupational	
SO1.2 Study behavior in		Psychology	
work situation		1.3 Study of behavior in work	
		situation	
SO1.3 Applications of		1.4 Applications of Psychological	
Psychological		principles to problems of selection	
principles to		1.5 Applications of Psychological	
problems of		principles to problems of	
Placement,		Placement,	
counselling and		1.6 Applications of Psychological	
training		principles to problems of	
		Counselling	
		1.7 Applications of Psychological	
		principles to problems of training	
		1.8 Tutorial	

SW-1 Suggested Sessional Work (SW):

a) Assignments:

i. Definitions, Historical Development, and Characteristics of OR.

b) Mini Project:

i. Make a chart on role of the psychologist in industry

HSMC302.2: Create a better work environment for better performance.

Approximate Hour		
Item	Appx Hrs	
CI	9	
LI	0	
SW	1	
SL	1	
Total	11	

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SO2.1 Student will	Unit- 2: Design of Work	1. Human
understand physical	Environments:	Engineering
environment techniques.	2.1 Human engineering and	
	physical environment	
SO2.2 Students will	techniques of job analysis.	
understand Group dynamics	2.2 Social environment: Group	
in Industry	dynamics in Industry	
	2.3 Personal psychology, Selection,	
	training	
	2.4 placement, promotion,	
	counselling	
	2.5 Job motivations,	
	2.6 Job satisfaction.	
	2.7 Special study of problem of	
	fatigue	
	2.8 boredom and accidents	
	2.9 Tutorial	

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
- i. Analyze role of physical environment in industrial efficiency.
- ii. Effect of social environment

HSMC302.3: Understand customer behavior.

Approximate Hour		
Item	Appx Hrs	
CI	6	
LI	0	
SW	1	
SL	1	
Total	8	

Sessio	n Outcomes (SOs)	Laboratory Instruction (LI)	Class	room	Instruction (CI)	S	Self Learning (SL)
SO3.1	Student	will		Unit-	3:	Understanding	1.	customer Behavior

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

understand Customer	Consumer Behavior:
behavior	3.1 Consumer behavior
	3.2 study of consumer
SO3.2 Student will	preference
understand the role of	3.3 effects of advertising
engineering psychology	3.4 Industrial morale: The
	nature and scope of
	engineering psychology
	3.5 application of engineering
	psychology to industry
	3.6 Tutorial

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Study of Customer Behavior.
- Significance of engineering psychology in industry. ii.

HSMC302.4: Apply different work methods to improve industrial efficiency.

Approximate Hours

FF		
Item	Appx Hrs	
CI	13	
LI	0	
SW	1	
SL	1	
Total	15	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)		Sel	f Learning (SL)
SO4.1 Student will be able to	•	Unit-	4: Work Methods:		
understand the efficiency at		4.1	Efficiency at work,	1.	Work
work.		4.2	The concept of efficiency,		efficiency and
		4.3	The work curve and its		its parameters
SO4.2 Student will be able to			characteristics		
understand work curve and its		4.4	The work methods; hours of		
characteristic.			work.		
		4.5	Nature of work, fatigue and		
SO4.3 analyze personal factors			boredom.		
the affects efficiency		4.6	Rest pauses.		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

	4.7 The personal factors; age
SO4.4 Student will understand	abilities
the effect of working	4.8 Interest, job satisfaction,
environment.	4.9 The working environment,
	noise, illumination.
	4.10 Atmospheric conditions.
	4.11 Increasing efficiency at
	work; improving the work
	methods.
	4.12 Time and motion study, its
	contribution and failure
	resistance to time and
	motion studies.
	4.13 Need for allowances in time
	and motion study.

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Factors that affects work efficiency
 - ii. Effect of environmental factors

HSMC302.5: Understand Criteria's in evaluation of job-related factor

Ap	Approximate Hour		
Item	Appx Hrs		
CI	9		
LI	0		
SW	1		
SL	1		
Total	11		

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning (SL)
	(LI)		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

	Unit 5: Work and	1.industrial
SO5.1 Student will be understand	Equipment Design:	accidents and
evaluation of job-related factor	5.1 Criteria in evaluation of	their cause
	job-related factor,	
SO5.2 Student will be able	5.2 job design, human factors,	
understand different processes	Engineering information,	
involve in work and equipment	5.3 input processes, mediation	
design	processes, action	
	processes,	
SO5.3 Student will understand	5.4 methods design, work	
different factors involve in	space and its arrangement,	
industrial accidents.	5.5 Human factors in job	
	design. Accident and	
	Safety	
	5.6 The human and economic	
	costs of accidents	
	5.7 Accident record and	
	statistics	
	5.8 the causes of accidents	
	5.9 Situational and individual	
	factors related to accident	
	reduction.	

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Study of Criteria in evaluation of job-related factor.
 - ii. Situational and individual factors related to accident reduction

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (SI)	Total hour (CI+SW+SI)
HSMC302.1: Understand key concepts, theoretical perspectives, and trends in industrial psychology.	8	1	1	10
HSMC302.2: Create a better work environment for better performance	9	1	1	11
HSMC302.3: Understand customer behavior.	6	1	1	08
HSMC302.4: Apply different work methods to improve industrial efficiency.	13	1	1	15

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

HSMC302.5: Understand Criteria's in evaluation of job-related factor	9	1	1	11
Total Hours	45	5	5	55

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks	Distribu	Total Marks	
tu	Unit Titles	R	U	Α	1 otal wiarks
CO-1	Introduction	2	4	4	10
CO-2	Design of Work Environments	-	5	5	10
CO-3	Understanding Consumer Behavior	3	3	4	10
CO-4	Work Methods	-	5	5	10
CO-5	Work and Equipment Design.	3	4	3	10
	Total	8	21	21	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Industrial Psychology will be held with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)

Page 439 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

8. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition &Year
1	Industrial Psychology	Tiffin and McCormick	Prentice Hall	6 th Edn., 1975
2	Human Factors Engineering and Design	McCormick	McGraw Hill	4th Edn.,1976
3	Principles of Human relations	N.R.F Mair,	WILEY, NEW YORK	1961
4	Personnel and Industrial Psychology	Ghiselli & Brown	McGraw-Hill Inc.,US	1955

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

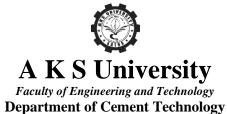
Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Course Code: HSMC302


COs, POs and PSOs Mapping

Program Title: B. Tech. Cement Technology

Course Title: Industrial Psychology

Trogram Trace Di Teem Cem	Guine The. D. Teen. Comer Teenmology Course Code. IIS/10502 Course Thie. Industrial Tsycholog.					, morogy										
		Program Outcomes Program Specific Outcome														
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO1: Understand key concepts, theoretical perspectives, and trends in industrial psychology.	1	2	1	1	2	2	2	3	3	3	2	2	2	2	1	2
CO2: Create a better work environment for better performance	1	2	1	1	2	3	3	2	2	2	2	2	2	2	1	2
CO3: Understand customer behavior.	1	2	1	1	2	3	2	3	2	2	2	3	2	3	1	2
CO4: Apply different work methods to improve industrial efficiency.		2	1	1	2	2	3	3	2	2	2	2	2	2	1	2
CO5: Understand Criteria's in evaluation of job-related factor	1	2	1	1	2	3	2	3	2	2	2	2	2	2	1	2

Legend: 1 – Low, 2 – Medium, 3 – High

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Course Curriculum Map: Industrial Psychology

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2,3,4	CO1: Understand key concepts, theoretical perspectives, and trends in industrial psychology.	SO1.1 SO1.2 SO1.3		Unit-1: Introduction 1.1, 1.2, 1.3, 1.4, 1.5,1.6,1.7,1.8	
PO 1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2,3,4	CO2: Create a better work environment for better performance	SO2.1 SO2.2		Unit-2: Design of Work Environments 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9	
PO 1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2,3,4	CO3: Understand customer behavior.	SO3.1 SO3.2		Unit-3: Understanding Consumer Behavior 3.1, 3.2, 3.3, 3.4, 3.5, 3.6	As mentioned in above pages
PO 1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2,3,4	CO4: Apply different work methods to improve industrial efficiency.	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4: Work Methods 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13	
PO 1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2,3,4	CO5: Understand Criteria's in evaluation of job-related factor	SO5.1 SO5.2 SO5.3		Unit 5: Work and Equipment Design 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester V

Course Code:	HSMC303
Course Title:	Operations Research
Pre- requisite:	Student should have basic knowledge of mathematics and business operations.
Rationale:	Executives are required to take prompt and accurate decisions, if decision is taken merely on the basis of experience and intuition that may not be fruitful and accurate, but decision taken on the basis of data is more accurate. Operation Research provides quantitative basis or
	data to take accurate decisions. The tools and models of operations research provide us optimal solutions of the business operations problems; hence the study of operations research is very important to management students.
Course Outcomes:	

HSMC303.1: The student will demonstrate the process of problem solving in Operations Research.

- **HSMC303.2:** The student will apply the linear programming problem method to solve the various business management problems quantitatively.
- **HSMC303.3:** The student will use the transportation and assignment techniques to solve the transportation and assignment problems quantitatively.
- **HSMC303.4:** The student will apply network analysis techniques like PERT and CPM to solve the scheduling of activities and resource allocation related problems.
- **HSMC303.5:** The student will calculate the optimum value of game and optimum replacement period using game theory and replacement theory respectively.

Scheme of Studies:

		~	S	cheme o	of studies (Hours pe	r Week)	
Code	Course Code	Course Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Total Credits(C)
HSMC	HSMC303	Operations Research	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacher to ensure outcome of Learning.

Scheme of Assessment: Theory

						ssessment	(Marks)		
Course Category	CourseCode	Course Title	Class/Home Assignment 5 Assignments 3 marks Each (CA)	2 Class Test (best 2 out of 3) 10 marks Each (CT)	One Seminar (SA)	Class Attendance (AT) (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
HSMC	HSMC303	Operations Research	15	20	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC303.1: The student will demonstrate the process of problem solving in Operations Research.

Approximate Hours						
Item	Appx. Hrs					
CI	07					
LI	0					
SW	1					
SL	1					
Total	9					

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Se	elf Learning (SL)
	(LI)			
SO1.1 Student will explain about the development of Operations Research		Unit-1 : Introduction to Operations Research1.1 Meaning and Definitions of Operations Research.	1.	Quantitative approach to decision making.
SO1.2 Student will explain about the characteristics and scope of Operations Research		1.2 Development of Operations Research in India.1.3 Characteristics of Operations Research1.4 Scope of Operations Research.	2.	Quantitative Analysis and
SO1.3 Student will demonstrate the process of operations research to problem solving.		 1.5 Operations Research Methodology. 1.6 Operations Research Models. 1.7 Advantages and Limitations of Operations Research. 		Computer- Based Information System
SO1.4 Student will classify different models of operations research.				

SW-1 Suggested Sessional Work (SW):

a) Assignments:

i. Definitions, Historical Development, and Characteristics of OR.

ii. Process and Models of OR.

b) Mini Project:

i. Prepare a flowchart of process of OR to problem solving in a chart paper.

HSMC303.2: The student will apply the linear programming problem method to solve the various business management problems quantitatively.

Approximate Hours				
Item	Appx Hrs			
CI	13			
LI	0			
SW	2			
SL	2			
Total	17			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1 Student will explain about the Concept, Assumptions and Requirements of LPP. SO2.2 Students will formulate the LPP SO2.3 Student will solve the LPP by Graphical Method SO2.4 Student will Solve the LPP by Simplex Method. SO2.5 Student will solve the LPP by Big-M and Two phase methods 		 Unit- 2: Linear Programming 2.1 Meaning and Requirements of Linear Programming. 2.2 Formulation of two variable Maximization type Linear Programming Problem 2.3 Formulation of two variable Minimization type Linear Programming Problem 2.4 Solution of Maximization Type LPP by Graphical Method 2.5 Solution of Minimization Type LPP by Graphical Method 2.6 Solution of LPP by Graphical Method: Special Cases- Multiple Optimal Solutions. 2.7 Solution of LPP by Graphical Method: Special Cases- Infeasibility, Unboundedness. 2.8 Introduction to Simplex method of LPP 2.9 Solution of LPP by Simplex Method: Maximization Type Two and more than two Variables Problem 2.10Solution of LPP by Simplex Method: Minimization type two and More than two variables Problem 2.11Solution of LPP by Simplex Two- Phase Method 2.13Special Cases Advantages and Limitations of LPP. 	 Practice:- Solution of LPP by Graphical Method Practice:- Solution of LPP by Simplex Method

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Formulate the LPP (Problem will be given by the subject teacher)
- ii. Solve the LPP by Graphical and Simplex Methods (Problem will be given by the subject teacher)

b. Mini Project:

Assignment Problem: Introduction and as a particular case of transportation model

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

HSMC303.3: The student will use the transportation and assignment techniques to solve the transportation and assignment problems quantitatively.

Approximate Hours								
Item	Appx Hrs							
CI	10							
LI	0							
SW	2							
SL	2							
Total	14							

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO3.1 Student will formulate the transportation problem SO3.2 Student will solve the transportation problem SO3.3 Student will formulate the assignment problem SO3.4 Student will solve the assignment problem. 	•	 Unit- 3: Transportation and Assignment Problem 3.1 Concept of Transportation Problem 3.2 Initial Basic Feasible Solution by NWC Rule and LCM Method. 3.3 Initial Basic Feasible Solution by Vogel's Approximation Method (VAM) 3.4 Optimality Test: Minimization type problem stepping stone method 3.5 Optimality Test: Minimization type problem by Modified Distribution Method (MODI) 3.6 Optimality Test: Maximization type problem by Modified Distribution Method (MODI) 3.7 Transportation Problem: Special Cases (Unbalanced, Multiple Optimal Solution and Prohibited Route Problem) 3.8 Transportation Problem: Special Cases -Degeneracy Case 3.9 Assignment Problem: Introduction and as a particular case of transportation model, and solution by Complete Enumeration Method 3.10 Assignment Problem: Solution by Hungarian Assignment Method (HAM) - Special Cases 	of transportation Problems

A K S University *Faculty of Engineering and Technology*

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Formulation and solution of the transportation problem ii. Formulation and solution of the assignment problem

b. Mini Project: Make flowchart of the solution of a Transportation and Assignment Problems in a chart paper

HSMC303.4: The student will apply network analysis techniques like PERT and CPM to solve the scheduling of activities and resource allocation related problems.

Approximate Hours								
Item	Appx Hrs							
CI	8							
LI	0							
SW	2							
SL	2							
Total	12							

	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)		
 SO4.1 Student will be able to describe the network construction rules. SO4.2 Student will be able to use the CPM in project management. SO4.3 Student will be able to use the PERT in project management. SO4.4 Student will find out the shortest route and longest routes by dynamic programming. SO4.5 Student will explain about the simulation and process of simulation. 		 Unit- 4: PERT and CPM, Dynamic Programming, and Simulation. 4.1 Introduction to Network Analysis 4.2 Rules of Network Construction 4.3 Calculation of Earliest Start and Finish Times and Latest Start and Finish Times 4.4 Determining the critical path and calculation of project completion time 4.5 Calculation of Float Times 4.6 Resource Allocation 4.7 PERT: Introduction 4.8 Difference Between PERT and CPM 	 i. Practice:- Network construction and determination of critical path ii. Practice:- Calculation of Earliest start and Finish Times as well as Latest Starting and Finish time iii. Practice-: PERT- Calculation of Expected time and Variances. 		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i) Network Construction, Critical Path Determination, Calculation of Earliest and Latest starting and finish times, Calculation of float times. Resource analysis and allocation.
- ii) PERT- Calculation of Expected time and Variances
- **b.** Mini Project: Construction of a network and determination of critical path and project completion time for a real project (Project will be detailed by a subject teacher)

HSMC303.5: The student will calculate the optimum value of game and optimum replacement period using game theory and replacement theory respectively.

Approximate Hours							
Item	Appx Hrs						
CI	7						
LI	0						
SW	2						
SL	2						
Total	11						

 competitive business world as a strategic tool. SO5.2 Student will be able to determine the optimal replacement time which will help in the formulation of replacement policy SO5.3 Student will 5.1 Meaning of a Two Person Game, N Person Game, N Person Game, Pure Strategy Game, Mixed Strategy Game, Non-Zero-Sum Game, Fair Game. 5.2 Solution of a game when saddle point exists. 5.3 Solution of a 2x2 game when saddle point does not exist. 5.4 Solution of a m x n game with dominance rule 5.5 Introduction and Scope of Replacement Theory in Management. 5.6 Replacement policy for equipment which deteriorates gradually 	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
structure of a queuing Structure of a queuing System	able to apply the game theory in the competitive business world as a strategic tool. SO5.2 Student will be able to determine the optimal replacement time which will help in the formulation of replacement policy SO5.3 Student will describe the general		 Queuing Theory. 5.1 Meaning of a Two Person Game, N Person Game, Pure Strategy Game, Mixed Strategy Game, Zero Sum Game, Non-Zero-Sum Game, Fair Game. 5.2 Solution of a game when saddle point exists. 5.3 Solution of a 2x2 game when saddle point does not exist. 5.4 Solution of a m x n game with dominance rule 5.5 Introduction and Scope of Replacement Theory in Management. 5.6 Replacement policy for equipment which deteriorates gradually 5.7 Queuing Theory: Introduction, and General 	Formulation and solution of a game. ii. Practice: - Solution of a replacement

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

b.

- i) Formulation and Solution of a game theory problems
- ii) Solution of replacement theory problems
- Mini Project: i) Make a flowchart of a solution to a game theory problem.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (SI)	Total hour (CI+SW+SI)
HSMC303.1: The student will demonstrate the process of problem solving in Operations Research.	7	1	1	9
HSMC303.2: The student will apply the linear programming problem method to solve the various business management problems quantitatively.	13	2	2	17
HSMC303.3: The student will use the transportation and assignment techniques to solve the transportation and assignment problems quantitatively.	10	2	2	14
HSMC303.4: The student will apply network analysis techniques like PERT and CPM to solve the scheduling of activities and resource allocation related problems.	8	2	2	12
HSMC303.5: The student will calculate the optimum value of game and optimum replacement period using game theory and replacement theory respectively.	7	2	2	11
Total Hours	45	9	9	63

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Mark	Total		
		R	U	Α	Marks
CO-1	Unit 1 : Introduction to Operations Research	04	05	01	10
CO-2	Unit 2: Linear Programming	03	01	01	05
CO-3	Unit 3: Transportation and Assignment Problem	04	05	06	15

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

CO-4	Unit 4: PERT and CPM, Dynamic Programming, and Simulation	03	06	06	15
CO-5	Unit 5: Game Theory, Replacement Theory and Queuing Theory.	03	02	-	05
	Total	17	19	14	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Geology and Mining of Limestone will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition &Year
1	Quantitative Techniques in Management	Vohra, N D	TMH, New Delhi	2002
2	Problems and Solutions in Operations Research	V. K. Kapoor	Sultan Chand and Sons, New Delhi	2005
3	Principles of Operations Research with Application to Managerial Decisions	H.M. Wagner	PHI Learning	2008
4	Operations Research	Kanti Swarup, P K Gupta and Man Mohan	Sultan Chand & Sons, New Delhi	2010
5	Operations Research	Heera & Gupta	S. Chand	2011

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Curriculum Development Team

- 1. Professor (Dr.) Harshwardhan Shrivastava, Dean, Faculty of Management Studies, AKS University
- 2. Dr. Kausik Mukherjee , Head of the Department, Dept. of Business Administration
- 3. Dr. Pradeep Chaurasia, Associate Professor, Dept. of Business Administration
- 4. Dr. Prakash Kumari Sen, Assistant Professor, Dept. of Business Administration
- 5. Mr. Pramod Kumar Dwivedi, Assistant Professor, Dept. of Business Administration

A K S University Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: HSMC303

Course Title: Operations Research

	Program Outcomes							Pr	ogram Spe	cific Outco	ome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
HSMC303.1: The student will demonstrate the process of problem solving in Operations Research.	2	3	3	2	2	1	1	1	1	1	2	1	2	1	1	3
HSMC303.2: The student will apply the linear programming problem method to solve the various business management problems quantitatively.	2	3	3	3	3	1	1	1	1	1	3	1	2	2	1	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

HSMC303.3: The student will use the transportation and assignment techniques to solve the transportation and assignment problems quantitatively.	2	3	3	3	3	1	1	1	1	1	3	1	3	2	3	1
HSMC303.4: The student will apply network analysis techniques like PERT and CPM to solve the scheduling of activities and resource allocation related problems.	2	3	3	3	3	1	1	1	1	1	3	1	3	3	3	1
HSMC303.5: The student will calculate the optimum value of game and optimum replacement period using game theory and replacement theory respectively.	2	3	3	3	3	1	1	1	1	1	3	1	2	1	2	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Operations Research

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	HSMC303.1: The student will demonstrate the process of problem solving in Operations Research.	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1: Introduction To Operations Research 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	HSMC303.2: The student will apply the linear programming problem method to solve the various business management problems quantitatively.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2: Linear Programming 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	HSMC303.3: The student will use the transportation and assignment techniques to solve the transportation and assignment problems quantitatively.	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3: Transportation And Assignment Problem 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10	As mentioned in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	HSMC303.4: The student will apply network analysis techniques like PERT and CPM to solve the scheduling of activities and resource allocation related problems.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Pert And Cpm, Dynamic Programming, And Simulation. 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	HSMC303.5: The student will calculate the optimum value of game and optimum replacement period using game theory and replacement theory respectively.	SO5.1 SO5.2 SO5.3		Unit 5: Game Theory, Replacement Theory And Queuing Theory . 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7	

Semester: V

Course Code:	OEC-CT01
Course Title:	Carbon Credit in Cement Manufacture
Pre-requisite:	Student should have basic knowledge of Carbon footprint in Cement Manufacture
Rationale:	Cement manufacturing is an energy intensive process, which uses fossil fuel for its heat energy requirement and electrical energy from thermal power plants. The total energy used which uses fossil fuel for its generation, produces CO ₂ . Now CO ₂ is also generated during calcination of "Raw Meal or Kiln feed "as it produced by grinding limestone (a major component) along with suitable additives. The total CO ₂ hence generated is the Carbon footprint of the unit process. Due to global warming and climate change, every sector has decided to reduce the CO ₂ emission to levels which shall contain further temperature rise. It further pledges to become carbon negative by 2040, so that the environment may be passed on to next generation. The course discusses the unit operation of CO ₂ emission both in material and energy consumption, through Energy savings, technical advances and upgrades of the existing system, usage of Biomass/ Biofuels substituting the fossil fuel, alternate materials and alternate fuels. It also encourages usage of "Renewable Energy". Finally, the CO ₂ separation and utilizing technology is discussed, which shall mitigate the Carbon footprint, to desired levels, once commercially feasible.

Course Outcomes:

- **OEC-CT01.1:** Understand Carbon footprint in the industry and share of Cement sector. Key indicators in Cement industry.
- **OEC-CT01.2:** CO₂ emission sources in unit process and quantification from each source. Calculation of total CO₂ emission in the pyroprocess with breakups
- **OEC-CT01.3:** Primary measures to reduce Carbon footprint. Use of alternative materials & fuels, Technological advances & upgrades. Power generation through "Waste heat power recovery system"
- **OEC-CT01.4:** Blended cements and respective blending materials thus reducing the Carbon intensive & energy intensive Clinker usage for Cement grinding. Technological advances and upgrades in grinding technology.

OEC-CT01.5: Sourcing renewable electrical energy substituting power usage from thermal power plants. Installing and implementing Carbon Capture and utilization technologies, CO₂ separation technology for Carbon negative unit process.

Scheme of Studies:

	C	G	S	T - 4 - 1				
Code	Course Code	Course Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Total Credits(C)
OEC	OEC-CT01	Carbon Credit in Cement Manufacture	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies), SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)							
Course Category	CourseCode	Course Title	Class/Home Assignment 5 Assignments 3 marks Each (CA)	2 Class Test (best 2 out of 3) 10 marks Each (CT)	One Seminar (SA)	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)	
OEC	OEC-CT01	Carbon Credit in Cement Manufacture	15	20	10	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC-CT01.1: Understand Carbon footprint in the industry and share of Cement sector. Key indicators in Cement industry

Approximate Hours

Approx. Hrs.
09
0
2
1
12

Session Outcomes	Laboratory	Classroom	Self-Learning
(SOs)	Instruction	Instruction	(SL)
	(LI)	(CI)	
S01.1. Carbon Footprint-		Unit-1.0 Carbon footprint – Introduction	1. Blanketing of
Introduction			atmosphere by
		1.1 Share of Cement Industry towards	CO ₂ resulting in
S01.2 Carbon footprint		CO ₂ emission in Industrial sector	temperature rise
sources in a		1.2 Key indicators in Cement industry	
Manufacturing unit		1.3 Total CO ₂ emission in an Integrated	2. Increase in
		Cement plant	Glacier melting
S01.3 Determination of		1.4 Present and Projected Cement	resulting in
Carbon footprint in a		demand	floods
Cement plant	•	1.5 Present trends & developments	
		1.6 Capacity expansion by key players	3. Rise in sea levels
SO1.4 Carbon footprint		1.7 High demand of Cement, strong	
reduction & equivalent		drivers & leaders in Cement demand	
CER		1.8 Strategies adopted for sustainable	
		Cement consumption & demand	
S01.5 Carbon footprint		1.9 Necessity of CO ₂ mitigation hence	
and related Climate		reduction in Carbon footprint	
change			

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Mention the key indicators in Cement Industry indicating energy efficiency and Carbon footprint

b. Mini Project:

Sectors crucial for the sustainable growth in Cement Industry

c. Other Activities (Specify): Air quality at Metros at various seasons and related health problems

OEC-CT01.2: CO₂ emission due to Material processing, Thermal & Electrical energy usage in a Cement manufacturing unit

A	oproximate Hours
Item	Approximate
	Hours
CI	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
S02.1 CO ₂ Emission		Unit-2.0 Carbon footprint-Breakups	1. Heat balance
sources in a Cement		in unit process	study in Pyro-
Plant			process
		2.1 CO ₂ emission from Calcination of	
S02.2Heat loss in the		Raw meal (mainly comprising	2. Factors
Preheater, Cooler, and		Limestone)	contributing to
Radiation& Convection		2.2 Combustion of fossil fuel and	high heat losses
losses		corresponding CO ₂ emission	
	-	2.3 Heat consumption in Cement	3. Factors
S02.3Heat of reaction in		plant corresponding to fossil fuel	contributing to
Clinkerisation		consumption	high electrical
		2.4 Heat of Reaction in Clinkerisation	energy
S02.4 Conversion ratios:		resulting in Heat consumption and	consumption
Raw Meal to Clinker and		CO ₂ emission	
Clinker to Cement		2.5 Source of Electrical energy:	
		Thermal Power Plants and	

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

SO2.5 CO_2 emission due	consecutive CO ₂ emission
to Electrical Energy	2.6 Electrical energy consumption
consumption sourced	sourced from Thermal Power
from Thermal power	Plant and corresponding CO ₂
plants	emission
	2.7 Total CO ₂ emission in Pyro
	process
	2.8 Breakups and total CO_2 emission
	section wise, up to Clinkerisation
	and up to Cement
	2.9 Making unit operations more
	energy efficient resulting in lower
	CO ₂ emission- Calculation

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Calculate CO_2 emission due to combustion of unit mass of coal and unit mass of pet coke. Calculate CO_2 emission from Calculation of Raw meal/Net Kiln Feed designed for unit mass of Clinker.

b. Mini Project:

Determination of CO_2 emission from a Pyro processing of 4500 tpd Clinker production, with following data: PH outlet dust loss: 6%, LOI raw meal: 35.5%, Specific heat consumption: 745 kCal/kg Clinker, Coal NCV: 5500 kCal/kg Clinker; Fixed carbon in coal: 52%

c. Other Activities (Specify):

Compile a list of domestic activities/uses which may reduce the CO₂ emission

OEC-CT01.3: Primary measures to reduce Carbon footprint. Use of alternative materials & fuels, Technological advances & upgrades. Power generation through "Waste heat power recovery system"

Approximate Hours					
Item	Approximate				
	Hours				
CI	9				
LI	0				
SW	2				
SL	1				
Total	12				

Faculty of Engineering and Technology

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
S03.1 Use of low Burnability & easy burning Raw meal		Unit-3.0 CO ₂ mitigation steps in Pyro-processing 3.1 Low burnability & high reactivity	1. Most contributing component of heat
S03.2 Use of mineralizers in Raw meal		Raw mix reduces heat consumption 3.2 Use of "Mineralizers" like	consumption 2. Energy
S03.3 Enhancing use of low ash fuels resulting in low lime Raw meal for desired Clinker quality		 5.2 Ose of Americanzers interpretention Fluorides, alkali or calcium fluorosilicates for reducing heat consumption 3.3 Use of low ash fuel, thus reducing the lime content in the Raw meal 	efficient measures commonly practiced in Cement plants
S03.4 Enhancing use of hazardous fuels, pharma waste& Alternative fuels		 and hence heat of reaction 3.4 Use of hazardous fuels, pharma waste and alternative fuels shall reduce the fossil fuel usage 	3. Effects on "Heat of Reaction" with different lime
S03.5 Technological advancements & upgrades	_	corresponding to "Thermal substitution rate" hence Carbon footprint3.5 Use of Grinding aids in Cement	content
		Grinding allowing higher dosage of other building materials substituting high-Carbon & high- energy Clinker	
		3.6 Multichannel burners replacing monochannel burners, thus saving heat energy and better Clinker quality	
		3.7 Inline Calciner with hot disc for alternative or waste fuel firing especially waste tyre	
		3.8 Generating electricity from waste heat, the "Waste Heat Power Recovery system"	
		3.9 Utilizing renewable forms of energy to the extent possible in place of fossil fuel	

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i) Calculation of "Thermal Substitution rate" by substituting Coal by 5%, using Pharma waste with 50% NCV of Coal
- ii) Reduction of Carbon footprint in above case

b. Mini Project:

Explore alternate fuels available within 50 km radius of a Integrated Cement Plant located nearest to your place of stay. Detail it with economic feasibility and reduction in Carbon footprint

c. Other Activities (Specify):

Hazardous waste used in Cement sectors and other industries with intended purpose

OEC-CT01.4: Blended cements and respective blending materials thus reducing the Carbon intensive & energy intensive Clinker usage for Cement grinding. Technological advances and upgrades in grinding technology.

Approximate Hours

Item	Approximate Hours	
CT	nouis	
CL	9	
LI	0	
SW	2	
SL	1	
Total	12	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
S04.1 Fly ash type & quality		Unit-4.0 CO ₂ mitigation due to	1. Closed loop
suitable for Blended Cement grinding PPC		Blended cement	optimization of Cement Mills
		4.1 Minimum and maximum limit	
S04.2 Methodology of fly		of building material in	2. Types & modes of
ash addition to maximize		Blended Cement	Grinding and
production rate and energy savings	-	4.2 Grinding methodology in various grinding mills with maximum fly ash addition	corresponding energy consumption intensity
S04.3 Slag type &quality		and energy savings	
suitable for Blended Cement grinding PSC		4.3 PSC grinding methodology in various grinding mills with maximum possible fly ash	3. Determination of fly ash behavior as building material

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

S04.4 Clay type &quality,	addition and energy savings
suitable for Calcined clay	4.4 Clay type and quality for
manufacture & its usage as	Calcination for LC3 grade.
Bended cement in	4.5 Methods of Clay Calcination
Limestone Calcined clay	and selection of process
cement	4.6 Composite Cement
	manufacture
S04.5 Technological	4.7 Calculation of up to cement
advances in Grinding with	specific energy
low energy consumption	consumption, and specific
	Carbon footprint
	4.8 Novacem Cement- Carbon
	negative Cement-
	Commercial production
	4.9 Solidia Cement- Low Carbon
	Cement

SW-4 Suggested Sessional Work (SW):

Assignments: a.

Calculation of up to cement specific electrical energy consumption in OPC, PPC & PSC.

Determination of Specific Carbon footprint in each case

Mini Project: b.

Identification of Clays that can be calcined and can be used as blending material in Cement grinding

Other Activities (Specify): c.

Building materials used in past for construction before Cement invention

OEC-CT01.5: Sourcing renewable electrical energy substituting power usage from thermal power Installing and implementing Carbon Capture and utilization plants. technologies, CO2 separation technology for Carbon negative unit process.

Аррі	roximate Hours
Item	Approximate Hours
CI	9
LI	0
SW	2
SL	1
Total	12

тт .

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
S05.1 Renewable energy		Unit-5: CO ₂ mitigation due to	1.Use of Solar power
power generation: Solar		Renewable energy and Carbon	for domestic purpose
power plants, wind		negative due to CCU & CCS	
energy, hydroelectricity,			2.Prospects of
etc		5.1 Renewable energy generation and	Biomass/Bamboo
		supply in less intensive and usage in unit	cultivation with or
S05.2 Biomass		operations other than sensitive areas of	with water
cultivation and use as		tripping like pyro-process	requirements
fuel replacing fossil fuel		5.2 Biomass cultivation which absorbs	
		CO ₂ and usage ensuring continuous	3. MOEF status of
S05.3 Low Carbon		cycle of usage	Biomass/Bamboo
technologies: Algae		5.3 Algae growth in kiln stack and use as	harvest from Forest
growth promotion & use		biofuels	areas
of bio-fuels		5.4 Application of bioreactor in kiln	
		stack for using CO ₂	
S05.4 General CO_2		5.5 CO ₂ Capture technologies: a) Pre-	
capture technologies		combustion capture b) Oxy-fuel &	
		c)Post combustion capture	
S05.5 General CO_2		5.6 CO ₂ separation technologies:	
separation technologies		Absorption, Adsorption, Membrane	
		separation, Hydrate based	
		separation, Cryogenic distillation	
		5.7 CO_2 transportation	
		5.8 CO ₂ utilization	
		5.9 CO ₂ geological storage	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Calculate the Carbon footprint reduction for replacing power supply from Thermal power plant by 1MW through renewal energy

Explain the CO₂ capture technologies

b. Mini Project:

CO₂utilization technologies and products

c. Other Activities (Specify):

Biomass/Bamboo chemical analysis and NCV, Best available for Cement plant for Heat energy, other uses of Bamboo

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self- Learning (SL)	Total hour (CI+SW+SL)
OEC-CT01.1: Understand Carbon footprint in the Industry and share of Cement sector. Key indicators in Cement industry. Reason of Global temperature rise and Climate change	09	2	1	12
OEC-CT01.2: Understood the CO_2 emission sources in unit process and quantification from each source. Calculation of total CO_2 emission in the pyro process with breakups	09	2	1	12
OEC-CT01.3: CO ₂ mitigation steps in Pyroprocess. Use of alternative & hazardous fuels and calculation of "Thermal substitution rate" and Carbon footprint reduction. Use of grinding aids for production increase and reduction in specific power consumption. Technological upgrades & advances	09	2	1	12
OEC-CT01.4: Calculation of Carbon footprint reduction in Blended cements reducing the Carbon intensive & energy intensive Clinker usage for Cement grinding. Calculation of Technological advances and upgrades in grinding technology	09	2	1	12
OEC-CT01.5: Calculation of reduced carbon footprint due to usage of renewable energy substituting energy from thermal power plants using fossil fuels, installation of CCU & CCS technologies for Carbon negative perspective	09	2	1	12
Total Hours	45	10	5	60

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

со	Unit Titles		Marks stributio	n	Total
		R	U	Α	Marks
CO-1	Unit 1: Carbon footprint – Introduction	03	02	05	10
CO-2	Unit 2: Carbon footprint-Breakups in unit process	03	02	05	10
CO-3	Unit 3: CO ₂ mitigation steps in Pyro processing	03	02	05	10

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

CO-4	Unit 4: CO ₂ mitigation due to Blended cement	03	02	05	10
CO-5	Unit 5: CO ₂ mitigation due to Renewable energy and Carbon negative due to CCU & CCS	03	02	05	10
	Total	15	10	25	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Geology and Mining of Limestone will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	Cement production Technology	Anjan Kumar Chatterjee	CRC Press	2018
2	Intelligent and Sustainable Cement Production	Anjan Kumar Chatterjee	CRC Press-	2021
3	Handbook of Low Carbon Concrete	Ali Nazari, Jay G. Sanjayan	Elsevier Science	2016
4	Designing Green Cement Plants	S.P. Deolalkar	Elsevier Science	2015

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech. Cement Tech. Course Code: OEC-CT01 Course Title: Carbon Credit in Cement Manufacture

]	Progra	ım Ou	tcomes	5				Pr	ogram Spe	cific Outco	ome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical $\&$ engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
OEC-CT01.1: Understand Carbon footprint in the Industry and share of Cement sector. Key indicators in Cement industry. Reason of Global temperature rise and	3	2	2	2	2	3	3	1	1	1	2	1	1	2	2	1

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Climate change																
OEC-CT01.2: Understood the CO_2 emission sources in unit process and quantification from each source. Calculation of total CO_2 emission in the pyro process with breakups	3	3	2	2	2	3	3	1	1	1	3	1	2	2	2	1
OEC-CT01.3: CO ₂ mitigation steps in Pyroprocess. Use of alternative & hazardous fuels and calculation of "Thermal substitution rate" and Carbon footprint reduction. Use of grinding aids for production increase and reduction in specific power consumption. Technological upgrades & advances	3	3	2	2	2	3	3	1	1	1	3	1	2	2	2	1
OEC-CT01.4: Calculation of Carbon footprint reduction in Blended cements reducing the Carbon intensive & energy intensive Clinker usage for	3	3	2	2	2	3	3	1	1	1	3	1	2	2	2	1

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Cement grinding. Calculation																
of Technological advances and																
upgrades in grinding																
technology																
OEC-CT01.5: Calculation of																
reduced carbon footprint due																
to usage of renewable energy																
substituting energy from	2	3	3	3	3	1	1	1	1	1	3	1	2	1	2	3
thermal power plants using													2	1	2	5
fossil fuels, installation of																
CCU & CCS technologies for																
Carbon negative perspective																

Legend: 1 – Low, 2 – Medium, 3 – High

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Course Curriculum Map: Carbon Credit in Cement Manufacture

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	OEC-CT01.1: Understand Carbon footprint in the Industry and share of Cement sector. Key indicators in Cement industry. Reason of Global temperature rise and Climate change	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit 1: Carbon footprint – Introduction 1.1, 1.2, 1.3, 1.4, 1.5,1.6,1.7, 1.8, 1.9	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	OEC-CT01.2: Understood the CO_2 emission sources in unit process and quantification from each source. Calculation of total CO_2 emission in the pyro process with breakups	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit 2: Carbon footprint- Breakups in unit process 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	OEC-CT01.3: CO ₂ mitigation steps in Pyroprocess. Use of alternative & hazardous fuels and calculation of "Thermal substitution rate" and Carbon footprint reduction. Use of grinding aids for production increase and reduction in specific power consumption. Technological upgrades & advances	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit 3: CO2 mitigation steps in Pyro processing 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,	As mentioned in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	OEC-CT01.4: Calculation of Carbon footprint reduction in Blended cements reducing the Carbon intensive & energy intensive Clinker usage for Cement grinding. Calculation of Technological	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit 4: CO2 mitigation due to Blended cement 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9,	

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

	advances and upgrades in grinding technology		
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	OEC-CT01.5: Calculation of reduced carbon footprint due to usage of renewable energy substituting energy from thermal power plants using fossil fuels, installation of CCU & CCS technologies for Carbon negative perspective	SO5.1	Unit 5: CO2 mitigation due to Renewable energy and Carbon negative due to CCU & CCS 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester V

Course Code: OE-CT04

Course Title : Concrete Technology

Pre- requisite: Student Should have knowledge on chinker chemistry and hydration of cement

Rationale: Concrete technology offers a thorough exploration of both the theoretical and hands-on facets of the subject, encompassing the most recent advancements in concrete construction. The content integrates the latest Indian standard specifications and codes governing concrete construction. It delves extensively into the properties of concrete and its components, highlighting the influence of various admixtures in tailoring these properties to meet specific needs. Topics covered include ready mix concrete, reinforcement detailing, disaster-resistant construction, concrete machinery, and special concrete formulations like self-healing concrete. Furthermore, the course thoroughly addresses aspects of durability, maintenance, and quality control pertaining to concrete structures.

Course Outcomes:

OE-CT04.1: Explore the characteristics of materials used in concrete production and their influence on concrete quality.

OE-CT04.2: Gain insight into the role of admixtures in the concrete manufacturing process.

OE-CT04.3: Acquire knowledge about the characteristics of both Fresh and Hardened concrete.

OE-CT04.4: Delve into the intricacies of concrete mix design, production techniques, and quality control measures.

OE-CT04.5: Explore the manufacturing processes and unique properties of special concrete

Scheme of Studies:

	~	~	S	Scheme of studies (Hours per Week)				
Code	Course Code	Course Title	CI	LI	\mathbf{SW}	SL	Total Hours (CI+LI+SW+SL)	Total Credits(C)
OEC	OE-CT04	Concrete Technology	3	0	2	1	6	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacher to ensure outcome of Learning.

Scheme of Assessment: Theory

		Scheme of Assessment (Marks)							
				Progressive Assessment (PRA)					A)
Course Category	Course Code	Course Title	Class/Home Assignment 5 Assignments 3 marks Each (CA)	2 Class Test (best 2 out of 3) 10 marks Each (CT)	One Seminar (SA)	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
OEC	OE-CT04	Concrete Technology	15	20	10	5	50	50	100

OE-CT04.1: Explore the characteristics of materials used in concrete production and their influence on concrete quality.

Approximate Hours				
Item Appx Hrs				
CL	07			
LI	0			
SW	01			
SL	01			
Total	09			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction (CI)	Self Learning
(SOs)	Instruction		(SL)
 SO1: Concrete and its advantages as construction materials SO2: Type of Aggregate use for concrete manufacture. SO3: Properties of Aggregate and its impact on concrete. SO4: Deleterious Substances in aggregate and its impact of concrete quality. SO5: Quality of water mixing of concrete and concrete curing 	(LI)	 Unit-I: Materials for Concrete manufacture : Concrete 1.1 Concrete as construction material, classification, properties, grades, advantages, disadvantages, Concrete making materials -I 1.2 Types of cement, 1.3 Cement Classifications, 1.4 Storage of cement, Concrete making materials –II: 1.5 Aggregates Classification, characteristics, size required for concrete 1.6 Deleterious substances in aggregates, 1.7 Properties of Aggregate soundness, AAR, Thermal properties, 1.8 Fineness modulus of fine aggregate. 1.9 Testing of aggregates for concrete manufacture. Concrete Making Materials –III: 1.10 Water- Quality of mixing water for concrete and curing water 	1. classification and properties of rock

SW-1 Suggested Sessional Work (SW):

Assignments: Course aggregate for concrete manufacture, Fine aggerate for concrete manufacture, Quality of water for manufacture of concrete.

OE-CT04.2: Gain insight into the role of admixtures in the concrete manufacturing process.

Approximate Hours

Item	Appx Hrs
Item	Appx ms
CL	10
LI	0
SW	2
SL	1
Total	13

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1: Types And use of		Unit-II: Admixtures and its	1. Properties of fly
admixture in concrete		function in concrete.	ash, silica fumes,
manufacture		2.1 Types and Functions of	Metakioline etc
SO2: Specification of		admixtures in concrete	
admixture.		2.2 Classification of chemical	
SO3: Concrete admixture		admixture	
and enhancement of		2.3 Requirements of admixture	
concrete properties		2.4 Indian Standard Specification of	
SO4: Mineral admixture		admixture	
and its use in concrete		2.5 Supplementary additives.	
		2.6 Water-reducing admixtures	
		2.7 Accelerating admixtures	
		2.8 Water-reducing retarding	
		admixtures	
		2.9 Types and properties Mineral	
		Admixture	
		2.10 Use of mineral admixture	

SW-2 Suggested Sessional Work (SW):

Assignments: Types and use of mineral admixture, Super Plasticizer and its use in concrete, Types of chemical Admixture and its properties.

OE-CT04.3 Acquire knowledge about the characteristics of both fresh and hardened concrete

Approximate Hours				
Item	Appx Hrs			
CL	08			
LI	0			
SW	2			
SL	1			
Total	11			

.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO1: Properties of Fresh concrete SO2: Slump test and workability of concrete SO3 Hydration of fresh concrete SO4. Physical properties of harden concrete. SO5. Durability of concrete 		 Unit-III: Properties of Fresh and Hardened concrete: 3.1 Properties fresh concrete 3.2 Workability of concrete and consistency 3.3 Slump test and facture affect the concrete slump 3.4 Settlement and bleeding, Plastic shrinkage 3.5 Hydration in fresh concrete 	 Clinker properties Cement Hydration
5		Properties of Harden concrete	
		 3.6 Strengths of concrete, 3.7 Stress and strain characteristics of concrete, dimensional stability, creep, 3.8 Permeability and durability 3.9 Thermal properties of concrete, 	
		3.10 Micro cracking of concrete.	

SW-3 Suggested Sessional Work (SW):

- a. Assignments: Slump test, Measurement of strength of concrete, Crack development in concrete, properties of fresh concrete, properties of harden concrete.
- b. Mini Project. Slump test, Making of concrete cube and compressive strength test.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

OE-CT04.4: Delve into the intricacies of concrete mix design, production techniques, and quality control measures.

Approximate Hours

Item	Appx Hrs
CL	10
LI	0
SW	2
SL	1
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
		Unit-IV: Production of	1. Concrete mix
SO1: Types of concrete and		concrete:	design,
Concrete mix design		4.1 Types of concrete and design mix	Statistical
_		4.2 Concrete mix design	Quality control
SO2: Ready mix concrete		4.3 Production of concrete	in concrete
-		4.4 Ready mix concrete	
SO3: Placing and compaction		4.5 Placing and compaction of	
of concrete		concrete	
		4.6 Placing, finishing and curing of	
SO4: Inspection and testing of		concrete.	
concrete.		4.7 Inspection and testing of concrete.	
		4.8 Quality control of concrete:	
SO5: Quality control of		factors causing variations in the	
concrete, Field control,		quality of concrete,	
Statistical quality control		4.9 Field control,	
1 5		4.10Statistical quality control and its	
		advantages	
		-	

SW-4 Suggested Sessional Work (SW):

Assignments: Concrete mix design, Statistical Quality control in concrete manufacture, Rady mix concrete and its advantages, Manufacture of durable concrete.

OE-CT04.5: Explore the manufacturing processes and unique properties of special concrete.

Approximate Hours				
Item	Appx Hrs			
CL	10			
LI	0			
SW	2			
SL	1			
Total	13			

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1: Types of special		Unit V: Special concrete and	1. Manufacture of
concrete and its use.		concreting techniques:	concrete.
		5.1 Types of special concrete and	
SO2: Light weight		its use	
concrete, Vacuum concrete		5.2 Lightweight and ultralight	
and roller compacted		weight concrete,	
concrete etc.		5.3 Vacuum concrete,	
		5.4 Mass concrete and roller	
SO3: Self healing concrete		compacted concrete,	
and its use		5.5 Waste material based concrete,	
		5.6 Self healing concrete	
SO4: Fiber reinforced		5.7 Shotcrete or guniting,	
concrete, nuclear concrete,		5.8 Ferrocement, fiber reinforced	
heat resistant concrete		concrete,	
production and use.		5.9 Nuclear concrete,	
		5.10 Heat resisting and refractory	
		concretes.	

SW-5 Suggested Sessional Work (SW):

1. Assignments: Types of special concrete and its use, Notes on fiber reinforced concrete, Self healing concrete, Shotcrete.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
OE-CT04.1: Explore the characteristics of materials used in concrete production and their influence on concrete quality.	10	2	1	13
OE-CT04.2: Gain insight into the role of admixtures in the concrete manufacturing process.	7	2	1	10
OE-CT04.3: Acquire knowledge about the characteristics of both Fresh and Hardened concrete	10	2	1	13
OE-CT04.4: Delve into the intricacies of concrete mix design, production techniques, and quality control measures.	8	2	1	11
OE-CT04.5: Explore the manufacturing processes and unique properties of special concrete.	10	2	1	13
Total Hours	45	10	5	60

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marl	ution	Total	
0	Unit Titles	R	U	Α	Marks
CO-1	Explore the characteristics of materials used in concrete production and their influence on concrete quality.	02	03	02	07
CO-2	Gain insight into the role of admixtures in the concrete manufacturing process.		08	02	10
CO-3	Acquire knowledge about the characteristics of both Fresh and Hardened concrete.	01	06	04	11
CO-4	Delve into the intricacies of concrete mix design, production techniques, and quality control measures.	-	08	07	15
CO-5	Explore the manufacturing processes and unique properties of special concrete.	-	03	04	07
	Total	03	28	19	50

Legend:

R: Remember,

U: Understand,

A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture, Tutorial
- 2. Case Method
- 3. Group Discussion, Role Play
- 4. Visit to cement plant
- 5. Demonstration
- 6. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 7. Brainstorming

Suggested Learning Resources:

(a)	Books :				
S. No.	Title	Author	Publisher	Edition & Year	
1	Concrete Technology (Theory and Practice)	F W Taylor	S. Chand Publishing	2019	
2	Concrete Technology	Neville	Pearson Education	2006	
3	Norms For Limestone Exploration For Cement Manufacture	National Council for Cement and Building Materials	National Council for Cement and Building Materials	1985	
4	Concrete Technology	S. S. Bhavikatti	I K International Publishing House Pvt. Ltd	2015	
5	Construction and Concrete Technology	R.V. Singh	Vayu Education of India	2020	
6	Holcim Training Manual			-	
7	FLS Training Manual				

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Course Title: B. Tech. Cement Tech.

Course Code: OE-CT04

Course Title: Concrete Technology

Program Outcomes								Program Specific Outcome								
											ogi ani opv					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
OE-CT04.1: Explore the characteristics of materials used in concrete production and their influence on concrete quality.	3	3	3	3	3	3	3	2	2	1	2	3	3	3	3	3
OE-CT04.2: Gain insight into the role of admixtures in the concrete manufacturing process.	3	3	3	3	3	3	3	2	2	1	2	3	3	3	3	3
OE-CT04.3: Acquire knowledge about the characteristics of both Fresh and Hardened concrete	3	3	3	3	3	3	3	2	3	1	2	3	3	3	3	3
OE-CT04.4: Delve into the intricacies of concrete mix	3	3	3	3	3	3	3	2	2	1	2	3	3	3	3	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

design, production																
techniques, and quality																
control measures.																
OE-CT04.5: Explore the																
manufacturing processes and	3	3	3	3	3	3	3	2	3	1	2	3	3	3	3	3
unique properties of special	5	5	5	5	5	5	5	-	5	-	2	5	5	5	5	5
concrete.																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Concrete Technology

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	OE-CT04.1: Explore the characteristics of materials used in concrete production and their influence on concrete quality.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Explore the characteristics of materials used in concrete production and their influence on concrete quality. 1.1,1.2,1.3,1.4,1.5,1.6,1.7	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	OE-CT04.2: Gain insight into the role of admixtures in the concrete manufacturing process.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2: Gain insight into the role of admixtures in the concrete manufacturing process. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	OE-CT04.3: Acquire knowledge about the characteristics of both Fresh and Hardened concrete	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Acquire knowledge about the characteristics of both Fresh and Hardened concrete. 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	OE-CT04.4: Delve into the intricacies of concrete mix design, production techniques, and quality control measures.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Delve into the intricacies of concrete mix design, production techniques, and quality control measures. 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	OE-CT04.5: Explore the manufacturing processes and unique properties of special concrete.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: Explore the manufacturing processes and unique properties of special concrete. 5.1,5.2,5.3,5.4,5.5	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023) Semester-VI

Course Code:	РСС-СТ306
Course Title :	Instrumentation and Process Control
Pre-requisite:	Student should have basic knowledge of Mathematics.
Rationale:	This course follows a unified approach to introduce the Instrumentation and Process Control. The principal topics covered include identification and importance of the process measurement mechanism and their applications in cement industries. Process control has become increasingly important in the process industries as a consequence of global competition, rapidly changing economic conditions, and more stringent environmental and safety regulations. It is a sub-discipline of automatic control that involves tailoring methods for efficient operation of industrial processes.

Course Outcomes:

PCC-CT306.1: Demonstrate knowledge of process systems as well as the operating principles of common instruments.

- **PCC-CT306.2:** Understand concepts of the mathematical modeling and develop transfer functions of open loop control systems and their responses with different forcing functions.
- PCC-CT306.3: Analyze the stability of the control system with time and frequency domain analysis techniques.
- PCC-CT306.4: Compare different advanced control schemes to various processes.
- **PCC-CT306.5:** The students will be able to prepare a basic scheme for process unit such as Fuzzy logic rotary kiln and understand the programs for DDC/DCS/PLC and SCADA.

Scheme of Studies:

Course	Course	Course		Total				
Course	Code	Title	CI	LI	SW	SL	Total Hours	Credits
Category	Couc	Inte	CI	LI	511	SL	(CI+LI+SW+SL)	(C)
PCC	PCC-CT306	Instrumentation and Process Control	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

			Scheme of Assessment (Marks)									
			Р									
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)		
PCC	PCC-CT306	Instrumentation and Process Control	15	20	5	5	5	50	50	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT306.1: Demonstrate knowledge of process systems as well as the operating principles of common instruments.

Approximate Hours							
Item	Appx. Hrs						
CI	10						
LI	0						
SW	2						
SL	1						
Total	13						

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory	Classroom Instruction (CI)	Self-Learning
	Instruction		(SL)
	(LI)		
SO1.1	•	Unit-1: Introduction to Process control	1. Application of
Understand and interpret		systems	Process control
control diagrams			systems
		1.1 Introduction to Process control	2. Feed backward
SO1.2		systems	Control and Feed
Understand and apply the		1.2 Feed Forward control	Forward control
knowledge of tuning of		1.3 Feed backward control	system
controllers in real life		1.4 Negative & Positive Feed	
systems.		backward Control	
		1.5 Variables & Physical Elements of a	
SO1.3		Control system	
Understand the dynamic		1.6 Physical, Block Diagram	
modeling of physical		1.7 Use of Laplace Transformation in	
process using first and		study of Process Dynamics	
second order ordinary		1.8 Use of Inverse Laplace	
differential equations.		Transformation in study of Process	
		Dynamics	
		1.9 Numerical Problems of Laplace	
		Transformation	
		1.10 Numerical Problems of Inverse	
		Laplace Transformation	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- Numerical Problems on Laplace and Inverse Laplace Transformation i.
- **Mini Project:** b.
- Draw the Block Diagram of Feed backward Control and Feed Forward control system. i.

PCC-CT306.2: Understand concepts of the mathematical modeling and develop transfer functions of open loop control systems and their responses with different forcing functions. .

Approximate Hours		
Item	Appx. Hrs	
CI	8	
LI	0	
SW	2	
SL	1	
Total	11	

. ---

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes Laboratory Classroom Self-Learning Instruction Instruction (SOs) (SL) (LI) (CI) Unit-2: Dynamic Modeling of SO2.1 1. Remember the . The students will be able to a Process control systems Response of First and prepare a basic scheme for Second order system process unit 2.1 Dynamic Modeling of a process **SO2.2** 2.2 Dynamic behavior of First The students will be able to order systems calculate the output of various 2.3 First order systems in measuring scheme. series for Non-interacting System **SO2.3** 2.4 First order systems in Check the stability of systems Interacting series for using stability criterion. System 2.5 Dynamic behavior of second order systems 2.6 Step Response of Second order system 2.7 Transportation & Transfer Lag Stability 2.8 Stability

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- Derivation of First order systems in series for Non-interacting System i.
- ii. Derivation of First order systems in series for Interacting System
- iii. Derivation of Dynamic behavior of second order systems

b. Mini Project:

a. Writing the theorems of Routh test for Stability

PCC-CT306.3: Analyze the stability of the control system with time and frequency domain analysis techniques.

Approximate Hours		
Item	Appx. Hrs	
CI	14	
LI	0	
SW	2	
SL	1	
Total	17	

nuovimata Haung

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learni
	(LI)		ng
			(SL)
SO3.1	•	Unit-3 :Control System	1. Remember
Design and tuning of			the transfer
controllers for specific		3.1 Introduction of Control System	function
applications		3.2 Controllers & Final control Elements	equation for P,
		3.3 Reduction of Block Diagrams	PI, PD, PID
SO3.2		3.4 Closed loop transfer function	controllers
Calculate the dynamic		3.5 Response of closed loop control	
response of closed loop		system for various type of control	
systems		actions	
		3.6 On Off controller	
SO3.3		3.7 P controller	
Describe principles of modes		3.8 PI controller	
of controllers and their general		3.9 PID controller	
characteristics and study the		3.10 Motivation for addition of integral and	
stability analysis of digital		derivative control modes	
control system.		3.11 Material level control in silos and bins	
		3.12 Level indicators with rotating paddles	
SO3.4		3.13 Continuous level indicators,	
Design of various control		3.14 Tunic fork level indicators	
schemes and apply the control			
system in various processes.			

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Writing the transfer function equation for P, PI, PD, PID controllers
- ii. Draw the Reduction of Block Diagrams

b. Mini Project:

Schematic representation of response of typical control system

PCC-CT306.4: Compare different advanced control schemes to various processes.

Approximate Hours				
Item Appx. Hrs				
CI	13			
LI	0			
SW	4			
SL	2			
Total	19			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learn
	(LI)		ing
			(SL)
SO4.1	•	Unit-4: Measurement Instruments in	1. Remember
The students will be able to		cement plant	the Principals
select the appropriate type of			of
instrument for any application		4.1 Measurement of Temperature:	Measurement
		temperature of secondary air	Instruments
SO4.2		4.2 Measuring temperature in grate and	in cement
Understand the principals		satellite coolers	plant
involved in measurements. Attain		4.3 Temperature of burning zone	
knowledge on different		4.4 Measuring with thermocouples	
measurement methods employed		4.5 Pyrometers, optical pyrometers,	
in industrial processing and		radiation pyrometers	
manufacturing.		4.6 Shell temperature of rotary kiln-	
		scanners	
SO4.3		4.7 Measurement of Pressure &	
Application of different pressure		Vacuum	
measurement devices in cement		4.8 Weighing installations: Weight	
industries.		measurement & Weigh feeder	
5044		4.9 Gravimetric and volumetric feed	
SO4.4		system in cement plant	
Application of different		4.10 Flow measuring instruments 4.11 Environment monitoring	
temperature measurement devices in cement industries.		4.11Environment monitoring instruments	
devices in cement moustries.			
\$04.5		4.12 Calibration of process instrumentation	
Application of various level and		4.13Instrumentation	
flow measurement devices in			
cement industries.			
comont muusuros.			

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. What is the significance of material level control in silos and bins?
- ii. What are the principles on which functioning of material level indicators based?
- b. Mini Project: Writing the formula of Flow measuring calculations

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PCC-CT306.5: The students will be able to prepare a basic scheme for process unit such as Fuzzy logic rotary kiln and understand the programs for DDC/DCS/PLC and SCADA.

Approximate Hours

11	
Item	Appx. Hrs
CI	15
LI	0
SW	4
SL	2
Total	21

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1		Unit 5: Computer control in cement plant	1. Function
Operate instrumentation			of CCR in
and automation systems in		5.1 Process computer control: history of	cement
modern cement plant		computer control in cement industry	plant
operation.		5.2 Control panels: development of control	2. Working
		panels	of CCR in
SO5.2		5.3 Control panels and control rooms5.4 Decentralized control panels	Cement
The students will be able		5.5 Use of expert system	plant
to prepare a basic		5.6 Fuzzy logic rotary kiln control	-
scheme for process unit		5.7 Foxboro control system	
such as Fuzzy logic		5.8 Control technique of hierarchical structure	
rotary kiln.		and distributed intelligence	
		5.9 Process control advances for cement	
805.3		industry: DDC	
The students will be able to		5.10 Process control advances for cement industry: DCS	
understand the programs		5.11 Process control advances for cement	
for DDC/DCS/PLC and		industry: PLC	
SCADA.		5.12Process control advances for cement	
Schibit.		industry: SCADA5.13 Introduction of	
		Automation	
		5.13Process automation in sampling and	
		Automation in sample transport	
		5.14Sample preparation and testing data	
		transmission	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. What are the objectives of automation in cement plant? Describe in detail any two

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

automated systems developed for analysis of samples in the cement plant?

ii. Why Digital Control System is preferred over analog control systems? Explain centralized control system and distributed control system along with block diagram.

b. Mini Project:

- i. Schematic representation of the Process control through CCR in cement plant
- ii. Schematic representation of the Fuzzy logic control application in cement plant

Brief of Hours suggestee	l for the Course (Dutcome
---------------------------------	--------------------	----------------

Class	Sessional	Self	Total hour
Lecture	Work	Learning	(CI+SW+SI)
(CI)	(SW)	(SI)	
10	2	1	13
8	2	1	11
14	2	1	17
13	4	2	19
15	4	2	21
60	14	7	81
	Lecture (CI) 10 8 14 13 15	Lecture (CI)Work (SW)10210282142134154	Lecture (CI)Work (SW)Learning (SI)10211021821142113421542

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution		Total	
		R	U	Α	Marks
CO-1	Introduction to Process control systems	03	01	01	05
CO-2	Dynamic Modeling of a Process control systems	02	06	02	10

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

CO-3 Control System 08 06 15 01 CO-4 Measurement Instruments in cement 04 06 05 15 plant CO-5 Computer control in cement plant 02 02 01 05 Total 12 23 15 50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Instrumentation and Process Control will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.No.	Title	Author	Publisher	Edition&Year
1	Process Systems Analysis and Control	Coughnour and Koppel	McGraw-Hill, New York	1986
2	Chemical Process Control	George Prentice-Hall of India Stephanopolous Pvt-Ltd., New Delhi		1990
3	Process Dynamics and Control	P. K. Sarkar	Prentice Hall India	2014
4	Industrial Instrumentation and Control	Singh, S. K	Prentice Hall of India	2016
5	Industrial Instrumentation	Eckman, D.P.	Wiley Eastern Ltd., New York	1990

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

6	Principles of industrial instrumentation	Patranabis	Tata Mcgraw Hill	2008	
7	Mechanical and Industrial Measurements	Jain, R.K.,	Khanna Publishers	2005	
8	Industrial Instrumentation: Principles and Design	Tattamangalam R. Padmanabhan	Springer Publishing Company	2009	
9	Instumentation Measurement and Analysis	Nakra and Chaudhary	Tata McGraw Hill	1978	
10	Fundamental of Instrumentation and Process Control	Rahul Omar	Notion Press	2022	
11	Holcim Training Manual				
12	FLS Training Manual				
13	Lecture note provided by Dept. of Cement Technology, AKS University, Satna.				

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: PCC-CT306

Course Title: Instrumentation and Process Control

		Program Outcomes										Program Specific Outcome				
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Demonstrate knowledge of process systems as well as the operating principles of common instruments.	3	3	2	1	3	2	2	1	2	1	3	2	2	3	1	2
CO-2: Understand concepts of the mathematical modeling and develop transfer functions of open loop control systems and their responses with different forcing functions.	3	3	2	1	1	3	2	1	2	1	2	2	2	2	2	3
CO-3: Analyze the stability of the control system with time and frequency domain analysis techniques.	2	2	1	1	1	2	1	2	2	1	1	3	3	3	2	2

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

		(-geore										
CO-4: Compare different advanced control schemes to various processes.	3	2	2	2	2	3	2	2	1	1	2	3	3	3	1	2
CO-5: The students will be able to prepare a basic scheme for process unit such as Fuzzy logic rotary kiln and understand the programs for DDC/DCS/PLC and SCADA.	3	3	3	1	1	3	1	1	1	1	2	3	3	3	2	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Instrumentation and Process Control

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Demonstrate knowledge of process systems as well as the operating principles of common instruments.	SO1.1 SO1.2 SO1.3		Unit-1 Introduction to Process control systems 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Understand concepts of the mathematical modeling and develop transfer functions of open loop control systems and their responses with different forcing functions.	SO2.1 SO2.2 SO2.3		Unit-2 Dynamic Modeling of a Process control systems 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8	_
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Analyze the stability of the control system with time and frequency domain analysis techniques.	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3: Control system 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11, 3.12,3.13,3.14	As mentioned n above
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Compare different advanced control schemes to various processes.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Measurement Instruments in cement plant 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11, 4.12,4.13	— pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: The students will be able to prepare a basic scheme for process unit such as Fuzzy logic rotary kiln and understand the programs for DDC/DCS/PLC and SCADA.	SO5.1 SO5.2 SO5.3		Unit 5: Computer control in cement plant 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12, 5.13,5.14,5.15	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-VI

Course Code:	PCC-CT307			
Course Title:	Maintenance Practices in Cement Plant			
Pre-requisite:	Student should have basic knowledge of Mathematics and normal distribution, some related probability, etc.			
Rationale:	The students studying Maintenance practices in cement technology should possess maintenance understanding in cement technology This encompasses familiarity with the failure rate, hazard rate and evolution of condition-based maintenance Additionally, students ought to acquire fundamental insights into various Maintenance concepts and strategies and their applications, as well as the Indian regulatory authorities responsible for supervising Maintenance effectiveness.			

Course Outcomes:

- **PCC-CT307.1:** Understand the Basic Concepts of Reliability so that students can calculate Binomial distribution, discrete distribution, Mean time to failure, Mean time between failures etc.
- **PCC-CT307.2:** Acquired the knowledge of System reliability models to understand system reliability assessment models Redundancy techniques in system design along with its Reliability quality and unreliability.
- **PCC-CT307.3:** Understanding of the various concepts of maintenance management, objectives and functions of maintenance planning and scheduling of maintenance organization, and their utilization in Maintenance development.
- PCC-CT307.4: Familiarize with a concise overview of the Condition based maintenance.
- **PCC-CT307.5:** Comprehend the functions of Reliability centered Maintenance, Total Productive Maintenance regulatory bodies in India that oversee the Failure modes and effects analysis.

Scheme of Studies:

		G	Scheme of studies (Hours/Week)					Total
Course Category	Course Code	Course Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
PCC	PCC-CT307	Maintenance Practices In Cement Plant	4	0	1	1	6	4

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Legend:	CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L)
	and Tutorial (T) and others),
	LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
	field or other locations using different instructional strategies)
	SW: Sessional Work (includes assignment, seminar, mini project etc.),
	SL: Self Learning,
	C: Credits.
Note:	SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory	

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)							
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PCC	PCC-CT307	Maintenance								
		Practices in	15	20	5	5	5	50	50	100
		Cement Plant								

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT307.1: Understand the Basic Concepts of Reliability so that students can calculate Binomial distribution, discrete distribution, Mean time to failure, Mean time between failures etc.

Page 500 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Approximate Hours

Item	Appx. Hrs				
CI	17				
LI	0				
SW	2				
SL	2				
Total	21				

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1.1		Unit-1: Basic Concepts of	1. Properties of
To Understand Reliability,		Reliability	Reliability
Probability distributions used in			management.
reliability evaluation.		1.1 Probability Distributions.	
		1.2 Probability Distributions	2. Calculation
SO1.2		used in Maintenance	dependent on
Understands maintenance		Engineering.	Binomial
engineering.		1.3 Binomial Distribution	distribution,
		1.4 Numerical on Binomial	Poisson
SO1.3		Distribution	distribution.
Poisson distribution, Weibull		1.5 Poisson Distribution.	
distribution used in maintenance		1.6 Numerical on Poisson	
management,		Distribution	
		1.7 Exponential Distribution.	
SO1.4		1.8 Numerical on	
Calculation of failure modes.		Exponential Distribution	
		1.9 Normal Distribution.	
SO1.5		1.10 Numerical on Normal	
Failure rate, hazard model, Mean		Distribution.	
time between failures		1.11 Log-normal. Distribution.	
		1.12 Gamma Distribution.	
		1.13 Weibull Distribution.	
		1.14Failure Rate	
		1.15Hazard rate	
		1.16 Failure Modes.	
		1.17 MTTR, MTBF, MTTF	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Reliability and its management and probability, types of reliability distribution, mean time to failure, mean time between failure, failure rate and its related model, Reliability testing.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

b. Mini Project:

Flow diagram of Probability distribution.

PCC-CT307.2: Acquired the knowledge of System reliability models to understand system reliability assessment models Redundancy techniques in system design along with its Reliability quality and unreliability.

Approximate Hour			
Item	Appx. Hrs		
CI	12		
LI	0		
SW	1		
SL	2		
Total	15		

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO2.1		Unit-2: System Reliability	i. System reliability
To Understand the Introduction		Models	models and their
to system reliability models.			properties.
		2.1 System reliability-n-	
SO2.2		component Series Systems.	ii.Standby systems
To learn about various types of		2.2 Types, chemical and physical	and Markov
components used in system		properties of system	analysis.
reliability.		reliability.	
		2.3 M-Component Combined	
SO2.3		System	
To understand the requirement		2.4 Standby Systems.	
of Redundancy techniques in		2.5 K-out-of-m Systems	
system design.		2.6 Redundancy Techniques in	
		System Design.	
SO2.4		2.7 Event Space.	
To understand the types of		2.8 Decomposition (Key Stone),	
reliability or unreliability.		2.9 Cut and Tie sets.	
		2.10 Markov Analysis.	
		2.11 Reliability and Quality.	
		2.12Unreliability, Maintainability,	
		Availability	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

Assignments:

- 1. System reliability assessment models, k-out-of-m system, redundancy techniques in system design.
- 2. Markov analysis for reliability and quality, Maintainability and reliability & availability analysis.

PCC-CT307.3: Understanding of the various concepts of maintenance management, objectives and functions of maintenance planning and scheduling of maintenance organization, and their utilization in Maintenance development.

Ap	proximate Hours
Item	Appx. Hrs
CI	12
LI	0
SW	2
SL	3
Total	17

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1	•	Unit-3: Maintenance Concepts	i.Impact of
Purpose of Maintenance and		and Strategies and General	maintenance in
Problems in maintenance.		Introduction to Maintenance	the maintenance
		Types	department.
SO3.2			
Maintenance management.		3.1 Introduction of maintenance	ii.Planned and
		concepts.	unplanned
SO3.3		3.2 Maintenance Functions and	maintenance
Properties and functions of		Objectives.	
maintenance management.		3.3 Maintenance Organization.	iii.Maintenance
C C		3.4 Breakdown. Emergency.	organization.
SO3.4		3.5 Corrective, Predictive and	_
Maintenance planning and		Preventive.	
scheduling and objectives and		3.6 Maintenance Organization.	
contribution.		3.7 Breakdown. Emergency.	
		3.8 Corrective, Predictive and	
SO3.5		Preventive.	
Types of maintenance system.		3.9 Maintenance Prevention.	
51 J		3.10 Design-out Maintenance,	
		Productive maintenance.	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

3.11 Shutdown Maintenance,	
Scheduled Maintenance.	
3.12Upset kiln condition- causes	
and control.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Introduction of maintenance concepts and Advantages of use of Maintenance.
- 2. Properties and use Breakdown or unplanned maintenance.

b. Mini Project:

Make a table containing various maintenance strategies and their types.

PCC-CT307.4: Familiarize with a concise overview of the Condition based maintenance.

Apj	proximate Hours
Item	Appx. Hrs
CI	09
LI	0
SW	3
SL	2
Total	14

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO4.1		Unit-4 : Condition Based	
Introduction to condition-based		Maintenance:	i. Properties of
maintenance.			condition-based
		4.1 Principles of CBM	maintenance.
SO4.2		4.2 Pillars of Condition	
Understanding the Principles of		Monitoring.	ii. Value of Condition-
condition-based maintenance.		4.3 CBM implementation and	based maintenance
		benefits.	and the challenges
SO4.3		4.4 Condition Monitoring	of
Understanding the implementation		Techniques.	Condition-based
of condition-based maintenance.		4.5 Visual Monitoring.	maintenance.
		4.6 Vibration Monitoring.	
SO4.4		4.7 Wear Debris Monitoring.	
Level of condition Monitoring and		4.8 Corrosion Monitoring.	
performance monitoring.		4.9 Performance Monitoring	

- SW-4 Suggested Sessional Work (SW):
- a. Assignments:

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- 1. Write the principles of Condition-based maintenance and condition monitoring.
- 2. Describe visual monitoring and vibration monitoring.

b. Mini Project:

Visit to a cement a cement plant and writing a Maintenance report.

c. Other Activities (Specify):

Prepare the Power Point Presentation of cement plant Maintenance report.

PCC-CT307.5: Comprehend the functions of Reliability centered Maintenance, Total Productive Maintenance regulatory bodies in India that oversee the Failure modes and effects analysis.

Approximate HoursItemAppX HrsCl10LI0SW3SL2Total15

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1.	•	Unit 5: Reliability Centered	
Introduction to Reliability		Maintenance (RCM):	1. How to initiate
Centered Maintenance (RCM).			RCM.
		5.1 Concept, Methodology,	
SO5.2		Benefits of RCM Indian	2. Why do FMEA
Over view of the concepts behind		cement industry in global	(Failure Modes and
RCM, RCM goals and RCM		prospective.	Effects Analysis),
Principles.		5.2 Total Productive	When to conduct
		Maintenance	an FMEA.
SO5.3		5.3 Evolution of TPM	
Role of the Maintenance bodies		5.4 TPM Objectives, concept.	
and total productive maintenance		5.5 Pillars of TPM	
department in Cement quality and		5.6 Failure Modes and Effects	
production.		Analysis (FMEA)/ Failure	
		Modes.	
		5.7 Effects and Criticality	
SO5.4		Analysis.	
Overview of Total Productive		5.8 Elements of FMECA.	
Maintenance (TPM) Goals, TPM		5.9 Qualitative and Quantitative	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Targets, Benefits of TPM.	approach to FMECA.	
	5.10 Design FMEA and Steps for	
SO5.5	Carrying out Design FMEA	
Basic requirement for Failure Modes and Effects analysis.		

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- 1. Concepts of RCM, RCM goals, RCM principles.
- 2. Motives of TPM, Benefits of TPM, TPM introduction at production unit.

b. Mini Project:

Maintenance Control norms for Indian Cement Industry.

c. **Other Activities (Specify):**

List of Organization/Institution in India for Maintenance regulation of Cement Production.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (CI+SW+SI)
PCC-CT307.1: Understand the Basic Concepts of Reliability so that students can calculate Binomial distribution, discrete distribution, Mean time to failure, Mean time between failures etc.	17	2	2	21
PCC-CT307.2: Acquired the knowledge of System reliability models to understand system reliability assessment models Redundancy techniques in system design along with its Reliability quality and unreliability.	12	1	2	15
PCC-CT307.3: Understanding of the various concepts of maintenance management, objectives and functions of maintenance planning and scheduling of maintenance organization, and their utilization in Maintenance development.	12	2	3	17
PCC-CT307.4: Familiarize with a concise overview of the Condition based maintenance.	09	3	2	14
PCC-CT307.5: Comprehend the functions of Reliability centered Maintenance, Total Productive Maintenance regulatory bodies in India that oversee the Failure modes and effects analysis.	10	3	2	15
Total Hours	60	12	11	83

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

	Suggested Specification Table (For ESA)							
СО	Unit Titles	Mar	ıtion	Total				
		R	U	Α	Marks			
CO-1	Basic Concepts of Reliability.	05	03	02	10			
CO-2	System Reliability Models.	04	03	03	10			
CO-3	Maintenance Concepts and Strategies and	06	02	02	10			
	General Introduction to Maintenance Types.							
CO-4	Condition Based Maintenance.	03	02	05	10			
CO-5	Reliability Centered Maintenance (RCM).	05	02	03	10			
	Total	23	12	15	50			

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Maintenance Practices in Cement Plant will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Edition&Year
No.				
1	Chemistry Of Cement And	F M Le	Chemical	Revised edition
	Concrete		Publishing	21 edition 2020
			Co Inc, US	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

2	Cement Data Book:	W. H Duda		1999					
3	Norms For Limestone Exploration For Cement Manufacture	National Council for Cement and Building Materials	National Council for Cement and Building Materials	1985					
4	Cement Production Principle and Practice	A K Chatterjee		2018					
5	Holcim Training Manual								
6	FLS Training Manual								
7	Lecture note provided by Dept. of Cement Technology,								

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: PCC-CT307

Course Title: Maintenance Practices In Cement Plant

		Program Outcomes								P	rogram Spe	ecific Outco	ome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1 : Understand the Basic Concepts of Reliability so that students can calculate Binomial distribution, discrete distribution, Mean time to failure, Mean time between failures etc.	3	2	3	2	3	2	1	1	2	1	1	2	2	2	2	3
CO-2: Acquired the knowledge of System reliability models to understand system reliability assessment models Redundancy techniques in system design along with its Reliability quality and	2	3	2	2	1	2	1	1	1	1	3	2	2	2	2	2

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

unreliability.																
CO-3: Understanding of the various concepts of maintenance management, objectives and functions of maintenance planning and scheduling of maintenance organization, and their utilization in Maintenance development.	3	3	2	2	1	2	2	2	1	1	2	3	1	2	2	3
CO-4: Familiarize with a concise overview of the Condition based maintenance.	3	2	2	2	3	2	1	3	2	1	2	2	3	3	3	1
CO-5: Comprehend the functions of Reliability centered Maintenance, Total Productive Maintenance regulatory bodies in India that oversee the Failure modes and effects analysis.	2	3	3	1	1	3	2	3	1	2	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023) Course Curriculum Map: Maintenance Practices In Cement Plant

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1 : Understand the Basic Concepts of Reliability so that students can calculate Binomial distribution, discrete distribution, Mean time to failure, Mean time between failures etc.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Basic Concepts of Reliability. 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12, 1.13, 1.14, 1.15, 1.16, 1.17	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Acquired the knowledge of System reliability models to understand system reliability assessment models Redundancy techniques in system design along with its Reliability quality and unreliability.	0001		Unit-2: System Reliability Models. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,2.10,2.11,2.12	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Understanding of the various concepts of maintenance management, objectives and functions of maintenance planning and scheduling of maintenance organization, and their utilization in Maintenance development.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Maintenance Concepts and Strategies and General Introduction to Maintenance Types. 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12	As mentioned in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Familiarize with a concise overview of the Condition based maintenance.	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4: Condition Based Maintenance. 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9 4.9	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

PO:1,2,3,4,5,6, 7,8,9,10,11,12CO-5: Comprehend the functions of Reliability centered Maintenance, Total Productive Maintenance regulatory bodies in India that oversee the Failure modes and effects analysis.	SO5.2 SO5.3	Unit-5: Reliability Centered Maintenance (RCM). 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8,5.9,5.10
---	----------------	--

Semester-VI

Course Code:	PCC-CT308
Course Title :	OPTIMIZATION TECHNIQUE
Pre-requisite:	Student should have basic knowledge of basic calculus, determination of maxima and minima
Rationale:	A course on optimization techniques typically aims to provide students with a solid understanding of various optimization methods and their application such as understanding of optimization concepts, linear programming, convex optimization. By achieving these outcomes, students should be well-prepared to apply optimization techniques to a wide range of problems and contribute to the efficient decision-making processes in their respective fields.

Course Outcomes:

PCC-CT308.1: Acquiring the knowledge of fundamentals of process optimization.

PCC-CT308.2: Familiarize with technique of optimization of one dimensional function

PCC-CT308.3: Gain an understanding of Multivariable Optimization

PCC-CT308.4: Familiarize with a Constrained Optimization

PCC-CT308.5: Comprehend the functions of different Linear and Quadratic Programming

Scheme of Studies:

Course Course -			Scheme of studies(Hours/Week)						
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)	
PCC	PCC-CT308	OPTIMIZATION TECHNIQUE	4	0	1	1	6	4	

Legend:	CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L)
	and Tutorial (T) and others),
	LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
	field or other locations using different instructional strategies)
	SW: Sessional Work (includes assignment, seminar, mini project etc.),
	SL: Self Learning,
	C: Credits.
Note:	SW & SL has to be planned and performed under the continuous guidance and feedback
	of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

Incory		Scheme of Assessment (Marks)								
			Progressive Assessment (PRA)							
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PCC	PCC-CT308	OPTIMIZATION TECHNIQUE	15	20	5	5	5	50	50	100

Course-Curriculum Detailing: Optimization Technique

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT308.1: Acquiring the knowledge of fundamentals of process optimization

Ap	proximate Hours
Item	Appx. Hrs
CI	12
LI	0
SW	2
SL	1
Total	15

Session	Laboratory	Classroom	Self
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
SO1.1		Unit-1:	
Fundamental understanding of		Fundamentals of	i. Research and
what process optimization is, its		Process Optimization	read
importance in cement industry			introductory
		1.1 Introduction to process	materials on
SO1.2		optimization	process
To develop linear and nonlinear		1.2 Carrying out process	optimization
mathematical models		analyses	
		1.3 Formulation of various	
SO1.3		process optimization	ii. Solve
Understand constraints for process		1.4 Formulation of optimization	problems and
optimization problems		problems	case studies
		1.5 Classification of	related to
SO1.4		optimization problem	process
Type Familiarity with various		1.6 Basic concepts of	optimization.
optimization techniques		optimization	
		1.7 convex function	
SO1.5		1.8 Basic concepts of	
Application of process		optimization-concave	
optimization principles to real-		function	
world problems		1.9 Necessary conditions for	
		stationary points	
		1.10 sufficient conditions for	
		stationary points	
		1.11 Graphical method	
		1.12Process optimization	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. The purpose of this assignment is to strengthen their comprehension of the fundamental ideas and concepts of process optimization. This assignment's goal is to find areas for improvement in a real-world manufacturing process by applying the principles of process optimization.

b. Mini Project:

i. Optimization of manufacturing process

c. Other Activities (Specify):

Analyze real-world case studies related to process optimization in cement industry.

PCC-CT308.2: Familiarize with technique of optimization of one-dimensional function

Approximate Hours				
Appx. Hrs				
12				
0				
2				
1				
15				

Session Outcomes	Laboratory	Classroom Instruction	Self	
(SOs)	Instruction	(CI)	Learning	
	(LI)		(SL)	
SO2.1	•	Unit-2: Optimization of One	1. Practice	
To Understand of the basic		Dimensional Function	solving one-	
principles of one-dimensional			dimensional	
function optimization		2.1 Optimization of one	optimization	
		dimensional functions	problems.	
SO2.2		2.2 Unconstrained	2. Skills for	
Ability to develop mathematical		multivariable optimization-	analyzing	
models to represent one-		direct search method	problems,	
dimensional functions		2.3 Region elimination	identifying	
		methods	sources of	
SO2.3		2.4 Fibonacci search method	error in	
Proficiency in identifying and		2.5 Golden section search	optimization	
classifying critical points, including		method manufacture	results	
local maxima, local minima		2.6 Gradient-based methods:		
		Newton- Raphson		
SO2.4		method,		
Familiarity with derivative-free		2.7 Bisection method		
optimization methods		2.8 Local maximum		
		2.9 Local minimum		
SO2.5		2.10 Search for a local		
Application of one-dimensional		optimum		
function optimization techniques to		2.11 Deterministic global		
real-world problems		optimization		
		2.12 Quasi-Newton methods		

SW-2 Suggested Sessional Work (SW):

a. Assignments:

The objective of this assignment is to apply optimization techniques to a one-dimensional

function and identify its critical points.

b. Mini Project:

The objective of this mini-project is to apply optimization techniques to a real-world problem or a mathematical function and analyze the results.

c. Other Activities (Specify):

Explore the other method for optimization of one dimensional function.

PCC-CT308.3: Gain an understanding of Multivariable Optimization

Approximate Hours			
Item	Appx. Hrs		
CI	12		
LI	0		
SW	2		
SL	1		
Total	15		

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (CI)	Self Learning (SL)
	(LI)		(~_)
SO3.1		Unit-3: Different methods of	
Develop a clear understanding of		Multivariable Optimization	i. Information
what multivariable optimization			about the
		3.1 Multivariable Optimization	latest
SO3.2		Algorithms	developments
Proficiency in dealing with		3.2 Optimality criteria	in
functions with multiple		3.3 Unidirectional search	multivariable
independent variables		3.4 direct search methods	optimization
		3.5 Simplex search method,	_
SO3.3		3.6 Powell's conjugate	ii. Practice
To understand the gradient vector		direction method	solving a
		3.7 Gradient-based methods	variety of
SO3.4		3.8 Cauchy's (steepest descent)	multivariable
Understanding of derivative-free		3.9 Newton's method	optimization
optimization methods		3.10 ε-constraint method	problems
		3.11 Goal programming	_
SO3.5		3.12 Decision-making software	
Knowledge of constrained optimization			

SW-3 Suggested Sessional Work (SW):

a. Assignments:

The objective of this sessional work project is to apply multivariable optimization techniques to solve a real-world problem or a mathematical function with multiple independent variables.

b. Mini Project:

Optimize a complex multivariable system design, in a cement plant considering multiple design parameters and constraints that maximize or minimize a specific objective, such as efficiency, cost, or performance.

c. Other Activities (Specify):

Explore recent method for multivariable optimization

PCC-CT308.4: Familiarize with a Constrained Optimization

Approximate Hour			
Item	Appx. Hrs		
CI	12		
LI	0		
SW	4		
SL	2		
Total	18		

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO4.1	•	Unit-4: Constrained	
Understand the fundamentals of constrained optimization problems.		Optimization	i. Distinguish between
		4.1 Constrained	equality and
SO4.2		Optimization Algorithms	inequality
Comprehend the concept of linear		4.2 Kuhn-Tucker conditions	constraints
programming and its applications		4.3 Transformation methods:	ii. Find examples
		Penalty function method	and real-world
SO4.3		4.4 Direct search for	situations
Formulate linear and nonlinear		constraint minimization	where
problems with inequality constraints		4.5 Random search method	restricted
		4.6 complex search method	optimization
SO4.4		4.7 Lagrange multiplier	can be used.
Formulate and solve QP problems,		4.8 Constraint programming	
including quadratic cost functions and constraints		4.9 Geometric optimality conditions	

	4.10Simplex Method	
SO4.5	4.11Ellipsoid Method	
Explore real-world applications of constrained optimization in various	4.12Interval methods	
fields		

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Production planning in the cement industry
- 2. Supply chain optimization

b. Mini Project:

Visit to a cement plant to obtain a real supply and production data

c. Other Activities (Specify):

Power Point Presentation of optimization techniques

PCC-CT308.5: Comprehend the functions of different Linear and Quadratic Programming:

Ap	proximate Hours
Item	Appx. Hrs
CI	12
LI	0
SW	2
SL	1
Total	15

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1		Unit 5: Tools for linear and	
Understand the basic		quadratic programming	i. Study the
concepts of linear			graphical method
programming (LP) and		5.1 Linear programming	for solving linear
quadratic programming (QP)		5.2 Application of linear	programming
		programming	problems
SO5.2		5.3 Standard form a linear	
Study the simplex method		programming problem	ii.Explore
		5.4 Characteristics of a linear	optimization

805.3	programming problem	software tools
Analyze case studies that	5.5 Basic definitions of a linear	
demonstrate the practical use	programming problem	
of LP in decision-making	5.6 Quadratic programming	
	5.7 Calculation of a feasible	
SO5.4	solution of linear	
Grasp the concept of quadratic	programming	
programming and its	5.8 problem to basic feasible	
relevance in optimization	solution	
problems	5.9 Duality in linear	
	programming	
SO5. 5	5.10 gradient projection	
Review key concepts and	5.11 extensions of the simplex	
techniques covered in the	algorithm	
course.	5.12 Criss-cross algorithm	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- 1. Differentiate between linear and quadratic objective functions and constraints.
- 2. Formulate quadratic programming problems with both equality and inequality constraints.

b. Mini Project:

Formulate the linear programming model for cement production

c. Other Activities (Specify):

List of available software for Linear and Quadratic Programming

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (CI+SW+SI)
PCC-CT308.1: Acquiring the knowledge of fundamentals of process optimization	12	2	1	15
PCC-CT308.2: Familiarize with technique of optimization of one dimensional function	12	2	1	15
PCC-CT308.3: Gain an understanding of Multivariable Optimization	12	2	1	15
PCC-CT308.4: Familiarize with a	12	4	2	18

Constrained Optimization				
PCC-CT308.5: Comprehend the functions of different Linear and Quadratic Programming	12	2	1	15
Total Hours	60	12	6	78

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Mar	ks Distribu	tion	Total
		R	U	Α	Marks
CO-1	Acquiring the knowledge of fundamentals of process optimization	03	01	01	05
CO-2	Familiarize with technique of optimization of one dimensional function	02	06	02	10
CO-3	Gain an understanding of Multivariable Optimization	03	07	05	15
CO-4	Familiarize with a Constrained Optimization	-	10	05	15
CO-5	Comprehend the functions of different Linear and Quadratic Programming	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Optimization Technique will be held with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion

- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

S.	Title	Author	Publisher	Edition&Year
No.				
1	Optimization of Chemical	T.F. Edgar and	McGraw Hill	1989
	Processes	D.M. Himmelblau		
2	Optimal Design of Process	K. Urbanier and C.	John Wiley	1986
	Equipment	McDermott		
3	Optimization theory and	G.S. Beveridge and	McGrawHil	1989
	practice	R.S. Schechter		
4	Engineering Optimization-	Rekllitis, G.V.,	John Wiley	1983
	Methods	Ravindran, A., and		
	and Applications	Ragdell, K.M		
5	SS Rao, Optimization Theory an	d Applications		
6	Optimization manual for optimiz	ation available on onlin	ne	
7	Lecture note provided by			
	Dept. of Cement Technology, Al	KS University, Satna .		

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

.....

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech				nt Tech Course Code: PCC-CT308										i tle: Optin	nization Te	echnique
	Program Outcomes										Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Acquiring the knowledge of fundamentals of process optimization	3	2	2	2	3	2	1	2	2	1	1	2	2	1	3	3
CO-2: Familiarize with technique of optimization of one dimensional function	3	2	2	2	3	2	1	2	1	1	1	2	2	1	3	2

CO-3: Gain an understanding of Multivariable Optimization	3	3	2	2	2	2	1	3	2	1	2	3	2	2	2	3
CO-4: Familiarize with a Constrained Optimization	3	3	3	2	3	2	2	2	2	1	2	2	3	2	3	3
CO-5: Comprehend the functions of different Linear and Quadratic Programming	3	3	3	1	1	3	2	2	1	1	2	3	3	2	2	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Optimization Technique

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Acquiring the knowledge of fundamentals of process optimization	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Scope of industrial economics and its history 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11, 1.12	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Familiarize with technique of optimization of one dimensional function	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2: Demand Analysis 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Gain an understanding of Multivariable Optimization	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3 : Diversification , vertical Integration and merger 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12	As mentioned in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Familiarize with a Constrained Optimization	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4 : Determinants of profitability 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Comprehend the functions of different Linear and Quadratic Programming	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit-5: Advertising strategy 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,5.10,5.11,5.12	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-VI

_ _ _ _

Course Code:	PCC-CT309
Course Title:	Material Handling System, Safety and Occupational Health
Pre-requisite:	Student should have basic knowledge of Mathematics, gravity and some material handling processes used in industries.
Rationale:	The students studying cement technology should possess Material handling properties about material handling system employed in plants. This encompasses familiarity with the invention and evolution of cement. Additionally, students ought to acquire fundamental insights into various raw material types, their applications, as well as the Indian regulatory authorities responsible for supervising movement of cement.

Course Outcomes:

PCC-CT309.1:	Students will be able to understand the basic concepts of material handling
	equipment.
PCC-CT309.2:	Select appropriate material handling system such as unit load concepts.
PCC-CT309.3:	Explain and distinguish the various types of estimation illustrate the various
	specifications of material handling used in handling of raw materials or finished
	products.
PCC-CT309.4:	Evaluate the various engineering works and their safety used in cement plants like safety equipments and safety management

PCC-CT309.5: Estimate the quantities of works and evaluate the occupational health and safety from industrial accidents.

Scheme of Studies:

Course	Course	Course	Scheme of studies(Hours/Week)			Total		
Course	Code	Title	CI	LI	sw	SL	Total Hours	Credits
Category	Coue	THE	CI	LI	3 11	SL	(CI+LI+SW+SL)	(C)
PCC	PCC-CT309	Material Handling						
		System, Safety and	4	0	1	1	6	4
		Occupational Health						

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

Page 527 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW: Sessional Work (includes assignment, seminar, mini project etc.),SL: Self Learning,C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory										
			Scheme of Assessment (Marks)							
			Pro	ogressive	Asses	sment (PRA)		t	
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PCC	PCC-CT309	Material Handling								
		System, Safety and	15	20	5	5	5	50	50	100
		Occupational Health								

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PCC-CT309.1: Students will be able to understand the basic concepts of material handling equipment.

Approximate Hours					
Item	Appx. Hrs				
CI	16				
LI	0				
SW	3				
SL	2				
Total	21				

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1.1		Unit-1: Introduction to	1. Material
Understand material handling		material handling	handling
system.			activities
		1.1 Objective and benefit of	and their
SO1.2		better handling.	functions.
Objective and benefits of material		1.2 Limitation of handling.	
handling.		1.3 Importance of handling of	2. Material
		materials.	handling
SO1.3		1.4 Objective of plant layout.	equations.
Understanding of material handling		1.5 Objective of material	
principles.		handling.	
		1.6 The material flow cycle.	
SO1.4		1.7 Material handling	
To understand the components of		equation.	
material handling.		1.8 Principle of material	
		handling.	
SO1.5		1.9 Material handling	
Space utilization, Gravity		Systems.	
principles.		1.10 Material flow.	
		1.11 Simplification, Gravity.	
		1.12 Space utilization.	
		1.13Safety and mechanization	
		equipment selection.	
		1.14 Flexibility, Dead weight.	
		1.15 Motion, idle time,	
		maintenance.	
		1.16 Control capacity and	
		performance.	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Material handling system, Benefits of Material handling.
- 2. The Material handling equation.

b. Mini Project:

Chart prepared for Material flow cycle.

c. Other Activities (Specify): Note on steps analyzing Material handling problems.

PCC-CT309.2: Select appropriate material handling system such as unit load concepts.

Approximate Hours

Item	Appx. Hrs
CI	09
LI	0
SW	3
SL	2
Total	14

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO2.1		Unit-2 Material handling	1) Advantages of
To Understand the Unit load		equipment's.	unit load.
concept, Advantages and			
disadvantages of unit load.		2.1 Basic handling equipment's	2) Study on
		types & systems.	Relationships
SO2.2		2.2 Equipment's classification.	between unit
To learn about Basic ways to		2.3 The unit load concept.	load and other
move a unit load.		2.4 Types of unit loads.	factors.
		2.5 Advantages and	
SO2.3		disadvantages of unit loads.	
To understand the Material		2.6 Unit load efficiency.	
handling equipment's.		2.7 Selected material handling	
		equipment; Conveyors,	
SO2.4		Cranes. Elevators, Hoists,	
To understand the types of motion		Monorails.	
in which the various equipment's		2.8 Industrial Vehicles	
moved.		Container and supports.	
		2.9 Auxiliary Equipment's.	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Unit load concepts, Advantages and disadvantages of unit load.
- 2. Material handling equipment's, and their classification.

b. Mini Project:

Prepare a chart on unit load efficiency.

c. Other Activities (Specify):

Visit to a plant and see what equipment's are used for the movement of raw materials or finished products.

PCC-CT309.3: Explain and distinguish the various types of estimation illustrate the various specifications of material handling used in handling of raw materials or finished products.

Approximate Hours					
Item	Appx. Hrs				
CI	16				
LI	0				
SW	2				
SL	2				
Total	20				

Session Outcomes	Laboratory	Classroom	Self-
(SOs)	Instruction	Instruction	Learning
	(LI)	(CI)	(SL)
SO3.1	•	Unit-3: Materials Handling	1) Application of
Introduction to linear		Problems.	linear
programming and dynamic			programming and
programming.		3.1 Basic Analytical Techniques	dynamic
		of Material Handling	programming.
SO3.2		problems.	2) Cost of production
Methods Transportation		3.2 Quantitative technique for	and production
problems.		material handling analysis:	unit.
		3.3 Linear programming.	
SO3.3		3.4 Problem on Linear	
Methods of estimation of		programming.	
various cost used in plant.		3.5 Transportation programming.	
		3.6 Numerical on Transportation	
SO3.4		programming.	
Estimation of assignment cost.		3.7 Transshipment Programming,	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

	28 Dynamia Programming	
	3.8 Dynamic Programming.	
SO3.5	3.9 Queuing Theory	
Queuing theory and their	3.10 Conveyor analysis.	
model.	3.11Shutdown maintenance, and	
	machineries'	
	3.12 Material Handling at Work	
	place.	
	3.13 Equipment Cost	
	Determination.	
	3.14Evaluation of Direct and	
	Indirect cost. Evaluation of	
	intermediate Cost factor.	
	3.15 Evaluation of intangible	
	factors, Evaluation of	
	investment alternatives.	
	3.16 Determination of Total	
	Handling cost of material	
	handling.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Solving problems on linear programming.
- 2. Problems on Transportation and assignment.

b. Mini Project:

Make a table of different Methods used in transportation problems.

PCC-CT309.4: Evaluate the various engineering works and their safety used in cement plants like safety equipment's and safety management.

Approximate Hours					
Item Appx. Hrs					
CI	11				
LI	0				
SW	2				
SL	2				
Total	15				

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO4.1	•	Unit-4 Safety in cement plant.	
Introduction to Hazards in the			i. Hazard
workplace.		4.1 Overview of Hazards	identification
		4.2 Hazard identification and	and their
SO4.2		control confined space.	Prevention.
Prevention of hazards.		4.3 Working at height	
		4.4 Hot working, mobile	ii. Plant safety and
SO4.3		equipment	safety manager
Various cleaning and safety		4.5 Electrical safety.	responsibility.
processes used for the		4.6 Preheater cleaning.	
equipment's such as Preheater.		4.7 Refractory lining, welding.	
		4.8 grinding, industrial fires,	
SO4.4		contractors and visitors'	
Uses of PPE (Personal protective		safety near misses.	
equipment's).		4.9 Safety Equipment PPE's	
		process interlocks. common	
SO4.5		occupation health issues in	
Audit plan and audit observation.		cement plant and their	
		mitigation.	
		4.10Laminar And Turbulent	
		Flow Explanation.	
		4.11Safety Management: Safety	
		manager /Safety committee,	
		Safety Policy Safety	
		planning, Safety awareness,	
		Total management	
		Commitment, Safety audits.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explanation about different types of Hazards.
- 2. Describe briefly safety methods used in cement plants.

b. Mini Project:

Visit to a cement plant and writing a report on safety equipment's used in plant.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PCC-CT309.5: Estimate the quantities of works and evaluate the occupational health and safety from industrial accidents.

Approximate Hours		
Item	Appx. Hrs	
CI	08	
LI	0	
SW	3	
SL	2	
Total	13	

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1		Unit 5: Occupational Health &	1. Audit goals
Introduction to occupational		Safety	and Audit
safety.			responsibility.
		5.1 Importance of Safety	
SO5.2		Performance & its	
Over view of Auditing		monitoring.	2. Auditing
Methodology.		5.2 Importance of Safety	Methodology.
		Performance & its	
SO5.3		monitoring,	
Role of the Auditors and audit		5.3 Classification of Industrial	
team.		Accidents	
		5.4 Plant Safety Inspection.	
SO5.4		5.5 Plant safety Procedures.	
Prevention of industrial accidents.		5.6 Accident Investigation	
		System.	
		5.7 Concept of root cause	
		analysis	
		5.8 Method for computation of	
		Frequency and Severity rates	
		for Industrial injuries/	
		accidents as per IS 3786:	
		1983.	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- 1. List the Code of practices of Occupational safety.
- 2. Auditor's Activities in cement plant.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

b. Mini Project:

Visit a plant and making a report on audit used in plant.

c. Other Activities (Specify):

Making a Power point presentation for occupational Safety and health audit report

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (CI+SW+SI)
PCC-CT309.1: Students will be able to understand the basic concepts of material handling equipment	16	3	2	21
PCC-CT309.2: Select appropriate material handling system such as unit load concepts.	9	3	2	14
PCC-CT309.3: Explain and distinguish the various types of estimation illustrate the various specifications of material handling used in handling of raw materials or finished products.	16	2	2	20
PCC-CT309.4: Evaluate the various engineering works and their safety used in cement plants like safety equipment's and safety management.	11	2	2	15
PCC-CT309.5: Estimate the quantities of works and evaluate the occupational health and safety from industrial accidents.	8	3	2	13
Total Hours	60	13	10	83

Suggestion for End Semester Assessment

Suggested	Specification	Table	(For ESA)	
Suggesteu	specification	Table	(FUL LSA)	

СО	Unit Titles	Marks	Marks Distribution						
		R	U	Α	Marks				
CO-1	Introduction to material handling.	05	03	02	10				
CO-2	Material handling equipment's.	06	02	02	10				
CO-3	Materials Handling Problems.	07	02	01	10				

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

CO-4	Safety in cement plant.	04	02	04	10
CO-5	Occupational Health & Safety.	03	02	05	10
	Total	25	11	14	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Material Handling System, Safety and Occupational Health will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Edition
No.				&Year
1	Chemistry Of Cement And	F M Le	Chemical	Revised edition
	Concrete		Publishing	21 edition 2020
			Co Inc, US	
2	Cement Data Book:	W. H Duda		1999
3	Norms For Limestone Exploration For Cement Manufacture	National Council for Cement and Building Materials	National Council for Cement and Building Materials	1985

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

4	Cement Production Principle and Practice	A K Chatterjee		2018			
	T fine pie une l'idence						
5	Holcim Training Manual						
6	FLS Training Manual						
7	Lecture note provided by						
	Dept. of Cement Technology, AKS University, Satna .						

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech Course Code: PCC-CT309

Course Title: Material Handling System, Safety and Occupational Health

					J	Progra	ım Ou	tcomes	5				Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Students will be able to understand the basic concepts of material handling equipment	2	3	2	2	3	2	1	1	2	1	3	2	2	2	2	3
CO-2: Select appropriate material handling system such as unit load concepts.	3	2	3	2	1	2	1	1	1	1	2	2	2	2	1	2

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

CO-3: Explain and distinguish the various types of estimation illustrate the various specifications of material handling used in handling of raw materials or finished products.	3	3	2	1	1	2	2	3	1	1	1	3	1	3	2	3
CO-4: Evaluate the various engineering works and their safety used in cement plants like safety equipment's and safety management.	3	2	2	3	3	2	1	3	2	1	2	2	3	3	2	1
CO-5: Estimate the quantities of works and evaluate the occupational health and safety from industrial accidents.	2	2	3	1	2	3	2	3	1	2	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map

			Curriculum Map		,
POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory	Classroom	Self-Learning (SL)
105 @ 15051(0)			Instruction (LI)	Instruction (CI)	Sen Learning (SL)
DO 1 2 2 4 5 (CO-1: Students will be able to	SO1.1		Unit-1: Introduction to material	
PO:1,2,3,4,5,6,	understand the basic concepts of	SO1.2		handling.	
7,8,9,10,11,12	material handling equipment	SO1.3		1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,	
		SO1.4		1.9, 1.10, 1.11, 1.12, 1.13,	
PSO 1,2, 3, 4		SO1.5		1.14,1.15,1.16	
PO:1,2,3,4,5,6,	CO-2: Select appropriate material	SO2.1		Unit-2: Material handling	
7,8,9,10,11,12	handling system such as unit load	SO2.2		equipment's.	
7,0,7,10,11,12	concepts.	SO2.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,	
PSO 1,2, 3, 4		SO2.4		2.9	
	CO-3: Explain and distinguish the	502.1			
PO:1,2,3,4,5,6,	various types of estimation illustrate	SO3.1		Unit-3: Materials Handling	
7,8,9,10,11,12	the various specifications of	SO3.2 SO3.3		Problems.	
	material handling used in handling			3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,	As mentioned in above
PSO 1,2, 3, 4	of raw materials or finished	SO3.4 SO3.5		3.9, 3.10, 3.11, 3.12, 3.13, 3.14,	pages
	products.	503.5		3.15,3.16	
DO 100456	CO-4: Evaluate the various	SO4.1		Unit-4: Safety in cement plant.	
PO:1,2,3,4,5,6,	engineering works and their safety	SO4.2		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8,	
7,8,9,10,11,12	used in cement plants like safety	SO4.3		4.9, 4.10, 4.11	
	equipment's and safety	SO4.4			
PSO 1,2, 3, 4	management.	SO4.5			
PO:1,2,3,4,5,6,	CO-5: Estimate the quantities of	SO5.1			
7,8,9,10,11,12	works and evaluate the occupational	SO5.2		Unit-5: Occupational Health &	
1,0,9,10,11,12	health and safety from industrial	SO5.3		Safety.	
PSO 1,2, 3, 4	accidents.	SO5.4		5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-VI

Course Code: PCC-CT310-L

Course Title : Cement Technology lab -II (Testing Cement & Concrete)

Pre-requisite: Student should have basic knowledge of civil construction and Chemistry.

Rationale: The durable construction practices require comprehending the physical and mechanical properties of concrete as well as its components like cement, aggregates and water. This course covers the physico-mechanical of concrete and mechanical-chemical properties of cement, fine and coarse aggregates.

Course Outcomes:

PCC-CT310-L.1: Able to analyze, determine and interpret the physical and chemical characteristics of Cement and Concrete

PCC-CT310-L.2: Able to analyze the chemical characteristics of Cement.

PCC-CT310-L.3: Able to determine mechanical properties of Concrete and its components.

Scheme of Studies:

	G	G	S	Scheme	of studies ((Hours pe	er Week)	T ()
Code	Course Code			LI	SW	SL	Total Hours (CI+LI+SW+SL)	Total Credits(C)
PCC	PCC- CT310-L	Cement Technology lab -II (Testing Cement & Concrete Lab)	0	2	1	1	4	1

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning, **C:** Credits.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacher to ensure outcome of Learning.

Scheme of Assessment:

Laboratory

			Scheme of As Progressive A			
Course category	Course Code Course Title		Lab Work Assignment (Best of 5 of the total) (LA)	Viva-Voice on Lab Work (VV)	Lab Attendance (LA)	Total Marks
PCC	PCC-CT310-L	Cement Technology lab -II (Testing Cement & Concrete Lab)	35	10	5	50

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Lab Work Assignment (LA) Best of 5 of the total, Viva-Voice on Lab Work (VV), and Lab Attendance (LA). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-CT310-L.1: Able to analyze, determine and interpret the physical and mechanical characteristics of Cement.

Ap	proximate Hours
Item	Appx. Hrs
CL	0
LI	14
SW	7
SL	3
Total	24

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom	Self Learning
		Instruction (CI)	(SL)
SO1.1 Able to determine the	Unit1: Physico-mechanical		1. Physical
Density & Surface Area of Cement	Analysis of Cement		and Chemical
	1.1 Determination of Density		Properties of other
SO1.2 Able to determine the	of Cement		raw Materials of
Standard Consistency of Cement	1.2 Determination of Specific		Cement
	Surface Area of Cement		
SO1.3 Able to determine the Initial	1.3 Determination of Standard		
and Final Setting Time of Cement	Consistency of Cement		
	1.4 Determination of Initial		
SO1.4 Able to determine the	and Final Setting Time of		
Soundness and Dry Shrinkage of	Cement		
Cement	1.5 Determination of		
	Soundness of Cement		
SO1.5 Able to determine the	byLe-Chatelier Method		
Compressive Strength of Cement	1.6 Determination of		
	Soundness of Cement		
	byAutoclave Method and		
	Dry Shrinkage Test		
	1.7 Determination of		
	Compressive Strength of		
	Cement		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Make Lab Assignment.

b. Mini Project:

Prepare flow-chart and model laboratory procedures.

PCC-CT310-L.2: Able to analyze the chemical characteristics of Cement.

Appro	ximate Hours
Item	Appx. Hrs
CL	0
LI	6
SW	3
SL	2
Total	11

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs) Laboratory Instruction (LI) Self Learning (SL) Classroom Instruction (CI) SO2.1: To determine the Loss on **Unit 2: Chemical Analysis of Cement** 1. Physical and Ignition(LOI)of Cement Chemical Properties of 2.1 Determination of LOI of Cement SO2.2: To determine the Major other raw 2.2 Determination of CaO, SiO₂, Oxides of Cement Materials of Al₂O₃, Fe₂O₃, MgO of Cement 2.3 Determination of insoluble residue Cement SO2.3: To determine the Insoluble and SO3 of cement residue of Cement

SW-1 Suggested Sessional Work (SW):

- **a.** Assignments: Make Lab Assignment.
- **b.** Mini Project: Prepare flow-chart and model laboratory procedures.

PCC-CT310-L.3: Able to determine mechanical properties of Concrete and its components.

Ap	proximate Hours
Item	Appx. Hrs
CL	0
LI	10
SW	5
SL	2
Total	17

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)		
SO3.1: Able to determine the	Unit 3: Concrete Testing		1. Physical and		
Sieve Analysis Test for Fine &			Chemical		
Coarse Aggregates	3.1 Sieve Analysis Test for Fine		Properties of		
	& Coarse Aggregates		other raw		
SO3.2: Able to conduct the			Materials of		
Impact Value Test for Coarse	3.2 Aggregate Impact Value for		Cement		
Aggregates	Coarse Aggregates				
SO3.3: Able to determine	3.3 Flakiness and Elongation for				
theFlakiness and Elongation for	Coarse Aggregates				
Coarse Aggregates					
	3.4 Slump & Flow Table Test for				
SO1.4: Able to conduct the	Fresh Concrete				

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Slump & Flow Table Test for		
Fresh Concrete	3.5 Compressive Strength of M20	
	& M30 Concrete	
SO1.5: Able to determine the		
Compressive Strength of		
Concrete		

SW-1 Suggested Sessional Work(SW):

a. Assignments:

Make Lab Assignment.

b. Mini Project:

Prepare flow-chart and model laboratory procedures.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Lab Instruction (LI)	Sessional Work (SW)	Self Learning (SL)	Total hour (LI+SW+SL)
PCC-CT310-L.1: Able to analyze, determine and interpret the physical and mechanical characteristics of Cement.	14	07	03	24
PCC-CT310-L.2: Able to analyze the chemical characteristics of Cement.	06	03	02	11
PCC-CT310-L.3: Able to determine mechanical properties of Concrete and its components.	10	05	02	17
Total Hours	30	15	07	52

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ν	larks Disti	ibution	Total	
	Unit Titles	R	U	А	Marks	
CO-1	Unit1: Physico-mechanical Analysis of Cement	04	04	06	14	
CO-2	Unit 2: Chemical Analysis of Cement	04	08	06	18	
CO-3	Unit 3: Concrete Testing	04	08	06	18	
	Total			18	50	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Geology and Mining of Limestone will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a)	Books :
------------	----------------

S.No.	Title	Author	Publisher	Edition
				&Year
1	Ordinary Portland Cement	IS 269-2015	6 th Edition	2015
			BIS	
2	Concrete Technology Lab	Dr. Bharadwaj	Concrete	
	Manual	Nanda and Prof.	Technology Lab	
		A.N. Nayak	Manual	
3	Concrete Technology Lab	Nanditha	MLRITM	2022
	Manual	Mandava,		
4	Methods of physical tests for	IS 4031-1	BIS	1996
	hydraulic			
	cement			
5	Method of chemical analysis of	IS 4032	BIS	1985
	hydraulic cement			

Curriculum Development Team

1. Prof. G C Mishra, Director Cement Technology, AKS University

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech.

Course Code: PCC-CT310-L

Course Title: Cement Technology lab –II(Testing of Cement & Concrete Lab)

				8	J	Progra	ım Ou	tcome	s				Pr	ogram Spe	ecific Outco	ome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
PCC-CT310-L.1: Able to analyze, determine and							[[-						
interpret the physical and mechanical characteristics of Cement.	3	3	3	3	3	3	3	2	2	1	2	3	3	3	3	3
PCC-CT310-L.2: Able to analyze the chemical characteristics of Cement.	3	3	3	3	3	3	3	2	2	1	2	3	3	3	3	3
PCC-CT310-L.3: Able to determine mechanical properties of Concrete and its components.	3	3	3	3	3	3	3	2	3	1	2	3	3	3	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Cement Technology lab –II(Testing of Cement & Concrete Lab)

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning(SL)
PO:1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3, 4	CT 20.1: Able to analyze, determine and interpret the physical and mechanical characteristics of Cement.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	Unit 1: Physico- mechanical Analysis of Cement 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7		As mentioned
PO:1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3, 4	CT 20.2: Able to analyze the chemical characteristics of Cement.	SO2.1 SO2.2 SO2.3	Unit 2: Chemical Analysis of Cement 2.1, 2.2, 2.3		n above pages
PO:1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3, 4	CT 20.3: Able to determine mechanical properties of Concrete and its components.	SO3.1 SO3.2 SO3.3	Unit 3: Concrete Testing 3.1, 3.2, 3.3, 3.4,3.5		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-VI

Course Code:	HSMC-304
Course Title :	Project Management
Pre- requisite:	Student should have basic knowledge of Geometry, Geometrical Shapes, basic knowledge of Computer, Mouse and keyboard use, navigating menus and dialogs, managing files and directories, etc.
Rationale:	The rationale of measurement and metrology lies in ensuring precision, accuracy, and reliability across various fields. It is crucial for quality control, scientific research, safety, innovation, and international standards. Measurement and metrology contribute to efficiency, standardization, and progress in technology and society.

Course Outcomes:

HSMC-304.1:	Students will demonstrate an understanding of fundamental project management		
	principles, including project lifecycle, stakeholders, constraints, and success criteria.		
HSMC-304.2:	Students will be able to apply various project management methodologies.		
HSMC-304.3:	Students will develop comprehensive project plans that include scope definition,		
	scheduling, resource allocation, budgeting, risk management, and communication		

strategies.
HSMC-304.4: Students will gain hands-on experience with project management tools and software.
HSMC-304.5: Students will assess project performance using key performance indicators (KPIs),

metrics, and benchmarks, and make data-driven decisions to optimize project outcomes.

Scheme of Studies:

Course Course Course		Scheme of studies(Hours/Week)					Total	
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
HSMC	HSMC-304	Project Management	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

L1: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)SW: Sessional Work (includes assignment, seminar, mini project etc.),SL: Self Learning,C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

J	-		Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)							
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
HSMC	HSMC-304	Project Management	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC-304.1: Student gain a comprehensive understanding of project management.

Approximate Hours			
Item	Appx. Hrs		
CI	12		
LI	0		
SW	2		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SL	2
Total	16

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self Learning (SL)
	Instruction (LI)		
SO1.1		Unit–1: Introduction to	1. What are the
Define basic project		Project Management	Basic element of
management terms and			measurement
concepts.		1.1 Introduction	system
SO1.2		1.2 Concept of Project	2. What are the
Explain the purpose and		1.3 Meaning	different
importance of project		1.4 Characteristics	technique used
management.		1.5 Classification of Projects	for the
SO1.3 Apply project		1.6 Project Life Cycle and	measurement of
management principles to		Phases	displacement
analyze and solve basic project		1.7 Project Selection criteria	
scenarios.		1.8 Project Management	
SO1.4 Develop a project plan		1.9 Line Management	
for a hypothetical project,		1.10Project Manager	
integrating elements such as		1.11 Roles and Responsibilities	
scope, schedule, budget, and		1.12Project Management as a	
risk management.		Profession	

HSMC-304.2: Student understood the fundamentals of Project Execution and Monitoring.

Ар	proximate Hours
Item	Appx. Hrs
CI	11
LI	0
SW	3
SL	2
Total	16

Session Outcomes (SO3)	comes (SO3) Laboratory Class room Instruction (CI)		Self Learning	
	Instruction (LI)		(SL)	
SO2.1		Unit -2: Project Execution and	1. Explain types of	
Recall the key activities		Monitoring	monitoring.	
involved in project execution		2.1 Generating and Screening	2. Explain the	
and monitoring.		Ideas	objective of	
SO2.2		2.2 Steps, Monitoring the	communication.	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Explain the purpose and	Environment	
importance of project	2.3 Scouting for Project Ideas .	
execution and monitoring in	2.4 Preliminarily Screening,	
achieving project objectives.	Project Rating Index.	
SO2.3	2.5 Feasibility Studies	
Apply project management	2.6 Technical, Financial	
methodologies to execute	Managerial	
project tasks effectively.	2.7 Economic Managerial	
SO2.4	2.8 Social, Legal and	
Design a project	Managerial.	
communication plan to keep	2.9 Team formation and roles	
stakeholders informed about	2.10 Communication and	
project progress and changes.	leadership in project	
	management	
	2.11 Resource allocation and	
	management	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain the Project Rating Index.
- 2. Explain the function of Financial Managerial.
- 3. Write the principle of leadership in project management

HSMC-304.3: Learn techniques and methodologies in Financial Estimates and Projections.

Approximate Hours

L .	
Item	Appx. Hrs
CI	09
LI	0
SW	02
SL	03
Total	14

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self Learning
	Instruction (LI)		(SL)
SO3.1		Unit-3: Financial Estimates and	1. Write the short
Recall the basic financial terms		Projections	note on term
and concepts related to estimates			loans.
and projections.		3.1 Project cost estimation &	
SO3.2		working capital	2. Write the steps
Explain the purpose and		requirements,	to make
importance of financial estimates		3.2 Sources of funds	balance sheet
and projections in project		3.3 Equity, debentures, term	
planning and decision-making.		loans & their Cost of	
SO3.3		Capital.	
Evaluate the financial viability		3.4 Projected Cash Flow	
of a project based on projected		Statement & fund flow	
costs, revenues, and expected		statement,	
returns.		3.5 Projected Income statement	
SO3.4		and Balance sheet	
Develop a comprehensive		3.6 Capital budgeting decisions	
financial plan for a project,		3.7 Payback Period, Accounting	
including cost estimates, revenue		Rate of Return	
projections, and cash flow		3.8 NPV, Internal Rate of	
forecasts.		Return and BCR Method	
		3.9 project financing	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. What are the sources of funds?
- 2. Explain the Capital budgeting decisions.

HSMC-304.4: Understood the different Project Appraisal and Risk Management techniques.

Approximate Hours			
Item	Appx. Hrs		
CI	06		
LI	0		
SW	02		
SL	02		
Total	10		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self-Learning
	Instruction (LI)		(SL)
SO4.1		Unit-4: Project Appraisal	1. Explain the
Memorize the types of risks		and Risk Management	Risk management
commonly encountered in project		techniques	Market appraisal
management.			
SO4.2		4.1 Project Appraisal	
Explain the purpose and		Techniques	
importance of project appraisal in		4.2 Objectives	
evaluating project feasibility and		4.3 Types and Method	
investment decisions.		4.4 Environmental	
SO4.3		appraisal,	
Utilize risk management tools and		4.5 Market appraisal	
techniques, such as risk assessment		4.6 market survey for	
matrices and probability impact		forecasting future	
grids, to identify, assess, and		demand and sales	
prioritize project risks.			

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- **1.** Explain the future demand and sales.
- 2. Write short note on risk management tools and techniques.

HSMC-304.5: Student get the knowledge about agile techniques in Project Management.

Appro	oximate Hours
Item	Appx. Hrs
CI	07
LI	0
SW	02
SL	02
Total	11

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room	Self Learning		
(SOs)	Instruction	Instruction	(SL)		
	(LI)	(CI)			
SO 5.1		Unit 5: Agile techniques in	1. What do you		
Explain the Agile approach to		Project Management	mean by project		
project management and its		5.1 Introduction to Agile	planning.		
differences from traditional		5.2 principles,			
waterfall methodologies.		5.3 Scrum, Kanban	2. Write the short		
SO 5.2		5.4 Other Agile	note on agile		
Evaluate Agile project metrics		methodologies,	projects.		
and performance indicators to		5.5 Agile project			
assess project progress and		management tools			
identify areas for improvement.		e e			
SO 5.3		1 5			
Develop an Agile project plan		management			
that includes iteration planning,		5.7 Agile vs. Traditional			
sprint goals, and release		project management			
planning.					

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- **1.** Explain Agile project metrics and performance indicators.
- 2. Explain the Traditional project management

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture	Laboratory Instruction	Sessional Work	Self Learning	Total hour (Cl+SW+Sl)
	(Cl)	(LI)	(SW)	(SI)	
HSMC-304.1: Student gain a comprehensive					
understanding of project management.	12	0	02	02	16
HSMC-304.2: Student understood the					
fundamentals of Project Execution and	11	0	03	02	16
Monitoring.					
HSMC-304.3: Learn techniques and					
methodologies in Financial Estimates and	09	0	02	03	14
Projections.					

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

HSMC-304.4: Understood the different Project Appraisal and Risk Management techniques.	06	0	02	02	10
HSMC-304.5: Student get the knowledge about Agile techniques in Project Management.	07	0	02	02	11
Total Hours	45	0	11	11	67

Suggestion for End Semester Assessment

СО	Unit Titles	Mark	Total		
		R	U	А	Marks
CO-1	Introduction to Project Management	03	01	01	05
CO-2	Project Execution and Monitoring	02	06	02	10
CO-3	Financial Estimates and Projections	03	07	05	15
CO-4	Project Appraisal and Risk Management techniques	-	10	05	15
CO-5	Agile techniques in Project Management	03	02	-	05
	Total	11	26	13	50

Suggested Specification Table (For ESA)

The end of semester assessment for Project Management will be held with written examination of 50 marks

A: Apply

U: Understand,

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial

R: Remember,

Legend:

- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books :			
S.	Title	Author	Publisher	Edition&
No.				Year
1	Project Management	Choudhary	Tata McGraw Hill	2017
2	Project Management:	Clifford F Gray	Visions	2023
	The Managerial Process			
3	Project Management:	R. L. Srivastava	New Age International	2021
	Planning and Control		Publishers	
	Techniques			
4		Tra	ining Manual	
5	Lecture note pro	vided by Dept. of M	echanical Engineering, AKS	University, Satna

Curriculum Development Team

- 1. Dr. Kaushik Mukherjee, Head of Deptt. Management., AKS University
- 2. Mr.S.S. Parihar, Head of Deptt. Mech. Engg. AKS University
- 3. Mr. Alok Ranjan Tiwari, Assistant Professor, Dept. of Mechanichal Engg.
- 4. Mr Deepak Pandey ,Assistant Professor, Dept.ofMechanichalEngg
- 5. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 6. Mr. Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 7. Mr K.P Tiwari , Assistant Professor, Dept.ofMechanichal Engg
- 8. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr,Lokesh Agrawal, Assistant Professor,Dept.ofMechanichal Engg
- 11. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 13. Mr. Praveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Course Title: Project Management

Program Title: B. Tech Cement Tech.

Course Code: HSMC-304

r rogram ritte: D. rech Cente		CII.			U	Juise	Coue.		10-30	+			Course 1	ille: r roje	ect Manag	gement
]	Progra	m Ou	tcomes	5				Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Student gain a comprehensive understanding of project management.	1	1	2	2	2	2	3	1	2	2	1	2	2	2	1	-
CO-2: Student understood the fundamentals of Project Execution and Monitoring.	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1
CO-3: Learn techniques and methodologies in Financial Estimates and Projections.	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

CO-4: Understood the different Project Appraisal and Risk Management techniques.	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
CO-5: Student get the knowledge about Agile techniques in Project Management.	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Project Management

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)		
	CO-1: Student gain a comprehensive	SO1.1		Unit 1: Introduction to Project			
PO:1,2,3,4,5,6,	understanding of project management.	SO1.2		Management			
7,8,9,10,11,12		SO1.3		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,			
PSO 1,2, 3, 4		SO1.4		1.10,1.11,1.12			
DO 10045(CO-2: Student understood the	SO2.1		Unit-2: Project Execution and			
PO:1,2,3,4,5,6,	fundamentals of Project Execution and	SO2.2		Monitoring			
7,8,9,10,11,12 PSO 1,2, 3, 4	Monitoring.	SO2.3		2.1,2.2,2.3,2.4,2.5,2.6,2.7,			
150 1,2, 5, 4		SO2.4		2.8,2.9,2.10,2.11			
	CO-3: Learn techniques and	SO3.1		Unit 3: Financial Estimates and			
PO:1,2,3,4,5,6,	methodologies in Financial Estimates	SO3.2		Projections	As mentioned in above		
7,8,9,10,11,12 PSO 1,2, 3, 4	and Projections.	SO3.3		3.1,3.2,3.3,3.4,3.5,3.6,3.7,	pages		
100 1,2, 3, 1		SO3.4		3.8.3.9			
	CO-4: Understood the different Project	SO4.1		Unit 4: Project Appraisal and Risk			
PO:1,2,3,4,5,6,	Appraisal and Risk Management	SO4.2		Management techniques			
7,8,9,10,11,12 PSO 1,2, 3, 4	techniques.	SO4.3		4.1,4.2,4.3,4.4,4.5,4.6			
PO:1,2,3,4,5,6,	CO-5: Student get the knowledge about	SO5.1		Unit 5: Agile techniques in Project			
7,8,9,10,11,12	Agile techniques in Project	SO5.2		Management			
PSO 1,2, 3, 4	Management.	SO5.3		5.1,5.2,5.3,5.4,5.5,5.6,5.7			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-VI

Course Code:	HSMC-305
Course Title :	Finance and Accounting
Pre- requisite:	The primary objective of studying accounting is to facilitate transparent and accurate financial reporting.
Rationale:	Accounting provides a structured and standardized system for recording, summarizing, and analyzing financial transactions This transparency is crucial for stakeholders, including investors, creditors, and management, to make informed decisions. Accounting helps maintain the integrity and reliability of financial information, contributing to trust and accountability

Course Outcomes:

HSMC-305.1: Ability to understand and apply financial management principles in decision-making.

in business and financial management

- HSMC-305.2: Analyzing and determining optimal capital structures, assessing cost of capital.
- HSMC-305.3: Proficiency in preparing financial statements and handling various aspects of company accounts.
- HSMC-305.4: Competence in handling debenture-related transactions and accounting entries.
- **HSMC-305.5:** Understanding and complying with accounting standards, including Ind AS, IFRS, and international reporting standards.

Scheme of Studies:

Course	Course	Course		Total				
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
HSMC	HSMC-305	Finance and Accounting	3	0	1	1	5	3

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L)
and Tutorial (T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),

Page 562 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SL: Self Learning, C: Credits.

Note:

SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory										
			P	Sch Progressiv		Assessme sment (larks)		
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
HSMC	HSMC-305	Finance and Accounting	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC-305.1: Ability to understand and apply financial management principles in decisionmaking. Approximate Hours

Item	Appx. Hrs
CI	13
LI	0
SW	2
SL	1
Total	16

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self Learning (SL)
	Instruction (LI)		
SO1.1		Unit-1: Nature and Scope of	1. Engage in
Financial Management: Ability		Financial Management	online simulations
to apply financial management			or case studies to
principles for effective fund		1.1 Nature, Scope and	self-learn the risk
utilization.		Objectives of Financial	evaluation and
		Management	sensitivity analysis
SO1.2		1.2 Risk-Return and Value of	in financial
Risk-Return Analysis:		the Firm	decision-making.
Proficiency in evaluating risks		1.3 Objectives of the firm	
and returns to enhance firm		1.4 Profit Maximization vs.	
value.		Wealth Maximization	
		1.5 Emerging roles of Finance	
SO1.3		Managers	
Skill in balancing profit		1.6 Capital Budgeting:	
maximization and wealth		Compounding and	
maximization as organizational		Discounting techniques	
objectives.		1.7 Concepts of Annuity and	
		Perpetuity	
SO1.4		1.8 Capital Budgeting Process	
Competence in applying		1.9 Techniques of Capital	
discounted and non-discounted		Budgeting	
cash flow methods for		1.10 Discounted and Non-	
investment decisions		Discounted	
		1.11Cash Flow Methods	
		1.12 Capital Rationing	
		1.13 Risk Evaluation and	
		Sensitivity Analysis.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Calculate the Net Present Value (NPV) and Internal Rate of Return (IRR) for a given capital budgeting project using discounted cash flow methods.

b. Mini project:

Develop a proposal for a capital budgeting project, including a brief description, estimated costs, and potential return.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

c. Other Activities (Specify):

Compare and contrast Profit Maximization and Wealth Maximization as objectives of the firm. Discuss their implications on long-term sustainability.

HSMC-305.2: Analyzing and determining optimal capital structures, assessing cost of capital.

Ap	proximate Hours
Item	Appx. Hrs
CI	11
LI	0
SW	2
SL	1
Total	14

Session Outcomes (SO3)	Laboratory	Class room Instruction (CI)	Self Learning
	Instruction (LI)		(SL)
SO2.1		Unit -2: Capital Structure	Create a
Capability in determining			presentation
optimal capital structure and		2.1 Introduction- Meaning and	outlining the capital
analyzing its impact on risk		Significance	budgeting process,
and shareholder returns.		2.2 Optimal Capital Structure	incorporating
		2.3 Determinants of Capital	concepts of annuity
SO2.2		Structure	and perpetuity,
Skill in exploring diverse		2.4 Theories of Capital	discounted and non-
sources for raising long-term		Structure	discounted cash
finance.		2.5 EBIT – EPS Analysis	flow methods
		2.6 EBITDA Analysis; Risk	
SO2.3		and Leverage	
Cost of Capital Analysis:		2.7 Effects of Leverage on	
Proficiency in calculating and		Shareholders' Returns.	
understanding the Weighted		2.8 Sources of raising long-	
Average Cost of Capital		term finance	
(WACC).		2.9 Cost of Capital:	
		2.10Sources, Meaning of Cost	
SO2.4		of Capital	
Competence in analyzing the		2.11Factors Affecting Cost of	
effects of leverage on		Capital;	
shareholders' returns.			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Calculate the Weighted Average Cost of Capital (WACC) for a given company. Discuss the implications of the WACC in the context of the company's capital structure and investment decisions.

b. Mini project:

Assign a project where students assess the impact of the scope of supply on businesses in specific industries. This could involve considering how the definition affects pricing, tax liability, and compliance.

c. Other Activities (Specify):

Compare and contrast Profit Maximization and Wealth Maximization as objectives of the firm. Discuss their implications on long-term sustainability.

HSMC-305.3: Proficiency in preparing financial statements and handling various aspects of company accounts.

Ap	proximate Hours
Item	Appx. Hrs
CI	10
LI	0
SW	2
SL	1
Total	13

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self Learning
	Instruction (LI)		(SL)
SO3.1		Unit-3: Introduction to Company Account	1. Form
Able to understand			ulate a
meaning and features of		3.1 Introduction, Meaning of Company,	buyback
company.		3.2 Salient Features of a Company,	strategy for a
		3.3 Types of Companies, Books of	real or
SO3.2		Account,	hypothetical
Competence in handling		3.4 Preparation of Financial Statements.	company.
share capital, bonus		3.5 Introduction, Issue of Shares	
shares, rights shares, and		3.6 Forfeiture of Shares	
related journal entries.		3.7 Reissue of Shares	
		3.8 Share Capital	
		3.9 Types of Shares.	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

3.10 Bonus share, Right share, Issue of	
Shares for Cash,	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Investigate the company's share capital structure. Identify and explain the different types of shares issued by the company.

b. Mini project:

Research and report if the company has issued bonus shares or rights shares in recent years.

c. Other Activities (Specify):

Discuss the impact of these actions on the company's equity structure

HSMC-305.4: Competence in handling debenture-related transactions and accounting entries.

App	proximate Hours
Item	Appx. Hrs
CI	5
LI	0
SW	2
SL	1
Total	8

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO4.1 Ability to identify and explain features and types of debentures, along with understanding the issuance process. SO4.2 Able to differentiate between debentures and shares. 		 Unit-4: Issue of Debentures 4.1 Introduction, Meaning, Features of Debentures 4.2 Distinction between Debentures and Shares 4.3 Types of Debentures 4.4 Issue of Debentures 4.5 Accounting for interest payment on debentures. 	1. How to gain skill on accurately accounting for interest payments on debentures?

SW-4 Suggested Sessional Work (SW):

a. Assignments:

AKS University Faculty of Engineering and Technology

Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Identify the types of debentures issued and elaborate on their terms and conditions. Explain how these terms align with the company's financial goals.

b. Mini project:

Analyze the impact of the debenture issuance on the company's financial statements.

c. Other Activities (Specify):

Choose a publicly traded company that has recently issued debentures. Obtain relevant financial reports and announcements.

HSMC-305.5: Understanding and complying with accounting standards, including Ind AS, IFRS, and international reporting standards.

Арр	oroximate Hours
Item	Appx. Hrs
CI	6
LI	0
SW	2
SL	1
Total	9

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction	Self Learning (SL)
	(LI)	(CI)	
 SO 5.1 Ability to comprehend the meaning and significance of corporate reporting SO5.2 Proficiency in applying accounting standards, including Ind AS, IFRS, and understanding their applicability and scope. SO5.3 Capability to ensure compliance with international accounting standards, including an overview of International Financial Reporting Standard SO5.4 		 Unit 5: Corporate Reporting 5.1 Meaning of Corporate Reporting; 5.2 Accounting Standards 5.3 Applicability of Accounting Standards 5.4 Scope and Compliance of Accounting Standards 5.5 Ind AS, IFRS 5.6 International Financial Reporting Standard Overview (National and International accounting Authorities) 	Review case studies or examples of companies that effectively demonstrate compliance with accounting standards.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Skill in preparing comprehensive financial					
reports	that	adhere	to	the	relevant
accounti	ng sta	ndards.			

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Analyze how the company's corporate reporting practices impact various stakeholders, including investors, creditors, and employees

b. Mini project:

Examine the company's compliance with relevant accounting standards and regulatory requirements. Highlight any instances of non-compliance or areas of improvement.

c. Other Activities (Specify):

Prepare a presentation on corporate reporting.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
HSMC-305.1: Ability to understand and apply financial management principles in decision-making.	13	0	02	01	16
HSMC-305.2: Analyzing and determining optimal capital structures, assessing cost of capital.	11	0	02	01	14
HSMC-305.3: Proficiency in preparing financial statements and handling various aspects of company accounts.	10	0	02	01	13
HSMC-305.4: Competence in handling debenture-related issues.	05	0	02	01	08
HSMC-305.5: Understanding and complying with accounting standards, including Ind AS, IFRS, and international reporting standards.	06	0	02	01	09
Total Hours	45	0	10	05	60

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

T 11

TOA

Suggestion for End Semester Assessment

a

10

	Suggested Specification Tabl	le (For ESA	A)		
CO	Unit Titles	Marks Distribution			Total
		R	U	А	Marks
CO-1	Nature and Scope of Financial Management	01	01	03	05
CO-2	Capital Structure	01	01	03	05
CO-3	Introduction to Company Account	-	03	10	13
CO-4	Issue of Debentures	-	03	10	13
CO-5	Corporate Reporting	01	03	10	14
	Total	03	11	36	50
Legend:	R: Remember, U: Understand,		A: Apply		

The end of semester assessment for Finance and Accounting will be held with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

S.	Title	Author	Publisher
No.			
1.	Principles of Corporate	Singhania Vinod K. and Monica	McGraw-Hill
	Finance" by Richard A.	Singhania	Education)
	Brealey.		
2.	"Fundamentals of Financial	Eugene F. Brigham and Joel F.	Cengage
	Management".	Housto	Learning)
3.	"Financial Management:		
	Theory & Practice"	Eugene F. Brigham and Michael C.	
		Ehrhardt	Cengage
4.	"Financial Management:		Learning)
	Principles and Application.		
		Sheridan Titman, Arthur J. Keown,	Pearson
5.	Lecture note provided by	and John D. Martin.	
	Dept. of Commerce AKS		
	University, Satna.		

Curriculum Development Team

- 1. Prof. Aslam Sayeed, Associate Dean, AKS University
- 2. Dr Dhirendra Oha, Head of the Department, Dept. of Commerce
- 3. Dr Bharat Kumar Soni, Assistant Professor, AKS University, Satna (M.P.)
- 4. Shrikrishan Jha, Assistant Professor, AKS University, Satna (M.P.)
- 5. Vineet Kumar Pandey, Assistant Professor, AKS University, Satna (M.P.)
- 6. Radha Singh, Assistant Professor, AKS University, Satna (M.P.)

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech.

Course Code: HSMC-305

Course Title: Finance and Accounting

Program Outcomes Program Speci					cific Outor											
	r				1	rogra		come	5					ogram spe		onne
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Ability to understand and apply financial management principles in decision-making.	1	1	2	2	2	2	3	1	2	2	1	2	1	2	1	2
CO-2: Analyzing and determining optimal capital structures, assessing cost of capital.	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1
CO-3: Proficiency in preparing financial statements and handling various aspects of company accounts.	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

CO-4: Competence in handling debenture-related issues.	3	2	2	2	3	1	3	1	2	1	-	2	2	3	3	2
CO-5: Understanding and complying with accounting standards, including Ind AS, IFRS, and international reporting standards.	1	2	2	1	1	1	3	1	1	1	2	2	2	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Finance and Accounting

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4 PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	 CO-1: Ability to understand and apply financial management principles in decision-making. CO-2: Analyzing and determining optimal capital structures, assessing cost of capital. 	SO1.1 SO1.2 SO1.3 SO1.4 SO2.1 SO2.2 SO2.3		Unit 1: Nature and Scope of Financial Management 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9, 1.10,1.11,1.12,1.13 Unit-2: Capital Structure 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8,2.9,2.10,2.11	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Proficiency in preparing financial statements and handling various aspects of company accounts.	SO2.4 SO3.1 SO3.2		Unit 3: Introduction to Company Account 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10	As mentioned, in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Competence in handling debenture-related issues.	SO4.1 SO4.2		Unit 4: Issue of Debentures 4.1,4.2,4.3,4.4,4.5	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Understanding and complying with accounting standards, including Ind AS, IFRS, and international reporting standards.	SO5.1 SO5.2 SO5.3 SO5.4		Unit 5: Corporate Reporting 5.1,5.2,5.3,5.4,5.5,5,5.6	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-VI

Course Code:	PROJ-CT01
Course Title :	Engineering Project-1 (Literature Review)
Pre-requisite:	Students should have basic knowledge of English grammarandChemistry.
Rationale:	A literature review might be a class assignment or the foundation research project for a graduate and engineer. A literature review synthesizes current knowledge about the topic of interest and regarding the research question for future attainment. Literature review should increase the skills, knowledgeand ability to learn and also to have the satisfaction of completing a successful project.

Course Outcomes:

PROJ-CT01.1: Able toIdentify the area of interest/research topic or subject for study and collect the relevant literature.

PROJ-CT01.2: Able to critique the Literature.

PROJ-CT01.3: Able to review the Literature and publication.

Scheme of Studies:

Course	Course	Course		Total				
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
PROJ	PROJ- CT01	Engineering Project-1 (Literature Review)	1	2	1	1	5	2

Legend:	CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L)						
	and Tutorial (T) and others),						
	LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,						
	field or other locations using different instructional strategies)						
	SW: Sessional Work (includes assignment, seminar, mini project etc.),						
	SL: Self Learning,						
	C: Credits.						
Note:	SW & SL has to be planned and performed under the continuous guidance and feedback						
	of teacher to ensure outcome of Learning.						

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Scheme of Assessment: Theory

Ineory			-							
						-				
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PROJ	PROJ-CT-312	Engineering Project-1 (Literature Review)	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Lab Work Assignment (LA) Best of 5 of the total, Viva-Voice on Lab Work (VV), and Lab Attendance (LA). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PROJ-CT01.1: Able to Identify the area of interest/research topic or subject for study and collect the relevant literature.

Approximate Hours						
Item	Appx. Hrs					
CI	5					
LI	10					
SW	5					
SL	2					
Total	22					

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self		
(SOs)	Instruction	(CI)	Learning		
	(LI)		(SL)		
SO1.1	Unit 1: Project Task	Unit 1: Identification the area	1. Basic		
Able toIdentify a		of interest and collection of	structure of		
Subject for Study	1.1 Prepare a	literature.	English		
	subjectSelection		grammer		
SO1.2	plan	1.1 Identify a Subject for			
Able to plan of	1.2 Make a	Study			
literature collection	collection and	1.2 Link the Research Query			
from various sources	abstracting the	to the Appropriate			
	relavent	Discipline			
SO1.3	literature (hard	1.3 Write the Preliminary			
Able to summarise the	and soft)	Research Topic Statement			
relavent statement of	1.3 Make a	1.4 Conduct a Literature			
research topic	collection and	Search			
	abstracting the	1.5 Refine Your Topic			
	relavent				
	literature (hard				
	and soft)				
	1.4 Tune the				
	Topicand find				
	the gap of				
	Reaserch				
	1.5 Tune the				
	Topicand find				
	the gap of				
	Reaserch				

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Make statement note-book.
- 2. Make model paper of on Word MS-Office

b. Mini Project:

Use basic tools of Excel for preparation of tables of data records of literature collection

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PROJ- 301.2: Able to critique the Literature

Approximate HoursItemAppx. HrsCI5LI10SW5SL2Total22

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (CI)	Self Learnin
	(LI)		g (SL)
SO2.1	Unit 2: Literature	Unit 2: Appraisal to Literature	1. Basic MS-
To understand the	Analysis Task		Office
Literature critique		2.1 What Is a Literature Critique?	tools
SO2.2 To understand the parts of	2.1 Determining the Implicative Logic Pattern	2.2 Building the Case for a critique theLiterature and Basic Parts of an Argument	
an argument	2.2 Reframe Claims to Meet the	2.3 Descriptive Argument Patterns: Factual Reasoning	
SO2.3 To differentiate the descriptive and Implicated	Prerequisite Conditions 2.3 Reframe Claims to	2.4 Implicative Argument Patterns: Implicative Reasoning	
patterns of arguments SO2.4	Meet the Prerequisite Conditions	2.5 Critique of the Literature: Building the AdvocacyArgument	
To Build the Advocacy Argument	2.4 Build the Advocacy Argument		
	2.5 Build the Advocacy Argument		

SW-2 SuggestedSessionalWork(SW):

a. Assignments:

Use the excel for data management and graphical plotting Make model paper of review atricle

b. Mini Project:

Use basic tools of PPT for Slidepresentation

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PROJ- 301.3: Able to review the Literature & publication.

Approximate Hours							
Item	Appx Hrs						
CI	5						
LI	10						
SW	5						
SL	2						
Total	22						

Session Outcomes	Laboratory	Classroom Instruction	Self	
(SOs)	Instruction	(CI)	Learning	
	(LI)		(SL)	
SO3.1Able to quick &	Unit 3: Review &	Unit 3: Deep reading and	1. Online search	
deep reading of	Publication	Literature review	of research	
literature.			materials	
	3.1 Practice, How short	3.1 The Writing Process:		
SO3.2Able to manage	can a literature review	Overview and Role of		
the literature	be?	the Literature Review		
review	3.2 Writing a literature	3.2 Finding and selecting		
	review-structural	literature, Using what		
SO3.3Able to write &	concerns	you have read		
publish the	3.3 Writing a literature	3.3 Iterative reading: from		
reviewed	review-structural	quick reviews toward		
literature	concerns	deep reading		
	3.4 Writing a literature	3.4 Managing the		
	review-structural	literature and Record		
	concerns	keeping		
	3.5 Publication of	3.5 Writing a literature		
	reviewed artricle	review-structural		
		concerns		

SW-3 Suggested Sessional Work(SW):

a. Assignments:

- **1.** First iteration: title and publication information
- 2. Second iteration: abstract
- **3.** Third iteration: single sections

b. Mini Project:

Reading checklist/questionnaire

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Classroom Instruction (CI)	Lab Instruction (LI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (LI+SW+SI)
PROJ- 301.1: Able to Identify the area of interest/research topic or subject for study and collect the relevant literature.	5	10	05	02	22
PROJ- 301.2: Able to critique the Literature	5	10	05	02	22
PROJ- 301.3 : Able to review the Literature & publication	5	10	05	02	22
Total Hours	15	30	15	06	66

Suggestion for End Semester Assessment

Suggested Specification Table(For ESA)

СО	UnitTitles	Ma	rksDistribut	ion	Total
		R	U	Α	Marks
CO-1	Identification the area of interest and collection of literature	02	04	04	10
CO-2	Appraisal to Literature	04	08	08	20
CO-3	Deep reading and Literature review	04	04	12	20
	Total			14	50

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment for Engineering Project-1 (Literature Review) will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition
				&Year
1	The literature review : six	Lawrence A.	Corwin	2022
	steps to success	Machi, Brenda T.	Press, Inc	
		McEvoy.		
2	Literature Review and	Dave Harris	Routledge	2020
	Research Design: A Guide to			
	Effective ResearchPractice			
3	How to Write	Bryan Greetham	Red Globe Press and	2021
	Your Literature		Macmillan	
	Review		Education	
			Limited	
4	So, You Have to Write a	Catherine G.P.	IEEE PCS &John	2021
	Literature Review:	Berdanier	Wiley & Sons, Inc.,	
	A Guided Workbook for	& Joshua B.	Hoboken, New	
	Engineers	Lenart	Jersey.	
5	Conducting	Hempel, Susanne,	American	2020
	Your Literature		Psychological	
	Review		Association	

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- **11.** Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Page 581 of 734

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: PROJ-CT01

Course Title: Engineering Project-1 (Literature Review)

					I	Progra	m Ou	tcomes	5				Pr	ogram Spe	cific Outco	ome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Able to Identify the area of interest/research topic or subject for study and collect the relevant literature.	3	2	2	2	3	2	1	2	2	1	1	2	3	1	3	3
CO-2: Able to critique the Literature	3	2	2	2	3	2	1	2	1	1	1	2	2	1	3	2
CO-3 : Able to review the Literature & publication	3	3	2	2	2	2	1	3	2	1	2	3	2	2	2	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Engineering Project-1 (Literature Review)

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Able to Identify the area of interest/research topic or subject for study and collect the relevant literature.	SO1.1 SO1.2 SO1.3	1.1, 1.2, 1.3	Unit-1: Identification the area of interest and collection of literature 1.1, 1.2, 1.3, 1.4, 1.5	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Able to critique the Literature	SO2.1 SO2.2 SO2.3 SO2.4	2.1, 2.2, 2.3	Unit-2: Appraisal to Literature 2.1, 2.2, 2.3, 2.4, 2.5	As mentioned, in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3 : Able to review the Literature & publication	SO3.1 SO3.2 SO3.3	3.1, 3.2, 3.3	Unit-3: Deep reading and Literature review 3.1, 3.2, 3.3, 3.4, 3.5	

Semester-VII

Course Code:PEC-CT-01Course Title:Energy Audit in Cement plantPre- requisite:Student should have basic knowledge of energy management,
mathematics, deep knowledge of equipmentRationale:The course outcome for an engineering course on energy audit in a cement
plant typically aims to equip students with the knowledge and skills
necessary to conduct comprehensive energy audits in the context of
cement manufacturing. Energy audits in industrial settings like cement
plants are crucial for identifying opportunities for energy efficiency
improvement and cost savings.

Course Outcomes:

PEC-CT-01.1: Aim to equip students with the knowledge and skills needed to effectively manage and audit energy

PEC-CT-01.2: How to account for and balance the flow of materials and energy in cement plant

PEC-CT-01.3: Focuses on understanding the characteristics of fuels, combustion processes, and their applications

PEC -CT-01.4: Develop a fundamental understanding of electrical systems

PEC-CT-01.5: Develop a fundamental understanding of cogeneration principles

Scheme of Studies:

Course Category	CourseCode		Scheme of studies(Hours/Week)				Total Credits	
		Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
PEC	PEC - CT -01	Energy Audit In Cement Plant	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

Incory										
			F				sessmen nt (PRA	t (Marks)		
Course Category	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
PEC	PEC-CT-01	Energy Audit In Cement Plant	15	20	5	5	5	50	50	100

Course-Curriculum Detailing: PEC -CT 01 Energy Audit in Cement plant

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PEC-CT-01.1: Aim to equip students with the knowledge and skills needed to effectively manage and audit energy

Approximate Hours							
Item Appx Hrs							
CI	7						
LI	0						
SW	2						
SL	1						
Total	10						

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 Understand why the energy management is important SO1.2 Understand the detailing of energy audit SO1.3 Understand the economic and environmental prospective SO1.4 Energy optimization SO1.5 Method involve in energy audit system		Unit-1.0 Energy management &Audit1.1 Definition & Objectives of Energy Management1.2 Energy Audit: Types and Methodology1.3 Energy Audit Reporting Format1.4 Understanding Energy Performance1.5 Matching Energy Usage to Requirement1.6 Maximizing System Efficiency1.7 Energy Audit Instruments	 Familiarize yourself with energy audit guidelines and standards, such as ASHRAE Standard 211 Study various energy efficiency measures and technologies applicable to different types of facilities

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain the type of audit methodology involve in the cement industry.
- ii. Clearly state the purpose and scope of the energy audit assignment.

b. Mini Project:

Prepare the energy audit report for the real case study.

c. Other Activities (Specify):

Table the energy requirement for cement production in future

PEC-CT-01.2: How to account for and balance the flow of materials and energy in cement plant

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Approximate Hours

11	
Item	AppX Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
 SO2.1 To Understand the energy and material balance involve in the cement industry SO2.2 To learn about Energy 	· ·	 Unit-2 Material and energy balance: 2.1 Basic Principles 2.2 The Sankey Diagram and its Use 2.3 Material Balances, Energy Balances 2.4 Method for Preparing 	SL1. Apply the material and energy balance in the cement plant SL2.
action planning		2.4 Method for Preparing Process: Energy Management System	Learn about the financial analysis
SO2.3 To understand the requirement of financial management		 2.5 Investment Nee Appraisal and Criteria 2.6 Financial Analysis 2.7 Sensitivity and Risk Analysis Financing 	techniques
SO2.4 To understand the importance of project management		Options 2.8 Steps in Project Management 2.9 Elements of Monitoring	
SO2.5 To lean about the energy monitoring and their importance		& Targeting System 2.10A Rationale for Monitoring, Targeting and Reporting	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Provide an overview of the importance of financial techniques in business and personal finance

ii. Explain the concept of time value of money.

b. Mini Project:

Discuss common techniques like Net Present Value (NPV), Internal Rate of Return (IRR), and Payback Period.

c. Other Activities (Specify):

Explain how to value assets, investments in the company.

PEC-CT-01.3: Focuses on understanding the characteristics of fuels, combustion processes, and their applications

Approximate Hours								
Item	AppX Hrs							
Cl	9							
LI	0							
SW	2							
SL	1							
Total	12							

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
 SO3.1 Types of fuels involve in the cement industry. SO3.2 Properties and use of fuels SO3.3 Understand the combustion theory SO3.4 Understand the types of boiler and energy conservation opportunity SO3.5 Evaluation of insulation and refractory 		 Unit-3 : Fuels and combustion: 3.1 Introduction to fuels 3.2 Properties of liquid fuels , gaseous fuels 3.3 Combustion of coal, gas 3.4 Draft system, combustion controls 3.5 Boiler types and classifications 3.6 Performance evaluation of boilers 3.7 Energy conservation opportunities 3.8 Performance evaluation of a typical furnace 3.9 General fuel economy measures in furnaces 3.10 Calculation of insulation thickness, Simplified formula for heat loss calculation 	SL1. Difference between the fossil fuel and alternative fuel SL2. Numerical practice on heat calculation

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Explain the fuel properties and combustion theory

- ii. Calculate the fuel economy Indian prospective.
- b. Mini Project:

Make a tail considering the fuel economy and their impact on the furnace performance

c. Other Activities (Specify):

Power point presentation on types and classification of different furnace.

PEC -CT-01.4: Develop a fundamental understanding of electrical systems

Approximate Hours								
Item	AppX Hrs							
Cl	13							
LI	0							
SW	2							
SL	1							
Total	16							

Session	Laboratory Instruction	Class room Instruction	Self-
Outcomes	(LI)	(CI)	Learning
(SOs)			(SL)
		Unit-4: Electrical system	
SO4.1		4.1 Electricity Billing	SL1
Understand the		4.2 Electrical load management and	Study power
electricity bill		maximum demand control	systems, including
and load		4.3 Power factor improvement and	topics like AC and
SO4.2		benefits	DC power
Understanding		4.4 Transformers	generation,
the process of		4.5 System distribution losses	transmission, and
electric motors		4.6 Motor Efficiency	distribution.
SO4.3		4.7 Motor selection, energy efficient	
Understanding		motor	SL2.
the energy		4.8 Factors affecting energy efficiency	Explore software
efficiency in		and minimizing motor	tools that are
electrical utilities		4.9 Motor Load Survey: Methodology:	commonly used
SO4.4 Working		Efficient operation of compressed	in load
principle of fans		air system	calculation
and blowers		4.10 Compressor capacity assessment:	
SO4.5		Fan performance evaluation and	
Understand the		efficient system operation	
energy efficient		4.10 Maximum demand controllers,	
technologies in		automatic power factor controllers	
electrical systems		4.11 Energy Efficient Transformers,	
		Electronic Ballasts	
		4.12 Energy Efficient Lighting Controls	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain the electrical load management and maximum demand control.
- ii. Explore renewable energy sources like solar and wind power.
- iii. Provide an overview of the importance of electrical systems in various applications, such as power distribution, electronics, and control system

b. Mini Project:

i. Visit to a cement a cement plant and writing a report on electrical system.

c. Other Activities (Specify):

Familiarize yourself with electrical codes and standards in your region

PEC-CT-01.5: Develop a fundamental understanding of cogeneration principles

Approximate Hours									
Item	AppX Hrs								
Cl	7								
LI	0								
SW	2								
SL	1								
Total	10								

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1 Understand the cogeneration in the cement industry in detail SO5.2 Detail about the resource		 Unit 5: Cogeneration 5.1 Need for Cogeneration. 5.2 Principle & technical options for cogeneration 5.3 Classification of Cogeneration Systems 	SL1. Examine real-world case studies of cogeneration projects.
optimization SO5.3 Role of the regulatory bodies in Cement quality and production SO5.4 Understand the Waste		 5.4 Typical Cogeneration performance parameter: Classification and Application 5.5 Benefits of Waste Heat Recovery: Commercial waste heat recovery devices 5.6 Waste minimisation and resource conservation 	SL2. Role of BIS in national standard development.
heat recovery SO5.5 Energy Performance Assessment for Equipment and Utilities Systems		5.7 Turbines, Heat Exchangers Electric Motors and Variable Speed Drives, Fans and Blower	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Discuss how cogeneration can improve energy efficiency in cement plants

Explore the environmental advantages of cogeneration

b. Mini Project:

Describe operational challenges related to maintenance, safety, and system optimization

c. Other Activities (Specify):

Attend industry conferences.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PEC-CT-01.1: Aim to equip students with the knowledge and skills needed to effectively manage and audit energy	7	2	1	10
PEC-CT-01.2: How to account for and balance the flow of materials and energy in cement plant	9	2	1	12
PEC-CT-01.3: Focuses on understanding the characteristics of fuels, combustion processes, and their applications	9	2	1	12
PEC-CT-01.4: Develop a fundamental understanding of electrical systems	13	2	1	16
PEC-CT-01.5: Develop a fundamental understanding of cogeneration principles	7	2	1	10
Total Hours	45	10	5	60

Suggestion for End Semester Assessment

CO	Unit Titles	Marl	ks Distribut	ion	Total
		R	U	Α	Marks
CO-1	PEC -CT 01.1: Aim to equip students with the knowledge and skills needed to effectively manage and audit energy	03	01	01	05
CO-2	PEC -CT 01.2: How to account for and balance the flow of materials and energy in cement plant	02	06	02	10
CO-3	PEC -CT 01.3: Focuses on understanding the characteristics of fuels, combustion processes, and their applications	03	07	04	15
CO-4	PEC -CT 01.4: Develop a fundamental understanding of electrical systems	02	08	05	15
CO-5	PEC-CT 01.4.5: Develop a fundamental understanding of cogeneration principles	03	02	-	05
	Total	14	24	12	50

Suggested Specification Table (For ESA)

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Energy Audit in Cement plant will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)

9. Brainstorming

Suggested Learning Resources:

S.	Title	Author	Publisher	Edition & Year
No.				
1	Improving energy	Thollander, P., &	Springer Science	Revised edition
	efficiency in industrial	Palm, J.	& Business	21 edition2012.
	energy systems: An		Media.	
	interdisciplinary			
	perspective on			
	barriers, energy audits,			
	energy management,			
	policies, and			
	programs.			
2	Energy audits: a	Al-Shemmeri, T	John Wiley & Sons.	Revised edition
	workbook for energy			edition2011.
	management in			
	buildings.			
3	Energy audit of building	Krarti, M.	CRC press	2020
	systems: an engineering			
	approach.			
4	Energy management:	Kumar, A.,	CRC Press	2020
	Conservation and	Prakash, O.,		
	audits.	Chauhan, P. S., &		
		Gautam, S.		
5	Energy Management and	Energy Audit: Burea	au of Energy Efficiency,	New Delhi, Govt of In
	Publication.			
6	FLS Training Manual			

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)

- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

COs,POs and PSOs Mapping

Program Title: B. Tech. Cement Technology		Cou	rse C	ode: P	EC-C	T-01				Course '	Title: El	NERGY	AUDIT	IN CEN	MENT P	LANT
	Program Outcomes]	Program Specific Outcome				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO	PSO2	PSO3	PSO
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	LITE ADJULY to APPLY LECILITICAL & engineering knowledge for production	ADMLY to understand the tay to plant operational problems of cement	ADJURY to understand the fatest coment manufacturing technology and it	Ability to use the research based innovative knowledge for sustainable development
CO1: Aim to equip students with the knowledge and skills needed to effectively manage and audit energy	3	3	2	2	3	3	2	2	3	2	1	2	2	3	2	2
CO2: How to account for and balance the flow of materials and energy in cement plant	2	2	2	2	3	2	2	3	3	2	1	2	3	2	1	2

CO3: Focuses on understanding the characteristics of fuels, combustion processes, and their applications	3	3	2	3	2	3	2	3	3	2	2	3	2	3	2	3
CO 4: Develop a fundamental understanding of electrical systems	2	3	3	2	3	2	2	3	3	2	2	2	2	3	1	3
CO 5: Develop a fundamental understanding of cogeneration principles	3	3	3	3	2	3	2	2	2	2	2	3	3	2	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Energy Audit in Cement Plant

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning(SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1: Aim to equip students with the knowledge and skills needed to effectively manage and audit energy	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Scope of industrial economics and its history 1.1,1.2,1.3,1.4,1.5,1.6,1.7	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2: How to account for and balance the flow of materials and energy in cement plant	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 Demand Analysis 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,2.8,2.9	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3: Focuses on understanding the characteristics of fuels, combustion processes, and their applications	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Diversification, vertical Integration and merger 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	As mentioned, in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 4: Develop a fundamental understanding of electrical systems	SO4.1 SO4.2 SO4.3 SO4 SO5		Unit-4: Determinants of rofitability 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9, 4.11,4.12,4.13	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 5: Develop a fundamental understanding of cogeneration principles	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: Advertising strategy 5.1,5.2,5.3,5.4,5.5,5.6,5.7	

Course Code:	PEC-CT-02
Course Title:	Transport Phenomena
Pre-requisite:	Student should have basic knowledge of fluid Flow Operation, Process Heat Transfer, Mass Transfer Operation and Vector Calculus
Rationale:	Transport Phenomena is the subject which deals with the movement of different physical quantities such as momentum, energy and mass in any chemical or mechanical process and combines the basic principles (conservation laws) and laws of various types of transport

Course Outcomes:

PEC-CT-02.1: Setup overall balances for conservation of momentum, energy and mass.

PEC-CT-02.2: Recognize and apply analogies among momentum, heat and mass transfer.

- **PEC-CT-02.3:** Reduce and solve the appropriate equations of change to obtain desired profiles for velocity, temperature and concentration.
- PEC-CT-02.4: Utilize information obtained from solutions of the balance equations to obtain Engineering
- **PEC-CT-02.5:** Reduce and solve appropriate macroscopic balances for conservation of momentum, energy and mass.

Scheme of Studies:

Course	Course				Schem	e of stu	idies (Hours/Week)	Total
Category	Code	Course	Cl	LI	SW	SL	Total Study Hours	Credits
		Title					(CI+LI+SW+SL)	(C)
PEC	PEC-CT-02	Transport	3	0	1	1	5	3
		Phenomena						

- Legend: CI: Class room Instruction (Includes different instructional strategies. Lecture (L) and Tutorial (T) and others,
 - LI: Laboratory Instruction (Includes Practical performance sin laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, and mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning

Scheme of Assessment: Theory

				S	cheme	e of Ass	essment ((Marks)		
				Progress	sive As	sessmei	nt (PRA)		A)	
Course Category	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PEC	PEC-CT-02	Transport Phenomena	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PEC-CT-02.1: Setup overall balances for conservation of momentum, energy and mass.

Approximate Hours

11	
Item	Approx. Hrs.
CI	09
LI	0
SW	2
SL	1
Total	12

Session Outcomes	Laboratory	Classroom	Self-
(SOs)	Instruction	Instruction	Learning
	(LI)	(CI)	(SL)
SO1.1. Understanding		Unit-1.0:	SL1.Understand
Fundamental		Introduction to Transport	the Fundamentals
Concept		Phenomenon:	
SO1.2 Mathematical			
Formulation		1.1 Vectors/Tensors	SL2.Experimentati
		1.2 Newton's law of viscosity	on and Simulation
SO1.3Analysis of		1.3 Temperature, pressure and	
transportation		composition dependence of	SL3. Explore
problem		viscosity	Application
		1.4 Kinetic theory of viscosity	
SO1.4Boundary Value	•	1.5 Fourier's law of heat	
Problem		conduction	
		1.6 Dependence of thermal	
SO1.5 Initial Value		conductivity	
problem		1.7 Kinetic theory of thermal	
		conductivity	
		1.8 Fick's law of diffusion	
		1.9 Temperature, pressure and	
		composition dependence of	
		diffusivity	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Mention the key factor of Fick's law and Fourier's Law

b. Mini Project:

Design and Analysis of a Heat Exchanger

c. Other Activities (Specify):

To demonstrate and understand the concept of diffusion as a fundamental transport phenomenon.

PEC-CT-02.2: Recognize and apply analogies among momentum, heat and mass transfer.

Aj	Approximate Hour			
Item	Appx. Hours			
CI	10			
LI	0			
SW	2			
SL	1			
Total	13			

Session	Laboratory	Classroom	Self-Learning
Outcomes	Instruction	Instruction	(SL)
(SOs)	(LI)	(CI)	(5L)
SO2.1Understandin		Unit-2.0: Principles of Momentum	SL1.Understand
g of Momentum		Transport	the fundamental
Conservation		2.1 Temperature, pressure and	concept such as
SO2.2 Development		composition dependence of	diffusion,
of Conservation		diffusivity	conduction,
Equations		2.2 Shell Momentum balances	convection and
SO2.3 Application of		2.3 Velocity profiles	fluid flow
Newton's Laws		2.4 Average velocity	SL2.Develop the
SO2.4 Fluid Flow	-	2.5 Momentum flux at the surfaces	mathematical
Characteristics		2.6 Equations of Change	formulation
SO2.5 Dimensional		(Isothermal)	SL3.Practice
Analysis		2.7 Equation of continuity	solving problem
		2.8 Equation of motion	related to transport
		2.9 Equation of energy (isothermal)	phenomena
		2.10 Kinetic theory of diffusivity.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i.Research and summarize the fundamental principles of transport phenomena, including diffusion, conduction, convection, and fluid flow

ii.Explore the historical development of transport phenomena theory

b. Mini Project:

Select a practical application that requires heat transfer, such as heating or cooling a fluid, recovering waste heat, or maintaining temperature in a process.

c. Other Activities (Specify)

A hands-on experience to understand the concept of diffusion, a fundamental transport phenomenon, through a simulation.

PEC-CT-02.3: Reduce and solve the appropriate equations of change to obtain desired profiles for velocity, temperature and concentration

Approximate Hours

Item	Approx. Hours
CI	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
		Unit-3.0 Principles of Steady	
SO3.1 Understanding of		State Heat Transport:	
Concepts			SL1. Understand
SO3.2 Ability to Apply		3.1 Steady State Condition	the Equations of
Mathematical		and Fourier's Law	Change
Formulations		3.2 Shell Energy Balance	
SO3.3Awareness of		3.3 Applications of Shell	SL2.Identify the
Real-World		Energy Balance: Heat	Appropriate
Applications		Conduction with Electrical	Governing
SO3.4Understand the		Source	Equations
Equation of motion for	-	3.4 Heat Conduction with	
forced and free		Chemical Heat Source	SL3.Dimensional
convection		3.5 Temperature Distribution in	Analysis
SO3.5 Critical Thinking		Two Concentric Cylinder's	
and Analysis		3.6 Natural Convention Heat	
		Transfer Governing	
		Equation	
		3.7 Flow over Flat Plate	
		3.8 Equation of motion for	
		forced and free convection	
		3.9 Energy fluxes at surfaces	

SW-3 Suggested Sessional Work (SW)

a. Assignments:

- i) Review of Fundamental Equations
- ii) Formulate Governing Equations mass diffusion
- b. Mini Project:
 - Determine flow regime in heat exchanger

c. Other Activities(Specify):

Show that the Hagen-Poiseuille formula is dimensionally consistent

PEC-CT-02.4: Utilize information obtained from solutions of the balance equations to obtain Engineering

	Approx. Hours
Item	Approx Hours
CI	8
LI	0
SW	2
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)	
	(LI)	(CI)		
5041		Unit-4.0 Principles of Mass		
SO4.1		Transport:	GT 1 1	
Understanding of		4.1 Equation of Molecular	SL1.basic concepts of	
Fundamental Concepts		Mass Transport	mass transport	
		4.2 Molecular Diffusion in		
SO4.2		Gases	SL2.Solve problems	
Equilibrium and Non-		4.3 Equimolar Counter	from textbooks	
Equilibrium Systems		Diffusion		
		4.4 Diffusion of A through	SL3.Learn about the	
SO4.3		Non-Diffusing B	Computational Fluid	
Mass Transfer		4.5 Mass and Molar Transport	Dynamics (CFD)	
Operations	-	by Convection: Mass and	software such as	
-		Molar Concentrations	ANSYS	
SO4.4		4.6 Mass Average and Molar		
Knowledge of different		Average Velocity		
transport mechanisms		4.7 Molecular Mass and Molar		
		Fluxes		
SO4.5		4.8 Convective Mass and		
Ability to develop		Molar Fluxes		
mathematical models to				
describe mass transport				
phenomena				

SW-4 Suggested Sessional Work (SW)

a. Assignments:

- i. What differences are there between the flow in a circular tube of radius R and the flow in the same tube with a thin wire placed along the axis?
- ii. How is the vortices equation obtained and how may it be used.

b. Mini Project:

Develop mathematical models to describe mass transport phenomena in the filtration system.

c. Other Activities(Specify):

Explore ways to optimize the design and performance of the filtration system

PEC-CT-02.5: Reduce and solve appropriate macroscopic balances for conservation of momentum, energy and mass.

Approximate Hours			
Item	Approx. Hours		
CI	9		
LI	0		
SW	2		
SL	1		
Total	12		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning(SL)
SO5.1 Transport mechanisms		Unit-5.0 Introduction to the concept of heat and mass transfer coefficients	SL1.Learn about transfer
molecular diffusion SO5.2 Transport mechanisms turbulent diffusion		 5.1 Equation of Molecular Mass Transport 5.2 Molecular Diffusion in 	coefficients SL2.Study the theoretical foundations behind heat
SO5.3 Mathematical models describing mass transport		Gases 5.3 Equimolar Counter Diffusion	and mass transfer coefficients
phenomena SO5.4 Proficiency in using numerical	-	5.4 Diffusion of A Through Non-Diffusing B5.5 Mass and Molar	SL3 .Explore real-world applications of heat and mass transfer coefficients
and computational methods to solve mass transport		Transport by Convection 5.6 Mass Average and Molar Average	
problems SO5.5 Understanding		5.7 Velocity, Molecular Mass and Molar Fluxes5.8 Convective Mass and	
experimental techniques used to measure mass transport properties		Molar Fluxes 5.9 Flow over Flat plate	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. How is the macroscopic mechanical energy balance related to the Bernoulli equation for in viscid fluids?
- ii. Compare the behavior of Newtonian liquids and polymeric liquids in the various experiments.

b. Mini Project:

Flow through a sudden enlargement

c. Other Activities (Specify):

Velocity distribution in turbulent pipe flow

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
PEC-CT02.1: Setup overall balances for conservation of momentum, energy and mass	09	2	1	12
PEC-CT-02.2: Recognize and apply analogies among momentum, heat and mass transfer.	10	2	1	13
PEC-CT-02.3: Reduce and solve the appropriate equations of change to obtain desired profiles for velocity, temperature and concentration.	09	2	1	12
PEC-CT-02.4: Utilize information obtained from solutions of the balance equations to obtain Engineering	08	2	1	11
PEC-CT-02.5: Reduce and solve appropriate macroscopic balances for conservation of momentum, energy and mass.	09	2	1	12
Total Hours	45	10	5	60

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO		Marks Distribution			Total	
CO		R	U	Α	Marks	
CO-1	Introduction to Transport Phenomenon	03	02	05	10	
CO-2	Principles of Momentum Transport	03	02	05	10	
CO-3	Principles of Steady State Heat Transport	03	02	05	10	
CO-4	Principles of Mass Transport	03	02	05	10	
CO-5	Introduction to the concept of heat and mass transfer coefficients	03	02	05	10	
	Total		10	25	50	

Legend: R: Remember,

U: Understand,

A: Apply

The end of semester assessment for "Carbon Credit in Cement manufacture" will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition Year	
1	Transport Phenomena	R. Byron Bird	John Wiley & Sons (Asia) pvt. Ltd	2 nd Edition, 2006	
2	Transport Processes and Separation Process Principles	Christie John Geankoplis	4 th Edition, PHI Learning Private Limited., New Delhi	4 th Edition, 2012	
3	Modelling in Transport Phenomena	Ismail Tosun	Elsevier Science	2002	
4	Transport Phenomena A Unified Approach	Robert S. Brodkey, Harry C. Hershey	Brodkey Pub.	2003	
5	Transport Phenomena An Introduction to Advanced Topics	Larry A. Glasgow	Wiley	2010	
6	Transport Phenomena Fundamentals	Joel L. Plawsky	CRC Press	2014	
7	NPTEL lecture on Transport Ph	enomena			
8	Lecture note provided by Dept. of Cement Technology, AKS University, Satna.				

Curriculum Development Team

- 1. Professor G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. ErPriynka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh Rajesh Kushuwaha, Faculty, Faculty, Dept. Cement Tech. (former Manager M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. Cement Tech. (Former GM M/s Maihar Cement)

Page 606 of 734

10. Dr K Mohan, former Director General of National Council for Cement and Building Materials

11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

COs, POs and PSOs Mapping

Program Title: B. Tech. Cement Tech

Course Code: PEC-CT-02

Course Title: Transport Phenomena

]	Progra	am Ou	tcome	5				Pr	ogram Spe	ecific Outco	ome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Setup overall balances for conservation of momentum, energy and mass.	3	2	2	2	3	2	1	1	1	2	1	2	2	2	1	3
CO-2: Recognize and apply analogies among momentum, heat and mass transfer.	3	2	2	2	3	2	1	1	1	2	1	2	2	2	1	2
CO-3: Reduce and solve the appropriate equations of change to obtain desired profiles for velocity, temperature and concentration.	3	3	2	2	2	2	1	1	2	2	2	3	2	2	1	3

CO-4: Utilize information obtained from solutions of the balance equations to obtain Engineering	3	3	3	2	3	2	2	1	2	2	2	2	2	2	1	3
CO-5: Reduce and solve appropriate macroscopic balances for conservation of momentum, energy and mass.	3	3	3	2	2	3	2	2	2	2	2	3	2	2	1	3

Course Curriculum Map: Transport Phenomena

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO-1: Setup overall balances for conservation of momentum, energy and	SO1.1 SO1.2 SO1.3		Unit-1.0 Introduction to Transport Phenomenon	
PSO 1,2, 3, 4	mass.	SO1.4 SO1.5		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Recognize and apply analogies among momentum, heat and mass transfer.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Principles of Momentum Transport2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Reduce and solve the appropriate equations of change to obtain desired profiles for velocity, temperature and concentration.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Principles of Steady State Heat Transport 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	As mentioned n above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Utilize information obtained from solutions of the balance equations to obtain Engineering	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4 : Principles of Mass Transport 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Reduce and solve appropriate macroscopic balances for conservation of momentum, energy and mass.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: Introduction to the concept of heat and mass transfer coefficients 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-VII

Course Code:	PEC-CT-03
Course Title :	Special Cements
Pre- requisite:	Student should have knowledge of types of cement produced in India and Hydration of the cement.
Rationale:	Students will acquire insights into various concrete manufacturing process, the distinctive features of special cements, and their applications. The course covers the benefits of employing special cements in construction, delving into the hydration mechanism and strength development. Students will grasp the intricacies of concrete chemistry and the production processes behind special cements. Additionally, the curriculum explores the utilization of both natural and chemical materials to augment concrete properties.
Course Outcor	
PEC-CT-03.1:	Investigate the characteristics of different pozzolanic materials in the creation of special cements.
PEC-CT-03.2:	Comprehend the chemical, mineralogical, and physical properties associated with various special cements.
РЕС-СТ-03.3:	Analyze the application of cement in the production of concrete and mortar, assessing its performance.
PEC-CT-03.4:	Develop an understanding of concrete chemistry and the production of long-lasting,

- durable concrete.
- **PEC-CT-03.5:** Gain insight into the utilization of diverse admixtures for enhancing the properties of concrete.

Scheme of Studies:

Course	CourseCode			Schem	e of st	udies(I	Hours/Week)	Total
Category		Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
PEC	PEC-CT-03	Special Cements	3	0	2	1	6	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory	7		-									
			Scheme of Assessment (Marks)									
				Progressi	ve Ass	essment	(PRA)					
Couse of study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (SA)	Class activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)		
PEC	PEC- CT-03	Special Cements	15	20	5	5	5	50	50	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PEC-CT-03.1:

Investigate the characteristics of different pozzolanic materials in the creation of special cements.

Approximate Hours					
Item	Appx Hrs				
Cl	07				
LI	0				
SW	01				
SL	01				
Total	09				

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session	Laboratory	Class room Instruction	Self Learning
Outcomes	Instruction	(CI)	(SL)
(SOs)	(LI)		
SO1.		Unit-1. Characteristic of blended	SL1.
Study of		pozzolanic and alternate	Manufacturing
characteristic of Fly		Cementous materials	process of Granulated
Ash and GGBF Slag		1.1 Characteristic of fly ash,	Slag
SO2:		1.2 Granulated blast furnace slag,	SL2.
Production and use		1.3 other Pozzolanic materials	Production of various
of Blended and		1.4 Production of blended cement	waste materials of
Composite cement.		1.5 Production of composite cement	Coal based thermal
SO3:		1.6 Geopolymeric cement,	power plant
Alternate		1.7 Alternate Cementitious Materials	
cementitious		other than OPC.	
materials available			
and its use			

SW-1 Suggested Sessional Work (SW):

a. Assignments: Properties of Fly Ash, waste produced by Coal based thermal power plant and its use, Manufacture and properties of GGBF Salg, Production of PPC and PSC, Production and advantages in use of Blended and composite cement, Alternate cementitious materials available for construction and its advantages

PEC-CT-03.2:

Comprehend the chemical, mineralogical, and physical properties of various special cements

Approximate	nours
Item	Appx Hrs
Cl	10
LI	0
SW	2
SL	1
Total	13

Approximate Hours

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laborator	Class room Instruction	Self
(SOs)	У	(CI)	Learning
	Instruction		(SL)
	(LI)		
SO1	0	Unit-2. Chemical, Mineralogical and physical	
Chemical and physical		Characteristic and use of some of special	
properties various		cement	SL1.
special cement		2.1 Portland Pozzolana Cement	Clinker
SO2		2.2 Portland Slag Cement	Chemistry
Manufacturing process		2.3 Decorative Portland cement	and properties
of various special		2.4 Supersulphate Cement	of Portland
cements		2.5 Sulfo Aluminate Belite Cement	cement
SO3.		2.6 Belite Cement	clinker
Use of various special		2.7 Masonary cement	
cements		2.8 Oil Well Cement	
SO4 :		2.9 Calcium Aluminate Cement	
Advantages in use of		2.10 Low energy Cement	
various special			
cements			

SW-2 Suggested Sessional Work (SW):

a. Assignments: Brief notes on manufacturing process of PPC, PSC and its advantages in use. Notes on belite cement and Salfo-Aluminate belite cement, notes on low energy cement, Notes on oil well cement.

PEC-CT-03.3:

Analyze the application of cement in the production of concrete and mortar, assessing its performance.

Approximate Hours

Item	Appx Hrs
Cl	08
LI	0
SW	2
SL	1
Total	11

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self	
(SOs)	Instruction	(CI)	Learning	
	(LI)		(SL)	
SO1:		Unit-3: Performance of cement and concrete :		
Properties of			SL1.	
concrete and motors		3.1 Introduction to concrete and mortars	Concrete Mix	
SO2:		3.2 Use of cement for various infrastructure	design	
Effect of physical		development		
and chemical		3.3 Effect of chemical composition and physical	SL2.	
properties of cement		characteristic of cement on performance,	Types of	
and particle		3.4 Impact of setting time and strength of cement	concrete	
distribution on		on concrete.		
concrete performance		3.5 Deterioration mechanisms of concrete		
SO3.		3.6 Particle size distribution of cement and its		
Deterioration		impact on strength of cement		
mechanisms of		3.7 Tailoring performance of cements.		
concrete.		3.8 Durability of concrete constructions		
SO4.				
Manufacture of				
durable concrete				

SW-3 Suggested Sessional Work (SW):

a. Assignments: Particle size distribution of cement and its impact on concrete strength, Physical properties of cement and strength development, Manufacture of durable concrete

PEC-CT-03.4:

Develop an understanding of concrete chemistry and the production of long-lasting, durable concrete.

Approximate Hours							
Item	Appx Hrs						
Cl	10						
LI	0						
SW	2						
SL	1						
Total	13						

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session	Laboratory	Class room Instruction	Self
Outcomes	Instruction	(CI)	Learning
(SOs)	(LI)		(SL)
SO. 1.		Unit-4 Concrete Chemistry & Performance	
Hydration of		4.1 Hydration of Cement and properties	
cement and strength		of concrete	SL1.
development in		4.2 Carbonation of concrete	Chemistry of
concrete		4.3 Chloride penetration of concrete	cement and
SO. 2.		4.4 Corrosion of reinforcement,	concrete
Corrosion		4.5 Akali silica reaction in concrete	
mechanising of		4.6 Sulphate attacks of concrete,	
reinforcement		4.7 Attack of concrete by acid and other	
SO. 3.		aggressive agencies.	
Attack of concrete		4.8 Performance of Blended Cement,	
by various		4.9 advantages of Portland Pozzolana	
aggressive agents		Cements (PPC)	
SO. 4		4.10 Advantages of Portland Slag Cement	
Performance of		(PSC) in construction	
Blended cement in			
concrete			

SW-4 Suggested Sessional Work (SW):

a. Assignments: Chlorite attack of concrete, Alkali Silica reaction in concrete, Carbonation of concrete, Performance of PPC and PSC in concrete

PEC-CT-03.5:

Gain insight into the utilization of diverse admixtures for enhancing the properties of concrete

Approximate Hours								
Item	Appx Hrs							
Cl	10							
LI	0							
SW	2							
SL	1							
Total	13							

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO.1	0	Unit-5 Use of Admixtures to improve the	SL1.
Properties of admixture		properties of cement in concrete	Properties of
to use in concrete.		5.1 Chemical Admixtures and mineral	durable concrete.
SO2.		additives:	
Functions of admixture in		5.2 Function of admixtures,	
concrete		5.3 Classification of admixtures,	
SO3.		5.4 Organic retarders and accelerator,	
Study various admixture		5.5 Air entertaining agents	
on improvement of		5.6 water reducers	
concrete properties		5.7 Superplasticizer and its use	
SO4		5.8 Inorganic accelerators and retarders,	
Manufacture of high		5.9 Effect of high and low temperature and	
strength concrete by use		pressure on concrete,	
of admixture		5.10 Performance enhancer like silica	
		fumes, Meta Kaolin etc	

SW-5 Suggested Sessional Work (SW):

Assignments: Short note of cement Admixture, Performance improver of cement and concrete, Superplasticizer and its use in concrete, Properties of silica fumes and metakaolin in improvement of cement and concrete properties.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self-Learning (Sl)	Total hour (Cl+SW+Sl)
PEC-CT-03.1: Investigate the characteristics of different pozzolanic materials in the creation of special cements.	07	1	1	09
PEC-CT-03.2: Comprehend the chemical, mineralogical, and physical properties associated with various special cements.	10	2	1	13
PEC-CT-03.3: Analyze the application of cement in the production of concrete and mortar, assessing its performance.	08	2	1	11

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PEC-CT-03.4: Develop an understanding of concrete chemistry and the production of long-lasting, durable concrete.	10	2	1	13
PEC-CT-03.5: Gain insight into the utilization of diverse admixtures for enhancing the properties of concrete.	10	2	1	13
Total Hours	45	11	5	61

Suggestion for End Semester Assessment

СО	Unit Titles	M	n	Total	
		R	U	Α	Marks
CO-1	Characteristic of blended pozzolanic and alternate Cementous materials	02	03	02	07
CO-2	Chemical, Mineralogical and physical Characteristic and use of some of special cement		08	02	10
CO-3	Performance of cement and concrete	01	06	04	11
CO-4	Concrete Chemistry & Performance	-	08	07	15
CO-5	Use of Admixtures to improve the properties of cement in concrete	-	03	004	07
	Total	03	28	19	50

Suggested Specification Table (For ESA)

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture, Tutorial
- 2. Case Method
- 3. Group Discussion, Role Play
- 4. Visit to cement plant

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- 5. Demonstration
- 6. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 7. Brainstorming

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition & Year		
1	Cement Chemistry	F W Taylor	2 nd Edition	1997		
2	Cement Data Book:	W. H Duda	2 nd Edition	1999		
3	Norms For Limestone Exploration For Cement Manufacture	National Council for Cement and Building Materials	National Council for Cement and Building Materials	1985		
4	Cement Production Principle and Practice	A K Chatterjee	1 st Edition CRC Press	2018		
5	Design of Cement plant	S. P. Deolalkar	BS Publications	2021		
6	Holcim Training Manual					
7	FLS Training Manual					

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Cos, POs and PSOs Mapping

Program Title: B. Tech Cement Tech;

Course Code: PEC-CT-03

Course Title: Special Cement

	Program Outcomes											Program Specific Outcome				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
PEC-CT-03.1: Investigate the characteristics of different pozzolanic materials in the creation of special cements.	3	3	2	2	3	2	1	1	2	1	1	2	2	2	2	3
PEC-CT-03.2: Comprehend the chemical, mineralogical, and physical properties associated with various special cements.	1	2	3	2	1	1	1	2	1	1	2	2	2	2	2	2
PEC-CT-03: Analyze the application of cement in the production of concrete and mortar, assessing its performance.	2	3	3	1	1	2	1	2	1	3	2	2	1	2	2	3

Faculty of Engineering and Technology Department of Cement Technology

Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

PEC-CT-03.4: Develop an understanding of concrete chemistry and the production of long-lasting, durable concrete.	1	2	2	2	3	2	1	2	2	1	2	2	3	2	3	1
PEC-CT-03.5: Gain insight into the utilization of diverse admixtures for enhancing the properties of concrete.	2	3	3	2	1	3	2	2	1	2	2	2	1	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Special Cements

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Investigate the characteristics of different pozzolanic materials in the creation of special cements.	SO1.1 SO1.2 SO1.3		Unit-1: Characteristic of blended pozzolanic and alternate Cementous materials 1.1,1.2,1.3,1.4,1.5,1.6,1.7	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Comprehend the chemical, mineralogical, and physical properties associated with various special cements.	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2: Chemical, Mineralogical and physical Characteristic and use of some of special cement 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Analyze the application of cement in the production of concrete and mortar, assessing its performance.	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3: Performance of cement and concrete 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8	As mentioned, in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Develop an understanding of concrete chemistry and the production of long-lasting, durable concrete.	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4: Concrete Chemistry & Performance 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	_
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Gain insight into the utilization of diverse admixtures for enhancing the properties of concrete.	SO5.1 SO5.2 SO5.3 SO5.4		Unit 5: Use of Admixtures to improve the properties of cement in concrete 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-VII

- Course Code: PEC-CT-04
- Course Title : Design of Cement Plant
- **Pre- requisite:** Students ought to have a solid understanding of Limestone Mining, the extraction of Portland Cement Raw materials, the process of Raw meal Preparation, Pyro-processing, Portland clinker manufacture, as well as Cement Grinding and the packing of cement.
- **Rationale:** Students will gain knowledge about the installed capacity and design capacity of cement plants, conduct Techno-economic feasibility studies for establishing a cement plant, design crushing and grinding units, and design coal grinding processes. They will also delve into the design features of the Pre-Heater, Pre-Calciner, and rotary kiln. Furthermore, students will learn about the layout design of a cement plant, encompassing grinding and packing of cement, as well as the handling and storage of coal, gypsum, and other additives. The curriculum will also cover the procurement procedures for cement machinery, along with basic knowledge about installation and commissioning.

Course Outcomes:

- **PEC-CT-04.1:** To know the fundamental prerequisites for establishing a cement plant and identifying the machinery needed for the production of Portland cement.
- **PEC-CT-04.2:** To study techno-economic studies related to establishing a cement plant and investigating the factors that dictate the size of the cement manufacturing factory
- **PEC-CT-04.3:** Gaining insight into the civil design, electrical instrumentation, and layout of different sections within a cement plant.
- **PEC-CT-04.4:** To comprehend the detailed engineering of the raw mill section, pyro-processing of clinker minerals, cement grinding, and packing, encompassing the layout of each respective section.
- **PEC-CT-04.5:** To grasp the procurement process for plant machinery and create data sheets for inquiries, including the design aspect.

Scheme of Studies:

Course	Course			Schen	Total Credits			
Category	Code	Course Title	Cl	LI	SW	SL	Total Study Hours	(C)
							(CI+LI+SW+SL)	
PEC	PEC-CT-04	Design of Cement	3	0	2	1	6	3
		Plant						

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

neory										
			Scheme of Assessment (Marks)							
				ogressi	ve Ass	essment	(PRA))		
Course Category	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Multiple Reactions	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment	Total Marks (PRA+ESA)
PEC	PEC-CT-04	Design of Cement Plant	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PEC-CT-04.1: To know the fundamental prerequisites for establishing a cement plant and identifying the machinery needed for the production of Portland cement.

Page 624 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Approximate Hours

T.	A TT
Item	Appx Hrs
CI	11
LI	0
SW	2
SL	1
Total	14

Session Outcomes	Laboratory	Class room Instruction	Self-Learning	
(SOs)	Instruction	(CI)	(SL)	
	(LI)			
SO1 . Basic Parameter for		Unit-1. To know about basic	1. Physical and	
design of a cement plant		parameter for design and	Chemical	
SO2: Process Flow Chart		process flow chart of	characteristic	
design		Cement plant.	of Portland	
SO3: Estimation of Running		1.1 Basic Parameters for Design of	Cement Raw	
Hours of Various Section		a Cement Plant	materials	
SO4: Selection of Kiln, PH,		1.2 Process Flow Chart and	2. Basic method	
PC, Cooler & mills etc		Estimation Plant Capacities	of limestone	
SO5: Selection of Fan,		1.3 Estimation of Running Hour of	mining	
blower, Compressor, Motors		Various Sections of Cement		
& Gears		Plant		
		1.4 Quarrying Operations,		
		Selection of Crushers		
		1.5 Stacker Reclaimer Systems of		
		Cement Plant		
		1.6 Grinding Mills, Screens &		
		separators		
		1.7 Blending System		
		1.8 Selection of Preheaters & Pre		
		Calciner		
		1.9 Selection of Kilns and cooler		
		1.10 Selection of Fan, Blowers,		
		Compressor		
		1.11 Selection of Motors and Gear		
		Boxes of Cement Plant.		

SW-1 Suggested Sessional Work (SW):

a. Assignments: Basic parameters required for design of cement plant, Mills of cement manufacturing process, Fan Law, Blending system of cement process. Separators of mills.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- **b.** Mini Project: Process flow chart, Poster on in line and off line calciner.
- **c.** Other Activities (Specify): Note on Estimation of CO2 generation during cement manufacturing process

PEC-CT-04.2: To study techno-economic studies related to establishing a cement plant and investigating the factors that dictate the size of the cement manufacturing Unit.

Approximate Hours			
Item	Appx Hrs		
CI	8		
LI	0		
SW	2		
SL	1		
Total	11		

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1: Techno-Economic	0	Unit-2.0 TEFS and civil	1. Types of
Study of Cement Project		design for setting up	limestone
SO2: Raw Materials,		cement plant	reserves
Water, Infrastructure &		2.1. Techno Economic	2. Break even
manpower Requirement		Feasibility Study for	analysis
SO3. Implementation,		Setting up Cement Plant	
Erection and		2.2. Raw Materials	
commissioning of		Requirement for setting	
cement plant.		up a cement plant.	
SO4: Cost Benefit		2.3. Infrastructure and	
Analysis		manpower Requirement	
SO5 : Civil design of		2.4. Implementation	
cement plant		schedule, Erection and	
		Commissioning	
		2.5. Cost benefit analysis of	
		cement production	
		2.6. Factors Governing Size	
		of Cement Plant	
		2.7. Civil Design in	
		construction of Cement	
		Plant	
		2.8. Water requirement and	
		supply system of	
		Cement Plant	

Page 626 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments: Requirement for TEFS of a cement plant, Raw Materials requirement for manufacture of Portland cement, Water requirement of dry process cement plant. cost benefit analysis of cement production.

PEC-CT-04.3: Gaining insight into the civil design, electrical instrumentation, and layout of different sections within a cement plant.

Approximate Hours

1	
Item	Appx Hrs
CI	10
LI	0
SW	2
SL	1
Total	13

Session	Laboratory	Class room Instruction	Self-Learning
Outcomes	Instruction	(CI)	(SL)
(SOs)	(LI)		
SO1: Power		Unit-3: Power distribution in cement	1.Electrical Power
distribution		plants	requirement of cement
system of		3.1 Power Distribution & Cables	plant
cement plant		3.2 Power consumptions in cement plant	2. NABL function in
SO2 :		and Calculation	setting of Quality
Instrumentation		3.3 Instrumentation and Process Control	control lab
and process		in Cement Plant	
control in		3.4 Setting up quality control lab in	
cement plant		cement plant	
SO3: Setting up		3.5 Department Lay Outs, Lay Out of	
Quality control		Crushing Plant	
Lab		3.6 Storage of Limestone and Stacker	
SO4: Lay outs of		Reclaimer System	
various sections		3.7 Mill Systems of Cement Plant,	
		Layouts of Coal Mill.	
		3.8 Batch blending and continuous	
		blending systems	
		3.9 Kiln Feed System of cement plant	
		3.10Lay out of Pyro-processing Systems	
		of Cement Plant	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

- **a. Assignments:** Power Distribution system of cement plant, storage of limestone, Homogenization of Raw meal,
- b. Mini Project: Lay out of pyro-processing system
- c. Other Activities (Specify): Visit to cement plant

PEC-CT-04.4: To comprehend the detailed engineering of the raw mill section, pyro-processing of clinker minerals, cement grinding, and packing, encompassing the layout of each respective section.

Ap	proximate Hours
Item	Appx Hrs
CI	10
LI	0
SW	2
SL	1
Total	13

Session	Laboratory	Class room Instruction	Self-Learning
Outcomes	Instruction	(CI)	(SL)
(SOs)	(LI)		
SO1 Design	•	Unit-4 Design of clinker coolers and	1. Rotary kiln
feature of Cement		Rotary kiln	system for cement
Kiln		4.1 Some design features of rotary kiln.	manufacture
SO2. Firing system		4.2 Coal firing and metering system.	2. Quality of blended
of cement kiln		4.3 Clinker cooler – collecting spillage	materials
SO3. Clinker		and product.	3. Waste Heat
cooler and		4.4 Cooling air fans.	available in
conveying system		4.5 Clinker coolers cooler vent and dust	cement plant
SO4 Handling of		collectors.	
Blending materials		4.6 Clinker conveying and storage.	
SO5 : WHR		4.7 Coal and Gypsum handing system.	
system of cement		4.8 Handling of GBFS & Fly Ash.	
plant		4.9 Cement grinding and layout of	
		Cement grinding section and packing	
		4.10WHR system of Cement Plant	

SW-4 Suggested Sessional Work (SW):

a. Assignments: WHR system of cement plant, Storage and handling of Fly Ash and GBF slag in cement plant, Design feature of rotary kiln, Coal and Gypsum Handling in cement plant.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

b. Mini Project:

Draw the section of Rotary kiln

PEC-CT-04.5: To grasp the procurement process for plant machinery and create data sheets for inquiries, including the design aspect.

Ap	proximate Hours			
Item	n Appx Hrs			
CI	6			
LI	0			
SW	1			
SL	1			
Total	8			

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self-Learning (SL)
(308)	(LI)	(CI)	(3L)
SO.1 General procurement		Unit-5 : Procurement of	SL1
Procedure of plant		Plant machinery.	Material
Machinery		5.1 Procurement procedure	management
SO2. Preparation of		and ordering	
Technical Data sheet for		Machinery.	SL2.
Cement Kiln, PH, PC and		5.2 Technical Data Sheet	Inventory control
cooler		for kiln	
SO3. Critical operational		5.3 Technical Data Sheet	
and design parameter of		for Pre Heater & Pre	
cement plant.		Calciner.	
SO4. Evaluation of data		5.4 Technical Data Sheet	
sheet		for Cooler.	
		5.5 Critical operational and	
		design parameters of	
		cement plant.	
		5.6 Evaluation of Technical	
		Data Sheet and Time	
		Factor in procurement.	

SW-1 Suggested Sessional Work (SW):

a. Assignments: General procedure for procurement of Plant machinery, data sheet for Kiln, Data sheet for PH and PC, Data sheet for cooler, Evaluation of data sheet.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture	Sessional	Self-	Total hour
	(Cl)	Work (SW)	Learning (Sl)	(Cl+SW+Sl)
PEC-CT-04.1 : To know the fundamental prerequisites for establishing a cement plant and identifying the machinery needed for the production of Portland cement.	11	2	1	14
PEC-CT-04.2: To study techno- economic studies related to establishing a cement plant and investigating the factors that dictate the size of the cement manufacturing Unit	8	2	1	11
PEC-CT-04.3: Gaining insight into the civil design, electrical instrumentation, and layout of different sections within a cement plant.	10	2	1	13
PEC-CT-04.4 : To comprehend the detailed engineering of the raw mill section, pyro-processing of clinker minerals, cement grinding, and packing, encompassing the layout of each respective section.	10	2	1	13
PEC-CT-04.5: To grasp the procurement process for plant machinery and create data sheets for inquiries, including the design aspect.	6	1	1	8
Total Hours	45	9	5	59

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (1 of ESA)								
СО	Unit Titles	М	arks Distributi	on	Total			
co	Unit Titles	R	U	Α	Marks			
CO-1	To know about basic parameter for design and process flow chart of Cement plant.	02	03	02	07			
CO-2	TEFS and civil design for setting up cement plant	-	08	02	10			
CO-3	Power distribution in cement plants	01	06	04	11			
CO-4	Design of clinker coolers and Rotary kiln	-	08	07	15			
CO-5	Procurement of Plant machinery.	-	03	04	07			
	Total	03	28	19	50			

Suggested Specification Table (For ESA)

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture, Tutorial
- 2. Case Method
- 3. Group Discussion, Role Play
- 4. Visit to cement plant
- 5. Demonstration
- 6. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 7. Brainstorming

Suggested Learning Resources:

	(a) Books:			
S.No.	Title	Author	Publisher	Edition & Year
1	Cement Chemistry	F W Taylor	Thomas Telford	1997
2	Cement Data Book	W. H Duda	French & European	1995

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

			Pubns	
3	Norms For Limestone	National Council	National Council for	1985
	Exploration For Cement	for Cement and	Cement and Building	
	Manufacture	Building Materials	Materials	
4	Cement Production	A K Chatterjee		2018
	Principle and Practice			
5	Holcim Training Manual		·	
6	FLS Training Manual			

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

.....

COs, POs and PSOs Mapping

Program Title: B. Tech. Cement Tech

Course Code: PEC-CT-04

Course Title: Design of Cement Plant

]	Progra	ım Ou	tcome	5				Pr	ogram Spe	ecific Outco	ome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	lea	technical & engineering knowledge for production quality	Ability to understand the day to plant operational problems of cement manufacture	the latest cement manufacturing technology and it	research based innovative knowledge for sustainable
CO-1 : To know the fundamental prerequisites for establishing a cement plant and identifying the machinery needed for the production of Portland cement.	3	2	2	2	3	2	1	1	1	2	1	2	2	2	1	2
CO-2 : To study techno- economic studies related to establishing a cement plant and investigating the factors that dictate the size of the cement manufacturing Unit	3	2	2	2	3	2	1	1	1	2	1	2	2	2	1	2
CO-3: Gaining insight into the civil design, electrical instrumentation, and layout of different sections within a	3	3	2	2	2	2	1	1	2	2	2	3	2	2	1	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

cement plant.																
CO-4 : To comprehend the detailed engineering of the raw mill section, pyro-processing of clinker minerals, cement grinding, and packing, encompassing the layout of each respective section.	3	3	3	2	3	2	2	1	2	2	2	2	2	2	1	2
CO-5 : To grasp the procurement process for plant machinery and create data sheets for inquiries, including the design aspect.	3	3	3	2	2	3	2	2	2	2	2	3	2	2	1	3

Course Curriculum Map: Design of Cement Plant

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1 : To know the fundamental prerequisites for establishing a cement plant and identifying the machinery needed for the production of Portland cement.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1.0 To know about basic parameter for design and process flow chart of Cement plant. 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11	
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO-2 : To study techno-economic studies related to establishing a cement plant and investigating the factors that dictate the size of the	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2 TEFS and civil design for setting up cement plant 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8	
PSO 1,2, 3, 4 PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	cement manufacturing Unit CO-3: Gaining insight into the civil design, electrical instrumentation, and layout of different sections within a cement plant.	SO2.5 SO3.1 SO3.2 SO3.3 SO3.4		Unit-3 : Power distribution in cement plants 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4 : To comprehend the detailed engineering of the raw mill section, pyro-processing of clinker minerals, cement grinding, and packing, encompassing the layout of each respective section.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4 : Design of clinker coolers and Rotary kiln 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5 : To grasp the procurement process for plant machinery and create data sheets for inquiries, including the design aspect.	SO5.1 SO5.2 SO5.3 SO5.4		Unit 5: Procurement of Plant machinery. 5.1,5.2,5.3,5.4,5.5,5.6	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-VII

Course Code:	PEC-CT-05
Course Title:	Marketing of Cement
Pre- requisite:	Student should have fundamental understanding of marketing concepts.
Rationale:	The students studying marketing strategy should understand about market demand and customer satisfaction which is crucial for the success in cement plants. Developing marketing strategies helps in identifying market segments, customer needs, and product variations required to meet specific demand. Efficient strategies are needed to ensure timely and cost-effective distribution of cement to construction sites and retailers. Marketing plays a role in optimizing distribution channels and logistics. With increasing focus on sustainability and environmental regulations, marketing strategies can communicate a cement plant's commitment to eco-friendly practices, which can be a significant selling point.

Course Outcomes:

- **PEC-CT-05.1:** To identify the latest trends and developments in marketing, including digital marketing, sustainability and customer experience.
- **PEC-CT-05.2:** To learn how to identify and define target market segments based on demographics, psychographics, geographic and behavioral factors.
- **PEC-CT-05.3:** To learn about various promotional tools and techniques such as advertising, public relations, sales promotion, and personal selling.
- **PEC-CT-05.4:** To understand the alignment of distribution strategies with overall marketing and business strategies.
- **PEC-CT-05.5:** To understand the ethical considerations and responsible marketing practices in rural areas, including social responsibility and sustainability.

Scheme of Studies:

Course	Course	Course Title		Scheme of studies(Hours/Week)			Total	
Category	Code		Cl	LI	SW	SL	Total Study Hours	Credits
							(CI+LI+SW+SL)	(C)
PEC	PEC-CT-05	Marketing of	3	0	1	1	5	3
		Cement						

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

Page 636 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Schem	e of A	Assessi	nent	(Marks))	
			Progressive Assessment (PRA)							
Course Category	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment	Total Marks (PRA+ESA)
PEC	PEC-CT-05	Marketing of Cement	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PEC-CT-05.1: To identify the latest trends and developments in marketing, including digital marketing, sustainability and customer experience.

Approximate Hours

11								
Item	Appx Hrs							
CI	12							
LI	0							
SW	2							
SL	1							
Total	15							

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
801.1		Unit-1: Introduction to	SL1.
To understand the fundamentals of	•	marketing, Emerging issues in	Different demand
marketing concepts, including the		marketing, Marketing	situations in
marketing mix (4 Ps) and the role		environment and demand	marketing
			-
of marketing in business.		forecasting	management
SO1.2			SI 2
To learn about the different		1.1 Marketing Management	SL2.
orientations and philosophies in		Task and Demand	Important acts
marketing, such as product		1.2 Marketing Concept and	employed by
orientation, customer orientation,		Evaluation	government for
and societal marketing.		1.3 Element of Marketing	consumer
SO1.3		mixes	protection.
To understand the role of social		1.4 Factors affecting marketing	
media platforms and influencer		mixes	
marketing in modern marketing		1.5 Core concept of Marketing	
strategies.		1.6 Recent Trend in Marketing	
SO1.4		1.7 Integrated Marketing	
To understand the macro-		1.8 Quantitative Techniques	
environmental factors that		for Marketing Decisions	
influence marketing decisions,		1.9 Consumerism	
such as economic, social, cultural,		1.10 Analysis of Market	
political, and technological factors.		Environment	
SO1.5		1.11 Marketing Demand	
To Learn how to analyze market		1.12 Marketing Forecasting	
demand, including methods for			
measuring and understanding			
consumer demand for products.			

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Describe the difference among selling concept, marketing concept and societal concept of marketing management.
- ii. Describe the different factors that impact marketing environment.

b. Mini Project:

Different techniques for demand forecasting in marketing based on previous data available.

c. Other Activities (Specify):

Explore different platforms for recent trend in marketing.

PEC-CT-05.2: To learn how to identify and define target market segments based on demographics, psychographics, geographic and behavioral factors.

Approximate Hours

- P	proximate mours
Item	AppX Hrs
Cl	11
LI	0
SW	2
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO2.1		Unit-2: Consumer behaviour	SL1.
To understand the different factors		and market segmentation,	Alternative
such as psychological, social and		Product decisions, Product	strategies for
cultural factors that impact consumer		related strategies, Pricing	market targeting
choices.		decisions	
SO2.2		2.1 Consumer Behaviour	SL2.
To recall the knowledge of different		2.2 Industrial marketing	Different
segmentation criteria such as		segmentation	reasons and
demographic, psychographic,		2.3 Benefits of Marketing	constraints for
geographic and behavioral.		segmentation	development of
SO2.3		2.4 Market targeting	new product

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

To understand the importance of product quality for satisfaction of customer. SO2.4 To apply marketing strategies for each stage of the product life cycle (Introduction, growth, maturity and decline). SO2.5 To understand the process of creating a pricing policy that aligns with overall business goals and strategies.		Product positioning Product decisions: definition, type Product mixes Product life cycles Branding; Packaging and Labeling Pricing and its objectives Pricing policies and methods
---	--	--

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Discuss about the need and benefits of market segmentation in marketing.
- ii. Describe the marketing strategy for different stages of product life cycle.

b. Mini Project:

Discuss the different factors that affect the consumer behavior in selling the cement products.

c. Other Activities (Specify):

Explore different factors that affect the price and pricing policy of the product.

PEC-CT-05.3: To learn about various promotional tools and techniques such as advertising, public relations, sales promotion, and personal selling.

Approximate Hours		
Item	Appx Hrs	
CI	7	
LI	0	
SW	2	
SL	1	
Total	10	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO3.1 To understand the key elements of the marketing promotion mix, such as advertising, sales promotion, public relations, personal selling, and digital marketing. SO3.2 To identify the target audience and market segments for a specific product or service. SO3.3 To develop a promotional strategy that aligns with the marketing objectives and budget constraints. SO3.4 To learn how to create effective marketing messages and promotional materials. SO3.5 To analyze the effectiveness of different promotion channels and adjusting the mix as needed to achieve marketing goals. 		 Unit-3 : Market promotion mix 3.1 Element of Promotion Mix 3.2 Factors affecting Promotion mix 3.3 Advertisement 3.4 Personal Selling 3.5 Sales Promotion 3.6 Sales Farce management 3.7 Publicity and Public relations 	SL1 Merits and demerits of sales promotion SL2 Importance of personal selling

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Describe the different factors that affect the promotion mix.
- ii. Discuss the key points to differentiate between advertising and personal selling.

b. Mini Project:

Describe the key characteristics of public relations. Explore different media or tools of public relations.

c. Other Activities (Specify):

Describe the different factors that affect the sales force size. Explore different methods for determining the sales force size.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PEC-CT-05.4: To understand the alignment of distribution strategies with overall marketing and business strategies.

Approximate Hours		
Item	Appx Hrs	
CI	8	
LI	0	
SW	2	
SL	1	
Total	11	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO4.1 To understand the importance of distribution channels in getting products to consumers. SO4.2 To identify the challenges and opportunities in distribution, such as e-commerce and Omni channel distribution. SO4.3 To identify various data sources that can be integrated into marketing information system such as customer data, market research and sales data. SO4.4 To understand how to address consumer's complaint promptly and effectively, leading to a resolution that satisfies the customer. SO4.5 To analyze case studies to see how companies effectively use distribution strategies to reach their target markets. 		 Unit-4 : Physical distribution and channel of distribution 4.1 Physical distribution 4.2 Channel distribution 4.3 Marketing Information system 4.4 Marketing research 4.5 Cement market of India 4.6 Techno Marketing 4.7 Consumer Complaint 4.8 Customer Satisfaction 	SL1. Key points to consider for maximize the selling. SL2. Different methods of marketing research data collection.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Discuss the key points of eligibility for techno marketing officials of cement plants.
- ii. Discuss the main objectives of physical distribution.

b. Mini Project:

Describe the typical intermediate used for availing or distributing the different products.

c. Other Activities (Specify): Power Point Presentation to describe the different strategies for green marketing.

PEC-CT-05.5: To understand the ethical considerations and responsible marketing practices in rural areas, including social responsibility and sustainability.

. A p	proximate Hours
Item	Appx. Hrs
CI	7
LI	0
SW	2
SL	1
Total	10

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO5.1 To identify different ways to adapt products or services to better suit the rural market. SO5.2 To ensure the alignment of marketing activities with overall marketing strategy and goals. SO5.3 To understand the company's strengths, weaknesses, opportunities and threats (SWOT analysis) in the context of marketing efforts. SO5.4 To review the marketing budgets and resource allocation to ensure efficient use of resources. 		 Unit 5: Rural marketing and analyzing competition 5.1 Rural Marketing 5.2 Marketing of Services 5.3 Marketing profitability analysis 5.4 Marketing control 5.5 Marketing audit 5.6 Retail marketing 5.7 Case study of cement marketing 	SL1. Characteristics of marketing services SL2. Different processes for analyzing the marketing profitability

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SO5.5 To identify and monitor	
the key performance	
indicators (KPIs) to assess	
the success of retail	
marketing efforts.	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Describe the importance of rural marketing.
- ii. Discuss the key components of marketing audit.

b. Mini Project:

Discuss the case study for marketing strategy of ACC cement

c. Other Activities (Specify):

Explore the different methods for marketing control.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PEC-CT-05.1: To identify the latest trends and developments in marketing, including digital marketing, sustainability and customer experience.	12	2	1	15
PEC-CT-05.2: To learn how to identify and define target market segments based on demographics, psychographics, geographic and behavioral factors.	11	2	1	14
PEC-CT-05.3: To learn about various promotional tools and techniques such as advertising, public relations, sales promotion, and personal selling.	7	2	1	10
PEC-CT-05.4: To understand the alignment of distribution strategies with overall marketing and business strategies.	8	2	1	11
PEC-CT-05.5: To understand the ethical considerations and responsible marketing practices in rural areas, including social responsibility and sustainability.	7	2	1	10
Total Hours	45	10	5	60

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

СО	Unit Titles	Mar	ks Distributio	n	Total
		R	U	Α	Marks
CO-1	Introduction to marketing, Emerging issue in marketing, Marketing environment an demand forecasting	03	01	01	05
CO-2	Consumer behaviour and market segmentation, Product decisions, Product related strategies, Pricing decisions	02	06	02	10
CO-3	Market promotion mix	03	07	05	15
CO-4	Physical distribution and channel of distribution	_	10	05	15
CO-5	Rural marketing and analyzing competition	03	02	-	05
	Total	11	26	13	50

Suggested Specification Table (For ESA)

Legend: R: Remember, U: Understand,

A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books :			
S.	Title	Author	Publisher	Edition &
No.				Year
1	Principles of marketing	Philip Kotler	Financial	Revised edition
	management		Times	17 edition 2018
			Prentice	
			Hall	
2	Marketing	John W. Mullins,	McGraw-Hill	2001
	Management : A	Orville Walker	Education	
	strategic and decision			
	Making Approach			
3	Marketing	S.Ramaswamy and	McGraw-Hill	2018
	Management	S.Namakumari	Education	
4	Marketing	Isabel Agudelo	Palgrave	2014
	Management in		Macmillan	
	Cement Industry			

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: PEC-CT-05

Course Title: Marketing of Cement

					Pro	ogram	Outco	mes					Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Investigate the characteristics of different pozzolanic materials in the creation of special cements.	3	3	2	2	3	2	1	1	2	1	1	2	2	2	2	3
CO-2: Comprehend the chemical, mineralogical, and physical properties associated with various special cements.	1	2	3	2	1	1	1	2	1	1	2	2	2	2	2	2
CO-3: Analyze the application of cement in the production of concrete and mortar, assessing its performance.	2	3	3	1	1	2	1	2	1	3	2	2	1	2	2	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

CO-4: Develop an understanding of concrete chemistry and the production of long-lasting, durable concrete.	1	2	2	2	3	2	1	2	2	1	2	2	3	2	3	1
CO-5: Gain insight into the utilization of diverse admixtures for enhancing the properties of concrete.	-	3	3	2	1	3	2	2	1	2	2	2	1	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023) Course Curriculum Map: Marketing of Cement

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Investigate the characteristics of different pozzolanic materials in the creation of special cements.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Introduction to marketing, Emerging issues in marketing, Marketing environment and demand forecasting 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11,1.12	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Comprehend the chemical, mineralogical, and physical properties associated with various special cements.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2: Consumer behaviour and market segmentation, Product decisions, Product related strategies, Pricing decisions 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Analyze the application of cement in the production of concrete and mortar, assessing its performance.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Market promotion mix 3.1,3.2,3.3,3.4,3.5,3.6,3.7	As mentioned in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Develop an understanding of concrete chemistry and the production of long-lasting, durable concrete.	nderstanding of concrete SO4.2 nemistry and the production of SO4.4		Unit-4: Physical distribution and channel of distribution 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	7,8,9,10,11,12 utilization of diverse			Unit-5: Rural marketing and analyzing competition 5.1,5.2,5.3,5.4,5.5,5.6,5.7	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-VII

Course Code:	PEC-CT-06
Course Title:	Refractory Engineering
Pre- requisite:	Student Should have knowledge on Refractory raw materials and pyro- processing of Portland cement.
Rationale:	Manufacturing Portland cement is quite the energy-intensive process. It involves pyro processing the raw materials, known as kiln feed, at incredibly high temperatures in rotary kilns. This kiln feed is mainly composed of limestone, with some clay, sand, and iron oxide. These elements chemically interact to create cement clinker. The kiln feed tends to be alkaline, but the raw materials often having components that can produce corrosive substances in both solid and gaseous forms. In the dynamic rotary kiln, where these reactions unfold at temperatures ranging from 1250°C to 1450°C, having a refractory lining that can handle the heat, alkalinity, and corrosive conditions is absolutely crucial. The refractory requirements for kilns equipped with cyclone preheaters and precalciners vary significantly. Regardless of the setup, the refractories need to possess robust hot strength, resistance to abrasion, a compatible chemical composition, and solid thermal characteristics. This course delves into the significance of refractories, exploring their types and applications in the realm of cement manufacturing.
Course Outcomes:	

PEC-CT-06.1: Exploring Refractory Types and Raw Materials

PEC-CT-06.2: Unveiling the Manufacturing Processes of Different Refractories

- PEC-CT-06.3: Analyzing the Chemical and Physical Properties of Refractories and Methods of Measurement
- PEC-CT-06.4: Navigating the Selection and Installation of Refractories in Cement Kilns
- PEC-CT-06.5: Efficient Refractory Management in Cement Plants, Emphasizing Safety in Installation in Cement Kilns

Scheme of Studies:

Course of	Course			Total				
Study	Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
PEC	PEC-CT-06	Refractory Engineering	3	0	2	1	6	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Sche	me of	Assessm	ent (Mai	rks)		
			Pro	Progressive Assessment (PRA)						
Course Category	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment	Total Marks (PRA+ESA)
PEC	PEC-CT-06	Refractory Engineering	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PEC-CT-06.1: Exploring Refractory Types and Raw Materials

Approximate Hours

Item	Appx Hrs
Cl	07
LI	0
SW	02
SL	01
Total	10

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1.1:		Unit-1. Refractory	
Refractories and its use.		Fundamentals:	
SO1.2:		1.1 Fundamentals of refractories	
Classification of		and its use.	
refractories and its		1.2 Classification and types of	
application in cement kiln		refractories	SL1.
SO1.3:		1.3 Application of refractories in	Non-metallic
Raw materials refractories		cement plant	mineral and ores
SO1.4:		1.4 Raw materials of refractories	
Role of refractories in		and its properties	
cement kiln		1.5 Role of refractories in cement	
SO1.5:		plant.	
Latest trend in refractories		1.6 Castables and mortars its	
		types, composition and use,	
		1.7 Latest trends in refractories	

SW-1 Suggested Sessional Work (SW):

Assignments: Raw Materials of refractories, Application of refractories in cement kiln, Classification and types of refractories.

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PEC-CT06.2: Unveiling the Manufacturing Processes of Different Refractories

Approximate Hours

Item	Appx Hrs
Cl	10
LI	0
SW	2
SL	1
Total	13

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO2.1:	0	Unit -II: Manufacture of Various	
Chemistry and phase		Refractory:	
diagram of refractories		2.1 Phase diagrams of refractory	
SO2.2:		2.2 Manufacturing process of various	
Manufacturing process		refractories	
of refractories		2.3 Properties of silica refractory	
SO2.3:		2.4 Properties of alumina silicate	
Properties of various		refractories,	
refractories		2.5 Properties of Periclase,	
SO2.4:		2.6 Properties of magnesite refractory	
Carbon based		2.7 Properties of magnesite- chrome,	
refractories		2.8 Properties of dolomite refractory	
		2.9 High and low temperature	
		insulating refractories,	
		2.10 Carbon based refractories	

SW-2 Suggested Sessional Work (SW):

Assignments: Phase diagram of Alumina refractories, Phase diagram of basic refractories, Properties of Alumina and basic refractories, Notes on carbon based refractories.

PEC-CT-06.3: Analyzing the Chemical and Physical Properties of Refractories and Methods of Measurement.

Approximate Hours			
Item Appx Hrs			
Cl	10		
LI	0		
SW	2		
SL	1		
Total	13		

. тт .

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO3.1:		Unit 3: Properties of Refractories	SL1.
Properties of refractories		and Their Measurement	Gases generated
SO3.2:		3.1 Properties of refractories and	during pyro-
Measurement of		their importance	processing of
properties of refractories		3.2 Measurement of porosity, bulk	Portland cement
SO3.3:		density	clinker.
Reaction of gases with		3.3 Measurement of permeability,	
gases generated during		3.4 Measurement of fusion point,	
Pyro-processing.		3.5 Measurement of cold crushing	
SO3.4:		strength	
Corrosion of refractories		3.6 Measurement of refractoriness	
of cement kiln.		under load (RUL) and hot	
		modulus of rapture,	
		3.7 Measurement of Pyrometric	
		Cone Equivalent of Refractories	
		3.8 Creep behavior of refractories,	
		3.9 Abrasive resistance	
		measurement	
		Measurement of thermal	
		conductivity and thermal	
		expansion	
		3.10 Reaction and corrosion of	
		refractories with various gases	

SW-3 Suggested Sessional Work (SW):

Assignments: Properties of refractories and its importance, Measurement of porosity and permeability of refractories, Determination of CCS and PCE of refractories, Notes on Reaction and corrosion of refractories in cement kiln.

PEC-CT-06.4: Navigating the Selection and Installation of Refractories in Cement Kilns

Approximate Hours

Item	Appx Hrs
CI	09
LI	0
SW	2
SL	1
Total	12

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self Learning	
(SOs)	Instruction	(CI)	(SL)	
	(LI)			
SO1:		Unit IV: Refractory	SL1.	
Installation zones of		Engineering-	Structure Cement Rotary	
cement kiln and suitable		4.1 Installation zones and methods	Kiln	
refractories		of installation refractory in		
SO2:		cement kiln		
Lining of PH and PC		4.2 Subdivision of burning process		
SO3:		& selection of refractory in kiln		
Mortor and monolithic		drying zone, preheating zone,		
lining in cement kiln		calcining zone, transition zone,		
SO4:		sintering zone, cooling zone,		
Method of lining in cement		4.3 Lining of preheater, kiln hood,		
kiln		coolers, features of refractory		
SO5:		installation (brick joints,		
Essential of good		shapes, dimension)		
refractories works.		4.4 Brick lining scheme,		
		4.5 Essential of good refractory		
		work,		
		4.6 Mortar lining,		
		4.7 Installation of steel plates in		
		radial joints,		
		4.8 Methods of installation with		
		kiln running and kiln stop,		
		4.9 Monolithic refractories types,		
		properties and installation.		

SW-4 Suggested Sessional Work (SW):

Assignments: Installation of refractories in cement kiln, Lining of mortor and monolithic in cement kiln, Brick lining scheme of cement kiln,

PEC-CT-06.5: Efficient Refractory Management in Cement Plants, Emphasizing Safety in Installation in Cement Kilns

Approximate Hours				
Item	Appx Hrs			
Cl	10			
LI	0			
SW	2			
SL	1			
Total	13			

Approximate Hours

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1:		Unit-V: Refractory Management:	
Procedure to improve the		5.1 Procedure for startup and stoppage of	
life of refractories of		kiln to improve refractory life in rotary	
cement kiln		kiln in cement plant	
SO2:		5.2 Selection of Refractory,	SL1.
Selection of refractories		5.3 Evaluation of performance based lining	Cement kiln
for cement kiln		material	operation
SO3:		5.4 Consideration mechanical factors during	1
Evaluation of		lining	
performance of		5.5 Safety feature during lining.	
refractory in cement kiln		5.6 Specific Refractory consumption,	
and cost optimization.		5.7 Optimizing refractory cost,	
SO4:		5.8 Cost effectiveness of refractories.	
Safety during the		5.9 Refractory storage management.	
refractory brick lining in			
cement kiln.			
SO5:			
Refractory Management			
in cement plant.			

SW-5 Suggested Sessional Work (SW):

Assignments: Selection of refractories, Performance evaluation of refractories, Refractories management in cement plant, Rectory cost optimization in cement plant, Safety feature during installation of refractories in cement kiln.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PEC-CT-06.1: Exploring Refractory Types and Raw Materials	07	2	1	10
PEC-CT-06.2: Unveiling the Manufacturing Processes of Different Refractories	10	2	1	13
PEC-CT-06.3: Analyzing the Chemical and Physical Properties of Refractories and Methods of Measurement	10	2	1	13

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PEC-CT-06.4: Navigating the Selection and Installation of Refractories in Cement Kilns	09	2	1	12
PEC-CT-06.5: Efficient Refractory Management in Cement Plants, Emphasizing Safety in Installation in Cement Kilns	09	2	11	12
Total Hours	45	10	5	60

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	rks Distribu	tion	Total
		R	U	Α	Marks
CO-1	Refractory Fundamentals:	02	03	02	07
CO-2	Manufacture of Various Refractory:		08	02	10
CO-3	Properties of Refractories and Their Measurement	01	06	04	11
CO-4	Refractory Engineering-	-	08	07	15
CO-5	Refractory Management	-	03	04	07
	Total	03	28	19	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture, Tutorial
- 2. Case Method
- 3. Group Discussion, Role Play
- 4. Visit to cement plant

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- 5. Demonstration
- 6. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 7. Brainstorming

Suggested Learning Resource

S.	Title	Author	Publisher	Edition &
No.				Year
1	Refractory Engineering and Kiln	J P Saxena,	CRC Press,	1999
	Maintenance in Cement Plant		Technology &	
			Engineering	
2	Hand Book of Industrial Refractories	Stephen C, Carniglia	Noyes Publication	1999
	Technology:	Godon L Barma,		
3	Refractory Linings Thermo mechanical	Charles Schacht,	CRC Press,	2003
	Design and Applications		Technology &	
			Engineering.	
4	Refractory technology –Fundamentals and Applications	Cement Seminar	Holder bank	
5	Refractory Lining of Cement Kiln System : Process Technology	Cement Seminar	Holder bank	
6	Holcim Training Manual			-
7	FLS Training Manual			

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech	1			Course	Code	: PEC	-CT-06	F8			Co	urse Ti	itle: Refr	actory E	ngineer	ing
		Program Outcomes											Program Specific Outcome			
	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
PEC-CT-06.1 Exploring Refractory Types and Raw Materials	2	1	2	2	3	3	1	1	2	1	1	2	2	2	2	3
PEC-CT-06.2 Unveiling the Manufacturing Processes of Different Refractories	3	3	3	2	1	2	1	1	1	1	2	2	2	2	2	2
PEC-CT-06.3 Analyzing the Chemical and Physical Properties of Refractories and Methods of Measurement	2	3	2	1	1	2	1	2	1	2	2	2	1	2	2	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

PEC-CT-06.4 Navigating the Selection and Installation of Refractories in Cement Kilns	3	2	2	2	3	2	1	2	2	1	2	2	3	3	3	1
PEC-CT-06.5EfficientRefractoryManagementinCementPlants,EmphasizingSafetyinInstallationinCement Kilns </td <td>2</td> <td>3</td> <td>3</td> <td>1</td> <td>1</td> <td>3</td> <td>2</td> <td>2</td> <td>1</td> <td>3</td> <td>2</td> <td>2</td> <td>3</td> <td>3</td> <td>1</td> <td>3</td>	2	3	3	1	1	3	2	2	1	3	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Refractory Engineering

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
	CO1: Exploring Refractory Types and	SO1.1			
PO 1,2,3,4,5,6	Raw Materials	SO1.2		Unit 1. Defractory Fundamentale:	
7,8,9,10,11,12		SO1.3		Unit-1: Refractory Fundamentals: 1.1,1.2,1.3,1.4,1.5,1.6,1.7	
PSO 1,2, 3, 4		SO1.4		1.1,1.2,1.3,1.4,1.3,1.0,1.7	
		SO1.5			
DO 1 2 2 4 5 6	CO2: Unveiling the Manufacturing	SO2.1			
PO 1,2,3,4,5,6 7,8,9,10,11,12	Processes of Different Refractories	SO2.2		Unit-2: Manufacture of Various Refractory	
PSO 1,2, 3, 4		SO2.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10	
		SO2.4			
DO 1 2 2 4 5 C	CO3: Analyzing the Chemical and	SO3.1		Unit-3: Properties of Refractories and	A -
PO 1,2,3,4,5,6	Physical Properties of Refractories and	SO3.2		Their Measurement	As mentioned
7,8,9,10,11,12 PSO 1,2, 3, 4	Methods of Measurement	SO3.3			in above
FSO 1,2, 5, 4		SO3.4		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10	
	CO4: Navigating the Selection and	SO4.1			pages
PO 1,2,3,4,5,6	Installation of Refractories in Cement	SO4.2		Unit-4: Refractory Engineering-	
7,8,9,10,11,12	Kilns	SO4.3		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	
PSO 1,2, 3, 4		SO4.4		4.1,4.2,4.3,4.4,4.3,4.0,4.7,4.8,4.9	
		SO4.5			
	CO5: Efficient Refractory Management in	SO5.1]
PO 1,2,3,4,5,6	Cement Plants, Emphasizing Safety in	SO5.2		Unit 5: Refractory Management	
7,8,9,10,11,12	Installation in Cement Kilns	9050		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	
PSO 1,2, 3, 4		SO5.4			
		SO5.5			

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-VII

OE-CT02 Course Title: EIA & EMP OF CEMENT PLANT

Pre- requisite: Student Should have knowledge on chinker chemistry and hydration of cement

Rationale: Environmental Impact Assessment (EIA) and Environmental Management Plan (EMP) are crucial components in ensuring sustainable and responsible industrial practices, such as those in the cement plant industry.

> Environmental Impact Assessment (EIA) is a systematic process that evaluates the potential environmental consequences of a proposed project, in this case, a cement plant. The primary goal is to identify, predict, assess, and mitigate the adverse environmental effects, allowing for informed decision-making and sustainable development. The EIA for a cement plant would typically cover various aspects, including: Air Quality, Water, Land use, Noise & vibration and waste management. Developing a comprehensive plan for the proper management of solid and hazardous wastes generated by the cement plant, including recycling, reuse, and safe disposal methods. The Environmental Management Plan (EMP) is a set of measures and strategies developed based on the findings of the EIA. It serves as a guide for the effective implementation of environmental safeguards and mitigation measures. The EMP for a cement plant typically includes: Monitoring and Compliance: Establishing a robust system for continuous monitoring of key environmental parameters to ensure compliance with regulatory standards. In summary, the EIA and EMP for a cement plant play a pivotal role in promoting responsible industrial practices, minimizing environmental impacts, and ensuring the long-term sustainability of the project.

Course Outcomes:

Course Code:

OE-CT02.1: Environmental Scenarios and Pollution due to cement manufacture

- **OE-CT02.2:** Pollution Sources of Cement Plants and quality of environmental parameters
- **OE-CT02.3:** Impact of Environmental Pollution due Cement manufacture on Air, Water, Fauna, and Flora surrounding cement plants.
- OE-CT02.4: Various Acts, guideline and norms of State and central govt for Environmental Management to Prevent and Control Pollution.
- **OE-CT02.5:** Guideline for preparation of Environmental Management Plan for Cement Plants

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Scheme of Studies:

Course	CourseCode			Total				
Category		Course Title	Cl	LI	SW	SL	Total Study Hours	Credits
							(CI+LI+SW+SL)	(C)
OEC	OE-CT02	EIA & EMP Of	3	0	2	1	6	3
		Cement Plant						

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theorem	ry
---------	----

				S						
				Progressive Assessment (PRA)						
Course Category	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
OEC	OE-CT02	Design of Cement Plant	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OE-CT02.1: Environmental Scenarios and Pollution due to cement manufacture

Appro	oximate Hours
Item	Appx Hrs
Cl	07
LI	0
SW	01
SL	01
Total	09

Session	Laboratory	Class room Instruction	Self-Learning
Outcomes	Instruction	(CI)	(SL)
(SOs)	(LI)		
SO1: Present		Unit-1. Introduction to environment	SL1.Cement
environment		pollution	manufacturing process
Scenario		1.1 Interaction of Humans and	and use of materials
SO2: Air Quality		Environment, and Role of an engineer	
and its measurement		in Environmental improvement.	
SO3: Water Quality		1.2 Present Environmental Scenario:	
and water pollutant		socio economic studies,	
SO4: Noise level in		1.3 Air quality and its measurement	
industrial area		1.4 Air Pollutants,	
SO5: Buffer zone		1.5 Water quality and water Pollutant	
and demographic		1.6 Noise level and Pollutant in industrial	
profile		area	
		1.7 Buffer zone and demographic profile	

SW-1 Suggested Sessional Work (SW):

Assignments: Air Pollutant and Air Quality, Water Pollutants, Noise pollutant bin industrial area, Role of Engineer in protection of environment.

OE-CT02.2: Pollution Sources of Cement Plants and quality of environmental parameters

Approximate Hours								
Item	Appx Hrs							
Cl	09							
LI	0							
SW	2							
SL	1							
Total	12							

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO 2.1: Source of		Unit -2: Sources of Pollution in Cement	SL 1. Hazardous
Pollutant for Air,		Industry:	and Non-hazardous
Noise, Water in		2.1 Air, Water, Noise quality	waste
cement plant		2.2 Solid and Hazardous Waste in cement	
SO2.2: Control		plant	
measures in cement		2.3 Control measures for improving ambient	
plant to improve air		air quality (AAQ)	
quality		2.4 Pollution Control Equipment and	
SO2.3: Equipment		Controlling Point Source Emissions	
to improve air		2.5 Bag Filter / Bag House, ESP	
Quality in cement		2.6 Multi Cyclones, Wet Scrubber,	
plant		2.7 Gravity Setting chamber, primary and	
SO2.4: Stack		(SCR/ SNCR) techniques.	
monitoring system in		2.8 Stack monitoring in cement plant	
cement plant		2.9 Carbon sequestration	
SO2.5. Carbon			
sequestration in			
cement plant			

SW-2 Suggested Sessional Work (SW):

Assignments: Air Control system in cement plant, Stack monitoring in cement plant, Notes on ESP and bag filter, Carbon sequestration in cement plant.

OE-CT02.3: Impact of Environmental Pollution due Cement manufacture on Air, Water, Fauna, and Flora surrounding cement plants.

Approxi	mate Hours
Item	Appx Hrs
Cl	11
LI	0
SW	2
SL	1
Total	14

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO3.1: Impact on		Unit 3: Impact of Environmental	SL1. Quality of
topography and drainage		Pollution due Cement manufacture on	ambient air
due to land degradation		Air, Water, Fauna, and Flora	SL2. Water Quality
SO3.2: Impact due to		surrounding cement plants	
coal and other solid		3.1 Impact on socio economic factors	
waste in cement plant		3.2 Impact due to land degradation	
SO3.3: Impact on Air,		3.3 Impact on topography and drainage,	
water, fauna and flora		3.4 Impact due to solid waste,	
due to cement plant		3.5 Impact due to coal stocks,	
SO3.4: Dispersion		3.6 Impact on flora and fauna,	
modelling of air		3.7 Impact on environmental quality,	
pollutant of cement		3.8 Impact on water quality,	
plant.		3.9 Impact on noise levels,	
SO3.5: Environmental		3.10. Mathematical modelling for	
evaluation system for		dispersion of air pollutants,	
cement plant.		3.11 Battelle Environmental Evaluation	
		System.	

SW-3 Suggested Sessional Work (SW):

Assignments: Impact of Air and water quality due to cement plant operation. Mathematical modelling on Air dispersion, Impact of pollution on flora and fauna. Water quality monitoring system in cement plant.

OE-CT02.4: Various Acts, guideline and norms of State and central govt for Environmental Management to Prevent and Control Pollution.

Approximate Hours

Item	Appx Hrs
Cl	08
LI	0
SW	2
SL	1
Total	11

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
Student will		Unit 4: Environment Management ACTs,	SL 1. CPCB
understand the		norms and guidelines	function on
following		4.1 Introduction to various Environmental Act	environment
SO4.1: Environmental		& Regulations, Environment Protection Act	control
Protection ACT 1986		1986	
SO4.2: Air & water		4.2 Water (Prevention and Control of	
prevention and		Pollution) act, Water (Prevention and	
control act.		Control of Pollution) Cess act,	
SO4.3: Forest		4.3 Air (Prevention and Control of Pollution)	
conservation act		act	
SO4.4: Hazardous		4.4 Forest (Conservation) Act	
waste rule		4.5 Hazardous Waste (Management, Handling	
SO4.5: Environmental		and trans boundary movement) Rules,	
Audit		4.6 Solid Waste Management Rules,	
		4.7 Environment Management Tools: EMS -	
		ISO 14001,	
		4.8 Environmental Audit / Statement, Clean	
		Development Mechanism (CDM)	

SW-4 Suggested Sessional Work (SW):

Assignments: Environmental act 1986, Water act for prevention and control, Environmental Audit, Hazardous Waste Management Rules.

OE-CT02.5: Guideline for preparation of Environmental Management Plan for Cement Plants

Approxi	mate Hours
Item	Appx Hrs
Cl	10
LI	0
SW	2
SL	1
Total	13

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO5.1: EMP for Air		Unit 5: Guideline for preparation of	SL1: ISO
Quality monitoring		Environmental Management plan for	14001 :2015 on
SO5.2: EMP for		cement plant.	Environment
afforestation and green		5.1 Socio economic factors,	management plan
belt development		5.2 Rehabilitation, compensatory a	
SO5.3: Environmental		forestation,	
monitoring plan		5.3 Ambient air quality,	
SO5.4: Occupational		5.4 Green belt development,	
Heath in cement plant		5.5 Water quality and noise levels control	
SO5.5: Budget for EMP		measures,	
		5.6 Occupational health,	
		5.7 Disaster and hazard management.	
		5.8 Post Project environmental monitoring	
		programmer:	
		5.9 Organizational structure and monitoring	
		scheme,	
		5.10Budgetary provision for EMP	

SW-5 Suggested Sessional Work (SW):

Assignments: Green belt development around cement plant and its impact, Occupational health in cement plant, Disaster and hazard management, Safety measures in cement plant, Budgetary provision for EIA and EMP of cement plant, Case study on EIA and EMP of cement plant.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
OE-CT02.1: Environmental Scenarios and Pollution due to cement manufacture.	07	01	01	09
OE-CT02.2: Pollution Sources of Cement Plants and quality of environmental parameters	09	02	01	12
OE-CT02.3: Impact of Environmental Pollution due Cement manufacture on Air, Water, Fauna, and Flora surrounding cement plants.	11	02	01	14

Faculty of Engineering and Technology **Department of Cement Technology** Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

OE-CT02.4: Various Acts, guideline and norms of State and central govt for Environmental Management to Prevent and Control Pollution.	8	2	01	11
OE-CT02.5: Guideline for preparation of Environmental Management Plan for Cement Plants	10	2	01	13
Total Hours	45	09	5	59

Suggestion for End Semester Assessment

СО	Unit Titles	Μ	larks Distribut	Total	
		R	U	Α	Marks
CO-1	Environmental Scenarios and Pollution due to cement manufacture.	02	03	02	07
CO-2	Pollution Sources of Cement Plants and quality of environmental parameters	-	08	02	10
CO-3	Impact of Environmental Pollution due Cement manufacture on Air, Water, Fauna, and Flora surrounding cement plants.	01	06	04	11
CO-4	Various Acts, guideline and norms of State and central govt for Environmental Management to Prevent and Control Pollution.	-	08	07	15
CO-5	Guideline for preparation of Environmental Management Plan for Cement Plants	-	03	004	07
ŗ	Total	03	28	19	50

Suggested Specification Table (For ESA)

Legend: **R: Remember,** U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture, Tutorial
- 2. Case Method
- 3. Group Discussion, Role Play
- 4. Visit to cement plant
- 5. Demonstration
- 6. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, WhatsApp, Mobile, Online sources)
- 7. Brainstorming

Suggested Learning Resources:

	(a) Books:			
S.No.	Title	Author	Publisher	Edition & Year
1	Environmental Pollution	C S Rao	New Age	2 nd Edition ,2006
	Control Engineering:		International	
			(P) Limited	
2	Air Pollution:	M N Rao, H.V.N.	McGraw Hill	1 st Edition, 2017
		Rao	Publication	
3	Environmental Engineering:	Peavy and Rowe	McGraw Hill	7th Edition, 1985
			Publication	
4	Design of Cement plant	S P Deolalkar	Bsp Books Pvt.	2 nd Edition, 2021
			Limited	
5	ISO: 14001:2015 on	ISO		2015
	Environment Management			
	Plan			

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Cos, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: OE-CT02

Course Title: EIA & EMP OF CEMENT PLANT

		Program Outcomes									Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
OE-CT02.1: Environmental Scenarios and Pollution due to cement manufacture.	1	3	1	2	3	2	1	1	2	1	1	2	2	2	2	3
OE-CT02.2: Pollution Sources of Cement Plants and quality of environmental parameters	2	3	3	2	1	2	1	1	1	1	2	2	2	2	2	2
OE-CT02.3: Impact of Environmental Pollution due Cement manufacture on Air, Water, Fauna, and Flora surrounding cement plants.	3	3	1	1	1	2	1	2	1	2	2	2	1	2	2	3

Page 671 of 734

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

OE-CT02.4: Various Acts, guideline	2	2	2	2	3	2	1	2	2	1	2	2	3	3	3	1
and norms of State and central govt for	-	-	-	-	Ũ	-	-	-	-	-	-	-	U	U	U	-
Environmental Management to																
Prevent and Control Pollution.																
OE-CT02.5: Guideline for preparation	2	3	3	1	1	3	2	2	1	2	2	2	3	3	1	3
of Environmental Management Plan	-	U	Ũ		•	Ũ	-	-		-	-	-	U	U	•	U
for Cement Plants																

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Course Curriculum Map: EIA & EMP OF CEMENT PLANT

POs & PSOs	COs No.& Titles	SOs No.	Laboratory	Classroom	Self
No.	COS No. & Thies	Instruction (LI)		Instruction (CI)	Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	OE-CT02.1: Environmental Scenarios and Pollution due to cement manufacture.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Introduction 1.1,1.2,1.3,1.4,1.5,1.6,1.7	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	8,9,10,11,12 environmental parameters			Unit-2: Sources of Pollution in Cement Indust 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	
7,8,9,10,11,12	OE-CT02.3: Impact of Environmental Pollution due Cement manufacture on Air, Water, Fauna, and Flora surrounding cement plants.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Environmental Impact Assessment 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11	As mentioned in above pages
PO 1,2,3,4,5,6OE-CT02.4:VariousActs,PSO 1,2,3,4outputoutputoutputoutputPSO 1,2,3,4environmentalManagement tooutputoutputPrevent and Control Pollution.outputoutputoutputoutput		SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Environment Management ACT 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	OE-CT02.5: Guideline for preparation of Environmental Management Plan for Cement Plants	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: Environmental management plan 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10	

Semester VII

Course Code:	OE-CT03
Course Title:	Industrial Economics
Pre-requisite:	Basic understanding of Industrial Economics principles.
Rationale:	Understanding foundational Industrial Economics principles is essential for comprehending the topics covered in this course and for analyzing firm behavior and market outcomes effectively.

Course Outcomes:

OE-CT03.1:	Understand the foundational concepts and terminologies of Industrial Economics,					
	including market structures, economies of scale, and industrial policy.					
OE-CT03.2:	Analyze different market structures and their implications for firm behavior,					
	pricing strategies, and market outcomes.					
ОЕ-СТ03.3:	Evaluate theories of industrial organization and apply them to analyze strategic					

- **OE-CT03.3:** Evaluate theories of industrial organization and apply them to analyze strategic interactions among firms, regulatory frameworks, and market dynamics.
- **OE-CT03.4:** Critically assess the role of government policies and regulations in shaping industrial development, competition, and market efficiency.
- **OE-CT03.5:** Apply theoretical frameworks and empirical evidence to analyze real-world industrial scenarios, including industrial clusters, technological innovation, globalization, and sustainability.

Scheme of Studies:

Course Course Code		Course	Scheme of studies (Hours/Week)					Total Credits (C)
Study		Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	
OEC	OE-CT03	Industrial Economics	3	0	2	1	6	3

- Legend: CI: Classroom Instruction (Includes different in structional strategies i.e. Lecture(L) and Tutorial (T)and others,
 - **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback teachers ensure outcome of Learning.

Scheme of Assessment: Theory

Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)							
Course Category	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment	Total Marks (PRA+ ESA)
OEC	OEC- CT03	Industrial Economics	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OE-CT03.1: Understand the foundational concepts and terminologies of Industrial Economics, including market structures, economies of scale, and industrial policy.

Approximate Hours

Item	Approx. Hrs.
Cl	09
LI	0
SW	2
SL	1
Total	12

Session Outcomes	(LI)	(LI) Classroom Instruction	
(SOs)		(CI)	
SO1.1. Define key concepts in Industrial Economics. SO1.2. Race the historical evolution of Industrial Economics. SO1.3. Understand the significance of industrial policy in shaping economic development.		Unit 1: Introduction to IndustrialEconomics1.1Overview of Industrial Economics1.2Evolution and Development of Industrial Economics1.3Basic Concepts and Terminologies1.4Industry1.5Economics of Scale1.6Economics of Scope1.7Market Structure1.8Industrial Policy1.9Industrial Structure and Organization	SL1. Explore online resources and academic journals to understand recent developments in industrial economics theory and practice.

SW-1 Suggested Sessional Work (SW):

- 1. **Assignment**: Assignment: Research and prepare a report on the evolution of industrial economics in a specific country or region.
- 2. **Mini Project:** Analyze the market structure of a local industry and present findings on its competitiveness and market dynamics.
- **3.** Other Activity: Conduct a group discussion on current industrial policies and their impact on local businesses.

OE-CT03.2: Analyze different market structures and their implications for firm behavior, pricing strategies, and market outcomes.

Approximate Hours

Item	Appx Hrs.
Cl	09
LI	0
SW	2
SL	1
Total	12

Session Outcomes	(LI)	Classroom Instruction	(SL)	
(SOs)		(CI)		
		Unit 2: Market Structures		
SO2.1. Identify and		2.1 Perfect Competition	SL1. Read case	
differentiate between		2.2 Monopoly	studies and analyze	
different market		2.3 Monopolistic Competition	historical examples	
structures.		2.4 Oligopoly	of market structures	
SO2.2. Analyze the		2.5 Duopoly	to gain insights into	
behavior of firms in		2.6 Characteristics	their effects on	
different market		2.7 Features and Examples of	economic outcomes.	
environments.		Each Market Structure		
SO2.3. Evaluate the		2.8 Market Power and Market		
efficiency and welfare		Concentration Measures		
implications of various		2.9 Price Determination in		
market structure.		Perfectly Competitive		

SW- 2 Suggested Sessional Work (SW):

- **a.** Assignment: Compare and contrast two different market structures using real-world examples and discuss their implications for consumer welfare.
- **b. Mini Project**: Conduct a survey among local businesses to assess market concentration and competition in a specific industry.
- **c. Other Activity**: Organize a role-play simulation of a market scenario under different market structures to understand firm behavior.

OEC-CT404.3: Evaluate theories of industrial organization and apply them to analyze strategic interactions among firms, regulatory frameworks, and market dynamics.

Approximate Hours

Item	Appx Hrs.
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes	(LI)	Classroom Instruction	(SL)
(SOs)		(CI)	
 SO3.1: Explain the Structure-Conduct- Performance paradigm. SO3.2: Apply game theory to analyze strategic interactions among firms. SO3.3: Evaluate pricing and non-price competition strategies employed by firms. 		 Unit 3: Industrial Organization Theory 3.1 Structure-Conduct- Performance Paradigm 3.2 Game Theory in Industrial Economics 3.3 Pricing Strategies 3.4 Non-Price Competition 3.5 Strategic Behavior of Firms 3.6 Entry and Exit Barriers 3.7 Transaction Cost Economics and Internalization Theory 3.8 Behavioral Economics and Its Application to Industrial Behavior 3.9 Principal-Agent Theory and Its Relevance to Firm Behavior 	SL1.Explore advanced topics in industrial organization theory, such as transaction cost economics and agency theory, through supplementary readings and online lectures.

SW- 3 Suggested Sessional Work (SW):

- **a.** Assignment: Critically evaluate the Structure-Conduct-Performance paradigm in the context of a selected industry and provide recommendations for policy interventions
- **b. Mini Project**: Create a game theory model to simulate strategic interactions among firms in an oligopolistic market and analyze the outcomes.

c. Other Activity: Invite a guest speaker from the industry to discuss real-world applications of industrial organization theory.

OE-CT03.4 Critically assess the role of government policies and regulations in shaping industrial development, competition, and market efficiency.

Approxi	mate Hours
Item	Appx Hrs.
Cl	09
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	(SL)
SO 4.1: Understand the objectives and formulation of industrial policy. SO 4.2: Analyze the role of government regulations in different industrial sectors. SO 4.3: Evaluate the impact of antitrust laws and competition policy on market competition.		 Unit 4: Industrial Policy and Regulation 4.1Role of Government in Industrial Development 4.2 Industrial Policy Formulation and Implementation 4.3 Regulatory Framework for Industries 4.4Antitrust Laws and Competition Policy 4.5 Sector-specific Regulations (e.g., Energy, Telecom, Banking) 4.6 Industrial Clusters and Regional Development Policies 4.7 Trade Policies and Their Impact on Industrial Competitiveness 4.8 Environmental Regulations and Green Industrial Policies 4.9 Intellectual Property Rights and Innovation Policies 	SL 1. Study international case studies of successful industrial policies and regulatory frameworks to understand best practices and lessons learned.

SW-4 Suggested Sessional Work (SW):

a. Assignment: Analyze the effectiveness of recent industrial policies in promoting economic growth and competitiveness in a specific sector.

- **b.** Mini Project: Develop a proposal for a new industrial policy aimed at fostering innovation and sustainable development in a selected industry.
- **c.** Other Activity: Organize a debate on the pros and cons of government intervention in industrial markets, with students taking on different perspectives
- OEC-CT 404.5: Apply theoretical frameworks and empirical evidence to analyze real-world industrial scenarios, including industrial clusters, technological innovation, globalization, and sustainability

Approximate Hours

Item	Appx Hrs.
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	(SL)
SO 5.1 Identify and analyze industrial clusters and value chains. SO 5.2. Evaluate the role of technological innovation in industrial dynamics. SO 5.3. Assess the implications of globalization and sustainability on industrial restructuring		 Unit 5: Industrial Economics in Practice 5.1 Industrial Clusters and Value Chains 5.2 Technological Innovation and Industrial Dynamics 5.3 Globalization 5.4 Industrial Restructuring Industrial Economics 5.5 Sustainable Development Case Studies and Real-world Applications 5.6 Technological Spillovers and Knowledge Diffusion Mechanisms 5.7 Industrial Resilience and Adaptive Strategies in Times of Economic Crisis 5.8 Corporate Social Responsibility and Its Role in Industrial Sustainability 5.9 Industry 4.0 and the Future of Manufacturing and Services Industries. 	SL 1. Attend workshops or seminars on topics related to industrial economics, such as innovation management and supply chain optimization, to broaden your knowledge and skills.

SW –5 Suggested Sessional Work (SW):

- **a.** Assignment: Investigate the role of industrial clusters in promoting regional development and present a case study highlighting their impact on local economies.
- **b. Mini Project:** Collaborate with local businesses to analyze the adoption of new technologies and their effects on productivity and competitiveness.
- **c. Other Activity**: Host a panel discussion with industry experts on the challenges and opportunities of globalization for domestic firms.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
CO1 .Understand the foundational concepts and terminologies of Industrial Economics, including market structures, economies of scale, and industrial policy.	09	2	1	12
CO2. .Analyze different market structures and their implications for firm behavior, pricing strategies, and market outcomes.	09	2	1	12
CO3 .Evaluate theories of industrial organization and apply them to analyze strategic interactions among firms, regulatory frameworks, and market dynamics.	09	2	1	12
CO4 .Critically assess the role of government policies and regulations in shaping industrial development, competition, and market efficiency.	09	2	1	12
CO5 . Apply theoretical frameworks and empirical evidence to analyze real-world industrial scenarios, including industrial clusters technological innovation globalization, and sustainability	09	2	1	12
Total Hours	45	10	5	60

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	М	arks Distr	ibution	Total Marks
		R	U	Α	
CO-1	Understand the foundational concepts and terminologies of Industrial Economics, including market structures, economies of scale, and industrial policy.	01	01	03	05
CO-2	Analyze different market structures and their implications for firm behavior, pricing strategies, and market outcomes.	01	01	03	05
CO-3	Evaluate theories of industrial organization and apply them to analyze strategic interactions among firms, regulatory frameworks, and market dynamics.	-	03	10	13
CO-4	Critically assess the role of government policies and regulations in shaping industrial development, competition, and market	-	03	10	13
CO-5	Apply theoretical frameworks and empirical evidence to analyze real-world industrial scenarios, including industrial clusters, technological innovation, globalization, and sustainability.	01	03	10	14
	Total	03	11	36	50
		03 Iderstan			: /

The end of semester assessment for Financial Services and Insurance will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition Year
1	Industrial Economics	Martin Beckmann	Wiley-Blackwell	1^{st}
2	Principles of Industrial Economics	James E. Smith	Oxford University Press	3 rd
3	Industrial Economics: Theory and Practice	Donald S. Siegel	Routledge	2 nd
4	Applied Industrial Economics	Thomas R. Howell	Cambridge University Press	1 st
5	Lecture note provide	d by Dept. of Comm	erce AKS University, Satr	ia.

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Program Title: B. Tech Cement Tech.

Course Code: OE-CT03

Course Title: Industrial Economics

· · · · · · · · · · · · · · · · · · ·							0							C	16° O 1	
						rogra	im Ou	tcomes	5				Pr	ogram Spe	cific Outco	me
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO1: Understand the foundational concepts and terminologies of Industrial Economics, including market structures, economies of scale, and industrial policy.	3	3	2	2	3	2	2	2	2	1	3	2	2	1	2	3
CO 2: Analyze different market structures and their implications for firm behavior, pricing strategies, and market outcomes.	3	3	2	2	3	2	2	2	1	1	2	2	2	1	3	2
CO3: Evaluate theories of industrial organization and apply them to analyze strategic interactions among firms, regulatory frameworks, and market dynamics	2	3	2	2	2	2	2	2	2	2	2	3	2	2	2	3

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

CO 4: Critically assess the role of government policies and regulations in shaping industrial development, competition, and market efficiency.		2	3	2	3	2	2	2	2	1	2	3	2	1	3	3
CO 5: Apply theoretical frameworks and empirical evidence to analyze real- world industrial scenarios, including industrial clusters, technological innovation, globalization, and sustainability	3	2	3	1	1	3	2	2	1	1	2	3	3	1	1	3

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B. Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Course Curriculum Map: Industrial Economics

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning(SL)	
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO1: Understand the foundational concepts and terminologies of Industrial Economics, including market structures, economies of scale,	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1.0 Introduction to Industrial Economics		
PSO 1,2, 3, 4, 5	and industrial policy.	SO1.5		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9		
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 2: Analyze different market structures and their implications for firm behavior, pricing strategies, and market outcomes.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 Market Structures 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9		
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO3: Evaluate theories of industrial organization and apply them to analyze strategic interactions among firms, regulatory frameworks, and market dynamics	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Industrial Organization Theory 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	As mentioned in above pages	
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO 4: Critically assess the role of government policies and regulations in shaping industrial development,	SO4.1 SO4.2 SO4.3		Unit-4: Industrial Policy and Regulation		
PSO 1,2, 3, 4, 5	competition, and market efficiency.	SO4.4 SO4.5		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9		
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 5: Apply theoretical frameworks and empirical evidence to analyze real-world industrial scenarios, including industrial clusters, technological innovation, globalization, and sustainability	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: Industrial Economics in Practice 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester-VII

Course Code:	OE-CT05
Course Title:	Beneficiation of Low-Grade limestone for Cement Manufacture
Pre- requisite:	Student Should have knowledge on grade of limestone and clinker minerals
Rationale: Course Outcomes:	If limestone doesn't boast the desired chemical composition, it falls into the category of low-grade limestone. In such cases, the CaO content is below 40%, the SiO2 content exceeds 18%, and occasionally, the MgO content surpasses 5%. These limestone varieties are unsuitable for cement production and need enhancements to meet the quality standards necessary for manufacturing Portland cement. This course is crafted to explore cost-effective beneficiation techniques aimed at enhancing limestone quality and rendering it suitable for cement production.
Course Outcomes:	

OE-CT05.1: Examining the impact of physical, chemical, and mineralogical characteristics of low-grade limestone on the Portland cement production process and quality.

- **OE-CT05.2:** Analyzing the composition and distribution patterns of limestone deposits in India.
- **OE-CT05.3:** Limestone mining practices, the creation of mining rejects, and exploring their utilization in cement manufacture.
- **OE-CT05.4**: Exploring potential beneficiation techniques aimed at enhancing the quality of limestone and its application in cement production.
- **OE-CT05.5:** Exploring strategies for producing low-energy cement using low to marginal grade limestone.

Scheme of Studies:

Course	Course	Course		Total				
Category	Code	Title	Cl LI SW SL Total Study Hours					Credits
							(CI+LI+SW+SL)	(C)
OEC	OE-CT05	Beneficiation of Low- Grade limestone for Cement Manufacture	3	0	2	1	6	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
		Progressive Assessment (PRA)								
Course Category	Couse Code	Course Title	Class/Home Assignment 5 number marks each CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
OEC	OE-CT05	Beneficiation of Low-Grade limestone for Cement Manufacture	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OE-CT05.1: Examining the impact of physical, chemical, and mineralogical characteristics of low-grade limestone on the Portland cement production process and quality.

Approximate Hours

Item	Appx Hrs
Cl	08
LI	0
SW	01
SL	01
Total	10

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction (LI)	(CI)	(SL)
SO1: Chemical, Physical and mineralogical composition of Limestone SO2: Microstructure of carbonates SO3: Quality of limestone presently used for cement manufacture SO4: Role of minor constituents of limestone in process and quality of cement		 Unit -1: Properties of Cement Grade Limestone: 1.1 Mineralogy and Chemical composition of Limestone, 1.2 Crystal chemistry of Calcite, Chemistry of dolomite, 1.3 Characteristics of clay minerals, 1.4 Texture of limestone, 1.5 Microstructure of carbonates, electrical and magnetic 1.6 Properties of carbonate and other associate minerals. 1.7 Quality aspects of limestone being presently used by cement plants, 1.8 Role of minor constituents in limestone for cement manufacture 	SL1. Geological Origin of Calcareous rock

SW-1 Suggested Sessional Work (SW):

Assignments: Miner constituent's limestone and its impact on process of cement manufacture, Chemical and mineralogical composition of limestone, Chemistry of limestone and dolomite, Properties of carbonate rocks and associate minerals.

OE-CT05.2: Analyzing the composition and distribution patterns of limestone deposits in India. Approximate Hours

Item	Appx Hrs
Cl	10
LI	0
SW	2
SL	1
Total	13

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class Room Instruction	Self-
(SOs)	Instruction (LI)	(CI)	Learning (SL)
SO1: Characterisation of		Unit -2: Categorisation and occurrence	SL1.
Indian Limestone		of Indian Limestone:	Geological
SO2: Characterization of		2.1 Categorization of Indian limestone	stratigraphy of
Indian limestone through		based on grain size	India.
out the Indian		2.2 The occurrence of limestone in India	
Stratigraphy		2.3 The characteristics of limestone in	
SO3: Limestone deposits		different stratigraphic horizons.	
in East and west zone		2.4 Status of Indian Cement Industry	
states of India		Vis-a-Vis utilization of low/marginal	
SO4: Limestone		grade limestone in various states	
occurrences in south and		2.5 Rajasthan,	
North Zones states of		2.6 Maharashtra, Gujarat,	
India		2.7 Madhya Pradesh,	
		2.8 Orissa and Chhattisgarh,	
		2.9 Andhra Pradesh,	
		2.10Tamil Nadu and Karnataka	

SW-2 Suggested Sessional Work (SW):

Assignments: Distribution of limestone deposits in Indian Stratigraphy, Distribution of limestone in East and Waste zone districts of India with characteristic, Distribution of limestone in North and South zone districts of India with characteristic, categorization of Indian limestone deposits.

OE-CT05.3: Limestone mining practices, the creation of mining rejects, and exploring their utilization in cement manufacture

Approximate Hours

Item	Appx Hrs
Cl	08
LI	0
SW	2
SL	1
Total	11

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1: Methods of		Unit -3: Mining practices for Utilisation of	
mining of limestone		low / marginal grade limestone deposits:	SL1.Raw mix design
deposits in India			for manufacture of
SO2 : Generation of		3.1. Method of mining of limestone deposits	Portland cement
mine rejects during		and mine rejects.	clinker.
mining and its		3.2. Advanced mining practices	
composition		3.3. Computer applications in dealing deposit	
SO3 : Mine Production		complexities.	
Scheduling and Pit		3.4. Mine Production scheduling	
head quality control		3.5. Quality control during mining practices	
SO4: Potentiality of		3.6. Mine rejects generation during mining.	
mine rejects use as		3.7. Composition of mine rejects	
cement Raw Material.		3.8. Potentiality of mining rejects use as	
		cement raw materials	

SW-3 Suggested Sessional Work (SW):

Assignments: Methods of Mining of limestone deposits and generation of mining rejects, Composition of mine rejects and its potentiality use as cement raw materials, Pit head quality control and mine rejects. Use of mine rejects as cement raw materials.

OE-CT05.4: Exploring potential beneficiation techniques aimed at enhancing the quality of limestone and its application in cement production.

Approximate Hours

Item	Appx Hrs
Cl	10
LI	0
SW	2
SL	1
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO1: Methods of beneficiation suitable for limestone SO2: Dry beneficiation technique of limestone. SO3: Wet beneficiation of limestone		 Unit-4: Potential beneficiation techniques for upgradation of low / marginal grade limestone: 4.1 . Methods of beneficial techniques and separation of gangue materials. 4.2 Physical, chemical and mineralogical characteristics of limestone for beneficiation 4.3 Mineral Particle size and separation, 4.4 Froth floatation& enrichment of limestone, 4.5 Differential grinding and sieving, 4.6 Air classification techniques, 	SL1. haracteristics of low-grade limestone and presence of unwanted materials in limestone

Page 691 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SO4: Bio technical	4.	.7 Magnetic separation techniques,	
method for	4.	.8 Electrostatic separation,	
enrichment of	4.	.9 Bio technical methods (beneficiation of	
limestone.		limestone through bacterial leaching	
		methods),	
	4.	.10 Photometric sorting.	

SW-4 Suggested Sessional Work (SW):

Assignments: Differential Grinding and sieving of limestone, Low grade limestone and dry beneficiation, Wet beneficiation of limestone and its advantages and dis advantages, Technique to enrich the high silica limestone.

OE-CT05.5: Gain insight into the utilization of diverse admixtures for enhancing the properties of concrete

Approximate Hours			
Item	Appx Hrs		
Cl	9		
LI	0		
SW	2		
SL	1		
Total	12		

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1: Low energy cement		Unit-5: Production of low energy	1. Properties of
and its raw materials		cements:	GGBF Slag and
SO2: Production of low		5.1 Introduction to low energy	Fly Ash
energy cement and		Cement Alkali activated slags and	
blended cement form low		other alumino silicates	
grade limestone		5.2 Low energy clinker production,	
SO3: Belit cement, sulfo-		5.3 Blended cement,	
aluminate cement and its		5.4 Calcium aluminate cement	
performance		manufacture, composition,	
SO4: Geo-polymer, high		5.5 Production of belite cement	
magnesia cement and		5.6 Performance of belite and	
Gypsum plaster.		5.7 Sulfo-aluminate cements,	
		5.8 Geo-polymers	
		5.9 Gypsum plaster cement	

SW-5 Suggested Sessional Work (SW):

Assignments: Belite Cement production and Use, Production of sulfo aluminate belite cement, Blast slag and its characteristics, Manufacture of calcium aluminate cement, Geopolymers cement.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
CO1: Examining the impact of physical, chemical, and mineralogical characteristics of low-grade limestone on the Portland cement production process and quality.	08	01	01	10
CO2: Analyzing the composition and distribution patterns of limestone deposits in India.	10	02	01	13
CO3: Limestone mining practices, the creation of mining rejects, and exploring their utilization in cement manufacture.	08	02	01	11
CO4: Exploring potential beneficiation techniques aimed at enhancing the quality of limestone and its application in cement production.	10	02	01	13
CO5: Exploring strategies for producing low-energy cement using low to marginal grade limestone.	09	02	01	12
Total Hours	45	09	05	59

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

COs	Unit Titles	Μ	arks Distri	ibution	Total	
		R	U	А	Marks	
CO-1	Examining the impact of physical, chemical, and mineralogical characteristics of low-grade limestone on the Portland cement production process and quality.	02	03	02	07	
CO-2	Analyzing the composition and distribution patterns of limestone deposits in India.	0	08	02	10	
CO-3	Limestone mining practices, the creation of mining rejects, and exploring their utilization in cement manufacture.	01	06	04	11	
CO-4	Exploring potential beneficiation techniques aimed at enhancing the quality of limestone and its application in cement	-	08	07	15	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

	production.				
CO-5	Exploring strategies for producing low- energy cement using low to marginal grade limestone.	-	03	004	07
	Total	03	28	19	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture, Tutorial
- 2. Case Method
- 3. Group Discussion, Role Play
- 4. Visit to cement plant
- 5. Demonstration
- 6. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 7. Brainstorming

Suggested Learning Resources:

(a) Books:

S.No.	Title	Author	Publisher	Edition & Year
1	Cement Chemistry	F. W. Taylor	Thomas Telford,	1997
2	Handbook of mineral dressing, Ores and Industrial Minerals	Taggart,	John Wiley & Sons Canada, Limited	1999
3	Norms for Limestone Exploration For Cement Manufacture	National Council for Cement and Building Materials	National Council for Cement and Building Materials	1985
4	Mineral beneficiation	V Subba Rao,	CRC Press	2018

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

.....

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech;Course Code: OEC-CT05Course Title: Beneficiation of Low-Grade limestone for Cement Manufacture

					Р	rogran	n Outco	omes					Progr	am Spec	ific Out	come
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
CO-1: Examining the impact of physical, chemical, and mineralogical characteristics of low-grade limestone on the Portland cement production process and quality.	2	1	2	2	3	3	1	1	2	1	1	2	2	2	2	3
CO-2: Analyzing the composition and distribution patterns of limestone deposits in India.	3	3	3	2	1	2	1	1	1	1	2	2	2	2	2	2
CO-3: Limestone mining practices, the creation of mining rejects, and exploring	2	3	2	1 Pa	1	2	1 of 734	2	1	2	2	2	1	2	2	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

their utilization in cement manufacture.																
CO-4: Exploring potential beneficiation techniques aimed at enhancing the quality of limestone and its application in cement production.	3	2	2	2	3	2	1	2	2	1	2	2	3	3	3	1
CO-5: Exploring strategies for producing low-energy cement using low to marginal grade limestone.	2	3	3	1	1	3	2	2	1	3	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Beneficiation of Low-Grade limestone for Cement Manufacture

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Examining the impact of physical, chemical, and mineralogical characteristics of low-grade limestone on the Portland cement production process and quality.	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1: Properties of Limestone 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Analyzing the composition and distribution patterns of limestone deposits in India.	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2: Categorization and occurrence of Indian Limestone 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Limestone mining practices, the creation of mining rejects, and exploring their utilization in cement manufacture.	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3: Mining practices for Utilization of low a marginal grade limestone deposits 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8	As mentioned, in above pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Exploring potential beneficiation techniques aimed at enhancing the quality of limestone and its application in cement production.	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4: Potential beneficiation techniques for upgradation of low / marginal grade limestone 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	- Pages
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Exploring strategies for producing low- energy cement using low to marginal gravestone.	SO5.1 SO5.2 SO5.3 SO5.4		Unit 5: Production of low energy cements 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023) Semester-VII

Course Code:	ОЕ-СТ06
Course Title:	REACTION ENGINEERING
Pre- requisite:	Student should have basic knowledge of chemical engineering, chemistry and mathematics
Rationale:	Introduce the students to the fundamental principles of reaction engineering in order to enable them to handle kinetics and kinetic-transport interactions in a variety of situations. To introduce students to the analysis of the kinetics of homogeneous chemical reactions. To apply this analysis and the concepts of material and energy conservation to the design of idealized homogeneous chemical reactors operating both in batch and continuous modes and under both isothermally and non-isothermally conditions. To introduce the analysis of non-ideal flow and, using the flow model, to quantify its effect on an idealized reactor design
Course Outcomes:	
OE-CT06.1:	Develop a fundamental understanding of chemical reactions and reaction kinetics.
OE-CT06.2:	Understanding of the principles of reaction rates, mechanisms, and their applications.
OE-CT06.3:	Develop a fundamental understanding of homogeneous single reactions, including their importance in chemical processes.
OE-CT06.4:	Understand the Principles of Multiple Reactions.
ОЕ-СТ06.5:	Understanding the Impact of Temperature on Reaction Rates

Scheme of Studies:

Course	Course				Scheme of studies(Hours/Week)						
Category	Code		Cl	LI	SW	SL	Total Study Hours	Credits			
		Course Title					(CI+LI+SW+SL)	(C)			
OEC	OE-CT06	REACTION	3	0	1	1	5	3			
		ENGINEERING									

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

Scheme of Assessment:

Theory										
			Dr	Sch ogressive				(Marks)		
tegory	ode	litle	number 3 marks	(2 best out of 3) s each (CT)		one (CAT)		A+CAT+AT)	Assessment	A+ESA)
Course Category	Couse Code	Course Title	Class/Home Assignment 5 n each (CA)	Class Test 2 (2 best 10 marks each (Seminar one (SA)	Class Activity any or	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester As	Total Marks (PRA+ESA)
OEC	OE-CT06	REACTION ENGINEERING	15	20	5	5	5	50	50	100

Course-Curriculum Detailing: OEC -CT 06 Reaction Engineering

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

OE-CT06.1: Develop a fundamental understanding of chemical reactions and reaction kinetics

Approximate Hours							
Item	AppX Hrs						
Cl	9						
LI	0						
SW	2						
SL	1						
Total	12						

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
	•	Unit-1.0 Introduction	
SO1.1 Describe the role of		1.1 Overview of chemical	
chemical reactions in		reaction engineering,	
industrial processes		Classification of reactions	
SO1.2 Define reaction		1.2 Variables affecting rate,	SL1.Practice
kinetics and its		1.3 Definition of reaction rate	solving problems
importance in		1.4 single and multiple	related to mole
chemical engineering		reactions	balances, rate
SO1.3 Differentiate between		1.5 Elementary and non-	laws, and reactor
batch and continuous		elementary reactions	design
reactors		1.6 Molecularity and order	
SO1.4 Understand how		of reaction	SL2.Study
reactors are connected		1.7 Reaction pathways,	different types of
in series and parallel.		Effects of temperature,	reactions and
SO1.5 Discuss real-world		pressure	their rate
applications of batch and		1.8 Heat and mass transfer	expressions
continuous reactors in		on rate, Arrhenius law,	
chemical processes.		Activation energy,	
		1.9 Reversible and	
		irreversible reactions,	
		Reaction equilibrium.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Define the term "reaction rate" in the context of chemical reactions?
- ii. Define the term "rate law" and explain its role in describing reaction rates.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

b. Mini Project:

What are the advantages and disadvantages of using a continuous stirred-tank reactor (CSTR) in chemical processes? Explain how concentration changes in a CSTR as a function of time.

c. Other Activities (Specify):

To understand the factors influencing reaction rates and how to measure reaction rates experimentally.

OE-CT06.2: Understanding of the principles of reaction rates, mechanisms, and their applications.

Approximate Hours		
Item	AppX Hrs	
Cl	12	
LI	0	
SW	2	
SL	1	
Total	15	

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO2.1 Understand how the rate	•	Unit-2 Kinetics of	
equation relates the rate		Homogeneous reaction	SL1.Familiarizing
of reaction to reactant			yourself with the
concentrations.		2.1 Constant volume	fundamental
SO2.2 Explain the concept of		2.2 variable volume batch	concepts of
reaction order and how it		2.3 CSTR reactor data	chemical kinetics
influences the rate		2.4 PFR reactor data	
equation.		2.5 Analysis of total pressure	SL2. Investigate
SO2.3 Explain the factors that		data	the effect of
affect reaction rates		2.6Constant-volume batch	temperature on
SO2.4 Describe the concept of		reactor	reaction rates.
reaction mechanisms		2.7 Integral methods of analysis	
SO2.5 Discuss the graphical		of data	
representation of reaction		2.8 Differential methods of	
kinetics data		analysis of data	
		2.9 Autocatalytic reactions	
		2.10 Reversible reactions,	
		2.11 Bio-chemical reactions	
		2.12 Rate of the reaction	

SW-2 Suggested Sessional Work (SW):

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

a. Assignments:

- i. Define the term "reaction order" and explain why it is a crucial concept in kinetics. Provide examples of zero-order, first-order, and second-order reactions.
- ii. Describe the concept of reaction mechanisms in complex reactions. Explain how intermediates and elementary steps contribute to overall reaction kinetics. Provide a real-world example.

b. Mini Project:

Research and find kinetic data or conduct experiments to determine the rate equation for the chosen reaction

c. Other Activities (Specify): Design a batch reactor for optimal conversion

OE-CT06.3: Develop a fundamental understanding of homogeneous single reactions, including their importance in chemical processes.

Approximate Hours		
Item AppX Hrs		
Cl	10	
LI	0	
SW	2	
SL	1	
Total	13	

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1 Understand the		Unit-3: Homogeneous Single	
formulation of rate		Reactions	SL1. Analyze real-
laws for		3.1 Performance equations for ideal	world applications of
homogeneous		batch	homogeneous single
reactions		3.2 Kinetics of Homogeneous	reactions in various
SO3.2 Apply the		Reactions	industries
Arrhenius equation		3.3 Plug flow	
to describe the		3.4 Back-mix flow batch reactors	SL2.Calculate the
temperature		3.5 semi batch reactors for	reactor volume
dependence of rate		isothermal condition	required to achieve a
constants		3.6 Size comparison of single reactors	specific conversion
SO3.3 Describe the		3.7 Multiple-reactor systems	
reaction mechanism		3.8 Recycle reactor	SL3. Use graphical
for simple		3.9 Autocatalytic reactions	representations to
homogeneous single		3.10Optimum recycle operations	illustrate reaction
reactions			kinetics.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

SO3.4 Comprehend the		
operation and design		
of batch reactors		
SO3. Define key design		
parameters for		
homogeneous single		
reactions, including		
space velocity and		
residence time.		

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain the role of reaction mechanisms in understanding homogeneous single reactions. How do mechanisms help us interpret reaction kinetics?
- ii. Define reaction kinetics and explain why it is crucial in chemical engineering

b. Mini Project:

The objective of this mini-project is to design, conduct, and analyze experiments to study the kinetics and mechanism of a homogeneous single reaction.

c. Activities (Specify):

Power point presentation on mini project

OE-CT06 .4: Understand the Principles of Multiple Reactions

Approximate Hours		
Item	AppX Hrs	
Cl	7	
LI	0	
SW	2	
SL	1	
Total	10	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO4.1 Define multiple		Unit-4: Multiple Reactions	
reactions and			SL1.Choose a
differentiate between		4.1 Parallel reactions of	reaction mechanism
parallel, series, and		different orders	(e.g., parallel or
complex reactions		4.2 Yield and selectivity	consecutive

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

SO4.2 Discuss the concept	4.3 Product distribution	reactions) and
of intermediates in	and design for single	analyze its kinetics
complex reactions	and multiple-reactors	
SO4.3 Understanding the	4.4 Series reactions: first-	SL2.Choose a real-
yield and selectivity	order reactions and	world case study
SO4.4 Identify the role of	4.5 zero-order reactions	involving multiple
catalysts and reaction	4.6 Mixed series parallel	reactions
conditions	complex reaction	
SO4.5 Interpret simulation	4.7 Choice of reactors for	
results to gain insights	simple and complex	
into complex reaction	reactions	
systems.		

Suggested Sessional Work (SW)

a. Assignments:

- i. Write the rate law expression for the parallel reaction $A \rightarrow B + C$ if the reaction is second-order with resect to A.
- ii. Analyze experimental data for a multiple reaction system with known rate constants.

b. Mini Project:

i.Visit to a cement plant and study the reactors involve in the industry

c. Other Activities (Specify):

Using chemical engineering software (if available) or any simulation tool

OE-CT06 .5: Understanding the Impact of Temperature on Reaction Rates

Approximate Hours		
Item	AppX Hrs	
Cl	07	
LI	0	
SW	2	
SL	1	
Total	10	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction Self-		
(SOs)	Instruction	(CI)	Learning	
	(LI)		(SL)	
SO5.1 Understanding the		Unit 5: Temperature Effects	SL1.Work on	
Impact of Temperature		for Single and Multiple	problems related	
on Reaction Rates		Reactions	to temperature	
SO5.2 Multi-Reaction		5.1. Thermal stability of	effects on single	
Systems and		reactors	and multiple	
Temperature		5.2. Optimal temperature	reactions	
SO5.3 Recognize the		5.3. progression for first order		
influence of temperature		reversible reactions	SL2.Recognize	
on the selectivity		5.4. Adiabatic and heat	the influence of	
SO5.4 Describe experimental		regulated reactions	temperature on	
methods used to		5.5. Design of non-isothermal	the selectivity	
activation energies at		reactors		
different temperatures.		5.6. Effect of temperature on		
SO5.5To understand Effect		product distribution for		
of temperature on		series reactions		
product distribution for		5.7. Effect of temperature on		
parallel reactions		product distribution for		
		parallel reactions		

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Explain the role of thermodynamic and kinetic control in multi-reaction systems and how temperature affects these aspects.

ii. Practice using chemical engineering simulation software like Aspen Plus or COMSOL

b. Mini Project:

Design and conduct your own experiments to explore the temperature effects on reactions.

c. Other Activities (Specify):

Analyze the role of temperature in industrial reactors and the optimization of reaction conditions.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
OE-CT06.1: Develop a fundamental understanding of chemical reactions and reaction kinetics	9	2	1	12
OE-CT06.2: Understanding of the principles of reaction rates, mechanisms, and their applications	12	2	1	15
OE-CT06.3: Develop a fundamental understanding of homogeneous single reactions, including their importance in chemical processes.	10	2	1	13
OE-CT06 .4: Understand the Principles of Multiple Reactions	07	2	1	10
OE-CT06.5: Understanding the Impact of Temperature on Reaction Rates	07	2	1	10
Total Hours	45	10	5	60

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Mar	rks Distri	bution	Total
		R	U	Α	Marks
CO-1	Develop a fundamental understanding of chemical reactions and reaction kinetics	03	01	01	05
CO-2	Understanding of the principles of reaction rates, mechanisms, and their applications	02	06	02	10
CO-3	Develop a fundamental understanding of homogeneous single reactions, including their importance in chemical processes.	03	07	05	15
CO-4	Understand the Principles of Multiple Reactions	03	07	05	15
CO-5	CO-5 Understanding the Impact of Temperature on Reaction Rates		02	-	05
	Total	14	23	13	50

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023) R: Remember, U: Understand, A: Apply

The end of semester assessment for Reaction Engineering will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorm

Suggested Learning Resources:

(a) Books:

Legend:

S.No.	Title	Author	Publisher	Edition & Year
1	Elements of Chemical Reaction	Fogler, H.S.,	Prentice Hall of India	2003
	Engineering,			
2	Chemical Reaction Engineering	Levenspiel, O.,	John Wiley & Sons	1998
3	Chemical Engineering Kinetics, (1990)	Smith, J.M.,	McGraw Hill, New York	1990
4	Chemical Reactor	Denbigh, K.G., and	Cambridge	1984
	Theory - An	Turner, J.C.R.,	University Press,	
	Introduction		UK	
5	Lecture note provided by	у	·	
	Dept. of Cement Techno	ology, AKS University	7, Satna.	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Course Title: B. Tech. Cement Technology

Course Code: OE-CT06

Course Title: Reaction Engineering

					I	Progra	m Ou	tcomes	5				Pr	Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development	
CO1: Develop a fundamental understanding of chemical reactions and reaction kinetics	3	2	2	2	3	2	1	1	1	2	1	2	2	2	1	3	
CO2: Understanding of the principles of reaction rates, mechanisms, and their applications.	3	2	2	2	3	2	1	1	1	2	1	2	2	2	1	2	
CO3: Develop a fundamental understanding of homogeneous single reactions, including their importance in chemical processes.	3	3	2	2	2	2	1	1	2	2	2	3	2	2	1	3	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

CO4: Understand the Principles of Multiple Reactions	3	3	3	2	3	2	2	1	2	2	2	2	2	2	1	3
CO5: Understanding the Impact of Temperature on Reaction Rates	3	3	3	2	2	3	2	2	2	2	2	3	2	2	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map: Reaction Engineering

POs & PSOs No.	COs No.& Titles	SOs No. Laboratory Instruction (LI)		Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1: Develop a fundamental understanding of chemical reactions and reaction kinetics	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Introduction 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1 .9	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2: Understanding of the principles of reaction rates, mechanisms, and their applications.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 Kinetics of Homogeneous reaction 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,2.8,2.9,2.10,2.11,2.12	As mentioned,
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3: Develop a fundamental understanding of homogeneous single reactions, including their importance in chemical processes.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Homogeneous Single Reactions 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8, 3.9,3.10	in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 4: Understand the Principles of Multiple Reactions	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Multiple Reactions 4.1, 4.2,4.3,4.4,4.5,4.6,4.7	
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 5: Understanding the Impact of Temperature on Reaction Rates	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: Temperature Effects for Single and Multiple Reactions 5.1,5.2,5.3,5.4,5.5,5.6,5.7	

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023) Semester-VII

Course Code:	PROJ-CT02
Course Title :	Engineering Project-2 (Design & Analysis)
Pre-requisite:	Students should have basic knowledge for design, development and analysis of project.
Rationale:	Students should be well-versed in the cement manufacturing process and concrete production. Keeping abreast of the latest technological trends is crucial for identifying contemporary R&D topics. A fundamental understanding of the physical and chemical properties of cement and concrete is essential. Additionally, students must be proficient in statistical methods for effective data analysis and interpretation. Competence in Microsoft Word and Excel is necessary for report writing and documentation. By combining technical knowledge with analytical and software skills, students will be well-prepared to tackle challenges in the field and contribute meaningfully to research and development efforts.

Course Outcomes:

PROJ-CT02.1: Methodology for project design and project scheduling

PROJ-CT02.2: Methods of Data collection and data compiliation

PROJ-CT02.3: Product development

PROJ-CT02.4: Data analysis and data interpretation

PROJ-CT02.5: Concluding remark and future work

Scheme of Studies:

Course	Course	Course		/Week)	Total				
Course	Code	Title	CI	LI	SW	SL	Total Hours	Credits	
					2	2	(CI+LI+SW+SL)	(C)	
		Engineering							
PROJ	PROJ-CT02	Project-2 (Design	0	10	0	0	10	5	
		and Analysis)							

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

Note:

SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

						Scheme	t (Ma	rks)					
			Pro	Progressive Assessment (PRA)						End Semester Assessment			
Course Category	Course Code	Course Title	Project Scheduling	Data collection and sampling	Product design	Product analysis and data interporetaion	Report writing and concluding remark	Total Mark	Seminar	Project Viva	Total Marks	Total Marks (PRA+ESA)	
PROJ	PROJ-CT02	Engineering Project-2	05	05	05	25	10	50	15	35	50	100	
		(Design & Analysis)											

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Lab Work Assignment (LA) Best of 5 of the total, Viva-Voice on Lab Work (VV), and Lab Attendance (LA). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Course Outcome	Activities	Time Schedu	ile (in hours)
		Class	Self
		Activity	Learning
		Per week	/Home
		(5 Credit)	activity
			Per week
PROJ-CT02.1:	1. Literature review and identification of Cement and		
Methodology for	concrete related projects and project scheduling		
design and project		10	10
scheduling	1.1 Examining recent literature on cement and concrete		

Page 714 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

projects unveils advancements, methodologies, and applications. This review identifies emerging trends, innovative materials, sustainable and practices, significantly impacting construction, durability, and environmental outcomes. Noteworthy projects illustrate novel approaches, enriching insights and guiding future developments in cement and concrete technology. **1.2 Project scheduling :** Project scheduling involves planning and organizing tasks to ensure timely completion. It includes defining activities, setting deadlines, and allocating resources efficiently. Effective scheduling helps manage time, costs, and personnel, enhancing productivity and project success. It's crucial for meeting goals, coordinating efforts, and maintaining project momentum PROJ-CT02.2: 2. Design and formulation projects Methods of Data 2.1 Methods of data collection and data compiletion collection and data 2.2 Design and formulation projects concentrate on compiliation innovating products through meticulous recipe development and methodological refinement. These initiatives prioritize material optimization, functional 16 15 enhancement, and quality assurance. By blending creativity with technical prowess, they propel advancements across industries, fostering the creation of distinctive, efficient, and commercially viable solutions. PROJ-CT02.3: 3. Sample analysis and product development Product development 3.1 Testing samples determines their suitability by assessing quality, performance, and compliance with standards. It involves rigorous analysis and evaluation to ensure materials meet project requirements. This process identifies strengths and weaknesses, guiding decisionmaking and ensuring the reliability and effectiveness of 20 25 the chosen samples for intended applications. 3.2 Product design and analysis in R&D involve creating and refining products to meet market needs. This process includes conceptualizing, prototyping, and testing to optimize functionality and performance. Analyzing results helps improve designs, ensuring products are innovative, efficient, and ready for successful market

Page 715 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

	introduction.		
PROJ-CT02.4: Data analysis and data interpretation	 i. Product Data analysis & compilation 4.1 Project data compilation involves collecting and organizing all relevant information for analysis and reporting. This process ensures data accuracy and completeness, facilitating informed decision-making and efficient project management. It helps track progress, identify trends, and generate insights, supporting successful project outcomes and future planning. 4.2 Statistical data analysis involves examining and processing data to uncover patterns and trends. Data interpretation translates these findings into meaningful insights, aiding decision-making and strategy development. This process enhances understanding, supports and brocessing. 	80	15
PROJ-CT02.5:	supports evidence-based conclusions,5. Report Writing, Conclusion, Recommendations		
Concluding remark and	and Future work in Research work		
future work	and I ature work in Research work		
	 5.1 Report Writing : Comprehensive project report writing 5.2 Conclusion: The study successfully demonstrated key findings. It underscores implications, validating hypothesis/objectives. This contributes field significance, laying groundwork for applications. 5.3 Recommendation: Future research should explore expansion areas, emphasizing methodological improvements. Collaboration partners/stakeholders would enrich knowledge transfer. 5.4 Future Work: Innovations in technology/techniques could advance potential benefits. Addressing challenges would refine outcomes, fostering industry/government support. 	24	25
		4.80	
	Total	150	90

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Course Outcome	Unit Titles	Ma	rksDistribut	Total	
		R	U	Α	Marks
PROJ-CT02.1: Methodology for design and project scheduling	1. Literature review and identification of Cement and concrete related projects and project scheduling	02	03	-	5
PROJ-CT02.2: Methods of Data collection and data compiliation	2. Design and formulation projects	_	05	03	8
PROJ-CT02.3: Product development	3. Sample analysis and product development	-	08	04	12
PROJ-CT02.4: Data analysis and data interpretation	4. Product Data analysis, data interpretation and findings	-	08	12	20
PROJ-CT02.5: Concluding remark and future work	5. Report writing, concluding remark and future work		03	02	5
Total		02	27	21	50

Suggested Specification Table(For ESA)

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment for Engineering Project-1 (Literature Review) will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.No.	Title	Author	Publisher	Edition
				&Year
1	Ordinary Portland Cement	IS 269-2015	6 th Edition	2015
			BIS	
2	Concrete Technology Lab	Dr. Bharadwaj	Concrete	
	Manual	Nanda and Prof.	Technology Lab	
		A.N. Nayak	Manual	
3	Concrete Technology Lab	Nanditha	MLRITM	2022
	Manual	Mandava,		
4	Methods of physical tests for	IS 4031-1	BIS	1996
	hydraulic			
	cement			
5	Method of chemical analysis of	IS 4032	BIS	1985
	hydraulic cement			

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology

Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: PROJ-CT02

Course Title: Engineering Project-2 (Design & Analysis)

						Progra	am Out	comes					F	Program Spe	ecific Outcor	ne
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
PROJ-CT02.1: Methodology for design and project scheduling	3	2	2	2	2	3	3	1	1	1	2	1	1	2	2	1
PROJ-CT02.2: Methods of Data collection and data compiliation	3	3	2	2	2	3	3	1	1	1	3	1	2	2	2	1
PROJ-CT02.3: Product development	3	3	2	2	2	3	3	1	1	1	3	1	2	2	2	1
PROJ-CT02.4: Data analysis and data interpretation	3	3	2	2	2	3	3	1	1	1	3	1	2	2	2	1
PROJ-CT02.5: Concluding remark and future work	2	3	3	3	3	1	1	1	1	1	3	1	2	1	2	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Engineering Project-2 (Design & Analysis)

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PROJ-CT02.1: Methodology for design and project scheduling	SO1.1 SO1.2	Unit 1: Literature review and identification of Cement and concrete related projects and project scheduling		
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PROJ-CT02.2: Methods of Data collection and data compiliation	SO2.1 SO2.2	Unit 2: Design and formulation projects		
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PROJ-CT02.3: Product development	SO3.1 SO3.2	Unit 3: Sample analysis and product development		As mentioned in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PROJ-CT02.4: Data analysis and data interpretation	SO4.1 SO4.2	Unit 4: Product Data analysis & compilation		
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	PROJ-CT02.5: Concluding remark and future work	SO5.1 SO5.2 SO5.3 SO5.4	Unit 5: Report Writing, Conclusion, Recommendations and Future work in Research work		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023) Semester-VII

Course Code:	PROJ-CT03
Course Title :	Seminar
Pre-requisite:	Students should have basic knowledge on design and presentation of technical seminar.
Rationale:	The student possesses knowledge of the processes involved in the manufacture of cement and concrete. Additionally, the student should be familiar with the latest trends in cement manufacturing and the challenges faced by the cement industry. Presenting the latest technological advancements in cement manufacturing is essential for the seminar.

Course Outcomes:

- **PROJ-CT03.1:** Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.
- **PROJ-CT03.2:** In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples.
- **PROJ-CT03.3:** Preparation and delivery of the seminar presentation, including a question and answer session.

Scheme of Studies:

Course	Course	Course		Scheme of	of studie	s(Hours	/Week)	Total
Category	Course Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
PROJ	PROJ- CT03	Seminar	0	2	0	1	3	1

Legend:	CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L)
	and Tutorial (T) and others),
	LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
	field or other locations using different instructional strategies)
	SW: Sessional Work (includes assignment, seminar, mini project etc.),
	SL: Self Learning,
	C: Credits.
Note:	SW & SL has to be planned and performed under the continuous guidance and feedback
	of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Scheme of Assessment:

					Schem	e of A	Assessn	nent (Marks)	
			Pr		ve Asse PRA)	ssmer	nt		d Seme		
Course Category	Course Code	Course Title	Identification of seminar topic	Data collection	Prepartion presenation	Seminar presentation	Total Mark	Seminar content	Presentation and Question answer	Total Marks	Total Marks (PRA+ESA)
PROJ	PROJ-CT03	Seminar	05	05	25	15	50	10	40	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Lab Work Assignment (LA) Best of 5 of the total, Viva-Voice on Lab Work (VV), and Lab Attendance (LA). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Course Outcome	Activities	Time Sche	edule (in
		hou	rs)
		Class	Self
		Activity	Learning
		Per week	/Home
		(1 Credit)	activity
		` ´	Per week
PROJ-CT03.1: Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.	 Introduction and fundamentals Seminar SO1. Objectives of the Seminar SO2. Identification and Overview of Topics to be Covered SO3.Importance and Relevance of the Seminar in Current Industry Trends SO4. Introduction to the Technical Field SO5. Basic Concepts and Terminology SO6.Historical Development and Milestones SO7. Current State of the Technology 	6	5

Page 722 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

PROJ-CT03.2: In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples	 2.0 In-depth Technical Sessions and preparation of presentation SO2.1.Module 1: Advanced Theoretical Concepts Key Theories and Principles Mathematical Foundations Models and Algorithms SO 2.2 Module 2: Practical Applications Industry Applications Case Studies Real-world Scenarios SO 2.3 Module 3 : Practical Implementation Step-by-step Guide to Solving a Problem Coding and Development Debugging and Optimization 	14	15
PROJ-CT03.3: Preparation and delivery of the seminar presentation, including a question and answer session.	Prepartion of seminar content in proper presentation format and seminar presentationSO3.1 Prsentaion and Quartion answer sessionSO3.2 Seminar feed back and over view	10	10
1	otal	30	30

Suggestion for End Semester Assessment

Suggested Specification Table(For ESA)

Course Outcome	UnitTitles		rksDistribut	ion	Total
		R	U	Α	Marks
PROJ-CT03.1: Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.	Introduction and fundamentals Seminar	05	05	0	10
PROJ-CT03.2: In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples	In-depth Technical Sessions and preparation of presentation	0	10	05	15

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

PROJ-CT03.3: Preparation and delivery of the seminar presentation, including a question and answer session	seminar presentation		10	15	20
Total		05	25	20	50

Legend: R:Remember, U:Understand, A:Apply

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)
- 8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)
- 9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)
- 10. Dr K Mohan, former Director General of National Council for Cement and Building Materials
- 11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Page 724 of 734

Faculty of Engineering and Technology

Department of Cement Technology

Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: PROJ-CT03

Course Title: Seminar

riogram ritte. D. reen een	inenie i													evuise mile: Seminar				
						Progra	am Out	comes					F	Program Spe	ecific Outcor	ne		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4		
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development		
PROJ-CT03.1: Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.	3	2	2	2	2	3	3	1	1	1	2	1	1	2	2	3		
PROJ-CT03.2: In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples	3	3	2	2	2	3	3	1	1	1	3	1	2	2	2	2		
PROJ-CT03.3: Preparation and delivery of the seminar presentation, including a question and answer session.	3	3	2	2	2	3	3	1	1	1	3	1	2	2	2	1		

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course Curriculum Map: Seminar

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO.1: Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO1.6 SO1.7	Introduction and fundamentals Seminar		As mentioned
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO.2: In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples	SO2.1 SO2.2 SO2.3	In-depth Technical Sessions and preparation of presentation		in above pages
PO:1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4	CO.3: Preparation and delivery of the seminar presentation, including a question and answer session.	SO3.1 SO3.2	Prepartion of seminar content in proper presentation format and seminar presentation		

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Semester VIII

Course Code:	PROJ-CT04
Course Title:	Engineering Project-3 (Prototype & Testing)/ On job Plant Training
Pre- requisite:	Basic Knowledge of Cement Plant
Rationale:	The objectives of the Industrial Training include: To give students the opportunity to apply the knowledge and skills they have acquired on campus in a real-life work situation. To provide students with opportunities for practical, hands-on learning from practitioners in the student's areas of specialization. To expose students to a work environment, common practices, employment opportunities and work ethics in their relevant field. To enhance the employability skills of the students. To provide opportunities for students to be offered jobs in the organizations in which they undergo their Industrial Training.
a o i	

Course Outcomes:

PROJ-CT04.1: Understand the organizational environment and recognize the requirement of the organization and cope with the organizational scenario.

PROJ-CT04.2: Identify career paths taking into account their individual strengths and aptitude and prepare a report about the work experience in the organization.

PROJ-CT04.3: Develop the employability skills and Start-Up skills to increase his/her ability to engage in life-long learning

PROJ-CT04.4: Develop individual confidence to handle various engineering assignments and acquire life skills to meet societal challenges.

Scheme of Studies:

Course	CourseCode	Course Title	S	Total				
Category			CI	LI	SW	SL	Total Hours	Credits
							(CI+LI+SW+SL)	(C)
PROJ	PROJ-CT04	Engineering Project 3 (Prototype & testing)/ On job Plant Training	0	24	1	1	26	12

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

Page 727 of 734

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Engineering Project

			Sc	cheme of As	sessment (Marks)		
			Progres	et				
Course Category	Course Code	Course Title	5 Internal Progress Report Monthly 7 marks each (IPR)	Seminar one (TSN)	Class Attendance (TA)	Total Marks (IPR+TSN+TA)	End Semester Assessment Final Project Report + Seminar + Viva (ESA)	Total Marks (PRA+ESA)
PROJ	PROJ-CT04	Engineering Project-3 (Prototype & Testing)/ On job Plant Training	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

	On Job Industrial Training & Time Schedule	
Activity	Broad Area of Training	Time Schedule
Plant Data	Product information, Capacity of the plant, is the company quoted on the stock exchange, locally, international, if so how has their share price varied during your time with the company? (Type of industry - Public Limited, Private Limited, Co- operative sector etc.) Site Plan, /Plant Layout, Flow Diagram / Process Diagram	48 Hours (1Week)
Process Technology	Manufacturing processes, Drawings (if available), specification of the machinery in use, The type of fuel, process control parameters, CCR operation	48 Hours (1Week)
Raw Materials	Quality and source of the various raw materials used by the Cement plant.	96 Hours (2Weeks)
Limestone Mining	Limestone Mining practices, quarry scale of operation, Pit head Quality control	96 Hours (2Week)
Homogenization and Raw meal preparation	Crushing of limestone pre homogenization stock pile, grinding and homogenisation of raw meal	96 Hours (2Weeks)
Fuel	Quality, source and preparation of fuel for firing including Alternate Fuel (if used by the plant)	96 Hours (2Weeks)
Pyro-processing and Clinker manufacture	Rotary kiln operation, pre heater, pre calciner technique, process control	96 Hours (2Weeks)
Clinker cooling	Clinker cooling practices	96 Hours (2Weeks)
Energy Management	The energy requirements of the company (machinery, lighting, heating and or air conditioning): Source, connected load, Sur- plus electricity, Correlate items that can reveal major outcomes, e.g. how power factor in electricity bill reveals production rate. Waste heat recovery system and cogeneration of power.	48 Hours (1Week)
Material Handling Systems	Material handling system of cement plant	48 Hours (1Week)

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Maintenance Practices of the plant	Maintenance schedule / Programmers: Preventive Maintenance, Stoppages, Breakdown Maintenance, Calibration Systems	48 Hours (1Week)
Instrumentation and control	Process automation, Type of Instrumentation and Control, Fully / Partially automated, Office Automation, Value and system analysis	48 Hours (1Week)
Plant Utilities:	Own source of water or else , Water reservoir, Boiler, DM Plant, Electricity, Power, Compressor, Air Conditioning, Effluent Treatment Plant Production of Cement and Despatch Systems	48 Hours (1Week)
Quality Control & Quality Assurance	Quality control system of the cement plant and quality assurance practices in cement manufacturing process of cement	48 Hours (1Week)
Human Resource Planning and Management	Technical, Non-Technical, Administrative, Direct employment, Indirect employment, Turnover-capital employed	48 Hours (1Week)
Materials Management	Purchasing, Write-off policy, Inventory Control, Competitors, Export achievements, Building and Construction, Budgetary provisions, control and cost analysis, Budgets/Project planning/scheduling	48 Hours (1Week)
Safety and Hygiene	Environmental norms, Fire Safety norms, Industrial Safety norms.	48 Hours (1Week)
Marketing Strategy and Consumer Satisfaction measure	Marketing practices and consumer satisfaction measure taken by the cement plant	48 Hours (1Week)
Total Hours		1152 Hours (24 Weeks)

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

OR

(In campus Training)

	Prototype & Testing & Time Schedule	
Activity	Broad Area of Training	Time Schedule
Project Planning/ Problem Designing /Gap Identification	This involves clearly defining the problem or research question that needs to be addressed in the laboratory. It includes understanding the context, scope, and significance of the problem.	144 Hours (3 Weeks)
Literature Review	This helps in identifying gaps in knowledge and determining the best approach to address the problem.	144 Hours (3 Weeks)
Experimental Methodology Development & Interpretation	Analysis and interpretation in lab research involve processing data for patterns, using statistical methods for insights, and contextualizing findings to draw conclusions that advance scientific understanding and guide further research.	384 Hours (8 Weeks)
Result & Discussion	Results and discussion in laboratory research entail presenting findings, interpreting their significance, and contextualizing them within existing knowledge to address research objectives and implications effectively.	192 Hours (4 Weeks)
Report Writing	Research writing involves synthesizing literature, presenting methods and findings, interpreting results, and discussing implications succinctly to contribute knowledge, validate findings, and propose further exploration in the field.	288 Hours (6 Weeks)
Total Hours		1152 Hours (24 Weeks)

Curriculum Development Team

- 1. Prof. G C Mishra, Director Cement Technology, AKS University
- 2. Dr S K Jha, Head of the Department, Dept. of Cement Technology
- 3. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology
- 4. Dr Rohit Omar, Assistant Professor, Dept. of Cement Technology
- 5. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 6. Er Priyanka Singh, Assistant Professor, Dept. of Cement Technology
- 7. Er A K Bhattacharya, Faculty, Dept. of Cement Tech. (Former GM M/s Dalmia Cement)

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

8. Sh P.K. Pathak, Sr Faculty, Dept. of Cement Tech. (Former GM M/s JP cement)

9. Sh V K Singh, Sr Faculty, Dept. of Cement Tech. (Former GM M/s Maihar Cement)

10. Dr K Mohan, former Director General of National Council for Cement and Building Materials

11. Er. Ankur Mittal, Group Manager, National Council for Cement and Building Materials

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Program Title: B. Tech Cement Tech

Course Code: PROJ-CT04

Course Title: Engineering Project-3 (Prototype & Testing)/ On job Plant Training

		i		·			m Ou						Pr	ogram Spe	cific Outco	ome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturing technology and it application	Ability to use the research based innovative knowledge for sustainable development
PROJ-CT04.1: Understand the organizational environment and recognize the requirement of the organization and cope with the organizational scenario.	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PROJ-CT04.2: Identify career paths taking into account their individual strengths and aptitude and prepare a report about the work experience in the	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B. Tech. (Cement Technology) Program (Revised as on 01 August 2023)

organization.																
PROJ-CT04.3: Develop the employability skills and Start-Up skills to increase his/her ability to engage in life-long learning	3	3	3	3	3	3	3	2	3	1	3	3	3	2	3	1
PROJ-CT04.4: Develop individual confidence to handle various engineering assignments and acquire life skills to meet societal challenges.	3	3	3	3	3	3	3	2	3	2	3	2	3	3	3	1

Legend: 1 – Low, 2 – Medium, 3 – High