Curriculum Book

and Assessment and Evaluation Scheme

based on

Outcome Based Education (OBE)

and Choice-Based Credit System (CBCS)

> in Bachelor of Technology

4 Year Degree Program

Revised as on 01 August 2023 Applicable w.e.f. Academic Session 2023-24

AKS University

Satna 485001, Madhya Pradesh, India

Faculty of Engineering and Technology Department of Electrical Engineering

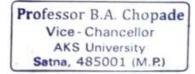
Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

CONTENTS


Sl No	Item	Page No
1	Forwarding	I
2	Vice Chancellor Message	П
3	Preface	Ш
4	Introduction	1
5	Vision & Mission of the Electrical Engineering Department	1
6	Programme Educational Objectives (POE)	1
7	Programme Outcome (POs)	2
8	General Course Structure and theme	4
9	Component of Curriculum	4
10	General Course Structure and Credit Distribution	5
11	Course code and definition	7
12	Category-wise Courses	8
13	Semester wise Course Structure	13
13	Semester wise Course details	13
13.1	Semester I	17
13.2	Semester -II	131
13.3	Semester -III	226
13.4	Semester -IV	308
13.5	Semester -V	391
13.6	Semester -VI	546
13.7	Semester - VII	674
13.8	Semester -VIII	840
13.9	Skill development Programme	846
13.10	Value Added Programme	854

have

H.O.D. (Elect. Engg., Faculty of Engg. & Tech A.K.S. University Satna (M.

Dean Faculity of Engineering & Technology AKS University Sherganj, Satna (MP), 485001

Bachopade

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Forwarding

Dear Esteemed Readers,

It is my distinct honor to extend a warm welcome to you on behalf of the Electrical Engineering Department at AKS University. As the Pro-Chancellor of this esteemed institution, I take immense pride in presenting this preface, reflecting our collective commitment to excellence, innovation, and transformative education.

The Electrical Engineering Department at AKS University stands as a pillar of academic distinction, embodying a tradition of excellence that spans generations. Rooted in a steadfast dedication to advancing knowledge and fostering intellectual curiosity, our department serves as a dynamic hub for cutting-edge research, groundbreaking innovation, and unparalleled academic rigor.

Under the visionary leadership of our faculty members, who are distinguished scholars and practitioners in their respective fields, the Electrical Engineering Department has consistently set new benchmarks of academic excellence and research prowess. Their unwavering commitment to scholarly inquiry, coupled with their passion for teaching and mentorship, ensures that our students receive a world-class education that prepares them to excel in the ever-evolving landscape of electrical engineering.

At AKS University, we recognize the transformative power of education not only to shape individual destinies but also to catalyze societal progress and drive economic development. In this spirit, our Electrical Engineering Department is deeply committed to equipping our students with the knowledge, skills, and ethical values necessary to become visionary leaders, innovative problem-solvers, and responsible global citizens.

Moreover, our department prides itself on fostering a culture of inclusivity, diversity, and collaboration, where students from diverse backgrounds come together to exchange ideas, challenge assumptions, and collaborate on interdisciplinary projects that transcend traditional boundaries. Through experiential learning opportunities, industry partnerships, and community engagement initiatives, we empower our students to make meaningful contributions to society and create positive change in the world.

As we embark on this journey of discovery, innovation, and academic excellence, I am confident that the Electrical Engineering Department at AKS University will continue to be a beacon of inspiration and a catalyst for positive change. Together, let us strive to push the boundaries of knowledge, unlock new frontiers of discovery, and harness the power of technology to build a brighter future for generations to come.

With warm regards,

Er. Anant Kumar Soni Pro-Chancellor AKS University

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

From the Desk of the Vice-Chancellor

The curriculum for Electrical Engineering at AKS University. It is with great pleasure that we present this comprehensive guide to the study of Electrical Engineering, a field that is not only at the forefront of technological advancements but also plays a pivotal role in shaping the future of our world.

Electrical Engineering is a dynamic and ever-evolving discipline that encompasses the study, design, and application of electrical systems. From power generation and distribution to electronics, telecommunications, and beyond, the scope of Electrical Engineering is vast and multifaceted. It is a field that bridges theory with practical application, offering opportunities to innovate, problem-solve, and contribute to society in profound ways.

At AKS University, our Electrical Engineering curriculum is designed to provide students with a solid foundation in the fundamental principles of the discipline while also fostering creativity, critical thinking, and technical expertise. Through a combination of rigorous coursework, hands-on laboratory experiences, and real-world projects, students will develop the skills and knowledge necessary to excel in the field of Electrical Engineering.

This curriculum has been carefully crafted to reflect the latest advancements in the field, ensuring that our students are well-prepared to tackle the challenges of tomorrow. Whether you aspire to work in renewable energy, telecommunications, robotics, or any other area within the realm of Electrical Engineering, our program will equip you with the tools and resources you need to succeed.

As you embark on this educational journey, I encourage you to approach your studies with curiosity, enthusiasm, and a passion for learning. Take advantage of the opportunities available to you, seek out mentorship from faculty members and industry professionals, and never stop pushing the boundaries of what you thought possible.

On behalf of the faculty and staff of AKS University, I extend my best wishes to you as you pursue your academic and professional goals in the field of Electrical Engineering. May this curriculum serve as a guiding light on your path to success?

AKS University, Satna 01 August 2023 Professor B. A. Chopade Vice- Chancellor

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Preface

Dear Readers,

It is with great pleasure and pride that we present to you this preface for the Electrical Engineering Department at AKS University. As we embark on this journeyof discovery and innovation, we are reminded of our commitment to excellence, advancement, and service to society.

At AKS University, our Electrical Engineering Department stands as a beacon of knowledge and innovation in the field. With a rich legacy of academic excellence, research prowess, and industry partnerships, we have consistently strived to nurture the brightest minds and push the boundaries of electrical engineering.

Our department boasts a distinguished faculty comprising seasoned academics, researchers, and industry experts who are dedicated to imparting cutting-edge knowledge and skills to our students. Through a blend of rigorous coursework, hands-on laboratory experiences, and industry internships, we ensure that our graduates are not only well-versed in theory but also equipped with the practical know-how to tackle real-world challenges.

In line with our university's ethos of holistic development, we foster a culture of innovation and entrepreneurship within our department. We encourage our students to think creatively, explore new ideas, and develop solutions that have the potential to transform the world. Through various initiatives such as hackathons, innovation challenges, and collaborative projects, we provide a platform for our students to showcase their ingenuity and make meaningful contributions to society.

Furthermore, our department is committed to staying at the forefront of research and technological advancement. From renewable energy systems and smart grids to artificial intelligence and machine learning applications in electrical engineering, our faculty members are actively engaged in cutting-edge research that addresses the pressing needs of our time.

As we look towards the future, we remain steadfast in our commitment to nurturing the next generation of electrical engineers who will lead with integrity, innovation, and a sense of purpose. We invite you to join us on this exciting journey as we strive to make a positive impact on the world through the power of electrical engineering.

Sincerely,

Dr. Rama Shukla Head Electrical Engineering Department AKS University

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Introduction:

The Department of Electrical Engineering is under the Faculty of Engineering and technology. it prepares the students to meet the demands of changing industrial needs and molds them into successful and ethical professionals, globally accepted in the field of Electrical Engineering and allied fields to contribute nation building.

The Curriculum of the department is prepared with inclusion of various advance courses as per current industrial scenario with focus on areas such as: Network analysis & synthesis, machine analysis & design; control engineering; analog & digital electronics; microprocessor & micro controllers; Artificial Intelligence; Measurement and Instrumentation and power systems etc.

Sincere efforts have been made to improve knowledge and skills of students as per current industrial demands. The department focuses on labs, Industrial Visits, Vocational Trainings, Projects and Internship training to enhance proper understanding of theoretical learning.

The Department has experienced and highly qualified faculty with strong research and professional expertise. Apart from teaching undergraduate and postgraduate courses, the faculty members are also active in research and development.

Vision:

To attain excellence in technical education and research related to Electrical Engineering by transforming students into responsible professionals to contribute in sustainable development of industry, society and nation.

Mission:

- M 01: Achieve academic excellence in various domains of Electrical Engineering through an innovative teaching-learning process.
- **M 02:** develop as a center for education and research
- M 03: Enhancing resource generation through industrial collaboration and Training programs etc.
- M 04: Enable the entrepreneurial skills and competence integrated with teamwork, leadership, social and ethical qualities.

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

- **PEO 01:** Plan, design, construct, maintain and improve Electrical engineering systems that are technically sound, economically feasible and socially acceptable.
- **PEO 02:** Apply analytical, computational and experimental techniques to address the challenges faced in Electrical and allied engineering streams.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

- **PEO 03:** Communicate effectively using conventional platforms as well as innovative / online tools and demonstrate collaboration, networking & entrepreneurial skills.
- **PEO 04:** Exhibit professionalism, ethical attitude, team spirit and pursue lifelong learning to achieve career, organizational and social goals

Program Outcomes (POs)

B Tech Electrical Engineering Graduate will able to perform:

- **PO1: Engineering Knowledge:** Graduates should possess a solid foundation of knowledge in mathematics, science, and engineering principles, enabling them to analyze and solvecomplex engineering problems.
- **PO2. Problem Solving**: Graduates should be able to identify, formulate, and solve engineering problems using critical thinking, creativity, and appropriate engineering methods.
- **PO3**. **Design Skills**: Graduates should be capable of designing electrical and electronic systems, components, or processes to meet desired needs while considering factors such as safety, ethics, and sustainability.
- **PO4. Laboratory Skills**: Graduates should be adept at using modern engineering tools and techniques in both theoretical and practical contexts, including the ability to design and conduct experiments, as well as to analyze and interpret data.
- **PO5. Teamwork**: Graduates should be able to work effectively as part of interdisciplinary teams, understanding their roles and responsibilities, and contributing constructively to achieve common goals.
- **PO6.** Communication Skills: Graduates should be able to communicate effectively, both in written and oral forms, with technical and non-technical audiences, using appropriate visual aids and documentation.
- **PO7. Ethical and Professional Behavior**: Graduates should demonstrate ethical and professional conduct in engineering practice, understanding the societal and environmental impacts of their work.
- **PO8. Lifelong Learning**: Graduates should recognize the need for ongoing learning and professional development, staying current with technological advancements and evolving engineering practices.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

- **PO9. Global and Societal Impact**: Graduates should understand the impact of engineering solutions on global, economic, environmental, and societal contexts.
- **PO10. Project Management**: Graduates should possess the ability to plan, execute, and manage engineering projects, considering constraints such as time, resources, and scope.
- **PO11. Adaptability**: Graduates should be able to adapt to new technologies, tools, and techniques, as well as to changing work environments and emerging engineering trends.
- **PO12. Professional Development**: Graduates should demonstrate an awareness of the engineering profession, including its history, contemporary issues, and potential future directions.

Program Specific Outcomes (PSOs)

On completion of B. Tech. Electrical Engineering program, the students will achieve the following program specific outcomes: -

PSO 1: Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society

PSO 2: Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.

PEO	M 1	M 2	M 3	M 4
PEO 1	3	3	2	2
PEO 2	3	3	3	2
PEO 3	2	2	3	3
PEO 4	2	3	3	2

Consistency / Mapping of PEOs with Mission of the Department

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) "-": No correlation

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

GENERAL COURSE STRUCTURE & THEME

1. Definition of Credit

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
2 Hours Practical (P) per week	1 Credit

2. Range of Credits:

In the light of the fact that a typical Model Four-year Under Graduate degree program in Engineering has about 160 credits, the total number of credits proposed for the four-year B. Tech. in Electrical Engineering is kept as 166 considering NEP-20 and NAAC guidelines.

3. Structure of UG Program in Electrical Engineering:

The structure of UG program in Electrical Engineering shall have essentially the following categories of courses with the breakup of credits as given:

Components of the Curriculum

(Program curriculu	im grouping based	on course components)
--------------------	-------------------	-----------------------

Sl No	Course Component	% of total number of credits of the Program	
1	Basic Sciences (BSC)	14.46	24
2	Engineering Sciences (ESC)	13.86	23
3	Humanities and Social Sciences (HSMC)	11.46	19
4	Program Core (PCC)	31.93	53
5	Professional Electives (PEC)	10.84	18
6	Open Electives (OEC)	7.22	12
7	Research Projects/ On job Plant Training (OJT)	7.22	12
8	Major Project (PROJ)	2.41	4
9	Seminar (OC)	0.60	1
	Total	100.00	166

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

General Couse Structure and Credit Distribution Curriculum of B.Tech. Electrical Engineering

Currentum of D. reen. Electrical Engineering					
Semester - I		Semester - II			
Course Title	Credit	Course Title	Credit		
1. Physics-1	3:1:2 = 5	1. Chemistry-1	3:0:2=4		
2. Mathematics-1	3:1:0 = 4	2. Mathematics-2	3:1:0=4		
3. Biology for Engineers	3:0:0 = 3	3. Programming for Problem Solving	3:0:4 = 5		
4. Basic Electrical Engineering	2:1:2 = 4	4. Manufacturing Practice Workshop	1:0:4=3		
5. Engineering Graphics & Design	1:0:4 = 3	5. Communication Skills (English)	3:0:0 = 3		
6. Basic Civil Engineering	3:0:0=3	6. Indian Knowledge system.	2:0:0=2		
7. Sustainable Development goals	2:0:0=2	7. Sports and Yoga	2:0:0=0		
8. Design Thinking and Idea lab	0:0:2=1				
Total Credit	25	Total Credit	21		

Semester - III		Semester - IV	
Course Title	Credit	Course Title	Credit
1. Electrical circuit and analysis	3:1:2 = 5	1. Digital Electronics	3:0:2 = 4
2. Analog Electronics	3:0:2 = 4	2. Electrical Machine-II	3:0:2 = 4
3. Electrical Machine-I	3:0:2 = 4	3. Power Electronics	3:0:2 = 4
4. Mathematics-III	3:1:0 = 4	4. Signal and System	2:1:0 = 3
5. Engineering Mechanics	3:0:2 = 4	5. Electromagnetic fields	3:1:0 = 4
6. Universal Human Values	3:0:0 = 0	6. Principle of Management	2:1:0 = 3
		7. Environment Science (Audit)	2:0:0=0
Total Credit	21	Total Credit	22

Semester - V		Semester - VI	
Course Title	Credit	Course Title	Credit
1. Power System-1	3:0:2 = 4	1. Power System -II	3:0:2=4
2. Control System	3:0:2 = 4	2. Measurement and Instrumentation	3:0:2=4
3. Microprocessor and Microcontrollers	3:0:2 = 4	3. Professional Elective-2	3:0:0 = 3
4. Professional Elective-1	3:0:0 = 3	4. Professional Elective-3	3:0:0 = 3
5. Open Elective-1	3:0:0 = 3	5. Open Elective-3	3:0:0 = 3
6. Open Elective-2	3:0:0 = 3	6. Electronics Design Lab	0:0:2 = 1
7. Industrial Psychology/ Operations Research	3:0:0 = 3	7. Project Management	3:0:0 = 3
Total Credit	24	Total Credit	21

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester -VII		Semester - VIII	
Course Title	Credit	Course Title	Credit
1. Professional Elective-4	3:0:0 = 3		
2. Professional Elective-5	3:0:0 = 3		
3. Professional Elective-6	3:0:0 = 3	Project work-II / On job	
4. Open Elective-4	3:0:0 = 3	plant training	0:0:24 = 12
5. Project Work-1	0:0:8 = 4	P	0.012.1
6. Finance and Accounting	3:0:0 = 3		
7. Seminar	0:0:2 = 1		
Total Credit	20	Total Credit	12

- a. **Humanities & Social Sciences & Mgt. Courses (HSMC):** Any 3 courses from the list of those offered besides 5 compulsory subjects.
- b. **Open Elective courses (OEC)**: Any 4 courses (from any department), based on individual interest and project.
- c. **Industry internship**: Internship in industry in 6th and 7th semester is compulsory. Longer internship for 6-monthy (12 credits) can be taken in VIIIth semester, in lieu of Engineering Project. The internship must be properly evaluated.

Total Credit: 166

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Course code and definition:

L	=	Lecture
Т	=	Tutorial
Р	=	Practical
С	=	Credit
BSC	=	Basic Science Courses
ESC	=	Engineering Science Courses
HSMO	C =	Humanities and Social Sciences including Management courses
PCC	=	Professional core courses
PEC	=	Professional Elective courses
OEC	=	Open Elective courses
LC	=	Laboratory course
MC	=	Mandatory courses

Course level coding scheme:

Three-digit number (odd numbers are for the odd semester courses and even numbers are for even semester courses) used as suffix with the Course Code for identifying the level of the course. Digit at hundred's place signifies the year in which course is offered. e.g.

101, 102 ... etc. for first year.

201, 202 Etc. for second year.

301, 302 ... for third year.

401. 402--- for Fourth year

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Category-wise Courses

HUMANITIES & SOCIAL SCIENCES COURSES [HS] & MANAGEMENT COURSES

SI.	Code No.	Subject	Semester	Credits
1	HSMC 01	Communication Skills / English (Compulsory)	2	3:0:0 =3
2	HSMC 02	Principle of management (Compulsory)	4	2:1:0 = 3
3	HSMC 03	Industrial Psychology	5	2.0.0 -2
4	HSMC 04	Operations Research	-	3:0:0 =3
5	HSMC 05	Project Management	6	3:0:0 =3
6	HSMC 06	Finance & Accounting	7	3:0:0 =3
7	HSMC07	Indian Knowledge system (Compulsory)	2	2:0:0 =2
8	HSMC 08	Sustainable Development Goals (Compulsory)	1	2:0:0 =2
9	HSMC09	YOGA and Sports (Compulsory)	2	2:0:0=0
10	HSMC10	Universal Human Values	3	3:0:0 =0
Total Credits:				

BASIC SCIENCE COURSE [BSC] (TOTAL 6)

Sl.	Code No.	Subject	Semester	Credits
1	BSC 01	Physics-1 (Electromagnetism)	1	3:1:2 =5
2	BSC 02	Mathematics-1 (Calculus & Linear Algebra)	1	3:1:0 =4
3	BSC 03	Chemistry-1	2	3:0:2 =4
4	BSC 04	Mathematics-2 (ODE, Complex variables)	2	3:1:0 =4
5	BSC 05	Biology for Engineers	2	3:0:0 =3
6	BSC 06	Mathematics-3 (PDE, Prob/Stat)	3	3:1:0 =4
Total Credits:				

ENGINEERING SCIENCE COURSE [ESC] (Total 6)

Sl.	Code No.	Subject	Semester	Credits			
1	ESC 01	Basic Electrical Engineering	1	2:1:2 =4			
2	ESC 02	Engineering Graphics & Design	1	1:0:4 =3			
3	ESC 03	Design Thinking + Idea Lab (Audit)	1	0:0:2 =1			
4	ESC 04	Programming for Problem Solving	2	3:0:4 =5			
5	ESC 05	Manufacturing Practice Workshop	2	1:0:4 =3			
6	ESC06	Basic Civil Engineering	1	3:0:0=3			
7	ESC 07	Engineering Mechanics	3	3:0:2 =4			
	Total Credits:						

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SI. Code No. Subject Semester Credits PCC-EE01 **Electrical Circuit Analysis** 3:1:2=51 3 3 2 PCC-EE 02 Analog Electronics 3:0:2=43 3 PCC-EE03 **Electrical Machines-I** 3:0:2 =4 4 PCC-EE 04 **Digital Electronics** 4 3:0:2 =4 5 PCC-EE05 **Electrical Machine-2** 4 3:0:2 =4 PCC-EE06 Power Electronics 4 3:0:2=46 7 PCC-EE07 Signal and System 4 2:1:0 =3 8 PCC-EE08 **Electromagnetic Fields** 4 3:1:0 =4 9 PCC-EE 09 5 Power System-1 3:0:2 =4 10 PCC-EE 10 Control System 5 3:0:2 =4 PCC-EE 11 Microprocessor and Microcontroller 5 11 3:0:2 =4 12 PCC-EE 12 Power System-2 6 3:0:2 =4 13 PCC-EE 13 Measurement and Instrumentation 3:0:2 =4 6 14 PCC-EE 14 Electronic Design Lab 6 0:0:2 =1 **Total Credits:** 53

PROFESSIONAL CORE COURSES [PCC] (Total 13)

PROFESSIONAL ELECTIVE [PEC]

Total 6 to be taken, at least one from each group based on individual interest.

SI.	Code No.	Subject	Semester	Credits				
		Professional Elective-1 (any one)						
1	PEC - EE 01	Wind and solar energy system	5	3:0:0 = 3				
2	PEC - EE 02	Electrical Drives	5	3:0:0 = 3				
	Professional Elective-2 (any one)							
1	PEC-EE 03	Power system Protection	6	3:0:0=3				
2	PEC - EE 04	HVDC Transmission System	0	5.0.0 -5				
		Professional Elective-3 (any one)						
1	PEC-EE 05	High Voltage Engineering	6	2.0.0 -2				
2	PEC-EE 06	Power Quality and FACTS	6	3:0:0=3				
		Professional Elective-4 (any one)						
1	PEC-EE 07	Electrical Energy Conversion and Auditing						
2	PEC-EE 08	Electrical Machine Design	7	3:0:0=3				
3	PEC - EE 09	Computational Electromagnetics						

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

		Professional Elective-5 (any one)					
1	PEC-EE 10	Power System Dynamics and Control					
2	PEC-EE 11	Electric and Hybrid Vehicles	7	3:0:0 =3			
3	PEC-EE 12	Advance electrical Drives					
	Professional Elective-6 (any one)						
1	PEC-EE 13	Industrial Electrical System					
2	PEC-EE 14	Digital Control System	7	3:0:0 =3			
3	PEC-EE 15	Digital Signal Processing					
	Total Credit						

OPEN ELECTIVE (Total 4 from the Open elective subjects)

Sl.	Code No.	Subject	Semester	Credits				
		Open Elective-1						
1	OEC 01	Electronic Devices						
2	OEC 02	Data Structures and Algorithms	5	3:0:0=3				
3	OEC 03	Analog and Digital Communication						
	Open Elective-2							
1	OEC 04	Computer Network	5	2.0.0-2				
2	OEC 05	Embedded System	5	3:0:0=3				
Open Elective-3								
1	OEC 06	Power Plant Engineering						
2	OEC 07	Strength of material	6	3:0:0=3				
3	OEC 08	Fluid Machinery						
		Open Elective-4						
1	OEC 09	Electrical Materials.						
2	OEC 10	Modern Manufacturing Process.	7	3:0:0=3				
3	OEC 11	Internet of Things.	/	5.0:0=5				
4	OEC 12	Big Data Analysis.						
		Total Credit		12				

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

PROJECTS								
Sl.								
1	PROJ-EE 01	Project Work-I	7	0:0:8=4				
2	PROJ-EE 02/OJT-EE 01	Project work-II / On job plant Training	8	0:0:24=12				
		Total Credit		16				

OTHER COURSES

Sl.	Code No.	Subject	Semester	Credits
3	OC 01	Environmental Science	4	2:0:0=0
4	OC 02	Seminar	7	0:0:2 =1
		Total Credit		01

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Induction Program

Induction program for students to be offered right at the start of the first year. It ismandatory. AKS University has designed an induction program for 1st year student, details are below:

- i. Physical activity
- ii. Creative Arts
- iii. Universal Human Values
- iv. Literary
- v. Proficiency Modules
- vi. Lectures by Eminent People
- vii. Visits to local Areas
- viii. Familiarization to Dept./Branch & Innovations

Mandatory Visits/ Workshop/Expert Lectures:

- i. It is mandatory to arrange one industrial visit every semester for the students.
- ii. It is mandatory to conduct a One-week workshop during the winter break after fifth semester on professional/ industry/ entrepreneurial orientation.
- iii. It is mandatory to organize at least one expert lecture per semester for each branch by inviting resource persons from industry.

Evaluation Scheme:

1. For Theory Courses:

- The weightage of Internal assessment is 50% and
- End Semester Exam is 50%

The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

2. For Practical Courses:

- The weightage of Internal assessment is 50%
- End Semester Exam is 50%

The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

3. For Summer Internship / Projects / Seminar etc.

Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

<u>Semester wise Course Structure</u> Semester wise Brief of total Credits and Teaching Hours

Semester	L	Т	Р	Total Hour	Total Credit
Semester -I	17	03	10	30	25
Semester -II	17	01	10	28	21
Semester -III	15	02	08	25	21
Semester - IV	18	03	06	27	22
Semester -V	21	00	06	27	24
Semester -VI	18	00	06	24	21
Semester - VII	15	00	10	25	20
Semester -VIII	0	0	24	24	12
Total	121	9	80	210	166

Details of Semester Wise Course Structure

Semester – I

SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
1	BSC	BSC 101	Physics-1	3	1	2	6	5
2	BSC	BSC 102	Mathematics-1	3	1	0	4	4
3	BSC	BSC 105	Biology for Engineers	3	0	0	3	3
4	ESC	ESC 101	Basic Electrical Engineering	2	1	2	5	4
5	ESC	ESC 102	Engineering Graphics & Design	1	0	4	5	3
6	ESC	ESC 103	Design Thinking & Idea Lab	0	0	2	2	1
7	ESC	ESC106	Basic Civil Engineering	3	0	0	3	3
8	HSMC	HSMC08	Sustainable Development Goals	2	0	0	2	2
			Total	17	3	10	30	25

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester – II

SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
1	BSC	BSC 103	Chemistry-1	3	0	2	5	4
2	BSC	BSC 104	Mathematics-2	3	1	0	4	4
3	ESC	ESC 104	Programming for Problem Solving	3	0	4	7	5
4	ESC	ESC 105	Manufacturing Practice Workshop	1	0	4	5	3
5	HSMC	HSMC 01	Communication Skills (English)	3	0	0	3	3
6	HSMC	HSMC 07	Indian Knowledge System	2	0	0	2	2
7	HSMC	HSMC 09	Sports, NSS/NCC	2	0	0	2	0
	Total					10	28	21

Semester – III

SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
1	PCC	EE 201	Electrical circuit and analysis	3	1	2	6	5
2	PCC	EE 202	Analog Electronics	3	0	2	5	4
3	PCC	EE 203	Electrical Machine-I	3	0	2	5	4
4	BSC	BSC 206	Mathematics-III	3	1	0	4	4
5	ESC	ESC 207	Engineering Mechanics	3	0	2	5	4
6.	HSMC	HSMC10	Universal Human Values	3	0	0	3	0
	Total					8	25	21

Semester – IV

SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
1	PCC	EE 204	Digital Electronics	3	0	2	5	4
2	PCC	EE 205	Electrical Machine-II	3	0	2	5	4
3	PCC	EE 206	Power Electronics	3	0	2	5	4
4	PCC	EE 207	Signal and System	2	1	0	3	3
5	PCC	EE 208	Electromagnetic fields	3	1	0	4	4
6	HSMC	HSMC02	Principle of Management	2	1	0	3	3
7	OTHER	OC201	Environmental Science (Audit)	2	0	0	2	0
	•		Total	18	3	6	27	22

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

			Semester V					
SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
1	PCC	EE 309	Power System-1	3	0	2	5	4
2	PCC	EE 310	Control System	3	0	2	5	4
3	PCC	EE 311	Microprocessor and Microcontrollers	3	0	2	5	4
4	PEC	EE301 EE302	Professional Elective-1	3	0	0	3	3
5	OEC	OEC 301 OEC 302 OEC 303	Open Elective-1	3	0	0	3	3
6	OEC	OEC 304 OEC 305	Open Elective-2	3	0	0	3	3
7	HSMC	HSMC 03 HSMC 04	Industrial Psychology Operations Research	3	0	0	3	3
	Total						27	24

Semester – V

Semester – VI

SN	Category	Code	Course Title		Т	Р	Total Hour	Credit
1	PCC	EE 312	Power System -II	3	0	2	5	4
2	PCC	EE 313	Measurement and Instrumentation	3	0	2	5	4
3	PCC	EE 314	Electronics Design Lab	0	0	2	2	1
4	PEC	EE 303 EE 304	Professional Elective-2		0	0	3	3
5	PEC	EE 305 EE 306	Professional Elective-3	3	0	0	3	3
6	OEC	OEC 306 OEC 307 OEC 308	Open Elective-3		0	0	3	3
7	HSMC	HSMC 05	Project Management	3	0	0	3	3
			Total	18	0	6	24	21

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester VII

SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
		EE 407						
1	PEC	EE 408	Professional Elective-4	3	0	0	3	3
		EE 409						
		EE 410						
2	PEC	EE 411	Professional Elective-5	3	0	0	3	3
	EE 412							
		EE 413						
3	PEC	EE 414	Professional Elective-6	3	0	0	3	3
		EE 415						
		OEC 409						
4	OEC	OEC 410	Open Elective 4	3	0	0	3	3
4	UEC	OEC 411	Open Elective-4	3	0			3
		OEC 412						
5	PROJ	PROJ-EE 401	Project work-1(Literature review)		0	8	8	4
6	HSMC	HSMC 06	Finance and Accounting		0	0	3	3
7	OTHER	OC402	Seminar	0	0	2	2	1
	Total 15 0 10 25 20							

Semester VIII

SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
1	PROJ/ OJT	PROJ-EE 402/ OJT- EE 401	Project work-2 (Design and testing)/ On Job Industrial Training	0	0	24	24	12
	Total					24	24	12

Total credit: 166

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester-I

Course Title: Course Code:	Physics-I BSC 101
Prerequisite:	Students should review the fundamentals of Electrostatics, Magneto statics, Wave optics
Trerequisite.	and Modern physics.
Rationale:	The program aims to develop advanced problem-solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced physics expertise.

Course Outcomes (CO): After the completion of this course students will be able to:

- **BSC 101.1:** Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems and to relate to applications to electron optic device and CRO.
- **BSC 101.2:** Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.
- **BSC 101.3:** Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem.
- **BSC 101.4:** Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure
- **BSC 101.5:** Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering.

Scheme of Studies:

Cours				Sche	me of stud	lies (Hou	urs/Week)	Total	
e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credit s (C)	
Basic Science Course (BSC)	BSC 101	Physics- 1	4	2	1	1	8	5	

Legend:

- **CI:** Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others)
- LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW: Sessional Work (includes assignment, seminar, mini project etc.)

SL: Self Learning,

C: Credits

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Schei	me of Ass	essment	(Marks)		
			Pro	Progressive Assessment (PRA)						Total
			Class/	Class	Semin	Class	Class	Total	Semest	Mar
Course	Co		Home	Test 2	ar one	Activ	Atten	Marks	er	ks
Categor		Course	Assignm	(2 best	(SA)	ity	dance	(CA+C	Assess	(PRA
Calegoi	us e	Title	ent 5	out of 3)		any	(AT)	T+SA	ment	+
У	Co		number	10		one		+CAT	(ESA)	ESA)
	de		3 marks	marks		(CAT		+AT)		
	uc		each	each)				
			(CA)	(CT)						
	BS	Physics								
BSC	С	-I	15	20	5	5	5	50	50	100
	101									

Practical

			Schei	me of Assessment	(Marks)		
			Progressive A	ssessment (PRA))		End	Total
					Class	Total	Semest	Mar
Cours	Cous				Atten	Marks	er	ks
e	e	Course	Lab Assignments		dance	(CA+C	Assess	(PRA
Categ	Code	Title	5 number	Viva	(AT)	T+SA	ment	+
ory	Coue		7 marks each	viva		+CAT	(ESA)	ESA)
ory			(LA)			+AT)		
BSC	BSC	Physics	35	10	5	50	50	100
bbe	101-L	-I Lab	55	10	5	50	50	100

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

BSC 101.1: Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	6
SW	1
SL	2
Total	21

Session Outcomes	Laboratory Instruction	Class room Instruction (CI)	Self-Learning (SL)
(SOs)	(LI)		
	1.Measuring the	Unit-1.0	
SO1.1	magnetic field	1.1 Electric charge electric	SL.1
Understand the concept of	for a straight	field intensities	Define Electric
Electric charge electric field	conductor and	1.2 electrostatic potential,	charge electric field
intensities.	on circular	Calculation of electric field	intensities
SO1.2	conductor	and electrostatic potential	
Understand the	loops	for a charge distribution	SL.2
electrostatic potential,	2.Measuring	1.3 Introduction to.	Define Quantization&
Calculation of electric	the magnetic	Quantization &	conservation of charge
field and electrostatic	field for a	conservation of charge	
potential for a charge	straight	1.4 Coulomb's law, vector	
distribution	conductor	form of Coulomb's law	
SO1.3	andon	1.5 superposition principle,	
Understand the	circular	charge densities, electric	
Dielectrics, Dielectric	conductor	field	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

substance in an electric	loops at small	1.6 Dielectrics, Dielectric	
field	currents	substance in an electric	
		field,	
So1.4	3. Measuring the	1.7 V-I phase	
Understand Biot Savart	magnetic field for	dependence for ideal &	
law & its application	a straight	real dielectrics	
	conductor and on	1.8 Biot Savart law & its	
So1.5	Straight Wire	application	
Understand the magnetic		1.9 current carrying	
materials.	-	conductor moving charge	
		in a magnetic field	
		1.10 comparison of	
		electric field and	
		magnetic field	
		1.11 magnetic induction	
		and intensity,	
		magnetization	
		1.12 classification of	
		magnetic materials.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Analyze and sketch the graph of a V-I phase dependence for ideal & real dielectrics
- ii. Calculation of electric field and electrostatic potential for a charge distribution
- iii. Apply Biot Savart law in different problems.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

C. Other Activities (Specify):

Quiz, Class Test.

BSC 101.2: Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Approximate Hours

Item	AppX Hrs
Cl	12
LI	6
SW	1
SL	2
Total	21

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO2.1		Unit-2.0	
Define and	1. To determine the		SL.1
understand the basic	Refractive Index of	2.1 coherent sources,	Define coherent
concepts of	Prism by using	principle of superposition	sources, principle of
coherent sources,	spectrometer.	2.2 Interference: -,	superposition.
etc		definition and types of	
	2. To determine the	interference	SL.2
SO2.2	wavelength of	2.3 Interference from	Define Fresnel
Define and	sodium light by using	parallel thin films	diffraction,
understand the basic	Newton's Ring	2.4 wedge shaped films	Fraunhofer diffraction
concepts of	apparatus	2.5 Newton's rings	from a single slit
Interference of		2.6 Michelson's	diffraction.
light.	3. to determine the	Interferometer,	
	wavelength of	experiments and their	
SO2.3	prominent lines of	applications	
Understand the	mercury by plane	2.7 Michelson's	
Michelson's		Interferometer,	
Interferometer,		experiments and their	
		applications	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

experiments and	transmission	2.8 Diffraction: -	
their applications	diffraction grating	Fresnel diffraction,	
		2.9 Fraunhofer	
SO2.4		diffraction from a single	
Define and		slit diffraction	
understand the basic		2.10 double slit	
concepts of		diffraction	
diffraction of light.	-	2.11 N-Slit Diffraction	
		grating	
SO2.5		2.12 dispersive power of	
Understand		grating and, resolving	
dispersive power of		power of grating.	
grating and,			
resolving powerof			
grating.			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the application of Interference of light in daily life.
- ii. Write the application of diffraction of light in daily life.
- iii. Write a short note on Newton's rings with example.
- iv. Describe the method of calculation of Michelson's Interferometer with example

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

BSC 101.3: Learn the basic concepts of dual nature of matter and wave packet and apply them to analyzevarious relevant phenomenon and to solve related numerical problem

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Approximate Hours

Item	AppX Hrs
C1	12
LI	6
SW	1
SL	2
Total	21

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
		Unit-3.0	SL.1
SO3.1	1. To determine	3.1 Introduction to	Define Wave particle
Define Quantum	Planck's Constant		duality.
mechanics.	and work function	3.2 Wave particle duality	
	using photo	3.3 de-Broglie's concept	SL.2
SO3.2	electric effect.	of matter waves	Define operators in
Understand the Wave	2. Davisson–	3.4 Free-particle wave	quantum mechanics.
particle duality	Germer	function and wave-packets	
	experiment - this	3.5 Phase & Group	
SO3.3	showed the	velocities and their	
Explain operators in	existence of	relationship	
quantum mechanics.	electron matter	3.6 Compton Effect	
	waves and that	3.7 Uncertainty principle	
SO3.4	they would be	with elementary proof and	
Understand Uncertainty	diffracted by a	applications	
principle with	crystal	3.8 Uncertainty principle	
elementary proof and	3. Compton	with elementary proof and	
applications	effect - evidence	applications	
	for particle nature	3.9 operators	
	of light-		

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO3.5 To Understand Time- dependent and time independent Schrodinger	3.10 Time-dependent and time independent Schrodinger equation for wave function.
equation for wave	3.11 Time-dependent
function.	Schrodinger equation for wave function.
	3.12 time independent
	Schrodinger equation for
	wave function

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the Application of Uncertainty principle with elementary proof in real life.
- ii. Explain the difference between Time-dependent and time independent Schrodinger equation for wave function.
- iii. Write the properties of wave-packets.
- iv. Define Phase & Group velocities.

b. Mini Project:

Oral presentation,

c. Other Activities (Specify):

Quiz, Class Test.

BSC 101.4: Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure

Approximate Hours

Item	AppX Hrs
Cl	12
LI	6
SW	1
SL	2
Total	21

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO4.1		Unit-4.0	SL.1
Understand the Free	1.To draw the	4.1 Free electron theory of	Define Free electron
electron theory of	characteristics curve of	metals	theory of metals
metals	p-n junction.	4.2 Fermi level of	
		Intrinsic and extrinsic	SL.2
SO4.2	2.To draw the	4.3 Kronig-Penney model	Define semiconductors
Understand the	characteristics curve of	(no derivation) and origin	andit's classification.
Fermi level of	zener diode	of energy bands.	
Intrinsic and		4.4 classification of	
extrinsic	3.Study the temperature	conductors,	
	dependence of	semiconductors and	
SO4.3	resistivity of a	insulators on the basis of	
Understand the	semiconductor (Four	energy band theory	
Kronig-Penney	probe method) and to	4.5 classification of	
model and origin of	determine band gap of	conductors,	
energy bands.	experimental material	semiconductors and	
	(Ge).	insulators on the basis of	
SO4.4	-	energy band theory	
Understand the		4.6 semiconductors and	
intrinsic & extrinsic		it's classification	
semiconductor		4.7 semiconductors and	
		it's classification	
SO4.5		4.8 intrinsic & extrinsic	
Understand the		semiconductor	
tunnel diode, and		4.9 P-N junction	
it's applications		4.10 Zener diode	
		4.11 tunnel diode, and it's	
		applications,	
		4.12 Hall effect	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain Kronig-Penney model and origin of energy bands.
- 2. Explain Free electron theory of metals.
- **3.** Explain Hall effect with example

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

b. Mini Project:

Oral presentation,

C. Other Activities (Specify):

Quiz, Class Test.

BSC 101.5: Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	6
SW	1
SL	2
Total	21

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO5.1		Unit-5.0	SL.1
Understand and	1. To study the	5.1 Absorption	Define Absorption,
state the	intensity distribution	5.2 Stimulated and	Stimulated and
Fundamental	due to diffraction	Spontaneous emission	Spontaneous
properties of laser	from single slit and to	5.3 coherence, pumping,	emission, coherence,
beam	determine the slit	population Inversion	pumping, population
	width.	5.4 Principle & properties	Inversion.
SO5.2		of laser beam	
Understand and	2. Study the	5.5 Einstein's theory of	SL.2
state the Einstein's	characteristics of led	matter radiation	Define Principle &
theory of matter	and laser sources.	interaction and A and B	properties of laser
radiation	-	coefficients	beam.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

interaction and A and B coefficients SO5.3 Understand the different types of lasers SO5.4 Understand Solid- State laser (Ruby	3.Energy gap of a material of p-n junction	 5.6 different types of lasers: gas laser (He-Ne), 5.7 different types of lasers: gas laser (He-Ne), 5.8 different types of lasers: gas laser (He-Ne), 5.9 Solid-State laser (Ruby & Nd-YAG) 5.10 solid-state laser (Ruby& Nd-YAG) 5.11 applications of lasers 	
& Nd-YAG) SO5.5 Understand applications of lasers in science, engineering and medicine.		in science, engineering and medicine.5.12 applications of lasers in science, engineering and medicine.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the Principle & properties of laser beam.
- ii. Write the applications of lasers in science, engineering and medicine.

b. Mini Project:

Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+ Sl)
BSC 101.1 Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems and to relate to applications to electron optic device and CRO.	12	6	1	2	21
BSC 101.2 Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.	12	6	1	2	21
BSC 101.3 Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem.	12	6	1	2	21
BSC 101.4 Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure	12	6	1	2	21
BSC 101.5 Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering	12	6	1	2	21
Total Hours	60	30	5	10	105

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

CO **Unit Titles** Total **Marks Distribution** Marks U R Α CO-1 Electrostatics & Magnetostatics 02 04 05 11 CO-2 Wave optics 03 07 04 14 CO-3 Quantum mechanics 02 06 02 10 CO-4 Introduction to solids & 03 03 02 08 semiconductors CO-5 03 02 02 07 Lasers Total 13 22 50 15

Suggested Specification Table (For ESA)

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Physics-1 will be held with written examination of 50 marks **Note**. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6. Seminar
- 7. Workshop

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

a) Books :

S. No.	Title	Author	Publisher	Edition & Year
1	AICTE's Prescribed Textbook: Physics (Introduction to Electromagnetic Theory) with Lab Manual	Bhattacharya & Nag, Engineering Physics	Khanna Book Publishing Company.	2 nd Edition 2021
2	Introduction to Electrodynamics	David Griffiths	Tata McGraw Hill	11th Reprint, 2010.
3	Physics	Halliday and Resnick	Tata McGraw Hill	10th Edition 2018
4	Electricity, magnetism and light	W. Saslow	Academic Press	1 st Edition 2002
5	Engineering Physics	Malik, Singh	Tata McGraw Hill	10th Edition 2020

Curriculum Development Team

- 1. Dr. Omkar Prasad Tripathi HOD, Department of Physics.
- 2. Dr. Lovely Singh Gaharwar, Associate Professor, Department of Physics.
- 3. Dr. C.P. Singh , Assistant Professor, Department of Physics.
- 4. Dr. Saket Kumar, Assistant Professor, Department of Physics
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: BSC101 Course Title: Physics-1

						Progra	n Outco	omes					Program Spe	cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng know ledge	Probl em Solvi ng	Desi gn Skills	Labo rator y Skills	Team work	Com muni catio n Skills	Ethic al and Profe ssion al Beha vior	Lifel ong Lear ning	Global and Societ al Impact	Projec t Manag ement	Adapt ability	Profes sional Devel opmen t	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems and to relate to applications to electron optic device and CRO.	2	2	3	2	1	1	1	2	2	1	1	2	2	2
CO2: Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.	3	2	1	3	1	2	1	2	2	2	2	2	2	2
CO3: Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to	3	3	2	1	1	2	2	2	2	1	2	3	2	2

solve related numerical problem.														
CO4: Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure	2	3	1	2	1	2	1	3	2	1	2	2	2	3
CO5: Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering		3	1	1	1	3	2	3	1	2	2	2	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum

Map:POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO:1,2,3,4,5,6,7,8,9,10,11,12 PSO 1, 2	CO1: Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems and to relate to applications to electron optic device and CRO.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	1, 2, 3	Unit-1: Electrostatics & Magnetostatics 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,1.7,1.8,1.9,1.10,1.11,1. 12	1, 2
PO:1,2,3,4,5,6,7,8,9,10,11,12 PSO 1, 2	CO2: Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5	1, 2, 3	Unit-2: Wave optics 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,2.10,2.11,2.12	1, 2
PO:1,2,3,4,5,6,7,8,9,10,11,12 PSO 1, 2	CO3: Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	1, 2,3	Unit-3 : Quantum mechanics 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11,3.12	1, 2
PO:1,2,3,4,5,6,7,8,9,10,11,12 PSO 1, 2	CO4: Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	1, 2, 3	Unit-4: Introduction to solids & semiconductors 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11,4.12	1, 2
PO:1,2,3,4,5,6,7,8,9,10,11,12 PSO 1, 2	CO5: Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	1, 2, 3	Unit 5: Lasers 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,5.10,5.11,5.12	1, 2

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester-I

Course Title: Mathematics –I

Course Code: BSC 102

Prerequisite: Students should review the fundamentals of calculus and basic knowledge of differentiation and integration.

Rationale: The program aims to develop advanced problem-solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced mathematical expertise.

Course Outcomes (CO): After the completion of this course the students will be able to

BSC 102.1: Define and understand the concept of limits, Evaluate limits algebraically and graphically, apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions

BSC 102.2: Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.

BSC 102.3: Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable functions.

BSC 102.4: Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena

BSC 102.5: Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.

Course	Course	Course Course			Scheme of studies (Hours/Week)						
Course Categor y	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)			
Basic Science Course (BSC)	BSC 102	Mathemat ics -I	4	0	1	1	6	4			

Scheme of Studies:

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Legend:

- **CI:** Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others)
- LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.)

SL: Self Learning,

C: Credits

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Theory	1										
				Scheme of Assessment (Marks) Progressive Assessment (PRA)							
Cours e Categ ory	Cous e Code	Course Title	Class/Hom e Assignmen t 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semina r one (SA)	Class Activ ity any one (CAT)	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT+ AT)	End Semest er Assess ment (ESA)	Total Mark s (PRA + ESA)	
BSC	BSC 102	Mathe matics -I	15	20	5	5	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self -Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in theoverall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

BSC 102.1

Define and understand the concept of limits, evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 Understand the		Unit-1.0	1
concept of local			Define the derivative
and global		1.1. Rolle's Theorem,	of a function at a
extreme.		1.2. Mean value theorems	point using the limit
SO1.2 Understand the		1.3. applications, extreme	definition.
geometric	-	values of functions	
interpretation of		1.4. linear approximation,	2
the derivative as		Indeterminate forms	Apply implicit
the slope of a		1.5. L' Hospital's rule	differentiation to find
tangent line		1.6 Tutorial-1	derivatives of
SO1.3 Apply implicit		1.7. curvature,	implicitly defined
differentiation to		1.8. Radius of curvature	functions
find derivatives of		1.9evolutes and involutes	3
implicitly defined		1.10Expansion of	Apply derivatives to
functions		functions by	solve problems in
		Maclaurin's series	optimization, curve

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

So1.4Understand the	1.11 Expansion of	sketching, and related
hypothesis of L'	functions by Taylor's	rates.
Hospital's rule	series for one variable	
So1.5Understand the	1.12 Tutorial- 2	
concept of		
curvature.		

SW-1 Suggested Sessional Work (SW): a. Assignments:

- i. Analyze and sketch the graph of a function using information from its derivative.
- ii. Identify critical points, inflection points, and concavity.
- iii. Apply L'Hôpital's Rule to find limits involving indeterminate forms

b. Mini Project:

i. Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

i. Quiz, Class Test.

BSC 102.2 Define and understand the basic concepts of matrices, differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes Laboratory **Class room Instruction** Self-Learning Instruction (SOs) **(CI)** (SL)(LI) **SO2.1** Unit-2.0 **1.** Explore more advanced Define and understandthe 2.1. Rank of a Matrix topics, suchas linear 2.2. Determinant. transformations, matrix basic concepts of matrices, determinant, etc 2.3. Inverse of a matrix, norms, and applications **SO2.2** 2.4-Nullity in optimization and Perform basic matrix 2.5. system of linear computer graphics operations, including equations, **2.** Understand numerical addition, subtraction, 2.6.Symmetric,skewtechniquesfor solving and scalar symmetric matrix problems, such multiplication 2.7. orthogonal matrices as Gaussian elimination **SO2.3** 2.8. Eigen values and and iterative methods Understand the Eigen vectors, **3.** Apply matrix connection between orthogonal operations and transformation, matrix equations and concepts to solve real-2.9. Diagonalization of world problemsin systems of linear equations matrices, Cayleyvarious fields, such as **SO2.4** Hamilton Theorem. physics, computer Define and compute the 2.10.linear systems of science, engineering, determinant of amatrix and economics equations, **SO2.5** 2.11 linear independence Understand numerical and linear dependence techniques 2.12 Tutorial-1

SW-2 Suggested Sessional Work (SW): a. Assignments:

- i. Write the application of Matrices in Real Life.
- ii. Write the properties of Eigen values.
- iii. Write a short note on types of matrix with example.
- iv. Describe the method of calculation of rank with example

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

BSC 102.3 : Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable functions.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1		Unit-3.0	1
Define and compute partial			Apply
derivatives of functions of		3.1. Limit and continuity	Lagrange
several variables		3.2. total derivative,	multipliers to
SO3.2		3.3. Euler's theorem on	solve
Understand the directional	-	Homogeneous function.	constrained
derivative and its relation		3.4. Application of Euler's	optimization
to the gradient vector		theorem in approximation	problems
SO3.3		and errors,	2
Apply the chain rule to		3.5. Application of Euler's	Apply the
compute derivatives of		theorem in errors	second
composite functions			derivative test

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

involving multiple	3.6. Tangent plane and normal	to determine
variables	line.	local extreme.
SO3.4	3.7 maxima, minima	3
Understand mixed partial	3.8 saddle points,	Solve
derivatives and Clairaut's	3.9. Method of Lagrange	optimization
theorem	multipliers	problems
SO3.5	3.10. partial derivatives	involving
Identify critical points of	3.11 Questions of partial	multiple
multivariable functions	differential.	variables
	3.12 Tutorial-1	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the Application of Euler's theorem in real life.
- ii. Explain the difference between differential and partial differential
- iii. Write the properties of maxima, minima.
- iv. Define saddle points, point of inflection.

b. Mini Project:

Oral presentation,

c. Other Activities (Specify):

Quiz, Class Test.

BSC 102.4: Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	5		Self-Learning			
(SOs)	Instruction (L1)	(CI)	(SL)			
SO4.1		Unit-4.0	SL.1			
Understand the			Apply first-order			
definition of a first-order		4.1.Order and degree of	ODEs to model and			
ordinary differential		equation	analyze various			
equation		4.2Exact equations.	phenomena, such as			
SO4.2	-	4.3.Questions of Exact	population growth,			
Solve separable		equations,	chemical reactions,			
differential equations		4.4. Linear equations	and electrical			
using the separation of		4.5 Tutorial-1	circuits			
variables technique		4.6. Bernoulli's equations.	SL.2			
SO4.3		4.7. Equations not of	Apply integrating			
Identify and use		first degree:	factors to convert			
integrating factors to		4.8 Equations solvable for	inexact equations			
solve linear first-order		р,	into exact ones			
ODEs		4.9. Equations solvable for	SL.3			
SO4.4		у,	Analyze and			
Identify autonomous		4.10. Equations solvable for	interpret solutions			
differential equations		Х	in the context of			
and their significance		4.11 Equations Clairaut's	applications			
SO4.5		type				
Recognize and solve		4.12 Tutorial-2				
exact differential						
equations						

SW-2 Suggested Sessional Work (SW): a. Assignments:

- i. Explain degree and order of differential equation with example.
- **b. Other** Activities (Specify):

Quiz, Class Test.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

BSC 102.5: Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session	Laboratory	Class room Instruction	Self - Learning
Outcomes	Instruction	(CI)	(SL)
(SOs)	(LI)		
SO4.1		Unit-5.0	SL.1
Understand and			Apply calculus
state the		5.1. Evaluation of definite	techniques to analyze
Fundamental		and improper integrals,	curves defined in polar
Theorem of		5.2. Beta and Gamma	form
Calculus	-	functions	SL.2
SO4.2		5.3. Properties of Beta and	Use numerical
Find anti		Gamma functions,	methods, such as the
derivatives of		5.4 Relation between Beta	trapezoidal rule and
elementary		and Gamma functions	Simpson's rule, to
functions		5.5. Double integrals	approximate definite
SO4.3		(Cartesian),	integrals
Understand the		5.6 questions of double	SL.3
concept of a		integrals	Apply tests for
definite integral			convergence, such as

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

as a limit of	57 Change of order of the communicant test
as a limit of	5.7. Change of order of the comparison test
Riemann sums	integration in double and the integral test
SO4.4	integrals,
Interpret definite	5.8 Change of order of
integrals as areas	integration questions
under curves SO4.5	5.9. Triple integrals
Understand and	(cartesian),
evaluate improper	5.10. simple applications
integrals.	involving cubes and
	sphere
	5.11 Rectangular
	parallelepipeds
	5.12 Tutorial-1

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- iii. Write the application of double and tripal integration.
- iv. Write the Properties of Beta and Gamma functions.

b. Mini Project:

i. Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
BSC102.1: Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions	12	1	1	14
BSC102.2: Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.	12	1	1	14
BSC102.3: Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable functions.	12	1	1	14
BSC102.4: Understand the definition of a first-order ordinary	12	1	1	14

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fieldsto visualize the behavior of solutions, Apply first-order ODEsto model and analyze various phenomena.				
BSC102.5: Understand and state the Fundamental Theorem of Calculus, both parts and apply theFundamental Theorem to evaluatedefinite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.	12	1	1	14
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Mark	ks Distrib	Total	
		R	U	Α	Marks
CO-1	Single-variable Calculus	02	04	05	07
CO-2	Matrices	03	07	04	14
CO-3	Multivariable Calculus	02	06	02	10
CO-4	First order ordinary differential equations	03	03	02	11
CO-5	Integral Calculus.	03	02	02	08
	Total	13	22	15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Mathematics-1 will be held with writtenexamination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6 .Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S. No.	Title	Author	Publisher	Edition & Year
1	Engineering Mathematics-I	D.K, Jain	Shree Ram Prakashan.	7th Edition 2015- 16
2	, Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers	36th Edition, 2010
3	Engineering Mathematics-I	D.C. Agrawal	Shree Sai Prakashan	10th Edition 2018
4	Higher Engineering Mathematics	B.V. Ramana	Tata McGraw Hill	11th Reprint, 2010.

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos, POs and PEOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: BSC102 Course Title: Mathematics-1

		Program Outcomes									Program Spe	Program Specific Outcome		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Enginee ring knowle dge	Proble m Solving	Skille	Laborat ory Skills	Team work	nication Skills	Professi	Lifelon g Learnin	Societ	Project Manage ment	Adapta	Professiona l Developme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions	3	1	2	2	2	2	3	1	2	2	1	2	2	2
CO 2: Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.	2	2	3	2	1	2	2	1	1	1	2	3	2	2
CO 3: Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function,	2	2	1	1	2	2	2	1	1	2	1	2	2	1

Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable functions.														
CO 4: Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena.	3	2	2	2	3	1	3	1	2	1	2	2	3	3
CO 5: Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.	2	2	2	2	1	1	3	1	1	1	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curri			Laboratory		
POs & PSOs No.	COs No.& Titles	SOs No.	Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO1: Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions	SO1.1, SO1.2 SO1.3, SO1.4 SO1.5		Unit-1. Single-variable Calculus 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10, 1.11,1.12	1,2,3
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 2: Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.	SO2.1, SO2.2 SO2.3, SO2.4 SO2.5		Unit-2 Matrices 2.1, 2.2, 2.3, 2.4,2.5.2.6,2.7,2.8,2.9,2.10,2.11,2.12	1,2,3
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO 3: Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar	SO3.1,SO3.2 SO3.3,SO3.4 SO3.5		Unit-3 : Multivariable Calculus 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11,3.12	1,2,3

Course Curriculum Map:

	function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable functions.			
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO 4: Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena.	SO4.1, SO4.2 SO4.3, SO4.4 SO4.5	Unit-4 : First order ordinary differential equations 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9 ,4.10,4.11, 4.12	1,2,3
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO 5: Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.	SO5.1, SO5.2 SO5.3, SO5.4 SO5.5	Unit 5: Integral Calculus. 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10. 5.11,5.12	1,2,3

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-I

Course Code: BSC105

Course Title: Biology for Engineers.

Pre-requisite: Student should have basic knowledge of biology

Rationale: Engineering combines scientific knowledge with creative activities to move beyond current knowledge and produce original solutions to important problems. Biological systems are subject to the laws of chemistry and physics, which are also the basis of engineering, biological systems can provide excellent examples of the applications of statics, dynamics, chemical affinities, energy relations, and other concepts taught in undergraduate engineering science courses.

Course Outcomes: After completion of the course students will be able to:

- **BSC105.1:** convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry
- **BSC105.2:** convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted.
- **BSC105.3:** convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and understand the molecular basis of coding and decoding genetic information is universal
- **BSC105.4**: convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. To convey that without catalysis life would not have existed on earth
- **BSC105.5**: convey the concept of microbes and their role in environment.

Scheme of Studies:

			Scheme of studies (Hours/Week)					
Course Category	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)
Program Core (PCC)	BSC105	Biology for Engineers	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T)and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work(includes assignment, seminar, mini project etc.),
 SL: Self-Learning,
 C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

			Scheme of Assessment (Marks)							
	Cous e Code	Course Title	Progressive Assessment (PRA)					End	Tot	
Course Category			Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Sem inar one (SA)	Class Activi ty any one (CAT)	Class Atten danc e (AT)	Total Marks (CA+C T+SA +CAT+ AT)	Semest er Assess ment (ESA)	al Ma rks (PR A+ ES A)
BSC	BSC 105	Biology For	15	20	5	5	5	50	50	100
		Engineer s								

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instructionincluding Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self- Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

BSC105.1: Convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry

Item	AppX. Hrs.
Cl	9
LI	0
SW	1
SL	2
Total	12

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
 1.1 Why we need to study biology 1.2 To know the differences and similarities between human eye and camera. 1.3 Analyze the mechanism of birds flying with Aircraft. 1.4 Gain knowledge about the role of biology with discoveries in living world. 1.5 To understand the concept and amazing facts about living organisms. 1.6 Describe various criteria of classification of organism. 1.7 In depth study about the cell and cell theory. 1.8 Brief about the role of biological observations in major discoveries. 1.9 Understanding Binomial system of nomenclature 	 Unit1.(2hours)-Introduction 1.1 Introduction to biology branches and scopes 1.2 comparison between eye and camera 1.3 Comparison between Bird flying and aircraft. 1.4 Important discoveries of biology. 1.5 Living organisms, characteristics of living organism 1.6 classification of living organisms 1.7 Cell theory 1.8 Discuss how biological observations of 18th Century that lead to major discoveries. 1.9 Understanding Binomial system of nomenclature 	 Importance of Biology in engineering Discuss how biological observation s of 18th Century that lead to major discoveries

Suggested Sessional Work (SW): anyone

a. Assignments

1. Compare living and non-living

b. Mini Project

1. Make a model of camera

c. Other Activities (Specify)

1. try to make a flying object

BSC105.2: Convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Approximate Hours

Item	AppX. Hrs.
Cl	9
LI	0
SW	1
SL	2
Total	12

Session Outcomes(SOs)	Class room Instruction (CI)	Self-Learning (SL)
 2.1 Describe hierarchy of life forms at phenomenological level. 2.2: Understand ultra structure of prokaryotic and eukaryotic organism, 2.3 Study mode of nutrition in organism. 2.4 Analyze the made of nutrition in Autotroph 2.5 Explain the mechanism of of obtaining nutrition by Heterotrophs. 2.6 Define lithotrophs and their occurrence. 2.7 Build up the concept of Molecular taxonomy and its uses in biology. 2.8 To understand the major types of kingdoms. 2.9 : Able to define the Diversity of living organisms 	 Unit2. Classification 2.1 Discuss classification based on cellularity- Unicellular or multicellular 2.2: Discuss classification based on Ultra structure- prokaryotes or eukaryotes. 2.3 classification based on energy and Carbon utilization energy and Carbon utilization 2.4 Autotrophs 5 heterotrophs, 6 Lithotrophs. 7 Molecular taxonomy- 8 Three major kingdoms of life. 9 Diversity of living organisms 	 2.1: Study different examples of unicellular and multicellular organisms. 2.2: Gain knowledge about the basic structure of cell and functions of cell organelles

Suggested Sessional Work (SW): anyone

a. Assignments

1. Differentiate between prokaryotic cell and eukaryotic cell.

b. Mini Project

1. Prepare the poster explaining classification of organism

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

c. Other Activities (Specify)

1. Grow yeast or fungus and observe the growth

BSC105.3: Convey that "Genetics is to biology what Newton's laws are to Physical Sciences and Understand the molecular basis of coding and decoding genetic information is universal

Item	AppX. Hrs.
Cl	9
LI	0
\mathbf{SW}	1
SL	4
Total	14

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
	Unit3.Genetics&	3.1: Build-up the
3.1 Illustrate how genetic material	Information Transfer	concept on the
passes from parent to offspring?		phenotype and
Concepts of recessive Ness and	3.1 Mendel's laws, Concept of	genotype.
dominance.	segregation and	Concepts of
3.2 Describe the concept of allele.	independent assortment.	recessive Ness and
3.3 Understand the cell cycle and	3.2Concept of allele.	dominance
its importance.	3.3 cell cycle	3.2 basic knowledge
3.4 Discuss types of cell division	3.4 Meiosis and Mitosis	of celland cell
3.5 Able to realize concept of	3.5 Genome mapping	theory
mapping of phenotype to genes.	3.6Gene disorders in humans	3.3: concepts of
3.6 Discuss about the single gene	3.7DNA as a genetic material.	physical and
disorders in humans.	Hierarchy of DNA	genetic
3.7 Analyze the molecular basis of	structure-from single	mapping.
information transfer and study	stranded to double helix to	3.4 : Boost your
the DNA structure and	nucleosomes.	knowledgeon
compacting of genome	3.8Concept of genetic code	some genetic
3.8 Define concept of genetic code.	3.9Universality and	disorders in
3.9 Gaining knowledge about the	degeneracy of genetic	human.
universality and degeneracy of	code	And mutation.
genetic code.		

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Sessional Work (SW): anyone

a. Assignments

- 1. Differentiate between mitosis and meiosis
- b. Mini Project
 - 1. Explain different types of crosses of Mendelian genetics
- c. Other Activities (Specify)
 - 1. Make a model of DNA and RNA and chart of cell cycle

BSC105.4 Convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. To convey that without catalysis life would not have existed on earth

Item	Approx. Hrs
Cl	9
LI	0
SW	1
SL	3
Total	13

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
4.1: In this context discuss monomeric units and	Unit 4- Biochemistry	4.1: Study about
polymeric structures.	and metabolism and	the various
4.2To know about the structure and functions of	Enzymes	disorders
carbohydrates.	4.1 Molecules of life	related to
4.3 Define structure and function of starch.	4.2: Discuss about sugars,	carbohydrate
4.4 Analyze the structure and properties of	4.3 starch	metabolism.
cellulose.	4.4 cellulose.	4.2 Learn names of
4.5 Able to know about the building blocks of	4.5 Amino acids	essential and
proteins.	4.6 Proteins	non-essential
4.6 Understand proteins- structure and function.	4.7Primary, secondary,	aminoacids.
4.7 Describe hierarchy in protein structure.	tertiary and quaternary	4.3 To know about
Primary secondary, tertiary and quaternary	structure of proteins.	the important
structure.	4.8 Enzyme classification.	enzymes of
4.8 Analyze the how does an enzyme catalyze	Mechanism of enzyme	human body
reactions.	action.	and discusstwo
4.9 Explain the chemical composition and types	4.9 Nucleotides and	examples.
of Nucleotides.	DNA/RNA	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Sessional Work (SW): anyone

a. Assignments

- 1. Write a detail note on Classification of Carbohydrate
- b. Mini Project
 - 1. Make a chart explaining bio molecules.
- c. Other Activities (Specify)
 - 1. List out important enzymes of human body

BSC105.5: To convey the concept of microbes and their role in environment. **Approximate Hours**

Item	Appx. Hrs.
Cl	9
LI	0
SW	1
SL	2
Total	12

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
 5.1 Gain the knowledge of different microscopic techniques. 5.2 To know the methods of identification of microorganism. 5.3 Able to classify microorganism 5.4 Explain the Concept of single celled organisms. 5.5To gain knowledge about different bacterial species and strain. 5.6 Define the process of sterilization. 5.7 Understand principle and types of sterilization used in microbiology. 5.8 Study the different components used in media and preparation of medium 5.9 Analyze the microbial growth curve. 	 Unit 5. Microbiology 5.1 Microscopy 5.2 staining methods 5.3 classification of microorganisms(types) 5.4 Concept of single celled organisms 5.5 Concept of species and strains 5.6 Sterilization 5.7Types of sterilization. 5.8 media compositions. 5.9 Growth kinetics. 	5.1 Concept of single celled organisms5.2 Ecological aspects of single celled organisms

Suggested Sessional Work (SW): anyone

a. Assignments

1. Draw and explain simple and compound microscope and their parts.

- 2. Describe Bacterial growth curve
- b. Mini Project

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

- 1. Make a chart showing different sterilization techniques.
- c. Other Activities (Specify)
- 1. Try to make a simple microscope model.

Brief of Hours suggested for the Course Outcome: -

Course Outcomes (COs)	Class lecture (CI)	Sessional work (SW)		Total Hours (CI+SL+SW)
BSC105.1: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry.	9	1	2	12
BSC105.2: To convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted.	9	1	2	12
BSC105.3: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and understand the molecular basis of coding and decoding genetic information is universal	9	1	4	14
BSC105.4 To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. To convey that without catalysis life would not have existed on earth	9	1	3	13
BSC105.5: To convey the concept of microbes and their role in environment	9	1	2	12
Total Hours	45	5	13	63

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Μ	Total		
		R	U	Α	Marks
CO-1	Introduction	02	03	05	10
CO-2	Classification	02	05	03	10
CO-3	Genetics& Information Transfer	02	02	06	10
CO-4	Biochemistry and metabolism and Enzymes	02	03	05	10
CO-5	Microbiology	02	04	04	10
	Total	10	17	23	50

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Role-play
- 5. Presentations
- 6. Extempore
- 7. Speeches
- 8. Brainstorming

Suggested Learning Resources:

(a) Books:

S.no.	Title	Author	Publisher	Edition & Year
1	Biology for engineers	5	1 2	Second edition in 2019
2	Biology for engineers	Dr. Tanu Allen Dr. Sohini singh	vavu education of india	First edition in 2020
3	Biology for engineers	Tanushree Chakraborti	PHI Learning	First edition in 2022

Curriculum Development Team

1. Mr. Paras Koshe Assistant professor Department of biotechnology

2. Dr. Kamlesh chaure Head , department of biotechnology

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: BSC105

Course Title: Biology for engineers

					Pro	ograi	m Out	come	8	•			Program Specific Outcom			
		PO 2	РО 3	PO4	PO5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2		
Course Outcomes	Eng inee ring kno wle dge	Pro ble m Solv ing	Desi gn Skil ls	Labo rator y Skills	Tea m work	Co m mu nic ati on Ski Ils	Ethi cal & Prof essio nal Beha vior	Lifel ong Lear ning	Glo bal and Soci etal Imp act	Proje ct Mana geme nt	Adap tabilit y	Profe ssion al Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services		
CO1: To convey that Biology is as important a scientific discipline as								•								
Mathematics, Physics and Chemistry.	3	3	2	3	3	2	1	2	3	2	2	3	3	2		
CO2: To convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted.	3	3	3	2	2	2	1	2	1	2	2	2	2	2		
CO3: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and Understand the molecular basis of coding and decoding genetic information is universal	3	3	2	2	3	1	2	2	1	2	2	3	2	2		
CO4 To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. To convey that without catalysis life would not have existed on earth	3	3	2	2	2	1	1	3	2	2	2	2	3	3		
BSC107.5: To convey the concept of microbes and their role in environment	3	3	3	3	2	3	2	3	2	2	2	2	3	3		

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOsNo.	COs No.& Titles	SOs No.	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO1: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry.	1.1, 1.2, 1.3, 1.4,1.5 1.6,1.7,1.8,1.9	Unit-1. Introduction 1.1,1.2,1.3,1.4,1.5,1.6, 1.7,1.8,1.9	1, 2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO2: To convey the classification of organism underlying criterion, such as morphological, biochemicalor ecological be highlighted.	2.1, 2.2,2.3,2.4,2.5 2.6,2.7,2.8,2.9	Unit-2 Classification analytic methods using R 2.1, 2.2, 2.3, 2.4,2.5,2.6,2.7,2.8,2.9	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO3: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and understand the molecular basis of coding and decoding genetic information is universal	3.1,3.2,3.3, 3.4,3.5 ,3.6,3.7,3.8,3.9	Unit-3 : Genetics& Information Transfer3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8, 3.9	1,2,3,4
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO4 To convey that all forms of life have the same building blocks and yet the manifestations are as diverseas one can imagine. To convey that without catalysislife would not have existed on earth	4.1,4.2, 4.3, 4.4 ,4.5,4.6,4.7,4.8,4.9	Unit-4 : Biochemistryand metabolism and Enzymes 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8, 4.9	1,2,3
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO5: To convey the concept of microbes andtheir role in environment	5.1, 5.2, 5.3,5.4,5.5,5.6,5.7,5.8,5. 9	Unit-4 : Microbiology4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4. 8,4.9	1,2

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester-I

Course Code:	ESC 101
Course Title :	Basic Electrical Engineering
Pre-requisite:	Students should have basic knowledge of Basic Circuit Elements with brief information of AC, DC, and electromagnetic concepts.
Rationale:	A process of introducing formal knowledge of basic electrical elements and AC, DC, and magnetic circuit in electrical and electronic devices along with necessary knowledge about single-phase Transformer and DC machine.

Course Outcomes:

ESC 101.1: Apply network theorems to solve electrical DC circuits.

ESC 101.2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.

ESC 101.3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.

ESC 101.4: Understand the basic operating principle, types, efficiency of Transformers

ESC 101.5: Understand the basic operating principle, types of machines.

Scheme of Studies:

				Scheme of studies(Hours/Week)					
Course Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hour (CI+LI+SW+SL)	Total Credits (C)	
Engineerin g Science Courses (ESC)	ESC 101	BASIC ELECTRICAL ENGINEERING	3	2	1	1	7	4	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self-Learning, C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

				Progre	ssive As	sessment	(PRA)		End	Total
Cours e Categ ory	Couse Code		Class/H ome Assign ment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Class Activit y any one (CAT)	Class Attenda nce (AT)	Total Marks (CA+C T+SA+ CAT+ AT)	Semester Assessm ent (ESA)	Mark s (PRA + ESA)
ESC	ESC 101	BASIC ELECTRICAL ENGINEERIN G	15	20	5	5	5	50	50	100

Practical

			Sch	neme of Assess	ment (Ma	ırks)		
			Progressive	Assessment (I	PRA)		End	Total
Cours e Categ ory	Couse Code	Course Title	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)
ESC	ESC 101-L	BASIC ELECTRIC AL ENGINEE RIN G Lab	35	10	5	50	50	100

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC 101.1: Apply network theorems to solve electrical DC circuits.

Item	AppX Hrs
Cl	07
LI	12
SW	2
SL	1
Total	22

Session		Laboratory	Classroom Instruction	Self-
Outcomes		Instruction (LI)	(CI)	Learning
(SOs)				(SL)
SO1.1 Understand the	1.	Verification of KVL.	Unit-1: DC Network	1. Learn the
Classification of	2.	Verification of KCL.	1.1 Classification of	theoretical
electrical elements.	3.	Identification of	elements – active,	concept of
SO1.2 Understand the		different electrical and	passive, unilateral,	circuit
concept of voltageand		electronic	bilateral, linear,	element.
current source.		components.	nonlinear, lumpedand	
SO1.3Understand the	4.	Calculation of Power,	distributed	
concept of mathematical		Impedance and	1.2 classification of voltage	
analysis based on		P.F. in R-L-C	& currentsources	
KCL and KVL.		Circuits.	1.3 mesh and nodalanalysis	
SO1.4Analyze different	5.	Verification of	1.4 Superpositiontheorem	
network theorems.		Superposition	1.5 Star-Delta	
		Theorem.	Transformations	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SO1.5 Understand the concept of star- delta transformation.	6. Verification of Thevenin's Theorem.	(Numerical only). 1.6 Thevenin's theorem (Only independent sources). 1.7 Numerical	
---	--	--	--

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Numerical Problems on mesh and nodal analysis.

b. Mini Project:

i. Derive different network theorems.

ESC 101.2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.

Item	AppX Hrs	
Cl	7	
LI	2	
SW	2	
SL	1	
Total	12	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO2.1 To Understand the concept of sinusoidal periodic waveforms. SO2.2 To understand the concept of phase difference. SO2.3To understand the different triangles. SO2.4 To understand the different connections. 	1. Study about different types of connection in AC circuit.	 Unit-2Single-Phase AC Circuits 2.1 Sinusoidal periodic waveforms: frequency, cycle, time period, peak value, root mean square value, average value, form factor and peak factor. 2.2 Phasor representation of alternating quantities. 2.3 Concept of phase difference, The j operator 2.4 Rectangular and polar form 2.5 Power Triangle 2.6 Impedance Triangle, Power factor 2.7 Solution of series, parallel, series-parallel network. 	1. Remember different concept related to the Sinusoidal Periodic Waveform.

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems on Sinusoidal Network.
- ii. Numerical Problems on Power Triangle and Impedance Triangle.
- iii. Numerical Problems on Series and Parallel Circuit.

Mini Project:

a. Draw the chart of Phasor Representation.

ESC 101.3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Item	AppX Hrs
Cl	9
LI	4
SW	2
SL	1
Total	16

SO3.1 To Understand the basic concept of three-phase AC circuit.1. Study about the different types of three-phase AC circuits.Unit-3: Three-Phase AC Circuit 3.1.Introduction1. Basic principle of three-phase AC Circuit.SO3.2To understand the different types1. Study about the different circuits.3.1.Introduction 3.2.phase sequence, balanced load 3.3.Connection of Three-phase Windings (delta and star connection): line and phase quantities.1. Basic principle of three-phase Quantities.SO3.2To understand the different winding.2. Study different concepts related with3.4.phasor diagrams, Three phase power equations in balanced conditions (Elementary Numerical).1. Basic principle of three-phase Quantities.SO3.3To power equations.2. Study different circuit.3.5.Magnetic Circuits: Introduction 3.6.magneto motive force (MMF) 3.7.magnetic field strength, magnetic circuits.3.9. Solution of simple magnetic.	Session Outcomes (SOs)	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self- Learning(SL)
bookFor an arrowthe concept of leakage flux and fringingcircuits (only for constant permeability materials). Leakage flux and fringing.	the basic concept of three-phase AC circuit. SO3.2To understand the different types of connection of three-phase winding. SO3.3To Understand the three-phase power equations. SO3.4To Understand the concepts of magnetic circuit. SO3.5 To understand the concept of leakage flux and	about the different types of three- phase AC circuits. 2. Study different concepts related with Magnetic	 3.1.Introduction 3.2.phase sequence, balanced load 3.3.Connection of Three-phase Windings (delta and star connection): line and phase quantities. 3.4.phasor diagrams, Three phase power equations in balanced conditions (Elementary Numerical). 3.5.Magnetic Circuits: Introduction 3.6.magneto motive force (MMF) 3.7.magnetic field strength, magnetic flux, reluctance 3.8.Comparison of the electric and magnetic circuits. 3.9.Solution of simple magnetic circuits (only for constant permeability materials). Leakage 	principle of three-phase AC

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems on three-phase load.
- ii. Numerical Problems on Magnetic circuit.

ESC 101.4: Understand the basic operating principle, types, efficiency of Transformers.

Item	AppX Hrs
Cl	10
LI	8
SW	2
SL	2
Total	22

Session Outcomes		Laboratory		Classroom		Self-
(SOs)		Instruction		Instruction		earning
		(LI)		(CI)		(SL)
SO4.1 To Understand the	1.	Study the	Uni	t-4 :Single-Phase	1.	Remembe
constructional and		construction	Tra	nsformer		r different
operational features of		details of	4.1	Introduction		parts of
Single-phase Transformer.		transformer.	4.2	principles of operation		transform
SO4.2 Understanding the	2.	Perform open	4.3	Construction		er.
classification of		circuit and	4.4	classification of	2.	Calculate
Transformer.		ShortCircuit		transformers		Losses
SO4.3 Understand the different		test on single-	4.5	Rating of transformer		and
concept related with		phase	4.6	EMF equation, ideal and		Efficienc
transformer		transformer.		practical transformer		y of
SO4.4 Derive EMF equation of	3.	Study and	4.7	phasor diagram under no		transform
transformer.		Verification of		load and loaded conditions		er.
SO4.5 Understand the Phasor		Transformer	4.8	losses, efficiency		
Diagram at different loads.		RatioPolarity.		calculations, Condition of		
SO4.6 Understand the different	4.	Perform Back		Maximum Efficiency		
concepts related to efficiency		to back Test on	4.9	All day efficiency		
for single- phase transformer.		Transformer	4.10	(Elementary Numerical)		

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Numerical Problems on transformer

b. Mini Project:

i. Draw phasor diagram of transformer at different loads.

ESC 101.5: Understand the basic operating principle, types of machines.

Item	AppX Hrs
Cl	12
LI	4
SW	2
SL	1
Total	19

Session	Laboratory	Classroom Instruction	Self-
Outcomes	Instruction	(CI)	Learning(SL)
(SOs)	(LI)		
SO5.1 Understand the	1. Study	Unit 5: DC Machines	1. Remember the
constructional	different	5.1.Common Construction features	Constructional
details	components	of DC Machines	features of DC
of DC machines.	of DC	5.2.EMF equation	Machine.
	Motor and	5.3.types of DC machines	
SO5.2Derive EMF	Three Phase	(Separately & self-excited)	
andTorque	Starter.	5.4.Elementary numerical	
equations.	2. Study of	5.5.Components of LT Switchgear	
	different	5.6.Switch fuse unit(SFU)	
SO5.3 Evaluate	components	5.7.MCB, ELCB, MCCB	
differenttypes of dc	of Induction	5.8.Types of wires	
machine.	Motor and	5.9.Earthing	
	Star-Delta	5.10. Cables	
SO5.4 Understanding the	Starter.	5.11. Torque equation	
Electrical Installation.		5.12. Compound DC Machine	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Numerical Problem based on EMF and Torque equation of DC machine.

b. Mini Project:

i. Draw the chart of different types of cable and earthing.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Lecture (Ll)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
ESC 101.1: Apply network theorems to solve electrical DC circuits.	7	12	2	1	22
ESC 101.2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.	7	2	2	1	12
ESC 101.3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.	9	4	2	1	16
ESC 101.4: Understand the basic operating principle, types, efficiency of Transformers.	10	8	2	2	22
ESC 101.5: Understand the basic operating principle, types of machines.	12	4	2	1	19
Total Hours	45	30	10	6	91

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO Unit Titles		Μ	Total		
		R	U	А	Marks
CO-1	DC Network	03	01	01	05
CO-2	Single-Phase AC Circuit	02	03	02	07
CO-3	Three-Phase AC Circuit	02	04	04	10
CO-4	Single-Phase Transformer	03	07	05	15
CO-5	DC Machines	01	06	06	13
	Total	11	23	16	50

Legend: R: Remember, U: Understand, A: Apply The end of semester assessment for Basic Electrical Engineering will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to electrical power plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Face book, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

S.	Title	Author	Publisher	Edition &			
No.				Year			
1	Basic Electrical Engineering	Fitzrald and	Tata McGraw-Hill	Fifth			
		Higgonbothom					
2	Theory and Problems of Basic D.P. Kothari and I. J. Prentice Hall India Learning						
	Electrical Engineering	Nagrath	Private Limited				
3	Basic Electrical Engineering	D. C. Kulshreshtha	McGraw Hill	2009			
4	Fundamentals of Electrical	Ashfaq Hussain	Dhanpat Rai and Co	Third			
	Engineering						
5		Lecture note prov	rided by				
	Dept. of e	lectrical engineering,	AKS University, Satna.				

Suggested Learning Resources:

(a) Books:

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Dr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: ESC 101

Course Title: Basic Electrical Engineering

			0			Prograi	m Outco	omes					Program Spe	cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng kno wled ge	Prob lem Solvi ng	Desi gn Skill s	Labo rator y Skill s	Tea mwo rk	Com muni catio n Skill s	Ethic al and Prof essio nal Beha vior	Lifel ong Lear ning	Globa l and Societ al Impac t	Projec t Mana gemen t	Adapt ability	Profes sional Devel opme nt	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Apply network theorems to solve electrical DC circuits.	2	2	3	2	2	1	1	1	2	1	1	2	2	2
CO2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.	2	2	1	3	1	2	1	1	1	1	2	2	2	2
CO3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.	3	3	2	1	1	2	2	2	1	1	2	3	1	2
CO 4: Understand the basic operating principle, types, efficiency of Transformers.	2	3	3	2	3	2	1	3	2	1	2	2	3	3
CO 5: Understand the basic operating principle, types of machines.	2	3	3	1	2	3	2	3	1	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculuin Map	Course	Curriculum	Map
------------------------	--------	------------	-----

Course Curric	ulum Map				
POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO-1: Apply network theorems to solve electrical DC circuits.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	1, 2, 3, 4, 5, 6	Unit-1: DC Network 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,1.7	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO-2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.	SO2.1 SO2.2 SO2.3 SO2.4	1	Unit-2: Single-Phase AC Circuit 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO-3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	1, 2	Unit-3 : Three-Phase AC Circuit 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO-4: Understand the basic operating principle, types, efficiency of Transformers.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6	1, 2, 3, 4	Unit-4: Single-Phase Transformer 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10,	1,2
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO-5: Understand the basic operating principle, types of machines.	SO5.1 SO5.2 SO5.3 SO5.4	1,2	Unit 5: DC Machines 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,5.10,5.11,5.12	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-I

Course Code: ESC 102

Course Title: Engineering Graphics & Design

Pre- requisite:Student should have basic knowledge of Geometry, Geometrical Shapes,
basic knowledge of Computer, Mouse and keyboard use, navigating
menus and dialogs, managing files and directories, etc.

Rationale: The students studying Graphics are essential in mechanical engineering, allowing engineers to visualize and communicate complex ideas clearly and concisely. Using graphics, engineers can create detailed plans for construction projects, analyses structural components, and convey design concepts to clients and stakeholders.

Course Outcomes:

- ESC 102.1: Get introduced with Engineering Graphics and visual aspects of design.
- ESC 102.2: Know and use common drafting tools with the knowledge of drafting standards.
- **ESC 102.3:** Apply computer aided drafting techniques to represent line, surface or solid models in different Engineering viewpoints.
- **ESC 102.4:** Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.
- **ESC 102.5:** To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto CAD

Course			Scheme of studies(Hours/Week)					Total
Category	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Program Core (ESC)	ESC 102	Engineering Graphics & Design	1	4	1	1	7	3

Scheme of Studies:

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Legend:	CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture
	(L) and Tutorial (T) and others),
	LI: Laboratory Instruction (Includes Practical performances in laboratory
	workshop, field or other locations using different instructional strategies)
	SW: Sessional Work (includes assignment, seminar, mini project etc.),
	SL: Self Learning,
	C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Progressive Assessment (PRA)						
Cours e Categ	Couse Code		Class/ Home Assign ment 5 numbe	(2 best out	rr one	Class Activity any one	e	Total Marks	End Semester Assessme nt	Total Marks
ory			r 3 marks each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	CA+CT+ SA+CAT +AT)	(ESA)	(PRA+ ESA)
ESC	ESC 102	Engineeringg Graphics& Design	15	20	5	5	5	50	50	100

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Tractical							
		Scheme of Assessment (Marks)					
Couse		Progress	sive Assessmer	nt (PRA)		End	Total
Code	CourseTitle	Lab		Class	Total Marks	Semest	Mar
		Assignments		Atten	(CA+C	er	ks
		5 number	Viva	dance	T+SA	Assess	(PRA
		7 marks each		(AT)	+CAT	ment	+
		(LA)			+AT)	(ESA)	ESA)
ESC 102-L	Engineeringg Graphics&	35	10	5	50	50	100
	ESC	Code CourseTitle	CodeCourseTitleLabCodeLabAssignments5 number7 marks each(LA)CourseTitleESCEngineeringg102-1Graphics&35	Couse CodeCourseTitleProgressive AssessmerCodeLab Assignments 5 numberViva7 marks each (LA)VivaESC 102-LEngineeringg Graphics&35	Couse CodeCourseTitleProgressive Assessment (PRA)CourseTitleLab AssignmentsClass AttenAssignments 5 numberNivaAtten dance (AT)ESC 102 JEngineeringg Graphics&3510	Couse CodeCourseTitleProgressive Assessment (PRA)CourseTitleLab Assignments 5 numberClass Atten (CA+C7 marks each (LA)VivaTotal Marks (CA+C7 marks each (LA)VivaTotal Marks (CA+C87 marks each (AT)+CAT +AT)ESC 102-LEngineeringg Graphics&35105	$\begin{array}{c c} Couse \\ Code \\ Code \\ Code \\ CourseTitle \\ \\ Find the text is the tex$

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC 102.1: Get introduced with Engineering Graphics and visual aspects of design.

Approximate Hours

Item	AppX Hrs
Cl	03
LI	12
SW	2
SL	2
Total	19

Practical

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO1.1 Proficiency in using plain scales for measurement and drawing and understanding of representative factors in scales. SO1.2 Construction of ellipses, parabolas, and hyperbolas using various methods SO1.3 Knowledge and construction of special curves like cycloids, epicycloids, hypocycloids, involutes, and Archimedean spirals. SO1.4 Application of these curves in various engineering and mathematical contexts. 	Unit-1.0 ENGINEERING CURVES & SCALE Practice of Following 1.1 Construction of ellipse by different methods; Normal and Tangent. 1.2. Construction of parabola by different methods; Normal and Tangent. 1.3. Construction of involute such as polygons and circle 1.4. Construction of Cycloid, Epi- cycloid, Epi- cycloid 1.5. Constructio n of Simple Scale, 1.6. Diagonal Scale & Scale of Chord	 S Unit-1.0 ENGINEERING CURVE& SCALE 1.1 Introduction of Engineering Drawing, Drawing material and their uses Application of mini drafter, compass, divider, French curves, pencils grades and their uses. 1.2Construction of ellipse by different methods; Normal and Tangent. Construction of parabola by different methods; Normal and Tangent. 1.3Construction of Cycloid, Epi-cycloid, Hypo- cycloid. Construction of Simple Scale, Diagonal Scale & Scaleof Chord 	 Const ruction of Involutes Const ruction of Archimean Spiral

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Ellipse by concentric circle method, Cycloid, Involutes of Circle

b. Mini Project:

i. Model of Hexagon, Pentagon, Square

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

ESC 102.2: Know and use common drafting tools with the knowledge of drafting standards. Approximate Hours

Item	AppX Hrs
Cl	03
LI	12
SW	1
SL	2
Total	18

Session Outcomes(SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO2.1 Differentiate between various types of projections when and where each type of projection is commonly used in engineering and technical design. SO2.2 Be able to create orthographic projection views of objects, including front view, top view, and side views. SO2.3 Able to project points and lines onto different planes using orthographic projection. SO2.4 Learn how to find the traces of straight lines in orthographic projection and use these traces to determine the positionsof lines in different planes. 	 Unit-2.0 Projection of Point and Line Practice of Following 2.1 Projection of Point 2.2 Projection of Point in different co-ordinate 2.3 Projection of Straight Line 2.4 Projection of Straight Line in different Position w.t.r. H.P. & V.P. 2.5 Projection of Straight Line in different Position w.t.r. H.P. & V.P. 2.6 Projection of Straight Line in different Position w.t.r. H.P. & V.P. 2.6 Projection of Straight Line in different Position w.t.r. H.P. & V.P. 	Unit-2.0 Projection of Point and Line 2.1 Introduction of Projection 2.2 Projection of Point 2.3 Projection of Straight Line	 Point Projection in different co- ordinate Projection of Straight Line in different Position w.r.t. H.P. & V.P.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Projection of point & Projection of Straight Line

ESC 102.3: Apply computer aided drafting techniques to represent line, surface or solid models in different Engineering viewpoints.

Item	AppX Hrs
Cl	03
LI	12
SW	2
SL	2
Total	19

Session	Laboratory	Class room	Self-
Outcom	Instruction(LI)	Instruction	Learning(SL)
es(SOs)		(CI)	
SO3.1 Projection of	Unit-3.0 Projection ofPlane &	Unit-3.0	1. Projection
Planes like	Solid	Projection ofPlane	of Plane in
circle and	Practice of Following	& Solid	different
polygons in different positions. SO3.2 Projection of polyhedrons like prisms, pyramids, and solids of revolutions like cylinder, cones in different positions	 3.1 Introduction Projection of plane 3.2 plane perpendicularto any one and parallel to other 3.3 plane perpendicularto any one and inclined to other 3.4 Introduction Projection of solid 3.5 Axis of solid perpendicular to 	 3.1 Introduction of Projection Plane 3.2 Projection of Plane in different position 3.3 Introduction of projection of Solid, Projection of solid in different position 	Position w.r.t. H.P. & V.P. 2. Projection of solid indifferent Position w.r.t. H.P. &V.P.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Draw three problems of projection of plane
- ii. Draw three problems of projection of solid

b. Mini Project:

- i. Make models of plane and solid by thermocol.
- **ESC 102.4:** Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.

Item	AppX Hrs.
Cl	03
LI	12
\mathbf{SW}	2
SL	2
Total	19

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction	Self- Learning(SL)
	(LI)	(CI)	0
SO4.1 Learn the techniques for sectioning right solids using bothnormal and inclined planes. SO4.2 solve practical problems related tothe	Unit-4.0 Developmentof Solid & Section of Solid Practice of Following 4.1 Sectioning ofCone	Unit-4.0 Developmentof Solid & Section ofSolid4.1 IntroductionofSectioningand	 Development and sectioning of cylinder Development and sectioning
section of solids and planes. SO4.3 Learn the parallel line method and radial-line methodfor developing surfaces in right solids including how to create accurate representations.	4.2 Sectioning of pyramid4.3 Sectioning of Cylinder	sectioning lines 4.2 Sectioning of Cone 4.3 Sectioning of pyramid, Sectioning of Cylinder & Prism, Development of cylinder and prism, Development andsectioning of pyramid, development andsectioning of cone	of prism

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Develop prism and cylinder
 - ii. Develop pyramid and Cone
- ESC 102.5: To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto

Item	AppX Hrs
Cl	03
LI	12
SW	2
SL	2
Total	19

Session Outcomes (SOs)	Laboratory Instruction(LI)	Class roomInstruction (CI)	Self Learning(SL)
SO5.1 -Students will learn	Unit-5.0 Isometric	Unit-5.0 Isometric	1. Draw Isometric
about the scale and	projection and Auto	projection and AutoCAD	viewof plane and
the specific axes	CAD Practice of	5.1 Introduction of	solid
used in isometric	Following	Isometric Projection	2 Draw Isometric view
drawings.	5.1 Introductionof	5.2 Isometric view of	of plane and solid
SO5.2 -Students will learn	isometric scale	circle, cylinder and	byusing Auto CAD
the process of	and vies	cone	command
converting two-	5.2 Isometric view	5.3 Isometric view of	
dimensional	of circle, cylinder	prism and pyramid	
orthographic (multi	and cone	Isometric view by	
view) drawings into	5.3 Isometric view	orthographic view,	
isometric	of prism	Introduction of Auto	
projections.		CAD, Description	
		ofAuto CAD	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023) SO5.3 -Students will learn 5.4 Isometricview commands Drawing of pyramid solving practical of design and projection 5.5 Isometric view different problems using CAD by orthographic orthographic view software and how to view of planes and solid use CAD tools to 5.6 Drawing of by AutoCAD create detailed different commands drawings and orthographic view projections of of planesand solid objects. by Auto CAD commands

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Draw Isometric view of a cone resting centrally on a cube
- ii. Explain five edit and draw commands

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lectu re(Cl)	Lab Lecture (LI)	Sessio nal Work (SW)	Self- Learning (Sl)	Total hour (Cl+LI+SW+S I)
ESC 102.1: Get introduced with Engineering Graphics and visual aspects of design.	3	12	2	2	19
ESC 102.2: Know and use common drafting tools with the knowledge of drafting standards.	3	12	1	2	18
ESC 102.3: Apply computer aided drafting techniqueto represent line, surfaceor solid models in different Engineering viewpoints.	3	12	2	2	19

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

ESC 102.4: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	3	12	2	2	19
ESC 102.5: To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto CAD	3	12	2	2	19
Total Hours	15	60	9	10	94

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Μ	Marks Distribution			
		R	U	Α	Marks	
CO- 1	Get introduced with Engineering Graphics and visual aspects of design.	03	01	01	05	
CO- 2	Know and use common drafting tools with the knowledge of drafting standards.	02	06	02	10	
CO- 3	Apply computer aided drafting technique to represent line, surface or solid models in different Engineering viewpoints.	03	07	05	15	
CO- 4	Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	-	10	05	15	
CO- 5	Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	03	02	-	05	
	Total	11	26	13	50	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Engineering Graphics & Design will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT ,Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

	(a) Books :			
S.	Title	Author	Publisher	Edition
No.				&Year
1	Computer Aided	VTU Belgaum	Visvesvaraya	Revised edition
	Engg drawing		Tech.University	21 edition 2020
2	Engineering	Bhatt N.D.,	Charotar	1999
	Drawing	Panchal V.M. &	Publishing House	
	_	Ingle P.R.,	_	
3	Engineering	R.K. Dawan	S. Chand	1985
	Drawing		Publication.	
4	Engineering	Agrawal and	TMH	2018
	Drawing	Agrawal		
7	Dept. of Me	Lecture note pechanical Engineer	provided by ing, AKS University	y, Satna .

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey , Assistant Professor , Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari, Assistant Professor, Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor , Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos,POs and PSOs Mapping

Programme Title: B. Tech Electrical Engineering

Course Code : ESC 102

Course Title: Engineering Graphics and Design

					Pro	ogran	n Out	come	8				Program Outo	-
	PO1	РО 2	PO3	PO4	PO5	PO 6	P07	PO8	PO9	PO1 0	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engin eering knowl edge	em	Design Skills	Labora tory Skills	work	munic		g Learni ng		Manag ement	Adapta bility	onal	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1 : Get introduced with Engineering Graphics and visual aspects of design.	1	1	2	2	2	2	3	1	2	2	1	2	2	2
CO 2 : Know and use common drafting tools with the knowledge of drafting standards.	1	2	2	2	1	2	2	1	1	1	2	3	2	2
CO3 : Apply computer aided drafting technique to represent line, surface or solid models in different Engineering viewpoints.	2	2	1	1	2	2	2	1	1	2	1	2	2	1
CO 4: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	3	2	2	-	3	1	3	1	2	1	-	2	3	3
CO 5: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	1	2	2	-	1	1	3	1	1	1	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO1: Get introduced with Engineering Graphics and visual aspects of design.	SO1.1, SO1.2 SO1.3, SO1.4 SO1.5	1.1,1.2,1.3,1. 4,1.5,1.6	Unit-1.0 ENGINEERING CURVE& SCALE 1.1,1.2,1.3	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO 2: Know and use common drafting tools with the knowledge of drafting standards.	SO2.1, SO2.2 SO2.3, SO2.4 SO2.5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6	Unit-2 Projection of Point and Line 2.1, 2.2, 2.3	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO3: Apply computer aided drafting technique to represent line, surface or solid models in different Engineering viewpoints.	SO3.1, ,SO3.2 SO3.3,SO3.4 SO3.5	3.1, 3.2,3.3,3.4,3. 5,3.6	Unit-3 : Projection of Plane & Solid 3.1, 3.2,3.3	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO 4: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	SO4.1, SO4.2 SO4.3, SO4.4 SO4.5	4.1, 4.2,4.3,4.4,4. 5,4.6	Unit-4 : Development of Solid & Section of Solid 4.1, 4.2,4.3,	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO 5: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	SO5.1, SO5.2 SO5.3, SO5.4 SO5.5	5.1,5.2,5.3,5. 4,5.5, 5.6	Unit 5: Isometric projection and Auto CAD 5.1,5.2,5.3	1,2

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester-I

Course Code: Course Title:	ESC103-L Design Thinking & Idea Lab
Pre-requisite:	There is no such pre requisite for Design Thinking and Idea. This course is intended for students from any discipline who require an understanding of design thinking for brand, product, and service development.
Rationale:	Students will learn a series of design thinking concepts, methods and techniques that are used to bring about innovation in business and in the social sector. The- course will be a mix of lecture, case discussions, participative and immersive learning. It will be a predominantly student driven learning to acquire the requisite skills.
Course Outcomes:	

ESC103.1: Identify the problems that fall under the purview of human centered design process for creative problem solving.

ESC103.2: Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.

ESC103.3: Build simple prototypes for problems using gathered user requirements.

Scheme of Studies:

				Total				
Course Catego ry	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
ESC	ESC103- L	Design Thinking & Idea Lab	0	2	1	1	4	1

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial(T) and others),

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self-Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Practical

u	cucai								
				Scheme of Assessment (Marks)					
	Cours	Couse	Course	Progres	sive Assessm	ent (PRA	.)	End	Total
	e Categ ory	Code	Course Title	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)
	ESC	ESC 103-L	Design Thinking & IdeaLab	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

ESC103.1: Identify the problems that fall under the purview of human centered design process for creative problem solving.

Item	AppX Hrs
Cl	0
LI	10
SW	2
SL	1
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
 SO1.1 Identifying the problem that can be solved using Design Thinking approach. SO1.2 Obtain the insights into user's problems and make Problem statement. SO1.3 Carry out Brain storming between the groups and generate as many as ideas possible. SO1.4Obtain the insights to creativity and innovation. 	 Unit- 1.0INTRODUCTION TO DESIGN THINKING 1.1 Definition of Design Thinking, 1.2. Need & Objective of Design Thinking. 1. 3. Stages of Design Thinking Process. 1.4 Brainstorming. 1.5 Innovative Triangle 		3. Develop ability to express their views.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Detail explanation of Stages of Design Thinking.

b. Mini Project:

i. To create a prototype eof users need using Design Thinking Stages.

ESC103.2: Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques

Item	AppX Hrs
Cl	0
LI	10
SW	2
SL	1
Total	13

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning(SL)
SO2.1 Differentiate	Unit-2.0Introduction to		1.Different
between Design	Creativity		Convergentand
thinking and Creative			divergent
thinking.	2.1 Introduction of		thinking tools.
	Creative Thinking.		
SO2.2 Learn different types of	2.2 Creative Thinking		
creative thinking	Process		
techniquesfor	2.3 Creative Problem		
generating creative	Solving.		
ideas.	2.4 Creative Thinking		
	Techniques and		
SO2.3 Be able to solve a	Tools.		
problem using	2.5 Divergent and		
creativity.	Convergent		
	Thinking.		

SW-2 Suggested Sessional Work (SW):

- **a.** Assignments:
 - i. Presentation by student's team on their own creative work.

b. Mini Project:

i. To create a prototype of a product using their own creativity.

ESC103.3: Build simple prototypes for problems using gathered user requirements.

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	AppX Hrs
Cl	0
LI	10
SW	2
SL	1
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
 SO3.1 Understanding of Prototyping. SO3.2 Develop understanding of various prototype testing methods. SO3.3 Understanding of Product Design 	Unit-3.0Introduction to Prototype 3.1 Prototyping as a mindset, prototype examples 3.2 Introduction to Rapid Prototyping. 3.3 Process of prototyping- Minimum Viable prototype 3.4Process of Engineering Product Design 3.5 Stages of Product Design		1.Solving Practical Engineering Problem through Innovative Product Design & Creative Solution

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Presentation by student teams on their own developed prototype.

b. Mini Project:

Make a prototype using stages of product design

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Lecture (LI)	Sessional Work (SW)	Self- Learni ng (Sl)	Total hour (Cl+LI+S W+SI)
ESC103.1 : Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.	00	10	2	1	13
ESC103.2 : Identify the problems that fall under the purview of human centered design process for creative problem solving.	00	10	2	1	13
ESC103.3 : Build simple prototypes for problems using gathered user requirements.	00	10	2	1	13
Total Hours	00	30	06	03	39

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

	Suggested Specification Table (For ESA)										
	Unit	Μ	Total								
CO	Titles	R	U	Α	Marks						
CO-1	Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.	07	05	03	15						
CO-2	Identify the problems that fall under the purview of human centered design process for creative problem solving.	06	06	03	15						
CO-3 Build simple prototypes for problems using gathered user requirements.		07	07	06	20						
	Tota 1	20	18	12	50						

Legend: R: Remember, U:Understand, A:Apply

The end of semester assessment for Design Thinking & Idea Lab will be held with practical examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a)Books:			
S. No.	Title	Author	Publisher	Edition& Year
1	Paul Harris, Basics Design-Design Thinking	Gavin Ambrose	AVA Publishing	2010
2	Prototyping for Designers: Developing the best Digital and Physical Products	Kathryn McElroy	O'Reilly,	2017
3	"Design Thinking – New Product Essentials from PDMA	Michael G. Luchs, Scott Swan, Abbie Griffin		2015

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey , Assistant Professor , Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos, POs and PSOs Mapping

Programme Title: B.tech. Electrical Engineering

Course Code: ESC103-L

Course Title: Design Thinking & Idea Lab

	Program Outcomes										Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO1	PSO2
Course Outcomes			n	atory		unicat ion Skills	al and	ong Lear ning	and Societ	t Mana gemen	ability	essio nal Deve lopm ent	and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, system and services.
CO1: Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques. CO 2 : Identify the problems that fall under the purview of human centered design process for creative problem solving.	3	2	-	-	-	-	-	-	2	2		2	society. 3	2
design process for creative problem solving.CO3 : Build simple prototypes for		3	-	-	-	-	-	-	2	3	-	2	-	2
problems using gathered user requirements.	2	2	1	1	2	2	2	1	1	2	1	2	2	-

Legend: 1–Low, 2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	Cos No .& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO1,2, 9,10,12 PSO1,2	CO1 Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.	SO1.1 SO1.2 SO1.3 SO1.4	Unit-1.0INTRODUCTION TO DESIGN THINKING 1.1,1.2,1.3,1.4,1.5.		1
PO1,2, 9,10,12 PSO2	CO 2 : Identify the problems that fall under the purview of human centered design process for creative problem solving.	SO2.1 SO2.2 SO2.3	Unit-2Introduction to Creativity 2.1,2.2,2.3,2.4,2.5.		1
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1	CO3 : Build simple prototypes for problems using gathered user requirements.	SO3.1 SO3.2 SO3.3	Unit-3: Introduction to Prototype3.1. 3.2, 3.3, 3.4, 3.5.		1

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester-I

Course Code:	ESC106
Course Title :	Basic Civil Engineering
Pre-requisite:	Student should have basic knowledge of Cement, Concrete, Roads and Infrastructure.
Rationale:	The department of civil engineering has been constantly contributing high-quality technical manpower needed by the industry. The broad objective of the department is to achieve recognition for excellence in research and teaching in the country. The Department is well suited to meet the ever changing requirements of engineers with courses that combine the study of management, business skills and computers with engineering. The Department also encourages its students to engage in extra-curricular and co-curricular activities, essential for development of team spirit and organizational skills.

Course Outcomes:

ESC106.1 Impart the knowledge on importance of Civil Engineering in the infrastructural development of society

ESC106.2: Identify the types, uses and properties of various building materials. **ESC106.3:** Identify the type of construction for different components of a building **ESC106.4:** Establish an idea about the different types of masonry work **ESC106.5:** Analyze various types of roofs and floors.

Scheme of Studies:

Cours				Total				
e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
ESC	ESC106	Basic Civil Engineering	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self-Learning,
C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)						End	Tot
			Class/Ho	Class Test				Total	Semester	al
Cours e Categ ory	Cous e Code	Cour se Title	me	2 (2 best out of 3) 10 marks	Sem inar one	Class Activit y any	Class Atte ndan	Marks	Assessme	Ma
			Assignme						nt	rks
			number 3 marks each (CT)					CA+		
						one	ce	CT+S	(ESA)	(PR
					(SA)	(CAT)	(AT)	A+C		A+
				(CT)				AT+		ES
			(CA)	(01)				AT)		A)
ESC	ESC1 06	Basic Civil	15	20	5	5	5	50	50	
		Engi								100
		neeri								
		ng								

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC106.1 Impart the knowledge on importance of Civil Engineering in the infrastructural development of society

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	AppX Hrs
Cl	08
LI	0
SW	2
SL	2
Total	12

Session	Laboratory	Classroom		Self-		
Outcomes	Instruction	Instruction		Learning		
(SOs)	(LI)	(CI)		(SL)		
SO1. Overview of		Unit-1.0 Importance of	1.	Advantages		
Civil		Civil Engineering in the		of		
Engineering.		infrastructural		Infrastructure		
SO1.2 types of		development of society				
infrastructures		1.1 types of infrastructures.	2.	Public		
SO1.3 public-		1.2 Effect of infrastructure		Private		
private partnership (PPP)		facilities on economy		Partnership		
SO1.4 talent		and environment.				
shortage and global		1.3 Role of Civil Engineers in				
trends in workshop		the infrastructural				
mobility		Development Introduction				
SO1.5 skill		to sub domains of Civil				
demands		Engineering.				
•		1.4 Industry emerging trends in				
		infra spending through				
		public and public-private				
		partnership (PPP)				
		1.5 global trends in workshop				
		mobility Concise				
		1.6 Talent Shortage				
		1.7 Skill Demand				
		1.8 PPP				

Faculty of Engineering and Technology **Department of Electrical Engineering**

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
 - Industry emerging trends in infra spending through public and public-private i. partnership (PPP)
 - Role of Civil Engineer for Infrastructure Development ii.

b. Mini Project:

- i. Affecting Factors of PPP.
- c. Other Activities (Specify): Note on Different fields of Civil Engineering.

ESC106.2: Identify the types, uses and properties of various building materials. **Approximate Hours**

Item	AppXHrs		
Cl	09		
LI	0		
SW	2		
SL	2		
Total	13		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO2.1 To what extent you are able to Identify the types, uses and properties of various building		Unit- Stages in the life of construction	1.Construction Life Cycle
materials		2.1 Design2.2 Construction.2.3 Maintenances	2. Unit Conversion
SO2.2To learns about Design, Construction & Maintenance.		 2.4 Repair. 2.5 Recycling; an overview of Indian standards. 2.6 unit and conversion 	
SO2.3To Learn About Demolition / Recycling.		factors for lengths	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SO2. To learn about overview	2.7 areas, volumes and weights	
of Indian standards	2.8 Opportunities and	
	challenge of India's	
SO2.5 Interdisciplinary nature	Infrastructure	
of civil engineering	2.9 Interdisciplinary nature	
projects.	of civil engineering	
	projects.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Recycling of Building Materials
- ii. Prepare Detail project on Construction Life Cycle.

Mini Project:

- Interdisciplinary nature of civil engineering projects.
- **b.** Other Activities (Specify): Challenges of Indian Infrastructure

ESC106.3: Identify the type of construction for different components of a building **Approximate Hours**

Item	AppX Hrs
Cl	10
LI	0
SW	2
SL	2
Total	14

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-
(SOs)	(LI)	(CI)	Learning (SL)
SO3.1 Types of Roads Used in India		Unit-3 : Types Of Roads Used	i. History Of Road
SO3.2Component		In Construction	Development in India
and use of Roads		3.1 Types of Roads	ii. Advantages of Bridges & Dams
SO3.3. Analyze various types of bridges		3.2 Types of Pavement flexible & Rigid,3.3 Road function & Component,3.4 Road Plan	Danis
and Its parts. SO3.4. To what extent you are able to Analyze		 3.5 Bridges: important parts 3.6 classification of bridges 3.7 Component of Bridges 3.8 Types Of Dams 3.9 Function of Dams 3.10 Components & Uses Of 	
various types of Dams .		Dams	

SW-3 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Road Plans in India.
 - ii. Different types of Bridges.
- b. Mini Project:

Make Project Report on Dams In India

c. Other Activities(Specify): Make Report on Road Plans.

ESC106.4: Establish an idea about the different types of masonry work

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Item	AppX Hrs		
Cl	11		
LI	0		
SW	2		
SL	2		
Total	15		

Session	Laboratory	Classroom	Self
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
 SO4.1 To what extent you are able to Identify the type of construction for different components of a building. SO4. To what extent you are able to Establish an idea about the different types of masonry work SO4.3Understanding the Building Material SO4.4 Understand the Different grades of Concrete & Steel 		 Unit-4 :Building Materials 4.1 Properties of common building materials 4.2 Classification of building materials. 4.3 Rocks 4.4 Types Stones & its properties. 4.5 Types Bricks & its properties. 4.6 Types Sand & its properties. 4.7 Types Lime & its properties. 4.8 Types of Cement 4.9 Uses & Various types of Cement Test 4.10 Concrete Uses & Properties 4.11 Various Grades used in Steel 	 Preparation of process flow chart of Portland cement manufacture Draw a typical lay out of a cement plant showing various sections.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Identify masonry for the construction of a building
- ii. Describe briefly the dry process cement manufacture.

b. Mini Project:

i. Set out buildings using modern methods.

b. Other Activities (Specify):

Power Point Presentation of Portland cement manufacture.

ESC106.5: Analyze various types of roofs and floors. **Approximate Hours**

Item	AppX Hrs
Cl	07
LI	0
SW	2
SL	1
Total	10

Session Outcomes (SOs)	Laboratory Instruction (LI)	Self Learning (SL)	
 SO5.1 To what extent you are able to Impart the knowledge on importance of Civil Engineering in development of society SO5.2 Overview ofIndian Road Congress SO5.3 Role of the new technologies in the field of civil engineering 		 Unit 5: Indian Road Congress 5.1 History of IndianRoad Congress. 5.2 Advantages of IRC 5.3 Overview of National Highway Authority of India(NHAI) 5.4 Various Road Planintroduced in NHAI 5.5 Overview of American Societyof Civil Engineers (ASCE) 	 History of IRC. Role of ASCE for Civil Engineers.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

 5.6 Emerging areas annew technologiesin the field of civil engineering 5.7 Advance Technologies in civil 	
Engineering	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Identify pavement components and design bituminous mixes
- ii. Evaluate structural conditions of pavements.

b. Mini Project:

Prepare Project Report on Road Development in India.

c. Other Activities(Specify):

Advantages of ASCE For Civil Engineers.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
ESC106.1: Importance of Civil Engineering in the infrastructural development of society	8	2	02	12
ESC106.2: Acquire knowledge regarding Stages in the life of construction.	09	2	02	13
ESC106.3: Gain an understanding of the various types of Road in India and their utilization in infrastructure development.	10	2	02	14
ESC106.4:Analyze the strength and properties of various building materials.	11	2	2	15
ESC106.5: Overview of National Highway Authority of India (NHAI)	7	2	1	10
Total Hours	45	10	09	64

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO Unit Titles		Marks Distribution			Total
CO	CO Unit Titles		U	Α	Marks
	Importance of Civil Engineering	03	01	01	05
CO-1	in the infrastructural				
	development of society				
CO-2	Stages in the life of construction	02	06	02	10
CO-3	Types Of Roads Used In Construction	03	07	05	15
CO-4	Building Materials	-	10	05	15
CO-5	Indian Road Congress	03	02	-	05
Total		11	26	13	50

Legend:R: Remember,U: Understand,A: ApplyThe end of semester assessment for Introduction to Portland cement will be held with written
examination of 50 marksA: Apply

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role-Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year				
1	Law of Contract	W. H Duda	Oxford University Press	Anson W.R.(1979)				
2	Legal Aspects of Building and Engineering Contract		Oxford University Press	Patil, B.S.(1974)				
3	Engineering Construction and Architectural management	A K Chatterjee	Vol-10 Iss 2 pp 117- 127	Vee, Charles & Skitmore, Martin (2003)				
4	Cement Production Principle and Practice	A K Chatterjee	Vol-10 Iss 2 pp 117- 127	2018				
5		Holcim Training Manual						
6		FLS Training Manual						
7	Dept. of		e provided by logy, AKS University, S	Satna.				

Curriculum Development Team

- 1. Mr. Vishutosh Bajpai ,Assistant Professor, Dept. of Civil Engineering
- 2. Mr. Aditya Budhadra , Assistant Professor, Dept. of Civil Engineering
- 3. Mrs. Richa Tripathi , Assistant Professor , Dept. of Civil Engineering
- 4. Mrs. Shraddha Panday, Teaching Associate, Dept. of Civil Engineering
- 5. Mrs. Garima Panday, Teaching Associate, Dept. of Civil Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: ESC 106 Course Title: Basic Electrical Engineering

						Program		omes						cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng kno wled ge	Prob lem Solvi ng	Desi gn Skill s	Labo rator y Skill s	Tea mwo rk	Com muni catio n Skill s	Ethic al and Prof essio nal Beha vior	Lifel ong Lear ning	Globa l and Societ al Impac t	Projec t Mana gemen t	Adapt ability	Profes sional Devel opme nt	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Importance of Civil Engineering in the infrastructural development of society	3	2	1	1	2	2	1	2	1	1	1	1	2	2
CO2: Acquire knowledge regarding Stages in the life of construction.	1	3	1	1	2	3	1	2	1	1	1	1	2	2
CO3: Gain an understanding of the various types of Road in India and their utilization in infrastructure development.	2	2	1	1	1	2	1	2	2	2	1	1	1	2
CO4: Analyze the strength and properties of various building materials.	1	1	1	1	1	1	1	1	1	1	1	1	3	3
CO5: Overview of National Highway Authority of India (NHAI)	1	1	1	1	1	1	1	1	1	1	1	1	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course	Curriculum Map				
POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO1: Importance of Civil Engineering in the infrastructural development of society	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Importance of Civil Engineering in the infrastructural development of society 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,1.7,1.8	1,2
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO2: Acquire knowledge regarding Stages in the life of construction.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 : Stages in the life of construction .1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	1.2
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO3: Gain an understanding of the various types of Road in India and their utilization in infrastructure development.	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3 : Types Of Roads Used In Construction 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10	1,2
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO4: Analyze the strength and properties of various building materials.	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4: Building Materials 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11	1,2
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO5: Overview of National Highway Authority of India (NHAI)	SO5.1 SO5.2 SO5.3		Unit 5: Indian Road Congress 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7	1,2

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-I

HSMC08 **Course Code: Course Title :** Sustainable Development Goals (SDGs) **Pre-requisite:** Student should have basic knowledge of Environment, Natural resources, Climate change and sustainability. To inculcate the knowledge base on sustainable development with a view **Rationale:** to balance our economic, environmental and social needs, allowing prosperity for now and future generations. To train students to undertake major initiatives in the efficient management of natural resources and the prevention of environmental pollution with focus on Sustainable Development. To use environmental management tools that help to improve the quality of environment, To assess local vulnerabilities with respect to climate, natural disasters and to achieve sustainable developmental needs.

Course Outcomes:

- **HSMC08.1:** Examine critically the 17 newly minted UN Sustainable Development Goals and understand the historical evolution, key theories, and concepts of sustainable development.
- **HSMC08.2:** Identify and apply methods for assessing the achievement of sustainable development and discover the science, technology, economics, and politics underlying the concepts of sustainability.
- **HSMC08.3:** Understand the implications of overuse of resources, population growth and economic growth and sustainability and explore the challenges the society faces in making transition to renewable resource use.
- **HSMC08.4:** Develop skills to understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and apply critical thinking skills to evaluate the quality, credibility and limitations of an argument for solution.
- **HSMC08.5:** Describe the steps of the design thinking methodology and how design thinking can accelerate effective SDG implementation. Deepen knowledge and pedagogical tools to incorporate values-based education for sustainable development in educational programmes and processes.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Scheme of Studies:

Course				Scheme of studies(Hours/Week)					
category	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hour (CI+LI+SW+SL)	Total Credits (C)	
HSMC	HSMC08	Sustainable Development Goal	2	0	1	1	4	2	

Legend: CI: Class room Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.), **SL:** Self Learning,

C: Credits.

Scheme of Assessment:

Theory

	cory			Scheme	of Ass	sessment	(Mark	s)		
Course Categor y	Cours e Code	Cour se Titl e	Class/Ho me Assign ment 5 number 3 marks each (CA)	Class Test 2 (2 bestout of 3) 10 marks	Sem inar one	Class Class Activity any one (CAT)	Class	(PRA) Total Marks (CA+CT+ SA+CAT +AT)	End Sem ester Asse ss men t (ES A)	Total Marks (P R A + ES A)
HSMC	HSMC 08	Sustai nable Devel opmen tGoal	15	each (CT)	5	5	5	50	50	100

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC08.1: Examine critically the 17 newly minted UN Sustainable Development Goals and understand the historical evolution, key theories, and concepts of sustainable development.

Item	AppX Hrs
Cl	06
LI	0
\mathbf{SW}	1
SL	1
Total	8

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self -Learning (SL)
SO1.1Understand about Sustainable Development SO1.2 Understand the Need andImportance of SDGs. SO1.3 Understand the historical evolution of SDGs		 Unit-1.0 Introduction to Sustainable Development 1.1 Need and Importance of Sustainable Development 1.2 Historical & Policy perspectives of Sustainable Development 	1. Different SDG goalsdetails andits importance

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SO1.4 Gain knowledge of SDGs Different goals and their importance SO1.5 Explain the Challenges & strategies of	1.4	Sustainable Development: World and India Perspective Introduction to 17 SDGs Specific learning objectives for differentSDGs	
attaining SDGs in countries.	1.6	Challenges & strategies of attaining in developedand developing Nations	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Overview of SDGs, Sustainable Consumption and Production, Details of 17 SDGs

b. Other Activities (Specify):

Note down the different challenges in our state and district to achieve SDG

HSMC08.2: Identify and apply methods for assessing the achievement of sustainable development and discover the science, technology, economics, and politics underlying the concepts of sustainability and measuring.

Item	AppX Hrs
Cl	06
LI	0
SW	1
SL	1
Total	8

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
 SO2.1 Explain Sustainable Development SO2.2 Understand the NEP-2020 and SDG SO2.3 Discuss higher Educationrole to achieve SDGs SO2.4 Explain how education for Sustainable Development SO2.5 Explain the measuring techniques for Sustainability 		 Unit-2.0 Special focus on SDG 4- Quality Education and Lifelong Learning: 2.1 Focus of NEP-2020 on SDG 2.2 Education for Sustainable Development(ESD): 2.3 Berlin Declaration 2021 on ESD 2.4 Integration of ESD in curriculum and textbooks 2.5 Tools, Systems, and Innovation for Sustainability 2.6 Measuring Sustainability: How do we measure sustainability 	1 NEP2020 objectives and concept for SDGs

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Education role to achieve SDGs, The role of education in Sustainable Development, Measuring techniques of sustainability, Sustainability Indicators

b. Other Activities (Specify):

Seminar and group discussion on ESD and measuring sustainability Millennium Development Goals (MDGs)

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

HSMC08.3: Understand the implications of overuse of resources, population growth and economic growth and sustainability and explore the challenges the society faces in making transition to renewable resource use.

Item	AppX Hrs
Cl	06
LI	0
SW	1
SL	1
Total	8

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO3.1 Understand current economicissues in the context of the global sustainable development debate.		Unit-3.0 Understanding the SDGs 3.1 Circular economy (basic	1. Water Treatment and
SO3.2 Outline of health, hygieneand water sanitation issues.		model ofreuse, recycle, and reduce) 3.2 Rural & urban	management nt practices.
SO3.3 Discuss the renewable energy resources and its importance in present scenario		Problems & Challenges 3.3 Sustainable	
SO3.4 Explain the importance of sustainable production and consumption		production and consumption 3.4 Renewable energy 3.5 Health & Hygiene, water,	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO3.5 Explain the	sanitation& water	
problems and solution	management	
inrural and urban areas.	3.6 Waste Management	

SW-1 Suggested Sessional Work (SW):

Smart cities

a. Assignments:

Ecofriendly energy resources importance, types of waste and its management, Urban Problems & Challenges

b. Other Activities (Specify):

Visit of waste water treatment plant, Visit of water treatment process.

HSMC08.4: Develop skills to understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and apply critical thinking skills to evaluate the quality, credibility and limitations of an argument for solution.

Item	AppX Hrs				
Cl	06				
LI	0				
SW	1				
SL	1				
Total	8				

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO4.1 Understand environmental sustainability is crucial in reducing the impactsof climate change		Unit-4.0 Climate Change, Energy and Sustainable Development	1. Agreement on Climate Change, Trade, and
SO4.2 Discuss causes of emission of GHGs and its consequences		4.1 The greenhouse effect: Causes and Consequences	Sustainability Carbon Credit, carbon trading
SO4.3 Explain how climate change and sustainable development both play a role in shaping the human and environmental factors of the world.		4.2 Climate Change: A Threat to Sustainable	
SO4.4 Explain the importance of sustainable production and consumption		Development 4.3 Adaptation to Current and FutureClimate	
SO4.5 Climate change is disrupting national economies and affecting lives and livelihoods, especially for the mostyulnerable and its		Regimes4.4 The consequences: crop failure4.5 Solutions	
mitigation.		technology and lifestylechanges 4.6 Mitigating Climate Change	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Urban Sustainability and Climate Change, Sustainable Development Policies, Agreement on Climate Change, Trade and Sustainability, Resilient cities – What makes a city sustainable, green, and resilient.

HSMC08.5: Describe the steps of the design thinking methodology and how design thinking can accelerate effective SDG implementation. Deepen knowledge and pedagogical tools to incorporate values-based education for sustainable development in educational programmes and processes.

Item	AppX Hrs
Cl	06
LI	0
SW	1
SL	1
Total	8

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self - Learning (SL)
 SO4.1 Understand the relevance and theconcept of sustainability and the global initiatives in this direction SO4.2 Understand role of Corporationsand Ecological Sustainability. SO4.3 Explain role of CSR in Sustainability. SO4.4 Understand the SD challenge forcompanies, their 		 Unit-5.0 Sustainable BusinessPractices: 5.1 Corporate Social Responsibility 5.2 Sustainable products and services, Business and Environment 5.3 Corporations and EcologicalSustainability 5.4 Life Cycle Assessment: LCA Overview and Application 	Local to the Global: Can Sustainabl e Developm ent Work

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

responsibility and their	5.5 World peace and justice:
potentials for action	5.6 United nations goals for
SO4.5 Discuss the role of world	peace and justice,
government for world justice and	World Government for
peace	peace

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Consumption Patterns and Lifestyles, Company Perspectives for Environmental Sustainability, an Introduction to Economic Growth

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+S l)
HSMC08.1: Examine critically the 17 newly minted UN Sustainable Development Goals and understand the historical evolution, key theories, and concepts of sustainable development.	6	1	1	8
HSMC08.2: Identify and apply methods for assessing the achievement of sustainable development and discover the science, technology, economics, and politics underlyingthe concepts of sustainability.	6	1	1	8
HSMC08.3: Understand the implications of overuse of resources, population growth and economic growth and sustainability and explore the challenges the society faces in making transition to renewable resource use.	6	1	1	8
HSMC08.4: Develop skills to understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and apply critical thinking skills to evaluate the quality,	6	1	1	8

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

credibility and limitations of an argument for solution.				
HSMC08.5: Describe the steps of the design thinking methodology and how design thinking can accelerate effective SDG implementation. Deepenknowledge and pedagogical tools to incorporate values-based education for sustainable development in educational programmes and processes.	6	1	1	8
Total Hours	30	5	5	40

Suggestion for End Semester Assessment

Suggested Specification Table(For ESA)

СО	Unit	M	arks Dist	ribution	Total
CO	Titles	R	U	Α	Marks
CO-1	Need and Importance of Sustainable Development	03	01	01	05
CO-2	Education for Sustainable Development (ESD): Tools,Systems, and Innovation forSustainability	02	06	02	10
CO-3	Discuss the sustainable production and consumption	03	07	05	15
CO-4	How Climate Change may be Threat to Sustainable Development	-	10	05	15
CO-5	Role of Corporations and Ecological Sustainability	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Sustainable Development Goals will be held with written examination of 50marks

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers canalso design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry, water treatment plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Editio n & Year
1	The Economics of Sustainable Development: The Case of India (Natural Resource Management and Policy)"	Surender Kumar and Shunsuke Managi	Springer Switzerland	2009
2	Corporate Social Responsibility in Developing and Emerging Markets	<u>Onyeka Osuji</u>	Cambridge	New Edition June 2022
3	Smart Cities for Sustainable Development	Ram Kumar Mishra, Ch Lakshmi Kumari, Sandeep Chachra, P.S. Janaki Krishna	Springer Switzerland	March 2022

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

4	Sustainable Development: LinkingEconomy, Society, Environment	Tracey Strange andAnne Bayley		
5	Management Of Resources ForSustainable Devpt	Sushma Goyal	The Orient Blackswan	2016
6	Energy, Environment and SustainableDevelopment: Issues and Policies	S. Ramaswamy Sathis G. Kumar	Regal Publications	2009
7	The New Map: Energy, Climate, and theClash of Nations	Daniel Yergin	Penguin Press	Septe mber 2015
8	Contributions of Education for Sustainable Development (ESD) toQuality Education:	Laurie, R., Nonoyama- Tarumi, Y., Mckeown, R., & Hopkins, C.	A Synthesis of Research. Journal of Education for Sustainable Development, 10(2), 226– 242.	2016
9	Sustainable Results in Development: Using the SDGs for Shared Results and Impact	OECD	OECD Publishing, Paris	2019
10	Development Discourse and Global History from colonialism to the sustainable development goals	Ziai, Aram	Routledge, London & New York	2016
11	Sustainable Development Goals AnIndian Perspective,	Hazra, Somnath., Bhukta, Anindya	Springer Switzerland	2020
12	Environmental Ecology, Biodiversityand Climate Change	HM Saxena	Rawat Publication	January 2021
13		n.org/sustainabledeve		
14	https://www.aiu.ac.in/doc			S
15	https://www.unesco.org			
16	https://onlinecours	es.nptel.ac.in/noc23_	hs57/preview	
17	ttps://www.iau-hesd.net/news/5180-b adopted-ur	perlin-declaration-edu nesco-esd-conference-		evelopment-

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: HSMC08

Subject Title: Sustainable Development Goals

			Pre	ogram	Outc	omes							Program Spe	cific Outcome
	Р О 1	PO 2	PO 3	P O4	P O5	PO 6	PO 7	Р О8	PO 9	PO1 0	PO1 1	PO 12	PSO 1	PSO 2
Course Outcomes	Eng inee ring kno wle dge	Prob lem Solvi ng	Desi gn Skill s	Labo rator y Skill s	Tea mwo rk	Com muni catio n Skill s	Ethi cal and Prof essio nal Beha vior	Lifel ong Lear ning	Globa l and Societ al Impac t	Project Manag ement	Adapta bility	Profess ional Develo pment	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Examinecritically the 17 newly minted UN Sustainable Development Goals and understand thehistorical evolution, keytheories, and concepts of sustainable Development.	1	1	1	2	3	2	3	2	2	1	3	2	2	3
CO2: Identify andapply methods for assessing the achievement of sustainable development and discover the science, technology, economics, and politics underlying the concepts of Sustainability.	1	1	2	2	1	2	3	2	1	1	2	2	2	2

CO3: Understand the implications of overuse of resources, population growth and economic growth and sustainability and explore the challengesthe society faces in making transition to renewable resource use.	2	2	1	1	1	2	2	2	1	2	1	2	1	1
CO4: Develop skillsto understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and applycritical thinking skillsto evaluate the quality, credibility and limitations of an argument for solution.	3	2	2	2	3	2	3	2	2	1	2	3	3	3
CO5: Describe the steps of the design thinking methodology and how design thinking can accelerate effective SDG implementation. Deepen knowledge and pedagogical toolsto incorporate values-based education for sustainable development in educational programmes and processes	-	-	-	1	1	3	3	3	1	1	2	2	3	3

Legend:1-Low,2-Medium, 3-High

Course Curriculum Map:

Os & PSOs No.	Cos No. & Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
7,8,9,10,11,12 PSO 1,2, 3, 4, 5	Sustainable Development Goals and understand the historical evolution, key theories, and concepts of sustainable development.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1.0 Introduction to Sustainable Development: 1.1,1.2,1.3,1.4,1.5,1.6,	1
7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO2: Identify and apply methods for assessing the achievement of Sustainable development and discover the science, technology, economics, and politics underlying the concepts of sustainability.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 Special focus on SDG 4-Quality Education and Lifelong Learning: 2.1,2.2,2.3,2.4,2.5,2.6	1,
7,8,9,10,11,12	CO3: Understand the implications of overuse of resources, population growth and economic growthand sustainability and explore the challenges the society faces in making transition to renewable resource use.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3 : Understanding the SDGs: 3.1, 3.2,3.3,3.4,3.5,3.6	1,

PO1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5 PSO 1,2, 3, 4, 5 CO4: Develop skills to understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and apply critical thinking skills to evaluate the quality, credibility and limitations of an argument for solution.	004.1	Unit-4 : Climate Change, Energy and Sustainable Development 4.1, 4.2,4.3,4.4,4.5,4.6	1,
PO1,2,3,4,5,6CO5: Describe the steps of7,8,9,10,11,12the design thinking methodologyand how designPSO 1,2, 3, 4, 5thinking can accelerate effective SDG implementation. Deepen knowledge and pedagogical tools to incorporate values- based education for sustainable development in educational programmes and processes	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	Unit 5: Sustainable Business Practices, LCA and World peace and justice 5.1,5.2,5.3,5.4,5.5,5.6	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-II

Course Code:	BSC103
Course Title:	Chemistry-1
Pre- requisite:	Students must have fundamental knowledge of mathematics, nature of molecule, valence shell electron pair repulsion theory, and different concentration terms to understand the concept of engineering chemistry.
Rationale:	The students studying Chemistry-1 should possess foundational understanding about basic mathematics, different concentration terms and valence shell electron pair repulsion theory to understand the basic principle of chromatography and spectroscopic analysis.

Course Outcomes: After the completion of this course, the learner will able to

- BSC103.1: Apply VSEPR theory to predict the three-dimensional shapes of molecules.
- **BSC103.2:** Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug
- **BSC103.3:** Explain and apply the concept of Intermolecular forces, Hydrogen bond, and transition metal complexes.
- **BSC103.4:** Predict the concept of thermodynamics, free energy & entropy and apply Nernst equation, water chemistry as well as explain concept of acid-base, metallurgy, Emf cell and corrosion.
- **BSC103.5:** Collectively aim to equip students with a comprehensive understanding of the theoretical principles, practical methodologies, and diverse applications of various spectroscopic techniques.

Scheme of Studies:

			Scheme of studies(Hours/Week)						
Course Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)	
BSC	BSC 103	Chemistry- 1	3	2	2	1	8	4	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e., Lecture (L) and Tutorial (T)and others),

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini projected.),

SL: Self-Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback teachers ensure outcome of Learning.

Scheme of Assessment:

Theory

				Sche	me of	Assessm	ent (M	larks)		
Cour se Cate gory	Cou rse Cod	Course Title	Class/ Home Assign ment 5 numbe r 3				· ·	(PRA) (PRA) Total Marks (CA+C T+ SA+C AT	En d Se mes ter Ass ess me	Total Marks (P R A + E
BSC	e BSC	Chemistr y-1	marks each (CA)	each (CT)	SA)	(CA T)	A T)	+A T)	nt (ES A)	S A)
	103		15	20	5	5	5	50	5 0	100

Practical

			Scheme of Assessment (Marks)							
Cour	Couse	Course	Progre	Progressive Assessment (PRA)						
se Categ ory	Code	Title	Lab Assignment s 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)		
BSC	BSC 103-L	Chemistry-1	35	10	5	50	50	100		

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion

BSC103.1: Apply VSEPR theory to predict the three-dimensional shapes of molecules.

Item	App X Hrs.
Cl	9
LI	6
SW	2
SL	1
Total	18

Session	LaboratoryInstruction	Class room	Self Learning(SL)
Outcomes (SOs)	(LI)	Instruction(CI)	
SO1.Describe the classification of different types of orbit orbitals SO1.2 Discuss the fundamental concept of wave function and probability distribution curve SO1.3 Explain and apply Atomic Spectroscopy: Energies of atomic orbital's	LI1.1. Determinatio n of specific density of given liquid LI.1.2. Determinati onof viscosity of given liquid LI.1.3 Paper chromatography,Thin layer Chromatography.	 Unit 1: Atomic and Molecular Structure & Periodic properties 1.1. Introduction of orbit, orbitals and electronic configuration 1.2. Schrodinger wave equation and its derivation 1.3. Hybridization and typesof Hybridization. Intermixing of orbitals 	 History of development of periodic table Electronegativity and its application

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SO1.4 Apply concept of VSEPR in the	1.4.	VSEPR theory,	3.
determination of		bond pair and lone	
geometry of		pair	
various		repulsion,	
molecules.	1.5.	Determination of	
SO1.5 Restate		geometry of the	
molecular		molecules	
energy level	1.6.	Molecular	
diagram of N2F2		orbital theory,	
and O2	1.7.		
molecules.		energy level	
		diagram and	
		bond order for	
		homo and hetero	
		atomic molecules	
	1.8.	Periodicity	
		of atomic size and	
		ionization energy	
	1.9	Electron gain	
		enthalpy and types	
		of electron gain	
		enthalpy	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Applications of molecular orbital theory for the determination of bond order and magnetic behavior.

b. Mini Project:

- i. Hybridization and its application.
- c. Other Activities (Specify):
 - i. Write an essay on different type of chemical bond.

BSC103.2: Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug molecule.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Item	App X Hrs.
Cl	9
LI	6
SW	2
SL	1
Total	18

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction(LI)	(CI)	(SL)
SO2.1understand the concept of representations of 3 dimensional structures SO2.2 explain structural isomers and stereoisomers SO2.3 describe symmetry, chirality and optical activity	LI.2.1.To Synthesize drug molecules and determine its percentage yieldLI.2.2.To determine the acidvalue or saponification value of oil/fat	UNIT 2: Stereochemistry, Organic reactions and synthesis of a drug molecule 2.1 Representations of 3 dimensional structures 2.2 Structural isomers and stereoisomers 2.3 Symmetry and chirality, optical activity and absolute configurations	 Plane of polarized light Types of symmetry

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SO2.4 explain and	LI2.3.To	2.4 enantiomers, diastereomers	
identify different types ofreactions with mechanisms SO2.5 apply the concept of mechanisms to synthesize drug molecules	determine partition coefficient of a organic substance between two immiscible liquids.	 2.5 Isomerism in transitional metal compounds 2.6 Introduction to reactions involving substitution reaction 2.7 Addition, elimination, oxidation, reduction reaction 2.8 cyclization and ring openings 2.9 Synthesis of a commonly used drug molecule 	

SW-2 Suggested Sessional Work (SW):

Assignments: Conformational Isomerism and conformational analysis

BSC-103.3: understand the concept of Intermolecular forces, Hydrogen bond, Transitionmetal complexes by applying this concept

Item	App X Hrs.	
Cl	9	
LI	6	
SW	2	
SL	1	
Total	18	

Session Outcomes(SC	Ds)		boratory struction (LI)		Class room Instruction (CI)		Self-Learning (SL)
SO2.1 De	scribe	LI3.1.	Synthesis	a	Unit-3: I	ntermolecular	1. Coordination
Ionic, dipolar,		inorgan	ic me	tal	forces a	nd Transition	compounds
London,		complex	х		metal	complexes	IUPAC name
dispersio	n	1			3.1. Ionic,	dipolar,	and Werner

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

force, vander Waals interaction SO2.2explain Hydrogen bond and types of hydrogen bond SO2.3 Coordination compounds SO2.4 describe Metallig andbonding by VBT SO2.5 explain Metal ligand bonding by CFT	LI3.2. Determine the two acid and two basics radical LI.2.3. Determinationof chloride content of water	London dispersion force 3.2. Vander Waals interactions 3.3. Hydrogen bond, types of hydrogen bond. 3.4. Coordination compounds 3.5. Metal ligand bonding by VBT 3.6. Metal ligand bonding by CFT 3.7. The energy level diagrams for transition metal ions and their magnetic properties. 3.8. The energy level diagrams for transition metal ions and their magnetic properties 3.9. The energy level diagrams for transition metal ions and their magnetic properties 3.9. The energy level diagrams for transition metal ions and their magnetic properties 3.9. The energy level diagrams for transition metal ions and their	theory 2. The energy level diagrams for transition metal ions and their magnetic properties
		Ū.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. VBT theory, CFT theory, The energy level diagrams for transition metal ions and their magnetic properties

b. Mini Project:

i. applications of transition metal complexes

BSC103.4 Predict the concept of thermodynamics, free energy & entropy and apply Nernst equation, water chemistry as well as explain concept of acid-base, metallurgy, Emf cell and corrosion.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Item	Appx. Hrs.	
Cl	9	
LI	6	
SW	2	
SL	1	
Total	18	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO4.1Restate concept of free energy, Free energy, Enthalpy Entropy and types of different thermodynamic system SO4.2Discuss the fundamental concept of cell representation standard EMF of cell SO4.3 Explain and apply different types of concepts used in softening of water 	LI.4.1. Determination of hardness of water LI.4.2. Determination of alkalinity ofwater LI.4.3. Chemical analysis of a salt.	 Unit 4: Use of free energy in chemical equilibrium 4.1Introductionenergy, Enthalpy, Entropy, system and surroundings 4.2 Cell notation of cell, Nernst equation and its application 4.3 Water chemistry, Hardness of water, Temporary and permanent hardness 4.4 Water softening methods 4.5 Introduction of 	1- derivation of Nernst equation.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

and purification of	Corrosion, Mechanism of
water	corrosion
SO4.4 Understand and	4.6 Factors affecting rate of
applyconcept of	corrosion
corrosionfor the	4.7 Various acid-base
development of	concepts, Arrhenius
green corrosion	concept,
inhibitors	4.8 Lewis acid-base
SO4.5 Understand different	concept, Bronsted
acid-base concepts,	Lowryconcept
ionic and solubility	4.9 Brief idea about ionic
product of salts	and solubility equilibria
L	

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Applications of green corrosion inhibitors

b. Mini Project:

i. Analysis of water quality parameters.

c. Other Activities (Specify):

i. Write an essay on acid-base concepts, ionic and solubility product of salts.

BSC103.5: Collectively aim to equip students with a comprehensive understanding of the theoretical principles, practical methodologies, and diverse applications of various spectroscopic techniques.

Item	Appx. Hrs.
Cl	9
LI	6
SW	2
SL	1
Total	18

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction(CI)	Self- Learning (SL)
 SO5.1Understand Identification and classification of different types of EMR and vibrational modes in molecules. SO5.2 Understand the fundamental principles of vibrational and rotational spectroscopy, including the interaction of light with molecular vibrations, the concept of infrared (IR) SO5.3 Explain and apply Atomic Spectroscopy: Energies of atomic orbital's SO5.4 Understand and apply concept of NMR, Nuclear spin, nuclearresonance. SO5.5 Understand introduction of X-ray Diffraction determination crystallographic structure of materials. 	LI.5.1. Verification of Beer- Lambert law LI5.2. Determination of absorption maximum of a given organic compound. LI.5.3. Determination of cell constant and conductance of solutions.	 Unit 5: Spectroscopic techniques and applications 5.1 Introduction of spectroscopy, discovery, properties and types of electromagnetic radiation. 5.2 Classification of different types of vibrational modes in molecules (stretching, bending, torsional, etc.).IR activity. 5.3 Energies of atomic orbitals and electronic transition, frank Condon principle. 5.4 Introduction of NMR, 5.5. Nuclear spin, nuclear resonance 5.6 Principle and instrumentation of NMR 5.7. Shielding and de shielding of magnetic nuclei. 5.8. surface characterization techniques 5.9. Diffraction and scattering 	1. Applications Nuclear magnetic resonance and magnetic resonance imaging

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Applications Nuclear magnetic resonance and magnetic resonance imaging

b. Mini Project:

i. Fluorescence and its applications in medicine

c. Other Activities (Specify):

i. Write an essay on surface characterization techniques. Diffraction and scattering.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Class Lab Sessional Self-**Total hour** Course Lecture Instruction Work Learning (Cl+LI+SW+SI) Outcomes (**Cl**) (LI) **(SW)** (SL) **BSC103.1:** Apply VSEPR theory to predict the three-dimensional 09 06 02 01 16 shapes of molecules. **BSC103.2**: Describe the concept of symmetry, chirality and optical 09 18 06 02 01 activity and synthesize chiral drug molecule **BSC103.3:** Explain and apply the concept of Intermolecular forces. 09 06 02 01 16 Hydrogen bond, and transition metal complexes **BSC103.4:** Predict the concept of thermodynamics, free energy & entropy and apply Nernst 09 06 02 01 16 equation, water chemistry as well as explain concept of acid-base, metallurgy, Emf cell and corrosion. **BSC103.5**: Collectively aim to students with equip а comprehensive understanding of 09 06 02 01 14 the theoretical principles, practical methodologies, and diverse applications of various spectroscopic techniques. 30 90 **Total Hours** 45 10 05

Brief of Hours suggested for the Course Outcome

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

СО	Unit	Mai	Total		
CO	Titles	R	U	Α	Marks
CO-1	Atomic and Molecular Structure &Periodic properties	03	01	01	05
CO-2	Stereochemistry, Organic reactions and synthesis of a drug molecule	02	06	02	10
CO-3	Intermolecular forces and Transition metal complexes	03	07	05	15
CO-4	Use of free energy in chemical equilibrium	_	10	05	15
CO-5	Spectroscopic techniques and applications	03	02	-	05
	Total	11	26	13	50

Suggested Specification Table (For ESA)

The end of semester assessment for Chemistry I will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers forabove tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to NCL, CSIR laboratories
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	A textbook of Chemistry-1	Shyamala Sundara	S. Chand	Edition 2008
2	A Textbook of Engineering Chemistry	Shashi Chawla	Dhanpat Rai Prakashan	Edition 2020
3	A Textbook of Engineering Chemistry	PC Jain and Monika Jain	Dhanpat Rai Prakashan	Edition2018

Suggested Web Sources:

- 1. https://nptel.ac.in/course.html
- 2. https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=5
- 3. https://swayam.gov.in/explorer?category=Chemistry

Mode of Delivery: Lecture, demonstration, E-tutoring, discussion, assignments, quizzes, case study, power point;

LMS/ICT Tools: Digital Classrooms, DLMS, ZOOM, G-Suite, MS Power-Point, Online Resources.

Curriculum Development Team

- 1. Dr. Samit Kumar, Associate professor Department of chemistry
- 2. Mrs. Nahid Usmani, Assistant professor Department of chemistry
- 3. Kanha Singh Tiwari, Assistant professor Department of chemistry

COs, POs and PSOs Mapping

Program Title: B.Tech. Electrical Engineering Course Title: Chemistry- I Course Code: BSC103

							ogran tcome						Program Specific Outcome	
	PO 1	PO 2	PO3	PO 1	PO 2	PO6	PO 7	PO 8	PO9	PO 10	PO 11	PO12	PSO 1	PSO 2
Course Outcomes	ering	Proble m Solvin g	Design Skills	Laborat ory Skills	work	nication Skills	and	Lifelon g Learnin g	and	Project Manage ment		Professi onal Develop ment	interdisciplinary	new products,
CO1: Apply VSEPR theory to predict the three-dimensional shapes of molecules.	3	1	2	2	3	2	3	2	2	1	3	2	2	3
CO 2 Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug molecule.	2	1	2	2	1	2	3	2	1	1	2	2	2	3
CO3 Explain and apply the concept of Intermolecular forces, Hydrogen bond, and transition metal complexes.	2	2	1	1	1	2	2	2	1	2	1	2	1	3
CO4 : Predict the concept of thermodynamics, free energy & entropy and apply Nernst equation, water chemistry as well as explain concept of acid-base, metallurgy, Emf cell and corrosion.	2	2	2	2	3	2	3	2	2	1	2	3	3	3
CO5 Collectively aim to equip students with a comprehensive understanding of the theoretical principles, practical methodologies, and diverse applications of various spectroscopic techniques	2	-	-	1	1	3	3	3	1	1	2	2	3	3

Legend:1–Low,2–Medium, 3–High

Course Curriculum Map:

POs &PSOs No.	Cos. No. &Titles	SOs No.	Laboratory instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO1,2,3,4,5, 6, 7,8,9,10,11,12 PSO 1,2	CO1: Apply VSEPR theory to predict the three-dimensional shapes of molecules.	SO1.1 SO1.2 SO1.3, SO1.4 SO1.5	LI.1.1, LI.1.2, LI.1.3	Unit-1.0 Atomic and Molecular Structure & Periodic properties 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	1,2
PO1,2,3,4,5, 6, 7,8,9,10,11,12 PSO 1,2	CO2: Describe the concept of symmetry, chirality and optical activity and synthesize chiral drugmolecule.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5	LI.2.1, LI.2.2, LI.2.3	Unit-2 Stereochemistry, Organic reactions and synthesis of a drug molecule 2.1,2.2,2.3,2.4,2.5,2.6, 2.7, 2.8,2.9	1,2
	CO3 Explain and apply the concept of Intermolecular forces, Hydrogen bond, and transition metal complexes.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	LI.3.1, LI.3.2 LI.3.3	Unit-3 Intermolecular forces and Transition metal complexes 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1,2
PO1,2,3,4,5, 6, 7,8,9,10,11,12 PSO 1,2	CO 4 Predict the concept of thermodynamics, free energy & entropy and apply Nernst equation,water chemistry as well as explainconcept of acid-base, metallurgy, Emf cell and corrosion	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	LI.4.1, LI.4.2, LI.4.3	Unit-4: Use of free energy in chemical equilibrium 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	1
PO1,2,3,4,5, 6, 7,8,9,10,11,12 PSO 1,2	CO 5 Collectively aim to equip students with a comprehensive understanding of the theoretical principles, practical methodologies, and diverse applications of various spectroscopic techniques.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	LI.1.1, LI.1.2, LI.1.3	Unit 5: Spectroscopic techniques and applications 5.1,5.2,5.3,5.4,5.5,5.6,5.75.8,5.9	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-II

Course Code:	BSC104
Course Title :	Mathematics -II
	Objective of this course is to familiarize the prospective engineers with techniques in Ordinary and partial differential equations and
Pre- requisite:	Laplace transform. It aims to equip the students to deal with advanced level of mathematics and applications that would be essential for their disciplines.
Rationale:	The program aims to develop the tool of power series and Fourier series for learning advanced engineering mathematics
~ ~ ~	

Course Outcome:

BSC104.1Understand the importance of Laplace transform and elementary properties of Laplace transform

BSC104.2To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions

BSC104.3 Demonstrate an understanding of the Vector Calculus

BSC104.4Define and recognize the method to solve Sequences and series

BSC104.5Students will create the concept of a Partial Differential Equations

Scheme of Studies:

				Scheme of studies (Hours/Week)						
Cours e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW +SL)	Total Credits (C)		
BSC	BSC104	Mathematics -II	4	0	1	1	6	4		

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory	y									
Course Categor y	Couse Code	Course Title	Scheme o Pro Class/H ome Assign ment 5 number 3 marks each (CA)		ment (M e Assessm Semin ar one (SA)		Class Atten dance (AT)	Total Marks (CA+ CT+S A +CAT +AT)	End Semest er Assess ment (ESA)	Total Mar ks (PRA + ESA)
BSC	BSC104	Mathemati cs-II	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

BSC104.1Understand the importance of Laplace transforms and elementary properties of Laplace transform

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	AppX Hrs
Cl	13
LI	0
SW	1
SL	1
Total	15

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
		 (CI) Unit-1.0 1.1 Introduction of Laplace transform 1.2 Laplace transform of elementary functions 1.3 Linearity property 1.4 Properties of Laplace transform, 1.5 Laplace transform of derivatives 1.6 Laplace transform of Integral 1.7 Multiplication by tⁿ 1.8 Division by t 1.9 Inverse Laplace transform 1.10 First shifting theorem 1.11 Second shifting Property 	(SL) SL1.1 Change of scale property
Laplace transform		1.12 Convolution theorem1.13 Application of Laplacetransform	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Example on Properties of Laplace transform
- 2. Example on Laplace transform of derivatives
- 3. Example on Laplace transform of Integral
- 4. Example on Multiplication by tⁿ
- 5. Example on First shifting theorem

b. Mini Project:

i. Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

BSC104.2: To introduce effective mathematical tools for the solutions of ordinary differential

equations and solutions with Bessel functions and Legendre functions

Item	AppX Hrs
Cl	11
LI	0
SW	1
SL	1
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO2.1Understand the		2.1 Linear differential	SL2.1Examples of
concept		Equation with constant	Frobenius method
Solving Second		coefficients	
order linear			
differential,			

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

CO2 2 Understand the	
SO2.2 Understand the	2.2 Complimentary
Solution by	Function and Particular
variation of	integral
parameters	
SO2.3 Understand the	Second order linear
Power series	differential Equations with
solutions:	variable coefficients:
SO2.4 Understand the	
Legendre's	2.3 Solution by Inspection
equations and	Method
Legendre	2.4 Solution by change of
polynomials	dependent variable
1 2	2.5 Solution by change of
	Independent variable
	2.6 Solution by variation of
	parameters
	2.7 Power series
	solutions(Frobenius
	method):
	2.8 Series for Ordinary Point
	2.9 Legendre's equations
	and
	2.10 Bessel's equation and
	2.11 Tutorial

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Example on Solution by variation of parameters
- 2. Example on Power series solutions:
- 3. Example on Legendre's equations and
- 4. Example on Legendre polynomials
- 5. Example on Frobenius method

b. Mini Project:

i. Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

BSC104.3 Demonstrate an understanding of the Vector Calculus

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)		Self-Learning (SL)
SO3.1 understand the scalar and vector point function SO3.2 Understand the Line integrals, Surface integrals, Volume integrals SO3.3 Understand the Gradient ,Curl, divergence SO3.4Understand the Gauss Divergence theorems, Stoke's theorems		3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12	Gauss Divergence theorems	SL.1Examples on Stoke's theorems

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Example on Directional derivatives
- 2. Example on Gradient
- 3. Example on Divergence
- 4. Example on Surface integrals
- 5. Stoke's theorems

b. Mini Project:

i. Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

i. Quiz, Class Test.

BSC104.4 Define and recognize the method to solve Sequences and series

Item	AppX Hrs
Cl	13
LI	0
SW	1
SL	1
Total	15

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)		Self-Learning (SL)
 SO4.1 Understand Convergence and Divergence of sequence SO4.2 Understand the Tests for convergence SO4.3Understand Fourier series SO4.4 understand and Calculation of limits 		4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10 4.11 4.12 4.13	Limits of sequence of numbers Convergence and Divergence of sequence Cauchy sequence Calculation of limits Infinite series Tests for convergence Rabbe test and logarithmic test Comparison test Fourier series Even and odd function Half range sine and cosine series Half range cosine series Parseval's theorem.	SL4.1Some theorem on sequence

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Example on Cauchy sequence
- 2.Example on Tests for convergence
- 3.Example on Comparison test
- 4.Example on Fourier series
- 5.Example on Even and odd function

b. Mini Project:

i. Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

A K S University Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

BSC104.5 Students will create the concept of a Partial Differential Equations

Item	AppX Hrs
Cl	11
LI	0
SW	1
SL	1
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO5.1 Understand		5.1 Definition of Partial	SL.1
the Solutions of first		Differential Equations	Problems on
order linear PDE		5.2 First order PDE	PDE
SO5.2 Understand the		5.3 Solutions of first order linear	
Solution to		PDE	
homogenous and		5.4 Solution to homogenous PDE	
Non-homogenous		5.5 Non-homogenous linear PDE	
linear PDE		5.6 PDE of Second order by	
SO5.3 Understand the		complimentary function and	
First order PDE		5.7 PDE of Second order by	
		particular integral method.	
SO5.4 Understand		5.8 Lagrange's Linear equation,	
PDE of Second order		5.9 Charpit's method	
by particular integral		5.10 Separation of variable	
method		method for the solution of	
		heat equations	
		5.11 wave equations	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments

- 1. Example on linear PDE
- 2. Example on Solution to homogenous PDE
- 3. Example on Lagrange's Linear equation,
- 4. Example on PDE of Second order by complimentary function and
- 5. Example on Charit's method

b. Mini Project:

i. Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
BSC104.1 Understand the importance of Laplace transform and elementary properties of Laplace transform	13	1	1	15
BSC104.2 To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions	11	1	1	13
BSC104.3 Demonstrate an understanding of the Vector Calculus	12	1	1	14
BSC104.4 Define and recognize the method to solve Sequences and series	13	1	1	15
BSC104.5 Students will create the concept of a Partial Differential Equations	11	1	1	14
Total Hours	60	5	5	70

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

CO	Unit Titles	Marks Distribution			Total Marks
		R	U	Α	
CO-1	Understand the importance of Laplace transform and elementary properties of Laplace transform	03	01	01	05
CO-2	To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions	02	06	02	10
CO-3	Demonstrate an understanding of the Vector Calculus	03	07	05	15
CO-4	Define and recognize the method to solve Sequences and series	-	10	05	15
CO-5	Students will create the concept of a Partial Differential Equations	03	02	-	05
	Total	11	26	13	50

Suggested Specification Table (For ESA)

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Mathematics-II will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6. Seminar
- 7. Works

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

a) Books :

S.No.	Title	Author	Publisher	Edition & Year
1	Engineering Mathematics-II	D.K, Jain	Shree Ram	7th Edition
			Prakashan.	2015-
				16
2	Higher Engineering	B.S. Grewal	Khanna Publishers	36th Edition,
	Mathematics			2010
3	Engineering Mathematics-II	D.C.Agrawal	Shree Sai	10th Edition
			Prakashan	2018
4	Higher EngineeringMathematics		Tata McGraw Hill	11th Reprint,
				2010.
		B.V.Ramana		

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

COs, POs and PSOs Mapping

Course Title: B. Tech. Electrical Engineering Course Code: BSC104 Course Title: Mathematics-II

					P	rogra	ım Ou	tcome	6				Program Spe	ecific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng know ledge	Probl em Solvi ng	Desi gn Skill s	Labo rator y Skill s	Team work	Com muni catio n Skill s	Ethic al and Profe ssion al Beha vior	Lifelo ng Learni ng	Global and Societ al Impact	Project Manag ement	Adapt ability	Professi onal Develop ment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1- Understand the importance of Laplace transform and elementary properties of Laplace transform	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO2- To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions	3	3	3	3	2	2	1	3	2	2	2	3	3	2
CO3- Demonstrate an understanding of the Vector Calculus	3	2	3	2	2	1	2	2	2	2	2	3	3	2
CO4- Define and recognize the method to solve Sequences and series	3	3	2	2	2	2	2	3	2	2	2	2	2	3
CO5- Students will create the concept of a Partial Differential Equations	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO1- Understand the importance of Laplace transform and elementary properties of Laplace transform	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1.0 Laplace Transform1.1,1.2,1.3,1.4,1.5,1.6.1.7,1.8,1.9 ,1.10,1.11,1.12,1.13	SL1.1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO2- To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions	SO2.1 SO2.2 SO2.3 So2.4		Unit-2 Ordinary differential equations of higher orders:2.1, 2.2, 2.3, 2.4,2.5,2.6,2.7,2.8,2.9,2.10,2.11	SL2.1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO3- Demonstrate an understanding of the Vector Calculus	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3Vector Calculus 3.1, 3.2, 3.3, 3.4, 3.5 ,3.6,3.7,3.8,3.9,3.10,3.11,3.12	SL3.1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO4- Define and recognize the method to solve Sequences and series	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4 Sequences and series 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8,4.9,4.10,4.11,4.12,4.13	SL4.1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO5- Students will create the concept of a Partial Differential Equations	SO5.1 SO5.2 SO5.3 SO5.4		Unit-5Partial Differential Equations5.1, 5.2, 5.3, 5.4, 5.5, 5.6 ,5.7,5.8,5.9,5.10,5.11	SL5.1

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester – II

Course Code: ESC104

Course Title: Programming for problem solving

Pre- requisite: Basic computer skills, Mathematics, logical thinking, problem solving skills

Rationale: Programming allows us to create something from scratch and have a tangible impact on the world around us. By mastering this skill, we become active agents of change and pave the way for unique and revolutionary solutions. The aim of this course is to develop logical skills and basic technical skills so that students should be able to solve basic computing problems. The students should be able to learn the basic of any computer programming language.

Course Outcomes: After the completion of this subject, students will be able to

ESC104.1: Understand the basic concept of Programming languages, software, algorithm and flowchart.

ESC104.2: Acquire knowledge regarding the building blocks of programming language.

ESC104.3: Apply python for solving basic programming solutions.

ESC104.4: Create algorithms using learnt programming skills.

ESC104.5: Understand real world problems and developing computer solutions for those.

Scheme of Studies:

Cours			Scheme of studies (Hours per Week)					
e Categ ory	Course Code	Course Title	CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)
Engineer ing Science Course (ESC)	ESC104	Programmin g for problem solving	3	4	1	1	9	5

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others).

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)								
			Pro	End							
Cours e Categ ory	Course Code	Course Title	Class/Home Assignment 5 Assignments 3 marks Each (CA)	(best 2 out of 3) 10 marks	One Semi nar (SA)	Atte nda nce	Total Marks	Semeste r Assessm ent	Total		
ESC	ESC104	Programmi ng for problem solving	15	20	10	5	50	50	100		

Practical

			Sc	heme of	Assessme	nt (Marks)		
Cour	Cour Couse	Course	Progressive	End	Total			
se Categ ory	Code	Title	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)
ESC	ESC 104-L	Programmi ng for problem solving	35	10	5	50	50	100

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC104.1: Understand the basic concept of Programming languages, software, algorithm and flowchart.

Appx. Hrs.
7
12
2
1
22

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO1.1. Understand types of programmin g languages. SO1.2. Utilize Operatin gSystem SO1.3. Compare compiler, linker, loader SO1.4. Create algorithm and flow charts for problem 	 Running instructions in Interactive interpreter and a Python Script. Write a program to purposefully raise Indentation Error and Correct it. Create Flow chart for an organization Create Flow chart for an education system Compare various operating systems 	 Unit-1 Introduction to Programming 1.1 Evolution of languages: Machine languages, Assemblylanguages, High-level languages construction eras. 1.2 Software requirements for programming 	 Different types of programming languages examples. Learn about various operating systems.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

6. Write five	1.3 System software like
features of Notepad	operating system
	1.4 compiler, linker, loader
	1.5 Application programs like
	editor.
	1.6 Algorithm specification of
	algorithm
	1.7 . Flowcharts

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
 - 1. Create algorithms for some real-life problems.
 - 2. Create flowcharts for problems.
- **b.** Mini Project:
 - i. Flow diagram of working of a university.
- c. Other Activities (Specify):

NA

ESC104.2: Acquire knowledge regarding the building blocks of programming language.

Item	Appx. Hrs.
Cl	12
LI	12
SW	2
SL	1
Total	27

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO2.1. To Understand the datatypes SO2.2. Identify Expressions SO2.3. Apply operators SO2.4. Use list, string tuples	 Write a program to demonstrate basic data type in python. Write a program to compute distance between two points taking input from the user Write a program add.py that takes 2 numbers as command line arguments and prints its sum. Using a for loop, write a program that prints out the decimal equivalents of 1/2, 1/3, 1/4, . 1/10. Write a program using a for loop that loops over a sequence? Write a program using a while loop that asks the user for a number, and prints a countdown from that number to zero 	 2.2. Different types of Data types 2.3.Expressions, Precedence Rules 2.4. Operators 2.5. Types of Operators 2.6 Level Variables 	 Operator precedence Scope of variables

SW-2 Suggested Sessional Work(SW):

a. Assignments:

- 1. Compare List and Tuples.
- 2. String functions with example.

b. Mini Project:

Create a Calculator.

c. Other Activities(Specify): NA

ESC104.3: Gain an understanding of the various types of Conditional Statements, Loops, Arrays and Strings.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	Appx. Hrs.
Cl	10
LI	12
SW	2
SL	1
Total	25

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1. To Understand the loop types SO3.2. Identify the looping Expressions SO3.3. Apply arrays SO3.4. Use of user defined datatype	LI.3.1. Write a Program for checking	 Statements, Loops, Arrays and Strings, User Defined Data Types 3.1 If-else statement, 3.2 For loop, 3.3 While Loop, 3.4 Nested Iteration, 3.5 Concept and use of arrays 3.6 Declaration and usage of arrays, 3.7, 2-dimensionalarrays, 3.8 Different types of user defined datatypes 3.9 Structre 3.10 3.10Union 	(SL) 1. Loops to access array elements 2. Member access in user defined data type .

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- a. Compare the looping statements
- b. Use of user defined data type with example.

b. Mini Project:

Create a stopwatch.

ESC104.4: Familiarize with a concise overview of the Dictionaries and methods. Approximate Hours

Item	Appx. Hrs.
Cl	10
LI	12
SW	2
SL	1
Total	25

Session Outcomes(SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO4.1.Understan d the concepts of Dictionarie s and Dictionary Accumulati on SO4.2.Identify the Functions/Metho ds SO4.3.Apply functions SO4.4.Use of Functions/ Methods	 Write a program to count the numbers of characters in the string and store them in a dictionary data structure. Write a program to use split and join methods in the string and trace a birthday of a person with a dictionary data structure. Write a program for user define function. Write a program to demonstrate the use of Array. 	Unit-4 : Dictionaries and DictionaryAccumulation,Functions/Methods4.1Dictionary Basics4.2Operations4.3Methods, accumulation.4.4Advantage of modularizing program into functions.4.5Function definition.4.6Function invocation.4.7Positional Parameter Passing4.8Passing arrays to functions4.9Recursion4.10Library Functions	 Preparation of process Dictionary A typical Positional Parameter Passing .

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - 1. Write a program that reads a string from keyboard and prints the unique words
 - 2. Use of user defined function with example.
- b. Mini Project:

Map Two Lists into A Dictionary.

c. Other Activities(Specify): NA.

ESC104.5: Comprehend the functions of different File Handling and Memory Management. **Approximate Hours**

Item	Appx. Hrs.
Cl	6
LI	12
SW	2
SL	1
Total	21

Session Outcomes (SOs)	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning (SL)
SO5.1 Understanding the file handlingtask SO5.2 know the functions of filehandling SO5.3 Importance of .csv file SO5.4 Use of Memory Management	 Write a program to count frequency of characters in a given file. Can you use character frequency to tell whether the given file is a Python program file, C program file or a text file? Write a program to read data from a file. Write a program to write data into a file. Write a program to copy data from one file to another. Write a program for memory management 		 Role of file handling. Working of .csv file

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

List the different file handling functions .

b. Mini Project:

Data base management of any fields by using file handling.

c. Other Activities(Specify):

NA.

Course Outcomes	Class Lecture (Cl)	LI (Laboratory Instruction)	Sessional Work (SW)	Self- Learnin g (Sl)	Total hour (Cl+SW+Sl)
ESC104.1: At the end of this chapter the student will know the basic concept of programming.	7	12	2	1	22
ESC104.2: At the end of this chapter the student will use Operators in programs.	12	12	2	1	27
ESC104.3 :At the end of this chapter the student will describe the control flow statements.	10	12	2	1	25
ESC104.4 : At the end of this chapter the student will make function and dictionary	10	12	2	1	25
ESC104.5: Comprehend the functions of .csv andfile handling functions.	6	12	2	1	21
Total Hours	45	60	10	5	120

Brief of Hours suggested for the Course Outcome

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

CO	Unit Titles	Ν	Marks Distribution					
		R	U	А	Marks			
CT101.1	Understand the basic concept of Programming languages, software, algorithm and flowchart.	02	08	01	11			
CT101.2	Acquire knowledge regarding the building blocks of programming language.	02	06	01	09			
CT101.3	Apply python for solving basic programming solutions.	02	03	04	09			
CT101.4	Create algorithm using learnt programming skills.	02	04	04	10			
CT101.5	Understand real world problems and developing computer solutions for those.	03	05	03	11			
	Total	11	26	13	50			
	Legend: R:Remember, U:Unde	rstand,	A:A _l	oply				

Suggested Specification Table(ForESA)

The end of semester assessment for Problem Solving and Programming will be held with written examination of 50 marks. Suggested Learning Resources:

a. Books:

S. No.	Title	Author	Publisher	Edition &Year
1	Programming for	R.S. Salaria,	Khanna Publishing	2021, 4 th Edition
	Problem Solving	Khanna	House	
2	Taming Python by	Jeeva Jose	Khanna Publishing	2019, 3 rd Edition
	Programming		House	
3	Learning Python	Mark Lutz	O'Reilly Media	2013, 5 th Edition

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

COs, POs and PSOs Mapping

Program: B. Tech. Electrical Engineering

Course Code: ESC104

Course Title: Programming for Problem Solving

	Program Outcomes							1		Program	Specific C	Dutcome					
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	6 Od	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4	PS0 5
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct studies of difficult problems	Utilization of modern tools	Engineers and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-longlearning	Use fundamental knowledge of math, science, and engineering to comprehend, evaluate, and create computer Programmes in the fields of algorithms, multimedia, big data analytics, machine learning, artificial intelligence, and networking for the effective design of computer-based systems of various complexity	Utilize relevant methods and cutting- edge hardware and software engineering tools to develop and integrate computer systems and related technologies. This PSO2 also encourages lifelong learning for the advancement of technology and its use in multidisciplinary settings	Applying professional engineering solutions for societal improvement while taking into account the environmental context, being conscious of professional ethics, and being able to effectively communicate.	Learn and use the most recent Artificial Intelligence and Data Science technologies in the fields of engineering and computer science	Recognize and examine issues in real life, then offer creative software solutions with the help of A1 and Data Science Technologies.
CO 1: Understand the basic concept of Programming languages, software, algorithm and flowchart.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	2
CO 2 : Acquire knowledge regarding the building blocks of programming language	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	3
CO 3: Apply python for solving basic programming solutions.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2
CO 4: Create algorithms using learnt programming skills	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	2
CO 5: Understand real world problems and developing computer solutions for those.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning(SL)
PO 1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 1: Understand the basic concept of Programming languages, software, algorithm and flowchart.	SO1.1 SO1.2 SO1.3 SO1.4	1,2,3,4,5,6	Unit-1 Introduction to Programming 1.1,1.2,1.3,1.4,1.5,1.6,1.7	1,2
PO 1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 2 : Acquire knowledge regarding the building blocks of programming language.	SO2.1 SO2.2 SO2.3 SO2.4	1,2,3,4,5,6	Unit-2 Datatypes and Operators, Variables, Sequences and Iteration 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,2.8,2.9,2.10,2.11,2.12	1,2
PO 1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 3: Apply python for solving basic programming solutions.	SO3.1 SO3.2 SO3.3 SO3.4	1,2,3,4,5,6	Unit-3 Conditional Statements, Loops, Arrays and Strings, User Defined Data Types 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10	1,2
PO 1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 4: Create algorithms using learnt programming skills.	SO4.1 SO4.2 SO4.3 SO4.4	1,2,3,4,5,6	Unit-4 Dictionaries and Dictionary Accumulation, Functions/Methods: 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	1,2
PO 1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 5: Understand real world problems and developing computer solutions for those.	SO5.1 SO5.2 SO5.3 SO5.4	1,2,3,4,5,6	Unit-5 File Handling and Memory Management: 5.1,5.2,5.3,5.4,5.5,5.6	1,2

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-II

Course Code: Course Title: Pre- requisite:	ESC-105 Manufacturing Practice Workshop Basic knowledge of mathematical skill with some scientific
Rationale:	temperament. It is a place of work for preparing variety of jobs/products by using different kinds of Instruments, hand tools and Machines. In order to prepare the products in workshop, the workshop is divided into many branches according to nature of work. Ex: 1. Fitting shop 2. Welding shop 3. Sheet metal shop 4. M/c Shop 5. Foundry & Forging shop etc
Course Outcomes:	

- **ESC 105.1:** Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.
- **ESC 105.2:** Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques.
- **ESC 105.3:** Develop fundamental skills such as measuring, cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.
- **ESC 105.4:** Appreciate and access the use of casting processes in manufacturing and understand the Working of various casting processes.
- **ESC 105.5:** Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.

Scheme of Studies:

				Total				
Course Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Engineering Science Core (ESC)	ESC 105	Manufacturing Practice Workshop	1	4	1	1	7	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial(T) and others),

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcomeof Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
				Progressiv	e Assessi	ment (PR	A)		End	Total
Cours e Categ ory	Couse Code	Course Title	Class/Hom e Assignmen t 5 number 3 marks each (CA)	01.51	Semi nar one (SA)	Class Activit yany one (CAT)	Clas s Atte ndan ce (AT)	Total Mark s CA+CT +SA+C AT+AT)	Sem ester Asse ssme nt (ESA)	Mar ks (PR A+ ES A)
ESC	ESC105	Manufacturin g Practice Workshop	15	20	5	5	5	50	50	100

Practical

Cours	Couse Code	Course Title	Scheme of Assessment (Marks)					
			Progressive Assessment (PRA)				End	Total
e Categ ory			Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)
ESC	ESC 105-L	Manufacturin g Practice Workshop	35	10	5	50	50	100

(Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC105.1: Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.

Item	AppX Hrs
Cl	03
LI	12
SW	1
SL	1
Total	17

Self-Learning (SL)
1.Introduction n to additive manufactur ing.
e

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Mechanical properties of engineering materials. Explain advanced manufacturing methods

ESC 105.2: Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques.

tem	AppX Hrs		
Cl	03		
LI	12		
SW	1		
SL	1		
Total	17		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO2.1 Understan d different cutting tools like hacksaw, chisels etc. SO2.2 acquires knowledg e of various fitting and assembly technique s.	 2.1 Safety instructions for using various fitting hand tools. 2.2 Tools Introduction 2.3 Instructions for using proper tools in the correct way 2.4 Drawing of a simple work piece for carrying out different fitting operations. 2.5 Demonstration of different inspection, checking and measuring methods used for proper fitting work. 2.6 Actual performance of a small simple job. 	Unit-2 Fitting operations & power tools 2.1 Tools used in fitting shop 2.2 types of clamping tools, marking tools, cutting tools, striking tools. 2.3 Various operations performed on fitting shop	1. Types of drillin g tools and threadi ng tools.

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain different striking tools with neat sketch
- ii. Explain different types of vices used in fitting shop.
- ESC 105.3: Develop fundamental skills such as measuring, cutting and joining wood. Gain expertise in handling various carpentry tools and machinery Approximate Hours

Item	AppX Hrs
Cl	03
LI	12
SW	1
SL	1
Total	17

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
in measuring cutting and	 3.1 Safety instructions for using various carpentry tools. 3.2 Carpentry tools introduction. 3.3 Instructions for using proper tools in the correct way 	Unit-3 : Carpent ry shop 3.1 Introduction	1. Defe cts in timbe r 2. Conv
knowledge in using various tools like saws, drills and planes	 3.4 Drawing of a simple work piece for preparation of common carpentry joinery work. 3.5 Demonstration of different inspection , checking and measuring methods used for proper carpentry work. 3.6 Production of any one type of joints 	3.3 carpentry tools	ersio n of wood

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain the different operation performed in wood working
- ii. Sketch and describe the different joints made in carpentry shop.
- iii. Explain the different types of wood working machines used in modern wood work.

b. Mini Project:

- i. Production of a simple utility item using different carpentry tools and methods
- **ESC 105.4:** Appreciate and access the use of casting processes in manufacturing and understand the Working of various casting processes.

Item	AppX Hrs
Cl	03
LI	12
SW	1
SL	1
Total	17

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
production of cast metal component, quality control measures and adherence to manufacturing standards	 4.1 Safety instructions for foundry shop, pattern making , mould preparation. 4.2 Foundry tools introduction. 4.3 Instructions for using proper tools in the correct way 4.4 Drawing of a simple work piece for preparation of a pattern. 4.5 Instructions for sand preparation, mould preparation, melting and casting properly in the safe manner. 4.6 Production of a simple casting. 	Unit-4 : Metal casting 4.1 Introduction to foundry shop. 4.2 Pattern, Mould , Casting , pattern allowances , moulding sand . 4.3 Casting procedure , core , gating system.	1. Types of moulding sand.

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain different defects in casting.
- ii. Explain different casting terms like runner, riser, mould etc.
- **ESC 105.5:** Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.

Item	AppX Hrs		
Cl	03		
LI	12		
SW	1		
SL	1		
Total	17		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self -Learning (SL)
up, adjustment of flame and gas pressure, and shutdown procedure for oxyacetylene welding and cutting equipment. SO5.2 Aquire	 5.1 Safety instructions for welding shop. 5.2 Welding tools introduction for Electric Arc Welding process. 5.3 Instructions for using proper tools in the correct way. 5.4 Drawing of a simple welded joint viz. Square butt joint, T joint , Lap joint etc. 5.5 Demonstration of producing a square butt joint using MMAW process. 5.6 Actual production of a welded joint as described above. 	Unit 5: welding shop 5.1 introduction to welding shop, 5.2 classification of welding process, gas welding and its equipments and techniques. 5.3 electric arc welding and brazing process	 study of TIG and MIG welding process study of thermit welding process

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Explain different defects in casting.
 - ii. Explain different casting terms like runner , riser , mould etc.

b. Mini Projects

Preparing lap joint using arc welding process

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Laboratory Instruction (LI)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
ESC 105.1: Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.	3	1	12	1	17
ESC 105.2: Acquired proficiency inusing hand tools, understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques.	3	1	12	1	17
ESC 105.3: Develop fundamental skills such as measuring, cutting and joining ood. Gain expertise in handling various carpentry tools and machinery.	3	1	12	1	17
ESC 105.4: Appreciate and access the use of a sting processes in manufacturing and understand the working of various casting processes.	3	1	12	1	17
SC 105.5: Analyze and access theinportance of welding processes inmanufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.	3	1	12	1	17
Total Hours	15	5	60	5	85

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

со	Unit Titles	Marks Distribution			Total
		R	U	A	Marks
CO-1	Manufacturing Methods-casting, forming, machining, joining, advanced manufacturingmethods, CNC machining, Additive manufacturing	04	05	01	10
CO-2	fitting operations & power tools	05	04	01	10
CO-3	carpentry shop	-	05	05	10
CO-4 N	metal casting	04	04	02	10
CO-5	Velding shop	05	03	02	10
	Total	18	21	11	50

Legend:

R: Remember,

U: Understand,

A: Apply

The end of semester assessment for Manufacturing Practice Workshop will be held withwritten examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming

(Revised as on 01 August 2023)

Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Edition &		
No.				Year		
1	lements of Workshop Technology	Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K.	Media promoters and publishers rivate limited, Mumbai	ol. I 2008 and Vol. II 2010		
2	Manufacturing Engineering and Technology	Kalpakjian S. And Steven S. Schmid	Pearson Education India	Edition, 2002		
3	Manufacturing Technology	Rao P.N	Tata McGraw Hill House	Vol. I and Vol. II 2007		
4	Processes and Materials of Manufacture	Roy A. Lindberg	rentice Hall ndia,	4 th edition, 1998		
5	Lecture note provided by Dept. of Mechanical Engineering, AKS University, Satna.					

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey , Assistant Professor , Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos, POs and PSOs Mapping

Course Title: B. Tech. Electrical Engineering

Course Code: ESC105

Course Title: Manufacturing Practice Workshop

					Pro	gram	Outc	omes					Program Spe	cific Outcome
	PO1	PO 2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	eering	Proble m Solvin g	n	atory		munic ation	1	ng Learn ing	l and	t Manag ement	tabilit	Profess ional Develo pment	and interdisciplinary knowledge to analyze, design and manufacture products to address	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1 : Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.	2	1	2	2	3	2	2	2	2	1	3	2	2	2
CO 2 : Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques.	1	1	1	1	3	2	2	2	2	1	2	2	1	2
CO3 : Develop fundamental skills such as measuring , cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.	2	2	1	1	3	1	2	2	2	1	1	2	1	2
CO 4: Appreciate and access the use of casting processes in manufacturing and understand the working of various casting processes.	2	2	2	1	3	2	2	2	2	1	2	2	1	2
CO 5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.	2	1	1	1	1	3	2	2	2	1	2	2	1	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO-1: Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.	SO1.1 SO1.2	1.1, 1.2 1.3 1.4 1.5 1.6	Unit-1.0 Manufacturing Methods- casting ,forming ,machining, joining, advancedmanufacturing methods, CNC machining, Additive manufacturing 1.1,1.2,1.3	1
1PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	O 2 : Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques	SO2.1 SO2.2	2.1, 2.2 2.3, 2.4 2.5 2.6	Unit-2 Fitting operations & power tools 2.1, 2.2, 2.3	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	O3 : Develop fundamental skills such as measuring , cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.	SO3.1 SO3.2 SO3.3	3.1, 3.2 3.3, 3.4 3.5 3.6	Unit-3 : Carpentry shop 3.1, 3.2,3.3	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO 4: Appreciate and access the use of casting processes in manufacturing and understand the working of various casting processes.	SO4.1	4.1, 4.2 4.3, 4.4 4.5 4.6	Unit-4 : Metal casting 4.1, 4.2,4.3	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO 5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.	SO5.1 SO5.2	5.1, 5.2 5.3 5.4 5.5 5.6	Unit 5: Welding Shop 5.1,5.2,5.3	1,2

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-II

Course Code:	HSMC01
Course Title:	Communication Skills
Pre-requisite:	Students must have basic knowledge of English language.
Rationale:	In order to compete in this fast-growing world, LSWR skills of the students should be well developed and enhanced. Besides, they must have effective communication skills as it plays a vital role in shaping individual's personality and career. It also boosts the confidence and prepares them to face the audience fearlessly.

Course Outcomes: After completion of the course:

- **HSMC01.1:** Students will be able to speak confidently in public as all the topics chosen emphasis on improving speaking skills and developing self confidence amongst them.
- **HSMC01.2:** Students will be able to interact properly with improved Leadership Skills, Problem Solving Skills, Social skills and Communication Skills. Students will also be able to understand the Importance of Team Work.
- **HSMC01.3:** Students will be able to communicate effectively in Hindi and English languages without hindrances.
- **HSMC01.4:** Students will be able to convey their messages accurately by understanding the significance of grammar as it plays a vital role in improving speaking and writing skills.
- **HSMC01.5:** The Understanding of Indian Culture and English Language will be developed through the study of Dramas and Poems written by Indian Writers.

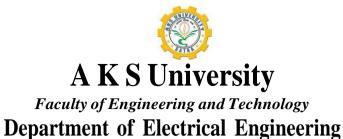
Scheme of Studies:

				Total				
Course Catego ry	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW +SL)	Credits(C)
HSM C	HSMC01	Communication Skills	3	0	1	1	5	3

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T)and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self-Learning,
 C: Credits.

Note: SW &SL has to be planned and performed under the continuousguidance and feedback of teacher to ensure outcome of Learning.


Scheme of Assessment:

			Scheme of Assessment (Marks)							
				Progressi		Total				
Course Categ ory	Couse Code	Course Title	Class/H ome Assignm ent 5 number 3 marks each (CA)	of 3) 10	Semi nar one (SA)	Class Activit yany one (CAT)	Clas s Atte ndan ce (AT)	Total Mark s (CA+CT +SA+C AT+AT)	Sem ester Asse ssme nt (ESA)	Mar ks (PR A+ ES A)
HSMC	HSMC 01	Communication Skills	15	20	5	5	5	50	50	100

Theory

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

HSMC01.1: Students will be able to speak confidently in public as all the topics chosen emphasis on improving speaking skills and developing self confidence amongst them.

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO1.1Students will be able to introduce themselves SO1.2Understand the concept of Oral Presentation SO1.3 Students will be able to dress and present effectively SO1.4 Understand the importance of Body Language SO1.5 Students will be able to influence mass through skit and dramas.		 Self-grooming, Basic Etiquettes and Presentation Skill 1.1 Self-introduction 1.2 Practice Sessions 1.3 Oral Presentation 1.4 Characteristics of presentation. 1.5 Presentation topics (The importance of Education, The 1.6 importance of English in Today's World and Necessity of uniforms ina college) 1.7 Professional dressing and groomingetiquettes. 1.8 Body Language tips and techniques. 1.9 Role play sessions on following topics: Classroom interaction, Hospital Scene and Scene at Railwaystation, Performance by Students 	 Prepare a presentation on thegiven topics. Prepare a play on the given topics.

(Revised as on 01 August 2023)

HSMC01.2: Students will be able to interact properly with improved Leadership Skills, Problem Solving Skills, Social skills and Communication Skills. Students will also be able to understand the Importance of Team Work.

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO2.1 Understand the techniques of Group Discussion SO2.2Understand		UNIT 2 – Confidence building skills, InterviewSkills and Resume Writing	 Prepare debate on given topics
the concept of Debate		2.1 Group Discussion2.2 Do's and Don'ts of GD2.3 Group Discussion sessions on impact of	2. Prepare a Resume
SO2.3 Students will be able to design professional resume and crack interview		Covid 19 on mental health, impact of social media on lives, pros andcons of technology 2.4 Difference between GD andDebate.	
SO2.4 Explain the concept of how to		2.5 Debate. Do's and Don'ts of Debate2.6 Debate topics on	

(Revised as on 01 August 2023)

ace in an interview.	Should the Use of Plastic Be Banned?, Should Parents Decide Which Career Their Children Will Pursue?, Is Artificial Intelligence Useful or Dangerous? 2.7 Interviews and their Kinds 2.8 Mock Interview Session 2.9 Resume Writing.
	2.9 Resume Writing.

HSMC01.3: Students will be able to communicate effectively in Hindi and English languages without hindrances.

Item	AppX Hrs
Cl	10
LI	0
SW	1
SL	1
Total	12

A K S University

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory Instruction	Classroom Instruction		Self Learning
(SOs)	(LI)	(CI)		(SL)
SO3.1 Students will be		Unit-3 :Public Speaking		
able to organize and		Skills& Conversational		
prepare speeches. SO3.2 Students will be able to think and speak instantaneously. SO3.3 To make them understand the inquiry procedure at public places. SO3.4 To enable them to communicate effectively through		 Skills 3.1 Speech 3.2 Types of Speech 3.3 Speech /Anchoring on (National Science Day, Valedictory Speech, Patriotic speech). 3.4 Performance in the class. 3.5 Extempore 3.6 Extempore Topics on (Pros and Cons of Online teaching, 	1.	Prepare a speech on the following topics. Prepare on the following conversation
phones.		 Environment Conservation and Education of a Girl Child) 3.7 Practice Session 3.8 Conversational Topics (Inquiry at bank, Airport, Station and Hospitals). 3.9 Telephonic Conversation (Describing about Your College Day to Your Parents from Hostel, Talking with Customer Care Executive of Any E-Commerce company). 3.10 Revision 		al topics.

HSMC01.4: Students will be able to convey their messages accurately by understanding the significance of Grammer as it plays a vital role in improving speaking and writing skills.

A K S University

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO4.1 Understanding about the		Unit-4 :Functional	1. Prepare the
use of Prepositions.		Grammar and	structure of
		VocabularyBuilding	Tenses and
SO4.2 Students will be able to		4.1 Prepositions (Place,	Active
understand the usage of		Time and	Passive.
Tenses		Direction)	
		4.2 MCQ based	2. Prepare250
SO4.3 Undesrtand the concept of		Questions on	Vocabularies.
Active and Passive Voice		Prepositions.	
		4.3 Gap filling	
SO4.4 To understand the usage		using	
of Modals		prepositions.	
		4.4 Tenses	
		4.5 Present Tense	
		4.6 Past Tense	
		4.7 Future Tense	
		4.8 Voice (Active and	
		Passive)	
		4.9 Modals.	

A K S University Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

HSMC01.5: The Understanding of Indian Culture and English Language willbe developed through the study of Dramas and Poems written by Indian Writers.

Item	AppX Hrs
Cl	8
LI	0
SW	1
SL	1
Total	10

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO5.1 Students will be able to understand the value of Indian Literature (R.K. Narayan) SO5.2 Students will be able to understand the value of Indian Literature (Nissim Ezekiel) SO5.3 Students will be able to understand the value of Indian Literature (Khushwant Singh) SO5.4 Students will be able to understand the value of Indian Literature (Mulk Raj Anand) SO5.5 Students will be able to understand thevalue of Indian Literature (Mulk Raj Anand) 		Unit 5-Indian Writing in English Hindi 5.1 The Axe- R.K. Narayan 5.2 About the Author - R.K.Narayan 5.3 The Night of the Scorpion-Nissim Ezekiel 5.4 About the Poet - Nissim Ezekiel 5.5 The Portrait of a Lady – Khushwant Singh 5.6 About the author- KhushwantSingh 5.7 The Lost Child- Mulk RajAnand 5.8 The Shroud- Premchand	1. Prepare the summary of all the topics(The Axe, The Night of the Scorpion, The Portrait of a Lady, The Lost Child he Shroud).

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+S W+Sl)
HSMC01.1: Students will be able to speak confidently in public as all the topics chosenemphasis on improving speaking skills and developing self confidence amongst them.	9	1	1	11
HSMC01.2: Students will be able to interact properly with improved Leadership Skills, Problem Solving Skills, Social skills and Communication Skills. Students will also be able to understand the Importance of Team Work.	9	1	1	11
HSMC01 .3: Students will be able to communicate effectively in Hindi and English languages without hindrances.	10	1	1	12
HSMC01 .4Students will be able to convey their messages accurately by understanding the significance of grammar as it plays a vital role in improving speaking and writing skills.	9	1	1	11
HSMC01 .5: The Understanding of Indian Culture and English Language willbe developed through the study of Dramas and Poems written by Indian Writers.	8	1	1	10
Total Hours	45	5	5	55

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Let 4 Titles	Ma	Total		
CO	Unit Titles	R	U	Α	Marks
CO-1	Self-Grooming, Basic Etiquettes and Presentation.	03	01	01	05
CO-2	Confidence Building and Interview Skills.	02	06	02	10
CO-3	Public Speaking Skills and Conversational Skills	03	07	05	15
CO-4	Functional Grammar and Vocabulary Building	-	10	05	15
CO-5	Indian Writings in English and Hindi	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A:Apply

The end of semester assessment for Communication Skills will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Role-play
- 5. Presentations
- 6. Extempore
- 7. Speeches
- 8. Brainstorming

(Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books:					
S. No.	Title	Author	Author Publisher			
1	Communication Skills	Dr. Meenu Pandey	Nirali Praksahan.	Fourth Edition		
2	A Practical Guide to English Grammar	K.P. Thakur	Bharti Bhawan Publishers & Distributors.	Third Edition		
3	Living English Structure	W. Stannard Allen	Dorling Kindersley IndiaPvt. Ltd.	Fifth Edition,		
4	Communication Skills for Engineers	Muralikrishna C.,Sunita Mishra	Pearson, NewDelhi.	Second edition(2010)		
5.	Advanced Language Practice,	Michael Vince	Macmillan Education, Oxford	2003.		
6.	English Conversation Practise	Grant Taylor	Tata McGraw Hill Education Private Limited.	Fifth Edition		
7.	Six Weeks to Words of Power	Wilfred Funk	W.R. Goyal Publishers and Distributors.	Fourth Edition		

Curriculum Development Team

Mr. Amarpreet Saluja, HOD Department of communication skill
 Ms. Deepika Senani (AP), Department of communication skill
 Dr. Shubhra Mishra (AP), Department of communication skill

Cos, Pos and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: HSMC01

Course Title: Communication English

		Program Outcomes											Program Specific Outcome	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engine ering knowle dge	Proble m Solvin g	Design Skills	Labor atory Skills		unicati on Skills		g Learni ng	and	Manag	ability	Professi onal Develop ment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Students will be able to speak confidentlyin public as all the topics chosen emphasis on improving speaking skills and developing self confidence amongst them.	1	1	1	1	3	3	2	2	1	1	1	1	1	1
CO2: Students will be able to interact properlywith improved Leadership Skills, Problem Solving Skills, Social skills and Communication Skills. Students will also be able to understand the Importance of Team Work.	1	1	1	1	3	3	2	2	2	2	1	1	1	1
CO 3: Students will be able to communicate effectively in Hindi and English languages without hindrances.	1	1	1	1	2	3	1	2	1	1	1	1	1	1
CO 4Students will be able to convey their messages accurately by understanding the significance of grammar as it plays a vital role in improving speaking and writing skills.	1	1	1	1	1	3	1	2	1	1	1	1	1	
CO5: The Understanding of Indian Culture and English Language will be developed through the study of Dramas andPoems written by Indian Writers.	1	1	1	1	1	3	1	2	1	1	1	1	1	1

Legend:1–Low,2–Medium,3–High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self- Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO1: Students will be able tospeak confidentlyin public as all the topics chosen emphasison improving speaking skills and developing self confidence amongst them.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1.0 Self-Grooming, BasicEtiquettes and Presentation. 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO2: Students will be able to interact properlywith improvedLeadership Skills, Problem Solving Skills, Social skills and Communication Skills.Students will also be able to understand the Importance ofTeam Work.	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2 Confidence Building andInterview Skills. 2.1, 2.2, 2.3,2.4,2.5,2.6,2.7,2.8,2.9	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO 3: Students will be able tocommunicate effectively in Hindi and English languages without hindrances.	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3 : Public Speaking Skills andConversational Skills 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8, 3.9,3.10	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO 4: Students will be able to convey their messages accurately by understanding the significance of grammar as it plays a vital role in improving speaking and writing skills.	SO4.1 SO4.2 SO4.3 SO4.3		Unit-4 : Functional Grammar and Vocabulary Building 4.1, 4.2,4.3,4.5,4.6,4.7,4.8,4.9	1,2

PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2 CO5: The Understanding of Indian Culture and English Language will be developed through the study of Dramas and Poems written by Indian Writers.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	Unit 5: Indian Writings in English and Hindi 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8	1
---	---	--	---

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-II

Course Code: HSMC07 Course Title: Indian Kn

Indian Knowledge System

Pre- requisite: Creating awareness among the youths about the true history and past rich culture of India.

Rationale: India has very rich and versatile knowledge system and cultural heritage since antiquity. The Indian Knowledge systems was developed on life science, medical science, literature, drama, art, music, dance, astronomy, mathematics, architecture (Sthapatyaveda), chemistry, aeronautics etc, during ancient period. In this basic course, a special attention is given to the ancient and historical perspective of ideas occurrencein the ancient society, and implication to the concept of material world and religious, social and cultural beliefs. On the closer examination, religion, culture and science haveappeared epistemological very rigidly connected in the Indian Knowledge System. Thisland of Bharat Bhumi has provided invaluable knowledge stuff to the society and the world in all sphere of life.

Course Outcomes:

- **HSMC07.1:** To understand the ancient civilization, Indian Knowledge Systems, Concept of Panch Mahabhuta, Origin of name Bharat Varsha, Ancient Rivers, Ancient Universities and ancient agriculture.
- **HSMC07.2:** Students will have the ability to learn about ancient books, Religious places, basic concept of Indian dance, music and arts, and fundamental aspects of Sangeeta and Natyashashtra etc.
- **HSMC07.3:** Student will be able to gain knowledge on Vedic Science, Astronomy, Astrovastu, Vedic Mathematics, Aeronautics, Metallurgy, Nakhatras, Panchang, Concept of Zero, Pi and point etc.
- **HSMC07.4:** Understanding on ancient Engineering, Science and Technology, Town Planning, Temple architecture, Chemistry and Metallurgy, Metal manufacturing etc.
- **HSMC07.5:** Student will able to understand about the Life, Nature and Health through basic concept of Ayurveda and Yoga, Traditional Medicinal Systems, Ethno medicine, Nature conservation, World Heritage Sites etc.

Scheme of Studies.												
	Course	Course	Course		Scheme of studies (Hours/Week)							
	Category	Code	Title	CI	LI	SW	SL	Total Study Hours	Credits			
								CI+LI+SW+SL	(C)			
			Indian	_	_							
	HSMC	HSMC07	Knowled	2	0	1	1	4	2			
			ge									
			System									

Scheme of Studies:

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

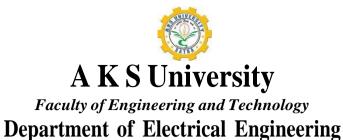
Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Session Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,


C: Credits.

Scheme of Assessment:

Scheme of Assessment (Marks)					arks)					
			Progressive Assessment (PRA)							
Co urs e Cat ego ry	Cours e Code	Course Title	Class/H ome Assign ment 5 number 3 marks each (CA)	Cla ss Test 2 (2 best out of 3) 10 mar ks eac h (CT)	Semi nar one (SA)	Class Activ ity any one (CA T)	Class Attend ance (AT)	Total Marks (CA+CT +SA +CAT+ AT)	End Semest er Assess ment (ESA)	Tota l Mar ks (PR A+ ESA)
HS MC	HSM C07	Indian Knowle dge System	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

HSMC07.1. To understand Indian Civilization and Indian Knowledge Systems

Item	AppX Hours
CI	6
LI	0
SW	2
SL	1
Total	9

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO 1.1. Understand Overview		Unit-1. Indian Civilization	Golden era of
of Indian Knowledge		and Indian Knowledge	ancient India
Systems (IKS)		Systems	
SO 1.2. Understand		1.1.Overview of Indian	
Classification of Ancient		Knowledge Systems	
IKS texts		(IKS)	
SO 1.3. Understand		1.2 Classification of Ancient	
Introduction to Panch		IKS texts	
Mahabhutas (Earth,		1.3 Introduction to Panch	
Water, Fire, Sky and		Mahabhutas (Earth,	
Air)		Water, Fire, Sky and Air)	
SO 1.4. Understand Origin of		1.4 Origin of the name	
the name Bharatvarsha:		Bharatvarsha: the Land of	
the Land of Natural		Natural Endowments	
Endowments		1.5 Rivers of ancient India	
SO 1.5. Understand Rivers of		(The Ganga, Yamuna,	
ancient India (The		Godawari, Saraswati,	
Ganga, Yamuna,		Narmada, Sindhu and	
Godawari, Saraswati,		Kaveri)	
Narmada, Sindhu and		1.6 Agriculture system in	
Kaveri)		ancient India, Ancient	
SO 1.6. Understand Ancient		Universities: Takshashila	
Agriculture and ancient			

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Universities: Takshashila and Nalanda, Gurukul system	and Nalanda, Gurukul system	
--	--------------------------------	--

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Concepts of Panch Mahabhuta, Classification of ancient texts, origin of ancient rivers

b. Mini Project:

- i. Ancient Universities: Takshashila and Nalanda,
- c. Other Activities (Specify):

HSMC07.2: Students will have the ability to apply the knowledge gained about Indian Art, Literature and Religious Places

Item	AppX Hours
CI	6
LI	0
SW	2
SL	1
Total	9

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self
	Instruction		Learning
	(LI)		(SL)
SO 2.1. Understand the Ancient		Unit-2. Indian Art,	1. Indian Art,
Indian Books: Vedas,		Literature and Religious	Music and
Puranas, Shastras,		Places	Dance
Upanishads, Mahakavyas		2.1. Ancient Indian Books:	
(Ramayana &		Vedas, Puranas, Shastras,	
Mahabharata), Smrities,		Upanishads, Mahakavyas	
Samhitas		(Ramayana &	
SO 2.2. Understand the Religious		Mahabharata), Smrities,	
places: Puries, Dhams,		Samhitas	
Jyotiralinga, Shaktipeeths,		2.2. Religious places:	
Kumbha Mela		Puries, Dhams,	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO 2.3. Understand the	Jyotiralinga, Shaktipeeths,	
Legendary places of	Kumbha Mela	
Madhya Pradesh: Ujjain,	2.3. Legendary places of	
Chitrakoot, Omkareshwar,	Madhya Pradesh: Ujjain,	
Bharhut, Maihar	Chitrakoot, Omkareshwar,	
SO 2.4. Understand the Basic	Bharhut, Maihar	
concept of Indian Art, Music	2.4. Basic concept of	
and Dance, Indian Musical	Indian Art, Music and	
Instruments	Dance, Indian Musical	
SO 2.5. Understand the	Instruments	
Fundamental aspects of	2.5. Fundamental aspects	
Sangeeta and Natya shastra	of Sangeeta and Natya	
SO 2.6. Understand the different	shastra	
schools of music, dance and	2.6. Different schools of	
painting in different regions	music, dance and painting	
of India	in different regions of India	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Visit of Chitrakoot, Maihar and Bharhuta

b. Mini Project:

i. Kumbh mela, Story of Ramayana and Mahabharata

c. Other Activities (Specify):

HSMC07.3: Student will be able to understand Ancient Science, Astronomy and Vedic Mathematics **Approximate Hours**

Item	AppX Hours
CI	6
LI	0
SW	2
SL	1
Total	9

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
Session Outcomes (SOs) SO 3.1. Understand Vedic Cosmology SO 3.2. Understand the Astronomy, Astrovastu, Vedang Jyotish, Nakshatras, Navagraha, Rashis, Vastushastra and their related plants SO 3.3. Understand the Time and Calendar, Panchang SO 3.4. Understand the Concept of Zero, Point, Pi -number system, Pythagoras SO 3.5. Understand the Vedic Mathematics, Vimana- Aeronautics, Basic idea of planetary model of Aryabhatta SO 3.6. Understand the Varanamala of Hindi language based on		Instruction (CI) Unit-3. Ancient Science, Astronomy, Mathematics 3.1. Vedic Cosmology 3.2. Astronomy, Astrovastu, Vedang Jyotish, Nakshatras, Navagraha, Rashis, Vastushastra and their related plants 3.3. Time and Calendar, Panchang 3.4. Concept of Zero, Point, Pi -number system, Pythagoras 3.5. Vedic Mathematics, Vimana-Aeronautics, Basic idea of planetary model of Aryabhatta 3.6. Varanamala of Hindi language based on classification of sounds on the basis of their	Learning (SL) 1. Ancient Science, Astronomy and Vedic Mathematics
classification of sounds on the basis of their origin, Basic purpose of science of Vyakarana		origin, Basic purpose of science of Vyakarana.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- Varanamala of Hindi language based on classification of sounds on the basis of their origin
 Mini Project:
- 1. Nakshatras, Navagraha and their related plants
 - c. Other Activities (Specify):

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

HSMC07.4: Understand the Engineering, Technology and Architecture **Approximate Hours**

Item	AppX Hours
CI	6
LI	0
SW	2
SL	1
Total	9

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self
	Instruction		Learning
	(LI)		(SL)
SO 4.1. Understand the		Unit-4. Engineering,	1. Ancient
Engineering Science and		Technology and	Science,
Technology in Vedic and		Architecture	Astronomy
Post Vedic Era		4.1. Engineering Science and	and Vedic
SO 4.2. Understand the Town		Technology in Vedic and	Mathematic
and Home planning,		Post Vedic Era	S
Sthapatyaveda		4.2. Town and Homeplanning,	
SO 4.3. Understand the		Sthapatyaveda	
Chemistry and Metallurgy		4.3. Chemistry and	
as gleaned from		Metallurgy as gleaned	
archeological artifacts		from archeological	
SO 4.4. Understand the		artifacts	
Chemistry of Dyes,		4.4 Chemistry of Dyes,	
Pigments used in Paintings,		Pigments used in	
Fabrics, Potteries and Glass		Paintings, Fabrics,	
SO 4.5. Understand the Temple		Potteries and Glass	
Architecture: Khajuraho,		4.5. Temple Architecture:	
Sanchi Stupa, Chonsath		Khajuraho, Sanchi Stupa,	
Yogini temple		Chonsath Yogini temple	
SO 4.6. Understand the Mining		4.6. Mining and manufacture	
and manufacture in India of		in India of Iron, Copper,	
Iron, Copper, Gold from		Gold from ancient times	
ancient times			

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Varanamala of Hindi language based on classification of sounds on the basis of their origin
- b. Mini Project:
 - i. Nakshatras, Navagraha and their related plants
- c. Other Activities (Specify):

HSMC07.5: Understand about the Life, Nature and Health **Approximate Hours**

Item	AppX Hours
CI	6
LI	0
SW	2
SL	1
Total	9

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO 5.1. Understand the		Unit-5. Life, Nature and	1. Concept of
Fundamentals of Ayurveda		Health	Ayurveda
(Charaka & Shushruta) and		5.1. Fundamentals of	and Yoga
Yogic Science (Patanjali),		Ayurveda (Charaka &	2. Traditional
Ritucharya and Dinacharya		Shushruta) and Yogic	system of
SO 5.2. Understand the		Science (Patanjali),	Indian
Traditional system of		Ritucharya and	medicines
Indian medicines		Dinacharya	3. Ethnobotan
(Ayurveda, Siddha, Unani		5.2. Traditional system of	y and
and Homoeopathy)		Indian medicines	Ethnomedic
SO 5.3. Understand		(Ayurveda, Siddha, Unani	ines of
Fundamentals of		and Homoeopathy)	India
Ethnobotany and		Fundamentals of	
Ethnomedicines of India			

A K S University

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO 5.4. Understand the Nature	Ethnobotany and 4. World
Conservation in Indian	Ethnomedicines of India Heritage
ancient texts	5.3.Nature Conservation in Sites
SO 5.5. Understand the	Indian ancient texts
Introduction to Plant	5.5 Introduction to Plant
Science in Vrikshayurveda	Science in
SO 5.6. Understand the World	Vrikshayurveda
Heritage Sites of Madhya	5.6.World Heritage Sites of
Pradesh: Bhimbetka,	Madhya Pradesh:
Sanchi, Khajuraho	Bhimbetka, Sanchi,
	Khajuraho

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Visit to world Heritage Site Khajuraho
- b. Mini Project:
 - i. Ritucharya and Dincharya, Ethnomedicinal plants
- c. Other Activities (Specify):

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
HSMC07. 1: To understand Indian	6	2	1	9
Civilization and Indian Knowledge				
Systems				
HSMC07. 2: Students will have the	6	2	1	9
ability to apply the knowledge gained				
about Indian Art, Literature and				
Religious Places				
HSMC07. 3: Student will be able to	6	2	1	9
understand the Ancient Science,				
Astronomy and Vedic Mathematics				
HSMC07. 4: Understand the	6	2	1	9
Engineering,				
Technology and Architecture				
HSMC07. 5: Understand about the	6	2	1	9
Life, Nature and Health				
Total	30	10	5	45

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

Suggested Specification Table (For ESA)						
CO	Unit Titles	Marks Distribution			Total	
		R	U	Α	Marks	
CO 1	Indian Civilization and Indian Knowledge Systems	2	5	1	8	
CO 2	Indian Art, Literature and Religious Places	2	6	2	8	
CO 3	Ancient Science, Astronomy and Vedic Mathematics	2	6	5	13	
CO 4	Engineering, Technology and Architecture	2	4	4	10	
CO 5	Life, Nature and Health	2	5	2	9	
	Total		26	14	50	

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Indian Knowledge Systems** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course teacher for above tasks. Teacher can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to Religious places, World Heritage Sites
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources: (a) Books:

	(a) Books:						
S. No.	Title	Author	Publisher	Edition & Year			
1	An Introduction of Indian Knowledge Systems: Concept and Applications	Mahadevan, B.; Bhat V. R. and Pavana, Nagendra R. N.	Prentice Hall of India.	2022			
2	Indian Knowledge Systems: Vol. I and II.	Kapoor, Kapil and Singh, A. K.	D.K. Print World Ltd	2005			
3	Science of Ancient Hindus: Unlocking Nature in Pursuit of Salvation	Kumar, Alok	Create pace Independent Publishing	2014			
4	A History of Agriculture in India	Randhava, M.S.	ICAR, New Delhi	1980			
5	Panch Mahabhuta,	Yogcharya, Jnan Dev	Yog Satsang Ashram	2021			
6	The Indian Rivers	Singh, Dhruv Sen	Springer	2018			
7	The Wonder That Was India	Basam, Arthue Llewllyn	Sidgwick & Jackson	1954			
8	Ancient Cities, Sacred Skies: Cosmic Geometries and City Planning in Ancient India	Malville, J. MacKim & Gujaral, Lalit M.	IGNCA & Aryan Books International, New Delhi	2000			
9	The Natya Shastra of Bharat Muni	Jha, Narendra	Innovative Imprint, Delhi	2023			
10	Astronomy in India: AHistorical Perspective	Padmanabhan, Thanu	Indian National Science Academy, New Delhi & Springer (India).	2010			
11	History of Astronomy in India 2^{nd} Ed.	Sen, S.N. and Shukla, K.S.	INSA New Delhi	2001			
12	History of Indian Astronomy AHandbook	Ramasubramanian, K.; Sule, Aniket and Vahia, Mayank	Science and Heritage Initiative, I.I.T. Mumbai and Tata Institute of Fundamental Research, Mumbai	2016			
13	Indian Mathematics and Astronomy: Some Landmarks	Rao, Balachandra S.	Jnana Deep Publications, Bangalore, 3 rd Edition	. 2004			

A K S University

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

14	Vedic Mathematics and Science in Vedas	Rao, Balachandra S.	Navakarnataka Publications, Bengaluru	2019
15	A History of Hindu Chemistry	Ray, Acharya Prafulla Chandra	Repbl Shaibya Prakashan Bibhag, Centenary Edition, Kolkata	1902
16	Early Indian Architecture: Cities and City Gates	Coomeraswamy, Anand	Munciram Manoharlal Publishers	2002
17	Theory and Practices of Temple Architecture in Medieval India: Bhojas samrangasutradhar and the Bhojpur Line Drawings	Hardy, Adams	Dev Publishers & Distributors.	2015
18	Indian Science and Technology in Eighteenth Century	Dharmpal	Academy of Gandhian Studies, Hyderabad.	1971
19	Science in India: A Historical Perspective	Subbarayappa, B.V.	Rupa New Delhi	2013
20	Fine Arts & Technical Sciences in Ancient India with special reference to Someswvara's Manasollasa	Mishra, Shiv Shankar	Krishnadas Academy, Varanasi	1982
21	Fundamental Principles ofAyurveda, Volume One	Lad, Vasant D.	The Ayurvedic Press, Alboquerque, New Mexico.	2002
22	Charak Samhita, Chaukhamba	Pandey, Kashinath and Chaturvedi Gorakhnath	Vidya Bhawan, Varanasi	
23	Ayurveda: The Science of Self- Healing	Lad, Vasant D.	Lotus Press: Santa Fe	1984
24	Ayurveda: Life, Health and Longevit	Svoboda, Robert E	Penguin: London	1992
25	Plants in the Indian Puranas	Sensarma, P.	Naya Prokash, Calcutta	1989
26	Indian Cultural Heritage Perspective for Tourism	Singh, L. K.	Gyan Publishing House, Delhi	2008
27	Glimpses of Indian Ethnobotany	Jain, S.K.	Oxford & IBH Publishing Company	1981
28	Manual of Ethnobotany	Jain, S.K.	Scientific Publishers, Jodhpur	2010

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Curriculum Development Team:

- 1. Er. Anant Kumar Soni, Hon'ble Pro-Chancellor and Chairman, AKS University, Satna (M.P.).
- 2. Prof. B.A. Chopade, Hon'ble Vice Chancellor, AKS University, Satna (M.P.).
- 3. Prof. G.C. Mishra, Director, IQAC, AKS University, Satna (M.P.).
- 4. Prof. R.L.S. Sikarwar, Director, Centre for Traditional Knowledge Research & Application, AKS University, Satna (M.P.).
- 5. Prof. Kamlesh Chaure, HOD, Department of Biotechnology, AKS University, Satna (M.P.).
- 6. Dr. Akhilesh Waoo, HoD, Department of Computer Science, AKS University, Satna (M.P.).
- 7. Dr. Shailendra Yadav, HoD, Department of Chemistry, AKS University, Satna (M.P.).
- 8. Dr. Kaushik Mukherji, HoD, Department of Management, AKS University, Satna (M.P.).
- 9. Dr. Neeraj Verma, PG Coordinator, Faculty of Agriculture Science and Technology, AKS University, Satna (M.P.)
- 10. Dr. Dilip Kumar Tiwari, HoD, Department of Yoga, AKS University, Satna (M.P.).
- 11. Shri Mirza Shamiullah Beg, Department of Arts, AKS University, Satna (M.P.).
- 12. Shri Vivek Shrivastava, Examination, AKS University, Satna (M.P.).
- 13. Shri Manish Agrawal, Department of Mining, AKS University, Satna (M.P.).

Cos, POs and PSOs Mapping

Programme Title: B.Tech. Electrical Engineering Course Code: HSMC07 Course Title: INDIAN KNOWLEDGE SYSTEM

						Program	n Outco	omes					Program Spe	cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng kno wled ge	Prob lem Solvi ng	Desi gn Skill s	Labo rator y Skill s	Tea mwo rk	Com muni catio n Skill s	Ethic al and Prof essio nal Beha vior	Lifel ong Lear ning	Globa l and Societ al Impac t	Projec t Mana gemen t	Adapt ability	Profes sional Devel opme nt	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: To understand Indian Civilization and Indian Knowledge Systems	3	3	3	3	2	1	1	2	2	3	1	2	2	3
CO2: Students will have the ability to apply the knowledge gained about Indian Art, Literature and Religious Places	3	3	2	3	1	2	1	2	1	2	2	2	3	2
CO3: Student will be able to understand the Ancient Science, Astronomy and Vedic Mathematics	3	3	2	1	1	2	2	2	1	3	2	3	3	2
CO4: Understand the Engineering, Technology and Architecture	3	2	3	2	3	2	1	3	2	2	2	2	3	3
CO5: Understand about the Life, Nature and Health	3	2	3	1	2	1	2	3	1	2	2	2	3	3

Legend:1-Low,2-Medium, 3-High

Course Curriculu POs &PSOsNo.	IM Map COsNo. &Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning(SL)
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO1: To understand Indian Civilization and Indian Knowledge Systems	SO1.1, SO1.2 SO1.3, SO1.4 SO1.5, SO1.6		Unit-1: Indian Civilization and Indian Knowledge Systems 1.1, 1.2, 1.3, 1.4, 1.5, 1.6	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO2: Students will have the ability to apply the knowledge gained about Indian Art, Literature and Religious Places	SO2.1, SO2.2 SO2.3 SO2.4 SO2.5 SO2.6		Unit-2: Indian Art, Literature and Religious Places 2.1,2.2,2.3,2.4,2.5,2.6	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO3: Student will be able to understand the Ancient Science, Astronomy and Vedic Mathematics	SO3.1, SO3.2 SO3.3 SO3.4 SO3.5 SO3.6		Unit-3 : Ancient Science, Astronomy and Vedic Mathematics 3.1, 3.2, 3.3, 3.4, 3.5, 3.6	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO4: Understand the Engineering, Technology and Architecture	SO4.1, SO4.2 SO4.3, SO4.4 SO4.5, SO4.6		Unit-4:S Engineering, Technology and Architecture 4.1, 4.2, 4.3, 4.4, 4.5, 4.6	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1, 2	CO5: Understand about the Life, Nature and Health	SO5.1, SO5.2 SO5.3, SO5.4 SO5.5, SO5.6		Unit 5: Life, Nature and Health 5.1, 5.2, 5.3, 5.4, 5.5, 5.6	1,2,3,4

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-II

Course Code:	HSMC09
Course Title :	Sports And Yoga
Pre- requisite:	Student should have basic knowledge of Sports And Yoga
Rationale:	Students of Yoga should have a legal understanding of Yoga and its original text Yoga. At the same time, they should also have adequate knowledge Yoga practices in which they should have knowledge of its basic principles and elements.
Course Outcomes:	

HSMC09.1: A make the students understand the importance of Introduction of Yoga. **HSMC09.2:** To make the students understand the importance of Fundamentals of Yoga.

HSMC09.3 To expose the students to a variety of physical and yogic activities aimedat stimulating their continued inquiry about Yoga, physical education, health

and fitness.

- **HSMC09.4** To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury.
- **HSMC09.5** To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health

Course				Scheme of studies(Hours/Week)						
Catego ry	Course Code	Course Title	Cl	LI	S W	SL	Total Study Hours (CI+LI+SW+S L)	Total Credi ts(C)		
HSMC	HSMC 09	Sports and Yoga	2	0	0	0	2	NC		

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Scheme of Assessment

Theory

			Scheme of Assessment (Marks)						
			Pro	ogressive Asse	essmei	nt (P	RA)	End	
Cours e Categ ory	Course Code	Course Title	Class/Home Assignment 5 Assignments 3 marks Each (CA)	2 Class Test (best 2 out of 3) 10 marks Each (CT)	One Semi nar (SA)	Atte ndan ce	Total Marks	Semeste r Assessm ent (ESA)	Total
HSMC	HSMC09	Sports and Yoga	15	20	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC09.1: A make the students understand the importance of Introduction of Yoga. **Approximate Hours**

Item	AppX Hrs
Cl	06
LI	0
SW	0
SL	3
Total	09

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory Instruction	Class room Instruction	Self- Learning
	•		
of Yoga for concentration &related Asanas SO1.5 Student will ableto Understand the Concept of Relaxation Techniques for improving concentration - Yog- nidra		 (Sukhasana; Tadasana; Padmasana & Shashankasana) 1.4 Relaxation Techniques for improving concentration - Yog-nidra 1.5 Relaxation Techniques for improving concentration - Yog-nidra 1.6 Relaxation Techniques for improving concentration - Yog-nidra 	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

HSMC09.2: To make the students understand the importance of Fundamentals of Yoga.

Item	AppX Hrs
Cl	06
LI	0
SW	0
SL	2
Total	06

Session	Laboratory	Class room Instruction	Self-
Outcomes	Instruction	(CI)	Learning
(SOs)	(LI)		(SL)
SO2.1 Student will able	•	Unit-2. Fundamentals of	1. Effect of yoga on
to Understand		Yoga	the functioning of
Fundamentals of			Various Body
Yoga		2.1 Purpose of yoga,	Systems
		definition of yoga, need	2. Fundamentals of
SO2.2 Student will able		and use of yoga for	Yoga
to Understand the		students.	
Effect of yoga on		2.2 Effect of yoga on the	
the functioning of		functioning of Various	
Various Body		Body Systems.	
Systems		2.3 Effect of yoga on the	
		functioning of Various	
		Body Systems	
		2.4 Circulatory System,	
		2.5 Respiratory System,	
		2.6Neuro- System,	
		Muscular System etc.	

A K S University Faculty of Engineering and Technology

Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

HSMC09.3 To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.

Item	AppX Hrs
Cl	06
LI	0
SW	0
SL	2
Total	8

Session Outcomes	Laboratory	Class room Instruction	Self	-Learning
(SOs)	Instruction (LI)	(CI)		(SL)
SO3.1 Student will able to	•	Unit-3. Physical Fitness,	1.	Physical
Understand Meaning &		Wellness & Lifestyle		Fitness
Importance Physical Fitness,		3.1 Meaning &	2.	Wellness &
Wellness & Lifestyle		Importance of		Lifestyle
SO3.2 Student will able to		Physical Fitness &		
Understand the Components		Wellness		
of Physical fitness		3.2 Components of		
SO3.3 Student will able to Describe		Physical fitness		
SO3.4 Student will able to		3.3 Components of		
Understand of Health related		Health related fitness		
fitness		3.4 Components of		
SO3.5 Student will able to		wellness		
Understand of Preventing		3.5 Preventing Health		
Health		Threats through		
SO3.6 Student will able to Describe		Lifestyle Change		
Concept of Positive Life		3.6 Concept of Positive		
-		Lifestyle		

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

HSMC09.4 To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury.

Item	AppX Hrs
Cl	06
LI	0
SW	0
SL	1
Total	7

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO4.1 Student will able to Understand Asanas as preventive measures SO4.2Student will able to Understand the Hypertension, Obesity, Back Pain, Diabetes, Asthema,		 Unit-4. Yoga & Lifestyle 4. 1 Asanas as preventive measures. 4.2 Hypertension: Tadasana, Vajrasana, Pavan Muktasana, Ardha Chakrasana, Bhujangasana, Sharasana. 4.3 Obesity: Procedure, Benefits & contraindications for Vajrasana, Hastasana, Trikonasana, Ardh Matsyendrasana. 4.4 Back Pain: Tadasana, Ardh Matsyendrasana, Vakrasana, Shalabhasana, Bhujangasana. 4.5 Diabetes: Procedure, Benefits & contraindications for Bhujangasana, Paschimottasana, Pavan Muktasana, Ardh Matsyendrasana. 	1. Asanas as preventive measures

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

4.6 Asthema: Procedure, Benefits & contraindications for Sukhasana, Chakrasana, Gomukhasana, Parvatasana, Bhujangasana, Paschimottasana, Matsyasana.

HSMC09.5 To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health

Item	AppX Hrs
Cl	06
LI	0
SW	1
SL	1
Total	8

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session	Laboratory	Class room	Self
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
SO5.1 Student will able	•	Unit-5. Postures	1. Meaning and Concept
to Understand the		5.1 Meaning and	of Postures
Meaning and		Concept of Postures.	
Concept of		5.2 Causes of Bad	
Postures		Posture.	
SO5.2 Student will able		5.3 Advantages &	
to Understand the		disadvantages of	
Causes of Bad		weight training.	
Posture		5.4 Concept &	
SO5.3 Student will able		advantages of	
to describe		Correct Posture.	
Concept &		5.5 Common Postural	
advantages of		Deformities –	
Correct Posture		Knock Knee; Flat	
		Foot; Round	
		Shoulders;	
		5.6 Lordosis, Kyphosis,	
		Bow Legs and	
		Scoliosis.	

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Yoga & Lifestyle
 - ii. Physical Fitness, Wellness & Lifestyle

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+ Sl)
HSMC09.1: To make the students understand the importance of Introduction of Yoga	6	0	3	9
HSMC09.2: To make the students understand of Fundamentals of Yoga	06	0	2	8
HSMC09.3: To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.	06	0	2	8
HSMC09.4: To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury and Yoga & Lifestyle	06	0	1	7
HSMC09.5 To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health &Postures	06	1	1	8
Total Hours	30	1	9	40

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit	Mark	Marks Distribution						
	Titles	R	U	Α	Marks				
CO-1	Introduction of Yoga	10	10	00	20				
CO-2	Fundamentals of Yoga	10	10	00	20				
CO-3	Physical Fitness, Wellness & Lifestyle	05	05	00	20				
CO-4	Yoga & Lifestyle	05	05	00	20				
CO-5	Postures	05	05	00	20				
	Total	25	25	00	100				

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Sports and yoga will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition &Year	
1	Modern Trends and Physical Education	Prof. Ajmer Singh	Sports Publication	third	
2	Light On Yoga	B.K.S. Iyengar	Kindle Edition	Fourth	
3	Health and Physical Education	Dr. A. K. Shrivastava, Dr. N.K. Gaur	B. R. International Publishers	Fifth	

Curriculum Development Team:

1. Dr. Dileep Tiwari, Associate professor, Department of yoga, AKS University

2. Dr. Ganesh Prasad Gupta, Assistant professor, Department of yoga, AKS University

COs, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: HSMC09 Course Title: Sports and Yoga

	8	Program Outcomes										Program Spe	ecific Outcome	
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO1 0	PO1 1	PO12	PSO 1	PSO 2
Course Outcomes	Eng ine erin g kno wle dge	Pro ble m Sol vin g	Des ign Skil ls	Lab orat ory Skil ls	Tea m wor k	Co mm uni cati on Skil ls	Eth ical and Pro fess ion al Beh avi or	Lifel ong Lear ning	Glob al and Soci etal Impa ct	Proj ect Man age ment	Ada ptabi lity	Profe ssiona l Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: To make the														
students understand the importance of of Yoga	1	2	1	1	1	1	1	1	2	1	1	1	1	1
CO2: To make the students understand the Fundamentals of Yoga	1	2	1	1	1	1	1	1	2	1	1	1	1	1
CO3: To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.	1	2	1	1	2	1	2	1	2	2	1	2	1	1
CO 4: To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury and Yoga & Lifestyle	1	2	1	1	1	1	1	1	2	1	1	1	1	1
CO5: To develop among students an appreciation of physical activity as a lifetime pursuit and a	1	2	1	1	2	1	3	1	2	1	2	2	1	1

means to better health &Postures.							

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO:1,2,3,4,5,6,7,8,9,10, 11,12 PSO 1,2	CO1 : To make the students understand the importance of Yoga	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1.0 Introduction of Yoga 1.1,1.2,1.3,1.4,1.5,1.6	1,2,3
PO:1,2,3,4,5,6,7,8,9,10, 11,12 PSO 1,2	CO 2 : To make the students understand the Fundamentals of Yoga	SO2.1 SO2.2		Unit-2 Fundamentals of Yoga 2.1, 2.2, 2.3, 2.4,2.5,2.6	1,2
PO:1,2,3,4,5,6,7,8,9,10, 11,12 PSO 1,2	CO3: To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6		Unit-3: Physical Fitness, Wellness & Lifestyle 3.1, 3.2, 3.3, 3.4, 3.5 ,3.6	1,2
PO:1,2,3,4,5,6,7,8,9,10, 11,12 PSO 1,2	CO 4: To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury and Yoga & Lifestyle	SO4.1 SO4.2		Unit-4: Yoga & Lifestyle 4.1, 4.2, 4.3, 4.4, 4.5, 4.6	1
PO:1,2,3,4,5,6,7,8,9,10, 11,12 PSO 1,2	CO5: To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health &Postures.	SO5.1 SO5.2 SO5.3		Unit-5: Postures Equations5.1, 5.2, 5.3, 5.4, 5.5, 5.6	1

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-III

Course Code:	EE201
Course Title :	Electrical Circuit Analysis
Pre- requisite:	Student should have basic knowledge of Electricity, Electrical Circuits, Basic Electrical Laws, Solution of differential equations, Laplace Transform
Rationale:	This course is designed to improve the student's knowledge in network analysis besides the basic topics. It includes advanced topics in network analysis, network parameters, filter networks and network synthesis concepts. This course would help students to understand more advanced concepts in the analysis of complex networks

Course Outcomes: After the completion of this course the students will be able to

- **EE201.1:** Apply different network theorems to analyze given network to evaluate different electrical parameters such as voltage, current, power etc.
- **EE201.2:** Understand and apply the procedure of solving 1st and 2nd order differential equation to find the time response of given RL, RC and RLC networks.
- EE201.3: Understand and learn the properties of Single phase and three phase AC circuits
- EE201.4: Understand Laplace Transform and its significance in Network analysis.
- **EE201.5:** Analyze two port networks using different network parameters such as Z, Y, Hybrid and ABCD Parameters.

Scheme of Studies:

Cours			Scheme of studies(Hours/Week)							
e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)		
Progra m Core (PCC)	EE 201	Electrical Circuit Analysis	4	2	1	1	7	5		

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others).

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

Ľ					Schen	ne of Ass	essment (N	Iarks)		
				Progressive Assessment (PRA)						Tota
			Class/	Class		Class				1
Cour			Home	Test 2	Semin	Activi		Total	Semester	Mar
	Couse	Course	Assign	(2 best	ar	ty	Class	Marks	Assessme	ks
se Cate	Code	Title	ment 5	out of	one	any	Attendan		nt	
	Coue	The	number	3)		one	ce	(CA+C		
gory			3	10				T+SA		(PR
			marks	marks			(AT)	+CAT	(ESA)	A+
			each	each	(SA)	(CAT		+AT)		ESA
			(CA)	(CT)))
	EE	Electrical								
PCC	EE 201	Circuit	15	20	5	5	5	50	50	100
	201	Analysis								

Practical

				Scheme of A	ssessmen	t (Marks)		
Cours	Couse	Course	Progres	sive Assessme	ent (PRA)	End	Total
e Categ ory	Code	Course Title	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)
PCC	EE201-L	Electrical Circuit Analysis	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE201.1: Apply different network theorems to analyze given network to evaluate different electrical parameters such as voltage, current, power etc.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Approximate Hours

		Item	A	approx. Hrs.		
		CI		12		
		LI		14		
		SW		2		
		SL		1		
		Total		29		
Session Outcomes (SOs)		Laboratory Instruction (LI)		Class ro	oom Instruction (CI)	Self Learning (SL)
the students will be able to	1.	Verification of Kirchhoff's current		T	-1 Network heorems hhoff's Law	 Nodal and Mesh Analysis Series and
SO1.1 Understanding of different network theorems and their solution process		law Verification of Kirchhoff's Volta law To verify the	age	1.2 Node Anal 1.3 Node Anal	e & Mesh ysis-I e & Mesh ysis-II	Parallel Equivalent Resistance calculation
SO1.2 Solve different network problems using different network theorems		superposition theorem To verify Thevenin's theor To verify Norton theorem		1.5 Nort 1.6 Supe theor 1.7 Supe	venin's theorem on's theorem er-position rem-I er-position rem-II	 Voltage Divider and Current Divider Rule
SO1.3 To understand the significance of network theorems.		To verify the maximum power transfer Theorem To verify the Reciprocity Theorem applical to D.C. circuit.		1.8 maxi trans 1.9 Reci 1.10 Mi 1.11 co theor	imum power fer theorem procity theorem illman's theorem mpensation	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Solution procedure of different network theorems
- ii. Numerical Problems based on different network theorems
- **EE201.2:** Understand and apply the procedure of solving 1st and 2nd order differential equation to find the time response of given RL, RC and RLC networks.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Approximate H	lours _			-	
		Item	Approx. Hrs.		
		CI	12	-	
		LI	0		
		SW	2		
		SL	1		
		Total	15	-	
Session Outco	Laboratory Instruction		lass room Instr (CI)	ruction	Self- Learning
mes (SOs)	(LI)				(SL)
the students will be		Unit-2 S	olution of First		1. Procedure of
ableto			order networ	ks	solving of
 SO2.1 Understand the concept of steady state and transientstate response. SO2.2 Solve Based on Calculation of Time response of RL, RCand RLC networks. SO2.3 Study forced andfree response of given network. 		respon 2.2 initia elema 2.3 initia elema 2.4 Solut differ 2.5 Solut differ 2.6 Solut differ 2.7 Solut differ 2.8 Solut differ 2.9 Solut differ 2.9 Solut differ 2.10 Solut differ 2.11 forc	l and final condi ents-I l and final condi ents-II ion of first and s rential equations ion of first and s rential equations it-I.	ations in network ations in network second order for R-L circuit-I. second order for R-L circuit-II second order for R-C circuit-II second order for R-C circuit-II. second order for R-C circuit-II. second order for R-L-C second order	differential equation. 2. Practice of Numerical problems.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Numerical Assignments Based on Calculation of Time response of RL, RC and RLC networks.

EE201.3: Understand and learn the properties of Single phase and three phase AC circuits

Item	Approx. Hrs.
CI	12
LI	6
SW	1
SL	1
Total	20

Session Outcomes (SOs)	Laboratory Instruction(LI)	Class room Instruction(CI)	Self- Learning (SL)
the students will be able to SO3.1 Understand the concept of phasor, phasor diagrams, impedances and admittances SO3.2 Analyze Single And 3 Phase AC Circuits. SO3.3 Understand and Apply Dot Convention in	 To observe the characteristi cs ofRL RC and. RLC circuits. Study of 3 phasestar connection. Study of 3 phasedelta connection. 	 Unit-3 : Sinusoidal steadystate analysis 3.1 Representation of sinefunction as rotating phasor, 3.2 phasor diagrams, 3.3 impedances andadmittances, 3.4 Single phase AC circuits:RL, RC and RLC circuits, 3.5 Effective or RMS values, average power and complex power. 3.6 Three-phase circuits: Star Connection, 3.7 Delta connection, 	(SL) 1. Self and mutual inductance.
circuit analysis.		 3.8 3.9 3 phase 3 wire system and3 phase 4 wire system, 3.10 Mutual coupled circuits, 3.11 Dot Convention incoupled circuits-I. 3.12 Dot Convention incoupled circuits-II 	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems Single and 3 phase AC circuits.
- ii. Numerical Problems based on dot convention.

EE201.4: Understand Laplace Transform and its significance in Network analysis. **Approximate Hours**

Item	Approx. Hrs.
Cl	8
LI	4
SW	2
SL	1
Total	15

Session Outcomes	Laboratory		Self-
(SOs)	Instruction(LI)	Class room Instruction(CI)	Learning
			(SL)
the students will be	1. To form the	Unit-4 : Electrical Circuit Analysis	1. Practice of
able to	Transfer	UsingLaplace Transforms	Numerical
	function of	4.1 Laplace Transform, Properties	problems
SO4.1 Understand	given system	of Laplace Transform,	basedupon
Laplace	using	4.2 Analysis of electrical circuits	Laplace
Transform and its	MATLAB	using Laplace Transform for	Transform
properties.	2. To Draw	standard inputs,	and Inverse
SO4.2 Apply Laplace	pole-zero	4.3 Inverse Laplacetransform,	Laplace
Transform to	plot of given	4.4 Transformed Network with	Transform.
analyze electrical	system using	initial conditions.	2. Practice of
circuits	MATLAB	4.5 Transfer function	Numerical
SO4.3 Understand the		representation.	problems
concept of poles		4.6 Poles and Zeros. Pole-Zero	based upon
and zeros and its		plots,Stability	Poles, Zeros
significance.		4.7 Analysis of systemusing pole-	and Pole-
SO4.4 Stability		Zero plot.	Zero Plot
analysis on the		4.8 Stability analysis of system	
basis of Pole-		using pole-	
Zero plots.		Zero plot.	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems based upon Laplace Transform and Inverse Laplace Transform.
- ii. Numerical problems based on upon Poles, Zeros and Pole-Zero Plot
- **EE201.5:** Analyze two port networks using different network parameters such as Z, Y, Hybrid and ABCD Parameters.

Item	Approx. Hrs.
Cl	11
LI	6
SW	2
SL	1
Total	20

Session Outcomes		Laboratory	Class room Instruction		Self-Learning	
(SOs)		Instruction	(CI)		(SL)	
		(LI)				
the students will be able	1.	To calculate	Unit 5: Two Port	1.	Relationship	
to		Z and Y	Network and Network		between different	
		parameters of	Functions		network	
SO5.1 Understand two		given two	5.1 Two Port Networks,		Parameters.	
port networks and		port	terminal pairs,	2.	Series and Parallel	
their Properties.		networks.	5.2 two port variables,		Connection.	
	2.	To calculate	5.3 Network Functions,	3.	Practice of	
SO5.2 Evaluate different		Hybrid	5.4 Network Parameters:		numerical	
network parameters for		parameters of	5.5 impedance parameters,		problems.	
given network.		given two	5.6 admittance parameters,			
		port network.	5.7 transmission parameters			
SO5.3 Understand the	3.	Demonstratio	5.8 hybrid parameters,			
interconnection of two		n n of	5.9 inter connections of			
port networks and		different	twoport networks-I			
Relationship between		interconnecti	5.10 inter connections of			
their network		on of two port	twoport networks-II			
Parameters		networks.	5.11 Relationship Between			
			parameters			

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problem based on Network Functions and Network Parameters.
- ii. Numerical Problem based on interconnection of two port networks

b. Mini Project:

Draw the chart of Two Port Network Interconnection.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Instruction	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE01.1: Apply different network theorems to analyze given network to evaluate different electrical parameters such as voltage, current, power etc.	12	14	2	1	29
EE01.2: Understand and apply the procedure of solving 1 st and 2 nd order differential equation to find the time response of given RL, RC and RLC networks.	12	0	2	1	11
EE01.3: Understand and learn the properties of Single phase and three phase AC circuits	12	6	1	1	17
EE01.4: Understand Laplace Transform and its significance in Network analysis.	8	4	2	1	15
EE01.5: Analyze two port networks using different network parameters such as Z, Y, Hybrid and ABCD Parameters.	11	6	2	1	17
Total Hours	55	30	9	5	99

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marks Distribution			Total	
		R	U	Α	Marks	
CO-1	Network Theorems	02	03	05	10	
CO-2	Solution of First and Second order networks	02	05	03	10	
CO-3	Sinusoidal steady state analysis	02	02	06	10	
CO-4	Electrical Circuit Analysis Using Laplace Transforms	02	03	05	10	
CO-5	Two Port Network and Network Functions	02	04	04	10	
	Total	10	17	23	50	

Legend:R: Remember,U: Understand,A: ApplyThe end of semester assessment for Process calculation will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Design Demonstration
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :							
S. No.	Title	Author	Publisher	Edition & Year				
1	Electric Circuit Analysis	K. S. Suresh Kumar	Pearson Publications	2013				
2	Network Analysis	Van Valkenburg M.E	Prentice Hall India	2014				
3	Circuit Theory	A. Chakrabarti	Dhanpat Rai & Co.	Eighth, 2023				
4	Network Analysis and Synthesis	C.L Wadhwa	New Age International Publishers	2023				
5	An Introduction to Circuit analysis: A System Approach	Donald E. Scott	McGraw Hil	2022				
6.	Network Analysis	N.C. Jagan and C. Lakshminarayana	B.S. Publications	2008				
7	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.							

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

PCos,POs and PSOs Mapping

Course Title: B. Tech. Electrical Engineering Course Code: EE 201 Course Title: Electrical Cir uit Analysis Cou

u	rse Title: Electrical Circuit Analysis														
	Program Outcomes									Program Spec	ific Outcome				
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
	Course Outcomes	Engine ering knowle dge	Pro ble m Solv ing	Desi gn Skill s	Labor atory Skills	Team work	Comm unicati on Skills	Ethic al & Profe ssion al Beha vior	Lifelong Learnin g	Global and Societal Impact	Project Manag ement	Adap tabilit y	Profe ssion al Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
	CO1: Apply different network theorems to analyze given network to evaluate different electrical parameters such as voltage, current, power etc.	3	3	2	3	3	2	1	2	3	2	2	3	3	2
	CO 2: Understand and apply the procedure of solving 1 st and 2 nd order differential equation to find the time response of given RL, RC and RLC networks.	3	3	3	2	2	2	1	2	1	2	2	2	2	2
	CO3: Understand and learn the properties of Single phase and three phase AC circuits	3	3	2	2	3	1	2	2	1	2	2	3	2	2
	CO 4: Understand Laplace Transform and its significance in Network analysis.	3	3	2	2	2	1	1	3	2	2	2	2	3	3
	CO 5: Analyze two port networks using different network parameters such as Z, Y, Hybrid and ABCD Parameters.	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self- Learnin g(SL)
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO1: Apply different network theorems to analyze given network to evaluate different electrical parameters such as voltage, current, power etc.	SO1.1 SO1.2 SO1.3	1, 2, 3,4,5,6,7	Unit-1 Network Theorems 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9,1.10,1.11,1.12	1,2,3
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 2: Understand and apply the procedure of solving 1 st and 2 nd order differential equation to find the time response of given RL, RC and RLC networks.	SO2.1 SO2.2 SO2.3	0	Unit-2 Solution of First and Second order networks 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9.2.10.2.11.2.12	1,2
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO3: Understand and learn the properties of Single phase and three phase AC circuits	SO3.1 SO3.2 SO3.3	1, 2,3	Unit-3 : Sinusoidal steady state analysis 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9, 3.10,3.11,3.12	1
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 4: Understand Laplace Transform and its significance in Network analysis.	SO4.1 SO4.2 SO4.3 SO4.4	1,2	Unit-4 : Electrical Circuit Analysis Using Laplace Transforms 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8	1,2
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 5: Analyze two port networks using different network parameters such as Z, Y, Hybrid and ABCD Parameters.	SO5.1 SO5.2 SO5.3	1, 2,3	Unit 5: Two Port Network and Network Functions 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9 ,5.10,5.11	1,2,3

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-III

Course Code:	EE202
Course Title:	ANALOG ELECTRONICS
Pre- requisite:	Student should have knowledge of fundamental principles of analog electronics.
Rationale:	In current scenario the diode, transistors, op-amp are extensively used in various electronic circuits. Such systems are required to design and maintain by engineer. Therefore, the goal of this course is for students to become competent to understand design and maintenance of such type of systems.

Course Outcomes: After the completion of this course the students will be able to

- EE 202.1: Understanding the fundamental of diode, its characteristics and its various types.
- **EE 202.2:** Understanding the various applications of diode.

EE 202.3: Design and analysis of bipolar junction transistor, its various configurations and applications.

- **EE 202.4:** Design and analysis of junction field effect transistor and metal oxide semiconductor field effect transistor and its various configurations.
- EE 202.5: Design and analysis of op-amp, its characteristics and various applications.

Scheme of Studies:

Cours				Scheme of studies(Hours/Week)				Total
e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Progra m Core (PCC)	EE 202	Analog Electronics	3	2	1	1	7	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

Theory	

	Ť									
				Progre	ssive Asse	ssment	(PRA)	-	End	Tota
Cour se Cate	Cous e	Course Title	Class/H ome Assignm ent 5	Class Test 2 (2 best out of	Semina r one	Class Activ ity any	Class Attendanc	Total Marks	Semester Assessme nt	l Mar ks
gory	Code	e	number 3 marks each (CA) 3) 10 marks each (CT)	(SA)	one (CAT)	e (AT)	(CA+C T+SA+ CAT+ AT)	(ESA)	(PR A+ ESA)	
PCC	EE202	ANALO G ELECTR ONICS	15	20	5	5	5	50	50	100

Practical

			Scheme of Assessment (Marks)							
Cours	Couse	CourseTitle	Progress	sive Assessme	nt (PRA)	•	End	Total		
e Categ ory	Code		Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)		
PCC	EE202-L	ANALO G ELECTR ONICS	35	10	5	50	50	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE 202.1: Understanding the fundamental of diode, its characteristics and its various types.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Approximate Hours

Item	Approx Hrs.
Cl	9
LI	6
SW	1
SL	1
Total	17

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO1.1 Understand the fundamental of PN junction diode, its working and applications.	1.Plot VI characteristics of PN junction diode.	Unit-1: Diode 1.1 Introduction 1.2 PN Junction theory 1.3 Working of diode and its VI characteristics	 Fundamental of electronics Semiconductor theory
 SO1.2 Understand the fundamental of Zener diode, its working and applications. SO1.3 Understand the fundamental of reactor diode, its working and applications. 	2. Plot VI characteristics of Zener diode.3. Plot VI characteristics of photo diode	 1.4 Zener diode introduction 1.5 Working, VI characteristics and applications 1.6 Varactor diode introduction 1.7 Working, VI characteristics and applications 1.8 Photo diode introduction 1.9 Working, VI 	
SO1.4 Understand the fundamental of photo diode, its working and applications.		characteristics and applications	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Classify the different types of electronic materials.
- 2. Discuss the property of semiconductor materials.

EE 202.2: Understanding the various applications of diode.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Approximate Hours

Item	Approx Hrs
Cl	8
LI	4
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)		Self- Learning (SL)
SO2.1 Understanding	1. Plot the	Unit-2: Applications of	1.	Working of
application of diode as	input and	diode		diode.
rectifier.	output		2.	Concept of series
	waveform	2.1 Rectifier (introduction)		and parallel
SO2.2 Understanding	of half	2.2 Half wave rectifier		circuits.
working of various	wave	2.3 Full wave rectifier using		
types of clipper circuits	rectifier.	diode		
and its applications.	2. Plot the	2.4 Bridge rectifier		
	input and	2.5 Clipper circuit		
SO2.2 Understanding	output	2.6 Types of clipper circuits		
working of various	waveform	and its applications.		
types of clamper	of bridge	2.7 Clamping circuit		
circuits and its	rectifier.	2.8 Types of clamper circuits		
applications.		and its applications.		

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. How diode works as rectifier.
- ii. Explain working of various types of clipping circuits.
- iii. Explain working of various types of clamping circuits.

EE 202.3: Design and analysis of bipolar junction transistor, its various configurations and applications.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Approximate Hours

Item	Approx Hrs		
Cl	9		
LI	6		
SW	1		
SL	1		
Total	17		

Session Outcomes	č		Self-	
(SOs)	Instruction(LI)	Instructio	Learning	
		n(CI)	(SL)	
SO3.1 Understand the	1. Plot input and	Unit-3: Bipolar	1. Properties of	
working of NPN and	output	Junction	N type and P	
PNP transistor.	characteristics	Transistor	type	
SO3.2 Understand the	of CB	Circuits	semiconductor.	
working of CB	configuration of	2.1 Basic Structure		
configuration of	transistor.	2.2 Types,		
transistor.	2. Plot input and	mode of		
SO3.3 Understand the	output	biasing		
working of CE	characteristics	2.3 Working of		
configuration of	of CE	NPN		
transistor.	configuration of	transistor		
	transistor.	2.4 Working of		
SO3.4 Understand the	3. Plot input and	PNP		
working of CC	output	transistor		
configuration of	characteristics	2.5 Configuratio		
transistor.	of CC	ns ofBJT.		
SO3.5 Understand how	configuration of	2.6 Current gain of		
transistor works as a	transistor.	CB,CE and CC		
switch.		configuration.		
		2.7 Relation		
SO3.6 Understand how		between α, β		
transistor works as an		and y		
amplifier.		2.8 BJT as switch		
		2.9 BJT as amplifier		

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain how transistor works as an amplifier.
- ii. Explain how transistor works as a switch.

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE 202.4: Design and analysis of junction field effect transistor and metal oxide semiconductor field effect transistor and its various configurations.

Approximate Hours

Item	Approx Hrs		
Cl	8		
LI	6		
SW	1		
SL	1		
Total	16		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
 SO4.1 Understand the working of JFET. SO4.2 Understand the working of depletion type MOSFET. SO4.3 Understand the working of enhancement type MOSFET. 	 Plot drain and transfer characteristi c of JFET. Plot drain and transfer characteristi c of depletion type MOSFET. Plot drain and transfer characteristi c of enhancemen t type MOSFET. 	 Unit-4: Field Effect Transistor Circuits Introduction of FET. Structure of JFET Working of N channel JFET 4.4 Working of P channel JFET 5 Drain and transfer characteristics of JFET 4.6 Structure of MOSFET 7 Working of deletion type MOSFET and its characteristics MOSFET as an amplifier 	1. Difference between of BJT and FET.

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Explain working of N channel JFET.
 - ii. Explain working of depletion type MOSFET.
 - iii. Explain working of enhancement type MOSFET.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

EE 202.5: Design and analysis of op-amp, its characteristics and various applications.

Item	Approx Hrs			
Cl	11			
LI	8			
SW	1			
SL	1			
Total	21			

Session	Laboratory Class room Instruction		Self-
Outcomes	Instruction	(CI)	Learning
(SOs)	(LI)		(SL)
SO5.1 Understa	1. Working of	Unit 5: OP AMP and its applications	
nd working	inverting and	5.1 Introduction of op amp.	1. Basic
of op- amp	non-inverting	5.2 Inverting amplifier.	mathematic
and its	op amp.	5.3 Non inverting amplifier.	al formulas.
various	2. Inverting op	5.4 Application of op amp (summing	
applicati ons.	amp as	amplifier)	
	summing	5.5 Application of op amp (subtractor	
	amplifier.	circuit)	
	3. Non inverting	5.6 Application of op amp (Integrator and	
	op amp as	differentiator circuit)	
	summing	5.7 Application of op amp (Logarithmic	
	amplifier.	amplifier)	
	4. Op-amp as	5.8 Application of op amp (Anti logarithmic	
	difference	amplifier)	
	amplifier.	5.9 Application of op amp (voltage to	
		Current converter).	
		5.10 Application of op amp (current to voltage	
		converter). 5.11 Application of op amp in oscillatorcircuits.	
		5.11 Application of op and in oscillatoreneurs.	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Calculate the gain of inverting and non-inverting op amp.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Instructi on (LI)	Sessiona l Work (SW)	Self- Learnin g (Sl)	Total hour (Cl+SW+ Sl)
EE 202.1: Understanding the fundamental of diode, its characteristics and its various types.	9	6	1	1	17
EE0 202.2: Understanding the various applications of diode.	8	4	1	1	14
EE 202.3: Design and analysis of bipolar junction transistor, its various configurations and applications.	9	6	1	1	17
EE 202.4: Design and analysis of junction field effect transistor and metal oxide semiconductor field effect transistor and its various configurations.	8	6	1	1	16
EE 202.5: Design and analysis of op-amp, its characteristics and various applications.	11	8	1	1	21
Total Hours	45	30	5	5	85

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marks Distribution			Total
		R	U	Α	Marks
CO-1	Diode	04	03	01	8
CO-2	Applications of diode	06	03	02	11
CO-3	Bipolar Junction Transistor Circuits	04	03	01	8
CO-4	Field Effect Transistor Circuits	05	04	02	11
CO-5	OP AMP and its applications	04	04	04	12

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

L	Legend:	R: Remember,	U: Unde	erstand,		A: App	ly
		Total		23	17	10	50

The end of semester assessment for Process calculation will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Design Demonstration
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year		
1	Integrated Electronics	Millman and Halkias	Mc Graw Hill	Second Edition		
2	Electronics Devices and Circuits	R. Boylested and L. Nashelsky	Prentice Hall India	Tenth Edition		
3	Electronics Devices and Circuits	Millman and Halkias	TMH Edition	Foutth Edition 2015		
4	Analog Electronics	Malcolm Goodge	TMH Edition	2019		
5	ElectronicsPrinciples	Malvino	TMH Edition	2020		
6	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.					

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE202 Course Title: ANALOG ELECTRONIC CIRCUITS

					Pr	ogram	Outco	omes					Program Spec	cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engine ering knowle dge	roblem Solvin g	Design Skills	Laborat ory Skills	Team work	Comm unicati on Skills	Ethic al and Profes sional Behav ior	Lifelon g Learni ng	Global and Societal Impact	Project Manag ement	Adapt abilit y	Profes sional Devel opme nt	Apply electrical and interdiscipli nary knowledge to analyze, design and manufactur e products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understanding the fundamental of diode, its characteristics and its various types.	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO 2: Understanding the various applications of diode.	3	3	3	3	2	2	1	3	2	2	2	3	3	2
CO3: Design and analysis of bipolar junction transistor, its various configurations and applications.	3	2	3	2	2	1	2	2	2	2	2	3	3	2
CO 4: Design and analysis of junction field effect transistor and metal oxide semiconductor field effect transistor and its various configurations.	3	3	2	2	2	2	2	3	2	2	2	2	2	3
CO 5: Design and analysis of op- amp, its characteristics and various applications.	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6 ,7,8,9,10,11,1 2 PSO 1,2	CO1: Understanding the fundamentalof diode, its characteristics and its various types.	SO1.1 SO1.2 SO1.3 SO1.4	1,2,3	UNIT-1: Diode 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	1,2
PO:1,2,3,4,5,6 ,7,8,9,10,11,1 2 PSO 1,2	CO 2: Understanding the variousapplications of diode.	SO2.1 SO2.2 SO2.3	1,2	UNIT-2 : Applications of diode 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8	1,2
PO:1,2,3,4,5,6 ,7,8,9,10,11,1 2 PSO 1,2	CO3: Design and analysis of bipolar junction transistor, its various configurations and applications.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6	1,2,3	Unit-3: Bipolar Junction Transistor Circuits 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1
PO:1,2,3,4,5,6 ,7,8,9,10,11,1 2 PSO 1,2	CO 4: Design and analysis of junctionfield effect transistor and metal oxide semiconductor field effect transistor and its various configurations.	SO4.1 SO4.2 SO4.3	1,2,3	UNIT-4: Field Effect Transistor Circuits 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8	1
PO:1,2,3,4,5,6 ,7,8,9,10,11,1 2 PSO 1,2	CO 5: Design and analysis of op- amp, its characteristics and various applications.	SO5.1	1,2,3, 4	UNIT-5: OPAMP and its applications 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.1 0,5.11	1

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-III

Course Code:	EE 203
Course Title :	Electrical Machine-1
Pre-requisite:	Students should have basic knowledge of electrostatics & electromagnetic, Physics, and Mathematics.
Rationale:	A process of introducing formal knowledge of electrical machine principles, construction, and working of various transformers and D.C. machines with various concepts of magnetic fields and circuits.

Course Outcomes: After the completion of this course the students will be able to

EE 203.1: Understand the concepts of magnetic circuits.

EE 203.2: Understand the phenomenon of electromagnetic force and torque

EE 203.3: Understand the operation of DC machines.

EE 203.4: Analyze the differences in operation of different dc machine configurations.

EE 203.5: Analyze single phase and three phase transformers circuits.

Scheme of Studies:

				Scheme of studies(Hours/Week)				Total
Course Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Program Core (PCC)	EE 203	Electrical Machine-1	3	2	1	1	7	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field, or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project, etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL have to be planned and performed under the continuous guidance and feedback of the teacher to ensure the outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

						-				
				Prog	gressive	Assessme	ent (PRA)		End	Total
Cour se Categ	Course Code	Course Title	Class/H ome Assign ment 5 number	Class Test 2 (2 best out of 3)	Semi nar one	Class Activit y one	Class Attendanc e	Total Marks	Semester Assessm ent	Mark s
ory			3 marks each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT +SA+CA T+AT)	(ESA)	(PRA + ESA)
PCC	EE 203	Electrical Machine-1	15	20	5	5	5	50	50	100

Practical

Cours	Couse	CourseTitle	Scheme of Assessment (Marks) Progressive Assessment (PRA) End						
e Categ ory	Code	CourseTitle	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)	
PCC	EE 203	Electrical Machine-1	35	10	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE 203.1: Understand the concepts of magnetic circuits. **Approximate Hours**

Item	AppX Hrs
Cl	08
LI	02
SW	02
SL	01
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
 SO1.1 Attain the basic knowledge about flux, flux density, and magnetic field intensity. SO1.2 Understand the concept of reluctance and electro-motive force in magnetic circuits. SO1.3 Understand and derive the laws of magnetic circuits. SO1.4 Understand the Visualization of magnetic fields produced by a bar magnet and a current carrying coil - through air and through a combination of iron and air. SO1.5 Understand the influence of highly permeable materials 	(LI) 1. Study of different laws of magnetic circuit.	Unit-1: Magnetic fields and magnetic circuits.1.1Flux nagnetic Field Intensity1.3Magnetic Field Intensity1.4Reluctance1.5Electro-Motive Force1.6Laws of Magnetic Circuit.1.7Visualization of magnetic fields produced by a bar magnet and a current carrying coil - through air and through a combination of iron and air.1.8Influence of highly permeable materials on the magnetic flux lines	1. Understand the various concepts of the Magnetic fields and magnetic circuits.
on the magnetic flux lines.			

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Write down all the concepts of magnetic circuits with numerical.

b. Mini Project:

Learn different laws of magnetic circuit.

EE 203.2: Understand the phenomenon of electromagnetic force and torque **Approximate Hours**

Item	AppX Hrs
Cl	07
LI	04
SW	02
SL	01
Total	14

Session Outcomes (SOs)	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self- Learning (SL)
 SO2.1 To Understandthe B-H curve. SO2.2 To understand the different typesof magnetic circuits. 	 Study B-H curveof magnetic material. Study of different equipment usedin 	Unit-2 Electromagneticforce and torque.2.1 B-H curve of magnetic materials.2.2 flux-linkagevscharacteristicof magnetic circuits.2.3 linear and nonlinear magnetic	1. Learn and gain knowledge of Electromagn etic force and torque.
SO2.3 Determine the energy stored in magnetic circuit.	magnetic circuit.	 circuits. 2.4 energy stored in the magnetic circuit. 2.5 force as a partial derivative of stored energy with respect to position of a movingelement. 	
SO2.4 To understand theconcept of force and torque.		2.6 torque as a partial derivative of stored energy with respect to angular position of a rotating element.	
SO2.5 To Understand theworking of different devices.		2.7 galvanometer coil, relay contact, lifting magnet, rotating element with eccentricity or saliency.	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems on flux linkage.
- ii. Numerical Problems on energy stored.
- iii. Write Down the Principles and Workings of force and torque.

b. Mini Project:

i. Draft different types of apparatus.

EE 203.3: Understand the operation of DC machines.

Item	AppX Hrs
Cl	09
LI	02
SW	01
SL	01
Total	13

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (CI)	Self- Learnin
	(LI)		g (SL)
SO3.1 To Understand	1. Study the	Unit-3 DC Machines	1. Learn and
the Basic	construction		gain
Construction.	al details of	3.1 Construction	knowledge of
	different	3.2 magnetic structure - stator yoke,	DC Machine.
SO3.2 To understand the	parts of DC	stator poles, pole-faces or shoes,	
various parts of	machine.	air gap and armature core.	
magnetic structure.		3.3 visualization of magnetic field	
		produced by the field winding	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO3.3 To understand the	excitation with armature winding	
distribution of flux at	open.	
different parts.	3.4 air gap flux density distribution,	
	flux per pole, induced EMF in an	
SO3.4 To understand the	armature coil.	
different equations.	3.5 Armature winding and	
	commutation - Elementary	
SO3.5 To understand the	armature coil and Commutator,	
armature reaction	lap and wave windings,	
and commutator	construction of Commutator,	
action.	linear commutation	
	3.6 Derivation of back EMF equation	
	3.7 Armature MMF wave, Armature	
	reaction	
	3.8 Derivation of torque equation	
	3.9 Air gap flux density distribution	
	with armature reaction.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- Numerical Problems on EMF and Torque Equations.
- Numerical Problems of Performance Characteristics.
- Write Down the Principles and Workings of the DC Machine.

b. Mini Project:

a. Draft the DC machine Construction.

EE 203.4: Analyze the differences in operation of different dc machine configurations.

Item	AppX Hrs
Cl	09
LI	12
SW	01
SL	01
Total	23

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
	1. Obtain	Unit-4: D.C. Machines –	1. To ensure all
SO4.1 To derive the	magnetic	motoring and generation	the concepts
equation for	characteristics		of DC Motor
generation and	of DC shunt	4.1 Armature circuit equation	should be
motoring.	generator.	for motoring and generation	learned.
	2. Obtain load	4.2 Types of field excitations -	
SO4.2 To Understand the	characteristics	separately excited, shunt and	
Various field	of DC shunt	series.	
excitations.	generator.	4.3 Open circuit characteristic of	
	3. Obtain load	separately excited DC	
SO4.3 To Understand the	characteristics	generator.	
open circuit	of DC series	4.4 back EMF with armature	
characteristics of	generator.	reaction	
separately excited DC	4. Obtain Load	4.5 voltage build-up in a shunt	
generator.	Characteristics	generator 4.6 Critical field resistance and	
	of DC series	critical speed.	
SO4.4 To Understand the	motor.	4.7 V-I characteristics and	
back EMF with	5. To perform	torque-speed characteristics	
armature reaction.	speed control	of separately excited shunt	
	methods dc	and series motors.	
SO4.5 To Analyze the	motor.	4.8 Speed control through	
phenomenon of voltage	6. To perform	armature voltage.	
build up.	Back-to-Back	4.9 Losses, load testing and	
SO4 6 To understand the no	test on DC machine.	back-to-back testing of DC	
SO4.6 To understand the no load and on load	machine.	machines.	
characteristics with			
speed control methods.			
SO4.7 To understand the			
losses and test			
performed on DC			
machine.			
machine.			

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems on Back EMF and Torque Equation.
- ii. Numerical Problems on Speed Control Methods.

EE 203.5: Analyze single phase and three phase transformers circuits.

Item	AppX Hrs
Cl	12
LI	10
SW	01
SL	01
Total	24

Session Outcomes (SOs)		Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO5.1 Evaluation of Single-	1.	Study the		1. Make Well-
Phase Transformer-		Constructional	Unit-5: Transformers.	Organized
Construction, working,		details of		Notes on of All
phasor diagram,		transformer.	5.1 Principle	Concepts of
efficiency, voltage	2.	To perform	5.2 construction and operation of	Transformers.
regulation and losses.		open circuit	single-phase transformers.	
		test on single-	5.3 equivalent circuit, phasor	
SO5.2 To Understand Testing		phase	diagram	
of Transformers		transformer.	5.4 voltage regulation, losses and	
	3.	To perform	efficiency	
SO5.3 To Study the		short circuit	5.5 Testing - open circuit and	
Construction and		test on single-	short circuit tests, polarity	
Working of Auto-		phase	test	
Transformer		transformer.		

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

4. 5.6 back-to-back test, separation To perform SO5.4 To Understand the stumper's test of hysteresis and eddy Construction of a Threeor back-tocurrent losses Phase Transformer. 5.7 Three-phase transformer – back test on single-phase construction, types of **SO5.6** To Understand the transformer. connection and their Different Types of 5. Study and comparative features Connections and their 5.8 Parallel operation of singleworking of Applications. Auto phase and three-phase Transformer transformers. **SO5.7** To Study the Parallel 5.9 Autotransformers -Operation of construction, principle, Transformers. applications and comparison with two SO5.8 To Understand the winding transformer. Excitation phenomenon 5.10 Magnetizing current, effect and harmonics in of nonlinear B-H curve of transformers with B-H magnetic core material, curve. harmonics in magnetization current 5.11 Phase conversion - Scott **SO5.9** To Study the Three Winding Transformers connection, three-phase to and transformer cooling. six-phase conversion 5.12 Tap-changing transformers - No-load and on-load tapchanging of transformers, Three-winding transformers, Cooling of transformers.

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Numerical Problems on Transformer Equation and O.C. & S.C. Test.

b. Mini Project:

ii. Evaluate the Phasor Diagram of the Transformer at different Loads.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours Suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE 203.1: Understand the concepts of Principles of different Magnetic fields and magnetic circuits.	08	02	2	1	13
EE 203.2: Understand the Concept of electromagnetic torque and force.	07	04	2	1	14
EE 203.3: Understand the Construction and working of dc machines with their starting and speed control methods.	09	02	1	1	13
EE 203.4: Understand the construction and working of dc motor with various test performed on dc machine.	09	12	1	1	23
EE 203.5: To Study the Transformers.	12	10	1	1	24
Total Hours	45	30	07	5	87

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Lin:4 Tidles	M	Marks Distribution					
CO	Unit Titles	R	U	Α	Marks			
CO-1	Magnetic fields and magnetic circuits	03	01	01	05			
CO-2	Electromagnetic torque and force	01	02	02	05			
CO-3	DC Machines	02	07	06	15			
CO-4	DC Machine – generation and motoring	03	07	05	15			
CO-5	Transformers	03	03	04	10			
	Total	12	20	18	50			

Legend: R: Remember, U: Understand, A: Apply The end-of-semester assessment for Process calculation will be held with the written examination of 50 marks.

Note. Detailed Assessment rubrics need to be prepared by the course-wise teachers for the above tasks. Teachers can also design different tasks as per requirement, for end-semester assessment.

Suggested Instructional/Implementation Strategies:

1. Improved Lecture

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to the electrical power plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books :

S. No.	Title	Author	Publisher	Edition & Year
1	Electrical Machines	I.J. Nagrath & D.P. Kothari	Tata McGraw- Hill	Fourth-2018
2	Electrical Machines	Husain Ashfaq	Dhanpat Rai & Sons	Third-2016
3	Electrical Machinery	P.S. Bimbhra	Khanna Publisher	Seventh-2011
4	Electric Machinery	A.E. Fitzgerald, C. Kingsley Jr, and Umans	McGraw-Hill	Sixth-2002
5	Electric Machine and Transformers	Irving L., Kosow	Prentice Hall of India	Second-1991
6	The Performance and Design of AC machines	M.G. Say	Pitman & Sons	First-2005
7	Dept. of	Lecture note provided Electrical Engineering, AK	•	

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE203

Course Title: ELECTRIC MACHINE 1

		Program Outcomes												Program Specific Outcome	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	
Course Outcomes	Engi neer ing Kno wled ge	Pro ble m Solv ing	Desi gn Skill s	Lab orat ory Skill s	Tea mwo rk	Com mun icati on Skill s	Ethi cal and Prof essio nal Beh avio r	Lifel ong Lear ning	Glo bal and Soci etal Imp act	Proje ct Mana geme nt	Adap tabili ty	Profe ssion al Devel opme nt	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.	
CO1: Understand the concepts of magnetic circuits.	3	2	3	2	2	2	1	1	2	1	1	2	2	2	
CO 2: Understand the phenomenon of electromagnetic force and torque	1	2	3	2	1	2	1	1	2	1	1	3	3	2	
CO3: Understand the operation of DC machines.	3	3	2	1	1	2	2	2	1	1	2	3	1	2	
CO 4: Analyze the differences in the operation of different DC machine configurations.	3	2	2	2	3	2	1	3	2	1	2	2	3	3	
CO 5: Analyze single-phase and three-phase transformer circuits.	3	2	3	1	1	3	2	3	1	2	2	2	3	3	

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning(SL)
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2, 3, 4	CO-1: Understand the concepts of magnetic circuits.	SO1.1,SO1.2,SO1.3 SO1.4, SO1.5	1	Unit-1: Magnetic fields and magnetic circuits. 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2, 3, 4	CO-2: Understand the phenomenon of electromagnetic force and torque	SO2.1, SO2.2, SO2.3 SO2.4, SO2.5	1, 2	Unit-2: Electromagnetic force and torque. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2, 3, 4	CO-3: Understand the operation of DC machines.	SO3.1,SO3.2 SO3.3, SO3.4 SO3.5	1	Unit-3: DC Machines 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2, 3, 4	CO-4: Analyze the differences in the operation of different DC machine configurations.	SO4.1,SO4.2, SO4.3SO4.4, SO4.5, SO4.6 SO4.7	1, 2, 3,4,5,6	Unit-4: D.C. Machines – motoring and generation 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2, 3, 4	CO-5: Analyze single-phase and three-phase transformer circuits.	SO5.SO5.2SO5.3 SO5.4SO5.5 SO5.6 SO5.7 SO5.8 SO5.8 SO5.9	1, 2, 3,4,5	Unit 5: Transformers 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10, 5.11, 5.12	1

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-III

Course Code:	BSC 206
Course Title :	Mathematics III
Pre- requisite:	Students should review the fundamentals of calculus, linear algebra, and differential equations, and matrix operations
Rationale:	The program aims to develop advanced problem-solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced mathematical expertise.
Course Outcome :	

- **BSC 206.1** By the end of the course students are expected to have deep understanding in complex analysis with a focus on Cauchy-Riemann equations, analytic functions, harmonic functions, and conformal mappings.
- **BSC 206.2** By the end of the course students are expected to understand the concept of a contour integralin the complex plane, concept of zeros of analytic functions and behavior of functions near essential singularities.
- **BSC 206.3** The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course in elementary probability theory and random variables.
- **BSC 206.4** The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering measures of central tendency and measures of dispersion.
- **BSC 206.5-** The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering correlation and regression, rank correlation, curve fitting, and various tests of significance.

Scheme of Studies:

Cours	Course Code	Course Title	Scheme of studies (Hours/Week)			Total Credit		
e Categ ory	Coue		Cl	LI	SW SL Total Study Hours (CI+LI+SW+SL)			s (C)
BSC	BSC 206	Mathematics III	4	0	1	1	6	4

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

(Revised as on 01 August 2023)

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self-Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Cours e Course e Cod ory e Course Title		Scheme of Assessment (Marks)								
		Progressive Assessment (PRA)				End	Tot			
		Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Sem inar one (SA)	Class Activi ty any one (CAT)	Class Atten dance (AT)	Total Marks (CA+CT +SA +CAT+ AT)	Semest er Assess ment (ESA)	al Ma rks (PR A+ ES A)	
BSC	BSC 206	Mathematic s III	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

BSC206.1: By the end of the course students are expected to have deep understanding in complex analysis with a focus on Cauchy-Riemann equations, analytic functions, harmonic functions, and conformal mappings

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning (SL)
(508)	(LI)	(CI)	(51)
SO1.1		Unit-1.0	1
Understand and state the		Complex Variable :	Apply the Cauchy-
Cauchy-Riemann		1.1Definition of Analytic function	Riemann equations to
equations for a complex- valued function		1.2 Cauchy-Riemann equations in	verify the analyticity of a given function.
SO1.2	-	Cartesian form and polar form 1.3 Questions of Analytic function	2
Determine the real and		based on Cartesian form	Explore the properties of
imaginary parts of a		1.4 Questions of Analytic function	trigonometric functions
complex function and		based on polar form	in the context of complex
check for analyticity		1.5 Harmonic function and	analysis
using the Cauchy-		orthogonal functions	3
Riemann equations SO1.3		1.6 Conjugate Method for	Define logarithmic
Identify and define		construction of an analytic	functions and explore their behavior in the
analytic functions in the		function 1.7 Milne's method for	complex plane
complex plane		construction of an analytic	complex plane
SO1.5		function	
Understand the concept		1.8 Totorial- 1	
of Represent functions as		1.9 Conformal mappings,	
Taylor and Laurent		1.10 questions of Conformal	
series; classify		mappings	
singularities and poles; find residues and		1.11 Mobius transformations	
evaluate complex		1.12 properties of Mobius	
integrals using the		transformations	
residue theorem.			

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. write the application of complex function.
- ii. Properties of Complex Variable.
- iii. Write all formula of complete unit.

b. Other Activities (Specify):

Quiz, Class Test.

BSC206.2: By the end of the course students are expected to understand the concept of a contour integral in the complex plane, concept of zeros of analytic functions and behavior of functions near essential singularities.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
 SO2.1 Understand the concept of a contour integral in the complex plane. SO2.2 Evaluate contour integrals using parametrization and integration techniques. 		Unit-2.0 Complex Variable (Integration). 2.1 Cauchy's integral formula for analytic function	 1 Apply contour integrals to evaluate complex integrals. 2 Compute Taylor series expansions for given functions

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO2.3	2.2 Questions of Cauchy's	3
Apply contour integrals	integral formula for	Define residues of
to evaluate complex	simple poles.	complex functions and
integrals.	2.3 2Questions of	understand their
SO2.4	Cauchy's integral	significance
State and understand the	formula for order poles.	Significance
Cauchy Integral formula	2.4 Residues of an	
for analytic functions	analytic function	
SO2.5	2.5 Questions of	
Apply the Cauchy	Residues for simple poles	
	2.6 5 Questions of	
Integral formula to	-	
calculate values of	Residues for order poles	
analytic functions	2.7 Residue theorem and	
	based questions	
	2.8 Poles and	
	singularities of analytic	
	function	
	2.9 Zeros of analytic	
	function	
	2.10 questions of	
	Singularity.	
	2.11 tutorial 1	
	2.12 tutorial 2	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. write a short notes on singularities.
- ii. Define poles and zeros with example.

b. Mini Project:

Oral presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

BSC202.3: The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course in elementary probability theory and random variables

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1 Understand the fundamental concepts of probability theory SO3.2 Develop an appreciation for the role of probability in modeling uncertainty and randomness SO3.3 Define probability using a mathematical framework SO3.4 Understand probability axioms and laws governing probability measures SO3.5 Classify events as mutually exclusive, exhaustive, dependent, or independent		Unit-3.0 Probability and Random Variable 3.1 definition of probability 3.2 Mathematical definition of probability 3.3 Various types of events 3.4 Additive law of probability 3.5 Multiplicative law of probability 3.6 Compound probability 3.7 Conditional probability 3.8 Bays rule of probability 3.9 Discrete random variable 3.10 Continuous random variable 3.11 Binomial distribution 3.12 Poisson distribution	 Analyze compound probability involving multiple events Define and understand conditional probability Define and understand the concept of a random variable

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Define probability using a mathematical framework.
- ii. write the application of probability in daily life.

b. Mini Project:

Oral presentation, Power Point Presentation.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

BSC202.4: Students will compute the expression of permutation groups by using permutation multiplication. Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 Define arithmetic mean and understand its significance SO4.2 Compute the arithmetic mean for both grouped and ungrouped data SO4.3 Apply different methods (direct method, assumed mean method) for calculating the arithmetic mean. SO4.4 Understand the properties of the arithmetic mean, including its sensitivity to extreme values SO4.5 Define the median and understand its interpretation		Unit-4.0 Measures of Central Tendency 4.1 methods of calculating Arithmetic mean 4.2 methods of calculating median 4.3 properties of mean and median 4.4 numericals of mean for different data 4.5 4 numericals of median for different data 4.6 methods of calculating mode 4.8 relation based question of mean median and mode 4.9 Measures of dispersion	1 Define mode and recognize its applications 2 Understand the concept of unimodal, bimodal, and multimodal distributions 3 Explore the relationships and patterns among the mean, median, and mode

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

4.10 Range 4.11 quartile deviation 4.12 standard deviation and	
its properties	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. write the application of mean median and mode .
- ii. Explain mean with real life example.

b. Other Activities (Specify):

Quiz, Class Test.

BSC202.5: The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering correlation and regression, rank correlation, curve fitting, and various tests of significance.

Item	AppX Hrs			
Cl	12			
LI	0			
SW	1			
SL	1			
Total	14			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)		
SO5.1Define correlation and understand its significance in statistical analysis.SO5.2Recognize the types of relationships between variables (positive, negative, or none) based on correlation SO5.3		 Unit-5.0 5.1 Defination of Correlation 5.2 formula of correlation coefficient 5.3 Questions of correlation coefficient 5.4 Defination of regrattion 5.5 question of line of regrattion 5.6 rank correlation 	1Defineregressionanalysisand understanditspurpose in modelingrelationshipsbetweenvariables22Apply the method of leastsquarestofitstraightlines,second-degree		

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Calculate and interpret Pearson's correlation coefficient. SO5.4 Define and calculate rank correlation coefficients SO5.5 Understand the use of rank correlation in cases where variables may not have a linear relationship	 5.7 fitting of a straight line 5.7 fitting of a second degree parabola 5.8 fitting of different curves 5.9 Tutorial-1 5.10 Test of significance for large sample 5.11 Test of significance for small sample 5.12 Tutorial-2 	parabolas, and more general curves to datasets 3 Test the difference between two proportions
--	---	---

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learnin g (Sl)	Total hour (Cl+SW+S l)
CO1-202.1				
By the end of the course students are expected to have	12	1	1	1.4
deep understanding in complex analysis with a focus on Cauchy-Riemann equations, analytic functions,	12	1	1	14
harmonic functions, and conformal mappings.				
CO1-202.2				
By the end of the course students are expected				
to understand the concept of a contour integral	12	1		
in the complex plane, concept of zeros of			1	14
analytic functions and behavior of functions				
near essential singularities.				
CO1-202.3				
The course provide a comprehensive overview of the				
skills and understanding that students are expected to	12	1	1	14
gain from a course in elementary probability theory				
and random variables.				
CO1-202.4				
The course provide a comprehensive overview of the				
skills and understanding that students are expected to	12	1	1	14
gain from a course covering measures of central				
tendency and measures of dispersion				
CO1-202.5				
The course provide a comprehensive overview	12	1	1	14
of the skills and understanding that students are				

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

expected to gain from a course covering correlation and regression, rank correlation, curve fitting, and various tests of significance.				
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marks	Total		
		R	U	Α	Marks
CO-1	Complex Variable – Differentiation	03	01	01	05
CO-2	Complex Variable – Integration	02	05	01	08
CO-3	Probability and Random Variable	03	05	05	13
CO-4	Measures of Central Tendency and Measures of Dispersion	02	08	05	15
CO-5	Statistics	03	04	02	05
	Total	13	23	14	50

Legend: R: Remember, U: Understand, A: Apply

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6. Seminar
- 7. Workshop

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

a) Books :

S. No.	Title	Title Author Publisher				
1	Engineering Mathematics-	D. K. Jain.	Shree Ram	1st edition,		
2	III	Engineering	Prakashan.	2018		
3	Engineering Mathematics- III	D.C.Agrawal	S Chand Prakashan.	2022		
4	Introduction to Engineering Engineering Mathematics-III	H.K.Dass Sonendra Gupta	Dhanpat Rai Publishing	2nd edition, 2014		

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

COs,POs and PSOs Mapping

Course Title: B. Tech. Electrical Engineering Course Code: BSC 206 Course Title: MATHEMATICS-III

	Program Outcomes									Program Specific Outcome				
Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
	Engine ering knowle dge	Probl em Solvi ng	Design Skills	Labor atory Skills	Team work	Comm unicati on Skills	Ethical and Profess ional Behavi or	Lifelon g Learnin g	Globa 1 and Societ al Impac t	Project Manage ment	Adapta bility	Professiona l Developme nt	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Understand the importance of algebraic properties with regard to working within various number systems.	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO2: Students will determine whether a given binary operation on the given set gives a group structure by applying the axioms.	3	3	3	3	1	2	1	3	2	2	2	3	3	2
CO3:Students will be able to describe all elements in a cyclic subgroup by using generators.	3	2	3	2	2	1	2	2	2	2	2	3	3	2
CO4-Students will compute the expression of permutation groups by using permutation multiplication.	3	3	2	2	2	2	2	3	2	2	2	2	2	3
CO5- Students will create the concept of a group action to real life problems such as Counting.	3	3 Ligh	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO1-By the end of the course students are expected to have deep understanding in complex analysis with a focus on Cauchy- Riemann equations, analytic functions, harmonic functions, and conformal mappings	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1 Complex Variable (Differentiation) 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1. 8,1.9,1.10,1.11,1.12	1,2,3
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO2-By the end of the course students are expected to understand the concept of a contour integral in the complex plane, concept of zeros of analytic functions and behavior of functions near essential singularities	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-2 Complex Variable – (Integration) 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10 2.11,2.12	1,2,3
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO3-The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course in elementary probability theory and random variables.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-3 Probability and Random 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3. 8,3.9,3.10,3.11,3.12	1,2,3
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2,	CO4-The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering measures of central tendency and measures of dispersion	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-4 Measures of Central Tendency and Measures of Dispersion 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4. 8,4.9,4.10,4.11,4.12	1,2,3
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2,	CO5-202. The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering correlation and regression, rank correlation, curve fitting, and various tests of significance	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-5 Statistics 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5. 8,5.9,5.10,5.11,5.12	1,2,3

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-III

Course Code:	ESC 207
Course Title: Pre- requisite:	Engineering Mechanics Student should have basic knowledge of mathematics and Physics up to higher secondary level.
Rationale:	As a bridge between theory and application, engineering mechanics is used to formulate new ideas and theories, discover and interpret phenomena and develop experimental and computational tools.

Course Outcomes:

ESC 207.1: Understanding of term Mechanics and its classification.

ESC 207.2: Understanding Resolution and composition of force acting on the rigid body.

ESC 207.3: Compute the resultant of force for different system of force and study of different laws related to different force system.

ESC 207.4: compute the different types of load acting on different types of beam.

ESC 207.5: Compute the centroid, second moment of area, center of gravity, moment of inertia and mass moment of inertia.

Scheme of Studies:

Course Categor y	Course Code	Course Title	Cl	LI	S W	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C)
Program Core (PCC)	ESC 207	Engineering Mechanics	3	2	1	1	7	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial

(T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Practical

			Scheme of Assessment (Marks)					
Cours	Couse	CourseTitle	Progressive Assessment (PRA)				End Somest	Total Mar
e Categ ory	Code	Course The	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)
ESC	ESC 207- L	Engineering Mechanics	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC 207.1: Understanding of term Mechanics and its classification.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	AppX Hrs
Cl	9
LI	4
S W	2
SL	2
Total	17

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction	Self Learning
	(LI)	(CI)	(SL)
SO1.1 Understanding of	1.1 Introduction to	Unit-1.0 Introduction	4. Numerical
basic knowledge of term	laboratory	to Mechanics	problem related
Mechanics.	1.2 Introduction to		to classification
SO1.2 Understanding how	Tools and	1.1 Introduction of term	of mechanics
objects move when forces	Equipments	mechanics	5. Numerical
are applied to them.		1.2 classification of	problem related
Newton's laws lay the		mechanics	to basic laws
foundation for		1.3 static and dynamics	
comprehending how forces			
interact with objects to		1.4 classification of	
cause motion.		dynamics	
SO1.3 Describing motion		1.5 kinetic and kinematic	
without considering its		1.6 fundamental laws of	
causes. This includes		mechanics	
concepts like velocity,		1.7 Gravitational law	
acceleration, displacement,		1.8 Newton Laws	
and time.		1.9 Numerical	
SO1.4 Understanding the			
causes of motion, mainly			
through the study of forces.			
This involves concepts like			
friction, tension,			
gravitational forces, and			
how they affect objects.			

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Explain Newton 2^{nd} law of motion and its application
 - ii. Write the definition of basic term related to static and dynamic

ESC 207.2: Resolution and composition of force acting on the rigid body..

Item	AppX Hrs
Cl	8
LI	12
SW	0
SL	1
Total	21

	Laboratory	Class room	Self
Session Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
SO2.1 Ability to break	2.1 Introduction to Laws	Unit-2.0 Resolution	1. Numericals of
down a single force	of forces	and Composition of	resolution of
into its horizontal and	2.2 Verification of	Forces	forces
vertical components.	Parallelogram law of		2. Numerical
This involves	forces	2.1 Forces and its type,	problem of
understanding	2.3 Verification of	Pressure and Stress	Law of
trigonometric concepts	Triangle law of forces	2.2 Concept of	Parallelogra
like sine and cosine	2.4 Verification of	free body diagram	m of Forces
functions to determine	Polygon law of forces	2.3 Characteristics and	
the components of a	2.5 Introduction to Lami's	Effects of a Force,	
force along different	theorem	System of Forces,	
axes.	2.6 To verify the lami's	Resolution of a Force	
	theorem	2.4 Composition of	
SO2.2 Ability to		Forces, Resultant /	
determine the resultant		Equilibrant	
of multiple forces		Force, Law of	
acting on an object.		Parallelogram of	
This includes finding		Forces,	
the net force and		2.5 Law of Triangle of	
direction when multiple		Forces, Polygon Law of	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

forman and applied	 Eanaga Lami'a	
forces are applied	Forces, Lami's	
simultaneously.	Theorem	
SO2.3 Applying these	2.6 Equilibrium of a	
concepts to real-world	Body Under Two /	
scenarios, such as	Three/More Than Three	
analyzing the forces	Forces	
acting on structures,	2.7. Law of	
machines, or systems.	Superposition	
This could involve	of Forces.	
calculating the forces	2.8 Practice class	
involved in bridges,		
buildings, or		
mechanical devices		
SO2.4 Understanding		
how to add multiple		
vectors together using		
the Polygon Law. This		
involves arranging		
vectors head-to-tail to		
form a closed polygon, where the resultant		
vector is the vector		
closing the polygon		
from the starting point		
to the end point.		

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Derivation of lamis theorem and its numerical problem
- ii. Derivation of Parallelogram and its numerical

ESC 207.3: Apply computer aided drafting techniques to represent line, surface or solid models in different Engineering viewpoints.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Item	AppX Hrs
Cl	8
LI	4
SW	2
SL	2
Total	16

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO3.1 Calculating the resultant force by summing up all the individual forces acting on an object. The resultant force represents the net effect of all forces combined. SO3.2 Identifying the point where the resultant force is applied on the object or structure. This may involve finding the moment or torque caused by the forces and locating the resultant force's line of action. SO3.3 Checking whether the system of forces is in equilibrium. If the resultant force is zero, the system is in equilibrium; otherwise, the object or structure will experience acceleration or movement in the direction of the resultant force. 	 3.1 Introduction to moment and couple 3.2 To verify the principle of moment using by bell crank lever 	Unit-3.0 System of forces 3.1 Introduction of system of forces, Moment of a force 3.2 Varignon'sTheorem 3.3 Resultant of Parallel Forces, Moment of a Couple 3.4 Resolution of Force into a Couple 3.5 Resultant of Coplanar, Non Con-Current Forces 3.6 Numericals on Moment and Couple 3.7 Numericals on system of forces 3.8 Practice class	 Explanatio n of nature of moment and its types Numericals on resultant force

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW): a. Assignments:

- i. Classify system of forces.
- ii. Explain the concept of couple

ESC 207.4: Compute the different types of load acting on different types of beam. Approximate Hours

Item	AppX Hrs	
Cl	10	
LI	4	
SW	2	
SL	2	
Total	18	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 Calculating the forces and moments at support points. This includes determining the vertical and horizontal reactions, as well as any moments generated at these locations due to applied loads. SO4.2 Supported at both ends and can carry loads between the supports. They experience maximum bending moment at the center and zero shear at the ends.	4.1 Introduction to Trusses 4.2 To calculate the forces in members of simple roof truss and find the percentage error between the observed and calculated values	Unit-4.0 Beams and Trusses 4.1 define beam and its type 4.2 Simply Supported Beam, Overhanging Beam, Cantilever Beam 4.3 Simply Supported Beam, Overhanging Beam, Cantilever Beam 4.4 concept of load, Load on the Beam or Frame 4.5 Load on the Beam or Frame, Calculation of support reaction and its type 4.6 Support reaction calculation in cantilever beam 4.7 Support reaction calculation in simple supported beam, Concept of truss	 Numerical problem of support reaction calculation in cantilever beam and simply supported beam. Numerical problem of truss analysis by joint method.

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO4.3 Fixed at one	4.8 Analysis of truss by	
end and free at the	analytical method (Joint method)	
other. They carry	4.9 Analysis of truss by	
loads at the free end	analytical method (Section	
and experience	method)	
maximum shear at	4.10 Practice class	
the fixed end.		
SO 4.4 Assemblies of		
beams connected by		
joints, commonly used		
in bridges and roofs.		
They rely on the		
framework of triangles		
to distributeloads		
efficiently.		

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Classify Beams and Load acting on it.
- ii. Explain types of truss.

ESC 207.5: Compute the centroid, second moment of area, center of gravity, moment of inertia and mass moment of inertia.

Approximate Hours

Item	AppX Hrs
Cl	10
LI	6
SW	1
SL	2
Total	19

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Pavised as on 01 August 2023)

(Revised as on 01 August 2023)

Session	Laboratory	Class room	Self
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
SO5.1 Determining the point where the entire weight of an object or system appears to act. SO5.2 Quantifying an object's resistance to rotational motion around a specific axis.	5.1 Introduction to Moment of inertia 5.2 To determine the moment of inertia of a flywheel about its own axis of rotation 5.3 Viva practice	Unit-5.0 Center of gravity and moment of inertia 5.1 Concept of Centroid, Centre of Gravity. 5.2 Difference between Centroid, Centre of Gravity 5.3 Centroid of Trianle, I section, angle section and channel section 5.4 Theorems of Moment of Inertia 5.5 Radius of Gyration 5.6 Polar Moment of Inertia of Standard Sections 5.7 Moment of Inertia of Composite Section, Principal Moment of Inertia 5.8 Concept of mass moment of inertia 5.9 Mass moment of inertia of basic solid figures. 5.10 Practice class	 Numerical problem related to center of gravity Numerical of MI of T section Numerical of I section.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Find the CG and MI of Circle, semicircle and Rectangle and Triangle.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lectur e (Cl)	Lab Lecture (LI)	Sessional Work (SW)	Self Lea rnin g (Sl)	Total hour (Cl+LI+SW +SI)
ESC 207.1: Understanding of termMechanics and its classification	9	4	2	2	17
ESC 207.2: Understanding Resolution and composition of force acting on therigid body.	8	12	0	1	21
ESC 207.3: Compute the resultant offorce or different system of force and study of different laws related to different force System.	8	4	2	2	16
ESC 207.4: compute the different typesof load acting on a different types of beam.	10	4	2	2	18
ESC 207.5: Compute the centroid, second moment of area, center of gravity,moment of inertia and mass moment of inertia	10	6	1	2	19
Total Hours	45	30	7	9	91

AKSUniversity

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

CO	Unit	Μ	Marks Distribution					
	Titles	R	U	А	Mark s			
CO-1	1: Understanding of term Mechanics and its classification	03	01	01	05			
CO-2	2: Understanding Resolution and composition of force acting on the rigid body.	02	06	02	10			
CO-3	3: Compute the resultant of force for different system of force and study of different laws related to Different force system.	03	07	05	15			
CO-4	4: compute the different types of load acting on different types of beam.	0	10	05	15			
CO-5	5: Compute the centroid, second moment of area, center of gravity, moment of inertia and mass moment of inertia	03	02	0	05			
	Tota 1	11	26	13	50			

Legend:

R: Remember, U: Understand,

A: Apply

The end of semester assessment for Engineering Graphics & Design will be held withwritten examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a) Books :

S. No.	Title	Author	Publisher	Edition & Year					
1	Engineering Mechanics	Dr.R.K bansal	Laxmi Publicatio n(p) ltd.	4rth and 2016					
2	Engineering mechanics	R.K Rajpoot	Laxmi Publication(p) ltd.	3 rd and 2016					
3	Engineering Mechanics: Statics & Dynamics	Russell C. Hibbeler	Pearson	14th Edition, 2015					
4	Engineering Mechanics	Timoshenko, and Young	ТМН	5 th 2017					
5	Training Manual								
6	Dept. of Mee	Lecture note provided by Dept. of Mechanical Engineering, AKS University, Satna.							

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey , Assistant Professor , Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: ESC 207

Course Title: Engineering Mechanics

					P	rogran	1 Outco	mes					Program Spe	cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcome	Engin eering knowl edge	Proble m Solving	Design Skills	Labor atory Skills	Team work	Commu nication Skills	Ethical and Professi onal Behavio r	Lifelo ng Learni ng	Global and Societal Impact	Project Manage ment	Adaptabi lity	Professi onal Develop ment	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Understanding of term														
Mechanics and its classification	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO2: Understanding Resolution and composition of force acting on the rigid body.	3	3	2	3	1	2	1	3	2	2	2	3	3	2
CO3: Compute the resultant of force for different system of force and study of different laws related to Different force system.	3	2	3	2	2	1	2	2	2	2	2	3	3	2
CO4: compute the different types of load acting on a different types of beam.	3	3	3	2	2	2	1	3	2	2	2	2	2	3
CO5: Compute the centroid, second moment of area, center of gravity, moment of inertia and mass moment of inertia	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO1: Understanding of term Mechanics and its classification	SO1.1 SO1.2 SO1.3 SO1.4	1,2	Unit-1.0 Introduction to Mechanics 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1. 8,1.9	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO2: Understanding Resolution and composition of force acting on the rigid body.	SO2.1 SO2.2 SO2.3 SO2.4	1, 2, 3, 4, 5, 6	Unit-2.0 Resolution and Composition of Forces 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO3: Compute the resultant of force for different system of force and study of different laws related to Different force system.	SO 3.1 SO 3.2 SO 3.3	1,2	Unit-3.0 System of forces 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3. 8	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2,	CO4: compute the different types of load acting on a different types of beam.SO4.1 SO4.2 SO4.3 SO4.4		Unit-4.0 Beams and Trusses 4.1,4.2,4.3,4.4,4.5,4.6,4.7 ,4.8,4.9,4.10	1,2	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2,	CO5: Compute the centroid, second moment of area, center of gravity, moment of inertia and mass moment of inertia	SO5.1 SO5.2	1,2,3	Unit-5.0 Center of gravity and moment of inertia 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5. 8,5.9,5.10	1,2,3

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester III

Course Code:	HSMC10
Course Title:	Universal Human Values
Pre-requisite:	Creating awareness among the students on a holistic perspective about life.
Rationale:	The purpose is to help develop a holistic perspective about life. A self-reflective methodology of teaching is adopted. It opens the space for the student to explore his/her role (value) in all aspects of living – as an individual, as a member of a family, as a part of the society and as an unit in nature. Through this process of self-exploration, students are able to discover the values intrinsic in them.
a a (

Course Outcomes:

HSMC10.1 To understanding Value Education

HSMC10.2 Students will have the ability to learn about Harmony in the Human Being.

HSMC10.3 Student will be able to gain knowledge on Harmony in the Family and Society.

HSMC10.4Understanding Harmony in the Nature/Existence.

HSMC10.5 Student will able to understand about Implications of Holistic Understanding-A Look at Professional Ethics.

Scheme of Studies:

Course	Course	Course		Total				
	Code	Title	CI	CI LI SW		SL	Total Hours	Credits
Category	Code line CI LI Sw	3 W	SL	(CI+LI+SW+SL)	(C)			
HSMC	HSMC10	Universal Human Values	3	0	0	1	4	0

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW: Sessional Work (includes assignment, seminar, mini project etc.),SL: Self-Learning,C: Credits.

Note: Proposed examination scheme (Marking) as per the recommendation of University Grant Commission (UGC) for Under Graduate Courses in Fundamentals of Universal Human Values 2022-23 onwards SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

				Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)						int	A)	
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Seminar one(TSN)	Class Activity any one (TCA)	Class Attendance (TA)	Total Mark (HA+CT+TSN+TCA+	End Semester Assessment (ESA)	Total Marks (PRA+ESA)	
HSM C	HSMC 10	Universal Human Value	15	20	5	5	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

HSMC10.1: To understanding Value Education

Approximate Hours

Item	Appx.Hrs
CI	9
LI	0
SW	0
SL	2
Total	11

Session Outcomes	Laborator	Classroom Instruction	SelfLear
(SOs)	У	(CI)	ning
	Instruction		(SL)
	(LI)		
SO1.1. Understand		Unit -1Understanding Value	SL.1
Self- exploration as the		Education	Human values
Process for Value		1.1 Self-exploration as the Process	to become a
Education		for Value Education	good man
SO 1.2. Understand		1.2 Continuous Happiness and	
Continuous Happiness		Prosperity – the Basic Human	SL2.
and Prosperity – the		Aspirations	Identify Core
Basic Human		1.3 Recognizing and articulating	Human Values
Aspirations		fundamental human values	
SO 1.3. Understand		1.4 Right Understanding	
Right Understanding		1.5 Relationship and Physical	
SO1.4. Understand		Facility	
Relationship and		1.6 Happiness and Prosperity –	
Physical Facility		Current Scenario	
SO 1.5. Understand		1.7 Method to Fulfill the Basic	
Happiness and		Human Aspirations	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Prosperity – Current	1.8 Connect values education to
Scenario	community service
	1.9 Understanding of values
	through various assessment
	methods

SW-1SuggestedSessionalWork (SW):

- a. Assignments:
 - i. Continuous Happiness and Prosperity-the Basic Human Aspirations
- b. Mini Project:
 - i. Relationship and Physical Facility
- c. Other Activities(Specify):

.i. Quiz, Class Test.

HSMC10.2: Students will have the ability to apply the gained knowledge on Harmony in the Human Being

Approximate Hours

Item	Appx Hrs
CI	9
LI	0
SW	0
SL	2
Total	11

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session	Laboratory	Classroom Instruction	Self-	
Outcomes	Instruction	(CI)	Learning	
(SOs)	(LI)		(SL)	
SO2.1. Understanding		Unit-2: Harmony in the		
Human being as the		Human Being		
Co-existence of the				
Self and the Body		2.1 Module-II Harmony		
		in the Human Being		
SO2.2.Understand the		2.2 Human being as the		
Distinguishing		Co- existence of the	SL.1	
between the Needs of		Self and the Body	Harmony in and	
the Self and Body		2.3 Distinguishing	among human	
		between the Needs of	being	
SO 2.3.Understand the		the Self and Body		
Body as an Instrument		2.4 Body as an		
of the Self		Instrument of the Self	SL.2	
		2.5 Harmony in the Self	Mindfulness and	
SO 2.4.Understanding		2.6 Harmony of the Self	Self-Awareness	
Harmony in the Self		with the Body		
		2.7 Programme to ensure		
SO 2.5. Understanding		self- regulation and		
Harmony of the Self		Health		
with the Body		2.8 Explore techniques		
		for improving		
		concentration and		
		mental clarity		
		2.9 Discuss the impact of		
		positive emotions and		
		strategies		

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

Assignments:

Harmony in the self

Mini Project:

Body an instrument

Other Activities (Specify):

Quiz, Class Test.

HSMC10.3: Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem

Approximate Hours

Item	Appx.Hrs
CI	09
LI 0	
SW	0
SL	2
Total	11

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning	
(SOs)	Instruction (LI)	(CI)	(SL)	
SO3.1. Understand		Unit-3: Harmony in the	SL.1	
Harmony in the Family		Family and Society	Harmony in the	
- the Basic Unit of		3.1 Harmony in the Family –	society	
Human Interaction	-	the Basic Unit of Human		
		Interaction	SL.2	
SO3.2. Understand the		3.2 Values in Human-to-	Reflect on Social	
Values in Human-to-		Human Relationship	Responsibilities	
Human Relationship		3.3 'Trust' – the		

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SO3.3. Understand the	3.4 Foundational Value in	
'Trust' – the	Relationship	
Foundational Value in Relationship	 3.5 'Respect' – as the Right Evaluation 3.6 Understanding Harmony 	
SO3.4. Understand the 'Respect' – as the Right Evaluation SO3.5. Understanding Harmony in the Society	 in the Society 3.7 Vision for the Universal Human Order 3.8 Role of Empathy and Understanding 3.9 Conflict Resolution Skills 	

SW-2SuggestedSessionalWork (SW):

a. Assignments:

1. Respect the right evaluation

b. Mini Project:

1. Trust is the fundamental value of relationships

c. Other Activities (Specify):

Quiz, Class Test.

HSMC10.4: Student will be able to understand Harmony in the Nature/Existence

Approximate Hours

Item	Appx.Hrs
CI	9
LI	0
SW	0
SL	2
Total	11

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning	
(SOs)	Instruction (LI)	(CI)	(SL)	
		Unit-4: Harmony in the	SL.1	
SO4.1.		Nature/Existence	Harmony in the	
Understanding		4.1 Harmony in the	nature	
Harmony in the		Nature,		
Nature,		Interconnectedness	SL.2	
Interconnectedness		4.2 Self-regulation and	Study	
		Mutual Fulfillment	Ecological	
SO4.2. Understand		among 4 orders of	Principles.	
self-regulation and		Nature		
Mutual Fulfillment		4.3 Exploring Four Orders		
among 4 orders of		of Nature		
Nature		4.4 Realizing Existence as		
		Co-existence at All		
SO 4.3. Understand		Levels		
the Exploring Four		4.5 The holistic		
Orders of Nature		Perceptions of		
		Harmony in Existence		
SO 4.4. Understand		4.6 The Exploring Co-		
the Realizing		Existence in Existence		
Existence as Co-		4.7 Introduce		
existence at All Levels		environmental ethics		
		principles		
SO 4.5. Understand		4.8 Study different		
the holistic		ecosystems		
Perceptions of		4.9 Address the challenges		
Harmony in Existence		posed by climate		
		change and human		
		activities on natural		
		harmony		

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-4 SW-2SuggestedSessionalWork (SW):

a. Assignments:

i. Harmony in nature

b. Mini Project:

i. Exploring4 orders of nature

c. Other Activities (Specify): Quiz, Class Test.

HSMC10.5: Students will have the ability to apply the gained knowledge in Implications of Holistic Understanding- A Look at Professional Ethics.

Approximate Hours

T4	
Item	Appx. Hrs
CI	9
LI	0
SW	0
SL	2
Total	11

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning	
(SOs)	Instruction	(CI)	(SL)	
	(LI)			
SO5.1. Understand		Unit 5 Implications of	SL.1	
Natural acceptance of		Holistic Understanding- A	Holistic	
Human Values		Look at Professional Ethics	understanding of	
		5.1 Introduce the concept of	human values	
SO5.2 Understand		professional ethics		
Definitiveness of		5.2 Natural acceptance of	SL.2	
(Ethical) Human		Human Values	Read case studies	
Conduct			and real-life	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

	5.3	Definitiveness	of	examples	from
SO5.3. Understand A		(Ethical)	Human	various	
Basis for Humanistic		Conduct		profession	
Education	5.4	A Basis for Hu	manistic		
		Education			
SO5.4. Understand	5.5	Humanistic			
the Humanistic		Constitution	and		
Constitution and		Universal Hum	an Order		
Universal Human	5.6	Competence	in		
Order		Professional Et	hics		
	5.7	Strategies for T	ransition		
SO 5.5. Understand		towards value	e based		
Competence in		Life and Profes	sion		
Professional Ethics	5.8	Explore major	ethical		
		theories			
	5.9	Analyze case s	tudies to		
		illustrate	ethical		
		decision-makin	g using		
		different frame	works		

SW-5 Suggested Sessional Work(SW):

a. Assignments:

i. Human conduct

b. Mini Project:

i. Humanistic constitution

c. Other Activities (Specify):

Quiz, Class Test.

i. Humanistic constitution

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (SL)	Total hour (CI+SW+SL)
HSMC10.1 To understanding Value Education	09	0	0	2	11
HSMC10.2 Students will have the ability to learn about Harmony in the Human Being.	09	0	0	2	11
HSMC10.3 Student will be able to gain knowledge on Harmony in the Family and Society.	09	0	0	2	11
HSMC10.4 Understanding Harmony in the Nature/Existence.	09	0	0	2	11
HSMC10.5: Student will able to understand about Implications of Holistic Understanding- A Look at Professional Ethics.	09	0	0	2	11
Total Hours	45	0	0	10	55

Suggestion for End Semester Assessment

Suggested Specification Table (ForESA)

СО	Unit Titles	Mar	Total		
		R	U	Α	Marks
CO-1	Understanding Value Education	02	04	05	11

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

CO-2	Harmony in the Human Being	03	07	04	14
CO-3	Harmony in the Family and Society	02	06	02	10
CO-4	Harmony in the Nature/Existence	03	03	02	08
CO-5	Implications of Holistic Understanding- A Look at Professional Ethics	03	02	02	07
	Total	13	22	15	50

Legend:R: Remember,U: Understand,A: ApplyThe end of semester assessment for Universal Human Values will be held with written examination of 50

marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 8. Brainstorming
- 9. Seminar
- 10. Workshop

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

S.	Title	Author	Publisher	Edition Year	
No.					
1	JeevanVidya:EkParichaya	A Nagaraj	JeevanVidyaPrakashan, Amarkantak	1998	
2	HumanValues	A.N.Tripath	NewAgeIntl. Publishers,New Delhi,	2004	
3	UniversalHumanValues		AICTE	2021	
4	HumanValuesand ProfessionalEthics	R.R.Gaur,R Sangal andG P Bagaria	ExcelBookPublisher	2009	
5	Vyavaharvadï.Samajshastra	A Nagaraj	Jeevan VidyaPrakashan, Amar kantak	1999	
6	ManavaVyavaharaDarsana	A Nagaraj	Jeevan VidyaPrakashan, Amarkantak	2003	
7	Foundationsof Ethics and Management,	BP Banerjee	ExcelBook	2005	
8	FundamentalsofEthicsfor Scientists&Engineers	EGSeebauer& RobertL.Berry	OxfordUniversity Press.	2000	
9	Engineering Ethichs (includingHumanValues)	MGovindrajran,S Natrajan and V.S. SenthilKumar	Eastern Economy Edition,PrenticeHall ofIndiaLtd.	-	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Curriculum Development Team:

- 1. Er. Anant Kumar Soni, Hon'ble Pro-Chancellor and Chairman, AKS University, Satna (M.P.).
- 2. Prof. B.A. Chopade, Hon'ble Vice Chancellor, AKS University, Satna (M.P.).
- 3. Prof. G.C. Mishra, Director, IQAC, AKS University, Satna (M.P.).
- 4. Prof. R.L.S. Sikarwar, Director, Centre for Traditional Knowledge Research & Application, AKS University, Satna (M.P.).
- 5. Prof. Kamlesh Chaure, HOD, Department of Biotechnology, AKS University, Satna (M.P.).
- 6. Dr. Akhilesh Waoo, HoD, Department of Computer Science, AKS University, Satna (M.P.).
- 7. Dr. Shailendra Yadav, HoD, Department of Chemistry, AKS University, Satna (M.P.).
- 8. Dr. Kaushik Mukherji, HoD, Department of Management, AKS University, Satna (M.P.).
- 9. Dr. Neeraj Verma, PG Coordinator, Faculty of Agriculture Science and Technology, AKS University, Satna (M.P.)
- 10. Dr. Dilip Kumar Tiwari, HoD, Department of Yoga, AKS University, Satna (M.P.).
- 11. Shri Mirza Shamiullah Beg, Department of Arts, AKS University, Satna (M.P.).
- 12. Shri Vivek Shrivastava, Examination, AKS University, Satna (M.P.).
- 13. Shri Manish Agrawal, Department of Mining, AKS University, Satna (M.P.).

COs. Pos and PSOs Mapping

Program Title: B.Tech. (Electrical Engineering) Course Code: HSMC10 Course Title: Universal Human Values

					Pro	ogram (Outcon	nes					Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production	Ability to understand the day to plant operational problems of cement	Ability to understand the latest cement manufacturing technology	Ability to use the research based innovative knowledge for sustainable
HSMC10.1 To understanding Value Education	2	2	3	2	1	1	1	3	2	1	1	2	2	2	2	2
HSMC10.2 Students will have the ability to learn about Harmony in the Human Being	2	2	1	3	1	2	1	3	2	2	2	2	2	2	2	2
HSMC10.3 Student will be able to gain knowledge on Harmony in the Family and Society.	2	1	2	1	1	2	2	3	2	1	2	3	2	2	2	2
HSMC10.4 Understanding Harmony in the Nature/Existence.	1	1	1	2	1	2	1	3	2	1	2	2	2	2	3	3
HSMC10.5: Student will able to understand about Implications of Holistic Understanding- A Look at Professional Ethics.	1	1	1	1	1	2	2	3	1	2	2	2	3	2	3	2

Legend:1-Low,2-Medium,3-High

(Course Curriculum Map:				
Pos &PSOs No.	Cos No. & Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
DO1 0 0 4 5 6	HSMC10.1 To understanding Value Education	SO1.1		Unit-1: Understanding Value	
PO1,2,3,4,5,6		SO1.2		Education	
7,8,9,10,11,12		SO1.3		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.	1,2
PSO1,2,3,4		SO1.4 SO1.5		9	1,2
	HSMC 10.2 Students will have the ability to learn	SO2.1		Unit 2. Hormony in the Huma	
PO1,2,3,4,5,6	about Harmony in the Human Being	SO2.2		Unit-2: Harmony in the Huma	
7,8,9,10,11,12		SO2.3		Being	1,2
PSO1,2,3,4		SO2.4		2.1,2.2,2.3,2.4,2.5,2.6,2.7,	
		SO2.5		2.8,2.9	
DO102456	HSMC10.3 Student will be able to gain knowledge	SO3.1		Unit-3: Harmony in the Family	
PO1,2,3,4,5,6	on Harmony in the Family and Society.	SO3.2		and Society	
7,8,9,10,11,12		SO3.3		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.	1,2
PSO1,2,3,4		SO3.4		9	
	HSMC10.4 Understanding Harmony in the	SO3.5		Unit-4: Harmony in th	
PO1,2,3,4,5,6	Nature/Existence.	SO4.1 SO4.2		Nature/Existence	
7,8,9,10,11,12		SO4.2 SO4.3		Implications of Holistic	1,2
PSO1,2,3,4		SO4.4		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.	1,2
1501,2,5,4		SO4.5		9	
	HSMC10.5 Student will able to understand about	SO5.1		Unit 5: Understanding- A	
PO1,2,3,4,5,6	Implications of Holistic Understanding- A Look at	SO5.2		8	
7,8,9,10,11,12	Professional Ethics.	SO5.3		Look at Professional Ethics	1,2
PSO1,2,3,4		SO5.4		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8, 5.9	
		SO5.5		3.9	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester-IV

Course Code:	EE204
Course Title:	DIGITAL ELECTRONICS
Pre- requisite:	Student should have knowledge of fundamental of digital electronic systems.
Rationale:	In current scenario we are extensively using various digital electronic circuits in various applications. Such systems are required to design and maintain by engineer. Therefore, the goal of this course is for students to become competent to understand design and maintenance of such type of systems.

Course Outcomes:

EE204.1: Understand the deign process of digital hardware, use Boolean algebra to minimize the logical expressions and optimize the implementation of logical functions.

EE204.2: Design and analysis of combinational logic circuits.

EE204.3: Design and analysis of sequential logic circuits.

EE204.4: Understand the process of Analog to Digital conversion and Digital to Analog conversion.

EE 302.5: Understand the fundamental of Semiconductor memories and Programmable logic devices.

Cours				Scheme of studies(Hours/Week)					
e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)	
Progra m Core (PCC)	EE204	DIGITAL ELECTRONICS	3	2	1	1	7	4	

Scheme of Studies:

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

					Scheme	e of Asse	essment (M	larks)		
Cour se Cate gory	Cous e Code	Course Title	Class/H ome Assign ment 5 number 3 marks each (CA)	Progres Class Test 2 (2 best out of 3) 10 marks each (CT)	sive Asse Semin ar one (SA)	Class Activi ty any one (CAT)	(PRA) Class Attendan ce (AT)	Total Marks (CA+C T+SA +CAT +AT)	End Semester Assessme nt (ESA)	Tota l Mar ks (PR A+ ESA)
PCC	EE20 4	DIGIT AL ELECT RONIC S	15	20	5	5	5	50	50	100

Practical

Cours	Couse	Carrier	Scheme of Assessment (Marks)Progressive Assessment (PRA)End							
e Categ ory	Code	Course Title	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)		
PCC	EE204-L	DIGITAL ELECTRO NICS	35	10	5	50	50	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE204.1: Understanding the fundamental of diode, its characteristics and its various types. **Approximate Hours**

Item	Approx Hrs
Cl	9
LI	4
SW	1
SL	1
Total	15

Session Outcomes	Laboratory	Class room Instruction	Self-	
(SOs)	Instruction	(CI)	Learning	
	(LI)		(SL)	
SO1.1 Understand the	1. Verification	Unit-1: Fundamental of	1. Fundament	
number system	of all the logic	digital systems and	al of digital	
and conversion	gates.	logic families	electronics	
of various types	2.Implementation of	1.1 Digital signals		
of number	NAND & NOR as	1.2 Number System		
systems.	Universal gate.	1.3 Code conversion		
		1.4 Two's complements		
		1.5 Addition and Subtraction		
SO1.2 Understand the		of signed and unsigned		
Boolean		numbers		
expression		1.6 Boolean algebra and		
minimization		Demorgan's theorem		
technique.		1.7 SOP & POS forms		
		1.8 Optimized implementation		
		of logic functions using K-		
		Map		
		1.9 Logic gates and networks		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Discuss the different types of logic gates.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE204.2: Understanding the various applications of diode.

Approximate Hours

Item	Approx. Hrs				
Cl	10				
LI	10				
SW	1				
SL	1				
Total	22				

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
 SO2.1 Understanding the working of adder circuits. SO2.2 Understanding the working of subtractor circuits. 	 Design of combinational circuit for the half adder Design of combinational circuit for the Full adder 	Unit-2: Combinational circuits 2.1 Half Adder 2.2 Full Adder 2.3 Half Subtractor 2.4 Full Subtractor 2.5 Multiplexers	1. Logic gates
 SO2.3 Understanding the working of multiplexer and Demultiplexer circuits. SO2.1 Understanding the working of encoder and decoder circuits. 	 Design of combinational circuit for the half subtractor Design of combinational circuit for the full subtractor Multiplexer / Demultiplexer based Boolean function 	 2.6 Demultiplexers 2.7 Parity Checkers and Generators 2.8 Decoders 2.9 Encoders 2.10 CD adder 	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. How will you classify the different types of logic circuits?

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE204.3: Design and analysis of bipolar junction transistor, its various configurations and applications. **Approximate Hours**

Item	Approx Hrs
Cl	9
LI	8
SW	1
SL	1
Total	19

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self- Learning
	(LI)	((SL)
SO3.1 Understand the	1. Verify the	Unit-3: Sequential circuits	1. Methods of
difference between latch and flip flop.	truth table of SR flip flop.	3.1 Basic Latch 3.2 Gated SR Latch	triggering.
SO3.2 Understand the SR latch.	2. Verify the	3.3 Gated D Latch	
SO3.3 Understand the working	truth table of	3.4 Master-Slave edge	
of SR flip flop.	D flip flop.	triggered flip-flops	
SO3.4 Understand the working	3. Verify the	3.5 JK Flip-flop	
of D flip flop.	truth table of	3.6 Race around	
SO3.5 Understand working of	JK flip flop.	condition	
JK flip flop.	4. Verify the	3.7 T Flip-flop	
SO3.6 Understand working of	truth table of	3.8 Registers	
registers.	T flip flop.	3.9 Counters	
SO3.7 Understand working of			
counters.			

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Explain race around condition in flip flop.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE204.4: Design and analysis of junction field effect transistor and metal oxide semiconductor field effect transistor and its various configurations.

Approximate Hours

Item	Approx Hrs
Cl	9
LI	4
SW	1
SL	1
Total	15

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO4.1 Understand	1. Design	Unit-4: A/D & D/A Converters	1. Basics
the working of	various D-A	4.1 Introduction	of
D/A converters.	convertors	4.2 accuracy, resolution and precision	analog
	2. Design	4.3 D/A converter	and
SO4.2 Understand	various A-D	4.4 variable resistor network	digital
the working of	convertors	4.5 R-2R ladder	signals.
A/D converters.		4.6 sample and hold circuit	
		4.7 quantization and encoding	
		4.8 A/D converter, dual slope method	
		4.9 Successive approximation method.	

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Discuss various applications of A/D and D/A converters.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

EE204.5: Design and analysis of op-amp, its characteristics and various applications.

Approximate Hours

Item	Approx. Hrs.
Cl	7
LI	4
SW	1
SL	1
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
 SO5.1Understand the different types of semiconductor memories. SO5.2Understand structure of PAL SO5.3 Understand structure of PLA SO5.4 Understand structure of CPLD SO5.5 Understand structure of FPGA 	 Studyof PLAs Studyof FPGA 	 Unit 5: Semiconductor memories and Programmable logic devices 5.1 Introduction of semiconductor memories 5.2 RAM and its types 5.3 ROM and its types 5.4 General structure of a Programmable Array Logic (PAL) 5.5 Programmable Logic Arrays (PLAs) 5.6 Structure of CPLD 5.7 Structure of FPGA 	1. Basic of semiconductor

SW-5 Suggested Sessional Work (SW):

a. Assignments:

How will you classify different types of semiconductor memories?

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE204.1: Understand the deign process of digital hardware, use Boolean algebra to minimize the logical expressions and optimize the implementation of logical functions.	9	4	1	1	15
EE204.2: Design and analysis of combinational logic circuits.	10	10	1	1	22
EE204.3: Design and analysis of sequential logic circuits.	9	8	1	1	19
EE204.4: Understand the process of Analog to Digital conversion and Digital to Analog conversion.	9	4	1	1	15
EE204.5: Understand the fundamental of Semiconductor memories and Programmable logic devices.	7	4	1	1	13
Total Hours	44	30	5	5	84

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Μ	Total		
	Unit Titles	R	U	Α	Marks
CO-1	Fundamental of digital systems and logic families	04	03	01	8
CO-2	Combinational circuits	06	03	02	11
CO-3	Sequential circuits	04	03	01	8
CO-4	A/D & D/A Converters	05	04	02	11
CO-5	Semiconductor memories and Programmable logic devices	04	04	04	12
	Total	23	17	10	50

Legend:R: Remember,U: Understand,A: ApplyThe end of semester assessment for Process calculation will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Design Demonstration
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year								
1	Digital logic and Computer design	M. M. Mano	Pearson Education India	2016								
2	Fundamentals of Digital Circuits	A. Kumar	Prentice Hall India	2016								
3	Modern Digital Electronics	R. P. Jain	McGraw Hill Education	2009								
4	Fundamental of Digital Circuits	A. Anand Kumar	PHI	4th edition, 2018								
5	Foundation of Digital Electronics & Logic Design	New Age Int. Publishers										
6	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.											

Curriculum Development Team

1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.

- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE204

Course Title: DIGITAL ELECTRONICS

		Program Outcomes												Program Specific Outcome		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2		
Course Outcomes	Engi neer ing kno wled ge	Probl em Solvi ng	Desig n Skills	Labo rator y Skills	Team work	Co mm unic atio n Skill s	Ethical and Professi onal Behavio r	Lifel ong Lea rnin g	Global and Societa l Impact	Project Manag ement	Adapt ability	Professio nal Develop ment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services		
CO1: Understand the deign process of digital hardware, use Boolean algebra to minimize the logical expressions and optimize the implementation of logical functions.	3	3	2	2	2	1	1	2	2	1	2	2	2	3		
CO 2: Design and analysis of combinational logic circuits.	3	3	3	3	2	2	1	3	2	2	2	3	3	2		
CO3: Design and analysis of sequential logic circuits.	3	2	3	2	2	1	2	2	2	1	2	3	3	2		
CO 4: Understand the process of Analog to Digital conversion and Digital to Analog conversion.	3	3	2	2	2	2	2	3	2	2	2	2	2	3		
CO 5: Understand the fundamental of Semiconductor memories and Programmable logic devices.	3	3	3	3	2	3	1	3	2	2	2	2	3	3		

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
	CO1: Understand the deign process of digital hardware, use Boolean algebra to minimize the logical expressions and optimize the implementation of logical functions.	SO1.1 SO1.2	1,2	UNIT-1: Fundamental of digital systems and logic families 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	1
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 2: Design and analysis of combinational logic circuits.	SO2.1 SO2.2 SO2.3 SO2.4	1,2,3,4,5	UNIT-2: Combinational circuits 2.1, 2.2, 2.3, 2.4, 2.5,2.6,2.7,2.8,2.9,2.10	1
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO3: Design and analysis of sequential logic circuits.	SO3.1,SO3.2 SO3.3, SO3.4 SO3.5, SO3.6 SO3.7	1,2,3,4	Unit-3: Sequential circuits 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 4: Understand the process of Analog to Digital conversion and Digital to Analog conversion.	SO4.1SO4.2	1,2	UNIT-4: A/D & D/A Converters 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	1
PSO 1.2	CO 5: Understand the fundamental of Semiconductor memories and Programmable logic devices.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	1,2	UNIT-5: Semiconductor memories and Programmable logic devices 5.1,5.2,5.3,5.4,5.5,5.6,5.7	1

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-IV

Course Code:	EE205
Course Title :	Electrical Machine – II
Pre- requisite:	Students should have basic knowledge of Basic Laws of Electro- magnetic Circuit with brief information of various electrical quantities.
Rationale:	A process of introducing formal knowledge of electrical machine principles, construction, and working of various AC machines with various concepts of magnetic fields and circuits.

Course Outcomes:

EE205.1: Understand the constructional and working details of AC machine winding.

EE205.2: Understand the concept of pulsating magnetic fields.

EE205.3: Understand the concepts of rotating magnetic fields.

EE205.4: Understand the operation of ac machines.

EE205.5: Analyze performance characteristics of ac machines.

Scheme of Studies:

				Schem	e of studi	es(Hours	s/Week)	
Cours e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)
Progra m Core (PCC)	EE205	ELECTRICAL MACHINE – II	3	2	1	1	7	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
Cour se Cate gory	Couse Code	Course Title	Progressive Assessment (PRA)						End	Tata
			Class/Hom e Assignmen t 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Sem inar one (SA)	Class Activi ty any one (CAT)	Class Atten dance (AT)	Total Marks (CA+C T+SA+ CAT+A T)	Seme ster Asses smen t (ESA)	Tota l Mar ks (PR A+ ESA)
PCC	EE205	ELECTRI CAL MACHIN E – II	15	20	5	5	5	50	50	100

Practical

Cours e Categ ory	Couse Code	Course Title	Scheme of Assessment (Marks)						
			Progres	End	Total				
			Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)	
РСС	EE205-L	ELECTRI CAL MACHIN E – II	35	10	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE205.1: Understand the constructional and working details of AC machine winding. **Approximate Hours**

Item	AppX Hrs
Cl	09
LI	2
SW	1
SL	1
Total	13

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction(LI)	(CI)	(SL)
SO1.1 Understand the	1. Study the	Unit-1: Fundamentals of AC	1. Various
arrangement of	constructio	machine windings	concepts
windings in various	nal details	1.1 Physical arrangement of	of
parts.	and	windings in stator and	windings
SO1.2 Understand the	performanc	cylindrical rotor.	•
concept of different	e	1.2 Slots for windings.	
types of coils.	characterist	1.3 Single-turn coil - active	
SO1.3 Understand the	ics of AC	portion and overhang.	
concept of 3D	machi	1.4 Full-pitch coils.	
visualization of	ne	1.5 Concentrated winding,	
winding types.	windin	Distributed winding.	
SO1.4 Understand the	g.	1.6 Winding axis.	
construction of		1.7 3D visualization of the	
sinusoidal distributed		above winding types.	
winding.		1.8 Air-gap MMF	
SO1.5 Understand the		distribution with fixed	
distributed winding		current through	
factors.		winding-concentrated	
		and distributed.	
		1.9 Sinusoidaly distributed	
		winding, Winding	
		distribution factor.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Make tabulation list of different types of windings.

a. Mini Project:

i. Draw the table of Factors affecting the windings.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE205.2: Understand the concept of pulsating magnetic fields

Approximate Hours

Item	AppX Hrs
Cl	07
LI	2
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO2.1 To Understand	1. Study of	Unit-2 Pulsating and revolving	1. Remember
the different	two field	magnetic fields.	the Concepts
magnetic field	revolving	inugrietie itelus.	of pulsating
types.	theory.	2.1 Constant magnetic field.	and revolving
		2.2 Pulsating magnetic field -	magnetic
SO2.2 To apply the		alternating current in windings	Ū.
shifting of		with spatial displacement.	
winding angles.		2.3 Magnetic field produced by a	
		single winding - fixed current and	
SO2.3 To understand the		alternating current Pulsating fields	
revolving		produced by spatially displaced	
magnetic field.		windings.	
_		2.4 Windings spatially shifted by 90	
		degrees.	
		2.5 Addition of pulsating magnetic	
		fields.	
		2.6 Three windings spatially shifted	
		by 120 degrees (carrying three-	
		phase balanced currents).	
		2.7 Revolving magnetic field.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write down the difference between concentrated and distributed windings.
- ii. Draw the chart of operation revolving magnetic field.

Other Activities (Specify):

Review the operations at different angles.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE205.3: Understand the concepts of rotating magnetic fields. **Approximate Hours**

Item	AppX Hrs
Cl	9
LI	8
SW	1
SL	1
Total	19

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learn
	(LI)		ing
			(SL)
SO3.1 To Understand the	1. Study the	Unit-3 : Induction Machine	1. Basic
Construction and	constructional		principle
types.	details of three-	3.1 Construction	of
	phase Induction	3.2 Types (squirrel cage and slip-	Induction
SO3.2 To Understand	machine.	ring). Torque Slip	Machine.
various concepts	2. Obtain the	Characteristics.	
related to torque.	performance	3.3 Starting and Maximum	
	characteristics at	Torque.	
SO3.3 To Draw	different loads for	3.4 Equivalent circuit, Phasor	
equivalent circuit,	three-phase	Diagram, Losses and	
phasor diagram and	Induction	Efficiency	
review of losses and	Machine.	3.5 Effect of parameter variation	
efficiency.	3. Study different	on torque speed	
	type of starters of	characteristics (variation of	
SO3.4 To Understand the	three-phase	rotor and stator resistances,	
methods of starting	Induction	Stator Voltage and	
and speed control.	Machine.	Frequency).	
	4. Study different	3.6 Methods of starting, braking	
SO3.5 To Understand the	types of methods	and speed control for	
concept of self-start	of speed control	induction motors.	
and doubly fed	of three-phase	3.7 Generator operation.	
induction machine.	Induction Motor.	3.8 Self-excitation.	
		3.9 Doubly-Fed Induction	
		Machines.	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems on Slip of Induction Machine.
- ii. Numerical Problems on Speed Control Methods.

EE205.4: Understand the operation of ac machines.

Item	AppX Hrs
Cl	05
LI	6
SW	1
SL	1
Total	13

Session Outcomes (SOs)		Laboratory Instruction	Class room Instruction	Self- Learning	
(308)		(LI)	(CI)	(SL)	
	1.	To study the	Unit-4 : Single-phase	1. Gain the	
		construction and	induction	knowledge	
SO4.1 Evaluation of		working of	motors	about single-	
Constructional Features.		single-phase	4.1 Constructional	phase	
		Induction	features.	Induction	
SO4.2 Understanding the		Machine.	4.2 Double revolving	Machines.	
Double Field Revolving	2.	To obtain Torque-	field theory.		
Theory.		Slip	4.3 Equivalent circuit		
		Characteristics of	4.4 Determination of		
SO4.3 Determination of		single-phase	parameters.		
different Parameters.		Induction Motor.	4.5 Split-phase starting		
	3.	To perform No-	methods and		
SO4.4 Understand the concepts		load and Blocked-	applications.		
related to split-phase I.M.		Rotor test on			
		single-phase			
		Induction Motor			
		and calculation of			
		its efficiency.			

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

Numerical Problems on single-phase Induction Machine. i.

Mini Project:

Draw a chart of different single-phase machines. i.

EE205.5: Analyze performance characteristics of ac machines.

Item	AppX Hrs
Cl	12
LI	12
SW	2
SL	1
Total	27

Session		Laboratory Instruction	Class room Instruction	Self-
Outcomes (SOs)		(LI)	(CI)	Learning (SL)
SO5.1 Understand	1.	To study the	Unit 5: Synchronous	1. Remember
the		Constructional details of	Machines	the Concepts
constructional		Synchronous Machine.	5.1 Constructional	of
features.	2.	To calculate voltage	features.	Synchronous
		regulation of three-phase	5.2 Cylindrical rotor	Machines.
SO5.2 Understand		Alternator, without	synchronous machine -	
the Operating		disconnecting the load	generated EMF.	
functions.		(EMF/Synchronous	5.3 Equivalent circuit and	
		Impedance Method).	phasor diagram.	
SO5.3 Evaluation of	3.	To study the effect of	5.4 Armature reaction	
V-Curves.		Resistive and Inductive	5.5 Synchronous	
	ĺ	Load of same load current	impedance	
	ĺ	on three-phase Alternator	5.6 Voltage regulation	

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO5.4	(Demagnetizing Effect	of 5.7 Operating
Understanding	Armature Reaction).	characteristics of
the two reaction	4. To obtain load	synchronous machines
theory.	characteristics of three	- 5.8 V-curves
	phase Synchronous Mo	otor. 5.9 Salient pole machine -
SO5.5 Understand	5. To Obtain V-Curve and	two reaction theory
the Parallel	Inverted V-Curve of	5.10 Analysis of phasor
Operation.	Synchronous Motor.	diagram
	6. Application of	5.11 Power angle
	Synchronous Motor as	a characteristics
	Condensor.	5.12 Parallel operation of
		alternators -
		synchronization and
		load division.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Numerical Problem based on Synchronous Generator.

Numerical Problem based on Synchronous Motor. i.

b. Mini Project:

Draw the chart of different single phase synchronous machines.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE205.1: Understand the concepts of Fundamentals of AC machine windings.	9	2	1	1	13
EE205.2: Understand the Concepts of Pulsating and revolving magnetic fields.	7	2	1	1	11
EE205.3: Understand the Concepts of Induction Machine.	9	8	1	1	19
EE205.4: Understand the concept of Single-phase Induction Motor.	5	6	1	1	13
EE205.5: Understand the Concepts of Synchronous Machines.	12	12	2	1	27
Total Hours	42	30	6	5	83

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Μ	Total		
	Unit Titles	R	U	Α	Marks
CO-1	Fundamentals of AC machine windings	03	02	02	07
CO-2	Pulsating and revolving magnetic fields	02	01	02	05
CO-3	Induction Machine	02	07	06	15
CO-4	Single-phase Induction Motors	03	03	03	09
CO-5	Synchronous Machines	04	05	05	14
	14	18	18	50	

Legend:R: Remember,U: Understand,A: ApplyThe end of semester assessment for Electrical Machine-II will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :						
S. No.	Title	Author	Publisher	Edition & Year			
1	Electric Machinery	A. E. Fitzgerald and C. Kingsley	McGraw Hill Education	2013			
2	Performance and design of AC machines.	M. G. Say	CBS Publishers	2012			
3	Electrical Machinery	P. S. Bimbhra	Khanna Publishers	2011			
4	Electric Machines	I. J. Nagrath and D. P. Kothari	McGraw-Hill Education	2010			
5	Alternating current machines	A. S. Langsdorf	McGraw-Hill Education	1984			
6	Principles of Electric Machines and Power Electronics	P. C. Sen	John Wiley & Sons	2007			
7	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.						

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE205 Course Title: ELECTRIC MACHINE 2

					-	Progra	m Outc	omes		-	-		Program Spec	ific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neer ing Kno wled ge	Pro ble m Solv ing	Desi gn Skill s	Lab orat ory Skill s	Tea m Wor k	Com mun icati on Skill s	Ethi cal and Prof essio nal Beh avio r	Lifelon g Learni ng	l and	Proje ct Mana geme nt	Adap tabili ty	Profe ssion al Devel opme nt	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
EE205.1: Understand the constructional and working details of AC machine winding.	3	3	2	2	3	2	1	1	2	1	1	2	2	2
EE205.2: Understand the concept of pulsating magnetic fields.	2	3	3	2	1	2	1	1	1	1	2	2	2	2
EE205.3: Understand the concepts of rotating magnetic fields.	3	3	2	1	1	2	2	2	1	1	2	3	1	2
EE205.4: Understand the operation of ac machines.	3	2	2	2	3	2	1	3	2	1	2	2	3	3
EE205.5: Analyzeperformancecharacteristicscharacteristicsofacmachines.	2	3	3	1	1	3	2	3	1	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self- Learning (SL)
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Understand the constructional and working details of AC machine winding.	SO1, SO1.2 SO1.3, SO1.4 SO1.5	1	Unit-1: Fundamentals of AC machine windings 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	1
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2, 3, 4	CO-2: Understand the concept of pulsating magnetic fields.	SO2.1, SO2.2 SO2.3	1	Unit-2: Pulsating and revolving magnetic fields. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7	1
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2, 3, 4	CO-3: Understand the concepts of rotating magnetic fields.	SO3.1, SO3.2 SO3.3, SO3.4 SO3.5	1, 2, 3,4	Unit-3 : Induction Machine 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2, 3, 4	CO-4: Understand the operation of ac machines.	SO4.1SO4.2 SO4.3SO4.4	1, 2, 3	Unit-4 : Single-phase induction motors 4.1, 4.2,4.3,4.4,4.5	1
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2, 3, 4	CO-5: Analyze performance characteristics of ac machines.	SO5.1SO5.2 SO5.3 SO5.4SO5.5	1, 2, 3,4,5,6	Unit 5: Synchronous Machines. 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10, 5.11, 5.12	1

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester-IV

Course Code:	EE206
Course Title :	POWER ELECTRONICS
Pre- requisite:	Student should have basic knowledge of basic electronics, Physics and Mathematics.
Rationale:	To deliver power that supports a variety of needs, there exists a branch of electrical engineering called power electronics; this branch basically deals with the processing of high voltages and currents. All the areas, from space applications to household electronic equipment, need a steady and dependable electric power with the desired conditions or specifications. Power supply in one form is transformed into another form by processing the energy using controlled mechanisms supplying regulated and controlled power and power semiconductor switches
C	

Course Outcomes: On successful completion of the course, the student will be able to:

- **EE206.1:** To gain knowledge of various applications of semiconductor switches by understanding their static and dynamic characteristics.
 - **EE206.2**: To understand the performance characteristics of controlled AC-DC converters for R, RL & RLE loads.
 - **EE206.3:** To gain knowledge on basic DC-DC converters and their operation under continuous and discontinuous mode of conduction for RLE loads
 - EE206.4: To identify and formulate the requirements for four quadrants operation of DC motor.
 - **EE206.5:** To differentiate and understand the significance of various commutation circuits and their consequence on device stress. To understand the principle of DC-AC conversion and the different topology for three phase to three phase and single phase to single phase DC-AC conversion.

Scheme of Studies

Course	Course		Scheme of studies(Hours/Wee					
Category	Code	Course Title	CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Program Core (PCC)	EE206	POWER ELECTRONICS	3	2	1	1	7	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

				Scheme of Assessment (Marks)						
				Progressiv	e Asses	ssment	(PRA)		End	Tota
G			Class/H	Class Test	~	Clas		Total	a	1
Cou	Causa	Course	ome	2	Se	S .	Class	Marks	Semes	Mar
rse Cate	Couse Code	Course Title	Assignm ent 5	(2 best	mın ar	Acti vity	Class Attenda		ter Assess	ks
gory	Coue	THE	number	out of 3)	one	any	nce	(CA+C	ment	(PR
0 5			3 marks	10 marks	(one	(AT)	T+SA+		A+
			each	each (CT)	SA)	(CA		CAT+ AT)	(ESA)	ESA
			(CA)	(C1)		T)		AI))
		Power		• •	_	_	_	-		100
PCC	EE206	Electronic	15	20	5	5	5	50	50	100
		S								

Practical

			Scheme of Assessment (Marks)							
Cours	Couse	Course	Progres	sive Assessme	ent (PRA)	End	Total		
e Categ ory	Code	Title	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)		
PCC	EE206-L	Power Electronics	35	10	5	50	50	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE206.1: Understand the concepts of High power Switches and effective application and Limitation. Approximate Hours

Item	AppX Hrs
Cl	10
LI	16
SW	2
SL	1
Total	29
Total	29

Session Outcomes (SOs)	Laboratory Instruction(LI)		Class room Instruction(CI)	Self- Learning (SL)	
SO1.1 Concept of	1.	To perform PN junction diode	Unit-1: Thyristor family	1.	
high		characteristics and to plot the	1.1 Thyristor family	Fundament	
power		forward andreverse bias	1.2 Two transisto	r alof	
switch		characteristics of PN	analogy, brief idea o	f Electronics	
SO1.2 recognize		junction diode.	construction of SCR, Station	c	
fault	2.	To perform voltage stabilization	characteristics of SCR,		
situation		characteristic of Zener diode	1.3 Condition of turn on		
SO1.3 Switches		"With builtin resistance	&off		
use according		load"(ME 5420).	1.4 different		
toload	3.	To study of SCR characteristics	commutation		
SO1.4 understand		apparatus(ME 5340).	techniques		
the	4.	To study of protection circuit	(Class		
characterist		of SCR. dv/dt, di/dt, over	A,B,C,D,E, &		
icsof		voltage andover current.	F		
Thyristor	5.	To study of SCR commutation	Commutation)		
family		technique(ME 793).	1.5 firing of SCR,		
	6.	To study of phase controlusing	1.6. SCR rating		
		Triac (ME 794).	1.7 protection of SCR		
	7.	To perform characteristics of	1.8 heating, cooling		
		Thyristor family devices.	&mounting of SCR		
	8.	study of triac	1.9 series operation of SC	R	
		characteristics apparatus(ME	1.10 parallel operation of	f	
		5520)	SCR		

SW-1 Suggested sessional Work (SW)

a. Assignments

- i. Making poster for all high power Switches
- ii. Numerical problem related to above topic

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE206.2: Learn AC to DC Converter Using High power Switches

Item	AppX Hrs
Cl	10
LI	6
SW	2
SL	1
Total	19
	•

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO2.1 Concept	1. Single	Unit-2	1) Network
of simple	Phase Half	2.1. Operation and analysis of single phase	Analysis
rectifier	Wave	(Half wave)	2) Fourier
	Controlled	2.2. Operation and analysis of single phase	transform
SO2.2 Analysis	Converter	(Full Wave) and	
controlling	2. Single	2.3. Three Phase uncontrolled rectifier circuit	
of DC	Phase Half	with resistive load	
Power	Controlled	2.4. Three Phase uncontrolled rectifier circuit	
	Bridge	inductive load (continuous) FW small	
SO2.3 Effect of	Converter.	and RLE loads.	
load in o/p	3. Single	2.5. Three Phase controlled rectifier circuit	
voltage	Phase	with resistive,	
	Fully	2.6. Three Phase controlled rectifier circuit	
SO2.4	Controlled	inductive load (non continuous	
understand	Bridge	conduction) FW small & very large	
the	Converter	inductive loads) and RLE loads.	
waveform		2.7. Three Phase controlled rectifier circuit	
according		inductive load (non continuous	
to load		conduction)	
		2.8. Estimation of average load voltage and	
		load current for above rectifier circuits active and reactive power input.	
		2.9. Effect of free wheeling diode and source	
		inductance on performance of these	
		rectifier circuits .	
		2.10. Comparison of mid point & Bridge	
		rectifier circuits, Semi converter	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested sessional Work (SW)

- a. assingments
 - i. Project related to Half wave and full Wave Rectifier
 - ii. Numerical problem related to above topic

EE206.3: Learn DC To AC Converter Using High power Switches **Approximate Hours**

Item	AppX Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO3.1 Concept of		Unit-3	1.property of Active
simple Inverter SO3.2 Analysis controlling of DC Power SO3.3 Analysis the		 3.1) Series inverter 3.2) parallel inverter, 3.3) Voltage source inverter 3.4) current source inverter, 3.5) Single phase and 	and passive device
application of Inverter according to output		3.6) three phase bridge inverter,Self-cumulated inverters3.7) Mc- Murray & MC Murray	
SO3.4 Understand the waveform according to load		bed ford inverters, 3.8)Voltage control of single phase inverters 3.9) three phase bridge inverters, Harmonics & their reduction techniques	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested sessional Work (SW)

a. assignments

- i. Make a project Based on application of Inverter
- ii. Numerical problem related to above topic

EE206.4: Learn DC To DC Converter Using High power Switches **Approximate Hours**

Item	AppX Hrs
Cl	8
LI	4
SW	2
SL	1
Total	15

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO4.1 Concept of	1. To perform	Unit-4	Self-Learning(SL)
Chopper	Morgan's	4.1) Principle of chopper	1)DC Motor
	chopper (ME	operation	
SO4.2 Analysis	808).	4.2) Various control	
controlling of	2. To perform	strategies in chopper,	
DC Power	John's	4.3) Step up choppers	
	chopper (ME	4.4) step down choppers,	
SO4.3 DC motor input	807).	4.5) chopper	
control		configuration (Type A,B,	
		C,D, & E),	
SO4.4 Understand the		4.6) Steady state analysis	
waveform		of chopper circuits,	
according to load		Current & voltage	
_		commutation of chopper	
		circuits 4.7) Jones chopper	
		4.8) Morgens chopper	

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-4 Suggested sessional Work (SW)

a. assignments

- i. Make a project Based on application of Chopper
- Numerical problem related to above topic ii.

EE206.5: Learn DC To DC Converter Using High Power Switches

Item	AppX Hrs
Cl	8
LI	4
SW	2
SL	1
Total	15

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO5.1 synthesizing the	1. To perform	Unit-5	Self-
output waveform	electronic speed	5.1) Single phase (mid	Learning(SL)
from segments of	control of D.C.	point & bridge	1) All Parameter of
the AC supply	motor(ME 800).	configuration) and	AC Circuit
	2. To perform	5.2) three phase cyclo	
SO5.2 Analysis	chopper circuit	convertor configuration	
controlling of	using power	and	
RMS value of	MOSFET (ME	5.3) operating principles.	
voltage and	813).	5.4) AC voltage controllers	
current in various		(using SCRs & Traics)	
application		single phase full wave	
		controller with R and RL	
SO5.3 AC motor input		load,	
control		5.5) Estimation of RMS	
		load voltage, RMS load	
SO5.4 Understand		current and input power	
the reducing the		factor, three phase AC	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

voltage available	voltage controller (Without
at the output	analysis)
terminals without	5.6) Dual converter Switched
changing the	mode voltage regulator
polarity.	5.7) Buck regulators, Boost
	regulators
	5.8) Buck & Boostregulators, Cuk
	regulators.

SW-4 Suggested sessional Work (SW)

a. assignments

- i. Design a project Based on application
- ii. Numerical problem related to above topic

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)	
EE206.1: To understand and						
develop the firing circuit						
requirement for different	10	16	2	1	29	
power semiconductor						
devices used as switches.						
EE206.2: To understand the						
concepts of different types						
of AC-DC, DC-DC& DC-	10	6	2	1	19	
AC controlled converters	10	0	2		19	
for Industrial applications					[]	
EE206.3: To analyze the effect of						
controlled and				1		
uncontrolled converters	9	0	2		12	
in Power system and their						
mitigation.						
EE206.4: To design and develop						
the commutation circuits						
for semi-controlled power	8	4	2	1	15	
semiconductor devices.						
EE206.5 : Learn DC To DC	8	4	2	1	15	
Converter Using High	0		2	1	15	
power Switches						
Total	45	30	10	5	90	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Μ	Total		
		R	U	А	Marks
CO-1	Thyristor family	02	03	05	10
CO-2	Phase Control Rectifier	02	04	04	10
CO-3	Inverter	02	02	06	10
CO-4	Chopper	03	07	05	15
CO-5	Cycloconverter, Voltage Controller	01	02	02	05
	Total	10	18	22	50

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Design Demonstration
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition & Year
1	Power electronics,	Dr.P.S Bimbra	Khanna pubishers	2013
2	Introduction to Modern Power Electronics	A.M. Trzynadlowski	Wiley-Interscience	2014
3	. Power Electronics Principles and Applications	J.M. Jacob, Delmar	Thomson Learning	Eighth, 2023
4	. Power Electronics: Converters, Applications and Design	C.L Wadhwa	N. Mohan, T.M. Undeland and W.P. Robbins	1995.
5	Elements of Power Electronics System Approach	P.T. Krein	Oxford University Press	1998

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

(Revised as on of August 2023)

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
 - 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
 - 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
 - 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
 - 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
 - 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
 - 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
 - 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
 - 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE206 Course Title: Power electronics

						Progr	am Out	comes					Program Spe	cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes		Probl em Solvi ng	Desi gn Skill s	Lab orat ory Skill s	Team work	Com muni catio n Skill s	Ethic al and Profe ssion al Beha vior	Lifel ong Lear ning	Glob al and Socie tal Impa ct	Projec t Mana geme nt	Adap tabili ty	Profes sional Devel opme nt	Apply electrical and interdisciplinar y knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: To gain knowledge of various application of semiconductor switches by understanding their static and dynamic characteristics.	3	3	2	3	3	2	1	2	3	2	2	3	3	2
CO2 : To understand the performance characteristics of controlled AC-DC converters for R, RL & RLE loads.	3	3	3	3	2	2	1	2	1	2	2	2	2	2
CO3: To gain knowledge on basic DC-DC converters and their operation under continuous /discontinuous mode of conduction for RLE loads	3	3	2	2	3	1	2	2	1	2	2	3	2	2
CO4: To identify and formulate the requirements for four quadrant operation of DC motor.	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO5: To differentiate and understand the significance of various commutation circuits and their	3	3	3	3	2	3	2	3	2	2	2	2	3	3

consequence on device stress and understand the principle of DC-AC							
conversion and the different topology							
for three phase to three phase and							
single phase to single phase DC-AC							
conversion							

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self- Learning (SL)
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2	CO1: To gain knowledge of various application of semiconductor switches by understanding their static and dynamic characteristics.	SO1.1 SO1.2 SO1.3	1, 2, 3,4,5,6,7,8	Unit-1 Thyristor family 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9,1.10	1
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2	CO2 : To understand the performance characteristics of controlled AC-DC converters for R, RL & RLE loads.	SO2.1 SO2.2 SO2.3	1,2,3	Unit-2 Phase controlled rectifier 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,2.8,2.9,2.10	1,2
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2	CO3: To gain knowledge on basic DC-DC converters and their operation under continuous /discontinuous mode of conduction for RLE loads	SO3.1 SO3.2 SO3.3		Unit-3 : Inverter 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2	CO4: To identify and formulate the requirements for four quadrant operation of DC motor.	SO4.1 SO4.2 SO4.3 SO4.4	1,2	Unit-4 : Chopper 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8	1

PO:1,2,3,4,5,6,7 ,8,9,10,11,12	CO5: To differentiate and understand the significance of various commutation circuits	SO5.1 SO5.2 SO5.3		Unit 5: voltage controller, Cycloconverter 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8	
PSO 1,2	and their consequence on device stress CO6: To understand the principle of DC-AC conversion and the different topology for three phase to three phase and single phase to single phase DC- AC conversion		1, 2		1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-IV

Course Code:	EE207
Course Title :	Signals and Systems
Pre- requisite:	Student should have basic knowledge of Engineering mathematics, Engineering physics and Electronic Devices
Rationale:	This course aims to introduce the basic concepts of signals and systems its properties and analyzing the concepts of continuous time and discrete time systems. with the transformation techniques

Course Outcomes:

EE207.1: Understanding the concept and properties of different types of Signals and Systems
EE207.2: Understanding the behavior of continuous and discrete time LTI systems
EE207.3: Analyzing the different signals and systems using Fourier series and Fourier transform.
EE207.4: Understanding the significance of signals and system using Laplace transform and Z- transform
EE207.5: Analyzing the signals by applying Sampling and Reconstruction theorems, applications of signals and systems.

Scheme of Studies:

Cours				Scheme of studies(Hours/Week)						
e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+ SL)	Total Credits (C)		
Progra m Core (PCC)	EE207	Signals and Systems	3	0	1	1	5	3		

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Scheme of Assessment:

Theory					Schem	e of Asse	essment (N	farks)		
				Progress	sive Ass	essment	(PRA)		End	То
Course Categor y	Course Code	Course Title	Class/H ome Assign ment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Se mi nar on e (SA)	Clas s Acti vity any one (CA T)	Class Attenda nce (AT)	Total Mark s (CA +CT +SA +CA T+A T)	Semest er Assess ment (ESA)	tal M ar ks (P R A+ ES A)
PCC	EE207	Signals and Syste m s	15	20	5	5	5	50	50	10 0

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE207.1: Understanding of the concept and properties of different types of Signals and Systems **Approximate Hours**

Item	Approx Hrs
Cl	07
LI	0
SW	1
SL	1
Total	09

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Lab Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO1.1 Understand		Unit-1: Signal and system	1. Mathemati
the concept of		properties	cal accepts
signals and its		1.1 Definition of signal and signal	of different
types		properties	signals
SO1.2 Understand		1.2 periodicity, absolute integrability, determinism and stochastic	2. Types of different
the		character	signals and
characteristics of		1.3 the unit step, the unit impulse,	their
systems and its		the sinusoid, the complex	representat
types		exponential	ion
		1.4 Continuous and discrete time	
SO1.3 Understand the significance		signals, continuous and discrete amplitude signal	
of different		1.5 Definition of systems and	
properties of		systems properties	
signals and		1.6 linearity: additivity and	
systems		homogeneity, shift invariance	
		1.7 Causality, stability .realizability.	
		Examples	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignments of different types of Signals and Systems.
- ii. Numerical Problems Related to properties of signal and system.

EE207.2 Understanding of behavior of continuous and discrete time LTI systems

Item	Approx Hrs
Cl	09
LI	0
SW	1
SL	1
Total	11

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1 Understanding of LTI systems. SO2.2 Analyzing the different Responses SO2.3 Understand the different characteristics of LTI system 		 Unit-2 Behavior of continuous and discrete- time LTI systems 2.1 Explanation of LTI systems 2.2 Impulse response and step response, convolution, 2.3 Input-output behavior with aperiodic convergent inputs, cascade interconnections. 2.4 Characterization of causality and stability of LTI systems. 2.5 System representation through differential equations and difference equation 2.6 State-space Representation of systems. State-Space Analysis, 2.7 Multi-input, multi- output representation. State Transition Matrix and its Role. 2.8 Periodic inputs to an LTI system, 2.9 The notion of a frequency response and its relation to the impulse response. 	 Concept of system and its properties Convolution Time domain and frequency domain signals

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignment related to impulse response and step response of LTI Systems.
- ii. Numerical Problems related to LTI systems

EE207.3: Analyzing the different signals and systems using Fourier series and Fourier transform.

Item	Approx Hrs
Cl	10
LI	0
SW	1
SL	1
Total	12

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1 To discuss role of	•	Unit-3: Fourier Series and	1. Basics of
Fourier series and Fourier		Fourier Transform	Fourier series
transform		3.1 Introduction to Fourier	2. Basics of
		series and types of	Fourier
SO3.2 To study the different		Fourier series	transform
properties of Fourier		3.2 Fourier series	
series and Fourier		representation of	
transform		periodic signals,	
		Waveform and	
SO3.3 To understand the		Symmetries	
significance of DTFT		3.3 Calculation of Fourier	
		Coefficients	
		3.4 Introduction to Fourier	
		transform and types of	
		Fourier transform	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

3.5 Fourier Transform convolution
3.6 Fourier Transform multiplication and their
effect in the frequency domain ,magnitude and phase response
3.7 Fourier domain duality
3.8 Introduction to discrete Fourier transform
3.9 Properties of DTFT3.10 Parseval's Theorem

SW-3 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Written Assignments related to Fourier series and fourier transform.
 - ii. Numerical Problems related to different properties of Fourier series and Fourier transform

EE207.4: Understanding the significance of signals and system using Laplace transform and Z- transform

Item	Approx Hrs
Cl	10
LI	0
SW	1
SL	1
Total	12

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
 SO4.1 Discuss the role of Laplace transform for continuous time signals and systems SO4.2 Understand the significance of poles and zeros for signals and systems SO4.3 Analyze the Z-transform of discrete time signals and systems SO4.4 Study the significance of ploes and zeros for signals and systems 		 Unit-4: Laplace and z- Transforms 4.1 Review of the Laplace Transform for continuous time signals. 4.2 Review of the Laplace Transform for continuous time systems. 4.3 Poles and zeros of signals 4.4 Poles and zeros of system functions. 4.5 Laplace domain analysis 4.6 solution to differential equations and system behaviour. 4.7 Introduction to the z-Transform for discrete time signals and systems 4.8 Introduction to the z-Transform for discrete time systems 4.9 poles and zeros of systems and sequences 4.10Z- transform domain analysis. 	 i. Basics of Laplace transform ii. Basics of Z- transform iii. Continuous time signals and discrete time signals

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Numerical Problems related to Laplace transform
 - ii. Numerical Problems Based on Z-transform

EE207.5: Analyzing the signals by applying Sampling and Reconstruction theorems, applications of signals and systems.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Item	Approx Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1 Discussion about		Unit 5: Sampling and	1. Analogand
sampling theorem		Reconstruction	Digital
SO5.2 Understand the ReconstructionSO5.3 Application of		 5.1 Introduction to the Sampling Theorem and its implications 5.2 Derivation of sampling 	converters. 2. Samplingand its Types
sampling and reconstruction. SO5.4 Study of different types of application of		theorem. 5.3 Characteristics and significance of sampling theorem 5.4 Reconstruction: ideal	
signals and systems		5.4 Reconstruction. Ideal interpolator zero-order hold and first-order hold 5.5 Aliasing and its effects	
		5.6 Relation between continuous and discrete time systems.	
		5.7 Introduction to the applications of signal and system theory	
		5.8 modulation techniques for communication and filters5.9 feedback control systems.	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignment based on reconstruction and Hold
- ii. Numerical Problem based on Sampling theorem.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE207.1: Understanding the concept and properties of different types of Signals and Systems	7	1	1	09
EE207.2: Understanding the behavior of continuous and discrete time LTI systems	9	1	1	11
EE207.3: Analyzing the different signals and systems using Fourier series and Fourier transform.	10	1	1	12
EE207.4: Understanding the significance of signals and system using Laplace transform and Z- transform	10	1	1	12
EE207.5: Analyzing the signals by applying Sampling and Reconstruction theorems, applications of signals and systems.	9	1	1	11
Total Hours	45	5	5	55

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Μ	Total		
co	Omt Hites	R	U	Α	Marks
CO-1	Signal and System Properties	02	05	03	10
CO-2	Behavior of continuous and discrete-	04	04	02	10
0-2	time LTI systems	04			10
CO-3	Fourier series and Fourier Transform	02	06	02	10
CO-4	Laplace and z- Transforms	03	04	03	10
CO-5	03	05	02	10	
	Total	14	24	12	50

AKSUniversity

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Legend:R: Remember,U: Understand,A: Apply

The end of semester assessment for Signal and System will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Demonstration of Instruments.
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

	(a) Books :										
S. No.	Title	Author	Publisher	Editio n & Year							
1	Signals and systems	A. V. Oppenheim, A. S. Willsky and S. H. Nawab,	Prentice Hall India,	1997							
2	Signals and systems	H. P. Hsu	McGraw Hill Education	2010.							
3	Signals and Systems	S. Haykin and B. V. Veen	John Wiley and Sons,	2007							
4	Linear Systems and Signals	B. P. Lathi	Oxford University Press	2009							
5	Dept.	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.									

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs,POs and PSOs Mapping

Course Title: B. Tech. Electrical Engineering

Course Code: EE207

Course Title: Signal and System

		Program Outcomes									Program Spec	cific Outcome		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neer ing kno wled ge	Pro ble m Solv ing	Desi gn Skill s	Lab orat ory Skill s	Tea m wor k	Co mm unic atio n Skill s	Ethi cal and Prof essio nal Beh avio r	Lifel ong Lea rnin g	Glo bal and Soci etal Imp act	Proje ct Mana geme nt	Adap tabilit y	Profe ssion al Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understanding the concept and properties of different types of Signals and Systems	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO 2: Understanding the behavior of continuous and discrete time LTI systems	3	3	3	3	2	2	1	3	2	2	2	3	3	2
CO3: Analyzing the different signals and systems using Fourier series and Fourier transform	3	2	3	2	2	1	2	2	2	2	2	3	3	2
CO 4: Understanding the significance of signals and system using Laplace transform and Z- transform	3	3	2	2	2	2	2	3	2	2	2	2	2	3
CO 5: Analyzing the signals by applying Sampling and Reconstruction theorems, applications of signals and systems.	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum	n Map:	I			
POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
	CO1: Understanding the concept and properties of different types of Signals and Systems	SO1.1 SO1.2 SO1.3		UNIT-1: Signal and system properties 1.1,1.2,1.3,1.4,1.5,1.6,1.7	1,2
,9,10,11,12	CO 2: Understanding the behavior of continuous and discrete time LTI systems			UNIT-2: Behavior of continuous and discrete-time LTI systems 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9	1,2,3
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO3: Analyzing the different signals and systems using Fourier series and Fourier transform	~ ~ ~ ~		Unit-3: Fourier Series and Fourier Transform 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10	1,2
	CO 4: Understanding the significance of signals and system using Laplace transform and Z- transform	SO4.2		UNIT-4: Laplace and z- Transforms 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8, 4.9,4.10	1,2,3
,9,10,11,12 PSO 1-2	CO 5: Analyzing the signals by applying Sampling and Reconstruction theorems, applications of signals and systems.	SO5.1		UNIT-5: Sampling and Reconstruction 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9.	1,2

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-IV

Course Code: Course Title :	EE208 Electromagnetic Fields
Pre- Requisite:	Engineering Mathematics, Engineering Physics
Rationale:	The purpose of the course is to familiarize the students with the Concept of electric Fields, magnetic fields, time-varying fields and electromagnetic waves.

Course Outcomes: Students will be able to

- EE208.1: Develop understanding of vector analysis and its use in different types of coordinate systems.EE208.2: Understand different concepts and laws that govern static Electric fields and apply them to solve magnetostatics problems.
- EE208.3: Study the nature of electric field inside conductor, insulator and Dielectrics.
- **EE208.4:** Understand different concepts and laws that governs static Magnetic fields and apply them to solve magnetostatics problems
- **EE208.5:** Analyze electromagnetic wave propagation in different media.

Scheme of Studies:

Cours e				Total Credits				
Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Progra m Core (PCC)	EE208	Electromagnetic Fields	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

				Scheme of Assessment (Marks)						
				Progress	sive As	sessment	t (PRA)		End	Tota
Cou rse Cate gory	Cous e Code	Course Title	Class/Ho me Assignm ent 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Sem inar one (SA)	Class Activi ty any one (CAT)	Class Attendan ce (AT)	Total Marks (CA+ CT+S A+CA T+AT)	Semester Assessme nt (ESA)	l Mar ks (PR A+ ESA)
PCC	EE208	Electroma gnetic Fields	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE208.1: Develop understanding of vector analysis and its use in different types of coordinate systems.

Item	Approx. Hrs.
Cl	14
LI	0
SW	2
SL	1
Total	17

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session	Lab	Class room Instruction	Self-
Outcomes	Instruction	(CI)	Learning
(SOs)	(LI)		(SL)
		Unit-1: Coordinate system and	
Students will be able		Electric fields	1. Practice of
to			numerical
		1.1 Addition and subtraction of	Problems Related
SO1.1 Understand the		Vectors,	to coordinate
concept of		1.2 Scalar and vector	systems.
vectors and basic		multiplications of Vectors,	2. Practice of
vector		triple products.	numerical
operations.		1.3 Components of vectors.	Problems Related
		1.4 Tutorial-I	to Gradient
SO1.2 Understand the		1.5 Cartesian co-ordinate system	Divergence and
concept of		1.6 cylindrical co-ordinate system	Curl.
Coordinate		1.7 Spherical co-ordinate system	
system, their		1.8 Tutorial-II	
types,		1.9 Vector operator Del Gradient	
Representation		of Scalar	
and Conversion.		1.10 Divergence of Vector field	
		1.11 Curl of Vector field	
SO1.3 Study the		1.12 Divergence Theorems	
concept of		1.13 stoke's Theorems	
Gradient,		1.14 Tutorial-III	
Divergence and			
Curl and			
calculate them			
for given			
problem.			

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems Related to coordinate systems.
- ii. Numerical Problems Related to Gradient, Divergence and Curl.
- **EE208.2:** Understand different concepts and laws that govern static Electric fields and apply them to solve magneto statics problems.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Item	Approx. Hrs.
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
Students will be able		Unit-2: Electrostatics	
			1. Concept of
SO2.1 Apply Coulombs law		2.1 Coulomb's law	Electric charge
and gauss law to		2.2 electric field intensity	2. Practice of
calculate electric field		due to different charge	numerical
intensity and Electric		distribution viz. line	problems based
flux density for given		charge, sheet charge,	on Coulomb's
problem.		2.3 electric potential,	law and Gauss
		2.4 Tutorial-I	Law.
SO2.2 Understand the		2.5 properties of potential	
concept of electric		function, potential	
Potential, Potential		gradient, equipotential	
Difference and		surfaces, line of force,	
equipotential surface		2.6 Gauss law, applications of Gauss law.	
SO2.3 Learn the Concept of		2.7 Electric dipole, dipole	
Electric Dipole and		moment, potential &	
solve related		2.8 electric field intensity	
numerical problems		due to dipole,	
_		2.9 Tutorial-II	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems based on Coulomb's Law and Gauss Law.
- ii. Numerical Problems based on Electric Potential and Electric Dipole

EE208.3: Study the nature of electric field inside conductor, insulator and Dielectrics. **Approximate Hours**

Item	Approx. Hrs.
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning
	(LI)		(SL)
Students will be able to	•	Unit-3: Conductors,	1. Conductor,
		Dielectrics and	Insulator and
SO 3.1 Analyze the		Capacitance.	Dielectric
behavior of electric			2. Practice of
field inside		3.1 Conductor &	Numerical
conductor, insulator		insulator,	Problems of
and dielectric.		3.2 Behavior of	Capacitance.
		conductors in an	3. Practice of
SO 3.2 Study Capacitance		electric field, electric	Numerical
and their different		field inside a	Problems of
types and Solve		dielectric,	Laplace and
related Numerical		polarization,	Poisson's
Problems.		3.3 Boundary value	Equations.
		conditions for electric	
		Field,	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO 3.3 Study of Ohm's law	3.4 Capacitance &	
in point form and	Capacitances of	
Continuity equation.	various types of	
	capacitors, Energy	
SO 3.4 Understand	stored and energy	
Different	density in static	
Electrostatic	electric field,	
Boundary Value	3.5 Tutorial-I	
conditions and their	3.6 Current density,	
mathematical	conduction &	
relation.	convection current	
	density ohms law in	
	point form,	
	3.7 Equation of	
	continuity. Laplace's	
	& Poisson's	
	equations,	
	3.8 solution of Laplace's	
	equation	
	3.9 Tutorial-II	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems related to Laplace and Poisson's Equations.
- ii. Numerical Problems related to Capacitance and Current Density.
- **EE208.4:** Understand different concepts and laws that governs static Magnetic fields and apply them to solve magnetostatics problems

Item	Approx. Hrs.
Cl	18
LI	0
SW	2
SL	1
Total	21

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Lab Instruction	Class room Instruction (CI)		Self-Learning (SL)
(503)	(LI)	(CI)		(31)
Students will be able to		Unit-4 : Magnetostatics-II	1.	Magnetic flux
		4.1 Biot-Savart Law, Ampere Law,	2.	Magnetic flux
SO4.1 Understand and		4.2 Magnetic flux and magnetic flux		density, Magnetic
apply Biot Savart's		density,		field Intensity.
Law to calculate		4.3 Scalar and Vector	3.	Inductance and
magnetic field		Magnetic potentials.		their types.
intensity for given		4.4 Tutorial-I	4.	Faraday's Law
problems.		4.5 Steady magnetic fields produced by	5.	Practice of
-		current carrying conductors.		Numerical
SO4.1 Understand the		4.6 Force on a moving charge, Force on		problems
concept of Magnetic		a differential current element,		
Potential and their		4.7 Force between differential current		
types		elements.		
SO4.2 Understand		4.8 Magnetic dipole & dipole moment, a		
Inductance and their		differential current loop as dipole,		
types and solve		4.9 torque on a current carrying loop in		
related numerical		magnetic field,		
problems.		4.10 Tutorial-II		
SO4.3 Understand		4.11 Magnetic Boundary conditions.		
faraday's Law and		4.12 Self and Mutual inductances,		
its application		determination of self & mutual		
SO4.4 Understand		inductances,		
Transformer and		4.13 Energy stored in magnetic Field &		
motional EMFs and		energy density,		
their significance.		4.14 Faraday's Law, transformer &		
SO 4.5 Understand		motional EMFs, Displacement		
maxwell's equation		current,		
and their different		4.15 Maxwell's equations as		
forms under different		Generalization of circuit equations,		
circumstances		4.16 Maxwell's equation in free space,		
		Maxwell's equation for		
		harmonically varying Field, static		
		and steady fields,		
		4.17 Maxwell's equations in differential		
		& integral form, Motional		
		Electromotive forces.		
		4.18 Tutorial-III		

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems Based on Calculation of Inductance magnetic energy
- ii. Numerical Problems Based Biot Savart's Law, Ampere Law and Faraday's Law.

EE208.5: Analyze electromagnetic wave propagation in different media.

Item	Approx. Hrs.
Cl	10
LI	0
SW	2
SL	1
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
Students will be able toSO5.1 Understand the conceptElectromagneticWaves and their mathematical representation in different mediaSO5.2 understand pointing vector theorem and their	(LI)	 Unit 5: Electromagnetic Waves 5.1 Electro Magnetic Waves 5.2 Derivation of Wave Equation , 5.3 Uniform plane wave in time domain in free space 5.4 uniform plane wave in free space, 5.5 Uniform plane wave in dielectrics and conductors, 5.6 Tutorial-I 	 Electro Magnetic Waves Polarization of waves,
application. SO5.3 Understand the concept of polarization and their types		 5.0 Futorial-1 5.7 Pointing Vector theorem, 5.8 Polarization of waves, Reflection by conductors and dielectric – Normal & Oblique incidence, 	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

5.9 Reflection at surface of a	
conducting medium,	
5.10 Tutorial-II	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Theoretical Assignment related to pointing vectors and electromagnetic waves.

i. Numerical Problem based on different parameters of Electromagnetic waves.

b. Mini Project:

Draw the chart of Different Types of polarization.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE208.1: Develop understanding of vector analysis and its use in different types of coordinate systems.	14	02	1	17
EE208.2: Understand different concepts and laws that govern static Electric fields and apply them to solve magneto statics problems.	9	2	1	12
EE208.3: Study the nature of electric field inside conductor, insulator and Dielectrics.	9	1	1	11
EE208.4: Understand different concepts and laws that governs static Magnetic fields and apply them to solve magneto statics problems	18	2	1	21
EE208.5: Analyze electromagnetic wave propagation in different media.	10	2	1	13
Total Hours	60	9	5	74

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

		Marks	Marks Distribution					
CO	Unit Titles	R	U	А	Total Marks			
CO-1	Vector Calculus.	02	03	05	10			
CO-2	Static Electric Field.	02	03	03	8			
CO-3	Conductors, Dielectrics and Capacitance.	02	03	02	7			
CO-4	Static Magnetic Field and Maxwell's Equations.	03	06	06	15			
CO-5	Electromagnetic Waves	03	05	02	10			
	Total 12 20							
	Legend: R: Remember, U: Under	rstand,	A: <i>A</i>	Apply				

The end of semester assessment for Electromagnetic fields will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- **3.** Group Discussion
- 4. Practical Demonstration of Instruments.
- **5.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

(a) **Books** :

S.No.	Title	Author	Publisher	Edition & Year			
1	Elements of Electromagnetic	Mathew N.O Sadiku	Oxford university press	Fourth, 2009			
2	Element of Engineering Electromagnetics	N.N. Rao;	PHI	Sixth, 2006			
3	Engineering Electromagnetic;	William H. Hayt;	TMH.	Ninth, 2020			
4	Electromagnetic Field	S.P. Seth;	Dhanpat Rai & Sons	2001			
5	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.						

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: EE208

Course Title: Electromagnetic Fields

		Program Outcomes							Program Speci	ific Outcome				
	РО 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	En gin eeri ng kno wle dge	Pro ble m Solv ing	Desi gn Skill s	Lab orat ory Skill s	Tea m wor k	Co mm unic atio n Skill s	Ethica l and Profes sional Behavi or	Lifel ong Lea rnin g	Glob al and Societ al Impa ct	Proje ct Mana geme nt	Adapta bility	Profe ssiona l Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Develop understanding of vector analysis and its use in different types of coordinate systems	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO 2: Understand different concepts and laws that govern static Electric fields and apply them to solve magnetostatics problems	3	3	3	3	2	2	1	3	2	2	2	3	3	2
CO3: Study the nature of electric field inside conductor, insulator and Dielectrics	3	3	2	2	1	1	2	2	1	2	2	3	2	3
CO 4: Understand different concepts and laws that governs static Magnetic fields and apply them to solve magnetostatics problems	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO 5: Analyze electromagnetic wave propagation in different media	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning (SL)
,9,10,11,12	CO1: Develop understanding of vector analysis and its use in different types of coordinate systems	SO1.1SO1.2 SO1.3		Unit-1: Coordinate system and Electric fields 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9,1.10,1.11,1.12,1.13,1.14	1,2
,9,10,11,12	CO 2: Understand different concepts and laws that govern static Electric fields and apply them to solve magnetostatics problems	SO2.1SO2.2 SO2.3		Unit-2: Electrostatics 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9	1,2
,9,10,11,12 PSO 1-2	CO3: Study the nature of electric field inside conductor, insulator and Dielectrics	SO3.1SO3.2 SO3.3 SO3.4		Unit-3: Conductors, Dielectrics and Capacitance. 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1,2,3
,9,10,11,12	CO 4: Understand different concepts and laws that governs static Magnetic fields and apply them to solve magnetostatics problems	SO4.1SO4.2 SO4.3SO4.4 SO4.5		Unit-4 : Magnetostatics-II 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4. 11,4.12,4.13,4.14,4.15,4.16,4.17,4.18	1,2,3,4,5
	CO 5: Analyze electromagnetic wave propagation in different media	SO5.1SO5.2 SO5.3		Unit 5: Electromagnetic Waves 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10	1,2

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-IV

Course Code:HSMC02Course Title :Principle of managementPre-requisite:Student should have basic knowledge about the Energy sources.Rationale:This course helps in achieving the goals of the organization
effectively and efficiently and guides the managers to fulfill their
commitment towards its employees and society.

Course Outcomes:

HSMC02.1: to learn about management and its principles.
HSMC02.2: to understand the process of planning and decision making.
HSMC02.3: Apply the concept of organizing for the effective functioning of a management.
HSMC02.4: Evaluate leadership style to anticipate the consequences of each leadership style.
HSMC02.5: Demonstrate the techniques for controlling and coordination.

Scheme of Studies:

Cours				Scheme of studies(Hours/Week)						
e Categ ory	Course Code	Course Title	CI	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits (C)		
HSMO	E HSMC02	Principle of Management	3	0	1	1	5	3		

- Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture(L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.
- **Note:** SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

					Scher	ne of As	sessmen	t (Marks)		
				Progre	ssive As	sessmen	t (PRA	.)	End	
Cours e Categ ory	Course Code	Course Title	Class/Ho me Assignm ent 5 number 3 marks each (CA)	Class Test (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Class Activ ity any one (CAT)	Class Atten dance (AT)	Total Marks (CA+CT+S A+CAT+A T)	Semester Assessm ent (ESA)	Total Mark s (PRA + ESA)
HSMC	HSMC2 02	PRINCI PLE OF MANA GEMEN T	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC02.1: to learn about management and its principles. **Approximate Hours**

Item	AppX Hrs
Cl	07
LI	0
SW	2
SL	1
Total	10

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
		Unit-1:	1. Case
		Management	study
SO1.1 Understand the			
principles of		1.1 Definition of	
management		Management - Science	
		or Art	
SO1.2 Understand the theories		1.2 Management and	
of management given		administration	
by some scientist		1.3 Development of	
		management Thought	
		1.4 Contribution of	
SO1.3 Understand the various		Taylor 1.5 contribution	
types of business		of Fayol	
organization		1.6 Functions of	
		1.7 Management Types	
		of Business	
		organization.	

a. Assignments:

i. Drawing figures (tree diagrams), poster making etc.

b. Mini Project:

i. Case study of a particular situation.

HSMC02.2: to understand the process of planning and decision making. **Approximate Hours**

Item	AppX Hrs
Cl	10
LI	0
SW	1
SL	1
Total	12

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Self Learning (SL)	
 SO2.1 Understand the concept of Planning SO2.2 Understand the objective and process of making objective SO2.3 understand the planning premises. 		Unit-2 : Planning 2.1 Nature of Planning 2.2 Purpose of Planning 2.3 Steps involved in Planning 2.4 Objectives 2.5 Setting Objectives 2.6 Process of making Objectives 2.7 Strategies 2.8 Policies 2.9 Planning Premises 2.10 Forecasting, Decision- making	

SW-2 Suggested Sessional Work(SW):

a. Assignments:

i. Case study about the planning.

Mini Project:

i. Draw the steps of using process of making objective.

HSMC02.3: Apply the concept of organizing for the effective functioning of a management.

Item	AppX Hrs
Cl	8
LI	0
SW	2
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
		Unit-3 : Organizing	
 SO3.1 To Understand the organizational structure of any organization. SO3.2To understands the process of staffing. SO3.3To Understand the HRD policies and power and authorities for their employees. 		 Unit-3 : Organizing 3.1 Nature and Purpose of Formal organization and informal organization 3.2 Structure of Organization Chart 3.3 Process of organizational chart 3.4 Authority relationship(Line and Staff Authority) 3.5 Centralization and De-Centralization 3.6 Delegation of Authority 3.7 Staffing, Selection process technique 3.8 Managerial 	
		effectiveness	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Learning the organizational structure.

HSMC02.4: Evaluate leadership style to anticipate the consequences of each leadership style.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	AppX Hrs
Cl	8
LI	0
SW	1
SL	1
Total	10

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO4.1 to understand the		Unit-4 :Leadership	
process of directing		4.1 Scope - Human Factors -	
		Creativity and Innovation.	
SO4.2 Understanding the		4.2 Harmonizing Objectives	
motivation and motivation		4.3 Leadership - Types of	
theories.		Leadership Motivation	
SO4.3 to understand the		4.4 Motivation theories,	
communication and		Motivational Techniques	
communication process.		4.5 Job Enrichment,	
		communication,	
		communication process.	
		4.6 barrier and breakdown of communication	
		4.7 effective communication	
		4.8 electronic media	
		communication	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

HSMC02.5: Demonstrate the techniques for controlling and coordination.

Item	AppX Hrs
Cl	12
LI	0
SW	2
SL	1
Total	15

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learn ing (SL)
SO5.1 Understand the		Unit 5: Controlling and	(51)
process of		Coordination	
controlling.		5.1 system of controlling	
C		5.2 process of controlling	
SO5.2 understand role of		5.3 requirement for effective control	
computer in		5.4 budget as control technique	
management.		5.5 information technology in	
_		controlling	
SO5.3 learn how to		5.6 use of computer in handling the	
control overall		information	
performance in any		5.7 productivity	
organisation		5.8 control of overall performance	
		5.9 direct and preventive control,	
SO5.4 Understanding the		reporting	
global theory of		5.10 the global environment	
management		5.11 globalization and liberalization	
		5.12 international management,	
		global theory of management	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work(SW):

a. Assignments:

Learn how to control overall performance in any organization

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
HSMC02.1: To Understand the historical development of management in any	7	2	1	10
HSMC02.2: To understand the concept of planning, process of planning and planning premises.	10	1	1	12
HSMC02.3: To understand the concept of organizing, staffing, organizational chart and power and authorities of the employees.	8	2	1	11
HSMC02.4: Understand the concept of directing, communication, process of communication.	8	1	1	10
HSMC02.5: Understand the process of budgeting, controlling and reporting.	12	2	1	15
Total Hours	45	8	5	58

Suggestion for End Semester Assessment

Suggested Specification Table(For ESA)

CO	Unit Titles	Marks Distribution						
		R	U	A	Marks			
CO-1	Historical Development	03	02	0	05			
CO-2	Planning	02	08	0	10			
CO-3	Organizing	08	07	0	15			
CO-4	Directing	08	07	0	15			
CO-5	Controlling	03	02	0	05			
	Total	24	26	0	50			

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Legend:R: Remember,U: Understand,A: ApplyThe end of semester assessment for Principle of management will be held with written examination of 50marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. ICT Based Teaching Learning(Video lecture/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp,Mobile,Onlinesources)
- 7. Brainstorming

Suggested Learning Resources:

	(a) Books:							
S.	Title	Author	Publisher	Edition & Year				
No.								
1	Essentials of	Harold kooritz &	Tata	1998				
	management	Heinz wehrich	McGraw-Hill					
2	Essentials of	Joseph L Massie	Prentice Hall of	Fourth edition2003				
	management		india					
3	Lecture note provided by							
	Dept. of	f Electrical engineerin	ng, AKS University, S	atna.				

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs, POs and PSOs Mapping

Course Title: B. Tech. Electrical Engineering

Course Code: HSMC02

Course Title: Principle of management

		Program Outcomes									Program Speci	fic Outcome		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neer ing kno wled ge	Pro ble m Solv ing	Desi gn Skill s	Lab orat ory Skill s	Tea m wor k	Co mm unic atio n Skill s	Ethica l and Profes sional Behavi or	Lifel ong Lea rnin g	Glob al and Societ al Impa ct	Proje ct Mana geme nt	Adapt ability	Profess ional Develo pment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: To Understand the historical development of management in any	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO2: To understand the concept of planning, process of planning and planning premises.	3	3	3	3	2	2	1	3	2	2	2	3	3	2
CO3: To understand the concept of organising, staffing, organizational chart and power and authorities of the employees.	3	3	2	2	1	1	2	2	1	2	2	3	2	3
CO4: Understand the concept of directing, communication, process of communication.	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO5: Understand the process of budgeting, controlling and reporting.	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8	CO1: To Understand the	SO1.1		Unit-1: Historical Development	
,9,10,11,12	historical development of	SO1.2			1
PSO 1,2	management in any	SO1.3		1.1,1.2,1.3,1.4,1.5,1.6,1.7	
PO:1,2,3,4,5,6,7,8	CO2: To understand the concept	SO2.1		Unit-2: Planning	
,9,10,11,12	of planning, process of planning	SO2.2		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,	
PSO 1,2	and planning premises.	SO2.3		2.10	
PO:1,2,3,4,5,6,7,8	CO3: To understand the concept	SO3.1		Unit-3: Organizing.	
,9,10,11,12	of organizing, staffing,	SO3.2			
	organizational chart and power	SO3.3		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8	
PSO 1,2	and authorities of the employees.				
9 10 11 17	CO4: Understand the concept of directing, communication, process	SO4.1 SO4.2		Unit-4 : Directing	
	of communication.	SO4.3		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8	
PO:1,2,3,4,5,6,7,8	CO5: Understand the process of	SO5.1		Unit 5: Controlling	
	budgeting, controlling and	SO5.2			
	reporting.	SO5.3 SO5.4		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10, 5.11, 5.12	

Faculty of Engineering and Technology **Department of Electrical Engineering**

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-IV

Course Code: Course Title :	OC201 Environmental Science (Audit)
Pre-requisite:	To study this course, the student must have a knowledge about the environmental components, pollution, biodiversity and ecosystem at senior secondary level.
Rationale:	Environmental awareness is today's need as pollution impact is highly increasing. Environmental legislation and Audit is the mechanism to enforce environment friendly techniques/methods to business and industries. And hence knowledge of environmental legislation and audit is an essential requirement for environment engineers. This course therefore aims to develop in students, knowledge of the legal concepts, procedures and techniques which have evolved. The course also provides knowledge of tools about the environmental audit. The course will also help students to understand and carry out the environmental auditing and life cycle assessment
Course Outcomes: After th	the completion of this course the students will be able to

Course Outcomes: After the completion of this course the students will be able to

OC201.1: understand about air, water and soil pollution and there causes.

OC201.2: aware of various laws and policies for environment protection

OC201.3: understand about benefits and barriers of EMS and purpose of EIA.

OC201.4: understand about objective and scope of Environmental Auditing and their types.

OC201.5: prepare an audit report for a given organization and evaluate the impact of their activities on environment

Scheme of Studies:

Cours				Scheme of studies(Hours/Week)				
e Categ ory	Course Code	Course Title	CI	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits (C)
Other Courses	OC201	Environmental Science (Audit)		0	1	1	4	0

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture(L) and Tutorial (T)and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)							
Cours e Categ ory	Course Code	Course Title	Class/H ome Assignm ent 5 number 3 marks each (CA)	Progress Class Test (2 best out of 3) 10 marks each (CT)	ssive As Semi nar one (SA)	sessmen Class Activ ity any one (CAT)	t (PRA Class Atten dance (AT)	Total Marks (CA+CT+S A+CAT+A T)	End Semeste r Assessm ent (ESA)	Total Mar ks (PRA + ESA)
Other Courses	OC201	Environm ental Science (Audit)	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OC201.1: understand about air, water and soil pollution and there causes. **Approximate Hours**

Item	AppX Hrs
Cl	07
LI	0
SW	1
SL	2
Total	10

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction (LI)	(CI)	Learning (SL)
SO1.1 Understand air pollution and its sources.	(==)	Unit-1: Industrial pollution and its mitigation	1. Difference between pollution
SO1.2Know about gaseous and particulate pollutants.		1.1 Air Pollution: Sources, classification of air pollutants,1.2 mitigation and control	and pollutants. 2. Water
SO1.3 Observe the sources of water pollution.		measures of Particulate matters and gaseous pollutants. 1.3 Water Pollution: sources,	quality standards
SO1.4 Learn about water quality parameter.		classification, 1.4 water quality parameters, 1.5 control measures of water pollution.	
SO1.5 Evaluate the effects of noise pollution.		 1.6 Soil pollution and impacts, soil conservation, 1.7 Noise pollution: sources, effects and control measures 	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Classify the air pollutants on different basis.
- ii. Describe control measures of noise pollution.
- b. Mini Project: Enlist the PPEs which used to minimize the effects of noise pollution.

c. Other Activities (Specify):

i. Measure the air quality of different places by using Sammer App.

OC201.2: aware of various laws and policies for environment protection .Approximate Hours

Item	AppX Hrs
Cl	6
LI	0
SW	1
SL	1
Total	8

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO2.1		Unit-2 : Environmental Law and	1. What is the
Know about the		Policy	difference between law
environmental acts.			and policies?
SO2.2		2.1 Highlights of the Environmental	
To learn about Water		Acts,	
Pollution act.		2.2 Institutional arrangements for The	
SO2.3		water (Prevention & Control of	
To understand the air		pollution) Act 1974,	
Pollution Act.		2.3 The Air (Prevention & Control of	
SO2.4		pollution) Act 1981,	
To discuss about		2.4 The Environmental Protection Act	
Environmental		1986,	
protection act		2.5 The waste management Act 1996,	
SO2.5		2.6 The National Green Tribunal Act	
To learn about the		2010.	
waste management act.			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Mention the measure provisions of air pollution control act.
- ii. Describe waste management act..

OC201.3: understand about benefits and barriers of EMS and purpose of EIA.

Item	AppX Hrs
Cl	6
LI	0
SW	1
SL	1
Total	8

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO3.1 Know about ISO 14000 & 14001		Unit-3 : Environmental Management System	1. ISO Certification
SO3.2 Learn applications of EMS SO3.3 Know the methods of EIA SO3.4 Apply the methods of EIA SO3.5 Discuss about sustainable development.		 3.1 ISO 14000 - EMS as per ISO 14001– benefits and barriers of EMS – 3.2 Concept of continual improvement and pollution prevention, 3.3 Applications of EMS, Environmental Management plan. 3.4 Introduction and Principle – purpose of EIA, 3.5 Sustainable development and EIA, 3.6 The EIA Process – methodologies and practice 	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Methods of EIA
- ii. Applications of EMS
- iii. Environmental Management Plan
- b. Mini Projects:
 - i. Study the EIA reports of different developmental Projects and create a EIA report for cement plant.

OC201.4: understand about objective and scope of Environmental Auditing and their types

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Approximate Hours

Item	AppX Hrs
Cl	5
LI	0
SW	1
SL	1
Total	7

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction(CI)	Self- Learning(SL)
(508)	(LI)		
SO4.1	•	Unit-4 : EnvironmentalAudit-	1 Basic
Define environmental		Scope and Requisites	introduct
auditing.		4.1 Introduction to	ion of
		Environmental Auditing.	environ
SO4.2		Objectives and scope, Types,	mental
Know the Scopes of		4.2 Basic structure of	auditing.
Environmental auditing.		Environmental Auditing, General	
		Audit	
SO4.3		Methodology,	
Learn the objectives of		4.3 Elements of AuditProcess:	
environmental auditing.		coverage-, GOI	
		notification on	
SO4.4		environmental audit-	
Apply the methods of		4.4 Benefits to industry. Reporting	
Auditing.		environmentalaudit findings-	
5045		4.5 Importance of environmental	
SO4. 5		audit report to industry, public	
Create the auditing		and the government	
reports.			

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Objectives, scope& Typesof environmental auditing.
- b. Other Activities (Specify):Create an environmental audit report for cement plant.
- OC201.5: prepare an audit report for a given organization and evaluate the impact of their activities on environment

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Approximate Hours

Item	AppX Hrs
Cl	6
LI	0
SW	1
SL	1
Total	8

Session Outcomes	Laboratory Instruction	Classroom Instruction(CI)	Self-Learning
(SOs)	(LI)	Classroom Instruction(CI)	(SL)
SO5.1 Know about		Unit 5: Tools and Techniques for	1. How to
Environmental performance		Environmental Auditing	prepare audit report
indicators		5.1 Environmental performance indicators	of Energy, water and
SO5.2		5.2 Understanding sustainability in the	Waste
Understanding		context of environmental auditing	
sustainability in the		5.3 Introductory Risk Assessment and	
context of		Management	
environmental			
auditing		5.4 Introductory Life Cycle Assessment	
		(LCA)	
SO5.3 Learn about			
Risk Assessment and		5.5 Brief about Water audit	
Management			
SO5.4		5.6 Brief about Energy audit	
Understanding Life			
Cycle Assessment			
(LCA)			
SO5. 5 Create report of Energy audit.			

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Prepare an interpretive electricity consumption report of the organization/ institution over a five-year period (either actual or arbitrary data can be used).

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

1. Prepare an audit report of electricity consumption of the university campus

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
OC201.1: understand about air, water and soil pollution and there causes.	7	1	2	10
OC201.2: aware of various laws and policies for environment protection	6	1	1	8
OC201.3: understand about benefits and barriers of EMS and purpose of EIA.	6	1	1	8
OC201.4: understand about objective and scope of Environmental Auditing and their types.	5	1	1	7
OC201.5: prepare an audit report for a given organization and evaluate the impact of their activities on environment	6	1	1	8
Total Hours	30	5	6	41

Suggestion for End Semester Assessment

Suggested Specification Table(For ESA)

CO	Unit Titles	Ν	Total		
		R	U	Α	Marks
CO-1	Industrial pollution and its mitigation	03	01	01	05
CO-2	Environmental Law and Policy	02	06	02	10
CO-3	Environmental Management System	03	07	05	15
CO-4	Environmental Audit- Scope and Requisites	00	10	5	15
CO-5	Practical/ Hands on Exercise	3	2	0	05
	Total	11	26	13	50

AKSUniversity

Faculty of Engineering and Technology **Department of Electrical Engineering**

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

U: Understand, A: Apply

Legend: **R: Remember,** The end of semester assessment for Environmental Science will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. ICT Based Teaching Learning(Video lecture/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp,Mobile,Onlinesources)
- 7. Brainstorming

Suggested Learning Resources:

	(a) Books:				
S.No.	Title	Author	Publisher	Edition&Year	
1	Environmental Health and Safety Audits: A Compendium of Thoughts and Trends	Cahill, L.B	Bernan Press.	2017	
2	Handbook of Energy Audits	Thuman, A., Niehus, T., Younger, W.J.	River Publishers	2012	
3	Environmental Audits. Mercury Learning & Information.	Taylor and Francis Van Guilder, C.V.,	Mercury Learning and Information	2014	
4	A Guide to Local Environmental Auditing	Barton, H., and Bruder N.,	Routledge	1993	
5	Lecture note provided by Dept. of	Environmental Science,	AKS University, Satna.		

Curriculum Development Team

- Prof. G C Mishra, Director IQAC, AKS University 1.
- Dr Mahendra Kumar Tiwari, Professor & Head, Dept. Environmental Science 2.
- 3. Dr. RLS Sikarwar, Professor Dept. Environmental Science
- Mrs Suman Patel Dept. Environmental Science 4.
- 5. Dr Rahul Omar, Assistant Professor, Dept. of Cement Technology

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: OC201 Course Title: Environmental Science (Audit)

		Program Outcomes									Program Speci	Program Specific Outcome		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neer ing kno wled ge	Pro ble m Solv ing	Desi gn Skill s	Labo rator y Skills	Tea m wor k	Co mm unic atio n Skill s	Ethic al and Profe ssion al Beha vior	Lifelo ng Lear ning	Glo bal and Soci etal Imp act	Proje ct Mana geme nt	Adapt ability	Profe ssion al Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: understand about air,														
water and soil pollution	1	1	1	2	1	1	1	2	2	1	1	2	2	2
and there causes.														
CO2: aware of various laws														
and policies for	1	2	1	3	1	2	3	1	2	2	2	3	1	1
environment protection														
CO3: understand about benefits and barriers of EMS and purpose of EIA.	1	2	1	2	1	1	2	1	2	2	1	2	1	2
CO4: understand about objective and scope of Environmental Auditing and their types.	1	3	1	2	1	3	2	1	3	2	2	2	2	2
CO5: prepare an audit report for a given organization and evaluate the impact of their activities on environment	1	3	1	3	3	3	2	2	2	2	2	2	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8	CO1: understand about air, water	SO1.1		Unit-1: Industrial pollution	
,9,10,11,12	and soil pollution and there	SO1.2		and its mitigation	1
PSO 1,2	causes.	SO1.3		1.1,1.2,1.3,1.4,1.5,1.6	
PO:1,2,3,4,5,6,7,8	CO2: aware of various laws and			Unit-2: Environmental Law and Policy	
,9,10,11,12	policies for environment	SO2.1		2.1, 2.2, 2.3, 2.4, 2.5, 2.6	
PSO 1,2	protection				
PO:1,2,3,4,5,6,7,8	CO3: understand about benefits	SO3.1		Unit-3: Environmental Management	
,9,10,11,12	and barriers of EMS and	SO3.2		System.	
	purpose of EIA.	SO3.3			
PSO 1,2	purpose of EIA.			3.1,3.2,3.3,3.4,3.5,3.6	
PO:1,2,3,4,5,6,7,8	CO4: understand about objective	SO4.1		Unit-4 : Environmental Audit- Scope	
,9,10,11,12	and scope of Environmental	SO4.1 SO4.2		and Requisites	
	Auditing and their types.	504.2		4.1,4.2,4.3,4.4,4.5,4.6	
PSO 1,2	Additing and then types.			.1,1,2,1,5,1,1,5,1,0	
PO:1,2,3,4,5,6,7,8	CO5: prepare an audit report for a	SO5.1		Unit 5: Practical/ Hands on Exercise	
,9,10,11,12	given organization and	SO5.2		Onit 5. Fractical/ Hallds off Exercise	
	evaluate the impact of their	SO5.3		5.1,5.2,5.3,5.4,5.5,5.6	
PSO 1,2	activities on environment			5.1,5.2,5.5,5.7,5.5,5.0	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-V

Course Code: EE309 Course Title : Power Systems-I Pre- requisite: Basic Electrical Engineering, Electrical Power Generation **Rationale:** The electricity is generated in bulk at remote places near to coal mines (thermal power plants), dams (hydro power) and transmitted to long distances and then distributed in cities and villages and to industry. The transmission and distribution of electric power is a complex issue which requires knowledge of different types of transmission lines and power equipments. Technicians are required to operate and maintain the power transmission and distribution system so that electrical energy is continuously available to the consumers economically. It is therefore required that the technicians should be also able to work independently in the various area of transmission and distribution system. The objective of this course is to enable the students to analyze the performance of transmission lines, distribution systems, insulators and cables.

Course Outcomes: After the completion of this course the students will be able to

EE309.1: Understand the concepts of power systems.

EE309.2: Understand the various power system components.

EE309.3: Understand the generation of over-voltages and insulation coordination.

EE309.4: Evaluate fault currents for different types of faults and to understand basic protection schemes.

EE309.5: Understand concepts of HVDC power transmission and renewable energy generation.

Scheme of Studies:

Course	Course			Total				
Course Categ ory	Code	Course Title	Cl	LI	SW	SL	SL Total Study Hours (CI+LI+SW+SL)	
Program Core (PCC)	EE309	Power Systems I	3	2	1	1	7	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others).

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

AKSUniversity

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

					Schem	ne of Ass	essment (N	(Iarks)		
				Progres	sive Ass	essment	(PRA)		End	Tota
Cour se Cate gory	Couse Code	Course Title	Class/ Home Assign ment 5 numbe r 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one (SA)	Class Activi ty any one (CAT)	Class Attendan ce (AT)	Total Marks (CA+ CT+S A+CA T+AT)	Semester Assessm ent (ESA)	l Mar ks (PR A+ ESA)
PCC	EE30 9	Power Systems I	15	20	5	5	5	50	50	100

Practical

Cours	Couse	CourseTitle	Scheme of Assessment (Marks) Progressive Assessment (PRA) End							
e Categ ory	Code	CourseTitle	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)		
PCC	EE309-L	Power Systems I	35	10	5	50	50	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE309.1: Understand the concepts of power systems.

Item	Approx. Hrs.
Cl	6
LI	6
SW	2
SL	2
Total	16

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
The students will be	1. To determine	Unit-1 Basic Concepts	1. Renewable and
able to	direct axis	1.1 Evolution of Power Systems and Present-Day Scenario.	Non renewable
SO1.1 Understanding	reactance and	1.2 Structure of a power system: Bulk	energy
of structure of power system	quadrature axis	Power Grids and Micro-grids	sources. 2. Three phase
	reactance of a	1.3 Generation: Conventional and	A.C. circuits.
SO1.2 To understand generation,	salient pole	Renewable Energy Sources.	
transmission &	alternator.	1.4 Distributed Energy Resources.	
distribution	2. Use of CT and PT	Energy Storage	
SO1.3 To analyze three	for measuring	1.5 Transmission and Distribution	
phase system	high current and	Systems: Line diagrams, transmission and distribution voltage	
	high voltage.	levels and topologies (meshed and	
	3. Visit to a	radial systems). Synchronous Grids and Asynchronous (DC)	
	generating station	interconnections.	
	and submit a	1.6 Review of Three-phase systems.	
	report on it.	Analysis of simple three-phase	
		circuits. Power Transfer in AC circuits and Reactive Power	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Draw line diagram of Power system network.
- ii. Give importance of reactive power.

EE309.2: Understand the various power system components. **Approximate Hours**

Item	Approx. Hrs.	
Cl	15	
LI	12	
SW	1	
SL 2		
Total	30	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
The students will be	1. To determine	Unit-2 Power System	1. Principle, Types
able to	location of fault	Components 2.1 Overhead	& Equivalent circuit of
SO2.1 Understand the	in a cable using	Transmission Lines	Transformer.
concept of Overhead	cable fault	and Cables: Electrical and	2. Working principle and
Transmission	locator.	Magnetic Fields	performance of
Lines its types and Cables	2. To study Ferranti	around conductors, Corona. Parameters	synchronous machine.
	effect and	of lines and cables.	
SO2.2 To know various compensation	voltage	2.2 Capacitance and Inductance	
technique	distribution in	calculations for	
SO2.3 To understand	H.V. long	simple configurations.	
per unit	transmission line	2.3 Travelling-wave	
calculations.	using	Equations. 2.4 Sinusoidal Steady	
		state representation	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

· · · · ·	
transmission line	of Lines: Short,
model.	medium and long
3. To study various	lines. 2.5 Power Transfer,
	Voltage profile and
types of cables	Reactive Power
and their testing.	2.6 Characteristics of
	transmission lines.
4. To find out the	Surge Impedance
performance of	Loading.
short	2.7 Series and Shunt
	Compensation of
transmission	transmission lines.
line.	2.8 Transformers: Three- phase connections
5. To find out the	and Phase-shifts
	2.9 Three-winding
performance of	transformers, auto-
medium	transformers,
transmission	Neutral Grounding
transmission	transformers.
line.	2.10 Tap-Changing in
6. To find out the	transformers.
	Transformer
performance of	Parameters. Single
long	phase equivalent of three-phase
transmission	transformers.
	2.11 Synchronous Machines:
line.	Steady-state performance
	characteristics. Operation
	when connected to infinite
	bus.
	2.12 Real and Reactive Power
	Capability Curve of
	generators. 2.13 Typical waveform under
	balanced terminal short
	circuit conditions – steady
	state, transient and sub-
	transient equivalent
	circuits.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

2.14 Loads: Types, Voltage and
Frequency Dependence of
Loads.
2.15 Per-unit System and per-
unit calculations

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Numerical Assignments Based power factor improvement and per unit.

EE309.3: Understand the generation of over-voltages and insulation coordination. **Approximate Hours**

Item	Approx. Hrs.
Cl	5
LI	0
SW	1
SL	1
Total	7

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
The students will be able		Unit-3: Over-voltages and Insulation	1. Lightning.
to		Requirements	
SO3.1 Understand the concept of over- voltages & Insulation Coordination SO3.2 To analyze protection against Over-voltages		 3.1 Generation of Over-voltages: Lightning and Switching Surges. 3.2 Protection against Over- voltages, Insulation Coordination. 3.3 Propagation of Surges. 3.4 Voltages produced by traveling surges. 3.5 Bewley Diagrams. 	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Discuss protection against lightning.

EE309.4: Evaluate fault currents for different types of faults and to understand basic protection schemes. **Approximate Hours**

Item	Approx. Hrs.	
Cl	10	
LI	12	
SW	2	
SL	2	
Total	26	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
the students will be able to	1. To determine negative and zero sequence	Unit 4: Fault Analysis and Protection Systems 4.1 Method of	1. Formulas used to solve numerical problems related
SO4.1 Understand Symmetrical Components and	reactances of an alternator.	Symmetrical Components (positive, negative	to faults. 2. Practice of Numerical
various types of faults. SO4.2 To understand	2. To determine fault current for L-G, L-L,	and zero sequences). 4.2 Balanced and	problems based upon symmetrical
switchgear devices and its application.	L-L-G and L-L-L faults at the terminals	Unbalanced Faults. 4.3 Representation of generators, lines	components.
SO4.3 Understand various types of	of an alternator at very low excitation.	and transformers in sequence networks. 4.4 Computation of	
protection schemes.	3. To study the IDMT over current relay and	Fault Currents. Neutral Grounding. 4.5 Switchgear: Types of Circuit Breakers.	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Over Voltage relays.4.10Differential protection and their application6. Visit to a substation and prepare a report on it.4.10Differential protection and their application
--

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems based on various types of faults
- ii. Discuss relation between relay and circuit breaker.

EE309.5: Understand concepts of HVDC power transmission and renewable energy generation

Item Approx. Hrs	
Cl	9
LI	0
SW	2
SL	2
Total	13

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
The students will be able		Unit 5: Introduction to	1. Relationship between
to		DC Transmission &	ac and dc transmission.
		Renewable Energy	Parameters.
SO5.1 Understand DC		Systems	
Transmission Systems		5.1 DC Transmission	2. Renewable energy
		Systems: Line-	system.
SO5.2 Understand Solar		Commutated	
PV systems		Converters (LCC) and	
		Voltage Source	
SO5.3 Understand Wind		Converters (VSC).	
Energy Systems		5.2 LCC and VSC based	
		dc link.	
		5.3 Real Power Flow	
		control in a dc link.	
		5.4 Comparison of ac and	
		dc transmission.	
		5.5 Solar PV systems: I-V	
		and P-V	
		characteristics of PV	
		panels, power	
		electronic interface of	
		PV to the grid.	
		5.6 Wind Energy Systems:	
		Power curve of wind	
		turbine. 5.7 Fixed and variable	
		speed turbines.	
		5.8 Permanent Magnetic	
		Synchronous Generators and	
		Induction Generators.	
		5.9 Power Electronics	
		interfaces of wind	
		generators to the grid.	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Discuss LCC and VSC based dc link.

i. Discuss solar and wind energy system.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE309.1: Understand the concepts of power systems.	6	6	2	2	16
EE309.2: Understand the various power system components.	15	12	1	2	30
EE309.3: Understand the generation of over-voltages and insulation coordination.	5	0	1	1	7
EE309.4: Evaluate fault currents for different types of faults and to understand basic protection schemes.	10	12	2	2	26
EE309.5: Understand concepts of HVDC power transmission and renewable energy generation.	9	0	2	2	13
Total Hours	45	30	8	9	92

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

	T *4 /T *41	Μ	Total		
CO	Unit Titles	R	U	Α	Marks
CO-1	Basic Concepts	02	03	05	10
CO-2	Power System Components	02	05	03	10
CO-3	Over-voltages and Insulation Requirements	02	02	06	10
CO-4	Fault Analysis and Protection Systems	02	03	05	10
CO-5	Introduction to DC Transmission & Renewable Energy Systems	02	04	04	10
	Total	10	17	23	50
Legend:	R: Remember, U: Unde	erstand,		A: App	oly

The end of semester assessment for Process calculation will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Design Demonstration
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

(a) Books :

S. No.	Title	Author	Publisher	Edition & Year
1	Power System Analysis	J. Grainger and W. D. Stevenson	McGraw Hill Education	1994
2	Electric Energy Systems Theory	O. I. Elgerd	McGraw Hill Education	1995
3	Power System Analysis	A. R. Bergen and V. Vittal	Pearson Education Inc.	1999
4	Modern Power System Analysis	D. P. Kothari and I. J. Nagrath	McGraw Hill Education	2003
5	Electric Power Systems	B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac	Wiley	2012
6	De	Lecture note p pt. of Electrical Engineeri	rovided by ng, AKS University, Satna.	

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE309

Course Title: Power system-1

		-		-	Pro	ogran	n Oute	comes				-	Program Specif	fic Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neer ing kno wled ge	Prob lem Solvi ng	Desi gn Skill s	Lab orat ory Skill s	Tea m wor k	Com mun icati on Skill s	Ethi cal and Prof essio nal Beh avio r	Lifel ong Lear ning	Glob al and Soci etal Imp act	Proje ct Mana geme nt	Adapt ability	Profes sional Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understand the concepts of power systems.	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO.2: Understand the various power system components.	3	3	3	3	2	2	1	3	2	2	2	3	3	2
CO.3: Understand the generation of over-voltages and insulation coordination.	3	3	2	2	1	1	2	2	1	2	2	3	2	3
CO.4: Evaluate fault currents for different types of faults and to understand basic protection schemes.	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO.5: Understand concepts of HVdc power transmission and renewable energy generation.	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO1: Understand the concepts of power systems.	SO1.1 SO1.2 SO1.3	1,2,3	Unit-1: Basic Concepts 1.1,1.2,1.3,1.4,1.5,1.6	1,2
PO:1,2,3,4,5,6,7,	CO.2: Understand the various power system components.	SO2.1 SO2.2 SO2.3	1,2,3,4,5,6	Unit-2: Power System Components 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9, 2.10,2.11,2.12,2.13,2.14,2.15	1,2
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO.3: Understand the generation of over-voltages and insulation coordination.	SO3.1 SO3.2		Unit-3: Over-voltages and Insulation Requirements 3.1,3.2,3.3,3.4,3.5	1
	CO.4: Evaluate fault currents for different types of faults and to understand basic protection schemes.	SO4.1 SO4.2 SO4.3 SO4.4	1,2,3,4,5,6	Unit-4 : Fault Analysis and Protection Systems 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	1,2
	CO.5: Understand concepts of HVdc power transmission and renewable energy generation.	SO5.1 SO5.2 SO5.3		Unit 5: Introduction to DC Transmission & Renewable Energy Systems 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	1,2

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-V

Course Code:	EE310
Course Title :	Control System
Pre- requisite:	Student should have basic knowledge of mathematics, Specially Laplace Transform, there properties and its use to solve differential equations
Rationale:	The control system plays an important part in modern mechanical, electrical and Electronic systems. The Purpose of this subject is to introduce the basic concept, and types of control system, its time and Frequency Domain analysis to determine the response and stability of given system by using different methods.

Course Outcomes: At the end of this course, students will be able to

- **EE310.1:** Understand the concept of Control System, their types and procedure of Calculation of overall Transfer function using Various Methods.
- **EE310.2:** Understand and Apply the procedure of Time Domain analysis of given Control System.
- **EE310.3:** Determine the Stability of given system by using Different Methods
- EE310.4: Understand and Apply different control Strategies to obtain desired Response of Given system.
- **EE310.5:** Understand and Apply Procedure of State Space Analysis, Transfer function Decomposition, Observability and Controllability.

Scheme of Studies:

 \sim

a 1

Cours e Categ ory	Course Code	Course Title	Cl (L+T)	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)
Progra m Core (PCC)	EE310	Control System	3	2	1	1	7	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.), **SL:** Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

Theory

					Schen	ne of Asse	ssment (Ma	rks)		
				Progress	sive Asses	sment (]	PRA)		End	Tota
Cour	Cous	Course	Class/Ho me Assignme nt 5	Class Test 2 (2 best out of 3)	Semin ar	Class Activi ty	Class Attendan ce	Total Marks	Semester Assessme nt	l Mar ks
se Cate gory	e Code	Course Title	number 3 marks each (CA)	10 marks each (CT)	one (SA)	any one (CAT)	(AT)	(CA+C T+SA+ CAT+ AT)	(ESA)	(PR A+ ESA)
PCC	EE3 10	Control System	15	20	5	5	5	50	50	100

Practical

				Scheme of Assessment (Marks)						
Cours	Couse		Progres	Progressive Assessment (PRA)						
e Categ ory	Code	CourseTitle	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)		
PCC	EE310-L	Control System	35	10	5	50	50	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE310.1: Understand the concept of Control System, their types and procedure of Calculation of overall Transfer function using Various Methods.

Item	Approx .Hrs.
Cl	9
LI	4
SW	2
SL	1
Total	16

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Lab Instruction	Class room Instruction (CI)	Self- Learning
	(LI)		(SL)
(SOs) Students will be able to SO1.1 Understand the concept of Control system and their different types and significance. SO1.2 Understand and Apply the mathematical modeling of given system. SO1.3 Determine overall transfer function of given system by using different methods like block Diagram Reduction, Signal flow Graph and Manson's Gain Formula.	 (LI) 1. Study of different blocks of control system. 2. Study of transfer function of field controlled DC motor 	 Unit-1: Control System 1.1 Open loop and Close Loop systems. 1.2 Review of Laplace transform and their properties. 1.3 Block diagram and its reduction, 1.4 Signal flow graph, 1.5 Manson's Gain Formula, 1.6 transfer function model of linear systems, 1.7 Mathematical Models of physical systems, 1.8 DC and AC servomotors, 1.9 Synchros 	 (SL) 1. Laplace Transform and their properties. 2. Practice of numerical problems of Laplace Transform.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignments Related to AC and DC Motors, Synchros etc.
- ii. Numerical Problems Related to Block Diagram Reduction, Manson's Gain Formula, Force-voltage analogy and force-current analogy.

EE310.2: Understand and Apply the procedure of Time Domain analysis of given Control System.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	Approx. Hrs.				
Cl	9				
LI	10				
SW	2				
SL	1				
Total	22				

Session Outcomes	Laboratory		Class room Instruction		Self-	
(SOs)	Instruction		(CI)		Learning	
		(LI)			(SL)	
Students will be able to			Unit-2: Feedback Control System.			
	1.	Analysis of		1.	Basic Test	
		different	2.1 Transient and Steady state response,		and their	
SO2.1 Understand the		types of Test	Time domain		types	
concept of Transient		Signals	analysis of first order Control			
and steady state	2.	Determination	System.	2.	Practice of	
response.		of Time	2.2 Time domain		numerical	
SO2.2 Determine the Time		response of	analysis of second order and higher		problems	
response of given		open loop	order control systems, Design		related to	
system		system	Specification of control system		time	
	3.	Determination	2.3 concept and estimation of Steady		response,	
SO2.3 Understand the		of Time	state error for first order control		steady state	
concept of Steady		response of	system		response	
state error and		close loop	2.4 concept and estimation of Steady		and	
Determine the		system	state error for Second order control		sensitivity.	
Steady state error of	4.	Determination	system			
given system		of Time	2.5 Static			
SO2.4 Understand the		response of 1st	positional error coefficient, Static			
concept of		order system	velocity error coefficient			
Sensitivity and	5.	Determination	2.6 Static acceleration error coefficient.			
Determine the		of Time	2.7 Concept of sensitivity and its			
Sensitivity of given		response of	mathematical analysis			
system.		2 nd order	2.8 Analysis of sensitivity of open loop			
		system	2.9 Analysis of sensitivity of close loop			
			control			
			system, Performance indices.			

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Deviand on on 01 August 2022)

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignment related to Sensitivity and Steady state error.
- ii. Numerical problems related to time response, steady state response and sensitivity.

EE310.3: Determine the Stability of given system by using Different Methods Approximate Hours

Item	Approx. Hrs.
Cl	9
LI	10
SW	2
SL	1
Total	22

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction	Self Learning (SL)
(503)	(LI)	(CI)	(61)
Students will be able to	1. Formation of transfer function using	Unit-3: Stability	
SO3.1 Understand the	MATLAB	3.1 Concept of	
concept of stability	2. Determination of	stability,	
and their conditions.	Pole-Zero plot of	3.2 Characterstic of	1. Concept of
SO3.2 Determine the stability of given system by Routh Hurwitz criterion to determine the stability of given system.	 given system using MATLAB Simulation software. 3. Determination of Nyquist plot of given system using MATLAB Simulation software. 	stable, unstable and marginally stable system. 3.3 Routh-Hurwitz stability criterion. 3.4 Nyquist criterion. 3.5 Bode plot-I 3.6 Bode plot-II	 poles and zeros. 2. Stability analysis using pole zero plot. 3. Practice of numerical problems
by blonn.	4. Determination of	3.7 Gain margin	related to
SO3.3 Understand and	Bode plot of given	and phase margin,	Stability
Apply various	system using	3.8 Root locus	analysis
graphical methods used for stability analysis to solve	MATLAB Simulation software.	3.9 Lyapunov's criterion.	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

related numerical problems.	5. Determination of Root Locus plot of given system using MATLAB Simulation software.

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignments Stability, their types and methods of Determination.
- ii. Numerical Problems related to Routh-Hurwitz criterion, Root Locus, Nyquist plot and Root locus.

EE310.4: Understand and Apply different control Strategies to obtain desired Response of Given system.

Item	Approx. Hrs.
Cl	8
LI	6
SW	2
SL	1
Total	17

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
Students will be able to	1. Analyze the effect	Unit-4 : Compensations &	
	of Proportional,	Control actions	1. Practice of
SO4.1 understand the	Derivative and	4.1 Approaches to system	Numerical
different approaches	integral control	design	Problems
used in system design	action on system	4.2 Phase lead compensation	Related to
and their significance.	Performance.	4.3 Phase lag compensation	compensati
			on and

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO4.2 understand the	2.	Analyze the effect	4.4 Phase Lead-Lag	control
concept of compensation		of PI and PD	Compensation	actions
and their types and solve		control action on	4.5 Concept and types of	
related problems.		system	Control actions.	
SO4.3 understand the		Performance	4.6 Proportional control &	
concept of Control	3.	Analyze the effect	Derivative control	
actions and their types		of PID control	4.7 Integrative control and	
and solve related		action on system	PID control,	
problems.		Performance	4.8 Feedback Control and	
			ON-OFF Control action.	
			1	

SW-4 Suggested Sessional Work (SW):

- a. Assignments: i. N
 - Numerical Problems related to Controller design.
 - ii. Numerical Problems Based Related to compensation.

Mini Project:

- i. Draw a block diagram chart of different types of control actions.
- **EE310.5:** Understand and Apply Procedure of State Space Analysis, Transfer function Decomposition, Observability and Controllability.

Item	Approx. Hrs.			
Cl	Cl 10			
LI	0			
SW	2			
SL	1			
Total	13			

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 Students will be able to SO5.1 Understand the state variable model of control system. SO5.2 Apply Transfer Function Decomposition to design the system SO5.3 Understand the concept of controllability and test it for a given system. SO5.4 Understand the concept of observability and test it for a given system. 		 Unit 5: State Space Representation 5.1 State Variable Model, state equation, 5.2 Transfer function from the state equation and vice-versa . 5.3 Diagonalization of State Matrix. 5.4 Solution of state equations. 5.5 Eigenvalues and Stability Analysis 5.6 State variables of a dynamic system, 5.7 design using State variable Technique. 5.8 Controllability. 5.9 Observability. 5.10 Pole placement using state feedback. 	 Practice of Numerical problems of state space analysis. Practice of Numerical problems of Transfer function decomposition. Practice of Numerical problems of Observability and controllability.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Numerical problems of state space analysis..

- i. Numerical problems of Transfer function decomposition.
- ii. Numerical problems of Observability and controllability.

Brief of Hours suggested for the Course Outcome

	Class	Lab	Sessiona	Self-	Total hour
Course Outcomes	Lecture	Instructu	lWork	Learning	(Cl+SW+Sl
	(Cl)	in (LI)	(SW)	(Sl))
EE310.1: Understand the concept of					
ControlSystem, their types					
and procedure	9	4	2	1	16
of Calculation of overall	9	4	2	1	10
Transferfunction using Various					
Methods.					
EE310.2: Understand and Apply the					
procedure of Time Domain	9	10	2	1	22
analysis of given	7	10	Ζ.	1	22
Control System.					
EE310.3: Determine the Stability of given					
system by using Different	9	10	2	1	22
Methods	-	_			

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE310.4: Understand and Apply different control Strategies to obtain desired Response of Given system.	8	6	2	1	17
EE310.5: Understand and Apply Procedure ofState Space Analysis, Transfer function Decomposition, Observability and Controllability.	10	0	2	1	13
Total Hours	45	30	10	5	90

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	M	Total		
		R	U	А	Marks
CO-1	Control system	02	03	05	10
CO-2	Feedback control system	02	05	03	10
CO-3	Stability	02	02	06	10
CO-4	Compensation and control action	02	04	04	10
CO-5	State Space Representation	02	03	05	10
	Total	10	17	23	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Control system will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Demonstration of Control Actions.
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :						
S. No.	Title	Author	Publisher	Edition & Year			
1	"Control System Engg"	I.J.Nagrath and M.Gopal,	New Age International Publication	7 th , 2021			
2	Control Systems Principles and Design.	M.Gopal	Tata McGraw Hill	4 th , 2012			
3	Modern Control Engineering	K. Ogata	PHI.	5 th , 2015			
4	Linear control systemB.S. MankeKhanna publisher12th , 1986						
5	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.						

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineerin*g Course Code: EE310 Course Title: Control System

	-					I	Program	n Outc	omes					Program Spec	eific Outcome
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Out	comes	Engi neer ing kno wled ge	Prob lem Solv ing	Desi gn Skill s	Lab orat ory Skill s	Tea m wor k	Com mun icati on Skill s	Ethi cal and Prof essio nal Beh avio r	Lifel ong Lear ning	Glo bal and Soci etal Imp act	Proje ct Mana geme nt	Adap tabilit y	Profes sional Develo pment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understand the Control System, their procedure of Calculat Transfer function usin Methods	types and ion of overall	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO 2: Understand and procedure of Time Do given Control System	main analysis of	3	3	3	3	2	2	1	3	2	2	2	3	3	2
CO3: Determine the S system by using Differ		3	3	2	2	1	1	2	2	1	2	2	3	2	3
CO 4: Understand and different control Strat desired Response of G	tegies to obtain	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO 5: Understand and Procedure of State Sp Transfer function Dec Observability and Co	ace Analysis, composition,	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map

: POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8	CO1: Understand the concept of	SO1.1		Unit-1: Control System	
,9,10,11,12	Control System, their types and procedure of Calculation of	SO1.2 SO1.3	1,2	1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	1,2
PSO 1,2	overall Transfer function using Various Methods				
PO:1,2,3,4,5,6,7,8	CO 2: Understand and Apply the	SO2.1		Unit-2: Feedback Control System.	
,9,10,11,12	procedure of Time Domain analysis of given Control System	SO2.2 SO2.3	1,2,3,4,5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	1,2
PSO 1,2		SO2.4			
PO:1,2,3,4,5,6,7,8	CO3: Determine the Stability of	SO3.1		Unit-3: Stability	
,9,10,11,12	given system by using Different	SO3.2	1,2,3,4,5		1,2,3
PSO 1,2	Methods	SO3.3		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1,2,5
PO:1,2,3,4,5,6,7,8	CO 4: Understand and Apply	SO4.1		Unit-4 : Compensations & Control	
,9,10,11,12	different control Strategies to	SO4.2		actions	
	obtain desired Response of	SO4.3	1,2,3	4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8	1
PSO 1,2	Given system				
PO:1,2,3,4,5,6,7,8	CO 5: Understand and Apply	SO5.1		Unit 5: State Space Representation	
,9,10,11,12	Procedure of State Space	SO5.2			
	Analysis, Transfer function	SO5.3		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10	1,2,3
PSO 1,2	Decomposition, Observability and Controllability	SO5.4			

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-V

Course Code:	EE311
Course Title:	MICROPROCESSOR AND MICROCONTROLLERS
Pre- requisite:	Student should have basic knowledge of number system, Boolean equations, arithmetic and logical operations, logic gates and operations of different combinational and sequential circuits.
Rationale:	In current scenario the microprocessor and microcontroller-based systems are extensively used in various electronic devices. Such systems are required to design and maintain by engineer. Therefore, the goal of this course is for students to become competent to understand design and maintenance of such type of microprocessor and microcontroller-based systems.

Course Outcomes:

EE311.1: Understanding the architecture, pin details and operation of eight-bit and sixteen-bit microprocessor.

- **EE311.2:** Ability to develop programming skills of eight-bit and sixteen-bit microprocessor.
- **EE311.3:** Understanding the architecture, pin details and function of various I/O and memory interfacing IC's used with 8086 microprocessor.
- **EE311.4:** Understanding the architecture, pin details and function of various communication and bus interfacing IC's used with 8086 microprocessor.
- **EE311.5:** Understanding of the architecture, pin details, operation and application of 8051.

Cours				Scheme of studies(Hours/Week)				
e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Progra m Core (PCC)	EE311	MICROPROCE SSOR AND MICROCONTR OLLERS	3	2	1	1	7	4

Scheme of Studies:

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

Theory

	<i>3</i>				Sch	eme of As	socomont			
					Sch	eme of As (Mark				
				Progres	sive Asses		· · · · · · · · · · · · · · · · · · ·		End	Total
Cours e Categ ory	Course Code	Cours etitle	Class/H o me Assignm ent 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attend ance (AT)	Total Marks (CA+C T+SA + CAT+ AT)	Semeste r Assess ment (ESA)	(PRA + ESA)
PCC	EE311	Micro proce ssor and Micro contr ollers	15	20	5	5	5	50	50	100

Practical

						ent (Marks)		
Cours	Couse	Commerciale	Progres	sive Assessme	nt (PRA))	End	Total
e Categ ory	Code	CourseTitle	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)
PCC	EE311-L	Microprocesso r and Microcontrolle rs	25	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE311.1: Understanding the architecture, pin details and operation of eight-bit and sixteen-bit microprocessor.

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	Approx Hrs
Cl	12
LI	4
SW	2
SL	1
Total	19

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self- Learnin
	(LI)		g (SL)
SO1.1 Understand the	1.Study of 8086	Unit-1: Intel 8086/8088	1. Basics of
historical	Microprocessor	Architecture	evolution
background of	2.Interfacing of	1.1 Von Neuman Architecture	of
microprocessor	peripherals with	1.2 Moore's Law	semicondu
and	8086	1.3 Evolution of IC technology	ctor
microcontroller.	microprocessor	1.4 Evolution of microprocessors 1.5 Architecture of 8085	devices
SO1.2 Understand the		microprocessor	2. Number
architecture, pin		1.6 Pin details of 8085	system
configuration and		microprocessor	5
operation of		1.7 Architecture of 8086	
eight-bit		microprocessor	
microprocessor.		1.8 Pin details of 8086	
_		microprocessor	
SO1.3 Understand the		1.9 Concept of Segmented	
architecture, pin		Memory	
configuration and		1.10 Maximum-Mode and	
operation of		Minimum-Mode Operation	
sixteen-bit		of 8086 microprocessor	
microprocessor		1.11 Addressing Modes	
		1.12 Basic Peripherals and their	
		interfacing with 8086/8088	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO1.4 Understand about		
various		
addressing modes		
SO1.5 Understand basic		
peripherals and		
interfacing with		
eight/sixteen-bit		
microprocessor.		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Make evolution tree of IC technology.
- ii. Prepare the presentation on the microprocessor discussed in the previous session.

EE311.2: Ability to develop programming skills of eight-bit and sixteen-bit microprocessor.

Item	Approx Hrs
Cl	6
LI	14
SW	2
SL	1
Total	23

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self- Learning
	(LI)		(SL)
SO2.1 Understanding of	1. Hexadecimal addition	Unit-2: Assembly	1. Various
different types of	of two numbers (8085	Language Programming	arithmetic
instructions	microprocessor kit).	with 8086/8088	operation on
supported by 8086	2. The decimal addition		eight-bit and
microprocessor.	of two decimal	2.1 Instruction Set and	sixteen-bit
_	numbers.	Timing Diagrams	numbers.
SO2.2 Able to write		2.2 Programming techniques	2. Basics about
assembly language		2.3 Flow Chart	programming

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

programs to perform various arithmetic and logical operation with eight-bit/ sixteen-bit microprocessor. SO2.3 Understand the concept of procedures, modular programming and macros.	 microprocessor kit. 4. To add two binary number each eight byte long (8086 microprocessor kit) 5. Addition of 8 bit number series neglecting the carry 	Assembly Language and High-level language programming 2.5 Assembly language programs to perform various arithmetic and logical	
--	--	---	--

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write assembly language program to perform arithmetic operation on eight-bit microprocessor.
- ii. Write assembly language program to perform arithmetic operation on sixteen-bit microprocessor.
- **EE311.3:** Understanding the architecture, pin details and function of various I/O and memory interfacing IC's used with 8086 microprocessor.

Item	Approx Hrs
Cl	10
LI	2
SW	1
SL	1
Total	14

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learni
	(LI)		ng (SL)
SO3.1 Understand the		Unit-3: I/O and Memory	1. Concept of
concept of different	1. Study of	interfacing using 8086	interfacing
types of interrupts	Programmab	3.1 Interrupt of 8086/8085	circuits
supported by 8086	le Interrupt	Microprocessor	
microprocessor.	Controller	3.2 Architecture of Programmable	
	8259A	Interrupt Controller 8259A	
SO3.2 Understand the		3.3 Pin details of Programmable	
architecture, pin details		Interrupt Controller 8259A	
and operation of		3.4 Operation of Programmable	
8259A.		Interrupt Controller 8259A	
		3.5 Architecture of 8255	
SO3.3 Understand the		3.6 Pin details of 8255	
architecture, pin details		3.7 Operation of 8255	
and operation of 8255.		3.8 Architecture of Programmable	
		Interval Timer 8253	
SO3.4 Understand the		3.9 Pin details of Programmable	
architecture, pin details		Interval Timer 8253	
and operation of 8253.		3.10 Operation of Programmable	
		Interval Timer 8253	

SW-3 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Concept of memory organization and their interfacing with microprocessor.
- **EE311.4:** Understanding the architecture, pin details and function of various communication and bus interfacing IC's used with 8086 microprocessor.

Item	Approx Hrs
Cl	8
LI	6
SW	1
SL	1
Total	16

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session	Laboratory	Class room Instruction	Self-
Outcomes	Instruction	(CI)	Learnin
(SOs)	(LI)		g
			(SL)
SO4.1 Understand	1. Study of	Unit-4: Communication and Bus	1. Difference
the architecture,	8251	interfacing with 8086	between of
pin details and	universal	4.1 Block diagram of 8251	analog and
operation of	synchronous	universal synchronous	digital
8251.	asynchronou	asynchronous receiver	signals
SO4.2 Understand	s receiver	transmitter (USART)	2. Concept of
the architecture,	transmitter	4.2 Advantage and disadvantages	ADC and
pin details and	(USART)	of 8251 universal synchronous	DAC.
operation of	2. Read Hex	asynchronous receiver	
8279.	byte from the	transmitter (USART)	
SO4.3 Understand	keyCourse	4.3 Architecture of 8279	
the architecture,	Category the	programmable	
pin details and	kit and split	keyboard/display controller.	
operation of	it into two	4.4 Pin details of 8279	
8257.	nibbles.	programmable	
SO4.3 Understand	3. Study of	keyboard/display controller	
the interfacing of	8251 DMA	4.5 Operating modes of 8279	
ADC and DAC	controller	programmable	
systems.		keyboard/display controller	
		4.6 Block diagram of 8257 DMA	
		Controller	
		4.7 Pin details of 8257 DMA	
		Controller	
		4.8 Analog to Digital Interfacing	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Interfacing of ADC and DAC system with 8086 microprocessor.

EE311.5: Understanding of the architecture, pin details, operation and application of 8051.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Approximate Hours

Item	Approx Hrs
Cl	6
LI	4
SW	1
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO5.1 Understand the architecture and	1. Flashing display of	Unit 5: 8051 Microcontroller	1. Remember the difference
pin details of 8051.	SUPERB on 7 segment	5.1 Architecture of	between microprocessor
SO5.2 Understand the assembly language programming.	display using 8051 microcontroller kit.	8051 Microcontroller 5.2 Pin details of 8051 Microcontroller	and microcontroller.
SO5.3 Understand the various applications of microprocessor and microcontroller.	2. Stepper motor controller using 8051 kit.	 5.3 Addressing modes 5.4 Instruction set 5.5 Assembly language programs 5.6 Application of microcontrollers. 	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Architecture and pin diagram of 8051 microcontroller.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+S l)
EE311.1: Understanding the architecture, pin details and operation of eight-bit and sixteen-bit microprocessor.	12	4	2	1	19
EE311.2: Ability to develop programming skills of eight-bit and sixteen-bit microprocessor.	6	14	2	1	23
EE311.3: Understanding the architecture, pin details and function of various I/O and memory interfacing IC's used with 8086 microprocessor.	10	2	1	1	14
EE311.4: Understanding the architecture, pin details and function of various communication and bus interfacing IC's used with 8086 microprocessor.	8	6	1	1	16
EE311.5: Understanding of the architecture, pin details, operation and application of 8051.	6	4	1	1	12
Total Hours	42	30	7	5	84

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles		M Distr	Total	
		R	U	Α	Marks
CO-1	Intel 8086/8088 Architecture	04	03	05	12
CO-2	Assembly Language Programming with 8086/8088	02	02	07	11
CO-3	I/O and Memory interfacing using 8086	02	02	06	10
CO-4	Communication and Bus interfacing with 8086	03	03	05	11
CO-5	8051 Microcontroller	02	02	02	06
	Total	10	18	22	50

Legend: R: Remember,

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

The end of semester assessment for Microprocessor and Microcontroller will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Design Demonstration
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	Microprocessors and	A P Godse,	Technical	
1	Interfacing	D A Godse	Publication Pune	
2	Advanced Microprocessor & Peripherals	Ray A K, K M Bhurchandi	Tata McGraw, Hill	Second Edition, 2012
3	Microprocessor Architecture, Programming, and Applications with the 8085	Ramesh Gaonkar	Penram Publications	
4	The 8051 Microcontroller and Embedded Systems: Using Assembly and C	Mazidi & Mazidi	Pearson Publication	
5	The 8051 Microcontroller	Kenanth Ayala	Cengage Learning India	
6.	Microprocessor &	A P Godse, D A	Technical Publication	
0.	Microcontroller System	Godse	Pune	
7	Dept. of E	Lecture note p Electrical Engineeri	rovided by ng, AKS University, Satna	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: EE311

Course Title: Microprocessor and Microcontroller

		Program Outcomes										Program Specific Outcome		
	PO1	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO 8	PO 9	PO1 0	PO11	PO1 2	PSO 1	PSO 2
Course Outcomes	Engi neeri ng kno wled ge	Pro ble m Sol vin g	Des ign Ski Ils	La bor ato ry Ski lls	Tea m wo rk	Co m mu nic atio n Ski Ils	Eth ical and Pro fess ion al Be hav ior	Lif elo ng Lea rni ng	Glo bal and Soc ieta l Im pac t	Proj ect Man age men t	Ada ptab ility	Prof essio nal Deve lop men t	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understanding the architecture, pin details and operation of eight-bit and sixteen-bit microprocessor.	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO2: Ability to develop programming skills of eight-bit and sixteen-bit microprocessor.	3	3	3	3	1	2	1	2	2	2	2	3	3	2
CO3: Understanding the architecture, pin details and function of various I/O and memory interfacing IC's used with 8086 microprocessor.	3	3	2	2	1	1	2	2	1	2	2	3	2	3
CO4: Understanding the architecture, pin details and function of various communication and bus interfacing IC's used with 8086 microprocessor.	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO5: Understanding of the architecture, pin details, operation and application of 8051.	3	3	3	3	1	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning (SL)
,9,10,11,12	CO1: Understanding the architecture, pin details and operation of eight-bit and sixteen-bit microprocessor.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	1,2	Unit-1: Intel 8086/8088 Architecture 1.1,1.2,1.3,1.4,1.5,1.6,1.7, 1.8,1.9,1.10,1.11,1.12	1,2
,9,10,11,12	CO2: Ability to develop programming skills of eight-bit and sixteen-bit microprocessor.	SO2.1 SO2.2 SO2.3	1,2,3,4,5,6,7	Unit-2: Assembly Language Programming with 8086/8088 2.1, 2.2, 2.3, 2.4, 2.5, 2.6	1,2
PSO 1,2	CO3: Understanding the architecture, pin details and function of various I/O and memory interfacing IC's used with 8086 microprocessor.	SO3.1 SO3.2 SO3.3 SO3.4	1	Unit-3: I/O and Memory interfacing using 8086 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9. 3.10	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO4: Understanding the architecture, pin details and function of various communication and bus interfacing IC's used with 8086 microprocessor.	SO4.1 SO4.2 SO4.3 SO4.4	1,2,3	Unit-4 : Communication and Bus interfacing with 8086 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8	1, 2
PO:1,2,3,4,5,6,7,8 ,9,10,11,12	CO5: Understanding of the architecture, pin details, operation and application of 8051.	SO5.1 SO5.2 SO5.3	1,2	Unit 5: 8051 Microcontroller 5.1,5.2,5.3,5.4,5.5,5.6	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-V

Course Code:	EE301
Course Title:	Wind and Solar Energy Systems
Pre-requisite:	Students should have basic knowledge of Renewable Energy.
Rationale:	A process of introducing formal knowledge of Renewable Energy (Solar and Wind). In this process, the study of generation, need, practical difficulties, and future aspects will be provided.

Course Outcomes:

EE301.1: Understand the energy scenario and the growth of power generation from renewable energy sources. **EE301.2:** Understand the basic physics of wind and solar power generation.

EE301.3: Understand the power electronic interfaces for wind and solar generation.

EE301.4: Understand the issues related to the grid integration of solar and wind energy systems.

EE 301.5: Study the Network Integration Issues.

Scheme of Studies:

Course				Scheme of studies(Hours/Week)		Total		
Categ			Cl	LI	SW	SL	Total Study	Credits
ory	Course	Course					Hours	(C)
	Code	Title					(CI+LI+SW+SL)	
Professi onal Elective course (PEC)	EE301	Wind and Solar Energy Systems	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field, or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project, etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL have to be planned and performed under the teacher's continuous guidance and feedback to ensure the Learning outcome.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

				Scheme of Assessment (Marks)						
				Progress	ive As	sessmen	t (PRA)		End	
Cour se Categ ory	Course Code	Course Title	Class/Ho me Assignm ent 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Se min ar one (SA)	Class Activ ity one (CAT)	Class Attendanc e (AT)	Total Marks (CA+CT +SA+C AT+AT)	Semeste r Assessm ent (ESA)	Total Mark s (PRA + ESA)
PEC	EE301	Wind and Solar Energy Systems	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE 301.1: Understand the energy scenario and the growth of power generation from renewable energy sources.

Item	AppX Hrs
Cl	08
LI	0
SW	01
SL	01
Total	10

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom	Self-Learning
(SOs)	Instruction	Instruction	(SL)
	(LI)	(CI)	
SO1.1 Understand the past		Unit-1: Physics of Wind	1. Understand the
works in wind power.		Energy	Wind Power
			System.
SO1.2 Understand the		1.1 History of wind	
Indian and global		power	
aspects.		1.2 Indian and Global	
		statistics	
SO1.3 Understand the		1.3 Wind physics	
workings of wind		1.4 Betz limit	
power generation.		1.5 Tip speed ratio	
		1.6 stall and pitch	
SO1.4 Understand the		control	
concept of different		1.7 Wind speed statistics	
distribution		probability	
functions.		distributions	
		1.8 Wind speed and	
		power-cumulative	
		distribution functions	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Write down all the concepts of Wind Power with numerical.

b. Mini Project:

i. Draw the basic diagrams of various systems with theory.

EE301.2: Understand the basic physics of wind and solar power generation.

Item	AppX Hrs
Cl	8
LI	0
SW	1
SL	1
Total	10

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO2.1 To Understand the	•	Unit-2 Wind Generator	1. Learn and gain
Modern Wind Systems.		Topologies.	knowledge of the
			topologies of
SO2.2 To understand the		2.1 Review of Modern	wind power
various turbines.		Wind Turbine	systems.
		Technologies	
SO2.3 To understand the		2.2 Fixed and Variable	
different types of		Speed Wind Turbines	
generators.		2.3 Induction Generators	
		2.4 Doubly-Fed Induction	
SO2.4 To understand the various		Generators and Their	
converters.		Characteristics	
		2.5 Permanent-Magnet	
SO2.5 To understand the		Synchronous Generators	
generator-converter		2.6 Power electronics	
configuration and control		converters	
strategies.		2.7 Generator-Converter	
_		configurations	
		2.8 Converter Control	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Make notes of topologies of Wind Power Generation.

b. Mini Project:

i. Draft the Wind Power Generation System.

EE301.3: Understand the power electronic interfaces for wind and solar generation.

Item	AppX Hrs
Cl	13
LI	0
SW	01
SL	01
Total	15

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO3.1 To Understand the Basic		Unit-3: Solar Resources.	1. To ensure all
Concept of Solar Power			the concepts of
Generation.		3.1 Introduction	Solar Resources.
		3.2 solar radiation spectra	
SO3.2 To Understand the		3.3 solar geometry	
various factors affecting solar		3.4 Earth-Sun angles	
power.		3.5 observer Sun angles	
		3.6 solar day length	
SO3.3 To Understand the		3.7 Estimation of Solar	
different technologies.		Energy Availability	
		3.8 Solar thermal power	
SO3.4 To Understand the		generation	
various resources.		3.9 Technologies	
		3.10 Parabolic trough,	
		central receivers	
		3.11 parabolic dish, Fresnel	
		3.12 Solar Pond	
		3.13 Elementary Analysis	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Make notes of Solar Resources.

EE301.4: Understand the issues related to the grid integration of solar and wind energy systems.

Item	AppX Hrs
Cl	09
LI	0
SW	1
SL	1
Total	11

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO4.1 Evaluation of		Unit-4: Solar Photovoltaic	1. Make Well-
Characteristics of			Organized Notes
Photovoltaic.		4.1 Technologies-Amorphous	on All Concepts
		4.2 monocrystalline	of Solar Power
SO4.2 To Understand the PV		4.3 Polycrystalline	Generation.
Panel		4.4 V-I characteristics of a PV	
		cell	
SO4.3 To Study the converters		4.5 PV module	
for solar system		4.6 Array	
		4.7 Power Electronic	
SO4.4 To Study MPPT		Converters for Solar	
Algorithms		Systems	
		4.8 Maximum Power Point	
SO4.5 To study control		Tracking (MPPT)	
Strategies.		Algorithms,	
		4.9 Converter Control	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Make a Tabular List of MPPT Algorithms.

Mini Project:

i. Evaluate different control strategies.

EE 301.5: Study the Network Integration Issues. **Approximate Hours**

Item	AppX Hrs
Cl	07
LI	0
SW	01
SL	01
Total	9

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO5.1 To Understand the grid		Unit 5: Network Integration	1. To ensure
requirements.		Issues	Complete notes
			of the chapter.
SO5.2 To Understand the		5.1 Overview of Grid Code	
Power Regulation.		Technical Requirements.	
		5.2Fault ride-through for wind	
SO5.3 To Study the		farms - real and reactive	
disturbances in the grid.		power regulation.	
		5.3 voltage and frequency	
SO5.4 To Understand the		operating limits	
Isolated Operation.		5.4 solar PV and wind farm	
		behavior during grid	
		disturbances	
		5.5 Power quality issues	
		5.6Power System	
		Interconnection Experiences	
		in the World.	
		5.7 Hybrid and isolated	
		operations of solar PV and	
		wind systems.	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Make a list of problems associated with the grid.

b. Mini Project:

Draw the chart of different faults associated with the grid.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours Suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE301.1: Understand the concepts of the physics of wind energy.	08	01	01	10
EE301.2: Understand the wind power topologies.	08	01	01	10
EE301.3: Understand the solar resources.	13	01	01	15
EE301.4: Understand the concept of solar photovoltaic.	09	01	01	11
EE301.5: Study the Network Integration Issues.	07	01	01	09
Total Hours	45	05	05	55

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Μ	Total		
		R	U	Α	Marks
CO-1	Physics of wind power	03	01	01	05
CO-2	Wind power topologies	02	06	02	10
CO-3	The solar resources	02	05	05	12
CO-4	Solar Photovoltaic	03	05	05	13
CO-5	Network integration Issues	02	03	05	10
	Total	11	23	16	50

Legend:R: Remember,U: Understand,A: ApplyThe end-of-semester assessment for Wind and solar energy will be held with the written examination of 50 marks.

Note. Detailed Assessment rubrics need to be prepared by the course-wise teachers for the above tasks. Teachers can also design different tasks as per requirement, for end-semester assessment.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- **2.** Tutorial
- **3.** Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to the electrical power plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

	-	
(a)	Books	•
(a)	DOOUS	•

	(a) DOOKS :		,,	
S. No.	Title	Author	Publisher	Edition & Year
1	Wind Power Systems	T. Ackermann	John Wiley and Sons Ltd.	2005
2	Renewable and Efficient Electric Power Systems	G. M. Masters	John Wiley and Sons	2004
3	Solar Energy: Principles of Thermal Collection and Storage	S. P. Sukhatme	McGraw Hill	1984
4	Grid integration of wind energy conversion systems	H. Siegfried and R. Waddington	John Wiley and Sons Ltd.	2006
5	Renewable Energy Applications	G. N. Tiwari and M. K. Ghosal	Narosa Publications	2004
6	Solar Engineering of Thermal Processes	J. A. Duffie and W. A. Beckman	John Wiley & Sons	1991
7	Dept. of E	Lecture note provide lectrical Engineering, Ak		na.

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE301

Course Title: Wind and Solar energy systems

		1	1	1]	Program	n Outc	omes	ľ	ľ	ľ	ľ	Program Spec	cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes		Prob lem Solv ing	Desi gn Skill s	Lab orat ory Skill s	Tea m wor k	Com mun icati on Skill s	Ethi cal and Prof essio nal Beh avio r	Lifel ong Lear ning	Glo bal and Soci etal Imp act	Proje ct Mana geme nt	Adap tabilit y	Profes sional Develo pment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understand the concepts of the physics of wind energy.	2	3	2	2	1	1	1	3	2	1	2	2	3	3
CO2: Understand the wind power topologies.	2	3	3	2	2	2	1	3	2	2	2	3	3	2
CO 3: Understand the solar resources.	2	2	2	2	1	1	2	2	1	2	2	3	2	3
CO 4: Understand the concept of solar photovoltaic.	3	3	2	2	2	1	1	3	2	1	2	2	3	3
CO 5: Study the Network Integration Issues.	3	3	3	3	1	2	2	3	2	2	2	2	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

		(L))	Classroom Instruction (CI)	(SL)
	SO1.1			
E301.1: Understand the	SO1.2		Unit-1: Physics of wind power	
concepts of the physics				1
of wind energy.	SO1.4		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	
	SO2.1			
E301 2. Understand the wind	SO2.2		Unit-2: Wind power topologies	
	SO2.3			1
power topologies.	SO2.4		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8	
			Unit-3: The solar resources	
E301 3. Understand the solar				
				1
resources.	SO3.4		11,3.12,3.13	
	SO4.1			
F301 4. Understand the concept	SO4.2		Linit 4 · Solar Photovoltaic	
1	SO4.3			1
2			4.1,4.2,4.3,4.4,4.3,4.0,4.7,4.0,4.7	
	SO4.5			
E301 5: Study the Network			Unit 5: Network integration Issues	
				1
integration issues.	SO5.4		5.1,5.2,5.3,5.4,5.5,5.6,5.7	
F		of wind energy.SO1.4E301.2: Understand the wind power topologies.SO2.1 SO2.2 SO2.3 SO2.4 SO2.5E301.3: Understand the solar resources.SO3.1 SO3.2 SO3.3 SO3.4E301.4: Understand the concept of solar photovoltaic.SO4.1 SO4.2 SO4.3 SO4.4 SO4.5E301.5: Study the NetworkSO5.2 SO5.3	of wind energy.SO1.4S01.2: Understand the wind power topologies.SO2.1 SO2.2 SO2.3 SO2.4 SO2.5S01.3: Understand the solar resources.SO3.1 SO3.2 SO3.3 SO3.4S01.4: Understand the concept of solar photovoltaic.SO4.1 SO4.2 SO4.3 SO4.3 SO4.4 SO4.5S01.4: Understand the concept of solar photovoltaic.SO4.1 SO4.2 SO4.3 SO5.1 SO5.2 SO5.3	concepts of the physics of wind energy.SO1.3 SO1.4SO1.3 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.82301.2: Understand the wind power topologies.SO2.1 SO2.2 SO2.3 SO2.4 SO2.5Unit-2: Wind power topologies2301.3: Understand the solar resources.SO3.1 SO3.2 SO3.2 SO3.3 SO3.4Unit-3: The solar resources2301.4: Understand the concept of solar photovoltaic.SO4.1 SO4.2 SO4.3 SO4.4 SO4.5SO4.1 SO4.2 SO4.3 SO5.1 SO5.1 SO5.3Unit-4: Solar Photovoltaic 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

~ ~ .	Semester-V
Course Code:	EE302
Course Title:	Electrical Drive
Pre-requisite:	Electrical machine-1, Electrical Machine-2 and power electronics
Rationale:	Electrical drive technology converts electrical energy from power supply system or from battery into mechanical energy and transmits the resulting force into motion. Many applications that make our daily lives easier – like lifts, escalators, gate drives, washing machines, mixers, electric razors, etc.

Course Outcomes: After successful completion of this course students will be able to

EE302.1: Understand the Characteristics of dc motor.

EE302.2: Understand the concepts speed control using chopper

EE302.3: Understand the methods using Induction motor characteristics.

EE302.4: Understand the methods using Induction motor characteristics

EE302.5: To Understand the speed control of Slip ring Induction Motor.

Cours	Course			Scheme of studies (Hours/Week)							
e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)			
Program Elective (PEC)	EE302	Electrical Drive	3	0	1	1	5	3			

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

		Course		Scheme of Assessment (Marks)							
		Title		Progress	sive Asse	essment	(PRA)		End		
Cou rse Cate gory	Cous e Code		Class/ Home Assig nment 5 numbe	Class Test 2 (2 best out of 3)	Semin ar one	Class Activi ty any one	Class Atten dance	Total Marks	Semes ter Asses sment	Total Marks	
5019			r 3 marks each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+C T+SA+ CAT+ AT)	(ESA)	(PRA+ ESA)	
PEC	EE30 2	Electrica l Drive	15	20	5	5	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE302.1: Understand the Characteristics of dc motor.

Item	Approx Hrs
Cl	09
LI	0
SW	2
SL	1
Total	12

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1.1 Explain	•	Unit-1: DC motor characteristics	
conventional			
speed control		1.1 Review of emf and torque	1. DC
technique(s) of		equations of DC machine,	Machine
DC motors.		review of torque-speed	
SO1.2 Explain various		characteristics of separately	
solid state speed		excited dc motor	
controls of single		1.2 change in torque-speed curve	
and three phase		with armature voltage,	
DC drives.		example	
SO1.3 Describe the		1.3 load torque-speed	
speed control of		characteristics, operating	
chopper		point	
controlled DC		1.4 armature voltage control for	
drives.		varying motor speed, flux	
SO1.4 Describe the		weakening for high speed	
basic concept of		operation	
various control		1.5 Chopper fed DC drive	
loops used in		,Review of dc chopper and	
electrical drives		duty ratio control	
SO1.5 . Explain the		1.6 chopper fed dc motor for	
nature of speed		speed control	
torque		1.7 steady state operation of a	
characteristic of		chopper fed drive	
various types of		1.8 armature current waveform	
loads and drive		and ripple	
motors with the		1.9 calculation of losses in dc	
help of neat		motor and chopper, smooth	
sketch.		starting	

SW-1 Suggested Sessional Work (SW): a. Survey: DC Motor Drive

EE302.2: Understand the concepts speed control using chopper

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	Approx Hrs		
Cl	10		
LI	0		
SW	2		
SL	1		
Total	13		

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO2.1 Explain the multi		Unit-2 Multi-quadrant DC drive	1. Basic of
quadrant operation		2.1 Review of motoring and	Chopper
of electrical drive.		generating modes operation	
SO2.2 Describe different		of a separately excited dc	
methods of braking		machine	
used in any electric		2.2 four quadrant operation of	
drive.		dc machine; single-quadrant	
SO2.3 Select a motor on		and two-quadrant	
the basis of duty		2.3 four-quadrant choppers,	
cycles of motors.		steady-state operation of	
		multi-quadrant chopper fed	
		dc drive,	
		2.4 regenerative braking	
		2.5 Closed-loop control of DC	
		Drive	
		2.6 Control structure of DC	
		drive,	
		2.7 inner current loop and outer	
		speed loop	
		2.8 modeling of chopper as gain	
		with switching delay	
		2.9 current controller	
		specification and design	
		2.10 speed controller	
		specification and design	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Analysis the tariff, load management

EE302.3: Understand the methods using Induction motor characteristics. **Approximate Hours**

Item	Approx Hrs		
Cl	10		
LI	0		
SW	1		
SL	1		
Total	12		

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1 Explain speed		Unit-3 : Induction motor	1. energy
control methods of a		characteristics	consumption in
3 phase induction		3.1 Review of induction motor	KW and unit
motor.		equivalent circuit	
SO3.2 Explain the		3.2 torque-speed characteristic	
working of various 3		3.3 variation of torque speed	
phase induction		curve	
motor drives for		3.4 applied voltage, applied	
precise variable		frequency	
speed control.		3.5 applied voltage and	
SO3.3 To introduce		frequency	
Energy management		3.6 V/F Method	
technique during		3.7 typical torque-speed curves	
speed control		of fan	
_		3.8 pump loads(Various Load)	
		3.9 operating point	
		3.10 flux weakening	
		operation	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

1. To analysis the speed control method

EE302.4: Understand the methods using Induction motor characteristics **Approximate Hours**

Item	Approx Hrs
Cl	8
LI	0
SW	2
SL	1
Total	11

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO4.1 To Understand the		Unit-4: Scalar control or	1. motor
concept of Scalar control		constant V/f control of	Charactristics
		induction motor	
SO4.2 to Analysis the factors			
affecting motor		4.1 Review of three-phase	
		voltage source inverter	
SO4.3 Analysis the various		4.2 generation of three-	
parameter		phase PWM signals	
		4.3 sinusoidal modulation	
		4.4 space vector theory	
		4.5 conventional space	
		vector modulation	
		4.6 constant V/f control of	
		induction motor	
		4.7 steady-state	
		performance analysis	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

based on equivalent circuit 4.8 speed drop with loading slip regulation	
sup regulation	

EE302.5: To Understand the speed control of Slip ring Induction Motor.

Item	Approx Hrs		
Cl	5		
LI	0		
SW	2		
SL	1		
Total	8		

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1 Explain the principle of	•	Unit-5 Control of slip ring	1.star rating
two modes of variable		induction motor	
frequency control in 3			
phase induction motor		5.1 Impact of rotor	
		resistance of the	
SO3.2 Selection of equipment		induction motor	
		5.2 torque-speed curve	
SO3.3 Torque Calculation		5.3 Impact of rotor	
		resistance of the	
		induction motor torque-	
		speed curve	
		5.4 operation of slip-ring	
		induction motor with	
		external rotor	
		resistance	
		5.5 starting torqu	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Discuss speed control method

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE302.1: Understand the Characteristics of dc motor.	9	2	1	12
EE302.2: Understand the concepts speed control using chopper	10	2	1	13
EE302.3: Understand the methods using Induction motor characteristics.	10	1	1	12
EE302.4: Understand the methods using Induction motor characteristics	8	2	1	11
EE302.5: To Understand the speed control of Slip ring Induction Motor	5	2	1	8
Total Hours	42	9	5	56

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Μ	Total		
		R	U	Α	Marks
CO-1	DC motor characteristics	02	03	05	10
CO-2	Multi-quadrant DC drive	02	04	04	10
CO-3	Induction motor characteristics	02	02	06	10
CO-4	Scalar control or constant V/f control of induction motor	03	07	05	15
CO-5	Control of slip ring induction motor	01	02	02	05
	Total	10	18	22	50

Legend: R: Remember, U: Understand, A: Apply The end of semester assessment for Electric drive will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Design Demonstration
- **5.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whats'app, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition & Year
1	Fundamentals of Electrical Drives	Dubey, Gopal K	Narosa Publishing House, New Delhi ,2 nd Edition	2013
2	Power Electronics	Bimbhra, P.S.	Khanna Publishers, New Delhi 5 th Edition	2014
3	Power Electronics	Singh M.D., Khanchandani K.	Tata McGraw-Hill Education New Delhi	Eighth, 2023
4	Variable Speed Drives and Power Electronics	Barnes, Malcolm	Newnes, Elsevier	2003
5.	Power Electronics: Circuits, Devices and Applications	Muhammad, Rashid H	Pearson, New Delhi, 2003,3 rd Edition or latest	2003

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE302 Course Title: Electrical Drive

					Prog	ram Ou	itcomes	5					U	n Specific come
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engineeri ng knowledg e	Problem Solving	Design Skills	Laborat ory Skills	Team work	Commu nication Skills	Ethical and Professi onal Behavio r	Lifelon g Learni ng	Global and Societa l Impact	Project Manag ement	Adapt ability	Profess ional Develo pment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
EE302.1: Understand the Characteristics of dc motor.	3	3	2	3	3	2	1	2	3	2	2	3	3	2
EE302.2: Understand the concepts speed control using chopper	3	3	3	3	2	2	1	2	1	2	2	2	2	2
EE302.3: Understand the methods using Induction motor characteristics.	3	3	2	2	3	1	2	2	1	2	2	3	2	2
EE302.4: Understand the methods using Induction motor characteristics	3	3	2	2	2	1	1	3	2	2	2	2	3	3
EE302.5: To Understand the speed control of Slip ring Induction Motor	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory nstruction(L I)	Classroom Instruction(CI)	lf-Learning(SL)
O:1,2,3,4,5,6,7,8,9,1 0,11,12	E302.1: Understand the characteristics of dc motor.	SO1.1 SO1.2 SO1.3		Unit-1 DC motor characteristics 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9	1
PSO 1,2 O:1,2,3,4,5,6,7,8,9,1	EE302.2: Understand the	SO2.1 SO2.2			
0,11,12 PSO 1,2	concepts speed control using chopper	SO2.3		Unit-2 Multi-quadrant DC drive 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	1
0:1,2,3,4,5,6,7,8,9,1	E302.3: Understand the	SO3.1		Unit-3 : Induction motor	
0,11,12 PSO 1,2	methods using Induction motor characteristics	SO3.2 SO3.3		characteristics 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10	1
O:1,2,3,4,5,6,7,8,9,1 0,11,12	E302.4: Understand the methods using Induction motor characteristics	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4 : Scalar control or constant V/f control of induction motor 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8	1
PSO 1,2				+.1, +.2,+.3,+.4,+.3,+.0,+.7,+.0	
O:1,2,3,4,5,6,7,8,9,1 0,11,12 PSO 1,2	E302.5: To Understand the peed control of Slip ring Induction Motor	SO5.1 SO5.2 SO5.3		Unit 5: Control of slip ring induction motor	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

	Semester-V
Course Code:	OEC301
Course Title :	Electronic Devices
Pre- requisite:	Student should have basic knowledge of physics, Semiconductor Electronics and Electronic devices such as Diodes, Transistors, FET's etc.
Rationale:	Students will demonstrate an understanding of semiconductor physics and the operation of the most common semiconductor devices (PN junctions, metal-semiconductor devices, metal oxide semiconductor devices, and bipolar junction transistors), and will be prepared for subsequent courses with this course as a prerequisite.

Course Outcomes:

OEC301.1: Understanding of the concept of semiconductor materials, pn junction, pn junction diodes and special purpose diodes.

OEC301.2: Understanding of Diode Applications as Rectifiers, filters for rectifiers, voltage regulators. **OEC301.3:** Explain the principle, construction and working of Transistor, and different biasing techniques. **OEC301.4:** Explain the principle, construction and working of FET's, JFET's, MOSFET's **OEC301.5:** Explain the principle, construction and working of feedback .amplifiers, Oscillators and its types

Scheme of Studies:

				Scheme of studies (Hours/Week)					
Course Categ ory	Cours e Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SI)	Total Credits (C)	
Open Elective Course (OEC)	OEC301	Electronic Devices	3	0	1	1	5	3	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

ulum of B. Iecn. (Electrical Engineering) Prog

(Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

					Scheme	e of Asse	ssment (M	larks)		
				Progres	sive Asso	essment	(PRA)		End	Tota
Cour se Cate gory	Couse Code	Course Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one (SA)	Class Activi ty any one (CAT)	Class Attendan ce (AT)	Total Marks (CA+ CT+S A+CA T+AT)	Semester Assessme nt (ESA)	l Mar ks (PR A+ ESA
OEC	OEC3 01	Electro nic Devices	15	20	5	5	5	50	50) 100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC301.1: Understanding of the concept of semiconductor materials, PN junction, PN junction diodes and special purpose diodes.

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	Approx Hrs
Cl	07
LI	0
SW	1
SL	1
Total	09

Session Outcomes (SOs)	Lab Instr uctio n (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO1.1 Understand the concept of semiconductor material SO1.2 Understand the concept of PN junction and its characteristics SO1.3 Understand the concept of PN junction diode and its working SO1.4 understand the different type of diode 		 Unit-1:Diode and its types 1.1 Pn junction diode, equivalent circuit and its V-I characteristics 1.2 Junction capacitance of diode 1.3 applications as Clipping, Clamping circuits, 1.4 Voltage doublers, 1.5 special purpose diodes- photodiode, LED, 1.6 tunnel diode, Varactor diode, 1.7 pin diode. 	 Semiconductor and its types Concept of PN junction

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain forward biasing and reverse biasing of PN junction.
- ii. Describe the application of clipping and clamping circuit.

OEC301.2: Understanding of Diode Applications as Rectifiers ,filters for rectifiers, voltage regulators.

Item	Approx Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO2.1 Understanding of		Unit-2: Electronic power	
diodes.		supply component	1. Concept of
		2.1 Construction and	diode and its
SO2.2 Learn the working of		working of rectifier	types
rectifier		2.2 Construction and	2. Concept of
SO2.3 Understand the		working of half wave rectifier	power supply in Electronics
construction and working of filters and its types		2.3 Construction and working of full wave rectifier	3. Operation Of regulators
SO2.4 Understand the working of voltage regulator. And its types		2.4 Construction and working of bridge rectifier	
		2.5 Construction and working of filters	
		2.6 Series inductor filter,	
		Shunt capacitor	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

voltage regulator 2.9 Construction and working of shunt voltage regulator
--

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i.

- i. Theoretical Assignment related to different parts of power supply components.
- ii. Explain the working principle of Rectifier, filters and voltage regulators.

Mini Project:

Draw a Poster of Power supply of electronic devices

OEC301.3: Explain the principle, construction and working of Transistor, and its types with configuration and different biasing techniques.

Item	Approx Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Laboratory	Class room Instruction	Self
Instruction	(CI)	Learning
(LI)		(SL)
•		
	ũ là chí	
		1. Significance
		of holes and
	-	electrons
	-	2. Forward and
	-	reverse
	1 0,	biasing
	1 0 1	techniques
	,	
	1 0	
	J /	
	•	
	,	
	• •	
	0 1 0	
	1 1	
	1	
	1	
	•	Instruction (CI) (LI) Unit-3: Transistor

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Make a poster of different biasing techniques.
- ii. explain different biasing techniques.

OEC301.4: Explain the principle, construction and working of FET's, JFET's, MOSFET's

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	Approx Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
 SO4.1 Understand the building Blocks construction and operation of different types of FET's SO4.2 Understand the building Blocks construction and operation of JFET's and its types. SO4.3 Understand the construction and working of MOSFET's and its types SO4.4 Understand the applications of FET JFET and MOSFET 		 Unit-4 : FET and MOSFET 4.1 construction and working of JFET and its types 4.2 V-I characteristics of JFET and pinch off voltage 4.3 Construction and working of MOSFET 4.4 Construction and working of Depletion MOSFET 4.5 Construction and working of enhancement MOSFET 4.6 low frequency common source and common drain amplifiers 4.7 FET biasing techniques 4.8 The common source and common drain amplifier at high frequencies 4.9 FET as a voltage variable resistor 4.10 MOSFET as a switches 	 Difference between BJT and FET Difference between FET and MOSFET

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i.

- Theoretical Assignments Based on Different types of FET's i.
- Numerical Problems Based on JFET's ii.

Mini Project:

Draw a table of difference between BJT, JFET and MOSFET.

OEC301.5: Explain the principle, construction and working of feedback .amplifiers, Oscillators and its types

Item	Approx Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO5.1 Discussion about the difference between amplifier and feedback amplifier		Unit 5: Feedback amplifiers and oscillators 5.1 General feedback theory	1. Structure and
SO5.2 Understand the concept of feedback and its types		 5.2 Types of feedback current and voltage feedback 5.3 Negation and positive feedback and its effect 	operation of Amplifiers 2. Characteristics of amplifier
SO5.3 Understand the Building blocks and Operations of Oscillators		5.4 Feedback amplifiers 5.5 Types of feedback amplifiers	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Deviced on on 01 Avgust 2022)

(Revised as on 01 August 2023)

SO5.4 Study of different	5.6 Working and	
types oscillators	construction of	
	oscillators	
	5.7 Condition for	
	oscillation, Wein bridge	
	oscillator, RC phase	
	shift oscillator	
	5.8Hartley oscillator	
	5.9 colpitts oscillator,	
	crystal oscillator, Tunnel	
	diode oscillator	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Theoretical Assignment based on Different oscillators

b. Mini Project:

Draw the chart of Different Types of feedback amplifier and oscillators.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
OEC301.1: Understanding of the concept of semiconductor materials, pn junction,pn junction diodes and special purpose diodes.	7	1	1	09
OEC301.2: Understanding of Diode Applications as Rectifiers ,filters for rectifiers, voltage regulators.	9	1	1	11
OEC301.3: Explain the principle, construction and working of Transistor and its different biasing techniques.	9	1	1	11
OEC301.4: Explain the principle, construction and working of FET's ,JFET's, MOSFET's	9	1	1	11
OEC301.5: Explain the principle, construction and working of feedback . amplifiers, Oscillators and its types	9	1	1	11
Total Hours	43	5	5	53

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	CO Unit Titles		arks Di	stribution	Total
0	Omt Titles	R	U	Α	Marks
CO-1	Diode and its types	02	05	03	10
CO-2	Electronics power supply components	04	06	00	10
CO-3	Transistor	02	06	02	10
CO-4	FET's and MOSFET's	03	07	00	10
CO-5	Feedback amplifier and oscillators	03	05	02	10
	Total	14	29	07	50

Legend:	R: Remember,	U: Understand,	A: Apply

The end of semester assessment for Electronic Device will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- **2.** Tutorial
- **3.** Group Discussion
- 4. Practical Demonstration of Instruments.
- **5.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :								
S. No.	Title	Author	Publisher	Edition & Year					
1	Solid State Devices	H.S.Kalsi.	Tata McGraw Hill.	Fourth, 2019					
2	Applied electronics	R.S Sedha	S. Chand	Fifth ,2018					
3	Solid state electronics devices	Ben G. Streetman and Sanjay Banerjee	prentice Hall India Learning Private Limited	Sixth,2006					
4	Semiconductor physics and devices	Donald A. Neamen	Tata McGraw Hill.	Fourth,2016					
5	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.								

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: OEC301

Course Title: Electronic Devices

		Program Outcomes								Program Specific Outcome				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neer ing kno wled ge	Probl em Solvi ng	Desig n Skills	Labo rator y Skills	Team work	Com muni catio n Skills	Ethic al and Profe ssion al Beha vior	Lifelo ng Lear ning	Glob al and Societ al Impa ct	Proje ct Mana geme nt	Adap tabilit y	Profe ssion al Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understanding of the concept of semiconductor materials, pn junction,pn junction diodes and special purpose diodes.	3	3	2	3	3	2	1	2	3	2	2	3	3	2
CO.2: Understanding of Diode Applications as Rectifiers ,filters for rectifiers, voltage regulators.	3	3	3	3	2	2	1	2	1	2	2	2	2	2
CO 3: Explain the principle, construction and working of Transistor and its different biasing techniques.	3	3	2	2	3	1	2	2	1	2	2	3	2	2
CO 4: Explain the principle, construction and working of FET's ,JFET's, MOSFET's	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO 5: Explain the principle, construction and working of feedback . amplifiers, Oscillators and its types	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO1: Understanding of the concept of semiconductor materials, pn junction,pn junction diodes and special purpose diodes.	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1 Diode and its types 1.1,1.2,1.3,1.4,1.5,1.6,1.7	1,2
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO.2: Understanding of Diode Applications as Rectifiers ,filters for rectifiers, voltage regulators.	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2 Electronics power supply components 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9	1,2,3
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO 3: Explain the principle, construction and working of Transistor and its different biasing techniques.	SO3.1 SO3.2 SO3.3		Unit-3 : Transistor 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1,2
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO 4: Explain the principle, construction and working of FET's ,JFET's, MOSFET's	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4 : FET's and MOSFET's 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	1,2
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO5: Operate and maintain solid state drives for speed control of 3 phase Synchronous motor.	SO5.1 SO5.2 SO5.3 SO4.4		Unit 5: Feedback amplifier and oscillators 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	1,2

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

	Semester-V		
Course Code:	OEC302		
Course Title :	DATA STRUCTURE AND ALGORITHMS		
Pre- requisite:	Basics of programming		
Rationale:	Study of Data structures will help students to understand structuring and managing of data. Insights from data structures help students in industry placements. Good knowledge of Data structure will provide students chance to appear in product bases companies also students will able to develop problem solving skills after the study of this subject.		

Course Outcomes: On successful completion of this course, the students will be able to:

OEC302.1: Understanding abstract specification of data-structures and their implementation.

OEC302.2: Understanding time and space complexity of programs and data-structures.

OEC302.3: Knowledge of basic data-structures, their applications and relative merits.

OEC302.4: Ability to convert an algorithmic solution to a program using suitable data-structures and analyze the trade-offs involved in terms of time and space complexity

OEC302.5: Acquire basic knowledge of the graphs.

Scheme of Studies:

Cours				Scheme of studies(Hours/Week)				Total
e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Open Electiv e Course (OEC)	OEC302	DATA STRUCTURE AND ALGORITHMS	3	0	2	1	6	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

				Scheme of Assessment (Marks)						
				Progressiv	ve Asse	ssment	(PRA)		End	
Cours e Categ ory	Cours e Code	Course Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Class Activ ity any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+S A+CAT+A T)	Semester Assessm ent (ESA)	Total Mark s (PRA + ESA)
OEC	OEC 302	DATA STRU CTUR E AND ALGO RITH MS	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC302.1 Understanding abstract specification of data-structures and their implementation.
Approximate Hours

Item	AppX Hrs
Cl	07
LI	0
SW	2
SL	1
Total	10

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO1.1 Understand the requirement of data structure. SO1.2 Understanding standard for data structure. SO1.3 Understanding types of complexity. SO1.4 Critically evaluate various types of complexity. SO1.5 Understand asymptotic Notation. 		Unit-1: Introduction and basic terminology1. Notion of data- structures and algorithms.2. $logn, n, 2^n$: understanding growth of these functions, and applications (binary search and extensions to similar problems)3. $logn, n, 2^n$: understanding growth of these functions, and applications (binary search and extensions to similar problems)3. $logn, n, 2^n$: understanding growth of these functions, and applications (binary search and extensions to similar problems)4. Worst-case complexity5. average-case time complexity6. average-case time complexity7. Asymptotic Notation: $O($ $), \square($ $)$	1. Learning about various complexities.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Critically evaluate worst case complexity,
- ii. Explain Asymptotic Notation.

b. Mini Project:

Compare various Complexities.

OEC302.2. Understanding time and space complexity of programs and data-structures.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Approximate Hours

Item	AppX Hrs
Cl	8
LI	0
SW	2
SL	1
Total	11

Session Outcomes	Laboratory Instruction	Class room Instruction (CI)	Self Learning
(SOs)	(LI)		(SL)
SO2.1 To Understand		Unit-2 : Abstract Data	1. Try to
the need for		Types (ADTs): arrays and	Implement
Abstract data		linked list ADTs.	Link list.
types.		1. Stacks, Queues: ADTs and	
SO2.2 To learn about array .		implementations using arrays,linked lists.2. Doubly linked lists: ADT and	
SO2.3 To understand the role of link list.		implementation3. Dictionary ADT: implementation using array.4. Dictionary ADT: implementation	
SO2.4 To understand doubly link list.		 using linked lists. 5. Dictionary ADT: implementation using binary search. 6. Tree ADT and examples 7. Implementation of trees and 	
		basic traversal algorithms8. Binary trees and in order traversal and Project metrics.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Prepare a program of Binary tree insertion.
- ii. Explain TREE traversal.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

b. Mini Project:

Implement basic tree traversal.

OEC302.3 Knowledge of basic data-structures, their applications and relative merits **Approximate Hours**

Item	AppX Hrs
Cl	7
LI	0
SW	2
SL	2
Total	11

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning
	(LI)		(SL)
SO3.1 Learning about priority		Unit-3: Priority Queues	1. Learning
queue design concept.		and Heaps	various
		3.1 Priority Queue ADT	approaches of
SO3.2 Understand heap.		3.2 Definition of heaps	implementing
		3.3 Implementation of	heap and queues.
SO3.3 Differentiate between		Priority Queues using	
queue and heap.		heaps	
		3.4 Implementation of	
SO3.4 Understand heap sort		Priority Queues using	
		running time analysis	
		3.5 Implementation of	
		heaps using arrays.	
		3.6 Heap-sort -1	
		3.7 Heap-sort-2	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain top-down and bottom-up approach of heap.
- ii. Evaluate types of queue.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

b. Mini Project:

- i. Create a program on priority queue.
- c. Other Activities (Specify):
 - i. Design and develop a program on heap.
- **OEC302.4** Ability to convert an algorithmic solution to a program using suitable data-structures and analyse the trade-offs involved in terms of time and space complexity.

Item	AppX Hrs
Cl	8
LI	0
SW	2
SL	2
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO4.1 Understanding different types of trees. SO4.2 Learn about different types of tree insertion. SO4.3 Creating M-way search trees. 		 Unit-4 : Binary Search Trees, AVL Trees, 2-4 trees 4.1 Binary Search Trees: definition and some basic algorithms. 4.2 Implementation of Dictionary ADTs using Binary Search trees 4.3 Implementation of Dictionary ADTs using running time analysis 4.4 AVL trees: height balance 	1. Differentiat e between binary tree and 2-3 trees.
		condition, rotations, and	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

implementation of dictionary
ADT -1
4.5 AVL trees: height balance
condition, rotations, and
implementation of dictionary
ADT -2
4.6 2-4 Trees: Multi-way search
trees
4.7 implementation of dictionary
ADT
4.8 Informal discussion of
extension to B-trees and
removal

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Write down the types of trees.
- ii. Explain the working of red black trees.

b. Mini Project:

i. Write a program to implement all types of trees.

c. Other Activities (Specify):

Develop the ability to create height balance trees..

OEC302.5 Acquire basic knowledge on hashing. Approximate Hours

Item	AppX Hrs
Cl	10
LI	0
SW	2
SL	2
Total	14

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Looming
(SOs)	(LI)	(CI)	Learning (SL)
SO5.1 Understand the scope		Unit 5- Hashing and sorting	1. Learn
of sorting		5.1.Map ADT	different sorting
		5.2 Hash Tables and	techniques.
SO5.2 Understand the need of		implementation of Map	-
Hashing		using Hash Tables	
		5.3 Design of hash functions	
SO5.3 Learn about different		5.4 Collision resolution	
sorting techniques.		schemes: chaining, open	
		addressing schemes like	
		linear probing, quadratic	
		probing, double hashing	
		5.5 Applications of Hashing:	
		finding duplicates, set	
		intersection, etc.	
		5.6 Tries: implementation of	
		Map ADT using tries.	
		5.7 Compressed tries and	
		suffix tries.	
		5.8 Bubble sort, insertion	
		sort, selection sort.	
		5.9 Merge sort and divide	
		and conquer paradigm	
		5.10. Quick sort	

SW-5 Suggested Sessional Work (SW):

a. Assignments

- i. Find out challenges in different sorting methods.
- ii. what is hashing? Explain different methods of hashing.

b. Mini Project:

i. Implement sorting in C.

c. Other Activities (Specify):

Explain hashing.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
OEC302.1 Understanding abstract	7	2	1	10
specification of data-structures and their implementation	7	2	1	10
OEC302.2. Understanding time and space complexity of programs and data- structures	8	2	1	11
OEC302.3 Knowledge of basic data-structures, their applications and relative merits	7	2	2	11
OEC302.4 Ability to convert an algorithmic solution to a program using suitable data-structures and analyse the trade-offs involved in terms of time and space complexity.	8	2	2	12
OEC302.5 Acquire basic knowledge on hashing.	10	2	2	14
Total Hours	40	10	8	58

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Μ	Total		
CO	Omt Titles	R	U	Α	Marks
CO1	Introduction and basic terminology	02	01	01	04
CO 2	Abstract Data Types (ADTs): arrays and linked list ADTs.	02	04	02	08
CO 3	Priority Queues and Heaps	03	05	04	12
CO 4	Binary Search Trees, AVL Trees, 2-4 trees	02	08	05	15
CO 5	Hashing and sorting.	03	05	03	11
	Total	12	23	15	50

Legend: R: Remember,

U: Understand,

A: Apply

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

The end of semester assessment for Data Structures and Algorithms will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit any software development company
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books :

S. No.	Title	Author	Publisher	Edition & Year
1	Data Structures and	Michael T. Goodrich	McGraw Hill	3rd Edition 2004
	Algorithms in Java	and Roberto	International edition	
	_	Tamassia, John		
		Wiley & Sons;		
2	Data Structures and	Michael T. Goodrich	Khanna Publishing	1 st edition.
	Algorithms in Python	and Robert	Co.	

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

Cos, POs and PSOs Mapping

Programming Title: B. Tech. Electrical Engineering Course Code: OEC302

Course Title: Data Structure and Algorithm

		Program Outcomes						Program Spe	cific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neer ing kno wled ge	Probl em Solvi ng	Desig n Skills	Labo rator y Skills	Team work	Com muni catio n Skills	Ethic al and Profe ssion al Beha vior	Lifelo ng Lear ning	Glob al and Societ al Impa ct	Proje ct Mana geme nt	Adap tabilit y	Profe ssion al Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1 Understanding														
abstract specification of														
data-structures and their	3	3	2	3	3	2	1	2	3	2	2	3	3	2
implementation														
CO2. Understanding time														
and space complexity of	3	3	3	3	2	2	1	2	1	2	2	2	2	2
programs and data-structures														
CO3 Knowledge of basic														
data-structures, their														
applications and relative	3	3	2	2	3	1	2	2	1	2	2	3	2	2
merits														
CO4 Ability to convert an algorithmic solution to a program using suitable data-structures and analyse the trade-offs involved in terms of time and space complexity.	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO5 Acquire basic knowledge on hashing.	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

POs & PSOs No.	COs No.& Titles	SOs No. Laboratory Instruction (LI)		Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO1 Understanding abstract specification of data-structures and their implementation	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1 Introduction and basic terminology 1.1,1.2,1.3,1.4,1.5,1.6,1.7	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO2. Understanding time and space complexity of programs and data-structures	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2 Abstract Data Types (ADTs): arrays and linked list ADTs 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO3 Knowledge of basic data- structures, their applications and relative merits	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3: Priority Queues and Heaps 3.1,3.2,3.3,3.4,3.5,3.6,3.7	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO4 Ability to convert an algorithmic solution to a program using suitable data-structures and analyse the trade-offs involved in terms of time and space complexity.	SO4.1 SO4.2 SO4.3		Unit-4 : Binary Search Trees, AVL Trees, 2-4 trees 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO5 Acquire basic knowledge on hashing.	SO5.1 SO5.2 SO5.3 SO4.4 SO4.5		Unit 5: Hashing and sorting 5.1,5.2,5.3,5.4,5.5,5.6, 5.7,5.8,5.9,5.10	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-V

Course Code:	OEC303
Course Title :	Analog and Digital Communication
Pre- requisite:	Student should have basic knowledge of Analog Electronics, Digital Electronics, Fourier Series and Fourier Transform
Rationale:	This course aims to introduce the basic concepts of Modulation in the communication System, the behavior of the communication systems in the presence of noise. the different analog and digital modulation schemes for transmission of information. and Applications of different modulation techniques

Course Outcomes:

OEC303.1: To develop ability to analyse system requirements of analog and digital communication systems. To understand the generation and detection of various Amplitude modulation techniques.

- **OEC303.2:** To understand the concept of angle Modulation, to acquire the knowledge of each block in FM and PM transmitters and receivers, To understand the concepts of baseband transmissions.
- **OEC303.3**: Analyze and design of various Pulse modulation and demodulation techniques, Understand the effect of noise present Pulse modulation, Attain the knowledge of conversion of pulse modulation to digital output.
- **OEC303.4:** To understand and analyze the significance of Digital modulation techniques, Attain the knowledge about ASK, FSK and PSK Transmitters and Receivers and its types.
- **OEC303.5:** To analyze the importance of different Modulation and communication techniques in modern communication system.

				Scheme of studies(Hours/Week)				
Cours e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Open Electiv e OEC	OEC303	Analog and Digital Communication	3	0	1	1	5	3

Scheme of Studies:

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self-Learning,

C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

					Scheme	of Asse	ssment (M	[arks)		
				Progres			(PRA)	lai KS)	End	Tota
Cour se Cate gory	Cou se Cod e	Course Title	Class/Ho me Assignm ent 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Class Activ ity any one (CAT)	Class Attendan ce (AT)	Total Marks (CA+ CT+S A+CA T+AT)	Semester Assessm ent (ESA)	l Mar ks (PR A+ FS A
		Analog				,		T+AT)		ESA)
OEC	OEC 303	and Digital Commun ication	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC303.1: To develop ability to analyze system requirements of analog and digital communication systems. To understand the generation and detection of various Amplitude modulation techniques.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	Approx Hrs
Cl	08
LI	0
SW	1
SL	1
Total	10

Session Outcomes Lab (SOs) Instr uctio		Class room Instruction (CI)	Self-Learning (SL)		
	n (LI)				
SO1.1 Understand the concept		Unit-1: Basics			
of communication		communication system	1.	Types of	
system		1.1 Explanation of		Amplifiers	
		Communication system	2.	Types of signals	
SO1.2 Understand the need of		and its block diagram			
modulation and its types		1.2 Modulation and			
		Demodulation.			
SO1.3 Understand the concept		1.3 Need for modulation.			
of AM.		1.4 Amplitude modulation and			
		Demodulation.			
		1.5 Mathematical expression			
		of AM.			
		1.6 generation of AM waves			
		1.7 Concept of SSB,DSB and			
		VSB			
		1.8 AM receivers			

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignments of voltage, Current and Power Measurement.
- ii. Numerical Problems Related to Resolution, Sensitivity and error of Measurement.

OEC303.2: To understand the concept of angle Modulation, To acquire the knowledge of each block in FM and PM transmitters and receivers, To understand the concepts of Information theory

Item	Approx Hrs
Cl	10
LI	0
SW	1
SL	1
Total	12

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO2.1 Understanding of angle		Unit-2: Angle Modulation	
modulation		2.1 frequency	1. Concept of
		modulation	modulation
SO2.2 Learn the function and		2.2 Mathematical	2. Basics
operation of FM		representation of FM	Fourier
		2.3 Types of FM	series
SO2.3 Understand the concept		2.4 FM modulators	
of PM.		2.5 FM demodulators	
SO2.4 Understand the		2.6 Pre-and De-	
techniques of generation		emphasis,	
and detection of FM and		2.7 Super heterodyne	
PM		receiver	
		2.8 Phase modulation	
		2.9 Generation of PM	
		2.10 PM detection	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignment related to different types of FM
- ii. Differentiate between PM and FM.

OEC303.3: Analyze and design of various Pulse modulation and demodulation techniques, Understand the effect of noise present Pulse modulation, Attain the knowledge of conversion of pulse modulation to digital output.

Item	Approx Hrs
Cl	11
LI	0
SW	1
SL	1
Total	13

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1 Understand the concept		Unit-3:Pulse Modulation	
of various pulse modulation		3.1 Pulse modulation and	1. Different
schemes		its types	Types
		3.2 Concept of PAM	modulation
SO3.2 To study the process of		3.3 Sampling and its types	techniques
sampling and quantization		3.4 Concept of PPM	2. Concept of
		3.5 Concept of PWM	binary
SO3.3 To understand the		3.6 Quantization and its	numbers
significance and importance		types	
of PCM,DM and ADM.		3.7 Time division	
		multiplexing	
		3.8 Concept of PCM	
		3.9 Delta modulation	
		3.10 Adaptive delta	
		modulation	
		3.11 Comparison of	
		PCM,DM and ADM	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignments related to different pulse modulation.
- ii. Written assignments comparison between PAM, PWM, PPM and PCM

OEC303.4: To understand and analyze the significance of Digital modulation techniques, Attain the knowledge about ASK, FSK and PSK Transmitters and Receivers and its types.

Item	Approx Hrs
Cl	08
LI	0
SW	1
SL	1
Total	9

Session Outcomes (SOs)	Laborato ry Instructio n (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO4.1 Discuss the significance of digital modulation techniques SO4.2 Understand the concept of ASK,PSK and FSK. SO4.3 Study the characteristics of digital modulation over analog modulation 		 Unit-4: Digital Modulation. 4.1 Explanation of digital modulation techniques 4.2 ASK modulation 4.3 Types of ASK 4.4 FSK modulation 4.5 Types of FSK 4.6 PSK modulation 4.7 Types of PSK 4.8 Concept of phase locked loop 	 Significance of ASK PSK and FSK. Importance of digital modulation Applications of digital modulation.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignments Based on Different types ASK FSK and PSK
- ii. Written assignment based on the differentiation of ASK FSK and PSK

OEC303.5: To analyze the importance of different Modulation and communication techniques in modern communication system

Item	Approx Hrs
Cl	08
LI	0
SW	1
SL	1
Total	10

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO5.1 Understand the concept of various communication system		Unit5:Communicationtechniques5.1 Optical communication and its block diagram5.2 Losses in optical fibre and	 Basics of optic fiber cables
SO5.2 Understand the Building blocks of optical fiber communication		 5.2 Losses in optical fibre and multiplexing 5.3 Introduction to telephone exchange system and telecommunication traffic 5.4 Switching techniques and its 	 Multiplexing techniques Wired and wireless communication
SO5.3 Understand the Building blocks and Operations of telephone systemSO5.4 Study of different		types 5.5 Resource sharing and multiple access techniques 5.6 Introduction to microwave communication	medium
types of switching and		5.7 Introduction to radar communication	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

multiple access	5.8 Introduction to satellite	
techniques	communication.	
SO5.5 Significance of		
communication systems		

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Explain different types of communication system.

b. Mini Project:

Draw the different parts of satellite communication system

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
OEC303.1: To develop ability to analyze system requirements of analog and digital communication systems. To understand the generation and detection of various Amplitude modulation techniques.	8	1	1	10
OEC303.2: To understand the concept of angle Modulation, To acquire the knowledge of each block in FM and PM transmitters and receivers, To understand the concepts of baseband transmissions.	10	1	1	12
OEC303.3 : Analyze and design of various Pulse modulation and demodulation techniques, Understand the effect of noise present Pulse modulation, Attain the knowledge of conversion of pulse modulation to digital output.	11	1	1	13
OEC303.4: To understand and analyze the significance of Digital modulation techniques, Attain the knowledge about ASK, FSK and PSK Transmitters and Receivers and its types	8	1	1	10
OEC303.5: To analyze the importance of different Modulation and communication techniques in modern communication system.	8	1	1	10
Total Hours	45	5	5	55

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution		Total	
		R	U	Α	Marks
CO-1	Basics of communication system	02	05	03	10
CO-2	Angle Modulation	04	06	00	10
CO-3	Pulse Modulation	02	06	02	10
CO-4	Digital Modulation	03	07	00	10
CO-5 Communication techniques		03	05	02	10
Total		14	29	07	50

Legend: R: Remember, U: Understand, A: Apply The end of semester assessment for Analog and Digital Communication will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Demonstration of Instruments.
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

((a) Books :						
S. No.	Title	Author	Publisher	Edition & Year			
1	"Modern Digital and Analog Communication Systems	B. P. Lathi, Zhi Ding and Hari M. Gupta	Oxford University Press	4th Edition2017			
2	Communication systems: Analog and digital communication	R P Singh S D Sapre	McGraw hill Education	3 rd Edition2017			
3	Digital and Analog Communication Systems	K. Sam Shanmugam	Wiley India	Edition, 2008			
4	Principles of Communication Systems	Herbert Taub, Donald L Schilling, Goutam Saha,	McGraw-Hill	3rd Edition,2008			
5	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.						

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: OEC303

Course Title: Analog and Digital Communication

					P	rogran	n Outco	omes					Program Specific Outcome	
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Course Outcomes	Engi neeri ng kno wled ge	Prob lem Solvi ng	Desi gn Skill s	Labo rator y Skill s	Tea m work	Com muni catio n Skill s	Ethi cal and Prof essio nal Beha vior	Lifel ong Lear ning	Glob al and Socie tal Imp act	Proje ct Mana geme nt	Adapt abilit y	Profe ssiona l Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: To develop ability to analyse system requirements of analog and digital communication systems. To understand the generation and detection of various Amplitude modulation techniques.	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO 2: To understand the concept of angle Modulation, To acquire the knowledge of each block in FM and PM transmitters and	3	3	3	3	2	2	1	3	2	2	2	3	3	2

receivers, To understand the concepts of baseband transmissions.														
CO3: Analyze and design of various Pulse modulation and demodulation techniques, Understand the effect of noise present Pulse modulation, Attain the knowledge of conversion of pulse modulation to digital output	3	3	2	2	1	1	2	2	1	2	2	3	2	3
CO 4: To understand and analyze the significance of Digital modulation techniques, Attain the knowledge about ASK, FSK and PSK Transmitters and Receivers and its types.	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO 5: To analyze the importance of different Modulation and communication techniques in modern communication system.	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

POs & PSOs No.	COs No.& Titles	SOs No.	Laborat ory Instruc t ion(LI)	Classroom Instruction(CI)	Self- Learnin g(SL)
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO1: To develop ability to analyse system requirements of analog and digital communication systems .To understand the generation and detection of various Amplitude modulation techniques.	SO1.1 SO1.2 SO1.3		Unit-1: Basics of communication system 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	1,2
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO 2: To understand the concept of angle Modulation, To acquire the knowledge of each block in FM and PMtransmitters and receivers, To understand the concepts of baseband transmissions.	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2: Angle Modulation 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10.	1,2
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO3: Analyze and design of various Pulse modulation and demodulation techniques, Understand the effect of noise present Pulse modulation, Attain the knowledge of conversion of pulse modulation to digital output	SO3.1 SO3.2 SO3.3		Unit-3 Pulse Modulation 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3. 11	1,2
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 4: To understand and analyze the significance of Digital modulation techniques, Attain the knowledge about ASK, FSK and PSK Transmitters and Receivers and its types.	SO4.1 SO4.2 SO4.3		Unit-4 : Digital Modulation. 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8	1,2,3
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO 5: To analyze the importance of different Modulation and communication techniques in modern communication system.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: Communication techniques 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8	1,2,3

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester V

Course Code:	OEC304
Course Title:	Computer Networks
Pre- requisite:	Fundamentals of Computer.
Rationale:	Problem solving skills can help people develop more skills and build a Computer Network.

Course Outcome:

OEC304.1: Understand the architecture principles that have enabled the orders of magnitude expansion of the Internet

OEC304.2: Understand networked applications and their protocols, their installation, operation, and performance tuning

OEC304.3: Understand layering as a means of tackling complexity, layering applied to the Internet

OEC304.4: Understand protocols as a structured means of reliable communications

OEC304.5: Be familiar with tools for configuring, monitoring and tuning the Internet and hosts

Scheme of Studies:

Course				s/Week)					
Catego ry	Course Code	Course Title	Cl	LI	S W	SL	Total Study Hours (CI+LI+SW+ SL)	Total Credits(C)	
Open Electiv e Course (OEC)	OEC304	Computer Networks	3	0	1	1	5	3	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

Theory

			Scher	ne of Assess	sment	(Marks)			
			Progressiv	ve Assessme	nt (P	RA)			End	Tota
Cour se Cate gory	Cou se Co de	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Se min ar one (SA)	Class Activ ity any one (CA T)	Class Attenda nce (AT)	Total Marks (CA+C T+SA+ CAT+A T)	Semeste l r Mar Assessm ks ent (PR A+ (ES ES	(PR A+
OEC	OEC3 04	Comput er Network ing.	15	20	5	5	5	50	5 0	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC304.1. Understand the architecture principles that have enabled the orders of magnitude expansion of the Internet

Item	AppX Hrs
Cl	7
LI	0
SW	1
SL	1
Total	9

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session	Laboratory	Class room	Self-
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
(SOs) SO1.1 Understand the Fundamentals of Internet Operation SO1.2 Grasp Internet Design Principles SO1.3 Comprehend Performance Metrics and Measurement SO1.4 Introduction to Internet Layers		 (CI) Module-1.0 Introduction: 1.1 Importance of the Internet in modern computing. 1.2 Present a high- level overview of the processes involved when browsing a website. 1.3 Discuss the roles of browsers, web servers, 1.4 URLs, domain names, 1.5 IPaddresses, and packets in this process. 1.6 Explain the concepts of packet switching and circuit switching. 1.7 Discuss the advantages of store-and-forward networks. 	(SL) 1. learn Basics of Computer Fundamental

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Define and explain the following performance metrics in the context of computer networking: end-to-end throughput, delay, jitter, and drop rates.
- ii. Discuss the practical implications of each metric on the user experience and network efficiency.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

b. Mini Project:

i. Network Performance Analysis of Popular Websites

OEC304.2. Understand networked applications and their protocols, their installation, operation, and performance tuning.

Item	AppX Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcom es(SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1 Understanding InternetNames and DNS SO2.2 Application LayerProtocols SO2.3 Web Applications andtheir Architecture SO2.4 Peer-to-Peer Applications and P2PFile Distribution SO2.5 Audio and Video Streaming Challenges 		 Module- 2.0 Application Layer Protocols & Web Applications, P2P, and Streaming Challenges. 2.1 Emphasize the importance of domain names and URLs. 2.2 Explain DNS and its role in translating domain names to IP addresses. 2.3 Discuss the 	1. Enhance the understandin g of Internet Protocol (IP) versions, IPv4 and IPv6, and their significance in modern networking.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

 hierarchical structure of DNS. 2.4 Conduct a hands-on DNS resolution simulation. 2.5 HTTP, SMTP, and SNMP 2.6 HTTP, discussing the request-response model and methods. 2.7 SMTP in email communication.
2.7 SMTP in email
2.9 Practical activity analyzing HTTP requests.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Identify and explain at least three types of HTTP requests (e.g., GET, POST) and their purposes in the context of the chosen website.

ii. Explain the role of Simple Mail Transfer Protocol (SMTP) in the process of sending and receiving emails.

b. Mini Project:

i. Web Application Performance Analysis.

OEC304.3. Understand layering as a means of tackling complexity, layering applied to the Internet

Item	AppX Hrs		
Cl	6		
LI	0		
SW	2		
SL	1		
Total	9		

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session	Laboratory	Classroom Instruction	Self-
Outcomes (SOs)	Instruction (LI)	(CI)	Learning (SL)
 SO3.1 Understanding of Socket Programming SO3.2 Building a Simple Client-Server Application SO3.3 Understanding UDP Sockets SO3.4 Hands-On Linux Network Programming SO3.5 Discussion on Practical Applications SO3.6 Q&A and Problem- Solving Session 		 Module-3.0 T Socket Programming & Building a Simple Client-Server Application 3.1 Socket programming and its role in network communication. 3.2 The fundamental concepts of sockets, including client and server roles. 3.3 The types of sockets and their applications. 3.4 multi-cycle processor 3.5 Brief demonstration of a simple socket programming scenario. 3.6 The steps involved in establishing a connection between a client and server. 	1. Proficiency in Linux network programming, specifically focusing on socket programming

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. The fundamental differences between TCP (Transmission Control Protocol) and UDP (User Datagram Protocol) in the context of socket programming.
- ii. TCP would be more appropriate than UDP and vice versa, considering factors like reliability, connection-oriented nature, and overhead.

b. Mini Project:

i Secure Chat Application using Sockets

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

OEC304.4. Understand protocols as a structured means of reliable communications.

Item	AppX Hrs			
Cl	9			
LI	0			
SW	1			
SL	1			
Total	11			

Session Outco mes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO4.1 Understanding of Transport Layer Protocols SO4.2 Process-to- Process Delivery and Multiplexing SO4.3 Port Numbers and Header Structure SO4.4 Reliable Transmission Mechanisms SO4.5 TCP Connection Setup and Teardown SO4.6. Hands-On Exercise: Implementing		 Unit-4.0 Transport Layer & Process-to-Process Delivery and Multiplexing. 4.1 Differentiate between TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). 4.2 The concept of process-to- process delivery facilitated by the transport layer. 4.3 Multiple processes on a host can communicate over a network 4.4 The concept of multiplexing and its role in 	1.Enhance your understand ing of the Transport Layer protocols, TCP and UDP, by engaging in self- directed learning activities.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

r		p
a Basic TCP	transport layer	
Application	communication	
	4.5 Emphasize the role of port	
	numbers in distinguishing	
	different applications.	
	4.6 The mechanisms used by	
	TCP for reliable	
	communication, including	
	sequence numbers,	
	acknowledgments (ACKs),	
	timeout, and	
	retransmissions.	
	4.7 Break down the three-way	
	handshake process for TCP	
	connection establishment.	
	4.8 Address any uncertainties	
	and clarify concepts.	
	4.9Ask where students	
	investigate and present a	
	comparison between TCP	
	and UDP in a specific	
	application or use case.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Packet analyzer tool (e.g., Wireshark) to capture network traffic during a file download, and identify instances of TCP and UDP packets.
- ii. The implications of using TCP or UDP in this specific scenario and how the choice of protocol might impact the overall performance of the file transfer.

Mini Project:

I Reliable File Transfer Application

OEC304.5. How the data is stored, and input-output is performed in computers.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO5.1 Understand about Memory.		Unit-5.0 Storage and I/O, Superscalar processors and multicore systems	1.Computer Memory
SO5.2 Use of flash memory.		5.1 Introduction to magnetic disks (notion of tracks,	
SO5.3 learn about I/O and memory mapping.		sectors)	
SO5.4 learn about data transfer techniques.		5.2 flash memory.5.3 I/O mapped, and	
SO5.5 . learn Limitation of ILP.		memorymapped I/O. 5.4 I/O data transfer techniques:	
SO5.6 use of SMT processor.		5.5 programmed I/O,	
SO5.7 Learn about multicore systems and cache coherence		5.6 Interrupt- driven I/O, and DMA.	
issues		5.7 Limits of ILP	
		5.8 SMT processors	
		5.9 Introduction to multicoresystems and cache coherence issues	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Write the difference between memory mapped I/O and Isolated I/O.

ii What is the drawback of programmed I/O method and how it can be resolved by interrupt initiated I/O.

b. Mini Project:

i. Explain asynchronous serial transmission.

Other Activities (Specify):

Explain booth multiplication algorithm with the help of example.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learnin g (Sl)	Total hour (Cl+SW+ Sl)
OEC304.1. Understand the architecture principles that have enabled the orders of magnitude expansion of the Internet	7	1	1	9
OEC304.2. Understand networked applications and their protocols, their installation, operation, and performance tuning	9	2	2	13
OEC304.3. Understand layering as a means of tackling complexity, layering applied to the Internet	6	2	2	10
OEC304.4. Understand protocols as a structured means of reliable communications	9	1	1	11
OEC304.5. Be familiar with tools for configuring, monitoring and tuning the Internet and hosts	9	1	1	11
Total Hours	40	7	7	54

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

	Unit Titles	Marks Distribution			Total
CO		R	U	Α	Mark s
CO1	Introduction	03	04	03	10
CO2	Application Layer Protocols & Web Applications, P2P, and Streaming Challenges.	05	03	02	10
CO3	T Socket Programming & Building a Simple Client-Server Application	05	02	03	10
CO4	Transport Layer & Process- to-Process Delivery and Multiplexing.	04	04	02	10
CO5	Storage and I/O, Superscalarprocessors and multicore system	03	05	2	10
	Total	20	15	15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Computer Network will be held with writtene xamination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to IT Industry.
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

S.	Title	Author	Publisher	Edition
No.				&Year
1	Introduction to the Theory of Computation	Michael Sipser	Cengage Publications	3
2		John Hopcroft,	John Wiley and Sons	3
	Introduction to Automata,	Rajeev Motwani,		
	Theory	Jeffrey D.		
		Ullmann		
3	Automata and Computability	Dexter C.	McGraHill Higher Education	
	Automata and Computatinty	Kozen		
4	Elements of the Theory of	John P. Hayes	WCB/McGraw-Hill	2
	Computation			
5	Computer Organization and Architecture: Designing for Performance",	William Stallings	Pearson Education.	10th Edition
	Performance",			

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: OEC304

Course Title: Computer Network

]	Progran	n Outco	nes					Program Specific Outcome	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng know ledge	Probl em Solvi ng	Desig n Skills	Labo rator y Skills	Team work	Com muni catio n Skills	Ethic al and Profe ssion al Beha vior	Lifelo ng Lear ning	Glob al and Socie tal Impa ct	Projec t Mana gemen t	Adapt ability	Profes sional Develo pment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understand the architecture principles that have enabled the orders of magnitude expansion of the Internet	2	2	3	3	3	1	1	3	1	1	1	3	2	3
CO2: Understand networked applications and their protocols, their installation, operation, and performance tuning	1	3	2	3	2	2	2	2	1	1	1	3	3	2
CO3 Understand layering as a means of tackling complexity, layering applied to the Internet	2	2	2	3	3	2	1	2	1	1	1	3	2	3
CO4 Understand protocols as a structured means of reliable communications	1	2	3	2	3	2	1	3	1	2	1	3	3	3
CO5 Be familiar with tools for configuring, monitoring and tuning the Internet and hosts	1	2	2	2	3	2	1	3	1	1	1	3	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

POs & PSOs No.	COs No.& Titles	SOs No.	Laborat ory Instruct ion(LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO1: Understand the architecture principles that have enabled the orders of magnitude expansion of the Internet	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1: Introduction 1.1,1.2,1.3,1.4,1.5,1.6,1.7	1
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO2: Understand networked applications and their protocols, their installation, operation, and performance tuning	SO2.1,SO2.2 SO2.3 SO2.4 SO2.5		Unit-2: Application Layer Protocols & Web Applications, P2P, and Streaming Challenges. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9.	1
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO3 Understand layering as a means of tackling complexity, layering applied to the Internet	SO3.1,SO3.2 SO3.3 SO3.4 SO3.5 SO3.6		Unit-3 T Socket Programming & Building a Simple Client-Server Application 3.1,3.2,3.3,3.4,3.5,3.6	1
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO4 Understand protocols as a structured means of reliable communications	SO4.1, SO4.2 SO4.3 SO4.4 SO4.5 SO4.6		Unit-4 : Transport Layer & Process-to-Process Delivery and Multiplexing. 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	1
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO5 Be familiar with tools for configuring, monitoring and tuning the Internet and hosts	SO5.1,SO5.2 SO5.3,SO5.4 SO5.5 SO5.6 SO5.7		Unit 5: Storage and I/O, Superscalar processors and multicore system 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-V

Course Code:	OEC305
Course Title :	Embedded System
Pre- requisite:	Student should have basic knowledge of fundamental of electrical components, digital Electronics, C programming on PC, Computer Organization and Microcontrollers.
Rationale:	In the rapidly growing digital world ,role of a embedded systems is increasingly vital in various domains such as industrial and home automation, entertainment systems, medical equipments and many more. The core of all such systems is powered by electronic hardware and associated software.it is therefore evident to impart the knowledge of the related technology and hands on skills to develop and maintain electronics hardware based embedded systems.

Course Outcomes:

OEC305.1: Identify hardware and software components of an embedded system

- OEC305.2: Learn the basics of OS and RTOS
- **OEC305.3:** Illustrate different Inter Process Communication (IPC) mechanisms used by tasks/process/tasks to communicate in multitasking environment
- **OEC305.4:** Design simple embedded system-based applications
- **OEC305.5:** To introduce the typical components of an embedded system & different communication interfaces

Cours				Total				
e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Open electiv e core (OEC)	OEC305	Embedded System	3	0	1	1	5	3

Scheme of Studies:

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

Theory	,				Scheme	e of Asse	ssment (M	arks)		
				Progres	sive Asso	essment	(PRA)	,	End	Total
Cour se Cate gory	Cous e Code	Course Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one (SA)	Class Activi ty any one (CAT)	Class Attendan ce (AT)	Total Marks (CA+C T+SA+ CAT+ AT)	Semeste r Assess ment (ESA)	(PRA + ESA)
OEC	OEC 305	Embedde d System	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC305.1: Identify hardware and software components of an embedded system

Item	Approx Hrs
Cl	07
LI	0
SW	1
SL	1
Total	09

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Lab Instru ction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO1.1 Understand the	•	Unit-1: Introduction To	
concept of embedded		Embedded Systems	1. C
system		1.1 History of embedded systems,	programming
		1.2 Classification of embedded	2. Basics of
SO1.2 Understand the		systems based on generation	embedded
concept of purpose of		and Complexity	system.
embedded system		1.3 Purpose of embedded systems	
		1.4 The embedded system design	
SO1.3 Design simple		process-requirements,	
embedded system-		Specification	
based applications		1.5 Architecture design, designing	
		hardware and software,	
SO1.4 To Understand the		components, system	
architecture design of		integration,	
hardware and		1.6 Applications of embedded	
software.		systems,	
		1.7 characteristics of embedded	
		systems.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignments of embedded system design process requirements.
- ii. Poster of Architecture designing of hardware and software.

OEC305.2: Learn the basics of OS and RTOS

Item	Approx Hrs
Cl	11
LI	0
SW	1
SL	1
Total	13

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1 Understanding of Different core of the embedded system SO2.2 Learn the Procedure of general purpose and specific domain processors SO2.3 Understand the structure and operation of memory shadowing SO2.4 Understand the structure and operation of sensors and actuators. 		 Unit-2: Typical Embedded System 2.1 Core of the embedded system- 2.2 general purpose and domain specific processors, 2.3 ASICs, PLDs, COTs 2.4 Memory-ROM, RAM, memory according to the type of interface 2.5 Memory shadowing, memory selection for embedded systems, 2.6 Sensors, actuators, 2.7 I/O components: seven segment LED, relay, 2.8 piezo buzzer, push button switch, other sub-systems: reset circuit, 2.9 brownout protection circuit, 2.10 oscillator circuit real time clock, 2.11 watch dog timer. 	 Concept of C programming on PC Basics of RAM and ROM Operation Of oscillator circuit

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Theoretical Assignment related to different parts and different types RAM and ROM

b. Mini Project:

- i. Draw a Poster of I/O components seven segment LED display
- ii. Make demonstrative model of oscillator circuit real time clock or watch dog timer.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

OEC305.3: Design simple embedded system-based applications

Item	Approx Hrs	
Cl	08	
LI	0	
SW	1	
SL	1	
Total	10	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1 To discuss role of	•	Unit-3: Communication	
embedded system in		Interface	
communication		3.1 Introduction to	1. Basics of
interface		Onboard	communication
		communication	system
SO3.2 To study the different		interfaces	2. Structure and
type of communication		3.2 Explanation of I2C,	working of
interfaces		SPI, CAN	USB Bluetooth
		3.3 Introduction to	3. Interfacing
SO3.3 To understand the		parallel interface;	devices.
Design and		3.4 Introduction to	
Characteristic of		External	
external		communication	
communication		interfaces	
interfaces.		3.5 RS232 and RS485,	
		3.6 USB, infrared,	
		3.7 Bluetooth, Wi-Fi,	
		3.8 ZigBee, GPRS,	
		GSM.	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Theoretical Assignments related to different transducers, their structure and operation.

Mini Project:

- i. Draw a Poster of different types of Communication interfaces.
- ii. Make demonstrative model of USB and Bluetooth .

OEC305.4: Design simple embedded system-based applications **Approximate Hours**

Item	Approx Hrs
Cl	07
LI	0
SW	1
SL	1
Total	09

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
 SO4.1 Discuss the role of embedded firmware design SO4.2 Understand the building Blocks and operation of different design approaches and its types SO4.3 Understand the building Blocks and operation of different types of development languages Along with their Applications 		 Unit-4: Embedded Firmware Design And Development 4.1 Introduction of Embedded firmware design 4.2 Design approaches and types of approaches – 4.3 super Loop based approach, 4.4 operating system based approach; 4.5 introduction to embedded firmware development languages- 4.6 assembly Language based development, 4.7 high level Language based development. 	 Embedded system Operating systems Computer languages

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Theoretical Assignments based on Design approaches

Mini Project: i.

Draw a chart of embedded firmware development languages.

OEC305.5: To introduce the typical components of an embedded system & different communication interfaces

Item	Approx Hrs
Cl	11
LI	0
SW	2
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
 SO5.1 Discuss about the basics of RTOS, SO5.2 Understand the operating system and iyts types SO5.3 Understand the Building blocks and Operations of multiprocessing and multitasking. SO5.4 Study of different 		 Unit 5: RTOS Based Embedded System Design 5.1 Operating system 5.2 basics, types of operating systems, 5.3 tasks, process and threads, 5.4 multiprocessing and multitasking, 5.5 task scheduling: non-preemptive and pre-emptive scheduling; 5.6 task communication shared memory, 5.7 message passing, 	 Basics of operating system and its types. Basics of Embedded system design
types of task		5.8 Remote Procedure Call and	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of D Took (Electrical Engineering) Duoguo

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

synchronization	Sockets,	
techniques	5.9 Task Synchronization:	
	5.10 Task	
	Communication/	
	Synchronization	
	Issues,	
	5.11 Task	
	Synchronization	
	Techniques	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Theoretical Assignment based on operating system and types of operating system

b. Mini Project:

Draw the chart of Different Types of multitasking and multiprocessing

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
OEC305.1: Identify hardware and software components of an embedded system	7	1	1	09
OEC305.2: Learn the basics of OS and RTOS	11	1	1	13
OEC305.3: Illustrate different Inter Process Communication (IPC) mechanisms used by tasks/process/tasks to communicate in multitasking environment	8	1	1	10
OEC305.4: Design simple embedded systembased applications	7	1	1	09
OEC305.5: To introduce the typical components of an embedded system & different communication interfaces	11	2	1	14
Total Hours	44	6	5	55

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	L1-:4 T:41	Μ	Total		
CO	Unit Titles	R	U	Α	Marks
CO-1	Introduction To Embedded Systems	02	05	03	10
CO-2	Typical Embedded System	04	06	00	10
CO-3	Communication Interface	02	06	02	10
CO-4	Embedded Firmware Design And Development	03	07	00	10
CO-5 RTOS Based Embedded System Design		03	05	02	10
	Total	14	29	07	50
Legend:	R: Remember, U: Underst	tand,		A: Apply	

The end of semester assessment for Embedded System will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Demonstration of Instruments.
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :			
S.	Title	Author	Publisher	Edition &
No.				Year
1	Embedded System	H.S.Kalsi.	Tata McGraw Hill.	Fourth, 2019
2	Electrical	E.W. Golding,	Sir Isaac Pitman and	1940
	Measurement and		Sons,	
	Measuring		Ltd. London	
3	Electrical and	A.K. Sawhney,	Dhanpat Rai and	2012
	Electronic		Co	
	measurements and			
	Instrumentation,			
4	Electronic	K. Lala Kishore	Pearson Education	Kindle Edition,
	Measurements and			2009
	Instrumentation			
5		Lecture note p	provided by	
	Dep	ot. of Electrical Engineer	ing, AKS University, Satna	

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: OEC305 Course Title: Embedded System

	Program Outcomes											Program Specific Outcome		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Course Outcomes	Engin eerin g know ledge	Probl em Solvi ng	Desig n Skills	Labo rator y Skills	Team work	Com mun icati on Skill s	Ethi cal and Prof essio nal Beh avio r	Lifel ong Lear ning	Glo bal and Soci etal Imp act	Proj ect Man age men t	Ada ptab ility	Prof essio nal Dev elop men t	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Identify hardware and software components of an embedded system	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO 2: Learn the basics of OS and RTOS	3	3	3	3	2	2	1	3	2	2	2	3	3	2
CO3: Illustrate different Inter Process Communication (IPC) mechanisms used by tasks/process/tasks to communicate in multitasking environment	3	3	2	2	1	1	2	2	1	2	2	3	2	3
CO 4: Design simple embedded system- based applications	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO 5: To introduce the typical components of an embedded system & different communication interfaces	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.			Laborator y Instructio n (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8 ,9,10,11,12	CO1: Identify hardware and software components of an embedded system	SO1.1 SO1. 2 SO1. 3		Unit-1: : Introduction To Embedded Systems 1.1,1.2,1.3,1.4,1.5,1.6,1.7.	1,2
PSO 1,2 PO:1,2,3,4,5,6,7,8 ,9,10,11,12	CO 2: Learn the basics of OS and RTOS	SO1.4 SO2.1 SO2. 2 SO2. 3 SO2.4		Unit-2: Typical Embedded Systems 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11	1,2,3
PSO 1,2 PO:1,2,3,4,5,6,7,8	CO3: Illustrate different Inter	<u>SO2.4</u> SO3.1		Unit-3: Communication Interface	
PSO 1,2	Process Communication (IPC) mechanisms used by tasks/process/tasks to communicate in multitasking environment	SO3. 2 SO3. 3		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8.	1,2,3
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 4: Design simple embedded system-based applications	SO4.1 SO4.2 SO4.3		Unit-4 : Embedded Firmware Design And Development 4.1,4.2,4.3,4.4,4.5,4.6,4.7.	1,2,3
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 5: To introduce the typical components of an embedded system & different communication interfaces	SO5.1 SO5. 2 SO5.		Unit 5: RTOS Based Embedded System Design 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5 .11	1,2
		3 SO5. 4			

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-V

Course Code: Course Title :	HSMC03 Industrial Psychology
Pre- requisite:	Student should have basic knowledge General Psychology, Research Methods and Statistics, Human Resource Management (HRM) etc.
Rationale:	Workplaces worldwide are rapidly evolving to meet the increasing expectations of their employees and cultural changes that prioritize well-being and retention as much as productivity. Industrial- organizational psychology is a field that equips companies with the tools to adapt to this ever-changing environment. The aim of this course is to develop an awareness of the major perspectives underlying industrial psychology and to understand the potential that it holds for society and organizations in the present and future.

Course Outcomes: After the completion of this subject, students will be able to

HSMC03.1: Understand key concepts, theoretical perspectives, and trends in industrial psychology. HSMC03.2: Create a better work environment for better performance. HSMC03.3: Understand customer behavior.

HSMC03.4: Apply different work methods to improve industrial efficiency.

HSMC03.5: Understand Criteria's in evaluation of job-related factor

Scheme of Studies:

Course		Scheme of studies (Hours per Week)						Total
Catego ry	CourseCode	Course Title	Fitle CI LI SW SI		SL	Total Study Hours(CI+LI+SW+SL)	Credits (C)	
HSMC	HSMC03	Industrial Psychology	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others).

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)						
			Progressive Assessment (PRA)					End	
Cours e Categ ory	Course Code	Course Title	Class/Home Assignment 5 Assignments 3 marks Each	Fach	One	Class Atte ndan ce	Marks	Semeste r Assessm ent (ESA)	Total
019			(CA)	(CT)	(SA)	(AT)	AT)		
HSMC	HSMC03	Industrial Psychology	15	20	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC03.1: Understand key concepts, theoretical perspectives, and trends in industrial psychology.

Item	AppX Hrs
CI	07
LI	0
SW	1
SL	1
Total	09

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session	Laboratory	Class room Instruction	Self
Outcomes	Instruction	(CI)	Learning (SL)
(SOs) SO1.1 role of the psychologist in industry SO1.2 Study behavior in work situation SO1.3 applications of Psychological principles to problems of Placement, counselling and training	(LI)	 Unit-1 : Introduction: 1.1 The role of the psychologist in industry, 1.2 the field of occupational Psychology 1.3 Study of behavior in work situation 1.4 applications of Psychological principles to problems of selection 1.5 applications of Psychological principles to problems of Placement, 1.6 applications of Psychological principles to problems of Counselling 1.7 applications of Psychological principles to problems of training 	1. General Psychology

SW-1 Suggested Sessional Work (SW):

a) Assignments:

i. Definitions, Historical Development, and Characteristics of OR.

b) Mini Project:

i. make a chart on role of the psychologist in industry

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

HSMC03.2: Create a better work environment for better performance.

Appx Hrs
8
0
1
1
10

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1 Student will understand physical environment techniques. SO2.2 Students will understand Group dynamics in Industry 		 Unit- 2: Design of Work Environments: 2.1 Human engineering and physical environment techniques of job analysis. 2.2 Social environment: Group dynamics in Industry 2.3 Personal psychology, Selection, training 2.4 placement, promotion, counselling 2.5 job motivations, 2.6 Job satisfaction. 2.7 Special study of problem of fatigue 2.8 boredom and accidents 	1. Human Engineering

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

- **a.** Assignments:
 - 1. Analyze role of physical environment in industrial efficiency.
 - 2. Effect of social environment

HSMC03.3: Understand customer behavior.

Item	Appx Hrs
CI	5
LI	0
SW	1
SL	1
Total	7

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1 Student will		Unit- 3: Understanding	1. customer
understand Customer		Consumer Behavior:	Behavior
behavior		3.1 Consumer behavior	
		3.2 study of consumer	
SO3.2 Student will		preference	
understand the role of		3.3 effects of advertising	
engineering psychology		3.4 Industrial morale: The	
		nature and scope of	
		engineering psychology	
		3.5 application of	
		engineering psychology	
		to industry	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Study of Customer Behavior.
 - ii. Significance of engineering psychology in industry.

HSMC03.4: Apply different work methods to improve industrial efficiency.

Item	Appx Hrs
CI	13
LI	0
SW	1
SL	1
Total	15

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 Student will be able to understand the efficiency at work.		Unit- 4: Work Methods:4.1 Efficiency at work,4.2 the concept of efficiency,	1. Work efficiency and
SO4.2 Student will be able to understand work curve and its characteristic.		4.3 the work curve and its characteristics4.4 The work methods; hours of	its parameters
SO4.3 analyze personal factors the affects efficiency		work. 4.5 Nature of work, fatigue and boredom.	
SO4.4 Student will understand the effect of working environment.		4.6 Rest pauses.4.7 The personal factors; age	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

	abilities
· ·	4.8 interest, job satisfaction,
	4.9 the working environment, noise, illumination.
	4.10 Atmospheric conditions.
	4.11 Increasing efficiency at work; improving the work methods.
	4.12 Time and motion study, its contribution and failure resistance to time and motion studies.
	4.13 Need for allowances in time and motion study.

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Factors that affect work efficiency
- ii. Effect of environmental factors

HSMC03.5: Understand Criteria's in evaluation of job-related factor

Item	Appx Hrs
CI	9
LI	0
SW	1
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO5.1 Student will be understand evaluation of jobrelated factor SO5.2 Student will be able understand different processes involve in work and equipment design SO5.3 Student will understand different factors involve in industrial accidents. 		 Unit 5: Work and Equipment Design: 5.1 Criteria in evaluation of job-related factor, 5.2 job design, human factors, Engineering information, 5.3 input processes, mediation processes, action processes, action 5.4 methods design, work space and its arrangement, 5.5 Human factors in job design. Accident and Safety 5.6 The human and economic costs of accidents 5.7 Accident record and statistics 5.8 the causes of accidents 5.9 Situational and individual factors related to accident reduction. 	1. industrial accidents and their cause

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Study of Criteria in evaluation of job-related factor.
- ii. Situational and individual factors related to accident reduction

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (SI)	Total hour (CI+SW+SI)
HSMC03.1: Understand key concepts, theoretical perspectives, and trends in industrial psychology.	7	1	1	9
HSMC03.2: Create a better work environment for better performance	8	1	1	10
HSMC03.3: Understand customer behavior.	5	1	1	07
HSMC03.4: Apply different work methods to improve industrial efficiency.	13	1	1	15
HSMC03.5: Understand Criteria's in evaluation of job-related factor	9	1	1	11
Total Hours	42	5	5	52

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit	Ma	Marks Distribution						
CO	Titles	R	U	Α	Marks				
CO-1	Introduction	2	4	4	10				
CO-2	Design of Work Environments	-	5	5	10				
CO-3	Understanding Consumer Behavior	3	3	4	10				
CO-4	Work Methods	-	5	5	10				
CO-5	Work and Equipment Design.	3	4	3	10				
	Total			21	50				

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Legend: R: Remember, U: Understand, A:Apply

The end of semester assessment for Industrial Psychology will be held with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition &Year
1	Industrial Psychology	Tiffin and McCormick	Prentice Hall	6 th Edn., 1975
2	Human Factors Engineering and Design	McCormick	McGraw Hill	4th Edn.,1976
3	Principles of Human relations	N.R.F Mair,	wiley	1952
4	Personnel and Industrial Psychology	Ghiselli & Brown	McGraw Hill	1955

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B.tech. Electrical Engineering

Course Code: HSMC03

Course Title: Industrial Psychology

		-	00			Program	n Outco	omes					Program Spe	cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng kno wled ge	Prob lem Solvi ng	Desi gn Skill s	Labo rator y Skill s	Tea mwo rk	Com muni catio n Skill s	Ethic al and Prof essio nal Beha vior	Lifel ong Lear ning	Globa l and Societ al Impac t	Projec t Mana gemen t	Adapt ability	Profes sional Devel opme nt	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Understand key concepts, theoretical perspectives, and trends in industrial psychology.	1	2	1	1	2	2	2	3	3	3	2	2	2	2
CO2: Create a better work environment for better performance	1	2	1	1	2	3	3	2	2	2	2	2	2	2
CO3: Understand customer behavior.	1	2	1	1	2	3	2	3	2	2	2	3	2	3
CO4: Apply different work methods to improve industrial efficiency.	1	2	1	1	2	2	3	3	2	2	2	2	2	2
CO5: Understand Criteria's in evaluation of job-related factor	1	2	1	1	2	3	2	3	2	2	2	2	2	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2	CO1: Understand key concepts, theoretical perspectives, and trends in industrial psychology.	SO1.1 SO1.2 SO1.3		Unit-1: Introduction 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7	1
PO 1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2	CO2: Create a better work environment for better performance	ment for better SO2.1 Unit-2 Design of Work Er		Unit-2 Design of Work Environments 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8	1
PO 1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2	CO3: Understand customer behavior.	Understand customer SO3.1 Unit-3 : Understand		Unit-3 : Understanding Consumer Behavior 3.1, 3.2, 3.3, 3.4, 3.5	1
PO 1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2	CO4: Apply different work methods to improve industrial efficiency.SO4.1 SO4.2 SO4.3 SO4.4		Unit-4 : Work Methods 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13	1	
PO 1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2	CO5: Understand Criteria's in evaluation of job-related factor	SO5.1 SO5.2 SO5.3		Unit 5: Work and Equipment Design 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9	1

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester – V

Course Code:HSMC04Course Title :Operations ResearchPre- requisite:Student should have basic knowledge of mathematics and business operations.Rationale:Executives are required to take prompt and accurate decisions, if decision is taken merely on the basis of experience and intuition that may not be fruitful and accurate, but decision taken on the basis of data is more accurate. Operation Research provides quantitative basis or data to take accurate decisions. The tools and models of operations research provide us optimal solutions of the business operations problems; hence the study of operations research is very important to management students.

Course Outcomes:

- HSMC04.1: The student will demonstrate the process of problem solving in Operations Research.
- **HSMC04.2:** The student will apply the linear programming problem method to solve the various business management problems quantitatively.
- **HSMC04.3:** The student will use the transportation and assignment techniques to solve the transportation and assignment problems quantitatively.
- **HSMC04.4:** The student will apply network analysis techniques like PERT and CPM to solve the scheduling of activities and resource allocation related problems.
- **HSMC04.5:** The student will calculate the optimum value of game and optimum replacement period using game theory and replacement theory respectively.

Scheme of Studies:

Cours									
e Categ ory	CourseCode	Course Title CI LI		LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits (C)	
HSMC	HSMC04	Operations Research	3	0	1	1	5	3	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others).

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Scheme	e of As	ssessm	ent (Ma	arks)	
			Pro	RA)	End				
Cours e Categ ory	Course Code	Course Title	Class/Home Assignment 5 Assignments 3 marks Each	Fach	Class		Marks	Semeste r Assessm ent (ESA)	Total Marks (PRA+ ESA)
ory			(CA)	(CT)	(SA)	(AT)	AT)	(1011)	
HSMC	HSMC04	Operations Research	15	20	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC04.1: The student will demonstrate the process of problem solving in Operations Research.

Item	AppX Hrs
CI	09
LI	0
SW	2
SL	2
Tota l	13

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO1.1 Student will explain about the development of Operations Research SO1.2 Student will explain 		Unit-1 : Introduction to Operations Research (OR) 1.1 Meaning and Definitions of Operations Research.	1. Quantitative approach to decision making.
about the characteristics and scope of Operations Research		 1.2 Historical Development of Operations Research. 1.3 Development of Operations 	2. Quantitative Analysis and Computer-Based Information
 SO1.3 Student will demonstrate the process of operations research to problem solving. SO1.4 Student will classify 		Research in India. 1.4 Characteristics of Operations Research 1.5 Scope of Operations Research. 1.6 Scope of Operations Research in management.	System
different models of operations research.		 1.7 Operations Research Methodology. 1.8 Operations Research Models. 1.9 Advantages and Limitations of Operations Research. 	

SW-1 Suggested Sessional Work (SW):

a) Assignments:

i. Definitions, Historical Development, and Characteristics of OR.

ii. Process and Models of OR.

b) Mini Project:

i. Prepare a flowchart of process of OR to problem solving in a chart paper.

c) Other Activities (Specify):

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

HSMC04.2: The student will apply the linear programming problem method to solve the various business management problems quantitatively.

Item	Appx Hrs
CI	9
LI	0
SW	2
SL	2
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1 Student will explain about the Concept, Assumptions and Requirements of LPP. SO2.2 Students will formulate the LPP SO2.3 Student will colume the L PP by 	(L1)	 Unit- 2: Linear Programming 2.1 Meaning and Requirements of Linear Programming. Assumptions of Linear Programming. 2.2 Formulation of two variable Maximization type Linear Programming Problem, Formulation of two variable Minimization type Linear Programming Problem 2.3 Formulation of more than two variables Maximization type Linear Programming Problem, Formulation 	 Practice:- Solution of LPP by Graphical Method Practice:- Solution of LPP by Simplex Method
solve the LPP by Graphical Method SO2.4 Student will Solve the LPP by Simplex Method. SO2.5 Student will solve the LPP by		 of more than two variables Minimization type Linear Programming Problem, Formulation of Miscellaneous LPPS 2.4 Solution of Maximization Type LPP by Graphical Method, Solution of Minimization Type LPP by Graphical 	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Big-M and Two	Method
phase methods	2.5 Solution of LPP by Graphical Method:
	Special Cases- Multiple Optimal
	Solutions, Solution of LPP by
	Graphical Method: Special Cases-
	Infeasibility, Unboundness.
	2.6 Introduction to Simplex method of
	LPP, Solution of LPP by Simplex
	Method: Maximization Type Two
	Variable Problem
	2.7 Solution of LPP by Simplex Method:
	Maximization Type more than two
	Variables Problem, Solution of LPP by
	Simplex Big-M Method: Minimization
	type two Variable Problem
	2.8 Solution of LPP by Simplex Big-M
	Method: Minimization type More than
	two variables Problem, Solution of LPP
	by Simplex Method: Mixed Constraints
	Problem
	2.9 Solution of LPP by Simplex Two-
	Phase Method, Solution of LPP by
	Simplex Method: Special Cases

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

- **a.** Assignments:
 - 1. Formulate the LPP (Problem will be given by the subject teacher)
 - 2. Solve the LPP by Graphical and Simplex Methods (Problem will be given by the subject teacher)

b. Mini Project:

HSMC04.3: The student will use the transportation and assignment techniques to solve the transportation and assignment problems quantitatively.

Item	Appx Hrs	
CI	9	
LI	0	
SW	2	
SL	2	
Total	13	

Session	Laboratory	Class room Instruction	Self Learning
Outcomes	Instruction	(CI)	(SL)
(SOs)	(LI)		
SO3.1 Student will formulate		Unit- 3: Transportation and	
the transportation		Assignment Problem	
problem			i) Practice-
		3.1 Concept of Transportation	Solution of
SO3.2 Student will solve the		Problem, Mathematical	transportatio
transportation problem		Formulation of a Transportation	n Problems
		Problem	
SO3.3 Student will formulate		3.2 Initial Basic Feasible Solution by	ii) Practice-
the assignment problem		NWC Rule and LCM Method,	Solution of
		Initial Basic Feasible Solution by	
		Vogel's Approximation Method	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO3.4 Student will solve the		(VAM)	Assignment
	2	.3 Optimality Test: Minimization	Problems.
assignment problem.	5	type problem stepping stone	i iobicilis.
		method, Optimality Test:	
		Minimization type problem by	
		Modified Distribution Method	
	2	(MODI)	
	3	.4 Optimality Test: maximization	
		type problem stepping stone	
		method, Optimality Test:	
		Maximization type problem by	
		Modified Distribution Method	
		(MODI)	
	3	.5 Transportation Problem: Special	
		Cases (Unbalanced, Multiple	
		Optimal Solution and Prohibited	
		Route Problem), Transportation	
		Problem: Special Cases -	
		Degeneracy Case	
	3	.6 Assignment Problem:	
		Introduction and as a particular	
		case of transportation model, and	
		solution by Complete	
		Enumeration Method, Assignment	
		Problem: Problem Formulation	
	3	.7 Assignment Problem: Solution by	
		Hungarian Assignment Method	
		(HAM), Assignment Problem:	
		Solution by Hungarian	
		Assignment Method (HAM)-	
		Miscellaneous Problems	
	3	.8 Assignment Problem: Solution by	
		Hungarian Assignment Method	
		(HAM)- Special Cases	
	3	.9 Assignment Problem: Solution by	
		Hungarian Assignment Method	
		(HAM)- Maximization type	
		problem	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Formulation and solution of the transportation problem
- ii. Formulation and solution of the assignment problem
- b. **Mini Project:** Make flowchart of the solution of a Transportation and Assignment Problems in a chart paper.

HSMC04.4: The student will apply network analysis techniques like PERT and CPM to solve the scheduling of

activities and resource allocation related problems.

Item	Appx Hrs	
CI	9	
LI	0	
SW	2	
SL	2	
Total	13	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO4.1 Student will be able to describe the network construction rules. SO4.2 Student will be able to use the CPM in project management. SO4.3 Student will be able to use the PERT in project management. SO4.4 Student will find out the shortest route and longest routes by dynamic programming. SO4.5 Student will explain about the simulation and process of simulation. 		 Unit- 4: PERT and CPM, Dynamic Programming, and Simulation. 4.1 Introduction to Network Analysis Rules of Network Construction 4.2 Redundancy in precedence relationship: Location and removal Network Construction 4.3 Calculation of Earliest Start and Finish Times and Latest Start and FinishTimes Determining the critical path and calculation of project completion time 4.4 Calculation of Float Time-Cost Trade-off: Crashing Resource Leveling 4.5 Resource Allocation PERT: Introduction 4.6 PERT: Network construction and critical path determination, Calculation of Expected time and Variances Difference Between PERT and CPM 4.7 Dynamic Programming: Introduction and Dynamic Programming Vs Linear Programming, 	 .Practice:- Network construction and determination of critical path Practice:- Calculation of Earliest start and Finish Times as wellas Latest Starting and Finish time Practice-: PERT- Calculation of Expected time andVariances.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

and Terminologies of
6
Dynamic Programming
4.8 Dynamic
Programming: Shortest and
Longest Route Problems
Simulation: Introduction to
Simulation and Process of
Simulation
4.9 Monte Carlo Technique
and its application

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - i) Network Construction, Critical Path Determination, Calculation of Earliest and Latest starting and finish times, Calculation of float times. Resource analysis and allocation.
 - ii) PERT- Calculation of Expected time and Variances
- **b.** Mini Project: Construction of a network and determination of critical path and project completion time for a real project (Project will be detailed by a subject teacher)

HSMC04.5: The student will calculate the optimum value of game and optimum replacement period using game

theory and replacement theory respectively.

Item	Appx Hrs
CI	9
LI	0
SW	2
SL	2
Total	13

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO5.1 Student will be able to apply the game theory in the competitive business world as a strategic tool. SO5.2 Student will be able to determine the optimal replacement time which will help in the formulation of replacement policy SO5.3 Student will describe the general structure of a queuing system. 		 Unit 5: Game Theory, Replacement Theory and Queuing Theory. 5.1 Meaning of a Two Person Game, N Person Game, Pure Strategy Game, Mixed Strategy Game, Zero Sum Game, Non-Zero Sum Game, Fair Game. 5.2 Solution of a game when saddle point exists, Solution of a 2x2 game when saddle point does not exists. 5.3 Solution of a m x n game with dominance rule, Solution of a m x n game with joint (proportional) dominance rule 5.4 Solution of a 2 x n or m x 2 game with graphical method, Solution of a m x n or m x n game with simplex method 5.5 Introduction and Scope of Replacement Theory in Management, Replacement policy for equipment which deteriorates gradually 5.6 Replacement policy for equipment which deteriorates gradually-When time value of money is considered 5.7 Replacement of items that fail suddenly. 5.8 Queuing Theory: 	i. Practice:- Formulation and solution of a game. ii. Practice:- Solutionof a replacement problem.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Introduction, and General Structure of a queuing System 5.9 Characteristics of a Queuing System.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Formulation and Solution of a game theory problem.
- ii. Solution of replacement theory problems
- **b. Mini Project:** i) Make a flowchart of a solution to a game theory problem.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (SI)	Total hour (CI+SW+SI)
HSMC04.1: The student will demonstrate the process of problem solving in Operations Research.	9	2	2	13
HSMC04.2: The student will apply the linear programming problem method to solve the various business management problems quantitatively.	9	2	2	13

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

HSMC04.3: The student will use the transportation and assignment techniques to solve the transportation and assignment problems quantitatively.	9	2	2	13
HSMC04.4: The student will apply network analysis techniques like PERT and CPM to solve the scheduling of activities and resource allocation related problems.	9	2	2	13
HSMC04.5: The student will calculate the optimum value of game and optimum replacement period using game theory and replacement theory respectively.	9	2	2	13
Total Hours	45	10	10	65

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

Suggested Specification Table (For ESA)									
СО	Unit Titles	Μ	larks Distri	Total					
CO	Unit Titles	R	U	Α	Marks				
CO-1	INTRODUCTION TO OPERATIONS RESEARCH (OR)	2	4	4	10				
CO-2	LINEAR PROGRAMMING	-	5	5	10				
CO-3	TRANSPORTATION AND ASSIGNMENT PROBLEM	3	3	4	10				
CO-4	PERT AND CPM, DYNAMIC PROGRAMMING, AND SIMULATION.	_	5	5	10				
CO-5	GAME THEORY, REPLACEMENT THEORY AND QUEUING THEORY.	3	4	3	10				
	Total	8	21	21	50				

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Legend: R: Remember, U:Understand, A:Apply

The end of semester assessment for Operations Research will be held with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming

Suggested Learning Resources:

(a) Books :

S. No.	Title	Author	Publisher	Edition &Year
1	Quantitative Techniques in Management	Vohra, N D	TMH, New Delhi	Latest
2	Problems and Solutions in Operations Research	V. K. Kapoor	Sultan Chand and Sons, New Delhi	Latest
3	Principles of Operations Research with Application to Managerial Decisions	H.M. Wagner	PHI Learning	Latest
4	Operations Research	Kanti Swarup, P K Gupta and Man Mohan	Sultan Chand & Sons, New Delhi	Latest
5	Operations Research	Heera & Gupta	S. Chand	Latest

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B.tech. Electrical Engineering Course Code: HSMC04 Course Title: Operations Research

	Program Outcomes								Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng kno wled ge	Prob lem Solvi ng	Desi gn Skill s	Labo rator y Skill s	Tea mwo rk	Com muni catio n Skill s	Ethic al and Prof essio nal Beha vior	Lifel ong Lear ning	Globa l and Societ al Impac t	Projec t Mana gemen t	Adapt ability	Profes sional Devel opme nt	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
Co1: The student will demonstrate the process of problem solving in Operations Research.	1	2	1	1	2	2	2	2	3	3	2	2	1	1
Co2: The student will apply the linear programming problem method to solve the various business management problems quantitatively.	1	2	1	1	2	2	3	2	2	2	2	2	1	2
Co3: The student will use the transportation and assignment techniques to solve the transportation and assignment problems quantitatively.	1	2	1	1	2	2	2	2	2	2	2	3	2	1
Co4: The student will apply network analysis techniques like PERT and CPM to solve the scheduling of activities and resource allocation related problems.	1	2	1	1	2	2	3	3	2	2	2	2	2	1

Co5: The student will calculate the optimum value of game and optimum replacement period using game theory and replacement theory respectively.1	2	1	1	2	3	2	3	2	2	2	2	1	2	
--	---	---	---	---	---	---	---	---	---	---	---	---	---	--

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6, 7,8 PSO 1,2, 3, 4	Co1: The student will demonstrate the process of problem solving in Operations Research.	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1: INTRODUCTION TO OPERATIONS RESEARCH (OR) 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9	1,2
PO 1,2,3,4,5,6, 7,8 PSO 1,2, 3, 4	Co2: The student will apply the linear programming problem method to solve the various business management problems quantitatively.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 LINEAR PROGRAMMING 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,	1,2
PO 1,2,3,4,5,6, 7,8 PSO 1,2, 3, 4	Co3: The student will use the transportation and assignment techniques to solve the transportation and assignment problems quantitatively.	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3 : TRANSPORTATION AND ASSIGNMENT PROBLEM 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,	1,2

PO 1,2,3,4,5,6, 7,8 PSO 1,2, 3, 4	Co4: The student will apply network analysis techniques like PERT and CPM to solve the scheduling of activities and resource allocation related problems.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	Unit-4 : PERT AND CPM, DYNAM PROGRAMMING, AND SIMULATH 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8	ON.
PO 1,2,3,4,5,6, 7,8 PSO 1,2, 3, 4	Co5: The student will calculate the optimum value of game and optimum replacement period using game theory and replacement theory respectively.	SO5.1 SO5.2 SO5.3	Unit 5: GAME THEORY, REPLACEM THEORY AND QUEUING THEORY. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester- VI

Course Code:	EE312
Course Title :	Power Systems-II
Pre- requisite:	Basic Electrical Engineering, Electrical Power Generation, Power System-I
Rationale:	The electricity is generated in bulk at remote places near to coal mines (thermal power plants, dams (hydro power) and transmitted to long distances and then distributed in cities and villages and to industry. The transmission and distribution of electric power is a complex issue which requires knowledge of different types of transmission lines and power equipment. Technicians are required to operate and maintain the power transmission and distribution system so that electrical energy is continuously available to the consumers economically. It is therefore required that the technicians should be also able to work independently in the various area of transmission and distribution system. The objective of this course is makes sure the equipment work together so that the required power is delivered to the load centers at the prescribed voltage and frequency, to help students gain a thorough understanding of the basic concepts and analysis approaches of power systems

Course Outcomes: After the completion of this course the students will be able to

EE312.1: Use numerical methods to analyze a power system in steady state

EE312.2: Understand stability constraints in a synchronous grid

EE312.3: Understand methods to control the voltage, frequency and power flow.

EE312.4: Understand the monitoring and control of a power system.

EE312.5: Understand the basics of power system economics.

Scheme of Studies:

Cours		Scheme of studies(Hours/Week)					Total	
e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	
Progra m Core (PCC)	EE312	Power Systems- II	3	2	1	1	7	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others).

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

- SL: Self Learning,
- C: Credits.
- **Note:** SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

					Schem	e of Ass	essment (N	farks)		
				Progres	sive Ass	sessment	(PRA)		End	Tota
Cours e Categ ory	Couse Code		Class/ Home Assign ment 5 numbe r 3 narks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Class Activi ty any one (CAT)	Class Attendan ce (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semester Assessme nt (ESA)	l Mar ks (PR A+ ESA)
PCC	EE312	Power Syste ms-II	15	20	5	5	5	50	50	100

Practical

			Schei	me of Assessment	(Marks)	-	
			Progressive A	ssessment (PRA))		End	Total
Cours e Categ ory	Cous e Code	Course Title	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)
DCC	55212	Power		10		50	50	100
PCC	EE312 -L	Syste ms-II	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE312.1: Understand the concepts of power systems.

Approximate Hours

Item	Approx. Hrs.
Cl	7
LI	10
SW	2
SL	1
Total	20

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
The students will be	1. To obtain formation	Unit-1 Power Flow Analysis	1. Structure of
able to	of Y-bus.	1.1 Review of the structure of a Power	Power system.
	2. To obtain	System and its components.	
SO1.1Understanding	Formation of Z	1.2Analysis of Power Flows:	
power flow	BUS.	Formation of Bus Admittance	
analysis.	3. To Perform Load	Matrix.	
	Flow Analysis	1.3 Real and reactive power balance	
SO1.2 To understand	using Gauss	equations at a node. 1.4 Load and	
numerical	Seidal (GS)	Generator Specifications.	
methods for	Method.	1.5 Application of numerical methods	
solution of	4. To Perform Load	for solution of non-linear	
nonlinear	Flow Analysis	algebraic equations – Gauss	
algebraic	using Newton-	Seidel	
equations	Raphson (NR)	1.6 Application of numerical methods	
	Method.	for solution of non-linear	
	5. To Perform Load	algebraic equations – Newton-	
	Flow Analysis	Raphson methods for the solution	
	using Fast	of the power flow equations.	
	Decoupled (FD)	1.7 Computational Issues in Large-	
	Method.	scale Power Systems.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Draw line diagram of Power system network.
- ii. Numerical on numerical methods.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE312.2: Understand stability constraints in a synchronous grid. **Approximate Hours**

Item	Approx. Hrs.
Cl	8
LI	6
SW	1
SL	2
Total	17

Session Outcomes (SOs)	Laboratory Instruction(LI)	Class room Instruction(CI)	Self- Learning(SL)
The students will	1. To study Swing	Unit-2 Stability	1. Compens
be able to	Equations of a	Constraints in synchronous grids	ation Techniq
SO2.1 Understand	synchronous	2.1 Swing Equations of a synchronous	ues
the concept of Swing equation	machine.	machine connected to an infinite bus.	2. Infinite Bus
SO2.2 Analysis	2. To study	2.2 Power angle curve.	
using numerical integration	Power	2.3 Description of the phenomena of loss of synchronism in a single-machine	
SO2.3 To	angle	infinite bus system following a	
understand stability	curve.	disturbancelike a threephase fault. 2.4 Analysis using numerical integration	
constraints on	3. To Study	of swing equationsusing Forward	
Power System Operation	series	Euler 2.5 Analysis using numerical integration	
	compensation	of swing equationsusing Runge-Kutta	
	of	4th order methods 2.6 Analysis using numerical integration	
	transmission	of swingequations using Equal Area	
	lines on	Criterion. 2.7 Impact of stability constraintson	
	stability.	Power System Operation.	
		2.8 Effect of generation rescheduling and	
		series compensation of transmission lines on stability.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Numerical Assignments Based on equal area criterion

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE312.3: Understand methods to control the voltage, frequency and power flow.

Item	Approx. Hrs.
Cl	9
LI	6
SW	1
SL	1
Total	17

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
The students will be able to	1. To Study Power flow control	Unit-3 : Control of Frequency and Voltage	1. Definition of Frequency, Speed, Voltage load
SO3.1 Understand the concept of frequency and voltage SO3.2 To analyze control of excitation system	using embedded dc links. 2. To study Droop Characteristics. 3. Methods to improve power factor of load.	 3.1 Turbines and Speed- Governors, Frequency 3.2 dependence of loads, Droop Control and Power Sharing. 3.3 Automatic Generation Control. 3.4 Generation and absorption of reactive power by various components of a Power System. 3.5 Excitation System Control in synchronous generators, 3.6 Excitation System Control in Automatic Voltage Regulators. 3.7 Shunt Compensators, Static VAR compensators and STATCOMs. 3.8 Tap Changing Transformers. 3.9 Power flow control using 	Voltage, load 2. Types of Transformers
		3.9 Power flow control using embedded dc links, phase shifters	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

(Revised as on of August 20

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Discuss various types of control used in power system network.

EE312.4: Understand the monitoring and control of a power system. **Approximate Hours**

Item	Approx. Hrs.
Cl	8
LI	2
SW	1
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
the students will be	1. To Study	Unit 4: Fault Analysis and	1. Define
able to	SCADA	Protection Systems	SCADA
	systems.	4.1 Overview of Energy	
SO4.1 Understand		Control Centre Functions:	
SCADA system		SCADA systems.	
SO4.2 To understand		4.2 Phasor Measurement	
state estimation.		Units and Wide-Area	
		4.3 Measurement Systems.	
		4.4 State-estimation.	
		4.5 System Security	
		Assessment.	
		4.6 Normal, Alert,	
		Emergency,	
		4.7 Extremisstates of a	
		Power System.	
		4.8 Contingency Analysis.	
		Preventive Control and	
		Emergency Control.	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Discuss measurement systems

EE312.5: Understand the basics of power system economics. **Approximate Hours**

Item	Approx. Hrs.
Cl	9
LI	6
SW	2
SL	1
Total	18

Session Outcomes (SOs)		Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
The students will	1.	Method of	Unit 5: Power System	1. Study Electricity
be able to		calculating	Economics and Management	bill.
SO5.1		residential and	5.1Basic Pricing Principles:	
Understand pricing		commercial or	Generator Cost Curves 5.2Utility Functions, Power	
principles		industrial electric	Exchanges, Spot Pricing.	
SO5.2 Understand		bill.	5.3Electricity Market Models Vertically	
Electricity	2.	Concept of house	Integrated	
market SO5.3		wiring/sub-	5.4Purchasing Agency, Whole-sale competition,	
Understand		circuit/power	5.5Retail Competition,	
regulatory framework		circuit.	5.6Demand Side- management	
	3.	To Study DSM.	5.7Transmission and	
			Distributions charges	
			5.8 Ancillary Services.	
			5.9 Regulatory framework.	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Discuss transmission and distribution charges.
- ii. Discuss DSM

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE312.1: Use numerical methods to analyse a power system in steady state.	7	10	2	1	20
EE312.2: Understand stability constraints in a synchronous grid.	8	6	1	2	17
EE312.3: Understand methods to control the voltage, frequency and power flow.	9	6	1	1	17
EE312.4: Understand the monitoring and control of a power system.	8	2	1	1	12
EE312.5: Understand the basics of power system economics.	9	6	2	1	18
Total Hours	41	30	7	6	84

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	M	arks Di	stribution	Total
		R	U	Α	Marks
CO-1	Power Flow Analysis	02	03	05	10
CO-2	Stability Constraints in synchronous grids	02	05	03	10
CO-3	Control of Frequency and Voltage	02	02	06	10
CO-4	Fault Analysis and Protection Systems	02	03	05	10
CO-5	Power System Economics and Management	02	04	04	10
	Total			23	50

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Legend:R: Remember,U: Understand,A: ApplyThe end of semester assessment for Power System 2 will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- **2.** Tutorial
- **3.** Group Discussion
- 4. Practical Design Demonstration
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

	(a) Books :							
S. No.	Title	Author	Publisher	Edition & Year				
1	Power System Analysis	J. Grainger and W. D. Stevenson	McGraw Hill Education	1994				
2	Electric Energy Systems Theory	O. I. Elgerd	McGraw Hill Education	1995				
3	Power System Analysis	A. R. Bergen and V. Vittal	Pearson Education Inc.	1999				
4	Modern Power System Analysis	D. P. Kothari and I. J. Nagrath	McGraw Hill Education	2003				
5	Electric Power Systems	B. M. Weedy, B. J. Cory, N. Jenkins, J. Ekanayake and G. Strbac	Wiley	2012				
6	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.							

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE312

Course Title: Power system-2

			-	-	Pro	gram (Outcom	ies	-		-	-	Program Sp	ecific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engin eering knowl edge	Probl em Solvi ng	Design Skills	Labor atory Skills	Team work	Com muni catio n Skills	Ethic al and Profe ssion al Beha vior	Lifelo ng Learn ing	Glob al and Socie tal Impa ct	Projec t Mana gemen t	Adap tabilit y	Profes sional Develo pment	Apply electrical and interdisciplin ary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Use numerical methods to														
analyse a power system in steady state.	3	3	2	2	2	1	1	2	3	1	2	2	3	3
CO 2: Understand stability constraints in a synchronous grid.	2	3	3	3	2	2	1	3	2	2	3	3	3	2
CO 3: Understand methods to control the voltage, frequency and power flow.	3	3	2	2	2	1	2	2	1	2	2	3	2	3
CO 4: Understand the monitoring and control of a power system.	3	2	2	3	2	1	1	3	2	2	2	2	3	2
CO 5: Understand the basics of power system economics.	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instructio n(LI)	Classroom Instruction(CI)	Self-Learning(SL)
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2	CO1: Use numerical methods to analyse a power system in steady state.	SO1. 1 SO1. 2	1,2,3,4,5	Unit-1:: Power Flow Analysis 1.1,1.2,1.3,1.4,1.5,1.6,1.7.	1
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2	CO 2: Understand stability constraints in a synchronous grid.	SO2. 1 SO2. 2 SO2. 3	1,2,3	Unit-2: Stability Constraints in synchronous grids 1,2,3 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8	
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2	CO 3: Understand methods to control the voltage, frequency and power flow.	SO3. 1 SO3. 2	1,2,3	Unit-3: Control of Frequency and Voltage 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1,2
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2	CO 4: Understand the monitoring and control of a power system.	SO4. 1 SO4. 2 SO4. 3 SO4.4	1	Unit-4 : Fault Analysis and Protection Systems 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8	1
PO:1,2,3,4,5,6,7 ,8,9,10,11,12 PSO 1,2	CO 5: Understand the basics of power system economics.	SO5. 1 SO5. 2 SO5. 3	1,2,3	Unit 5: Power System Economics and Management 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	1

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VI

Course Code:	EE313
Course Title :	Measurement and Instrumentation
Pre- Requisite:	Student should have basic knowledge of mathematics, physics, Electrical materials, Electrical Components, Semiconductors and Electronic devices such as Diodes, Transistors, FET's etc.
Rationale:	This course aims to introduce the basic concepts, Working Principles and Applications of Electrical and electronic measuring instruments for measurement of electrical and physical variables.

Course Outcomes: Students will be able to

- EE313.1: Understand the concept of measurement, their types and characteristics
- **EE313.2:** Understand construction, working and application of different types of measuring instruments.
- **EE313.3:** Measure the value of unknown resistance, Inductance and capacitance using different methods.
- **EE313.4:** Use CRO to view the pattern of different waveforms and measure their voltage, time period, frequency etc.
- **EE313.5:** Understand the working of different types of transducers to measure unknown physical quantities.

		Scheme of studies (Hours/Week)						
Cours e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)
Progra m Core (PCC)	EE313	Measurement and Instrumentation	3	2	1	1	7	4

Scheme of Studies:

~

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

					Scher	ne of Ass	sessment (Marks)	
				Progre	ssive A	ssessmen	t (PRA)		End	
Cou rse Cate gory	Couse Code	Course Title	Class/ Home Assig nment 5 numb er 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 mark s each (CT)	Sem inar one (SA)	Class Activi ty any one (CAT)	Class Attenda nce (AT)	Total Mark s (CA+ CT+ SA+ CAT +AT)	Semester Assessm ent (ESA)	Tot al Mar ks (PR A+ ESA)
PCC	EE313	Measureme nt and Instrumentat ion	15	20	5	5	5	50	50	100

Practical

				Scheme of Assessment (Marks)						
			Progress	ive Assessm	ent (PRA	A)	End	Total		
Cours e Categ ory	Cous e Code	CourseTitle	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)		
PCC	EE313 -L	Measurement and Instrumentation	35	10	5	50	50	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE313.1: Understand the concept of measurement, their types and characteristics

Approximate Hours

tem	Approx. Hrs.
Cl	8
LI	0
SW	2
SL	1
Total	11
SW SL	2

Session Outcomes (SOs)	Lab Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 Students will be able to SO1.1 Understand the concept of measurement and their different types SO1.2 Understand analyze Different types of errors involved in measurement. SO1.3 gain the knowledge of different Characteristic of measuring Instruments. 		 Unit-1: Measurement and Measuring System 1.1 Measurement and its significance, 1.2 Methods of measurement (Direct andIndirect Method), 1.3 Measurement System. 1.4 Standards and their classification, 1.5 Error in Measurement, Types of Errors, 1.6 Accuracy and Precision 1.7 Resolution, Linearity, Hysteresis, Time Lag, 1.8 Noise and their types, noise factor. 	 Necessity of measurement. Effect of noise in measurement. Significance of error in measurement. Practice of numerical questions related to errors, resolution etc.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical questions related to measurement system and their Characteristic.
- ii. Numerical Problems Related to errors, resolution etc.
- **EE313.2:** Understand construction, working and application of different types of measuring instruments.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	Approx. Hrs.
Cl	12
LI	6
SW	2
SL	1
Total	21

Session Outcomes (SOs)		Laboratory Instruction (LI)	Cla	ass room Instruction(CI)	Self- Learning (SL)		
Students will be able toSO2.1Understan d the classificati on of measuring instrument s.SO2.2 Understand different principles involve in working of measuring 	1.	(LI) Measurement of active and reactive power inthree phase balanced load bysingle wattmeter method. Measurement of active and reactive power inthree phase balanced load bytwo wattmeter method. Measurement of power factor of single phase loadby power factor meter.	M 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	nit-2: Electrical & Electronic easurements indicating, Recordingand integrating instruments, Moving Iron, MovingCoil Dynamometer type Instruments voltmeter, ammeter, Extension of Rangeof Voltmeter and Ammeter, Induction type wattmeter. Dynamo Meter Type wattmeter energy meter (Induction Type), P.F. meter (Dynamometer type), frequency meter (Resonance and Weston type), Instrument Transformers, Current Transformers(C.T.) and Potential Transformer(P.T.) DC Voltmeter (Chopper type andsolid-state), AC voltmeter using Rectifier, Average, RMS,	2.	Concept of electric and magnetic fields. Concept of electrical power and electrical energy Working of transformer	
				Peak Responding voltmeters			

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Questions related to moving coil, moving iron and Dynamometer type instruments.
- ii. Questions related to voltage, current, power, energy and power factor measuring instruments
- **EE313.3:** Measure the value of unknown resistance, Inductance and capacitance using different methods.

Item	Approx. Hrs.
Cl	8
LI	8
SW	1
SL	1
Total	18

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning	
	(LI)		(SL)	
Students will be able	1. Measurement of	Unit-3 Measurement of	1. Concept of	
to	medium resistance	,,, _,, _	resistance,	
	by Wheatstone	capacitance	Inductance	
SO 3.1 Learn different	bridge.		and	
methods used for	~	3.1 Measurement of resistance	capacitance.	
resistance	2. Study and	by wheat stone bridge,		
measurement.	Measurement	Measurement of resistance	2. Numerical	
	using Maxwell	Ammeter-voltmeter	problems	
SO 3.2 Measure	Inductance Bridge		related to AC	
unknown value		3.2 Measurement of Insulation	bridges.	
of inductance	3. Measurement of	f resistance by megger. 1 3.3 Maxwell's bridge,		
and capacitance	inductance of a co	1 S.5 Maxwell's bridge, Maxwell's inductance		
using AC	using Anderso	a capacitance bridge.		
bridges.	Bridge.	3.4 Hay's Bridge,		
		3.5 Anderson Bridge,		
SO 3.3 learn the	4. Measurement of	f 3.6 Owen's Bridge,		
operation of Q	capacitance of	a 3.7 Schering Bridge, Wien's		
meter and its	capacitor usin	g Bridge,		
application.	Schering Bridge.	3.8 Q meter and its application		

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical problems related to AC bridges
- **EE313.4:** Use CRO to view the pattern of different waveforms and measure their voltage, time period, frequency etc.

Item	Approx. Hrs.			
Cl	8			
LI	6			
SW	2			
SL	1			
Total	17			

Session Outcomes (SOs)	Lab Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
 Students will be able to SO4.1 Understand Different Part of CRO and Their functions. SO4.2 Learn the Procedure of voltage, time period and frequency measurement using CRO. SO4.3 Understand the structure and operation of Dual Beam and Dual Trace CRO. SO4.4 Understand the structure and operation of Storage Oscilloscopes. 	 Study of Cathode Ray Oscilloscope (C.R.O). Voltage and Current Measurement using CRO. Measurement of frequency using Lissajous pattern 	 Unit-4 : Cathode Ray Oscilloscope 4.1 Cathode Ray Tube (CRT), 4.2 CRO, Different parts of CRO, 4.3 Vertical & Horizontal deflection system, 4.4 Time base circuit, 4.5 Oscilloscope probes, Graticule, 4.6 Application of CROs, Lissajous patterns. 4.7 Dual trace CRO, Dual beam CRO, 4.8 Storage (Analog & Digital) Oscilloscopes. 	 Concept of electric field and electric field Intensity Graticule and Their Types. Operation of CRO.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignment related to different parts and different types of CRO.
- ii. Numerical Problems Deflection sensitivity of CRO.

Mini Project:

- i. Draw a Poster of CRO.
 - ii. Make demonstrative model of CRT

EE313.5: Understand the working of different types of transducers to measure unknown physical quantities.

Item	Approx. Hrs.
Cl	9
LI	10
SW	2
SL	1
Total	22

Session Outcomes		Laboratory	Class room Instruction		Self-Learning
(SOs)	Instruction		(CI)		(SL)
		(LI)			
Students will be able to	1.	Measurement	Unit 5: Transducers		
		of	5.1 Definition and		
SO5.1 discuss role of		Displacement	classification.	1.	Different Types of
Sensor and transducers		using LVDT.	5.2 Mechanical devices as		Strain Gauge.
in instrumentation	2.	Measurement	primary detectors.	2.	Photo conductive
		of Strain	5.3 Strain Gauge, Types of		cell.
SO5.2 study of		using Strain	strain Gauge, and gauge	3.	Transducer
Transducers, their		Gauge.	factor.		Interfacing
types and Application	3.	Measurement	5.4 Resistance Temperature		
		of	Detector (RTD).		
SO 5.3 understand the		temperature	5.5 Thermistor,		
Design and		using RTD.	Thermocouple,		
Characteristic of	4.	Measurement	5.6 LVDT, RVDT.		
transducers used for		of	5.7 Piezo-Electric		
the measurement of		temperature	transducers, Hall Effect		
strain, Temperature,			transducers.		

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Magnetic Field, displacement, Illumination etc.	using thermocouple. 5. Study of	5.8 Photo voltaic, photo diode5.9 photo conductive cells,	
	Photo diode and Photo Transistor.	Photo transistors.	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignments related to different transducers, their structure and operation.
- ii. .Numerical Problems related to Strain Gauge and Hall Effect Transducer.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE313.1: Understand the concept of measurement, their types and characteristics	8	0	2	1	11
EE313.2: Understand construction, working and application of different types of measuring instruments.	12	6	2	1	21
EE313.3: Measure the value of unknown resistance, Inductance and capacitance using different methods.	8	8	1	1	18
EE313.4: Use CRO to view the pattern of different waveforms and measure their voltage, time period, frequency etc.	8	6	2	1	17
EE313.5: Understand the working of different types of transducers to measure unknown physical quantities.	9	10	2	1	22
Total Hours	45	30	9	5	89

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles		N Dist	Total Marks	
			U		
CO-1	Measurement and Measuring System	02	03	05	10
CO-2	Electrical & Electronic Measurements	02	03	05	10
CO-3	Measurement of Resistance, Inductance and capacitance	02	03	05	10
CO-4	Cathode Ray Oscilloscope	03	03	04	10
CO-5	Transducers	03	03	04	10
Total		12	15	23	50

Legend:R: Remember,U: Understand,A: Apply

The end of semester assessment for Measurement and Instrumentation will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- **2.** Tutorial
- 3. Group Discussion
- 4. Practical Demonstration of Instruments.
- **5.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

	(a) Books :			
S. No.	Title	Author	Publisher	Edition & Year
1	Electronic Instrumentation	H.S.Kalsi.	Tata McGraw Hill.	Fourth, 2019
2	Electrical Measurement and Measuring	E.W. Golding,	Sir Isaac Pitman and Sons, Ltd. London	1940
3	Electrical and Electronic measurements and Instrumentation,	A.K. Sawhney,	Dhanpat Rai and Co	2012

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

4	Electronic Measurements and Instrumentation	K. Lala Kishore	Pearson Education	Kindle Edition, 2009		
5	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.					

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE313

Course Title: Measurement and Instrumentation

		_	-		I	Program	Outcome	es	-	-		-	Program Specific Outcome	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng know ledge	Proble m Solving	Design Skills	Laborato ry Skills	Team work	Commun ication Skills	Ethical and Professio nal Behavior	Lifelong Learnin g	Global and Societal Impact	Projec t Manag ement	Adapta bility	Professi onal Develop ment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understand the concept of measurement, their types and characteristics	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO 2: Understand construction, working and application of different types of measuring instruments	3	3	3	3	2	2	1	3	2	2	2	3	3	2
CO3: Measure the value of unknown resistance, Inductance and capacitance using different methods	3	3	2	2	1	1	2	2	1	2	2	3	2	3
CO 4: Use CRO to view the pattern of different waveforms and measure their voltage, time period, frequency etc	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO 5: Understand the working of different types of transducers to measure unknown physical quantities	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8 ,9,10,11,12	CO1: Understand the concept of measurement, their types and characteristics	SO1.1 SO1.2 SO1.3		Unit-1: Measurement and Measuring System 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	1,2,3,4
PSO 1,2 PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 2: Understand construction, working and application of different types of measuring instruments	SO2.1 SO2.2 SO2.3	1,2,3	Unit-2: Electrical & Electronic Measurements 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12	1,2,3
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO3: Measure the value of unknown resistance, Inductance and capacitance using different methods	SO3.1 SO3.2 SO3.3 SO3.4	1,2,3,4	Unit-3 Measurement of Resistance, Inductance and capacitance 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8	1,2
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 4: Use CRO to view the pattern of different waveforms and measure their voltage, time period, frequency etc	SO4.1 SO4.2 SO4.3 SO4.4	1,2,3	Unit-4 : Cathode Ray Oscilloscope 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8	1,2,3
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 5: Understand the working of different types of transducers to measure unknown physical quantities	SO5.1 SO5.2 SO5.3	1,2,3,4,5	Unit 5: Transducers 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	1,2,3

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VI

Course Code:	EE314
Course Title :	Electronic Design Lab
Pre-Requisite:	Student should have basic knowledge of, Electrical Components, Semiconductors and Electronic devices such as Diodes, Transistors, FET's etc.
Rationale:	This course aims to improve the ability of students to design different electronics circuits for different applications using electronic devices such as diode, transistor, FET, MOSFET etc and analyze its input and output response.

Course Outcomes: Students will be able to

EE314.1: Design various diode circuits and analyze their response.

EE314.2: Design various Transistor circuits and analyze their response.

EE314.3: Design power supply circuit and analyze their response.

EE314.4: Design various filter circuits and analyze their response.

EE314.5: Make a project for a given problem

Scheme of Studies:

Cours				Scheme of studies(Hours/Week)						
e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+ SW+SL)	Total Credits (C)		
Progra m Core (PCC)	EE314	Electronic design lab	0	2	1	1	5	3		

- Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical, performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self-Learning.
 C: Credits.
- **Note:** SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

Practical	

)				
			Progressi	ve Assessme	ent (PRA	.)	End	Total
Cours e Categ ory	Couse Code	CourseTitle	Lab Assignments 5 number 7 marks each (LA)	Viva	Class Atten dance (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semest er Assess ment (ESA)	Mar ks (PRA + ESA)
PCC	EE314	Electronic design lab	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE314.1: Design various diode circuits and analyze their response.

Item	Approx.Hrs.
Cl	0
LI	10
SW	1
SL	1
Total	12

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Lab Instruction(LI)	Classroom Instruction (CI)	Self-Learning (SL)
Students will be able	1. Design of half wave rectifier		
to	circuit and analyze its output in		1. Diode
SO1.1 Design various	CRO.		specifications.
diode circuits like	2. Design of full wave bridge		2. Diode
rectifier, clipper,	rectifier circuit and analyze its		biasing.
clamper, voltage	output in CRO.		
doubler etc and	3. Design of diode clippercircuit		
analyze their	and analyze its output in CRO.		
response.	4. Design of diode clampercircuit		
-	and analyze its output in CRO.		
	5. Design of voltage doublercircuit		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Design problems related to diode applications

EE314.2: Design various Transistor circuits and analyze their response.

Item	Approx.Hrs.
Cl	0
LI	8
SW	1
SL	1
Total	10

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
Students will be able toSO2.1DesignTransistorcircuits	 Design a Transistor amplifier and analyze its output in C.R.O Design a Transistor Oscillator and analyze its output in C.R.O Design of rain alarm system. 		 Transistor configuration Transistor
like amplifiers oscillator etc and analyze response.	 Design of burgler alarm circuit. 		characteristic

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Design problems related to diode applications

EE314.3: Design power supply circuit and analyze their response.

Approximate Hours

Item	Approx.Hrs.	
Cl	0	
LI	4	
SW	1	
SL	1	
Total	6	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO3.1 Design AC and DC power Supply circuits	 Design an AC power Supply Design an DC power Supply 		1. Components of power supply

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Design problems related to power supply.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE314.4: Design various filter circuits and analyze their response **Approximate Hours**

Item	Approx.Hrs.
Cl	0
LI	6
SW	1
SL	1
Total	8

Session Outcomes (SOs)	Lab Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
Students will be able to SO4.1 Design various filter circuits and analyze their response	 Design of Low Pass Filter. Design of High Pass Filter. Design of band pass filter 		1. Component s of filters

SW-4 Suggested Sessional Work (SW):

Mini Project:

i. Design of LPF, HPF and BPF.

EE314.5: Make a project for a given problem

Item	Approx.Hrs.
Cl	0
LI	2
SW	1
SL	1
Total	4

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
Students will be able to	1. Make an		
SO5.1 Make a project for a given problem	electronics project for a given problem.		

Brief of Hours suggested for the Course Outcome									
Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)				
EE314.1: Design various diode circuits and analyze their response.	0	10	1	1	12				
EE314.2: Design various Transistor circuits and analyze their response.	0	8	1	1	10				
EE314.3: Design power supply circuit and analyze their response.	0	4	1	1	6				
EE314.4: Design various filter circuits and analyze their response.	0	6	1	1	8				
EE314.5: Make a project for a given problem	0	2	1	1	4				
Total Hours	0	30	5	5	40				

Brief of Hours suggested for the Course Outcome

Suggestion for End Semester Assessment

The end of semester assessment for electronic design lab will be held with practical examination of 50 marks

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Tutorial
- 2. Group Discussion
- 3. Practical Demonstration
- 4. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 5. Brainstorming

Suggested Learning Resources:

(a) Books:

1

Lab Manuals provided by Dept. of Electrical Engineering, AKS University, Satna.

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE314

Course Title: Electronic Design Lab

		Program Outcomes										Program Specific Outcome		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng know ledge	Proble m Solving	Design Skills	Laborato ry Skills	Team work	Commun ication Skills	Ethical and Professio nal Behavior	Lifelong Learnin g	Global and Societal Impact	Projec t Manag ement	Adapta bility	Professi onal Develop ment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Design various diode circuits and analyze their response.	3	3	2	2	2	-	1	2	2	1	2	2	2	3
CO2: Design various Transistor circuits and analyze their response.	3	3	3	3	2	-	1	3	2	2	2	2	3	2
CO3:Designpowersupplycircuit and analyzetheir response.	3	3	2	2	2	-	1	2	2	1	2	2	2	3
CO4:Designvariousfiltercircuits and analyzetheir response.	3	3	2	2	2	-	1	3	2	2	2	2	3	3
CO5: Make a project for a given problem	3	3	3	3	2	-	1	3	2	1	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning (SL)
	CO1: Design various diode circuits and analyze their response.	SO1.1	1,2.3.4,5		1,2
	CO2: Design various Transistor circuits and analyze their response.	SO2.1	1,2.3.4		1,2
	CO3: Design power supply circuit and analyze their response.	SO3.1	1,2,		1,
	CO4: Design various filter circuits and analyze their response.	SO4.1	1,2,3		1
	CO5: Make a project for a given problem	SO5.1	1		

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VI

POWER SYSTEM PROTECTION

EE303

Pre- requisite:Student should have knowledge of Power Transmission & Distribution

Rationale: An electrical power system consists of generators, transformers, and transmission and distribution lines. In case of fault, an automatic protective scheme comprising of circuit breakers and protective relays isolate the faulty section providing protection to the healthy section. Safety of machines/equipment and human beings is the major criteria of every protection scheme, students should develop skills of operating various controls and switchgear in power system. They are also required to carry out remedial measures for faults/abnormalities in machines/equipment in power system using appropriate diagnostic instrument/devices. This course attempts to develop these skills in students and hence it is a core course for all electrical engineers.

Course Outcomes: After the completion of this course the students will be able to:

- **EE303.1:** Understand the basic concepts of power system protection and relays and Explain the working of different types of switchgear Equipments like circuit breakers. To understand the theory of arcing phenomenon.
- **EE303.2:** Understand how lightning occurs and its behavior and to protect power system against over voltages
- **EE303.3:** Understand insulation coordination.

Course Code:

Course Title:

- **EE303.4:** Explain working of different types of relays in power system, to protect transformer, alternator, feeders transmission line, motor and bus bar.
- EE303.5: To understand the concept of static relays, its comparison with electromechanical and digital relays. Scheme of Studies:

				Scheme of studies(Hours/Week)					
Course Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)	
Professi onal Elective Core (PEC)	EE303	POWER SYSTEM PROTECTION	3	0	1	1	5	3	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SL: Self Learning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory											
				Scheme of Assessment (Marks) Progressive Assessment (PRA)							
Cours e Categ ory	Cou se Cod e	Course Title	Class/H ome Assign ment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Clas s Acti vity any one (CA	Class Attenda nce (AT)	Total Marks (CA+CT+SA +CAT+AT)	End Semester Assessm ent	Total Mark s (PRA +	
		SWITC				T)			(ESA)	ESA)	
PEC	EE3 03	HGEA R AND PROTE CTION	15	20	5	5	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE303.1: Understand the basic concepts of power system protection and relays and Explain the working of different types of switchgear Equipments like circuit breakers. To understand the theory of arcing phenomenon.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	AppX Hrs
Cl	12
LI	0
\mathbf{SW}	2
SL	1
Total	15

Laboratory	Class room Instruction	Self-
	(CI)	Learning
(LI)		(SL)
	e	1. Arc
	1	formation
	•	and various
	-	medium to
	Circuit breaker: Arc	quench arc.
	phenomena	
	1.3 arc extinction	
	1.4 Construction, working	
	principle of Oil circuit	
	breakers	
	1.5 Construction, working	
	principle of Air break	
	circuit breaker	
	1.6 Construction, working	
	-	
	circuit breaker	
	1.7 Construction, working	
	-	
	-	
	-	
	Instruction (LI)	Instruction (LI)(CI).Unit-1: Switchgear.1.1 Principles of Power System Protection1.2 Relays, transformers, Circuit breaker: Arc

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

1.11 resistance switching 1.12 Double frequency transient, Rating of circuit breaker, Define clearing time, reclosing time of circuit breaker	
---	--

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Discuss arc phenomenon.
- **b.** Mini Project:
 - i. Sketch various types of circuit breakers.
- **EE303.2:** Understand how lightning occurs and its behavior and to protect power system against over voltages

Item	AppX Hrs
Cl	7
LI	0
SW	2
SL	1
Total	10

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO2.1 To Understand		Unit-2 Faults and	1. Cause of
concept of		Over-Current Protection	overvoltage and
lightning			how it rectifies.
mechanism		2.1 Review of Fault Analysis,	
		Sequence Networks	
SO2.2 To protect		2.2 Introduction to Overcurrent	
transmission		Protection	
lines, sub-station		2.3 overcurrent relay co-	
and various		ordination	
equipments from		Equipment Protection Schemes	
overvoltage.		2.4 Directional, Distance,	
		Differential protection	
SO2.3 To understand		2.5 Transformer and Generator	
different types of		protection,	
lightning arrestors		2.6 arrangement schemes	
		2.7 Over voltage protection	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Discuss lightning mechanism in detail.
- ii. Discuss various causes of overvoltage.
- b. Mini Project:
 - i. Sketch various types of counterpoises
- c. Other Activities (Specify):
 - i. Identify various types of lightning arrestors.

EE303.3: Understand insulation coordination.

Item	AppX Hrs
Cl	7
LI	0
SW	1
SL	1
Total	9

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1 To Understand	,.	Unit-3 : Digital Protection	1. Role of
Impulse volt-time		3.1 Computer-aided protection.	insulation in
characteristics of		3.2 Fourier analysis and	power system
electrical apparatus.		estimation of Phasors from	network.
		DFT	
SO3.2 To Understand basic		3.3 Fourier analysis and	
impulse insulation		estimation of Phasors from	
level		DFT	
SO3.3 To Understand		3.4 Sampling, aliasing issues.	
insulation levels of sub-		3.5 Define BIL	
station equipments		3.6 Insulation levels of sub- station equipments	
		3.7 Insulation levels of power	
		station	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Draw a table of various insulation levels.
- ii. Case study of Digital Protection
- **EE303.4:** Explain working of different types of relays in power system, to protect transformer, alternator, feeders transmission line, motor and bus bar.

Item	AppX Hrs
Cl	6
LI	0
SW	2
SL	1
Total	9

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO4.1 To understand various types of protective relays.		Unit-4 : Modeling and Simulation of Protection Schemes 4.1 CT modeling and	 Prepare chart of basic elements of protective system. List different types of
 SO4.2 Analyse protection against abnormal conditions for alternators, transformers, feeders transmission lines, and bus- bars SO4.3 To understand protection for long lines using Carrier current protection scheme 		 4.1 CT modeling and standards 4.2 PT modeling and standards 4.3 basic requirements 4.4 operating principles and characteristics of electromagnetic type over-current 4.5 Simulation of transients using Electro-Magnetic Transients (EMT) 4.6 Simulation of transients using Electro-Magnetic Transients using Electro-Magnetic Transients (EMT) 	2. East different types of relays, circuit breakers and collect literature from dealers/Manufactures/users and their websites (such as SEIMENS, BHEL, GE, L&T, Crompton, Power Grid Corporation etc)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Discuss various types of relay used in power system network.

b. Mini Project:

i. Prepare display chart for various types of fuse.

EE303.5: To understand the concept of static relays, its comparison with electromechanical and digital relays.

Item	AppX Hrs.
Cl	9
LI	0
SW	1
SL	1
Total	11

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1 To understand static		Unit 5: System Protection	1 Protection
relay		5.1 Introduction	Schemes Keep in
SO5.2 To understand various		5.2 System Protection	mind.
types of overcurrent relay		Schemes	
		5.3 Under-frequency,	
SO5.3 To understand digital		5.4 Under voltage and df/dt	
relay		relays	
		5.5 Out-of-step protection	
		5.6 Synchro-phasors	
		5.7 Phasor Measurement Units	
		5.8 Wide-Area Measurement	
		Systems (WAMS)	
		5.9 Application of WAMS for	
		improving protection	

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Compare static relay and digital relay
- b. Mini Project:
 - i. Draw inverse time characteristics of various type of relay.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE303.1: Understand the basic concepts of power system protection and relays and Explain the working of different types of switchgear equipments like circuit breakers. To understand the theory of arcing phenomenon.	12	2	1	15
EE303.2: Understand how lightning occurs and its behavior and to protect power system against over voltages	7	2	1	10
EE303.3: Understand insulation coordination.	7	1	1	9
EE303.4: Explain working of different types of relays in power system, to protect transformer,	6	2	1	9

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

alternator, feeders transmission line, motor and bus bar.				
EE303.5: To understand the concept of static relays, its comparison with electromechanical and digital relays.	9	1	1	11
Total Hours	41	8	5	54

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Linit Titles	Marks Distribution			Total
СО	Unit Titles	R	U	Α	Marks
CO-1	Switchgear	03	01	01	05
CO-2	Protection Against Lightning	02	06	02	10
CO-3	Insulation coordination	02	07	06	15
CO-4	Protective Relays	03	07	05	15
CO-5	Static Relays	01	02	02	05
	Total	11	23	16	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Power system Protection will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- **2.** Tutorial
- **3.** Case Method
- 4. Group Discussion
- **5.** Role Play
- 6. Visit to power plant
- 7. Demonstration
- **8.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :					
S. No.	Title	Author	Publisher	Edition & Year		
1	Switchgear Protection and Power Systems	Sunil S. Rao	Khanna Publication	14th edition (1 January 1977)		
2	Power System Protection	Badriram & Vishwakarma	McGraw Hill Education	2nd edition (1 July 2017)		
3	Power System Engineering	IJ Nagrath and DP Kothari	Tata McGraw-Hill	Third edition (26 April 2019)		
4	Electrical Power Systems	C. L. WADHWA	NEW AGE INTERNATIONAL (P) LTD	8th Edition 1983		
5	Switchgear and Protection	Veerappan N. & Krishnamurthy	S.Chand New Delhi	2010		
6	NPTEL Lecture Series on "Power System Engineering".					
7	Lecture note provided by Dept.of Electrical Engineering, AKS University, Satna.					

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs, and PSOs Mapping

Course Title: B. Tech. Electrical Engineering Course Code: EE303

Course Title: Power System Protection

					Pı	ograi	n Oute	comes					Program Specific Outcome	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engin eering knowl edge	Probl em Solvin g	Desig n Skills	Lab orat ory Skill s	Tea m wor k	Com mun icati on Skill s	Ethic al and Profes sional Behav ior	Lifelo ng Learn ing	Globa l and Societ al Impac t	Project Manag ement	Adapt ability	Profes sional Develo pment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understand the basic concepts of power system protection and relays and Explain the working of different types of switchgear equipments like circuit breakers. To understand the theory of arcing phenomenon.	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO 2: Understand how lightning occurs and its behavior and to protect power system against over voltages	3	3	3	3	2	2	1	3	2	2	2	3	3	2
CO 3: Understand insulation coordination.	3	3	2	2	1	1	2	2	1	2	2	3	2	3
CO 4: Explain working of different types of relays in power system, to protect transformer, alternator, feeders transmission line, motor and bus bar.	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO 5: To understand the concept of static relays, its comparison with electromechanical and digital relays.	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,	CO1: Understand the basic				
8,9,10,11,12	concepts of power system protection and relays and	SO1.1		Unit-1: Switchgear	
PSO 1,2	Explain the working of different types of switchgear equipment like circuit breakers. To understand the theory of arcing phenomenon.	SO1.2 SO1.3 SO1.4		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1. 10,1.11,1.12	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 2: Understand how lightning occurs and its behavior and to protect power system against over voltages	SO2.1 SO2.2 SO2.3		Unit-2: Faults and Over-Current Protection 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 3: Understand insulation coordination.	SO3.1 SO3.2 SO3.3		Unit-3 : Digital Protection 3.1,3.2,3.3,3.4,3.5,3.6,3.7	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 4: Explain working of different types of relays in power system, to protect transformer, alternator, feeders transmission	SO4.1 SO4.2 SO4.3		Unit-4 : Modeling and Simulation of Protection Schemes	1,2
, 	line, motor and bus bar.			4.1,4.2,4.3,4.4,4.5,4.6	
PO:1,2,3,4,5,6,7,8 ,9,10,11,12	CO 5: To understand the concept of static relays, its comparison with	SO5.1 SO5.2 SO5.3		Unit 5: System Protection	1
PSO 1,2	electromechanical and digital relays.	SO5.4 SO5.5		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VI

Course Code:	EE304
Course Title :	HVDC Transmission Systems
Pre-requisite:	Students should have basic knowledge of Electrical Power Systems.
Rationale:	A process of introducing formal knowledge of different electrical transmission systems, various components, and terminologies used.

Course Outcomes:

EE304.1: Understand the advantages of DC transmission over AC transmission.

EE304.2: Understand the operation of Line Commutated Converters and Voltage Source Converters.

EE304.3: Understand the control strategies used in the HVDC transmission system.

EE304.4: Understand different components of HVDC system

EE304.5: Understand the improvement of power system stability using an HVDC system.

Scheme of Studies:

				Sche	Scheme of studies(Hours/Week)				
Course Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)	
Professi onal Elective course (PEC)	EE304	HVDC Transmission Systems	3	0	1	1	5	3	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field, or other locations using different instructional strategies)
 SW: Sessional Work (includes assignments, seminars, mini projects, etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL have to be planned and performed under the teacher's continuous guidance and feedback to ensure the Learning outcome.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

					Scl	heme of A	ssessment (Marks)		
				Prog	ressive	Assessme	ent (PRA)	-	End	Total
Cour se Categ	Course Code	Course Title	Class/ Home Assign ment 5 number	Class Test 2 (2 best out of 3)	Semi nar one	Class Activit y one	Class Attendanc e	Total Marks	Semester Assessm ent	Mark s
ory			3 marks each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT +SA+CA T+AT)	(ESA)	(PRA + ESA)
PEC	EE304	HVDC Transmi ssion Systems	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE304.1: Understand the advantages of DC transmission over AC transmission. **Approximate Hours**

Item	AppX Hrs
Cl	05
LI	0
SW	01
SL	01
Total	07

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1.1 Make a comparative		Unit-1: DC Transmission	1. Understand
study between AC and		Technology.	the various
DC.		1.1 Comparison of AC and	concepts of
SO1.2 Understand the		DC Transmission	the
applications of the		(Economics, Technical	transmission
HVDC System.		Performance, and	systems.
•		Reliability.	
SO1.3 Understand the types of DC Transmission		1.2 Application of DC	
		Transmission	
Systems.		1.3 Types of HVDC	
SO1.4 Understand the		Systems	
components used in		1.4 Components of a	
HVDC.		HVDC system	
SO1 5 Study the Convertors		1.5 Line Commutated	
SO1.5 Study the Converters.		Converter and Voltage	
		Source Converter-	
		based systems	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Write down all the concepts of various transmission systems.

b. Mini Project:

i. Draw the basic diagrams of various systems.

EE304.2: Understand the operation of Line Commutated Converters and Voltage Source Converters. **Approximate Hours**

Item	AppX Hrs
Cl	12
LI	0
SW	01
SL	01
Total	14

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO2.1 To Understand the Line commutated converters.		Unit-2 Analysis of Line Commutated and Voltage Source	1. Learn and gain knowledge of Line commutated
SO2.2 To understand the harmonics.		Converters	and voltage source converters.
SO2.3 To understand the inverter operation.SO2.4 To understand the effect		 2.1 Line Commutated Converters (LCCs): Six pulse converter 2.2 Analysis neglecting commutation 	
of commutation overlap.		overlap harmonics 2.3 Twelve Pulse Converters	
SO2.5 Expressions for average DC voltage.		2.4 Inverter Operation, Effect of Commutation Overlap2.5 Expressions for average	
SO2.6 To study the reactive power absorption.		DC voltage 2.6 AC and reactive power absorbed by the	
SO2.7 Understand the concept of Voltage Source Converter.		converters 2.7 Effect of Commutation Failure	
SO2.8 Understand the Control of reactive power.		 2.8 Misfire and Current Extinction in LCC Links 2.9 Voltage Source Converters (VSCs): Two and Three-level VSCs 	
		 2.10 PWM schemes: Selective Harmonic Elimination 2.11 Sinusoidal Pulse Width Modulation, Analysis of a six- 	
		pulse converter 2.12 Equations in the rotating frame, Real and Reactive power control using a VSC	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Make notes of this chapter.
- b. Mini Project:
 - i. Draft the converter's Construction.

EE304.3: Understand the control strategies used in the HVDC transmission system **Approximate Hours**

Item	AppX Hrs
Cl	10
LI	0
SW	1
SL	1
Total	12

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Lear
	(LI)		ning
			(SL)
SO3.1 To Understand the		Unit-3: Control of HVDC Converters	1. To ensure
principle of link			all the
control in HVDC.		3.1 Principles of Link Control in a LCC	concepts of
SO3.2 To Understand the		HVDC system, Control Hierarchy	the HVDC
		3.2 Firing Angle Controls – Phase Locked	System
Firing Angle Control.		Loop	should be
SO3.3 To Understand the		3.3 Current and Extinction Angle Control	learned.
Various Concepts of		3.4 Starting and Stopping of a Link	
Control.		3.5 Higher level Controllers Power control	
SO3.4 To Understand the		3.6 Frequency Control	
Reactive Power		3.7 Stability Controllers	
Control.		3.8 Reactive Power Control	
Control.		3.9 Principles of Link Control in a VSC HVDC	
SO3.5 To Analyze the AC		system: Power Flow and DC Voltage	
Voltage Regulation.		Control	
		3.10 Reactive Power Control/AC voltage	
		regulation	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Make complete Notes of the chapter.

EE304.4: Understand different components of HVDC system **Approximate Hours**

Item	AppX Hrs
Cl	09
LI	0
SW	01
SL	01
Total	11

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO4.1 Evaluation of		Unit-4: Components of HVDC	1. Make Well-
Smoothing Reactors.		Systems	Organized
			Notes on All
SO4.2 To Understand the		4.1 Smoothing Reactors	Concepts of
Effects on HVDC Lines.		4.2 Reactive Power Sources and	Components of
		Filters in LCC HVDC systems	HVDC
SO4.3 To Study the DC Line		DC line: Corona Effects.	Systems.
Faults.		4.3 Insulators	
		4.4 Transient Over-voltages	
SO4.4 To Understand the		4.5 DC line faults in LCC	
Mono-polar Operation.		systems	
		4.6 DC line faults in VSC	
		systems	
		4.7 DC breakers	
		4.8 Mono-polar Operation	
		4.9 Ground Electrodes	

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Make the list of faults associated with HVDC.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Mini Project:

Evaluate the working of DC breakers.

EE304.5: Understand the improvement of power system stability using an HVDC system.

Approximate Hours

i.

Item	AppX Hrs
Cl	08
LI	0
SW	2
SL	1
Total	11

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1 To Understand the		Unit 5: Stability Enhancement	1. To ensure
concept of power system		using HVDC Control.	Complete notes of
stability.			the chapter
SO5.2 To Understand the		5.1 Basic Concepts: Power System	related to the
		Angular Voltage and Frequency	Three-Phase
Concept of Power Modulation.		Stability	Transformer.
Modulation.		5.2 Power Modulation: basic	
SO5.3 To Study the reasons		principles – synchronous and	
for the problem of		asynchronous links	
voltage stability.		5.3 Voltage Stability Problem in	
SO5.4 To Understand the		AC/DC Systems	
		5.4 MTDC Links Multi-Terminal	
MTDC System.		and Multi-Infeed Systems	
SO5.5 To Study the		5.5 Series and Parallel MTDC	
Introduction to Modular		systems using LCCs	
Multi-level Converters.		5.6 MTDC systems using VSCs	
		5.7 Modern Trends in HVDC	
		Technology	
		5.8 Introduction to Modular Multi-	
		level Converters	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Numerical Problem based on Parallel Operation of Transformers.

b. Mini Project:

i. Draw the chart of different types of connections of a transformer.

Brief of Hours Suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self-	Total hour
	Lecture	Work	Learning	(Cl+SW+Sl)
	(Cl)	(SW)	(Sl)	
EE304.1: Understand the advantages of DC transmission over AC transmission.	05	01	01	07
EE304.2: Understand the operation of Line				14
Commutated Converters and Voltage Source	12	01	01	
Converters.				
EE304.3: Understand the control strategies used	10	01	01	12
in the HVDC transmission system.	10	01	01	
EE304.4: Understand different components of	09	01	01	11
HVDC system	07	01	01	
EE304.5: Understand the improvement of power	08	02	01	11
system stability using an HVDC system.	00	02	01	11
Total Hours	44	06	05	55

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Μ			
		R	U	Α	Marks
CO-1	DC Transmission Technologies	03	01	04	08
CO-2	Analysis of Line Commutated and Voltage Source Converters	02	06	02	10
CO-3	Control of HVDC Converters	02	05	05	12
CO-4	Components of HVDC Systems	03	05	05	13
CO-5	Stability Enhancement using HVDC Control	01	04	02	07
	Total	11	21	18	50

Legend: R: Remember,

U: Understand,

A: Apply

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

The end-of-semester assessment for HVDC Transmission System will be held with the written examination of 50 marks.

Note. Detailed Assessment rubrics need to be prepared by the course-wise teachers for the above tasks. Teachers can also design different tasks as per requirement, for end-semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- **2.** Tutorial
- **3.** Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to the electrical power plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) **Books** :

S.	Title	Author	Publisher	Edition & Year					
No.									
1	HVDC Power	K. R. Padiyar	New Age International	2011					
	Transmission		Publishers						
	Systems								
2	High Voltage Direct	J. Arrillaga	Peter Peregrinus Ltd.	1983					
	Current Transmission								
3	Direct Current	E. W. Kimbark	Wiley-Inter science	1971					
	Transmission								
4	Lecture note provided	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.							

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE304 Course Title: HVDC Transmission Systems

	Program Outcomes										Program Sp	ecific Outcome		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engin eerin g know ledge	Proble m Solvin g	Desig n Skills	Labor atory Skills	Team Work	Comm unicati on Skills	Ethica l and Profes sional Behavi or	Lifelo ng Learn ing	Global and Societa l Impact	Proje ct Mana geme nt	Adapt ability	Profess ional Develo pment	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Understand the advantages of DC transmission over AC transmission.	2	2	1	3	2	1	1	1	2	1	1	2	2	2
CO 2: Understand the operation of Line Commutated Converters and Voltage Source Converters.	3	3	3	2	1	2	1	1	1	1	2	2	2	2
CO 3: Understand the control strategies used in the HVDC transmission system.	2	3	2	1	1	2	2	2	1	1	2	3	1	2
CO 4: Understand different components of HVDC system	3	3	2	2	3	2	1	3	2	1	2	2	3	3
CO 5: Understand the improvement of power system stability using an HVDC system.	3	2	2	1	1	3	2	3	1	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8	CO-1: Understand the	SO1.1, SO1.2		Unit-1: DC Transmission	
,9,10,11,12	advantages of DC	SO1.3, SO1.4		Technology.	1
	transmission over AC	SO1.5		1.1,1.2,1.3,1.4,1.5	1
PSO 1,2, 3, 4	transmission.				
PO:1,2,3,4,5,6,7,8	CO-2: Understand the	SO2.1SO2.2		Unit-2: Analysis of Line	
,9,10,11,12	operation of Line	SO2.3		Commutated and Voltage Source	
	Commutated	SO2.4		Converters	
PSO 1,2, 3, 4	Converters and	SO2.5		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9,	1
	Voltage Source	SO2.6		2.10,2.11,2.12	
	Converters.	SO2.7			
		SO2.8			
PO:1,2,3,4,5,6,7,8	CO-3: Understand the	SO3.1,		Unit-3: Control of HVDC	
0 10 11 10	control strategies used	SO3.2		Connector	
,9,10,11,12	in the HVDC	SO3.3 SO3.4		Converters 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,	1
	transmission system.	SO3.5		3.10	
PSO 1,2, 3, 4					
PO:1,2,3,4,5,6,7,8	CO-4: Understand the	SO4.1, SO4.2		Unit-4: Components of HVDC	
0 10 11 12	various components of	SO4.2 SO4.3		Systems	
,9,10,11,12	the HVDC	SO4.3 SO4.4		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	1
DSO 1 2 2 4	transmission system.	504.4		י.ד, ד.ד, ד.ד, ד.ד, ד.ד, ד.ד, ד.ד, ד.ד,	
PSO 1,2, 3, 4 PO:1,2,3,4,5,6,7,8	CO 5. Understand the	SO5.1,		Unit 5. Stability Enhancement using	
1 0.1,2,3,4,3,0,7,8	CO-5: Understand the	SO5.1, SO5.2		Unit 5: Stability Enhancement using HVDC Control.	
,9,10,11,12	improvement of power system stability using	SO5.2 SO5.3		5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7,5.8	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	an HVDC system.	SO5.4		5.1, 5.2, 5.5, 5.4, 5.5, 5.0, 5.7, 5.8	1
PSO 1,2, 3, 4		SO5.5			

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester- VI

Course Code:	EE305
Course Title :	High Voltage Engineering
Pre-requisite:	Students should have basic knowledge of Semiconductor Physics.
Rationale:	A process of introducing formal knowledge of the Process of Breakdown in different materials, Generation, Measurement, and testing of High Voltage.

Course Outcomes:

EE305.1: Understand Breakdown in Gases.

EE305.2: Understand Breakdown in liquid and solid Insulating materials.

EE305.3: Understand the concept of Generation of High Voltages.

EE305.4: Measure High Voltages and Currents.

EE305.5: Perform High Voltage Testing of Electrical Apparatus

Scheme of Studies:

				Total				
Course Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits
Profession al Elective course (PEC)	EE305	High Voltage Engineering	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field, or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project, etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL must be planned and performed under the teacher's continuous guidance and feedback to ensure the Learning outcome.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

					Scl	heme of A	ssessment (Marks)		
				Prog	ressive	Assessme	ent (PRA)		End	Total
Cour se Categ ory	Class/ Home Assign ment 5 number	Class Test 2 (2 best out of 3)	Semi nar one	Class Activit y one	Class Attendanc e	Total Marks	Semester Assessm ent	Mark s		
	3 marks each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT +SA+CA T+AT)	(ESA)	(PRA + ESA)		
PEC	EE305	High Voltage Enginee ring	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE305.1: Understand Breakdown in Gases.
Approximate Hours

Item	AppX Hrs
Cl	08
LI	0
SW	01
SL	01
Total	10

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learni ng (SL)
 SO1.1 Understand the Ionization processes and de-ionization processes. SO1.2 Understand the types of Discharge. SO1.3 Understand the concept of Breakdown in Gases. SO1.4 Understand the concept of Townsend's Theory. SO1.5 Streamer Mechanism, and Corona Discharge. 		Unit-1: Breakdown in Gases 1.1 Ionization processes and de-ionization processes 1.2 Types of Discharge 1.3 Gases in Insulating Materials 1.4 Breakdown in Uniform Gap 1.5 Breakdown in Non- UniformGaps 1.6 Townsend's Theory 1.7 Streamer Mechanism 1.8 Corona Discharge	1. Understan d the various concepts of the Breakdow n in Gases.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Write down all the concepts of Breakdown in Gases.

b. Mini Project:

i. Describe Corona's Discharge through a Chart.

EE305.2: Understand Breakdown in liquid and solid Insulating materials.

Item	AppX Hrs
Cl	06
LI	0
SW	01
SL	01
Total	08

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO2.1 To Understand the	•	Unit-2 Breakdown in liquid	1. Learn and gain
breakdown in liquids.		and solid Insulating	knowledge of
		materials.	Breakdown in
SO2.2 To understand the			liquids and
breakdown in		2.1 Breakdown in pure	solids.
dielectrics.		and commercial	
		liquids	
SO2.3 To understand the		2.2 Solid dielectrics and	
electromechanical		composite dielectrics	
breakdown.		2.3 Intrinsic breakdown	
		2.4 Electromechanical	
SO2.4 To understand the		breakdown and thermal	
thermal breakdown.		breakdown	
		2.5 Partial discharge	
SO2.5 To Understand		2.6 Applications of	
Applications of		insulating materials	
insulating materials			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Make Notes of Breakdown in liquids and Solids.

b. Mini Project:

i. Draft the Chart of Breakdown in Liquids, and Solids.

EE305.3: Understand the concept of Generation of High Voltages. **Approximate Hours**

Item	AppX Hrs
Cl	05
LI	0
SW	01
SL	01
Total	07

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Lea rning (SL)
SO3.1 To Understand the Generation of High Voltage.		Unit-3: Generation of High Voltage.	1. To ensure all the
 SO3.2 To Understand the generation of insulation voltage. SO3.3 To Understand the 		 3.1 Generation of high voltages 3.2 Generation of high D. C. and A.C. voltages 3.3 Generation of impulse voltages 3.4 Generation of impulse currents 3.5 Tripping and control of impulse 	concepts of High Voltage should be learned.
generation of impulse current.		generators	
SO3.4 To Understand the tripping and control of impulse generators.			

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Make the notes of the Chapter.

EE305.4: Measure High Voltages and Currents.

Item	AppX Hrs
Cl	14
LI	0
SW	01
SL	01
Total	16

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session	Laboratory	Classroom Instruction	Self-
Outcomes	Instruction	(CI)	Learnin
(SOs)	(LI)		g (SL)
SO4.1 Evaluation		Unit-4: Measurements of High Voltages	1. Make Well-
of various		and Currents.	Organized
components.		4.1 Peak Voltage	Notes on All
SO4.2 To Understand		4.2 Impulse voltage and high direct	Concepts of
the Workings of		current measurement method	Measurement
CRO.		4.3 Cathode Ray Oscillographs for	of High
SO4.3 To Study the		impulse voltage and current	Voltages, and
various		measurement	Currents.
measurement		4.4 Measurement of dielectric constant	
techniques and		and loss factor	
applications.		4.5 Partial discharge measurements	
SO4.4 Understand		4.6 Lightning and Switching Over-voltages	
the concept of		4.7 Charge formation in clouds	
lightning and		4.8 Stepped leader	
overvoltage.		4.9 Dart leader	
SO4.5 Understand		4.10 Lightning Surges	
the different		4.11 Switching over-voltages	
leaders.		4.12 Protection against over-voltages	
SO4.6 Study the		4.13 Surge Diverters	
protective		4.14 Surge Modifiers	
schemes.			

SW-4 Suggested Sessional Work (SW):

a. Assignments:

Make Proper Notes of this Chapter.

- i. M b. Mini Project:
 - i. Evaluate the Diagram of the Various Concepts.

EE305.5: Perform High Voltage Testing of Electrical Apparatus **Approximate Hours**

Item	AppX Hrs
Cl	10
LI	0
SW	01
SL	01
Total	12

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction (LI)	(CI)	Learn ing (SL)
SO5.1 To Understand		Unit 5: High Voltage Testing of Electrical	
the various		Apparatus and High Voltage	Complete notes
standards of		Laboratories.	of the chapter
testing.			related to this
SO5.2 To Understandthe		5.1 Various standards for HV Testing of	chapter.
IS, IEC Codes.		electrical apparatus	
SO5.3 To Study the		5.2 IS, IEC standards	
testing of various		5.3 Testing of insulators and bushings	
apparatus.		5.4 Testing of isolators and circuit breakers	
SO5.4 To Understand		5.5 Testing of cables	
the Various		5.6 Power transformers and some high-	
Equipment.		voltage equipment	
SO5.5 To Study the		5.7 High voltage laboratory layout	
Various Layouts.		5.8 Indoor and outdoor laboratories	
		5.9 Testing facility requirements	
		5.10 Safety Precautions in H. V. Labs	

SW-5 Suggested Sessional Work (SW):

a. Assignments:Prepare the list of IS, IEC Codes.

b. Mini Project:

i. Draw the chart of Various Equipments.

Brief of Hours Suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self-	Total hour
	Lecture	Work	Learning	(Cl+SW+Sl)
	(Cl)	(SW)	(Sl)	
EE305.1: Understand Breakdown in Gases.	08	01	01	10
EE305.2: Understand Breakdown in liquid and solid Insulating materials.	06	01	01	08
EE305.3: Understand the concept of Generation of High Voltages.	05	01	01	07
EE305.4: Measure High Voltages and Currents.	14	01	01	16
EE305.5: Perform High Voltage Testing of Electrical Apparatus	10	01	01	12
Total Hours	43	05	05	53

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution			Total
			U	Α	Marks
CO-1	Breakdown in Gases	03	01	01	05
CO-2	Breakdown in Liquids, and insulating solids	02	06	02	10
CO-3	High Voltage Generation	02	05	06	13
CO-4	Measurements of High Voltages and High Currents	03	05	05	13
CO-5 High Voltage Testing of Electrical Apparatus and High Voltage Laboratories		01	04	04	09
Total		11	21	18	50

Legend: R: Remember, U: Understand, A: Apply be end-of-semester assessment for High Voltage Engineering will be held with the written examination

The end-of-semester assessment for High Voltage Engineering will be held with the written examination of 50 marks.

Note. Detailed Assessment rubrics need to be prepared by the course-wise teachers for the above tasks. Teachers can also design different tasks as per requirement, for end-semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- 2. Tutorial
- **3.** Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to the electrical power plant
- 7. Demonstration
- **8.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- **9.** Brainstorming

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :			
S.	Title	Author	Publisher	Edition &
No.				Year
1	High Voltage	M. S. Naidu and V.	McGraw Hill	2013
	Engineering	Kamaraju	Education	
2	High Voltage	C. L. Wadhwa	New Age	2007
	Engineering		International	
			Publishers	
3	High Voltage	D. V. Razevig	Khanna Publisher	1993
	Engineering	(Translated by Dr.		
	Fundamentals	M. P. Chourasia)		
4	High Voltage	E. Kuffel, W. S.	Newnes Publication	2000
	Engineering	Zaengl and J. Kuffel		
	Fundamentals	-		
5	High Voltage and	R. Arora and W.	John Wiley & Sons	2011
	Electrical Insulation	Mosch		
	Engineering			
6	Various IS standards for H	IV Laboratory Techniq	ues and testing.	
7	Lecture note provided by	Dept. of Electrical Eng	ineering, AKS Univers	sity, Satna.

Cos, POs and PSOs Mapping

Course Title: B. Tech. Electrical Engineering Course Code: EE305 Course Title: High Voltage Engineering

	Program Outcomes							Program Specific Outcome						
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engin eering knowl edge	Prob lem Solvi ng	Desi gn Skill s	Lab orat ory Skill s	Tea mwo rk	Com munic ation Skills	Ethical and Profess ional Behavi or	Lifelo ng Learn ing	Globa l and Societ al Impac t	Project Manag ement	Adapta bility	Profess ional Develo pment	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Understand														
Breakdown in Gases.	2	2	3	2	2	1	1	1	2	1	1	2	2	2
CO 2: Understand Breakdown in liquid and solid Insulating materials.	2	2	1	3	1	2	1	1	1	1	2	2	2	2
CO 3: Understand the concept of Generation of High Voltages.	3	3	2	1	1	2	2	2	1	1	2	3	1	2
CO 4: Measure High Voltages and Currents.	2	3	3	2	3	2	1	3	2	1	2	2	3	3
CO 5: Perform High Voltage Testing of Electrical Apparatus	2	3	3	1	2	3	2	3	1	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(L I)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2, 3, 4	CO1: Understand Breakdown in Gases.	SO1.1,SO1.2 SO1.3, SO1.4 SO1.5		Unit-1: Breakdown in gases 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2, 3, 4	CO 2: Understand Breakdown in liquid and solid Insulating materials.	SO2.1, SO2.2 SO2.3 SO2.4 SO2.5		Unit-2: Breakdown in liquid and solid Insulating materials. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2, 3, 4	CO 3: Understand the concept of Generation of High Voltages.	SO3.1,SO3.2 SO3.3 SO3.4		Unit-3 : Generation of High Voltage 3.1, 3.2, 3.3, 3.4, 3.5	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2, 3, 4	CO 4: Measure High Voltages and Currents.	SO4.1, SO4.2 SO4.3, SO4.4 SO4.5		Unit-4: Measurements of High Voltages and Currents. 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2, 3, 4	CO 5: Perform High Voltage Testing of Electrical Apparatus	SO5.1SO5.2 SO5.3 SO5.4SO5.5		Unit 5: High Voltage Testing of Electrical Apparatus and High Voltage Laboratories. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10	1

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester VI

Course Code:	EE306
Course Title:	Power quality and FACTS
Pre- Requisite:	Engineering Mathematics, Engineering Physics and Electromagnetic field theory.
Rationale:	The purpose of this course is to familiarize the students with FACTS devices their operating characteristics and their applications in transmission and distribution system.

Course Outcomes: At the end of this course, students will demonstrate the ability to

EE306.1: Understand the characteristics of ac transmission and the effect of shunt and series reactive compensation.

EE306.2: Understand the working principles of FACTS devices, their operating characteristics and Applications

EE306.3: Understand the Voltage Source Converter based FACTs and their operation and control **EE306.4** Understand the power quality problems in distribution System.

|--|

				T-4-1				
Course Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)
Profession al Elective course (PEC)	EE306	Power Quality and FACTs	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial

(T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacher to ensure outcome of Learning.

AKSUniversity

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

				Sch	as)					
				Progress	ive Asse	essment ((PRA)		End	
Cours e Categ ory	Cours e Code		Class/Hom e Assignmen t 5 number 3 marks each (CA)	2 (2 best out	Semi	Class Activi tyany one (CAT)	Class Attenda nce (AT)	Total Marks (A+CT+ SA+ CAT+ AT)	Semes ter Assess ment (ESA)	Total Marks (PRA+ ESA)
		Power Quality								
PEC	EE306	and FACTs	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE306.1: Understand the characteristics of ac transmission and the effect of shunt and series reactive compensation.

Item	AppX Hrs
Cl	4
LI	0
SW	1
SL	2
Total	7

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO1.1 understand the AC Transmission system SO1.2 understanding the uncompensated AC transmission lines. SO1.3 understanding the power Compensation schemes SO1.4 be able to understand the Shunt and series compensation. 		 Unit-1.0 Transmission Lines and Series/Shunt Reactive Power Compensation 1.1 Basics of AC Transmission. 1.2 Analysis of uncompensated AC transmission lines. 1.3 Passive Reactive Power Compensation. 1.4 Shunt and series compensation and its Comparison 	1. numerical

SW-1 Suggested Sessional Work (SW):

- a. assignments
 - i. numerical problems on the transmission lines
 - ii. Explaining the shunt and series compensation and its impact on the performance of transmission line.
- **EE306.2:** Understand the working principles of FACTS devices and their operating characteristics. **Approximate Hours**

Item	AppX Hrs		
Cl	10		
LI	0		
SW	2		
SL	2		
Total	14		

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO2.1 understandingthe Thyristor-based FACTS devices: SO2.2. understand the Static VAR Compensator (SVC), SO2.3 to learn about Thyristor Controlled Series Capacitor (TCSC), SO2.3 to learn about the Thyristor Controlled Braking Resistor and Single Pole Single Throw (SPST) Switch. SO2.4 to be acknowledged about the Configurations and Modes of Operation, Harmonics and control of SVC and TCSC. Fault Current Limiter SO2.5 learning the applications of		 Unit-2.0 Thyristor-based Flexible AC Transmission Controllers (FACTS) and Its applications 2.1 Description and Characteristics of Thyristor-based FACTS devices: 2.2 Static VAR 2.3 Compensator (SVC), 2.4 Thyristor Controlled Series Capacitor (TCSC), 2.5 Thyristor Controlled Braking Resistor and Single 2.6 Pole Single Throw (SPST) Switch. 2.7 Configurations/Modes of Operation, Harmonics and control of SVC 2.8 TCSC. 2.9 Fault Current Limiter 2.10 Applications of FACTS for stability and power flow quality 	(SL) 1. numerical
applications of FACTS		quanty	

SW-2 Suggested Sessional Work

- a. Assignment work
 - i. Explain the Thyristor controlled Series Capacitor TCSC
 - ii. Design and explain the simulation diagram for the TCSC and STATCOM based control for power flow quality control.

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE306.3: Understand the Voltage Source Converter based FACTs and their operation and control

Item	AppX Hrs
Cl	8
LI	0
SW	1
SL	2
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO3.1 understanding the VSC and PWM for VSCs SO3.2 understanding the SHE, and PWM for SHE, sinusoidal PWM and SVPWM. SO3.3 understand the principle of operation of reactive power control with SSSC, UPFC SO3.4 learning about interphase power flow controller SO3.5 Series Compensator and fault current limiters		 Unit-3.0 Voltage Source Converter Based FACTS controllers 3.1 Voltage Source Converters (VSC) and Pulse Width Modulation for VSCs. 3.2 Multi-pulse and Multi-level Converters, 3.3 Selective Harmonic Elimination, Sinusoidal PWM and Space Vector Modulation. 3.4 STATCOM: Reactive Power Control: Type I and Type II controllers, 3.5 Static Synchronous Series Compensator (SSSC) and Unified Power Flow Controller (UPFC): 3.6 Interphase Power Flow Controller. 3.7 GTO Controlled Series Compensator. 3.8 Fault Current Limiter. 	1. numerical

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional work

a. Assignments

- i. Explain about the static compensators and UPFC power flow controller
- ii. Explain the impact of noise and how to reduce in by PWM and impact of SHE with PWM in harmonics.

EE306.4 Understand the power quality problems in distribution System.

Item	AppX Hrs
Cl	5
LI	0
SW	1
SL	2
Total	8

Session Outcomes	Laboratory	Class room	Self-
(SOs)	Instruction	Instruction	Learning
	(LI)	(CI)	(SL)
		Unit-4.0 Power Quality	1. numerical
SO4.1 learning different		Problems in Distribution	
power quality issues in		Systems	
power distribution		4.1 Power Quality problems in	
system		distribution systems:	
SO4.2 understand		4.2 Transient and Steady state	
about transient and		variations in voltage and	
steady state conditions		frequency.	
of voltage, frequency		4.3 Unbalance, Sags, Swells,	
and currents		Interruptions, Wave-form	
SO4.3 understand		4.4 Distortions: harmonics,	
waveform distortion		noise, notching, dc-offsets,	
and various unwanted		fluctuations. Flicker and its	
variations in power		measurement.	
system		4.5 Tolerance of Equipment and	
SO 4.4 Tolerance and		CBEMA curve.	
CBEMA curve			

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional work

a. assignments

- i. Enumerate different power quality issues in power distribution systems
- ii. Explain the various transient condition which distort the voltage and current profiles and explain issues.

EE306.5 understanding the operating behavior and control strategies of DASTATCOM, DVR and UPQC Approximate Hours

Item	AppX Hrs
Cl	13
LI	0
SW	1
SL	2
Total	16

Session	Laboratory	Class room Instruction	Self-
Outcomes	Instruction	(CI)	Learning
(SOs)	(LI)		(SL)
		Unit-5.0 Reactive Power	1. numeri
SO5.1 understanding		Compensation Schemes	cal
the reactive power		5.1 R eactive Power Compensation,	
control		5.2 Harmonics and Unbalance mitigation	
SO5.2 understanding		in Distribution Systems	
the harmonic and		5.3 Mitigation of harmonics and	
unbalance mitigation		unbalance in using DSTATCOM	
schemes in		5.4 Shunt Active Filters.	
distribution systems		5.5 Synchronous Reference Frame	
SO5.3 Study of		5.6 Extraction of Reference Currents.	
synchronous		5.7 Current Control Techniques in for	
reference frame		DSTATCOM.	
extraction		5.8 Voltage Sag/Swell mitigation:	
SO5.4 learning the		5.9 Dynamic Voltage Restorer – Working	
working of DVR,		Principle and Control Strategies.	
UPQC and series		5.10 Series Active Filtering.	
active filters		5.11 Unified Power Quality	
		Conditioner (UPQC):	
		5.12 Working Principle.	
		5.13 Capabilities and Control	
		Strategies.	

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+LI+SW+SI)
EE306.1: Understand the characteristics of ac transmission and the effect of shunt and series reactive compensation.	4	1	2	7
EE306.2: Understand the working principles of FACTS devices and their operating characteristics.	10	2	2	14
EE306.3: Understand the Voltage Source Converter based FACTs and their operation and control	8	2	1	11
EE306.4 Understand the power quality problems in distribution System.	5	2	1	8
EE306.5 understanding the operating behavior and control strategies of DASTATCOM, DVR and UPQC	13	2	1	16
Total Hours	40	12	6	58

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marl	Total		
		R	U	Α	Marks
CO-1	Understand the characteristics of ac transmission and the effect of shunt and series reactive compensation.	01	03	01	05
CO-2	Understand the working principles of FACTS devices and their operating characteristics.	02	10	03	15
CO-3	Understand the Voltage Source Converter based FACTs and their operation and control	03	07	05	15
CO-4	Understand the power quality problems in distribution System.	02	03	-	05
CO-5	PEC-EE08.6 understanding the operating behavior and control strategies of DASTATCOM, DVR and UPQC.	02	06	02	10
	Total	10	29	11	50

AKSUniversity

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment. for Power Quality and FACTS will be held with written examination of 50marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Books:

S. No.	Title	Title Author			
1	Understanding FACTS: Concepts and Technology of FACTS Systems	N. G. Hingorani and L. Gyugyi	Wiley-IEEE Press	1999	
2	FACTS Controllers in Power Transmission and Distribution	K. R. Padiyar	New Age International (P) Ltd.	2007	
3	Reactive Power Control in Electric Systems	T. J. E. Miller	John Wiley and Sons, New York	1983	
4	Electrical Power Systems Quality	R. C. Dugan	McGraw Hill Education	2012	
5	Electric Power Quality	. G. T. Heydt	Stars in a Circle Publications	1991	

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: EE306

Course Title: Power Quality and FACTS

	Program Outcomes											Program Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engineer ing knowled ge	Proble	Desig n	rator	Team work	Comm unicat	Profes sional	Lifelo ng Learni ng	and Socie	gemen	Adapt		Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Understand the characteristics of ac transmission and the effect of shunt and series reactive compensation.	5	3	2	3	1	1	3	2	3	3	2	3	3	3
CO3: Understand the working principles of FACTS devices and their operating characteristics.	2	3	3	3	1	1	3	2	3	2	3	3	3	3
CO3: Understand the Voltage Source Converter based FACTs and their operation and control	5	3	2	2	2	1	3	2	3	3	2	3	3	2
CO4: Understand the power quality problems in distribution System.	3	3	1	2	2	1	3	2	1	2	-	3	3	3
CO5: Understanding the operating behavior and control strategies of DSTATCOM, DVR and UPQC.		3	3	1	1	1	3	2	1	2	3	3	3	3

Legend: 1 – Low, 3 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,3,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO1. Understand the characteristics of ac transmission and the effect of shunt and series reactive compensation.	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1.0 Transmission Lines and Series/Shunt Reactive Power Compensation 1.1,1.2,1.3,1.4	1
PO 1,3,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO 3: Understand the working principles of FACTS devices and their operating characteristics.	SO3.1 SO3.3 SO3.3 SO3.4 SO3.5		Unit-2 Thyristor-based Flexible AC Transmission Controllers (FACTS) and Its applications 3.1, 3.3, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,3.9,3.10	1
PO 1,3,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO3 : Understand the Voltage Source Converter based FACTs and their operation and control	SO3.1 SO3.3 SO3.3 SO3.4 SO3.5		Unit-3 : Voltage Source Converter Based FACTS controllers 3.1, 3.3,3.3,3.4,3.5,3.6,3.7,3.8	1
PO 1,3,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO 4: Understand the power quality problems in distribution System.	SO4.1 SO4.3 SO4.3 SO4.4		Unit-4 : Power Quality Problems in Distribution Systems 4.1, 4.3, 4.3, 4.4, 4.5	1
PO 1,3,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO 5: understanding the operating behavior and control strategies of DSTATCOM, DVR and UPQC.	SO5.1 SO5.3 SO5.3 SO5.4		Unit 5: Reactive Power Compensation Schemes 5.1,5.3,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10, 5.11,5.12,5.13	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Devised as on 01 August 2022)

(Revised as on 01 August 2023)

Semester-VI

Course Code:	OEC306
Course Title:	Power Plant Engineering
Pre- requisite:	Student should have basic knowledge engineering thermodynamics, mechanical engineering fundamentals and electrical engineering basics.
Rationale:	Its primary rationale is to generate electrical power efficiently and reliably to meet the demands of industries, businesses, and households.
~ ~ ~	

Course Outcomes:

OEC306.1: Discuss various components of steam power plant and the factors influencing the site selection for the plant.

OEC306.2: Illustrate the working of gas turbine and combined power plant and its components.

OEC306.3: Explain the components, principles and working of nuclear power plant

OEC306.4: Explain the working of hydroelectric power plant and renewable power system

OEC306.5: Explain the economics involved in Power Plant and identify the factors related to selection of plant

Scheme of Studies:

Course				Total				
Catego ry	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Open elective course (OEC)	OEC306	Power Plant engineering	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial

(T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

1	heory				Schei	ne of As	sessment	(Marks)		
				Progressive Assessment (PRA)				End	Total	
Cours e Categ ory	Code	Course Title	Class/H ome Assign ment 5 number 3 marks each (CA)	Class Test2 (2 best out of 3) 10 marks each (CT)	Sem inar one (SA)	Class Activ ity any one (CA T)	Class Attenda nce (A T)	Total Marks (CA+CT+SA +CAT+AT)	Semeste r Assessm ent (ESA)	(PRA + ESA)
OEC	OEC306	Power plant engineeri ng		20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC306.1: Discuss various components of steam power plant and the factors influencing the site selection for the plant...

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	2
Total	12

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

(SOs) In	nstruction	Instruction	Self Learning
	(LI)	(CI)	(SL)
 SO1.1 Demonstrate how to conduct routine maintenance on specific plant equipment. Apply safety protocols when operating machinery in the plant. SO1.2 Evaluate the efficiency of different types of coal in power generation. Assess the environmental impact of a coal-based thermal power plant. Analyse data related to energy output and consumption. SO1.3 Judge the effectiveness of new technologies in reducing emissions from coal-based power plants. SO1.4 Design a proposal for optimizing the efficiency of a coal-based thermal power plant. 		 Unit-1.0 Introduction and Coal based Thermal Power Plants 1.1 Introduction of power plant 1.2 classification based on energy sources 1.3 Basic Rankine cycle and its modifications 1.4 ; Layout of modern coal power plant; 1.5 ; Super critical boilers, FBC boilers 1.6 Turbines, condensers, steam and heating rates 1.7; Fuel and ash handling; Draught system 1.8 ; Feed water treatment; 1.9 Binary cycles and cogeneration systems 	 Subsyste ms of thermal power plants Numerica l problem related to thermody namics laws

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain classification of power plant based on energy sources.
- ii. Explain working and construction of Rankine cycle.

OEC306.2: Illustrate the working of gas turbine and combined power plant and its components.

Item	AppX Hrs
Cl	09
LI	00
SW	02
SL	01
Total	12

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1 Describe the Brayton cycle and its application in gas turbine engines. Understand the concept of waste heat recovery and its role in combined cycle efficiency SO2.2 Demonstrate the ability to calculate efficiency ratios for gas turbine power plants. Apply knowledge of gas turbine components to troubleshoot common issues. SO2.3 Assess the environmental impact of gas turbine power plants in comparison to coal or nuclear plants. Evaluate the economic feasibility of implementing combined cycle technology in different regions. SO2.4 Design a proposal for enhancing the efficiency of a gas turbine power plant. Develop a plan for integrating renewable energy sources into a combined cycle power plant. 		 Unit-2.0 . Gas Turbine and Combined Cycle Power Plants: 1 Brayton cycle 2 Brayton cycle 2 Brayton cycle 2 Brayton cycle 3 numerical based on brayton cycle 2.4 introduction of gas turbine 2.5 component of gas turbine power plants 2.6 Combined cycle power plants 2.7 expression for efficiency of combined cycle power plants 2.8 Integrated Gasifier based Combined Cycle (IGCC) systems. 9 numerical based on IGCC systems. 	1. Numericals of brayton cycle

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Drive the expression for efficiency of brayton cycle.
- ii. Explain working and construction of IGCC system.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

OEC306.3: Explain the components, principles and working of nuclear power plant **Approximate Hours**

Item	AppX Hrs
Cl	09
LI	00
SW	01
SL	02
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO3.1 Comprehending the principles of nuclear reactions, reactor dynamics, and the significance of safety measures. SO3.2 Applying knowledge to operate control systems, manage reactor parameters, and respond to routine operational scenarios. SO3.3 Assessing reactor performance data, identifying anomalies, and troubleshooting operational issues. SO3.4 Critically evaluating safety procedures, emergency response plans, and proposing improvements based on 		 Unit-3.0 Nuclear Power Plants: 3.1 Introduction of nuclear power plant 3.2 Basics of nuclear energy conversion 3.3 ; Layout and subsystems of nuclear power plants 3.4 Boiling Water Reactor And Pressurized Water Reactor 3.5 CANDU Reactor 3.6 Pressurized Heavy Water Reactor (PHWR) 3.7); Fast Breeder Reactors (FBR) 3.8 Gas cooled and liquid metal cooled reactors 3.9 Safety measures for nuclear power plants. 	 Safeties measures in functioning of nuclear power plant Environmenta l impact of nuclear power plant

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

past incidents or industry		
best practices.		
SO3.5 Developing innovative		
approaches to enhance		
plant safety, designing		
new training		
methodologies for		
operators, or		
implementing novel		
reactor control strategies.		

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i.Explain working and construction of nuclear power plant with neat sketch diagram. ii.Explain fast breeder reactor.

OEC306.4: Explain the working of hydroelectric power plant and renewable power system **Approximate Hours**

Item	AppX Hrs
Cl	09
LI	00
SW	01
SL	02
Total	12

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 . Apply knowledge of		Unit-4.0 Hydroelectric	1. environmental
hydroelectric power to		power plants and	impact of
solve simple problems		Renewable Power	hydroelectric power
related to energy		Systems	system
production or		4.1 .Introduction of	
efficiency.		hydroelectric power	
Analyse case studies of		plants	
hydroelectric power		4.2 classification of	
plants and propose		hydroelectric power	
improvements for		plants	
better performance.		4.3 Typical layout and	
SO4.2 Assess the		components of	
sustainability and long-		hydroelectric power	
term viability of		plant	
Hydroelectric power		4.4 introduction of	
compared to other		renewable power	
renewable energy		systems	
sources.		4.5 : Principles and	
SO4.3 Design a hypothetical		working of wind and	
hydroelectric power		tidal power plant	
system considering		4.6 Principles and working	
geographical,		of solar photo-voltaic	
environmental, and		and solar thermal	
economic factors.		power plant	
SO4.4 Develop a proposal		4.7 Principles and working	
for optimizing existing		of geothermal power	
hydroelectric power		plant	
plants for increased		4.8 Principles and working	
efficiency or reduced		of biogas power plant	
environmental impact.		4.9 Principles and working	
		of fuel cell power	
		systems power plant	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain working and construction of tidal power plant.
- ii. Make layout of hydroelectric power system.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Derived en en 01 America 2022)

(Revised as on 01 August 2023)

OEC306.5: Explain the economics involved in Power Plant and identify the factors related to selection of plant

Item	AppX Hrs
Cl	09
LI	00
SW	2
SL	1
Total	12

	Laboratory	Class room	Self Learning
Session Outcomes	Instruction	Instruction	(SL)
(SOs)	(LI)	(CI)	
SO5.1 Understand the		Unit-5. Energy	1. Explain the
factors influencing		Economics and	factors
energy pricing, such		Environment	influencing
as market forces,		5.1 introduction to	energy
government policies,		energy economics	prices,
and global trends		and environment	
SO5.2 Apply economic		5.2 Economic and	
models to analyze the		environmental	
impact of policy		issues	
changes (e.g., carbon		5.3 Power tariffs	
pricing, subsidies) on		5.4 ; Load	
energy markets.		distribution	
SO5.3 Evaluate the costs		parameters	
and benefits of		5.5 Load curve	
different energy		5.6 Capital and	
policies on both the		operating cost of	
economy and the		different power	
environment		plants	
SO5.4 Develop a proposal		5.7 Pollution control	
for an energy strategy		technologies	
that optimizes		5.8 waste disposal	
resource allocation		options for coal	
while minimizing		and nuclear plants	
environmental impact		5.9 calculation of	
		energy economics	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Explain renewable energy economics,.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Lecture (LI)	Sessional Work (SW)	Self- Learnin g (Sl)	Total hour (Cl+LI+SW+ SI)
OEC306.1: Discuss various components of steam power plant and the factors influencing the site selection for the plant.	9	0	1	2	12
OEC306.2: Illustrate the working of gas turbine and combined power plant and its components.	9	0	2	1	12
OEC306.3: Explain the components, principles and working of nuclear power plant	9	0	2	1	12
OEC306.4: Explain the working of hydroelectric power plant and renewable power system	9	0	2	1	12
OEC306.5: Explain the economics involved in Power Plant and identify the factors related to selection of plant	9	0	2	1	12
Total Hours	45	00	09	6	60

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

	Unit	Μ	arks Di	stribution	Total
CO	Titles	R	U	Α	Mark s
CO-1	Introduction and Coal based Thermal Power Plants	03	01	01	05
CO-2	Gas Turbine and Combined Cycle Power Plants	02	06	02	10
CO-3	Nuclear Power Plants	03	07	05	15
CO-4	Hydroelectric Power Plants and Renewable Power Systems:	-	10	05	15
CO-5	Energy Economics and Environment	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment .for power plant engineering will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :								
S. No.	Title	Author	Publisher	Edition & Year					
1	Power Plant Engineering,	Nag P.K	Tata McGraw Hill	2008					
2	Power Plant Technology	El Wakil M.M	Tata McGraw Hill	2010					
3	Power Plant Engineering	Elliot T.C., Chen K and Swanekamp R C	McGraw Hill	1998					
4	Power plant engineering	Er. R.K. Rajput	Laxmi publications.	.2016					
5		Training 1	Manual						
6		Training Manual							
7	Dept. of J	Lecture note p Electrical Engineerin	provided by g, AKS University, S	Satna .					

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs, POs, and PSOs Mapping

programme Title: B. Tech. Electrical Engineering

Course Code: OEC307

Course Title: Power Plant Engineering

					Pro	gram	Outco	mes					Program Speci	fic Outcomes
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engine ering knowl edge	Proble m	n	rator	work	on	Profes	Learni	and Socie	Projec t Manag ement		Develop	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Discuss various components of steam power plant and the factors influencing the site selection for the plant.	3	3	2	3	1	1	3	2	3	3	2	3	3	3
CO2: Illustrate the working of gas turbine and combined power plant and its components.	2	3	3	3	1	1	3	2	3	2	3	3	3	3
CO3: Explain the components, principles and working of nuclear power plant	3	3	2	2	2	1	3	2	3	3	2	3	3	2
CO4: Explain the working of hydroelectric power plant and renewable power system	3	3	1	2	2	1	3	2	1	2	-	3	3	3
CO5: Explain the economics involved in Power Plant and identify the factors related to selection of plant	3	3	3	1	1	1	3	2	1	2	3	3	3	3

Legend: 1 – Low, 3 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,3,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO1: Discuss various components of steam power plan and the factors influencing the site selection for the plant.	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1.0 Introduction and Coal based Thermal Power Plants 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	1,2
PO 1,3,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO2: Illustrate the working of gas turbine and combined power plant and its components.	SO3.1 SO3.3 SO3.3 SO3.4		Unit-2 Gas Turbine and Combined Cycle Power Plants 2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9	1
PO 1,3,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO3: Explain the components, principles and working of nuclear power plant	SO3.1 SO3.3 SO3.3 SO3.4		Unit-3 : Nuclear Power Plants 3.1, 3.3,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1,2
PO 1,3,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO4: Explain the working of hydroelectric power plant and renewable power system	SO4.1 SO4.3 SO4.3 SO4.4		Unit-4 Hydroelectric Power Plants and Renewable Power Systems 4.1, 4.3,4.3,4.4,4.5,4.6,4.7,4.8,4.9	1
PO 1,3,3,4,5,6 7,8,9,10,11,12 PSO 1,2	CO5: Explain the economics involved in Power Plant and identify the factors related to selection of plant	SO5.1 SO5.3 SO5.3 SO5.4		Unit 5: Energy Economics and Environment 5.1,5.3,5.3,5.4,5.5,5.6,5.7,5.8,5.9	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VI

Course Code:	OEC307
Course Title:	Strength of Materials
Pre-requisite:	Students must have knowledge of Calculus, linear algebra, physics (classical mechanics), differential equations, materials science basics, and mechanics of materials concepts.
Rationale:	The study of Mechanics of Deformable Bodies is crucial for understanding structural behavior, enabling design, analysis, and optimization in engineering applications.

Course Outcomes:

OEC307.1 Apply elasticity principles to analyze and design structures, understanding stress-strain relationships, deformations, and temperature effects for practical engineering solutions."

- **OEC307.2** Analyze plane stresses using principal stresses, Mohr's circle, and transformations. Understand plain strain, principal strains, and combined loading in structures and pressure vessels.
- **OEC307.3** Develop shear force and bending moment diagrams for beams, understanding loading rate relationships and identifying maximum moments and contraflexure points.
- **OEC307.4** Derive flexural and shear formulas, analyze stress distribution, calculate slope and deflection using double integration method for standard cases.
- **OEC307.5** Analyze strain energy in axial loads, bending, torsion, determine torsion stresses, and study buckling of columns using Euler's and Rankine's formulas.

Scheme o	of Studies:
----------	-------------

				Scher	me of stud	lies(Ho	urs/Week)	Total
Course Category	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)
Open Elective (OEC)	OEC307	Strength of Materials	3	0	1	1	5	3

Legend: CI: Class room Instruction (Includes different instructional strategies i.e. Lecture(L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

					So	cheme	of Assessr	nent (Marks)		
				Prog	gressiv	e Asse	ssment (P	RA)	End	Tot
Course Categor y	Cous e Code	Course Title	Class/ Home Assig nment 5num ber 3mar ksea ch (CA)	Clas s Test 2 (2 best out Of 3) 10 mar ks eac h(C T)	Se min ar one (SA)	Clas s Acti vity any one (CAT)	Class Attendan ce (AT)	Total Marks (CA+CT+SA+ CAT+AT)	Semest er Assess ment (ESA)	al Mar ks (PR A+ ES A)
Open Elective (OEC)	OEC30 7	Strength of Material s	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC307.1: Apply elasticity principles to analyze and design structures, understanding stress-strain relationships, deformations, and temperature effects for practical engineering solutions."

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO1.1 Define stress, strain, elastic constants, and material behavior principles. SO1.2 Interpret stress-strain diagrams for ductile and brittle materials, ensuring safety factors. SO1.3 Evaluate stresses and strains in determinate, indeterminate, homogeneous, and composite bars. SO1.4 Analyze temperature- induced stresses in simple structural members. SO1.5 Understand and apply interrelations between various elastic constants.		 1.1 Introduction 1.2 Stresses and strain, Hooke's law 1.3 Poisson's ratio, Modulus of Elasticity, Modulus of Rigidity 1.4 Modulus of Rigidity, Bulk Modulus. Interrelation between elastic constants, 1.5 Stress-strain diagram for ductile and brittle materials, factor of safety 1.6 Stresses and strains in determinate and indeterminate bars under self weight 1.7 Stresses and strains in determinate and indeterminate under concentrated loads. 1.8 Stresses and strains in homogeneous and composite bars under self weight. 1.9 Stresses and strains in homogeneous and composite bars under concentrated loads. Temperature stresses in simple members. 	1. Explore the components and interpretation of stress-strain diagrams, including elastic deformation, yield point, ultimate strength, and fracture point.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

1. Explain the concept of modulus of elasticity and how it relates to Hooke's Law in the context of engineering materials. Provide a real-life example to illustrate the practical application of these concepts.

OEC307.2: Analyze plane stresses using principal stresses, Mohr's circle, and transformations.

Understand plain strain, principal strains, and combined loading in structures and pressure vessels.

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
 SO2.1 Apply Mohr's circle to analyze principal stresses and maximum shear stresses. SO2.2 Understand Mohr's circle for plain strain, principal strains, and maximum shear strain. SO2.3 Evaluate components under bending, torsion, and axial loads. SO2.4 Analyze stresses in thin- walled pressure vessels. SO2.5 Integrate knowledge to solve complex stress and strain scenarios. 		 2.1 Principal stresses and strain 2.2 Transformation of plane stresses, Principal stresses 2.3Maximum shear stresses, 2.4 Numerical solving 2.5 Mohr's circle for plane stresses 2.6 Plain strain and its Mohr's circle representation 2.7 Principal strains, Maximum shear strain. 2.8 Combined Loading: Components subjected to bending, torsion & axial loads. 2.9 Analysis of thin pressure vessels. 	1. Learn how to apply Mohr's circle to transform stresses from one coordinate system to another, particularly focusing on plane stress conditions.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work(SW):

a. Assignments:

- i. Explain the concept of Mohr's circle for plane stresses.
- ii. Construct the Mohr's circle for a given set of plane stress components and determine the principal stresses.

OEC307.3: Develop shear force and bending moment diagrams for beams, understanding

loading rate relationships and identifying maximum moments and contraflexure points.

Item	AppXHrs
Cl	8
LI	0
SW	1
SL	1
Total	10

Session Outcomes	Laboratory	Classroom Instruction	Self	
(SOs)	Instruction	(CI)	Learnin	
	(LI)		g (SL)	
SO3.1 Construct shear		3.1 Types of Beam	1. Enhance	
force and bending moment		3.2 Shear force and bending moment	problem-	
diagrams for various loads.		3.3 Shear force and bending moment	solving skills	
SO3.2 Understand the		diagrams for statically determinate	by solving	
connection between		beam due to concentrated load	numerical	
loading rates, shear force,		3.4 Shear force and bending moment exerci		
and bending moments.		diagrams for statically determinate related		
SO3.3 Identify and		beam due to uniformly distributed analysis		
calculate maximum		load	beams and	
bending moments in		3.5 Shear force and bending moment	the	
statically determinate		diagrams for statically determinate	construction	
beams.		beam due to uniformly varying load	of shear	
SO3.4 Determine positions		3.6 Shear force and bending moment	force and	
of points of contraflexure		diagrams for statically determinate	bending	
in beam structures.		beam due to couple	moment	
			diagrams.	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work(SW):

a. Assignments:

i. Explain how shear force and bending moment are related to the internal forces and moments experienced by a beam

OEC307.4: Derive flexural and shear formulas, analyze stress distribution, calculate slope and deflection using double integration method for standard cases.

Item	AppX Hrs		
Cl	10		
LI	0		
SW	1		
SL	1		
Total	12		

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO4.1 Derive flexural		UNIT-4.0	
formula, stress		4.1 Theory of simple bending,	1. Explore the concepts of
distribution, moment		assumptions, Derivation of	maximum and average
of resistance.		flexural formula	shear stresses and their
SO4.2 Derive		4.2 Second moment of area of	significance in beam
distribution formula,		common cross sections	design.
analyze common		(rectangular, I,T,C) with	
sections.		respect to centroidal and	
SO4.3 Relate bending		parallel axes	
moment, analyze		4.3Bending stress distribution	
determinate beams		diagrams, moment of	
using integration.			

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

modulus.	
4.4 Shear stresses: Concept,	
derivation of shear stress	
distribution formula,	
4.5 shear stress distribution	
diagrams for common	
symmetrical sections,	
4.6 maximum and average	
shears stresses,	
4.7 shear connection between	
flange and web.	
4.8 Slope and deflection of	
beams: Relation between	
bending moment and slope	
4.9 Slope and deflection of	
determinate beams,	
4.10 Double integration	
method (Macaulay's method),	
Derivation of formula for	
slope and deflection for	
standard cases.	
	 derivation of shear stress distribution formula, 4.5 shear stress distribution diagrams for common symmetrical sections, 4.6 maximum and average shears stresses, 4.7 shear connection between flange and web. 4.8 Slope and deflection of beams: Relation between bending moment and slope 4.9 Slope and deflection of determinate beams, 4.10 Double integration method (Macaulay's method), Derivation of formula for slope and deflection for

SW-4 Suggested Sessional Work(SW): Assignments:

- i. Sketch the bending stress distribution diagram for a beam subjected to a uniformly distributed load.
- **OEC307.5** Analyze strain energy in axial loads, bending, torsion, determine torsion stresses, and study buckling of columns using Euler's and Rankine's formulas.

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	on Outcomes Laboratory Classroom Instruction			
(SOs)	Instruction	(CI)	Learni	
	(LI)		ng (SL)	
SO5.1 Analyze gradual, sudden, and impact scenarios. SO5.2 Examine stresses, strains, and deformations in determinate shafts. SO5.3 Derive Euler's formula, evaluate safe loads, consider end conditions. SO5.4 Investigate torsion, bending, and axial force interactions. SO5.5 Understand energy aspects in bending, torsion.		 5.1 Strain energy: Strain energy due to gradual load 5.2 Strain energy due to sudden load, Strain energy due to impact load, 5.3 Strain energy due to bending and torsion. Stresses, strain and deformations in determinate shafts of solid and hollow, homogeneous and composite circular cross section subjected to twisting moment, 5.4 derivation of torsion equation, 5.5 stresses due to combined torsion, bending and axial force on shafts. 5.6 Buckling of columns: Concept of buckling of columns, 5.7 derivation of Euler's formula for buckling load for column with hinged ends, 5.8 Concept of equivalent length for various end conditions, 5.9 limitations of Euler's formula, Rankine's formula, safe load on columns. 	1. Understand the concept of buckling in columns and its implications for structural stability.	

SW-5 Suggested Sessional Work(SW):

a. Assignments:

1. Discuss the stresses induced in structural elements subjected to combined loading, including torsion, bending, and axial forces.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lectu re (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
OEC307.1: Apply elasticity principles to analyze and design structures, understanding stress-strain relationships, deformations, and temperature effects for practical engineering solutions."	9	1	1	11
OEC307.2: Analyze plane stresses using principal stresses, Mohr's circle, and transformations. Understand plain strain, principal strains, and combined loading in structures and pressure vessels.	9	1	1	11
OEC307.3: Develop shear force and bending moment diagrams for beams, understanding loading rate relationships and identifying maximum moments and contra flexure points.	8	1	1	10
OEC307.4: Derive flexural and shear formulas, analyze stress distribution, calculate slope and deflection using double integration method for standard cases.	10	1	1	12
OEC307.5: Analyze strain energy in axial loads, bending, torsion, determine torsion stresses, and study buckling of columns using Euler's and Rankine's formulas.	9	1	1	11
Total Hours	45	5	5	55

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

		Mar	Total		
CO	Unit Titles	R	U	Α	Mark s
CO-1	Simple stresses and strains	03	01	01	05
CO-2	Principal stresses and strains	02	06	02	10
CO-3	Shear Force and Bending Moment Diagrams	03	07	05	15
CO-4	Stresses in Machine Elements, Slope and deflection of beams	-	10	05	15
CO-5	Strain energy and Buckling of columns:	03	02	-	05
	Total			13	50

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment for Strength of Materials s it will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course-wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role-play
- 6. ICT Based Teaching Learning (VideoDemonstration/Tutorials CBT, Blog, Facebook, Twitter, Whats-app, Mobile, Online sources)
- 7. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

	(a)Books:		
S. No.	Title	Author	Publisher
1	Strength of Materials	Gere & Timoshenko	CBS Publication
2	Strength of Materials	Ramamurtham	Dhanpat Rai Publication.
3	Strength of Material	S.S. Rattan	Tata McGraw Hill Publication Co. Ltd.
4	Strength of Materials- 3rd Edition	G. H. Ryder	Macmillan Pub, India
5	Strength of Material	Beer and Johnston	CBS Publication
6	Introduction to Mechanics of Solids	E.P. Popov	Prentice Hall Publication
7	Introduction to Mechanics of Solids	Singer and Pytel	Harper and row Publication.
8	Strength of Material	B.K. Sarkar	Tata McGraw Hill New Delhi

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey , Assistant Professor , Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor , Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor , Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor , Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor , Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos, POs and PSOs Mapping

Programme Title: B.Tech. Electrical Engineering Course Code: OEC307 Course Title: Strength of Materials

					Pro	ogran	n Outc	omes					Program Speci	fic Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
		Proble m Solvin g	Design	Labora tory Skills	Team work	ion	Ethical and Professi onal Behavi or	Lifelo ng Learni ng	-	Project Manage ment	Adapta bility	Profes sional Develo pment	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO 1: Apply elasticity principles to analyze and design structures, understanding stress-strain relationships, deformations, and temperature effects for practical engineering solutions."	1	1	2	2	3	2	3	2	2	1	3	2	2	3
CO 2: Analyze plane stresses using principal stresses, Mohr's circle, and transformations. Understand plain strain, principal strains, and combined loading in structures and pressure vessels.	1	1	2	2	1	2	3	2	1	1	2	2	2	2
CO 3: Develop shear force and bending moment diagrams for beams, understanding loading rate relationships and identifying maximum moments and contraflexure points.	2	2	1	1	1	2	2	2	1	2	1	2	1	1
CO 4: Derive flexural and shear formulas, analyze stress distribution, calculate slope and deflection using double integration method for standard cases.	3	2	2	2	3	2	3	2	2	1	2	3	3	3
CO 5: Analyze strain energy in axial loads, bending, torsion, determine torsion stresses, and study buckling of columns using Euler's and Rankine's formulas.	-	-	-	1	1	3	3	3	1	1	2	2	3	3

Legend:1–Low,2–Medium,3–High

Course Curriculum Map:

Pos &PSOs No.	Cos No. & Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO 1: Apply elasticity principles to analyze and design structures, understanding stress- strain relationships, deformations, and temperature effects for practical engineering solutions."	SO1.1, SO1.2 SO1.3, SO1.4 SO1.5		Unit-1.0 Simple stresses and strains 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO 2: Analyze plane stresses using principal stresses, Mohr's circle, and transformations. Understand plain strain, principal strains, and combined loading in structures and pressure vessels.	SO2.1, SO2.2 SO2.3, SO2.4 SO2.5		Unit-2.0 Principal stresses and strains 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8,2.9	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO 3: Develop shear force and bending moment diagrams for beams, understanding loading rate relationships and identifying maximum moments and contraflexure points.	SO3.1, SO3.2 SO3.3, SO3.4		Unit-3.0 : Shear Force and Bending Moment Diagrams 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO 4: Derive flexural and shear formulas, analyze stress distribution, calculate slope and deflection using double integration method for standard cases	SO4.1, SO4.2 SO4.3, SO4.4 SO4.5		Unit-4.0 : Stresses in Machine Elements, Slope and deflection of beams 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO 5: Analyze strain energy in axial loads, bending, torsion, determine torsion stresses, and study buckling of columns using Euler's and Rankine's formulas.	SO5.1, SO5.2 SO5.3, SO5.4 SO5.5		Unit 5.0 Strain energy and Buckling of columns: 5.1, 5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VI

0 T 0 0 0 0

Course Code:	OEC308
Course Title :	Fluid Machinery
Pre-requisite:	Students are expected to know the fundamentals of engineering mechanics, resolving of forces, Statics, Dynamics and flow kinematics.
Rationale:	Fluid mechanics and hydraulics are core to engineering, offering vital insights into liquid and gas behavior for efficient system design across industries like power generation, aerospace, and infrastructure. Understanding fluid dynamics drives innovation, impacting energy, transportation, and environmental sectors globally, with applications reaching into fields like medicine and meteorology.
0 0 1	

Course Outcomes:

~ .

 \sim

- **OEC308.1:** Grasp fluid properties (density, viscosity, surface tension) and understand static principles (pressure laws, buoyancy).
- **OEC308.2:** Analyze fluid motion using Lagrangian/Eulerian methods, study flow lines and particle acceleration.
- **OEC308.3:** Apply Euler's/Bernoulli's equations, understand Venturi meter, Orifice meter, and implications of momentum equations.
- **OEC308.4:** Differentiate between laminar/turbulent flow, study pipe flow, energy losses, configurations, and pipe phenomena.
- **OEC308.5:** Master boundary layer theory, friction factors, and separation control, plus dimensional analysis methods and model laws in fluid dynamics.

Cours	Course			Total					
e Categ ory	Code	Course Title	CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)	
Open Elective OEC	OEC308	Fluid Machinery	3	0	1	1	5	3	

Scheme of Studies:

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

Theory

neory										
					Sch	eme of A	ssessmen	t (Marks)		
				Progr	essive	Assessme	ent (PRA	()	End	Tota
Cours e Categ	Couse Code	Cour se Title	Class/ Home Assign ment 5	Class Test 2 (2 best out of	Sem inar one	Class Activi ty any	Class Attend ance	Total Marks	Semeste r Assess	l Mar ks
ory		THE	number 3 marks	3) 10 marks	(one		(CA+CT+SA	ment	(PR A+
	ea	each (CA)	each (CT)	SA)	(CAT)	(AT)	+CAT+AT)	(ESA)	ESA)	
OEC	OEC3 08	Fluid Machin ery	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC308.1: Grasp fluid properties (density, viscosity, surface tension) and understand static principles (pressure laws, buoyancy).

Item	AppX Hrs
Cl	9
LI	0
SW	01
SL	01
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction (LI)	(CI)	Learning (SL)
 SO1.1 Understand fluid characteristics like density, viscosity, and surface tension. SO1.2 Master pressure laws, buoyancy, and equilibrium in liquids. SO1.3 Apply fluid knowledge to solve real-world engineering challenges. SO1.4 Develop problem- solving skills in fluid statics scenarios. SO1.5 Use fluid principles for efficient system design across industries. 		 1.1 Introduction to fluid mechanics 1.2 Properties of fluid: Mass density, Weight density. Specific volume, Specific gravity, Viscosity, Surface tension. 1.3 Capillarity, Vapour pressure, Compressibility and bulk modulus. 1.4 Newtonian and non- Newtonian fluids. Fluid statics: Pressure, Pascal's law 1.5 Hydrostatic law, Pressure measurement 1.6Hydrostatic force on submerged plane 1.7 Hydrostatic force on curved surface 1.8 Buoyancy, Floatation, 1.9 Liquid in relative equilibrium. 	 Solve a set of practice problems related to hydrostatic law to reinforce your problem solving skills. Explore Online simulations or Virtual labs related to Fluid Properties, Buoyancy and Floatation.

SW-1 Suggested Sessional Work(SW):

- a. Assignments:
 - i. Explore and differentiate between Newtonian and non-Newtonian fluids. Provide real-world examples of each type and explain how their behavior diverges from conventional Newtonian fluid dynamics.
 - ii. Discuss the concept of pressure measurement in fluid systems. Explain at least three different methods of measuring fluid pressure and compare their advantages and limitations.

b. Mini Project:

- i. Select diverse scenarios from everyday life where fluid dynamics play a crucial role (e.g., water flow in pipes, movement of liquids in different vessels, surface tension effects, etc.).
- ii. Document and observe these scenarios, noting down relevant data such as fluid types, dimensions, and observed behaviors.

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

OEC308.2: Analyze fluid motion using Lagrangian/Eulerian methods, study flow lines and particle acceleration.

Item	AppX Hrs
Cl	09
LI	00
SW	01
SL	01
Total	11

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (CI)	Self- Learning
(503)	(LI)	(CI)	(SL)
 SO2.1 Understand Lagrangian/Eulerian approaches, various flow types, and characteristics of flow lines. SO2.2 Grasp continuity equations, fluid particle motion, accelerations, rotational flow, vorticity, and circulation. SO2.3 Apply knowledge to create and analyze flow nets, understanding their utility in fluid systems. SO2.4 Explore vortex dynamics and its significance in fluid systems. 		 2.1 Fluid Kinematics: Description of fluid motion, Langragian and Eulerian approach, 2.2 Type of fluid flow, Type of flow lines-path line, Streak line, Stream line, Streak line, Stream line, Stream tube 2.3 Continuity equation , Acceleration of a fluid particle 2.4 Motion of fluid particle along curved path 2.5 Normal and tangential acceleration 2.6 Rotational flow, Rotation 2.7 Vorticity, Circulation, 2.8 Stream and potential function, 2.8 Flow net, Its characteristics and utilities 2.9 Vortex motion. 	1. Watch youtube videos on langragian and eulerian approach 2. Draw Stream Line pattern for various flows.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain the differences between the Langragian and Eulerian approaches in describing fluid motion. Provide examples to illustrate situations where each approach is more applicable and why.
- **ii.** Define laminar, turbulent, and transitional flow. Compare and contrast these types of flow, highlighting their characteristics and the factors influencing their occurrence. Provide real-world examples for each type of flow.

Mini Project:

- i. Discuss the continuity equation and its significance in fluid dynamics.
- ii. Explore the acceleration of a fluid particle, considering both normal and tangential components along curved paths. Provide examples to illustrate these concepts.
- **OEC308.3:** Apply Euler's/Bernoulli's equations, understand Venturimeter, Orifice meter, and implications of momentum equations.

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1 Grasp Euler's and		3.1 Fluid dynamics:	1. Choose a real
Bernoulli's equations		Euler's Equation	life example and
and their practical		3.2 Bernoulli's equation	demonstrate how
applications in fluid		and its practical	Bernoulli's
dynamics.		application,	Equation can be
SO3.2 Explore		3.3 Venturimeter' Orifice	applied to
Venturimeter,		meter	analyze the fluid
Orifice meter,		3.4 Nozzle, Pitot tube	mechanics.
Nozzle, and Pitot		3.5 Impulse momentum	2. Choose a fluid
tube functionalities		equation	flow scenario
			and apply the

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

in measuring fluid	3.6 Momentum of	Reynold's
flow.	Momentum equation	Transport Theorem
SO3.3 Apply impulse	3.7 Kinetic energy	to analyze the
momentum and	3.8 Momentum correction	changes in mass,
momentum of	factor.	Momentum and
momentum	3.9 Reynold's transport	energy with in the
equations for fluid	theorem	system.
behavior analysis.		
SO3.4 Understand		
kinetic energy and		
momentum		
correction factors in		
fluid systems' energy		
analysis.		
SO3.5 Apply Reynold's		
transport theorem to		
understand property		
transport in flowing		
fluids.		

SW-3 Suggested Sessional Work(SW):

a. Assignments:

i. Derive and explain the impulse momentum equation for a control volume. Discuss its significance in analyzing fluid flow problems and provide examples demonstrating its application.

Mini Project:

- i. Collect and compile the data obtained from each flow measurement device.
- ii. Analyze the data to calculate flow rates and compare the measurements obtained from different devices.

OEC308.4: Differentiate between laminar/turbulent flow, study pipe flow, energy losses,

configurations, and pipe phenomena

Item	AppX Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO4:1 Understanding flow		4.1 Laminar & Turbulent	1. Explore the
transitions from		flow: Reynold's	phenomenon of
Reynold's		experiment	cavitation in fluid
experiment to		4.2 F low of viscous fluids	flow. Investigate
viscous fluid		in circular pipe	the condition
behavior in pipes.		4.3 Shear stress & velocity	under which
SO4:2 Exploring shear		distribution for	cavitation occurs,
stress and pressure		turbulent.	its effects on pipes
gradient in Couette		4.4 Shear stress and	and equipment,
flow for parallel		pressure gradient	and methods to
plate systems		between two parallel	prevent or
SO4:3 Grasping energy		plates	mitigate
loss in pipes,		4.5 Couette flow	cavitation.
hydraulic gradient,		4.6 Flow through pipes:	2. Explore the
and optimizing pipe		Loss of energy in pipes	principles of
configurations.		4.7 Hydraulic gradient and	Syphon Systems
SO4:4 Applying equivalent		total energy line	in Fluid
pipe power		4.8 Pipe in series and	Transport.
transmission and		parallel.	
managing water		4.9 Equivalent pipe power	
hammer effects in		transmission through	
pipes.		pipe, Water hammer in	
		pipes.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Describe the characteristics of turbulent flow concerning shear stress and velocity distribution in a pipe. Compare and contrast these characteristics with those of laminar flow. Provide explanations supported by equations and graphical representations

Mini Project:

- i. Study the behavior of pipe configurations in series and parallel, measuring flow rates and pressure differences.
- ii. Simulate and analyze the occurrence and effects of water hammer in the pipe network.
- **OEC308.5:** Master boundary layer theory, friction factors, and separation control, plus dimensional analysis methods and model laws in fluid dynamics.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of P. Tach (Electrical Engineering) Progra

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Approximate Hours

Item	AppX Hrs
Cl	8
LI	0
SW	01
SL	2
Total	11

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1 Use Darcy-		5.1 Internal flows: Friction factor,	1. Investigate
Weisbach and Moody's		Darcy- Weisbach friction	methods to
diagram for internal		factor, Moody's diagram,	control and
flow friction		Boundary Layer theory	prevent boundary
calculations.		5.2 Boundary layer equation	layer separation.
SO5.2 Differentiate		5.3 Laminar and turbulent	
laminar and turbulent		boundary layer and its growth	2. Investigate the
layers, explore growth,		over flat plat.	limitations of
and solutions for		5.4 Momentum boundary layer	dimensional
momentum layers.		and its solutions, separation of	analysis.
SO5.3 Solve equations,		boundary layer and its control.	
grasp momentum		5.5 Dimensional analysis:	3. Choose a
principles, and		Methods of dimensional	specific flow
separation factors.		analysis, Rayleigh's method	scenario and use
SO5.4 Use Rayleigh's and		5.6 Buckingham's theorem,	Moody's
Buckingham's methods		Limitations, Model analysis,	Diagram to
for fluid behavior using		Dimensionless number and	determine the
dimensionless numbers.		their significance	friction Factor.
SO5.5 Explain Reynold's,		5.7 Model laws, Reynolds model	
Fraude's, Euler's,		law,	
Weber's, and Mach's		5.8Fraud's model law, Euler's	
laws in predicting		model law, Weber's model	
varied fluid behaviors.		law, Mach's Model law.	

SW-5 Suggested Sessional Work(SW):

a. Assignments: Discuss real-world applications where understanding friction factors and boundary layer theory is crucial.

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

b. Mini Project: Construct a setup simulating flow over a flat plate using a wind tunnel or a controlled airflow system.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+LI+SW+SI)
OEC308.1: Grasp fluid properties (density, viscosity, surface tension) and understand static principles (pressure laws, buoyancy).	9	1	1	19
OEC308.2: Analyze fluid motion using Lagrangian/Eulerian methods, study flow lines and particle acceleration.	9	1	1	21
OEC308.3: Apply Euler's/Bernoulli's equations, understand Venturimeter, Orifice meter, and implications of momentum equations.	9	1	1	21
OEC308.4: Differentiate between laminar/turbulent flow, study pipe flow, energy losses, configurations, and pipe phenomena.	9	2	1	22
OEC308.5: Master boundary layer theory, friction factors, and separation control, plus dimensional analysis methods and model laws in fluid dynamics.	8	1	2	19
Total Hours	44	6	6	56

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marks Distribution			Total
CO	Unit Titles	R	U	Marks	
CO-1	Properties of Fluid and Fluid Statics	03	01	01	05
CO-2	Fluid Kinematics	02	06	02	10
CO-3	Fluid Dynamics	02	07	06	15
CO-4	Laminar and Turbulent Flow and Flow through Pipes	02	07	06	15
CO-5	Internal Flows and Dimensional Analysis	01	02	02	05
	Total	10	23	17	50

Legend: R:Remember,

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

The end of semester assessment for Fluid Machinery will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Onlinesources)
- 7. Brainstorming

Suggested Learning Resources:

(a) Books:

	(a) DOOKS:			
S.	Title	Author	Publisher	Edition
No.				&Year
1	Fluid Mechanics &	S.S. Rattan	Khanna	2019
	Hydraulic Machines		Book	
			Publishing	
2	Introduction to Fluid	P.J. Pritchard,	Wiley India	2012
	Mechanics,	A.T. McDonald		
		and R.W. Fox		
3	"Fluid Mechanics	F.M. White	Tata McGraw Hill	2011
4	"Introduction to	S. K. Som, G.	Tata McGraw Hill	2017
	Fluid Mechanics	Biswas and S.		
	and Fluid Machines	Chakraborty		
5	A Textbook of	R. K. Bansal	Laxmi	2005
	Fluid Mechanics		Publication	
	and Hydraulic			
	Machines			
6	Mechanics of Fluids	Shames	McGraw Hill	1988
			Book Co. New	
			Delhi	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey , Assistant Professor , Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor , Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor , Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor , Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos, POs and PSOs Mapping

Programme Title: B. Tech Electrical Engineering

Course Code : OEC308

Course Title: Fluid Machinery

		Program Outcomes					Program Specific Outcome							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engineer ing knowled ge	Problem	Design Skills	Laborat ory Skills	Teamw ork	Commu nicatio n Skills	Professi	Lifelo	Societ al	Project Manag ement	Adapta	Professi onal Develop ment	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Grasp fluid properties (density, viscosity, surface tension) and understand static principles (pressure laws, buoyancy).	3	2	3	1	1	1	1	-	3	2	1	3	2	2
CO2: Analyze fluid motion using Lagrangian/Eulerian methods, study flow lines and particle acceleration.	3	2	2	1	1	2	1	2	2	1	2	3	2	2
CO3: Apply Euler's/Bernoulli's equations, understand Venturimeter, Orifice meter, and implications of momentum equations.	2	2	1	1	2	2	2	1	1	2	1	2	2	1
CO4: Differentiate between laminar/turbulent flow, study pipe flow, energy losses, configurations, and pipe phenomena.	3	2	2	1	3	1	3	1	2	1	-	2	3	3
CO5: Master boundary layer theory, friction factors, and separation control, plus dimensional analysis methods and model laws in fluid dynamics.	2	2	2	1	1	1	3	1	1	1	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning(SL)
PO 1,2,3,4,5,6	CO1: Grasp fluid properties	SO1.1			
7,8,9,10,11,12	(density, viscosity, surface	SO1.2		Unit-1.0 Properties of Fluid and Fluid	
PSO 1,2	tension) and understand static	SO1.3		Statics	1,2
	principles (pressure laws,	SO1.4		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
	buoyancy).	SO1.5			
PO 1,2,3,4,5,6	CO2: Analyze fluid motion	SO2.1		Unit-2 Fluid Kinematics	
7,8,9,10,11,12	using Lagrangian/Eulerian	SO2.2		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	1,2
PSO 1,2	methods, study flow lines and	SO2.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.0, 2.7, 2.8,2.9	1,2
	particle acceleration.	SO2.4		2.0,2.7	
PO 1,2,3,4,5,6	CO3: Apply	SO3.1			
7,8,9,10,11,12	Euler's/Bernoulli's equations,	SO3.2		Unit-3 : Fluid Dynamics	
PSO 1,2	understand Venturimeter,	SO3.3		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9	1,2
F30 1,2	Orifice meter, and	SO3.4		5.1, 5.2, 5.3, 5.4, 5.5, 5.0, 5.7, 5.0, 5.7	1,2
	implications of momentum	SO3.5			
	equations.				
PO 1,2,3,4,5,6	CO4: Differentiate between	SO4.1		Unit-4 : laminar and turbulent flow	
7,8,9,10,11,12	laminar/turbulent flow, study	SO4.2			
PSO 1,2	pipe flow, energy losses,	SO4.3		and flow through pipes	1,2
	configurations, and pipe	SO4.4		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	
	phenomena.			,,,,,,,,,	
PO 1,2,3,4,5,6	CO5: Master boundary layer	SO5.1			
7,8,9,10,11,12	theory, friction factors, and	SO5.2		Unit 5: Internal flows and dimensional	
PSO 1.2	separation control, plus	SO5.3		analysis	1,2,3
1501,2	dimensional analysis methods	SO5.4		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8	1,2,5
	and model laws in fluid	SO5.5		5.1,5.2,5.5,5.4,5.5,5.0,5.7,5.0	
	dynamics.				

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester-VI

Course Code: Course Title: Pre-requisite:	HSMC05 PROJECT MANAGEMENT Student should have basic knowledge of Geometry, Geometrical Shapes, basic knowledge of Computer, Mouse and keyboard use, navigating menus and dialogs,
	managing files and directories, etc.
Rationale:	The rationale of measurement and metrology lies in ensuring precision, accuracy, and reliability across various fields. It is crucial for quality control, scientific research, safety, innovation, and international standards. Measurement and metrology contribute to efficiency, standardization, and progress in technology and society.

Course Outcomes:

HSMC05.1: Students will demonstrate an understanding of fundamental project management principles,

including project lifecycle, stakeholders, constraints, and success criteria.

HSMC05.2: Students will be able to apply various project management methodologies

HSMC05.3: Students will develop comprehensive project plans that include scope definition, scheduling, resource allocation, budgeting, risk management, and communication strategies

HSMC05.4: Students will gain hands-on experience with project management tools and software

HSMC05.5: Students will assess project performance using key performance indicators (KPIs), metrics, and benchmarks, and make data-driven decisions to optimize project outcomes.

Scheme of Studies:

Course			Scheme of studies (Hours/Week)					Total
Course Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)
HSMC	HSMC05	Project Management	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory

workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self-Learning,

C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory										
			Scheme of Assessment (Marks)							
				Progressive	e Assessmen	t (PRA))			Tota
			Class/Hom	Class Test		Class	Cla	Total	End	1
Cours	Course	Course	e	2	Seminar	Activit	SS	Marks	Semest	Mar
e	Code		Assignmen	(2 best out	one		Atte	(CA+	er	ks
Categ	Couc	THE	t 5 number	of 3)		y any one	nda	CT+S	Assess	
ory			3 marks	10 marks		one	nce	A+CA	ment	(PR
			each	each	(SA)	(CAT)	(AT	T+AT)	(ESA)	A+
			(CA)	(CT)		(CAI))	1 (A1)		ESA)
HSMC	HSMC 05	Project Manag ement	15	20	5	5	5	50	50	100

Course- Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should show case their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC05.1: Students will demonstrate an understanding of fundamental project management principles, including project lifecycle, stakeholders, constraints, and success criteria

Item	AppX Hrs		
Cl	12		
LI	0		
SW	02		
SL	02		
Total	16		

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session	Laboratory	Classroom	Self-
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
SO1.1 Define basic		Unit 1: Introduction to Project	1What are the Basic
project management		Management	element of measurement
terms and concepts.		1.1 Introduction	system
SO1.2. Explain the		1.2 Concept of Project	
purpose and importance		1.3 Meaning,	2. What are the different
of project management.		1.4 Characteristics,	technique used for the
SO1.3. Apply project		1.5 Classification of Projects,	measurement of
management principles to		1.6 Project Life Cycle and	displacement.
analyze and solve basic		Phases	
project scenarios.		1.7 Project Selection criteria,	
SO1.4. Develop a project		1.8 Project Management	
plan for a hypothetical		1.9 Line Management	
project, integrating		1.10 Project Manager:	
elements such as scope,		1.11 Roles and Responsibilities,	
schedule, budget, and risk		1.12 Project Management as a	
management.		Profession	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain the Project Life Cycle
- ii. Explain characteristic of Project Manager

HSMC05.2: Students will be able to apply various project management methodologies

Item	AppX Hrs
Cl	12
LI	0
SW	03
SL	02
Total	17

Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO2.1 Recall the key activities involved in project execution and monitoring. SO2.2 Explain the purpose and importance of project execution and monitoring in achieving project objectives. SO2.3. Apply project management methodologies to execute project tasks effectively. SO2.4. Design a project communication plan to keep stakeholders informed about project progress and changes.		 Unit-II: Project Execution and Monitoring 2.1 Generating and Screening Ideas 2.2 Steps, Monitoring the Environment, 2.3 Scouting for Project Ideas, 2.4 Preliminarily Screening 2.5 Project Rating Index. 2.6 Feasibility Studies 2.7 Technical, Financial Managerial 2.8 Economic Managerial 2.9 Social, Legal and Managerial. 2.10 Team formation and roles 2.11 Communication and leadership in project management 2.12 Resource allocation and management 	 1.Explain types of monitoring 2. Explain the objective of communicatio n

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explian the Project Rating Index.
- 2. Explain the function of Financial Managerial.
- 3. Write the principle of leadership in project management

A K S University Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

HSMC05.3: Students will develop comprehensive project plans that include scope definition, scheduling, resource allocation, budgeting, risk management, and communication strategies

Item	AppX Hrs
Cl	09
LI	0
SW	02
SL	03
Total	14

Outcomes I	Instruction	T = = 4 • = = 4	
		Instruction	(SL)
(SOs)	(LI)	(CI)	
SO3.1 Recall the basic financial terms and concepts related to estimates and projections. SO3.2. Explain the purpose and importance of financial estimates and projections in project planning and decision- making. SO3.3. Evaluate the financial viability of a project based on projected costs, revenues, and expected returns. SO3.4. Develop a comprehensive financial plan for a project, including cost estimates, revenue projections, and cash flow forecasts.		 Unit 3: Financial Estimates and Projections 3.1 Project cost estimation & working capital requirements, 3.2 Sources of funds 3.3 Equity, debentures, term loans & their Cost of Capital. 3.4 Projected Cash Flow Statement & fund flow statement, 3.5 Projected Income statement and Balance sheet 3.6 Capital budgeting decisions 3.7 Payback Period, Accounting Rate of Return 3.8 NPV, Internal Rate of Return and BCR Method 3.9 project financing, 	 Write the short note on term loans. Write the steps to make balance sheet.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. What are the sources of funds?
- 2. Explain the Capital budgeting decisions

HSMC05.4: Students will gain hands-on experience with project management tools and software

Item	AppX Hrs
Cl	06
LI	0
SW	02
SL	02
Total	10

Session	Laboratory	Classroom	Self-Learning
Outcomes	Instruction	Instruction	(SL)
(SOs)	(LI)	(CI)	
SO4.1 Memorize the types of		Unit 4: Project	1.Explain the following
risks commonly encountered in		Appraisal and Risk	a. Risk management
project management.		Management	b. Market appraisal
SO4.2. Explain the purpose and		techniques	
importance of project appraisal in		4.1 Project Appraisal	
evaluating project feasibility and		Techniques	
investment decisions.		4.2 Objectives	
SO4.3. Utilize risk management		4.3 Types and Method	
tools and techniques, such as risk		4.4 Environmental	
assessment matrices and		appraisal,	
probability impact grids, to		4.5 Market appraisal	
identify, assess, and prioritize		4.6 market survey for	
project risks.		forecasting future	
		demand and sales	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

1. Explain the future demand and sales.

2. Write short note on risk management tools and techniques.

HSMC05.5: Students will assess project performance using key performance indicators (KPIs), metrics, and benchmarks, and make data-driven decisions to optimize project outcomes.

Item	AppX Hrs		
Cl	06		
LI	0		
SW	02		
SL	02		
Total	10		

Session	Laboratory	Classroom	Self-
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
SO5.1. Explain the Agile approach to		Unit 5: Agile techniques	1. What do you mean by
project management and its		in Project Management	project planning?
differences from traditional waterfall		5.1 Introduction to	2. Write the short note
methodologies.		Agile, principles,	on agile projects.
SO5.2. Evaluate Agile project		5.2 Scrum, Kanban,	
metrics and performance indicators		5.3 other Agile	
to assess project progress and		methodologies,	
identify areas for improvement.		5.4 Agile project	
SO5.3. Develop an Agile project plan		management tools	
that includes iteration planning,		5.5 Traditional project	
sprint goals, and release planning.		management	
		5.6 Agile vs. Traditional	
		project management	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work(SW):

- a. Assignments:
 - **1.** Explain Agile project metrics and performance indicators.
 - 2. Explain the Traditional project management

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Lecture (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+LI+SW+SI)
HSMC05.1: Students will demonstrate an understanding of fundamental project management principles, including project lifecycle, stakeholders, constraints, and success criteria.		0	02	02	16
HSMC05.2: Students will be able to apply various project management methodologies		0	03	02	17
HSMC05.3: Students will develop comprehensive project plans that include scope definition, scheduling, resource allocation, budgeting, risk management, and communication strategies	09	0	02	03	14
HSMC05.4: Students will gain hands-on experience with project management tools and software	06	0	02	02	10
HSMC05.5: Students will assess project performance using key performance indicators (KPIs), metrics, and benchmarks, and make data-driven decisions to optimize project outcomes.	06	0	02	02	10
Total Hours	45	0	11	11	67

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marl	ks Distrik	Total Marks	
		R	U	Α	
CO-1	Introduction to Project Management	03	01	01	05
CO-2	Project Execution and Monitoring	02	06	02	10
CO-3	Financial Estimates and Projections	03	07	05	15
CO-4	Project Appraisal and Risk Management techniques	-	10	05	15
CO-5	Agile techniques in Project Management	03	02	-	05
	Total	11	26	13	50

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment for Measurement and Metrology will be held with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 8. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books:								
S.	Title	Author	Publisher	Edition&					
No.				Year					
1	Project Management	Choudhary	Tata Mcgraw Hill	2017					
2	Project Management: The Managerial Process	Clifford F Gray	Visionias	2023					
3	Project Management: Planning and Control Techniques		New Age International Publishers	2021					
4	Lecture notes provided by								
	Dept. of El	ectrical Engineerin	g, AKS University,	, Satna.					

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey , Assistant Professor , Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos, Pos and PSOs Mapping

Programme Title: B.tech. Electrical Engineering

Course Code: HSMC05

Course Title: Project management

					Pr	ogran	n Out	comes					Program Specific Outcome	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes		Pro ble m Solv ing	Desi gn Skill s	Lab orat ory Skill s	Tea m wor k	Co mm unic atio n Skill s	Ethi cal and Prof essio nal Beh avio r	Lifelo ng Lear ning	Glo bal and Soci etal Imp act	Proje ct Mana geme nt	Adap tabilit y	Profe ssion al Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Students will demonstrate an understanding of fundamental project management principles, including project lifecycle, stakeholders, constraints, and success criteria.	3	3	2	3	3	2	1	2	3	2	2	3	3	2
CO2: Students will be able to apply various project management methodologies	3	3	3	2	2	2	1	2	1	2	2	2	2	2
CO3: Students will develop comprehensive project plans that include scope definition, scheduling, resource allocation, budgeting, risk management, and communication strategies	3	3	2	2	3	1	2	2	1	2	2	3	2	2
CO4: Students will gain hands-on experience with project management tools and software	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO5: Students will assess project performance using key performance indicators (KPIs), metrics, and benchmarks, and make data-driven decisions to optimize project outcomes.	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Pos & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO1: Students will demonstrate an understanding of fundamental project management principles, including project lifecycle, stakeholders, constraints, and success criteria.	SO1.1 SO1.2 SO1.3 SO1.4		Unit 1: Introduction to Project Management 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10, 1.11,1.12	1,2
, , , , , ,	CO2: Students will be able to apply various project management methodologies	SO2.1 SO2.2 SO2.3 SO2.4		Unit-II: Project Execution and Monitoring 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8,2.9,2.10,2.11,2.12	1,2
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO3: Students will develop comprehensive project plans that include scope definition, scheduling, resource allocation, budgeting, risk management, and communication strategies	SO3.1 SO3.2 SO3.3 SO3.4		Unit 3: Financial Estimates and Projections 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8.3.9	1,2
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO4: Students will gain hands-on experience with project management tools and software	SO4.1 SO4.2 SO4.3		Unit 4: Project Appraisal and Risk Management techniques 4.1,4.2,4.3,4.4,4.5,4.6	1
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO5: Students will assess project performance using key performance indicators (KPIs), metrics, and benchmarks, and make data-driven decisions to optimize project outcomes.	SO5.1 SO5.2 SO5.3		Unit 5: Agile techniques in Project Management 5.1,5.2,5.3,5.4,5.5,5.6	1,2

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VII

Course Code: Course Title:	EE407 Electrical Energy Conservation and Auditing
Pre- requisite:	Student should have basic knowledge of Electricity, Electrical Circuits, Method Electrical Power Generation, Losses and basic mathematical operations.
Rationale:	The requirement of energy has increased manifolds in last two decades due to rapid urbanization and growth in industrial/service sector. It has become challenging task to meet ever increasing energy demands with limited conventional fuels and natural resources. Due to fast depletion of fossil fuels and a tremendous gap between supply and demand of energy, it is essential to adopt energy conservation techniques in almost every field like industries, commercial and residential sectors etc. Energy conservation has attained priority as it is regarded as additional energy resource. Energy saved is energy produced. This course covers the concepts of energy management and its conservation. It gives the insight to energy conservation opportunities in general industry and details out energy audit methodology and energy audit instruments.

Course Outcomes: After undergoing this course, the students will be able to:

- EE407.1: Define principles and objectives of energy management and energy audit.
- **EE407.2:** Understand Energy Conservation Act 2001 and its features. □ Understand various forms & elements of energy.
- **EE407.3:** Identify electrical and thermal utilities. Understand their basic principle of operation and assess performance of various equipment.
- EE407.4: Identify areas of energy conservation and adopt conservation methods in various systems.

Cours				Scheme of studies(Hours/Week)					
e			Cl	LI	SW	SL	Total Study	Credits	
Categ	Course	Course Title					Hours	(C)	
ory	Code						(CI+LI+SW+SL)		
Progra		Electrical Energy							
m Core	EE407	Conservation and	3	0	1	1	5	3	
(PEC)		Auditing							

EE407.5: Evaluate the techno economic feasibility of the energy conservation technique adopted.

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

					Schem	e of Asse	ssment	(Marks)		
				Progress	ive Asses	sment (PRA)		End	Total
Cour se Cate gory	Cous e Code	Course Title	Class/Ho me Assignm ent 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one (SA)	Class Activi ty any one (CAT)	Class Atten dance (AT)	Total Marks (CA+C T+SA+ CAT+A T)	Semes ter Assess ment (ESA)	(PRA+ ESA)
PEC	EE407	Electric al Energy Conserv ation and Auditin g	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE407.1: Understanding of Energy Scenario and environmental issues in an industry

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Item	Approx Hrs
Cl	08
LI	0
SW	2
SL	1
Total	11

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1.1 Understand the		Unit-1: Energy Scenario	1. Electrical
Graph of		1. Commercial and Non-	energy
Energy		commercial energy	generation
SO1.2 Forming		2. primary energy resources,	process
Incident Matrix		commercial	
for Energy		3. energy production, final	2. Global
consumption		energy consumption	environment
SO1.3 Analysis the		4. energy needs of growing	issue
economic		economy, long term energy	
growth linked to		scenario, energy pricing	
energy		5. energy sector reforms,	
consumption		energy and environment,	
SO1.4 Analysis sector-		energy security, energy	
wise energy		conservation and its	
Consumption		importance	
SO1.5 Solving problem		6. , restructuring of the energy	
related to		supply sector, energy	
Environmental		strategy for the future	
impact		7. air pollution, climate	
Assessment		change	
		8. Energy Conservation Act-	
		2001 and its features	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
- b. Survey: Health and Safety in the Plant

EE407.2: Apply different energy saving potential in each technology.

Item	Approx Hrs
Cl	10
LI	0
SW	2
SL	1
Total	13

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction (L1)	(CI)	Learning (SL)
 SO2.1 Understanding of different Electricity tariff SO2.2 Analysis potential of each technology. 	(LI)	 Unit-2 Basics of Energy and its various forms 1. Electricity tariff, 2. load management and 	(SL) 1. Basic of Power factor calculation according to
SO2.3 To understand the significance of thermal energy.		 maximum demand control 3. power factor improvement, selection & location of capacitors 4. Thermal Basics-fuels, 	load
		 4. Internal Dastes-fucis, thermal energy contents of fuel, temperature 5. pressure, heat capacity, sensible and 	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

latent heat,
evaporation,
6. condensation, steam,
moist air and humidity
& heat transfer, units
and conversion
7. Maximum demand
controllers
8. automatic power
factor controllers
9. Maximum demand
controllers, automatic
power factor
controllers
10. electronic ballast,
occupancy sensors,
energy efficient
lighting controls,
energy saving potential
of each technology.

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Analysis the tariff, load management

EE407.3: Ability to do Energy management (audit) approach and understanding energy costs **Approximate Hours**

Item	Approx Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1 To	•	Unit-3 : Energy Management & Audit	1. energy
Understand	1	1 Definition, energy audit, need, types of	consumption in
the energy audit	l	energy audit. Energy management	KW and unit
instruments	1	(audit)	
SO3.2 to	l I	2. Approach understanding energy costs,	
calculate	1	3. bench marking, energy performance,	
the energy	l I	matching energy use to requirement	
costs	l I	4. maximizing system efficiencies,	
SO3.3 to draw	l I	optimizing the input energy	
the material	1	requirements,	
and energy	1	5. fuel & energy substitution	
balance	l I	6. energy audit instruments. Material and	
diagrams	l I	Energy balance	
-	1	7. Facility as an energy system, methods	
	l .	for preparing process flow	
	1	8. material and energy balance diagrams.	
	l	9. Energy monitoring techniques	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. To draw the material and energy balance diagrams for our university

EE407.4: Analyze Energy Efficiency in Electrical Systems **Approximate Hours**

Item	Approx Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

(Revised as on 01 August 2023)

Session	Laboratory	Class room Instruction	Self-
Outcomes	Instruction	(CI)	Learning
(SOs)	(LI)		(SL)
SO4.1 To	•	Unit-4: Energy Efficiency in Electrical	1. motor Losses
Understand		Systems	
the concept			
of electrical		1. Electrical system: Electricity billing,	
load		2. electrical load management and	
management		maximum demand control	
SO4.2 to		3. power factor improvement and its	
Analysis		benefit, selection	
the factors		4. location of capacitors,	
affecting		5. performance assessment of PF	
motor		capacitors	
SO4.3 Analysis		6. distribution and transformer losses.	
the		7. Electric motors: Types, losses in	
Electricity		induction motors,	
billing		8. motor efficiency, factors affecting	
		motor	
		9. performance	
		Rewinding and motor replacement issues	

SW-4 Suggested Sessional Work (SW):

a. Assignments: Bill Calculation

Mini Project:

- i. Design a smart meter
- **EE407.5:** Understanding of the concept of positive real function, their characteristics, filters and their different types

Item	Approx Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1 To Understand the Energy conservation in thermal System SO5.2 Selection of equipment SO5.3 Fuel saving Calculation		 Unit-5 : Energy Efficiency in Industrial Systems 1. Types of air compressors, compressor efficiency 2. efficient compressor operation 3. Compressed air system components, capacity assessment, leakage test, factors affecting the performance 4. , efficient system operation, flow control strategies and energy conservation opportunities. 5. Pumps and Pumping System: Types, performance evaluation, efficient system operation 6. flow control strategies and energy conservation opportunities 7. Cooling Tower: Types and performance evaluation, efficient system operation 8. flow control strategies and energy 9. saving opportunities, assessment 	1.star rating
		of cooling tower	

SW-5 Suggested Sessional Work (SW):

a. Assignments: Discuss energy conservation in Thermal System

- b. Mini Project:
 - i. To study a energy Audit Report.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE407.1: Understand the current energy scenario and importance of energy conservation.	8	2	1	11
EE407.2: Understand the concepts of energy management.	10	2	1	13
EE407.3: Understand the methods of improving energy efficiency in different electrical systems	9	1	1	11
EE407.4: Understand the concepts of different energy efficient devices.	9	2	1	12
EE407.5: To Understand the Energy conservation in thermal System	9	2	1	12
Total Hours	45	9	5	59

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marks Distribution			Total	
		R	U	Α	Marks	
CO-1	Energy Scenario	02	03	05	10	
CO-2	Basics of Energy and its various forms	02	04	04	10	
CO-3	Energy Management & Audit	02	02	06	10	
CO-4	Energy Efficiency in Electrical Systems	03	07	05	15	
CO-5	Energy Efficiency in Industrial Systems	01	02	02	05	
	Total	10	18	22	50	

Legend: R: Remember, U: Understand, A: Apply The end of semester assessment for Electrical Energy Conservation and Auditing will be held with written examination of 50 marks

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- **2.** Tutorial
- **3.** Group Discussion
- 4. Practical Design Demonstration
- **5.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition & Year
1	Guide books forNational Certification Examination for Energy Manager	Auditors Book-1	/ General Aspects (available online)	2013
2	Guide books forNational Certification Examination for Energy Manager /	Auditors Book-3	Electrical Utilities (available online)	2014
3	Utilization of Electrical Energy and Conservation ^{II} ,	S. C. Tripathy	McGraw Hill, 1991.	Eighth, 2023
4	Success stories of Energy Conservation by	BEE, New Delhi	(www.bee-india.org)	

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: EE407

Course Title: Electrical Energy Conservation and Auditing

					Pro	gram (Outcom	ies					Program Specific Outcome	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO1 2	PSO 1	PSO 2
Course Outcomes	Engi neeri ng kno wled ge	Proble m Solvin g	Desi gn Skill s	Labor atory Skills	Team work	Com munic ation Skills	Ethica l and Profes sional Behav ior	Lifel ong Lear ning	Glob al and Socie tal Impa ct	Projec t Mana gemen t	Ada ptabi lity	Profe ssion al Deve lopm ent	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understand the current energy scenario and importance of energy conservation.	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO2: Understand the concepts of energy management.	2	3	3	2	2	2	1	3	2	2	2	3	3	2
CO3: Understand the methods of improving energy efficiency in different electrical systems	3	2	3	2	1	1	2	2	2	2	2	3	3	3
CO4: Understand the concepts of different energy efficient devices.	2	3	2	2	2	1	2	3	2	2	2	2	2	3
CO5: To Understand the Energy conservation in thermal System	3	3	3	2	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculu	im Map:
-------------------------	---------

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO1: Understand the current energy scenario and importance of energy conservation.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		UNIT 1: Energy Scenario 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	1,2
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO2: Understand the concepts of energy management.	SO2. 1 SO2. 2 SO2. 3		Unit-2: Basics of Energy and its various forms 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO3: Understand the methods of improving energy efficiency in different electrical systems	SO3. 1 SO3. 2 SO3. 3		UNIT 3: Energy Management & Audit 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO4: Understand the concepts of different energy efficient devices.	SO4. 1 SO4. 2 SO4. 3		UNIT 4: Energy Efficiency in Electrical Systems 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8, 4.9	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO5: To Understand the Energy conservation in thermal System	SO5.1 SO5.2 SO5.3		UNIT 5: Energy Efficiency in Industrial Systems 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	1

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VII

Course Code:	EE408
Course Title :	Electrical Machine Design
Pre-requisite:	Students should have basic knowledge of construction, and working of various electrical machines.
Rationale:	A process of introducing formal knowledge of electrical machine construction appropriately to design the machine for suitable working conditions and getting knowledge about various parts of different machines and their requirement for any specific purpose.
Course Outcomes:	

- **EE408.1:** Understand the construction and performance characteristics of electrical machines.
- EE408.2: Understand the various factors which influence the design: electrical, magnetic and thermal loading of electrical machines
- EE408.3: Understand the principles of electrical machine design and carry out a basic design of an Induction machine.
- EE408.4: Understand the principles of electrical machine design and carry out a basic design of a Synchronous machine.
- **EE408.5:** Use software tools to do design calculations.

Scheme of Studies:

				Scheme of studies(Hours/Week)					
Course Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)	
Professi onal Elective (PEC)	EE408	Electrical Machine Design	3	0	1	1	5	3	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L), and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field, or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project, etc.),

SL: Self Learning,

C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note: SW & SL have to be planned and performed under the teacher's continuous guidance and feedback to ensure the Learning outcome.

Scheme of Assessment: Theory

Theory											
			Scheme of Assessment (Marks)								
				Progressive A	ssessme	ent (Pl	RA)		End		
Cour se Cate gory	Course Code	Course Title	Class/Hom e Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Clas s Acti vity one (CA T)	Clas s Atte ndan ce (AT)	Total Marks (CA+C T+SA+ CAT+ AT)	Seme ster Asses sment (ESA)	Total Mar ks (PRA + ESA)	
PEC	EE408	Electric al Machine Design	15	20	5	5	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE408.1: Understand the construction and performance characteristics of electrical machines.

Approximate Hours

Item	AppX Hrs
Cl	08
LI	0
SW	1
SL	1
Total	10

Faculty of Engineering and Technology Department of Electrical Engineering Purriculum of B Toch (Electrical Engineering) Program

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1.1 Reviewing the major		Unit-1:	1. Understand
considerations in		INTRODUCTION	the various
electrical machine		1.1 Major considerations	concepts of
design.		in electrical machine	Machine
SO1.2 Determining the		design.	Design.
concepts of electrical		1.2 Electrical engineering	
engineering materials,		materials.	
space factor, choice of		1.3 Space factor	
specific electrical and		1.4 Choice of specific	
magnetic loadings.		electrical and	
SO1.3 Understand the thermal		magnetic loadings.	
considerations.		1.5 Thermal	
SO1.4 Determine heat flow		considerations	
and temperature rise.		1.6 Heat flow	
SO1.5 Understanding the		1.7 Temperature rise	
ratings of machines.		1.8 Rating of machines	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Make a tabular list of factors affecting the design.

b. Mini Project:

- i. Draw the basic diagrams of various parts with theory.
- **EE408.2:** Understand the various factors which influence the design: electrical, magnetic and thermal loading of electrical machines

.Approximate Hours

Item	AppX Hrs
Cl	8
LI	0
SW	1
SL	1
Total	10

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO2.1 Take a look at sizing of		Unit-2 Design of	1. Learn and
transformer.		Transformers	gain
SO2.2 Determine the KVA		2.1 Sizing of a transformer	knowledge of
rating of single-phase		2.2 Main dimensions	the design of
and three-phase		2.3 kVA output for single-	the
transformer.		and three-phase	Transformer.
SO2.3 Calculate the overall		transformers.	
dimensions.		2.4 Window space factor	
SO2.5 To understand winding		2.5 Overall dimensions,	
design.		Operating	
SO2.6 Analyze the operating		characteristics	
characteristics and no-load		2.6 Regulation, No load	
current.		current	
SO2.7 Calculate the temperature		2.7 Temperature rise in	
rise.		transformers, Design of	
SO2.8 Understand the design and		cooling tank	
method of cooling.		2.8 Methods for cooling of	
-		transformers.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Make Proper Notes of all design concepts for the Transformer.

b. Mini Project:

- i. Draft the Transformer Construction.
- **EE408.3:** Understand the principles of electrical machine design and carry out a basic design of an Induction machine.

Approximate Hours

Item	AppX Hrs
Cl	10
LI	0
SW	2
SL	1
Total	13

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO3.1 Evaluation of the sizing		Unit-3: Design of Induction	1. To ensure all
of Induction Motor.		Motors.	the concepts of
SO3.2 Determine the main		3.1 Sizing of an induction motor	the design of
dimensions and length of air		3.2 Main dimensions, Length of air	the Induction
gap.		gap	Motor should
SO3.3 To Study the design of		3.3 Rules for selecting rotor slots of	be understood.
squirrel cage rotor.		squirrel cage machines.	
SO3.4 Knowledge of rules for		3.4 Design of rotor bars & slots,	
selecting rotor slots.		Design of end rings.	
SO3.5 Understand the design of		3.5 Design of wound rotor, Magnetic	
wound rotor.		leakage calculations	
SO3.6 Understand the operating		3.6 Leakage reactance of poly-phase	
characteristics.		machines.	
SO3.7 Understand the concept of		3.7 Magnetizing current	
leakage reactance.		3.8 Short circuit current	
SO3.8 Factors Affecting the		3.9 Circle diagram	
Machine Design.		3.10 Operating characteristics	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Make proper notes of the design of the three-phase induction machine.

b. Mini Project:

i. Evaluate the Tabular form of design of the three-phase Induction machine.

EE408.4: Understand the principles of electrical machine design and carry out a basic design of a Synchronous machine.

Approximate Hours

Item	AppX Hrs
Cl	09
LI	0
SW	2
SL	1
Total	12

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO4.1 To Understand the		Unit 4: Design of	1. To ensure Complete
Sizing of Synchronous		Synchronous Machine	notes of the chapter
Machine.		4.1 Sizing of a synchronous	related to the Design of
SO4.2 To Understand		machine, Main dimensions	Alternators.
the Main		4.2 Design of salient pole	
Dimensions.		machines	
SO4.3 To Study the		4.3 Short circuit ratio, Shape of	
Salient Pole		pole face	
Machines.		4.4 Armature design, Armature	
SO4.4 To Understand		parameters	
the Design of rotor.		4.5 Estimation of air gap length,	
SO4.5 To Study the		Design of rotor	
Short Circuit Ratio.		4.6 Design of damper winding	
SO4.6 Study the design		4.7 Determination of full load	
of damper windings.		field MMF	
SO4.7 Study the design		4.8 Design of field winding	
of turbo alternators.		4.9 Design of turbo alternators	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Make the notes on Design of Synchronous Machine.

b. Mini Project:

i. Draw the chart of different types of Designs of Components of Synchronous Machine.

EE408.5: Use software tools to do design calculations **Approximate Hours**

Item	AppX Hrs
Cl	07
LI	0
SW	1
SL	1
Total	09

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO5.1 To Understand the		Unit 4: Computer Aided Design	1. To ensure
limitations of previous		(CAD)	Complete
designs.		5.1 Limitations (assumptions) of	notes of the
SO5.2 To analyze the need of		traditional designs.	chapter.
CAD.		5.2 Need for CAD analysis	
SO5.3 To Study the various		5.3 Synthesis and hybrid methods	
methods.		5.4 Design optimization methods,	
SO5.4 Formulate the Problem.		variables	
SO5.5 To Study the FEM		5.5 Constraints and objective function	
based machine design.		Problem formulation	
SO5.6 Study the complex		5.6 Introduction to FEM based	
structures.		machine design	
		5.7 Introduction to complex structures	
		of modern machines-PMSMs,	
		BLDCs, SRM and claw-pole	
		machines.	

SW-5 Suggested Sessional Work (SW):

- a. Assignments: Make the notes of CAD.
- **b.** Mini Project: Review Complex Structures.

Brief of Hours Suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE408.1: Understand the concepts of introduction of Machine Design.	08	1	1	10
EE408.2: Understand the Design of Transformers.	08	1	1	10
EE408.3: Understand the Design of Induction Motor.	10	2	1	13
EE408.4: Understand the concept of the design of Synchronous Machine.	09	2	1	12
EE408.5: To Study the Computer Aided Design (CAD).	07	1	1	09
Total Hours	42	07	5	54

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Spec	ification Table	(For ESA)
----------------	-----------------	-----------

CO Unit Titles	M	Marks Distribution			
CO	CO Unit Titles	R	U	Α	Marks
CO-1	Introduction to Machine Design	03	02	03	08
CO-2	Design of Transformer	02	06	02	10
CO-3	Design of Induction Motor	03	05	04	12
CO-4	Design of Synchronous Machine	03	04	05	12
CO-5	Computer Aided Design	02	03	03	08
	Total	13	20	17	50

Legend: R: Remember, U: Understand, A: Apply

The end-of-semester assessment for Electrical Machine Design will be held with the written examination of 50 marks.

Note. Detailed Assessment rubrics need to be prepared by the course-wise teachers for the above tasks. Teachers can also design different tasks as per requirement, for end-semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- **2.** Tutorial
- **3.** Case Method
- **4.** Group Discussion
- 5. Role Play
- 6. Visit to the electrical power plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- **9.** Brainstorming

Suggested Learning Resources:

Books:

S. No.	Title	Author	Publisher	Edition & Year	
1	The performance and design of D.C. Machines	Clayton A.E.		2007	
2	The performance and design of A.C. Machines	M.G. Say	Pitman & Sons	First-2005	
3	Electrical Machine Design	Sawhney A.K.	Dhanpat Rai & Sons	2011	
4	Lecture note provided by				
	Dept. of Electrical Engineering, AKS University, Satna.				

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: EE408

Course Title: Electrical Machine Design

			-	-	Pro	gram (Outcom	nes		-	-	-	Program Spec	cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng know ledge	Proble m Solvin g	Desig n Skills	Labor atory Skills	Team work	Comm unicat ion Skills	Ethica l and Profes sional Behav ior	Lifel ong Lear ning	Globa l and Societ al Impa ct	Projec t Manag ement	Adap tabili ty	Profe ssion al Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understand the concepts of introduction of Machine Design.	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO2: Understand the Design of Transformers.	3	3	3	3	2	2	1	3	2	2	2	3	3	2
CO3: Understand the Design of Induction Motor.	3	2	3	2	1	1	2	2	2	2	2	3	2	3
CO4: Understand the concept of the design of Synchronous Machine.	3	3	2	2	2	1	2	3	2	2	2	2	2	3
CO5: To Study the Computer Aided Design (CAD).	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculun	n Мар:				
POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO1: Understand the concepts of introduction of Machine Design.	SO1.1,,SO1.2 SO1.3,SO1.4 SO1.5		UNIT 1: Introduction to Machine Design 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO2: Understand the Design of Transformers.	SO2.1,SO2. 2 SO2.3,SO2. 4 SO2.5,SO2. 6 SO2.7,SO2.8		Unit-2: Design of Transformer 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO3: Understand the Design of Induction Motor.	SO3.1SO3. 2 SO3.3,SO3. 4 SO3.5, SO3.6 SO3.7, SO3.8		UNIT 3: Design of Induction Motor 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO4: Understand the concept of the design of Synchronous Machine.	SO4.1SO4. 2 SO4.3,SO4. 4 SO4.5,SO4. 6 SO4.7		UNIT 4: Design of Synchronous Machine 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8, 4.9	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO5: To Study the Computer Aided Design (CAD).	SO5.1SO5.2 SO5.3,SO5.4 SO5.5,SO5.6		UNIT 5: Computer Aided Design 5.1,5.2,5.3,5.4,5.5,5.6,5.7	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VII

Course Code: Course Title :	EE409 Computational Electromagnetics
Pre- Requisite:	Engineering Mathematics, Engineering Physics and Electromagnetic field theory.
Rationale:	The purpose of this course is to familiarize the students with different computational methods to solve problems related to electric and magnetic fields and their applications.

Course Outcomes: Students will be able to

- **EE409.1:** understand basic fundamentals of Electrostatics, Electromagnetics and energy transformer vectors.
- **EE409.2:** Apply analytical methods to solving field equations.
- EE409.3: Understand and apply finite difference method (FDM) and finite element method (FEM).

EE409.4: analyze and understand different experimental methods.

EE409.5: gain the knowledge of various applications of computational electromagnetics.

Scheme of Studies:

				Total				
Course Categ ory	Course Code	Course Title	itle Cl LI SW		SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)	
Professi onal Elective course (PEC)	EE409	Computational Electromagnetics	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.), **SL:** Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

	Ĭ				Schem	e of Asse	essment (M	larks)		
				Progre	essive A	ssessmer	nt (PRA)		End	Tot
Cou rse Cate gory	Couse Code	Course Title	Class/H ome Assignm ent 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Class Activi ty any one (CAT)	Class Attendanc e (AT)	Total Marks (CA+CT +SA+CA T+AT)	Semes ter Assess ment (ESA)	al Mar ks (PR A+ ESA)
PEC	EE40 9	Computatio nal Electromag netics	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE409.1: understand basic fundamentals of Electrostatics, Electromagnetics and energy transformer vectors.

. Approximate Hours

Item	Approx. Hrs.
Cl	8
LI	0
SW	2
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Lab	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
Students will be able to		1.1 UNIT 1: Introduction	
		Conventional design	1. Basic concept of
SO1.1 understand basic		methodology.	electrostatics and
fundamentals of		1.2 Computer aided design aspects	electromagnetics.
electrostatics and		– Advantages.	
electromagnetics.		1.3 Review of basic fundamentals	2. Energy
		of Electrostatics and	transformation
SO1.2 understand and		Electromagnetics-I.	
derive Helmholtz		1.4 Review of basic fundamentals	
equation.		of Electrostatics and	
-		Electromagnetics-II.	
SO1.3 understand the		1.5 Development of Helmholtz	
concept of energy		equation.	
transformer vectors		1.6 energy transformer vectors-	
		Poynting vector	
		1.7 Slepian transformer vectors	
		1.8 Magnetic Diffusion-transients	
		and time-harmonic.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Based on Helmholtz equation
- ii. Based on energy transformation vectors.

EE409.2: Apply analytical methods to solving field equations.

Approximate Hours

Item	Approx. Hrs.
Cl	8
LI	0
SW	1
SL	1
Total	10

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
Students will be able to		Unit-2: Analytical Methods	
		2.1 Analytical methods of	1. Concept of
SO2.1 understand and apply		solving field	solution of
analytical methods to		equations,	differential
solve field problems.		2.2 Method of separation	equations.
		of variables-I.	-
SO2.2 understand and apply		2.3 method of separation	
method of separation of		of variables-II	
variables.		2.4 Roth's method-I.	
		2.5 Roth's method-II.	
SO2.3 understand and apply		2.6 integral methods-	
Roth's method.		2.7 Green's function,	
		2.8 Method of images.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems based on method of separation of variables.
- ii. Numerical Problems based on Roth's method.

EE409.3: Understand and apply finite difference method (FDM) and finite element method (FEM). **Approximate Hours**

Item	Approx. Hrs.
Cl	10
LI	0
SW	2
SL	1
Total	13

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session	Laboratory	Class room Instruction		Self
Outcomes	Instruction	(CI)		Learning
(SOs)	(LI)			(SL)
Students will be	•	UNIT 3: Finite Difference Method		
able to		(FDM) & Finite Element Method	1.	Practice of
SO3.1 understand		(FEM)		Numerical
and apply finite		3.1 FDM: Finite Difference schemes,		problems based
difference		3.2 treatment of irregular boundaries,		on FDM and
method to solve		3.3 accuracy and stability of FD		FEM method.
given problem.		solutions,		
SO3.2 understand		3.4 Finite-Difference Time-Domain	2.	Practice of
and apply finite		(FDTD) method- Uniqueness and		Numerical
Element		convergence.		problems based
method to solve		3.5 FEM: Overview of FEM,		on Variational
given problem.		3.6 Variational and Galerk in		and Galerk in
SO3.3 understand		Methods,		Methods.
and apply		3.7 shape functions, lower and higher		
Variational and		order elements,		
Galerk in		3.8 vector elements,		
Methods.		3.9 2D and 3D finite elements,		
		3.10Efficient finite element		
		computations.		

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Numerical problems based on FDM and FEM method

ii. Numerical problems based on Variational and Galerk in Methods.

EE409.4: analyze and understand different experimental methods **Approximate Hours**

Item	Approx. Hrs.
Cl	9
LI	0
SW	2
SL	1
Total	12

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session	Lab	Class room Instruction	Self-Learning
Outcomes	Instruction	(CI)	(SL)
(SOs)	(LI)		
Students will be		UNIT 4: Special Topics	
able to		4.1 Background of experimental	
SO4.1 understand		methods.	
about various		4.2 Electrolytic tank. R-C network	
experimental		solution,	
methods.		4.3 Field plotting (graphical method),	
SO4.2 do		4.4 hybrid methods,	
Experimental		4.5 coupled circuit - field	
analysis of		computations,	
different circuits		4.6 electromagnetic - thermal and	
and systems		4.7 electromagnetic - structural coupled computations,	
		4.8 solution of equations,	
		4.9 method of moments, Poisson's	
		fields.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Based upon different experimental methods.

ii. Based on Electromagnetic thermal and structural coupled computation.

EE409.5: gain the knowledge of various applications of computational electromagnetics. **Approximate Hours**

Item	Approx. Hrs.
Cl	6
LI	0
SW	1
SL	1
Total	8

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
Students will be able		UNIT 5: Application	1. Concept of
to		5.1 Low frequency electrical	harmonics'
SO5.1 understand Static		devices.	2. Concept of
and time-harmonic,		5.2 Static and time-harmonic,	transient and
problems in		problems in transformers.	steady state.
transformers		5.3 Transient problems in	
SO5.2 understand and		transformers.	
analyze Transient		5.4 Transient problems in	
problems in		rotating machines.	
transformers,		5.5 Transient problems in	
Rotating machines		Actuators.	
and Actuators		5.6 CAD packages.	

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Based on Static and time-harmonic, problems in transformers.
 - **ii.** Based on Transient problems in transformers, machines and actuators.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE409.1: understand basic fundamentals of Electrostatics, Electromagnetics and energy transformer vectors.	8	2	1	11
EE409.2: Apply analytical methods to solving field equations.	8	1	1	10
EE409.3: Understand and apply finite difference method (FDM) and finite element method (FEM).	10	2	1	13
EE409.4: analyze and understand different experimental methods.	9	2	1	12
EE409.5: gain the knowledge of various applications of computational electromagnetics.	6	1	1	8
Total Hours	41	8	5	54

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

	Suggested Specification Table (For ESA)									
СО	Unit Titles	Ma	rks Dist	Total						
CO	Unit Titles	R	U	Α	Marks					
CO-1	Introduction	02	03	05	10					
CO-2	Analytical Methods	02	03	05	10					
CO-3	Finite Difference Method (FDM) & Finite Element Method (FEM)	02	05	05	12					
CO-4	Special Topics	02	05	05	12					
CO-5	Applications	02	02	02	6					
	Total	10	18	18	50					

Legend:R: Remember,U: Understand,A: ApplyThe end of semester assessment for Computational Electromagnetics will be held with written examinationof 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- **2.** Tutorial
- **3.** Group Discussion
- **4.** Practical Demonstration of Instruments.
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

	(a) Books :									
S. No.	Title	Author	Publisher	Edition & Year						
1	Finite Element for Electrical Engineers	P. P. Silvester and R. L. Ferrari	Cambridge University press	1996						
2	Numerical Techniques in Electromagnetics	M. N. O. Sadiku	CRC press	2001						
3	Lecture note provided by									
	Dept	t. of Electrical Engineering	ng, AKS University, Satna							

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: EE409

Course Title: Computational Electromagnetics

		Program Outcomes									Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng know ledge	Proble m Solvin g	Desig n Skills	Labor atory Skills	Team work	Comm unicat ion Skills	Ethica l and Profes sional Behav ior	Lifelo ng Learni ng	Glob al and Socie tal Impa ct	Proje ct Man agem ent	Adap tabili ty	Profe ssion al Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: understand basic fundamentals of Electrostatics, Electromagnetics and energy transformer vectors	3	3	2	2	2	-	1	2	2	1	2	2	2	3
CO 2: Apply analytical methods to solving field equations	3	3	3	3	2	-	1	3	2	2	1	3	3	2
CO3: Understand and apply finite difference method (FDM) and finite element method (FEM).	3	2	3	2	1	-	2	2	2	2	2	3	2	3
CO 4: analyze and understand different experimental methods	3	3	2	3	2	-	2	3	2	2	2	2	2	3
CO 5: gain the knowledge of various applications of computational electromagnetics	3	3	3	3	1	-	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO1: understand basic fundamentals of Electrostatics, Electromagnetics and energy transformer vectors	SO1.1 SO1.2 SO1.3		UNIT 1: Introduction 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	1,2
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 2: Apply analytical methods to solving field equations	SO2.1 SO2.2 SO2.3		Unit-2: Analytical Methods 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO3: Understand and apply finite difference method (FDM) and finite element method (FEM).	SO3.1 SO3.2 SO3.3		UNIT 3: Finite Difference Method (FDM) & Finite Element Method (FEM) 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10	1,2
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 4: analyze and understand different experimental methods	SO4.1 SO4.2		UNIT 4: Special Topics 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8, 4.9	
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 5: gain the knowledge of various applications of computational electromagnetics	SO5.1 SO5.2		UNIT 5: Application 5.1,5.2,5.3,5.4,5.5,5.6	1,2,3

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester-VII

Course Code: Course Title :	EE410 Power system dynamics and control
Pre- requisite:	Student should have the knowledge of Electrical Machine and Power system.
Rationale:	The Purpose of this subject is to develop the understanding of power system stability, operations and analysis of power system dynamics, modeling of different power systems components and its stability analysis.
Course Outcomes. At th	be and of this course, students will demonstrate the ability

Course Outcomes: At the end of this course, students will demonstrate the ability

EE410.1: to be able to know about the power system stability, operations and analysis of power system dynamics

EE410.2: to learn about the modeling of Synchronous Machines and Associated Controllers **EE410.3**: to understand the modeling of different power systems components

EE410.4: to be able to understand how to accomplish the stability analysis of the power system **EE410.5:** to be able to know about the techniques to improve the system stability.

Cours				Schen				
e Categ ory	Course Code	Course Title	Cl (L+T)	LI	SW	SL	Total Study Hour (CI+LI+SW+SL)	Total Credits (C)
Professio nal Elective course (PEC)	EE410	Power system dynamics and control	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

				Schen	ne of Ass	sessment ((Marks)		
				Progressive	Assessm	ent (PRA	()		End	Total
Course Categor y	Couse Code	Course Title	Class/Hom e Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Class Activit yany one (CAT)	Class Atten - dance (AT)	Total Marks (CA+C T+SA+ CAT+A T)	Sem. Asses s- ment (ESA)	Sem. Mark Asses s S- (PRA nent + ESA
PEC	EE410	Power system dynami cs and control	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE410.1: Understand the characteristics of ac transmission and the effect of shunt and series reactive compensation.

Approximate Hours:

Item	AppX Hrs
Cl	8
LI	0
SW	1
SL	1
Total	10

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 to understand about the power system stability. SO1.2 study the stability issues and its impact on power system operation SO1.3 to be able to analyze the complex dynamics in power system SO1.4 to learn Modal analysis and numerical methods		 Unit-1.0 Introduction to Power System Operations and Analysis of Linear Dynamical System 1.1 Introduction to Power System stability, operation Control. 1.2 Stability problems in Power System 1.3 Impact of stability issue on Power System Operations and control. 1.4 Analysis of dynamical System, 1.5 Concept of Equilibrium, Small and Large Disturbance Stability. 1.6 Modal Analysis of Linear System. Analysis using Numerical Integration Techniques. 1.7 Issues in Modeling: 1.8 Slow and Fast Transients, Stiff System. 	1. numerical

SW-1 Suggested Sessional Work (SW):

- a. assignments
 - i. enumerate different stability issues in the power system and its impact
 - ii. Define and discuss the modal analysis.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

EE410.2: to learn about the modeling of Synchronous Machines and Associated Controllers **Approximate Hours:**

Item	AppX Hrs
Cl	11
LI	0
SW	2
SL	2
Total	15

Session Outcomes (SOs)	LaboratoryClass roomInstructionInstruction(LI)(CI)		Self- Learnin g (SL)
 SO2.1 to learn about the modeling and characteristics of synchronous machines SO2.2. to learn about the steady state analysis of the synchronous machines SO2.3 to be able to understand about modeling and control of prime movers, and excitation system SO2.4 to be able to understand about the steade about the steade about the synchronous machines 		 Unit-2.0 Modeling of Synchronous Machines and Associated Controllers 2.1 Modeling of synchronous machine 2.2 Physical Characteristics. Rotor position dependent model. 2.3 D-Q Transformation. Model with Standard Parameters. 2.4 Steady State Analysis of Synchronous Machine. 2.5 Short Circuit Transient Analysis of a Synchronous Machine. 2.6 Synchronization of Synchronous Machine to an Infinite Bus. 	1. numerical

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Voltage Regulator, Prime Mover	2.7 Modeling of Excitation and Prime Mover Systems.
Control Systems	2.8 Physical
and Speed	Characteristics and
Governors.	Models.
	2.9 Excitation System
	Control.
	2.10 Automatic Voltage
	Regulator.
	2.11 Prime Mover
	Control Systems. ,
	Speed Governors.

SW-2 Suggested Sessional Work

- a. Assignment work
 - i. Discuss the D-Q transformation and modeling of the synchronous machine with standard parameters
 - ii. Discuss the different types of prime movers and excitation systems. With Neat diagram explain the working.

EE410.3: to understand the modeling of different power systems components

Approximate Hours:

Item	AppX Hrs
Cl	10
LI	0
SW	1
SL	2
Total	14

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room	Self-
(SOs)	Instruction Instruction		Learning
	(LI)	(CI)	(SL)
SO3.1 to be able to understand the		Unit-3.0 Modelling of other	1. numerical
Modeling of Transmission		Power System Components	
Lines		3.1 Modeling of	
SO3.2 to be able to understand the		Transmission Lines	
Modeling of Loads		3.2 Modeling of Loads.	
SO3.3 to understand the modeling		3.3 Transmission Line	
and analysis the		Physical Characteristics.	
transmission line.		3.4 Transmission Line	
SO3.4 to understand the modeling		Modeling.	
of the Induction machine		3.5 Load Models	
SO3.5 to be able to understand the		3.6 Induction machine	
Frequency and Voltage		model.	
Dependency of Loads.		3.7 Frequency and Voltage	
SO3.6 to be able to understand the		Dependence of Loads.	
working and operation of		3.8 Other Subsystems –	
the HVDC and FACTS		HVDC and	
SO3.7 to be able to understand the		3.9 FACTS controllers,	
wind energy generation		3.10 Wind Energy	
system.		Systems.	

SW-3 Suggested Sessional work

a. Assignments

EE410.4 to be able to understand how to accomplish the stability analysis of the power system **Approximate Hours:**

Item	AppX Hrs
Cl	11
LI	0
SW	1
SL	2
Total	14

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		1 1
		Unit-4.0 Stability Analysis	1. numerical
SO4.1 to learn Angular		4.1 Angular stability analysis in	
stability analysis in		Single Machine Infinite Bus	
Single Machine		System.	
Infinte Bus		4.2 Angular Stability in multi-	
SO4.2 to learn Angular		machine systems – Intra-plant,	
Stability in Multi-		Local and Inter-area modes.	
machine Systems.		4.3 Frequency Stability:	
SO4.3 to learn about the		4.4 Centre of Inertia Motion.	
frequency stability.		4.5 Load Sharing: Governor droop.	
SO4.4 to learn aboutsingle		4.6 Single Machine Load Bus	
MachineLoad Bus.		System:	
SO4.5 to learn about the		4.7 Voltage Stability.	
voltage oscillation		4.8 Introduction to Torsional	
and stability		Oscillations and SSR	
analysis tools.		phenomenon.	
SO4.6 transient stability		4.9 Stability Analysis Tools:	
and small signal		4.10 Transient Stability Programs,	
analysis		4.11 Small Signal Analysis	
•		Programs.	

SW-4 Suggested Sessional work

- a. assignments
 - i. Angular stability analysis in Single Machine Infinite Bus System.
 - ii. Discuss the small signal analysis and transient analysis.

EE410.5 to be able to know about the techniques to improve the system stability **Approximate Hours:**

Item	AppX Hrs
Cl	5
LI	0
SW	1
SL	1
Total	8

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
		Unit-5.0 Enhancing the	1. numerical
SO5.1 be able to know about the		System Stability	
different planing measures			
SO5.2 be able to study about to		5.1 Study the Planning	
stabilizing controllers for		Measures.	
power system		5.2 Understand the	
SO5.3 understand the working		Stabilizing Controllers	
and operation of Power		5.3 Understand the	
System Stablizers		operation of Power	
SO5.4 be familiar with		System Stabilizers	
Operational Measures		5.4 Understand the	
SO5.5 be able to know about		Operational Measures	
Preventive and emergency		5.5 Learn Preventive &	
Control		Emergency Control.	

SW-5 Suggested sessional work

a. Assignment

- i. discuss the Stabilizing Controllers
- ii. discussed the working and operation with diagram the Power System Stabilizers

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self-Learning (Sl)	Total hour (Cl+LI+SW+SI)
EE410.1: to be able to know about the power system stability, operations and analysis of power system dynamics	8	1	1	10
EE410.2 : to learn about the modeling of Synchronous Machines and Associated Controllers	11	2	2	15
EE410.3: to understand the modeling of different power systems components	10	2	1	13
EE410.4: to be able to understand how to accomplish the stability analysis of the power system	11	2	1	14

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

EE410.5: to be able to know about the techniques to improve the system stability.	5	1	1	7
Total Hours	45	8	6	59

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

со	Unit Titles	Marks Distribution			Total
		R	U	Α	Marks
CO-1	Introduction to Power System Operations and Analysis of Linear Dynamical System	01	03	01	05
CO-2	Modelling of Synchronous Machines and Associated Controllers	02	10	03	15
CO-3	Modelling of other Power System Components	03	07	05	15
CO-4	Stability Analysis	02	03	-	05
CO-5	Enhancing the System Stability	02	06	02	10
Total		10	29	11	50

Legend:

R: Remember,

U: Understand,

A: Apply

The end of semester assessment for Power System Dynamics and Control will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Materials: Text/Reference Books

S. No.	Name	Author	Publication	Year/Edition
1	Power System Dynamics,	K.R. Padiyar,	B. S. Publications	2002
	Stability and Controll,			
2	Power System Stability and Control	P. Kundur	McGraw Hill	1995
3	Power System Dynamics and Stability.	P. Sauer and M. A. Pai,	Prentice Hall	1997.

Curriculum Development Team

1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.

2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.

- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos,POs and PSOs Mapping

Course Title: B. Tech Electrical Engineering

Course Code : EE410

Course Title: Power System Dynamics and Control

		Program Outcomes								Program Specific Outcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Design/ develop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Moden tool usage	The engi neer and soci ety	Enviro nment and sustain ability:	Ethics	Indiv idual and team work :	Com munic ation:	Projec t manag ement and financ e:	Life- long learni ng	knowledge to analyze,	- / - /
CO1. To be able to know about the power system stability, operations and analysis of power system dynamics	3	3	2	3	1	1	3	2	3	3	2	3	3	3
CO2. To learn about the modeling of Synchronous Machines and Associated Controllers	2	3	3	3	1	1	3	2	3	2	3	3	3	3
CO3. To understand the modeling of different power systems components	3	3	2	2	2	1	3	2	3	3	2	3	3	2
CO4. To be able to understand how to accomplish the stability analysis of the power system	3	3	1	2	2	1	3	2	1	2	-	3	3	3
CO5. To be able to know about the techniques to improve the system stability.	3	3	3	1	1	1	3	2	1	2	3	3	3	3

Legend: 1 – Low, 3 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (L I)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2	CO1. To be able to know about the power system stability, operations and analysis of power system dynamics	SO 1.1, 1.2,1.3, 1.4		Unit-1.0 Introduction to Power System Operations and Analysis of Linear Dynamical System 1.1,1.3,1.3,1.4,1.5,1.6,1.7,1.8	1
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2	CO1. To be able to know about the power system stability, operations and analysis of power system dynamics	SO 2.1, 2.2, 2.3, 2.4		Unit-2 Modeling of Synchronous Machines and Associated Controllers 2.1, 2.3, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11	1
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2	CO3. To understand the modeling of different power systems components	SO 3.1, 3.2,3.3, 3.4, 3.5, 3.6, 3.7		Unit-3 Modelling of other Power System Components 3.1, 3.3, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10	1
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2	CO4. To be able to understand how to accomplish the stability analysis of the power system	SO 4.1, 4.2, 4.3, 4.4, 4.5, 4.6		Unit-4 : Stability Analysis 4.1, 4.3, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10,4,11	1
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2	CO5. To be able to know about the techniques to improve the system stability.	SO5.1, 5.2,5.3, 5.4, 5.5		Unit 5: Enhancing the System Stability 5.1,5.3,5.3,5.4,5.5	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester – VII

Course Code:	EE411
Course Title :	Electrical and Hybrid Vehicle
Pre- requisite:	Students should have basic knowledge of batteries, AC/DC system and Power economics in vehicles.
Rationale:	A process of introducing formal knowledge of electrical vehicles including design and working process using electrical drives with BMS/EMS studies and also analyzing the changing problems with their solution and future aspects.

Course Outcomes:

EE411.1 Understand the basic constructional feature and design components.

EE411.2 Understand the Motor Torque Calculations For Electric Vehicle.

EE411.3 Understand the working of Electric Drive and controller.

EE411.4 Understand the Energy Storage Solutions (ESS) and Battery Management System (BMS)/Energy Management System (EMS).

EE411.5 Understand the working of control unit and Electric Vehicles charging station with Indian and Global scenario.

Scheme of Studies:

	ļ							
Course Categ ory	Cours e Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SI)	Total Credits (C)
Program Elective (PEC)	EE411	Electrical and Hybrid Vehicle	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

				Sch	neme of	Assessm	ent (N	farks)		
				Progressive	Assessr	nent (P	RA)		End	Total
Cours e Categ ory	Couse Code	Course Title	Class/Hom e Assignmen t 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Class Activit y any one (CAT)	Clas s Atte ndan ce (AT)	Total Marks (CA+CT +SA+C AT+AT)	Semester Assessm ent (ESA)	Total Mark s (PRA + ESA)
PEC	EE411	ELECTRI CAL and HYBRID VEHICL E		20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE411.1: Understand the basic constructional feature and design components.

Approximate Hours

Item	AppX Hrs
Cl	08
LI	0
SW	1
SL	1
Total	10

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO1.1 Historical Analysis.		Unit-1: Basic	1. Understand the
		constructional	concept of
SO1.2 Understand the		feature and	electrical power
Electrical Vehicle		design	in vehicles.
Components.		components.	
SO1.3 Classify the		1.1 History, Components	
electrical vehicles		of electric vehicle	
with their		1.2 Comparison with	
electrification levels.		Internal Combustion	
		Engine: Technology,	
SO1.4 Understand the		Benefits and	
Architecture of		Challenges	
Electric Vehicles.		1.3 EV Classification and	
		their Electrification	
SO1.5 Understand the		levels, EV	
working of electric		Terminology, Types	
vehicles with		of electrical vehicles	
renewable energy.		and components.	
		1.4 Electrical Protection	
		and System	
•		Requirement,	
		Photovoltaic Solar	
		Based EV System	
		1.5 Battery Electric	
		Vehicle, Hybrid	
		Electric Vehicle	
		1.6 Plug-in Hybrid	
		Vehicle, Fuel Cell Electric Vehicle	
		1.7 Electrification level	
		of EV, Comparison of	
		Fuel vs Electric and	
		Solar Power	
		1.8 Solar Power operated	
		Electric Vehicles	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
- i. Classify the vehicle operation with different sources.
- **b.** Mini Project:
- i. Draw the schematic diagram of electrical vehicle designs.

EE411.2: Understand the Motor Torque Calculations For Electric Vehicle.
Approximate Hours

Item	AppX Hrs
Cl	5
LI	0
SW	2
SL	1
Total	08

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO2.1 To Understand the		Unit-2: Motor Torque	1. Apply detail
different type of		Calculations For	study of the
resistance associated with		Electric Vehicle.	chapter.
electric vehicles.		2.1 Calculating the rolling	
		resistance.	
SO2.2 Calculation of force of		2.2 Calculating the grade	
acceleration.		resistance.	
		2.3 Calculating the	
SO2.3 To understand the torque		acceleration force.	
applied.		2.4 Finding the total	
		tractive efforts.	
		2.5 Torque required on the	
		drive wheel.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Identify different resistance associated with electrical vehicles.

Mini Project:

i. Verify the torque on the drive wheel.

A K S University Faculty of Engineering and Technology

Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

EE411.3: Understand the working of Electric Drive and controller.

Approximate Hours

Item	AppX Hrs
Cl	07
LI	0
SW	2
SL	1
Total	10

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1 To Understand the		Unit-3 : Electric Drive	1. Understand the
selection and sizing of		and controller	basic concept of
different types of			drives.
motors.		3.1 Types of motors	
		3.2 Selection and Sizing	
SO3.2 Calculate the speed		of motors.	
and torque of the		3.3 RPM and Torque	
motor.		calculation of motor.	
		3.4 Motor Controllers.	
SO3.3 To Understand the		3.5 Compact Sizing,	
different types of		Physical Locations	
connection.		3.6 Mechanical	
		Connections of motor.	
SO3.4 To Understand the		3.7 Electrical Connections	
working of controllers.		of motor.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Make the list of the different type of connections of motor.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

EE411.4: Understand the Energy Storage Solutions (ESS) and Battery Management System (BMS)/Energy Management System (EMS).

Approximate Hours

Item	AppX Hrs
Cl	13
LI	0
SW	2
SL	1
Total	18

Session	Laboratory	Class room Instruction	Self-
Outcomes	Instruction	(CI)	Learning
(SOs)	(LI)		(SL)
 SO4.1 Understand the different types of cells. SO4.2 Calculation of charging and discharging of cells. SO4.3 Understand the constructional details and working of batteries. SO4.4 Understand the different control strategies. SO4.5 Understand the advance features. 		 Unit-4 : Energy Storage Solutions (ESS) and Battery Management System (BMS)/Energy Management System (EMS) 4.1 Cell Types (Lead Acid/Li/NiMH) 4.2 Battery charging and discharging calculation 4.3 Cell Selection and sizing 4.4 Battery lay outing design 4.5 Battery Pack Configuration 4.6 Battery Pack Construction 4.7 Battery selection criteria 4.8 Need of BMS 4.9 Rule based control and optimization based control 4.10 Software-based high level supervisory control 4.11 Mode of power 4.12 Behavior of motor 4.13 Advance Features 	 Prepare different types of battery details note. Prepare the notes on software used in electric vehicles.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Classify the batteries based on construction and working.

b. Mini Project:

i.

Draw a chart of Flow Calculations.

EE411.5: Understand the working of control unit and Electric Vehicles charging station with Indian and Global scenario.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
\mathbf{SW}	2
SL	1
Total	15

Session	Laboratory	Class room Instruction	Self-
Outcomes	Instruction	(CI)	Learning
(SOs)	(LI)		(SL)
SO5.1 Understand		Unit 5: Control unit and Electric	1. Remember
the working of		Vehicles charging station	the Enthalpy
control unit.		with Indian and Global	changes
SO5.2 Understand		scenario.	accompanying
the function of		5.1 Function of CU, Development	chemical
hardware and		Process	reactions such
software.		5.2 Software & Hardware	as heat of
SO5.3 Evaluation of		5.3 Data Management, GUI/HMI	reaction, heat of
charging stations.		5.4 Type of Charging station	formation and
SO5.4		5.5 Selection and Sizing of charging	heat of
Understanding		station	combustion.
the Indian and		5.6 Components of charging station	
Global scenarios.		5.7 Single line diagram of charging	
		station	
		5.8 Technology Scenario, Market	
		Scenario	
		5.9 Policies and Regulations	
		5.10 Payback and commercial	
		model	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

5.11 Payback and commercial	
model	
5.12 Polices in India	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Make the list of requirements to establish a charging station.

Mini Project:

Discuss about the future aspects of EV.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE411.1: Understand the basic constructional feature and design components.	08	1	1	10
EE411.2: Understand the Motor Torque Calculations For Electric Vehicle.	05	2	1	08
EE411.3: Understand the working of Electric Drive and controller.	07	2	1	10
EE411.4: Understand the Energy Storage Solutions (ESS) and Battery Management System (BMS)/Energy Management System (EMS).	13	2	1	16
EE411.5: Understand the working of control unit and Electric Vehicles charging station with Indian and Global scenario.	12	2	1	15
Total Hours	45	9	5	59

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 Auagust 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles		Total		
		R	U	Α	Marks
CO-1	Basic constructional feature and design components.	03	02	02	07
CO-2	Understand the Motor Torque Calculations For Electric Vehicle.	02	06	02	10
CO-3	Understand the working of Electric Drive and controller.	02	03	03	08
CO-4	Understand the Energy Storage Solutions (ESS) and Battery Management System (BMS)/Energy Management System (EMS).	03	07	05	15
CO-5	Understand the working of control unit and Electric Vehicles charging station with Indian and Global scenario.	03	04	03	10
	Total	13	22	15	50

Legend:R: Remember,U: Understand,A: ApplyThe end of semester assessment for Electric and Hybrid Vehicles will be held with written examination of
50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- 2. Tutorial
- **3.** Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- **7.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 Auagust 2023)

Suggested Learning Resources:

	(a) Books :								
S. No.	Title	Author	Publisher	Edition & Year					
1	Hybrid Electric vehicles	Dr. S. Vijaya Kumar	Iterative International Publisher	2023					
2	Electrical Vehicle Engineering	Stephen Zoepf	McGraw-Hill	2020					
3	Electric and Hybrid Vehicles	Iqbal Hussain	McGraw-Hill	2003					
4	Electric and Hybrid Vehicles	A.K. Babu	Khanna Publishing House	2003					
5	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.								

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE411 Course Title: Electric and Hybrid Vehicles

	Program O							omes	-		-		Program Specific Outcome	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engin eerin g Know ledge	Pro ble m Solv ing	Desi gn Skill s	Lab orat ory Skill s	Tea mw ork	Com muni catio n Skills	Ethic al and Profe ssion al Beha vior	Lifel ong Lea rnin g	Glo bal and Soci etal Imp act	Proje ct Mana geme nt	Adap tabilit y	Profes sional Develo pment	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Understand the basic constructional feature and design components	3	2	3	2	2	2	1	1	3	1	2	2	2	3
CO 2: Understand the Motor Torque Calculations For Electric Vehicle.	2	3	3	2	1	2	1	3	1	1	2	2	2	3
CO3: Understand the working of Electric Drive and controller.	2	3	2	1	3	2	2	2	1	1	2	3	1	2
CO 4: Understand the Energy Storage Solutions (ESS) and Battery Management System (BMS)/Energy Management System (EMS).	3	2	2	2	3	2	1	3	2	1	2	2	3	3
CO 5: Understand the working of control unit and Electric Vehicles charging station with Indian and Global scenario.	2	3	3	1	1	3	2	3	1	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO-1: Understand the basic constructional featureand design components.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Basic constructional feature and design components. 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO-2: Understand the Motor Torque Calculations For Electric Vehicle.	SO2.1 SO2.2 SO2.3		Unit-2: Motor Torque Calculations For Electric Vehicle. 2.1, 2.2, 2.3, 2.4, 2.5	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO-3: Understand the working of Electric Drive and controller.	SO3.1SO3.2 SO3.3 SO3.4		Unit-3: Electric Drive and controller. 3.1,3.2,3.3,3.4,3.5,3.6,3.7	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO-4: Understand the Energy Storage Solutions (ESS) and Battery Management System (BMS)/Energy Management System (EMS).	SO4.1 SO4.2 SO4.3SO4.4 SO4.5		Unit-4: Energy Storage Solutions (ESS) and Battery Management System (BMS)/Energy Management System (EMS). 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13	1,2
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO-5: Understand the working of control unit and Electric Vehicles charging station with Indian and Global scenario.	SO5.1 SO5.2 SO5.3 SO5.4		Unit 5: Control unit and Electric Vehicles charging station with Indian and Global scenario. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5,8, 5.9, 5.10, 5.11, 5.12	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester – VII

Course Code:	EE412
Course Title :	Advanced Electric Drives
Pre- requisite:	Electrical Machines, Power electronics
Rationale:	Electric motor is important part of industries. Precise Control of the electric motors for various industrial applications are required. Electric drive using power electronic converters with suitable control strategy can control the speed and torque of electric motor precisely. This course deals various strategies to control torque and speed of motors,

Course Outcomes: At the end of this course, students will demonstrate the ability to

EE412.1 Understand the operation of power electronic converters and their control strategies.

EE412.2 Understand the scalar and vector control strategies for induction motor drives

- **EE412.3** Understand the scalar and vector control strategies for synchronous motor drives
- **EE412.4** Understand the construction and control scheme of permanent magnet BLDC, PMSM motor and switched Reluctance Motor (SRM) drives
- **EE412.5** Understand the implementation of the control strategies using digital signal Processors

		Course Title		Total				
Catego ry	Course Code		Cl (L+T)	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits
Professi onal Elective (PEC)	EE412	Advanced Electric Drives	3	0	1	1	5	3

Legend: and Tutorial CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L)

(T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self-Learning,
C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

			Scheme of Assessment (Marks)							
				Progress	sive As	sessment	(PRA)		End	Total
Course Catego ry	Couse Code	Course Title	Class/Hom e Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Sem inar one (SA)	Class Activit yany one (CAT)	Class Attenda nce (AT)	Total Marks (CA+CT +SA+ CAT+A T)	Seme ster Asses sment (ESA)	Marks (PRA + ESA)
PE C	EE412	Advanc ed Electric al Drive	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE412.1 Understand the operation of power electronic converters and their control strategies. **Approximate Hours:**

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room	Self-Learning
(SOs)	Instruction	Instruction	(SL)
	(LI)	(CI)	
SO1.1 understand the		Unit-1.0 Power	1. Numericals
PWM control & SHE		Electronics Converters	
SO1.2 learn the Space		and their Control	
vector modulation and		Strategies	
current control		1.1 Introduction of Pulse	
SO1.3 understanding		width modulation	
three level Inverters		1.2 selective harmonic	
and different topologies		Elimination	
SO1.4 study of PWM		1.3 Space vector	
Rectifiers		modulation and different	
SO1.5 study of		strategies	
inverters and H bridges		1.4 SVM for 3 level	
using self-commutated		Inverters	
devices.		1.5 Diode rectifier with	
		boost chopper	
		1.6 PWM converter as line	
		side rectifier	
		1.7 current fed inverters	
		with self-commutated	
		devices	
		1.8 Control of CSI	
		1.9 H bridge as a 4-Q drive.	

EE412.2 Understand the scalar and vector control strategies for induction motor drives **Approximate Hours:**

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes Laboratory Self-Learning **Class room** Instruction Instruction **(SL)** (SOs) (LI) (**CI**) **Unit-2.0 Induction motor 1.** numericals SO2.1 Different transformations, drives reference frame theory 2.1 Different SO2.2 modeling of transformations induction machines 2.2 reference frame theory SO2.3 voltage fed 2.3 modeling of induction inverter control-v/f machines 2.4 voltage fed inverter control control SO2.4 vector control 2.5 v/f control, **SO2.5** direct torque SO2.6 flux control 2.6 vector control, 2.7 direct torque (DTC). 2.8 flux control (DTC). 2.9 Numericals on above topics

EE412.3 Understand the scalar and vector control strategies for synchronous motor drives **Approximate Hours:**

Item	AppX Hrs		
Cl	8		
LI	0		
SW	1		
SL	1		
Total	10		

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1 Modelling of synchronous motors SO3.2 v/f control SO3.3 direct torque control SO3.4 vector control SO3.5 CSI fed Synchronous machine		 Unit-3.0 Modeling and Control of Synchronous Machines 3.1 parameter and circuit equations 3.2 Modeling of synchronous machines, 3.3 open loop control 3.4 v/f control 3.5 vector control 3.6 direct torque control 3.7 CSI fed synchronous motor drives. 3.8 numerical 	1. numericals

EE412.4 Understand the construction and control scheme of permanent magnet BLDC, PMSM motor and switched Reluctance Motor (SRM) drives

Approximate Hours:

Item	AppX Hrs	
Cl	12	
LI	0	
SW	1	
SL	1	
Total	14	

Faculty of Engineering and Technology **Department of Electrical Engineering**

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO4.1 be able to know various PM motors SO4.2 to know the configurations of BLDC, PMSM and SRM motors SO4.3 Close Loop speed and torque control of PMSM motors, BLDC motor and SRM Drives		 Unit-4.0 Permanent Magnet Motors and Switched Reluctance Motors 4.1 Introduction to various PM motors 4.2 BLDC configuration 4.3 PMSM drive configuration 4.4 comparison, 4.5 block diagrams 4.6 Speed control in BLDC and PMSM 4.7 torque control in BLDC and PMSM 4.8 Evolution of switched reluctance motors, 4.9 various topologies for SRM drives, 4.10 Comparison of topologies 4.11 Closed loop speed control of SRM 4.12 Torque control of SRM. 	1. numericals

EE412.5 Understand the implementation of the control strategies using digital signal processors.

Approximate Hours:

Item	AppX Hrs	
Cl	6	
LI	0	
SW	1	
SL	1	
Total	8	

Faculty of Engineering and Technology **Department of Electrical Engineering**

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction	Self-Learning (SL)
	(LI)	(CI)	λ, ^γ
SO5.1 to be able know about		UNIT 5: DSP based motion	1 Numericals
the digital signal processors		control	
SO5.2 To know about the		5.1 Use of DSPs	
various uses and applications		5.2 various DSPs available	
of DSPs		5.3 realization of some basic	
SO5.3 to be able to know		blocks in DSP	
the realization and structure		5.4 detailed Structure of DSP	
of DSPs		5.5 implementation of DSP	
SO5.4 Motion control and		5.6 DSP based motion	
drive automation with DSPs.		control.	

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+LI+SW+SI)
EE412.1 Understand the operation of power electronic converters and their control strategies.	9	1	1	11
EE412.2 Understand the scalar and vector control strategies for induction motor drives	9	1	1	11
EE412.3 Understand the scalar and vector control strategies for synchronous motor drives	8	1	1	10
EE412.4 Understand the construction and control scheme of permanent magnet BLDC, PMSM motor drives, And Switched Reluctance motors	12	1	1	14
EE412.5 Understand the implementation of the control strategies using digital signal Processors.	6	1	1	8
Total Hours	44	09	6	54

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Mark	Total		
	Omt Thies	R	U	Α	Marks
CO-1	Various power electronics converters and their control strategies	03	01	01	05
CO-2	Scalar and Vector control strategies for Induction motors	02	06	02	10
CO-3	Modeling and control strategies of synchronous Motors	03	07	05	15
CO-4	Construction, modelling and control permanent magnet BLDC, PMSM and SRM motors.	-	10	05	15
CO-5 Digital signal processors and their implementation for Power Electronics and Drives Control		03	02	-	05
Total		11	26	13	50

Legend: R: Remember, U: Understand,

A: Apply

The end of semester assessment for Advanced Electric Drives will be held with writtenexamination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

(a) Books : S. **Edition &** Title Author Publisher No. Year Modern Power Electronics and Pearson Education, 2003 1 B. K. Bose AC Drives Asia P.C. Krause, O. Analysis of Electric Machinery 2 Wasynczuk and S.D. John Wiley & Sons 2013 and Drive Systems Sudhoff DSP based Electromechanical H. A. Taliyat and S. G. CRC press, 3 2003 Campbell Motion Control Permanent Magnet Synchronous 4 R. Krishnan CRC press 2009 and Brushless DC motor Drives Lecture note provided by 5 Dept. of Electrical Engineering, AKS University, Satna.

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE412

Course Title: Advanced Electric Drives

		Program Outcomes					Program Spe	cific Outcome						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng Kno wled ge	Pro ble m Solv ing	Desi gn Skil Is	Lab orat ory Skil ls	Tea mw ork	Com muni catio n Skills	Ethic al and Profe ssion al Beha vior	Life long Lea rnin g	Glo bal and Soci etal Imp act	Proje ct Man agem ent	Adap tabili ty	Profes sional Devel opme nt	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1 Understand the operation of power electronic converters and their control strategies.	3	2	3	2	2	2	1	1	3	1	2	2	2	3
CO 2 Understand the scalar and vector control strategies for induction motor drives	3	3	3	2	1	2	1	3	1	1	2	2	2	3
CO 3 Understand the scalar and vector control strategies for synchronous motor drives	3	3	2	1	3	2	2	2	1	1	2	3	1	2
CO 4 Understand the construction and control scheme of permanent magnet BLDC, PMSM motor drives and Switched Reluctance motors	3	2	2	2	3	2	1	3	2	1	2	2	3	3
CO 5 Understand the implementation of the control strategies using digital signal Processors.	2	3	3	1	1	3	2	3	1	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO1 Understand the operation of power electronic converters and their control strategies.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1: Various power electronics converters and their control strategies 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9	1
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 2 Understand the scalar and vector control strategies for induction motor drives	SO2.1, SO2.2 SO2.3, SO2.4 SO2.5, SO2.6		Unit-2: Scalar and Vector control strategies for Induction motors 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	1
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 3 Understand the scalar and vector control strategies for synchronous motor drives	SO3.1SO3.2 SO3.3 SO3.4 SO3.5		Unit-3: Modeling and control strategies of synchronous Motors 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8	1
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 4 Understand the construction and control scheme of permanent magnet BLDC, PMSM motor drives and Switched Reluctance motors	SO4.1 SO4.2 SO4.3		Unit-4: Construction, Modelling and control permanent magnet BLDC, PMSM and SRM motors. 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12	1
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 5 Understand the implementation of the control strategies using digital signal Processors.	SO5.1 SO5.2 SO5.3 SO5.4		Unit 5: Digital signal processors and their implementation for Power Electronics and Drives Control. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester VII

Course Code:	EE413
Course Title :	Industrial Electrical Systems
Pre- requisite:	Student should have basic knowledge of Electricity, Electrical Circuits, Method Electrical Power transmission and distribution, Losses and basic mathematical operations.
Rationale:	Industrial Electrical Power involves various sub electrical systems, involving HVAC, energy management, building automation, fire and life safety systems, communications and security. This leads to the idea of integrated building electrical systems. This course covers the concepts of residential, commercial and wiring systems. It gives the insight to energy conservation opportunities in general industry and Introduce various methods of effectively and efficiently utilizing electrical energy for different and desired applications

Course Outcomes: After undergoing this course, the students will be able to:

EE413-1 Understand the electrical wiring systems for residential, commercial and industrial consumers, representing the systems with standard symbols and drawings, SLD.

EE413-2 Understand various components of industrial electrical systems.

EE413-3 Analyze and select the proper size of various electrical system components.

EE413-4 Analyze and select the proper size of various electrical system components.

EE413-5 understand the Automation system

Course Catego ry	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)
Program Electice (PEC)	EE413	Industrial Electrical Systems	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self-Learning,

C: Credits

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

	- ,				Sche	me of As	sessment	t (Marks))	
				Progress				()	End	
Cou rse Cate	Couse Code	Course Title	Class/H ome Assign ment 5 number	Class Test 2 (2 best out of 3)	Semi nar one	Class Activit y any one	Class Atten dance	Total Marks	Semes ter Assess ment	Total Marks
gory			3 marks each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+C T+SA+ CAT+A T)	(ESA)	(PRA+ ESA)
PEC	EE413	Industrial Electrical Systems	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE413.1: Understanding of Energy Scenario and environmental issues in an industry **Approximate Hours**

Item	Approx Hrs
Cl	08
LI	0
SW	2
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1.1 Understand the		Unit-1: Electrical System	1. Electrical
size of cable		Components	Component
		1. LT system wiring	
SO1.2 Forming Incident		components	
Matrix for Fuses		2. selection of cables, wires,	
		switches, distribution box	
SO1.3 Analysis the		3. Fuse, MCB	
economic growth		4. MCCB, ELCB	
linked to energy		5. protection components	
consumption		6. inverse current	
SO1.4 Analysis Electrical		characteristics	
safety practices		7. symbols, single line diagram	
SO1.5 Solving problem		(SLD) of a wiring system,	
related to		Contactor,	
Environmental		8. Isolator, MPCB, Electric	
impact Assessment		shock and Electrical safety	
		practice, Relays,	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

b. Case study: Electric Safety case in the Plant

EE413.2: Apply different energy saving potential in Residential and Commercial Electrical Systems

Approximate Hours

Item	Approx Hrs
Cl	10
LI	0
SW	2
SL	1
Total	13

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO2.1 Understanding the wiring	(L1)	Unit-2 Residential and Commercial Electrical Systems	
system SO2.2 Analysis potential of each technology. SO2.3 To understand the significance		 Types of residential and commercial wiring systems. General rules and guidelines for installation load calculation and sizing of wire rating of main switch, distribution 	
of lighting system. SO2.4 Able to install earthing		 board and protection devices 5. earthing system calculations 1 6. earthing system calculations 2 7. requirements of commercial installation 	
		 installation 8. deciding lighting scheme and number of lamps 9. earthing of commercial installation 10. selection and sizing of components 	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Draw wiring diagram for 3 phase induction motor. Draw wiring diagram for residential building

EE413.3: Ability to do Energy management (audit) approach and understanding energy costs

Item	Approx Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
(SOs) SO3.1 To Understand the Illumination system SO3.2 To calculate the energy costs in lighting system SO3.3 To draw lighting scheme	<u>(LI)</u>	 Unit-3 : Illumination Systems Understanding various terms regarding light (, lumen, intensity, candle power, lamp efficiency, specific consumption, glare) space to height ratio, waste light factor, depreciation factor Various illumination schemes (Incandescent lamps and modern luminaries like CFL, LED and their operation) energy saving in illumination systems 	(SL) 1. Energy consumption in KW and unit
commercial premises		 design of a lighting scheme for a residential 1 design of a lighting scheme for a residential 2 Design of a lighting scheme commercial premises, flood lighting 	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Case study on 5 star and 3 star rating equipment energy Consumption

EE413.4: Analyze Industrial Electrical Systems.

Approximate Hours

Item	Approx Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session	Laboratory	Class room Instruction	Self
Outcomes	Instruction	(CI)	Learning
(SOs)	(LI)		(SL)
SO4.1 To	•	Unit-4: Industrial Electrical Systems I	1. Rating of LT
Understand			panel
Industrial		1. HT connection	
Substation		2. industrial substation, Transformer	
		selection	
SO4.2 to Analysis		3. Industrial loads, motors, starting of	
the Switchgear		motors	
selection		4. SLD, Cable and Switchgear selection	
factors		5. SLD, Cable and Switchgear selection,	
		Lightning Protection	
SO4.3 Analysis		6. , Earthing design, Power factor	
type LT Panel		correction – kVAR calculations	
components		7. type of compensation,	
		8. Introduction to PCC, MCC panels	
		9. Specification of LT Breakers, MCB and	
		other LT panel components.	

SW-4 Suggested Sessional Work (SW):

a. Substation Visit -Prepare a report

EE413.5: Understanding of the concept of positive real function, their characteristics, filters and their different types

Approximate Hours

Item	Approx Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session	Laboratory	Class room Instruction	Self-
		(CI)	0
Outcomes (SOs) SO3.1 To Understand the Industrial Automation System SO3.2 Selection of all Storage system SO3.3 Fuel saving Calculation	Instruction (LI)	 (CI) Unit-5 : Industrial Electrical System Automation Study of basic PLC, Role of PLC in automation, advantages of process automation PLC based control system design, Panel Metering 1 PLC based control system design, Panel Metering 2 	Learning (SL) 1.star rating
		 Communication Between PLC and SCADA 1 Communication Between PLC and SCADA 2 Introduction to SCADA system for distribution automation. DG Systems, UPS System, Battery banks Selection of UPS and Battery Banks 	

SW-5 Suggested Sessional Work (SW):

a. Assignments: Design a automation model using Arduino

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE413-1 Understand the electrical wiring systems for residential, commercial and industrial consumers, representing the systems with standard symbols and drawings, SLD.	8	2	1	11
EE413-2 Understand various components of industrial electrical systems.	10	2	1	13
EE413-3 Analyze and select the proper size of various electrical system components.	9	1	1	11
EE413-4 Analyze and select the proper size of various electrical system components.	9	2	1	14
EE413-5 understand the Automation system	9	2	1	11
Total Hours	45	9	5	60

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	N	Total		
co	Unit Titles	R	U	Α	Marks
CO-1	Electrical System Components	02	03	05	10
CO-2	Residential and Commercial Electrical Systems	02	04	04	10
CO-3	Illumination Systems	02	02	06	10
CO-4	Industrial Electrical Systems I	03	07	05	15
CO-5	Industrial Electrical System Automation	01	02	02	05
Total			18	22	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Industrial electrical system will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- **2.** Tutorial
- **3.** Group Discussion
- 4. Practical Design Demonstration
- **5.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 6. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

(a) Books : S. Title **Publisher** Author No. Modern Power Electronics Pearson 1 B. K. Bose and AC Drives Education, Asia P.C. Krause, O. John Wiley & Analysis of Electric Machinery 2 Wasynczuk and S.D. and Drive Systems Sons Sudhoff DSP based Electromechanical H. A. Taliyat and S. G. CRC press, 3 Motion Control Campbell Permanent Magnet 4 Synchronous and Brushless R. Krishnan CRC press DC motor Drives Lecture note provided by 5

Dept. of Electrical Engineering, AKS University, Satna.

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Edition &

Year

2003

2013

2003

2009

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE413 Course Title: Industrial Electrical Systems

	Program Outcomes												Program Specific Outcome	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes		Probl em Solvi ng	Design Skills	Labo rator y Skills	Team work	Com muni catio n Skills	Ethic al and Profe ssion al Beha vior	Lifel ong Lea rnin g	Glo bal and Soci etal Imp act	Proje ct Mana geme nt	Adap tabilit y	Profe ssion al Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understand the electrical wiring systems for residential, commercial and industrial consumers, representing the systems with standard symbols and drawings, SLD	3	3	2	3	3	2	1	2	3	2	2	3	3	2
CO2 Understand various components of industrial electrical systems.	3	3	3	3	2	2	1	2	1	2	2	2	2	2
CO3: Analyze and select the proper size of various electrical system components	3	3	2	2	3	1	2	2	1	2	2	3	2	2
CO4: Analyze and select the proper size of various electrical system components.	3	3	2	2	2	1	1	3	2	2	2	2	3	3
CO5 understand the Automation system	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO1: Understand the electrical wiring systems for residential, commercial and industrial consumers, representing the systems with standard symbols and drawings, SLD	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1 Electrical System Components 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO2 Understand various components of industrial electrical systems.	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2 Residential and Commercial Electrical Systems 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO3: Analyze and select the proper size of various electrical system components	SO3.1 SO3.2 SO3.3		Unit-3 : Illumination Systems 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO4: Analyze and select the proper size of various electrical system components	SO4.1 SO4.2 SO4.3		Unit-4 : Industrial Electrical Systems I 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	1
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO5: understand the Automation system.	SO5.1 SO5.2 SO5.3		Unit 5: Industrial Electrical System Automation 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester-VII

Course Code:	EE414
Course Title :	Digital Control System
Pre- requisite:	Student should have basic knowledge of mathematics, Specially Z Transform, there properties and its Application.
Rationale:	The Purpose of this subject is to introduce the basic concept, stability analysis, its State space representation and Design procedure of Digital Control System.

Course Outcomes: At the end of this course, students will be able to

EE414.1: Obtain and analyze discrete representation of LTI systems.

EE414.2: Obtain Z-Transform and Inverse Z Transform for analyzing discrete time systems

EE414.3: Analyze stability of open loop and closed loop discrete-time systems.

EE414.4: Obtain State space Model of Digital Control system.

EE414.5: Design and analyze different types of digital controllers

Scheme of Studies:

				Scheme of studies(Hours/Week)					
Course Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)	
Professi onal Elective course (PEC)	EE414	Digital Control System	3	0	1	1	5	3	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self-Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

Theory

				Scheme of Assessment (Marks)						
				Progress	sive Asse	ssment (PRA)		End	Tot
Cours e Categ ory	Course Code	Course Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one (SA)	Class Activi ty any one (CAT)	Class Attendanc e (AT)	Total Mark s (CA+ CT+S A+C AT+ AT)	Semester Assessme nt (ESA)	al Mar ks (PR A+ ESA)
PEC	EE414	Digital Control System	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE414.1: Obtain and analyze discrete representation of LTI systems. **Approximate Hours**

Item	Approx. Hrs.
Cl	8
LI	0
SW	2
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Lab	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
Students will be able to		UNIT-1: Discrete Representation	
		of Continuous Systems	1. Sample and Hold
SO1.1 Understand the		1.1 Basics of Digital Control	Circuit
concept of Digital		Systems.	2.Practice of
Control Systems		1.2 Discrete representation of	numerical
SO1.2 find the Discrete		continuous systems-I	problems based
representation of		1.3 Discrete representation of	on discrete
continuous		continuous systems-I	representation of
systems		1.4 Sample and hold circuit.	Continuous
		1.5 Mathematical Modeling of	systems.
SO1.3 Develop the		sample and hold circuit.	
Mathematical		1.6 Effects of Sampling and	
Model of sample		Quantization.	
and hold circuit		1.7 Choice of sampling frequency.	
		1.8 ZOH equivalent.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. numerical problems based on Discrete representation of Continuous systems.
- ii. Numerical Problems Related to numerical problems based on Discrete representation of Continuous systems
- **EE414.2:** Obtain Z-Transform and Inverse Z Transform for analyzing discrete time systems **Approximate Hours**

Item	Approx. Hrs.
Cl	8
LI	0
SW	2
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
Students will be able to		UNIT-2: Discrete System	
		Analysis	1. Z transform and
			its properties
SO2.1 Obtain Pulse		2.1 Z-Transform	2. Practice of
transfer function of		2.2 Inverse Z Transform	numerical
given system.		2.3 Pulse Transfer function.	problems related
		2.4 Pulse transfer function of	to Pulse transfer
SO2.2 Map the function		closed loop systems.	function of
from s plane to z		2.5 Mapping from s-plane to z	closed loop
plane.		plane.	systems.
_		2.6 Solution of Discrete time	3. Practice of
SO2.3 Obtain Time		systems.	numerical
response of given		2.7 Time response of discrete	problems related
discrete time		time system-I	to Time response
system.		2.8 Time response of discrete	of discrete time
		time system-II	system.

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical problems related to Pulse transfer function of closed loop systems.
- ii. Numerical problems related to Time response of discrete time system.

EE414.3: Analyze stability of open loop and closed loop discrete-time systems. **Approximate Hours**

Item	Approx. Hrs.
Cl	7
LI	0
SW	2
SL	1
Total	10

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
Students will be able to		Unit-3: Stability of Discrete Time	
		System	
SO3.1 Determine the		3.1 Stability analysis by Jury test-I	1. Concept of
stability of given		3.2 Stability analysis by Jury test-	stability
system using jury		II	
test.		3.3 Stability analysis using bilinear	2. Practice of
SO3.2 Determine the		transformation-I	numerical
stability of given		3.4 Stability analysis using bilinear	problems related
system using		transformation-II	jury test and
bilinear		3.5 Design of digital control system	bilinear
Transformation.		with dead beat response-I.	transformation.
SO3.3 Design of digital		3.6 Design of digital control system	
control system		with dead beat response-II	
with dead beat		3.7 Practical issues with dead beat	
response.		response design	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical problems related jury test.
- ii. Numerical problems related to bilinear transformation.
- EE414.4: Obtain State space Model of Digital Control system.

Approximate Hours

Item	Approx. Hrs.
Cl	12
LI	0
SW	2
SL	1
Total	15

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

(Revised as on 01 August 2023

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 Students will be able to SO4.1 develop state space model of given system. SO4.2 Understand the concept of controllability and test it for a given system. SO4.3 Understand the concept of Reach- ability and test it for a given system SO4.4 Understand the concept of Reconstruct- ability and test it for a given system. SO4.5 Understand the concept of Observability and test it for a given system 		 UNIT-4: State Space Approach for discrete time systems 4.1 State space models of discrete systems. 4.2 State space analysis. 4.3 Lyapunov's Stability criterion. 4.4 Controllability analysis-I 4.5 Controllability analysis-II 4.6 Reach-ability analysis-I 4.7 Reach-ability analysis-II 4.8 Reconstruct ability analysis-I 4.9 Reconstruct ability analysis-I 4.10 Observability analysis-I 4.11 Observability analysis-II 4.12 Effect of pole zero cancellation on the 	 Practice of Numerical Problems Related to Controllability and Reach-ability analysis. Practice of Numerical Problems Related to reconstruct ability analysis. Practice of Numerical Problems Related to observability analysis.
		controllability & observability.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems Related to Controllability and Reach-ability analysis.
- ii. Numerical Problems Related to reconstruct-ability and observability analysis.

EE414.5: Design and analyze different types of digital controllers

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Approximate Hours

Item	Approx. Hrs.
Cl	10
LI	0
SW	2
SL	1
Total	13

Session	Laboratory		Class room Instruction		Self-Learning
Outcomes	Instruction		(CI)		(SL)
(SOs)	(LI)				
Students will be		UNI	T-5: Design of Digital Control		1. Practice of
able to		Syst	tem		Numerical
SO5.1 Design			5.1 Design of Discrete PID		problems related
Discrete PID			Controller-I		to Design of
Controller		5.2	Design of Discrete PID Controller-		Discrete PID
SO5.2 Design			II		Controller.
discrete state		5.3	Design of discrete state feedback	2.	Practice of
feedback			controller-I.		Numerical
controller		5.4	Design of discrete state feedback		problems related to
SO5.3 Design set			controller-II.		Design of discrete
point tracker		5.5	Design of set point tracker-I.		state feedback
SO5.4 Design		5.6	Design of set point tracker-II.		controller.
Discrete		5.7	Design of Discrete Observer for	3.	Practice of
Observer for			LTI System-I.		Numerical
LTI System		5.8	Design of Discrete Observer for		problems related to
SO5.5 Design			LTI System-II.		Design of Discrete
Discrete		5.9	Design of Discrete compensator-I.		compensator.
compensator		5.10	Design of Discrete compensator-II	4.	Practice of
					Numerical
					problems related to
					Design of set point
					tracker

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Numerical problems related to Design of Discrete PID Controller.

- i. Numerical problems related to Design of discrete state feedback controller.
- ii. Numerical problems related to Design of Discrete compensator.
- iii. Numerical problems related to Design of set point tracker.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE414.1: Obtain and analyze discrete representation of LTI systems.	8	2	1	11
EE414.2: Obtain Z-Transform and Inverse Z Transform for analyzing discrete time systems	8	2	1	11
EE414.3: Analyze stability of open loop and closed loop discrete-time systems.	7	2	1	10
EE414.4: Obtain State space Model of Digital Control system.	12	2	1	15
EE414.5: Design and analyze different types of digital controllers	10	2	1	13
Total Hours	45	10	5	60

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Mark	Total		
		R	U	Α	Marks
CO-1	Discrete Representation of Continuous Systems	02	03	05	10
CO-2	Discrete System Analysis	02	05	03	10
CO-3	Stability of Discrete Time System	02	02	06	10
CO-4	State Space Approach for discrete time systems	02	04	04	10
CO-5	Design of Digital Control System	02	03	05	10
	Total	10	17	23	50

Legend: R: Remember,

A: Apply

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

The end of semester assessment for Digital control system will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Demonstration of Control Actions.
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

	(a) Books :									
S. No.	Title	Author	Publisher	Edition & Year						
1	"Control System Engg"	G. F. Franklin, J. D. Powell and M. L. Workman	Addison-Wesley	1998						
2	Digital Control Engineering	M.Gopal	Wiley Eastern	1998						
3	Digital Control Engineering	K. Ogata	PHI.	1995						
4	Digital Control System	B.C. Kuo	Holt, Rinehart and Winston	1980						
5	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.									

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
 - 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
 - 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
 - 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
 - 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
 - 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
 - 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
 - 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
 - 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs,POs and PSOs Mapping

Course Title: B. Tech. Electrical Engineering Course Code: EE414 Course Title: Digital Control System

	Program Outcomes										Program Specific Outcome			
Course Outcomes	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	P011	PO12	PSO 1	PSO 2
	Engi neeri ng know ledge	Probl em Solvi ng	Desi gn Skill s	Labo rator y Skills	Team work	Com muni catio n Skills	Ethic al and Profe ssion al Beha vior	Lifelo ng Lear ning	Glob al and Societ al Impa ct	Proje ct Mana geme nt	Adap tabilit y	Profe ssion al Devel opme nt	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Obtain and analyze discrete representation of LTI systems.	3	3	2	2	2	1	1	2	2	1	2	2	3	3
CO 2: Obtain Z-Transform and Inverse Z Transform for analyzing discrete time systems	3	3	3	2	2	1	1	3	2	2	2	3	3	3
CO3: Analyze stability of open loop and closed loop discrete-time systems.	3	3	3	2	2	1	2	2	2	2	2	3	3	3
CO 4: Obtain State space Model of Digital Control system	3	3	3	2	2	1	2	3	2	2	2	2	3	3
CO 5: Design and analyze different types of digital controllers	3	3	3	2	2	1	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO1: Obtain and analyze discrete representation of LTI systems.	SO1.1 SO1.2 SO1.3		UNIT-1: Discrete Representation of Continuous Systems 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	1,2
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 2: Obtain Z-Transform and Inverse Z Transform for analyzing discrete time systems	SO2. 1 SO2. 2 SO2. 3		UNIT-2: Discrete System Analysis 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8	1,2,3
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO3: Analyze stability of open loop and closed loop discrete- time systems.	SO3. 1 SO3. 2 SO3. 3		Unit-3: Stability of Discrete Time System 3.1,3.2,3.3,3.4,3.5,3.6,3.7.	1,2
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 4: Obtain State space Model of Digital Control system	SO4.1 SO4.2 SO4. 3 SO4. 4 SO4. 5		UNIT-4: State Space Approach for discrete time systems 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8, 4.9,4.10,4.11,4.12	1,2,3
PO:1,2,3,4,5,6,7, 8,9,10,11,12 PSO 1,2	CO 5: Design and analyze different types of digital controllers	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		UNIT-5: Design of Digital Control System 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10	1,2,3,4

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VII

Course Code:	EE415
Course Title :	Digital signal processing
Pre- requisite:	Student should have basic knowledge of Electrical signals, systems, Basic Electrical Laws, Z- Transform, Fourier transform and basic mathematical operations.
Rationale:	This course is designed to provide the knowledge to student's about Digital signal Processing besides the basic topics. It includes advanced topics of signals processing and its parameters, This course would help students to understand more advanced concepts of modern communication system

Course Outcomes:

EE415.1: Understanding of Discrete time signals and systems, significance of sampling and reconstruction.

- **EE415.2:** Applications of Z-transform in Digital signals and systems.
- **EE415.3:** Identify the properties and characteristics of discrete Fourier Transform along with their Mathematical representation and analysis.
- **EE415.4:** Understanding the basic concepts designing of different types of filters.
- **EE415.5:** Analyzing the Applications of Digital Signal Processing

Scheme of Studies:

Cours				Total				
Course Categ ory	e Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Progra m Elective (PEC)	EE415	Digital Signal Processing	3	0	1	1	6	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

Theory

				Scheme of Assessment (Marks)									
				Progress	sive Asse	ssment	(PRA)		End	Tot			
Cou rse	Cou se	Course	Class/Ho me Assignm	Class Test 2 (2 best out of	Semi nar one	Class Activ ity any	Class Attendan ce	Total Marks	Semester Assessm ent	al Mar ks			
Cate gory	Cod e	Title	ent 5 number 3 marks each (CA)	3) 10 marks each (CT)	(SA)	one (CAT)	(AT)	(CA+ CT+S A+CA T+AT)	(ESA)	(PR A+ ESA)			
PEC	EE4 15	Digital Signal Proces sing	15	20	5	5	5	50	50	100			

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

EE415.1: Understanding of Discrete time signals and systems, significance of sampling and reconstruction.

Approximate Hours

Item	Approx Hrs
Cl	08
LI	0
SW	1
SL	1
Total	10

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	I	Self- Learning (SL)
 SO1.1 Understand the concept of discrete time signals and systems SO1.2 Understand the different methods of representation of discrete time signals and systems SO1.3 Significance of sampling and reconstruction of signals and systems SO1.4 Importance and explanation of aliasing method sampling theorem and Nyquist rate. 		 Unit-1: Discrete-time signals and systems Definition of discrete time signals and systems Sequences representation of discrete time signals and systems Representation of signals on orthogonal basis. 1.4 Representation of discrete systems using difference equations S Numerical of difference equations Sampling and reconstruction of signals and systems T Explanation of aliasing Sampling theorem and Nyquist rate. 	s 2. [] b A s d s 3. []	Basics of ignal and ystems Difference wetween Analog ignals and iscrete time ignals Differential quations

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Numerical Problems of sampling theorem and Nyquist rate

EE415.2: Applications of Z-transform in Digital signals and systems.

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Approximate Hours

Item	Approx Hrs
Cl	10
LI	0
SW	1
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning
(505)	(LI)		(SL)
SO2.1 Understanding of Z-		Unit-2: Z-Transform	1. Basics of Z-
transform		2.1 Introduction to 7 transforms	Transform
SO2.2 Solve different		2.1 Introduction to Z-transform.2.2 Region of Convergence	2. Properties of
signals and systems		2.3 Analysis of linear shift	signals and systems
using Z transform		invariant systems using Z-	
U U		Transform	
SO2.3 To understand the		2.4 Numerical of Z-transform	
significance of Region		2.5 Different properties of Z-	
of convergence.		Transform for Causal signals	
		2.6 Numerical on properties of Z-	
SO2.4 Basic knowledge of		Transform	
inverse Z-Transform.		2.7 Interpretation of stability in z-domain	
		2.8 Inverse z-transforms.	
		2.9 Properties of Inverse Z-	
		Transform	
		2.10 Numerical of Inverse Z-	
		Transform	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems on Z-Transform.
- ii. Numerical Problems based on Inverse Z-Transform.

EE415.3: Identify the properties and characteristics of discrete Fourier Transform along with their Mathematical representation and analysis.

Approximate Hours

Item	Approx Hrs
Cl	8
LI	0
SW	1
SL	1
Total	10

Session Outcomes	Laboratory	Clas	s room Instruction		Self
(SOs)	Instruction		(CI)	L	earning
	(LI)				(SL)
SO3.1 To Understand the		Unit-3 : D	Discrete Fourier	1.	Basics of
concept of Discrete		Transform	n		Fourier
time Fourier		3.1 Int	roduction to Discrete		transform.
Transform		Fo	urier Transform	2.	Discrete
		3.2 Pr	operties of discrete		time
SO3.2 Significance of		Fo	urier transform		signals
properties of discrete		3.3 Nu	imericals		_
Fourier transform		3.4 Co	nvolution of signals		
		3.5 Fa	st Fourier Transform		
SO3.3 To Understand the		Al	gorithm		
concept of fast Fourier		3.6 Pa	rseval's Identity		
Transform		3.7 Im	plementation of Discrete		
		Ti	me systems		
		3.8 Nu	imericals		

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems based on Discrete Fourier transform.
- ii. Numerical Problems of Fast Fourier Transform.

EE415.4: Understanding the basic concepts designing of different types of filters. **Approximate Hours**

Item	Approx Hrs
Cl	11
LI	0
SW	1
SL	1
Total	13

Session	Laboratory	Class room Instruction	Self-
Outcomes	Instruction	(CI)	Learning
(SOs)	(LI)		(SL)
SO4.1	•	Unit-4 : Design of Digital filters	1. Filters and
Understanding		4.1 Introduction to digital filters and its	types of filters
the basic		significance in digital signal processing.	2. Difference
concepts of		4.2 Window method for filter designing	between
digital filters		4.3 Park-McClellan's method for filter	analog and
SO4.2		designing	digital filters
Significance		4.4 Introduction to Design of IIR Digital	
of design of		Filters	
digital filters		4.5 Butterworth method	
and its types		4.6 Chebyshev method	
SO4.3 to illustrate		4.7 Elliptic Approximations	
the different		4.8 Low-pass, band pass, band stop and high	
methods		pass filters	
involve in		4.9 Effect of finite register length in FIR filter	
designing of		design.	
digital filters		4.10 Parametric and non-parametric spectral	
		estimation.	
		4.11 Introduction to multi-rate signal	
		processing	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i.

- i. Explanation of designing of FIR and IIR filters
- ii. Numerical problems based on window method.

Mini Project:

Draw a chart of Different types of filters.

EE415.5: Analyzing the Applications of Digital Signal Processing.

Approximate Hours

Item	Approx Hrs
Cl	8
LI	0
SW	1
SL	1
Total	10

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1 To understand		Unit 5: Applications of	1. Remember the
the correlation		Digital Signal Processing	properties of
functions		5.1 Correlation Functions	filters
		5.2 Examples of correlation	2. Types of
SO5.2 To understand the		functions.	correlation
significance of power		5.3 Power Spectra	function.
spectra		5.4 Stationary Processes	
		5.5 Optimal filtering using	
SO5.3 Importance of		ARMA Model	
linear mean square		5.6 Linear Mean-Square	
estimation.		Estimation	
		5.7 Examples of Linear mean	
		square Estimation	
		5.8 Wiener Filter.	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Numerical Problem based on correlation function

i. Numerical Problem based on linear mean square Estimation.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
EE415.1: Understanding of Discrete time signals and systems. Significance of sampling and reconstruction.	8	1	1	10
EE415.2: Applications of Z-transform in Digital signals and systems.	10	1	1	12
EE415.3: Identify the properties and characteristics of discrete Fourier Transform along with their Mathematical representation and analysis.	8	1	1	10
EE415.4: Understanding the basic concepts designing of different types of filters.	11	1	1	13
EE415.5: Analyzing the Applications of Digital Signal Processing	8	1	1	10
Total Hours	45	5	5	55

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ν	Marks Distribution		
		R	U	Α	Marks
CO-1	Discrete-time signals and systems	02	03	05	10
CO-2	Z-transform	02	04	04	10
CO-3	Discrete Fourier Transform	02	02	06	10
CO-4	Design of Digital filters	03	07	05	15
CO-5	Applications of Digital Signal Processing	01	02	02	05
	Total	10	18	22	50

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Legend:R: Remember,U: Understand,A: ApplyThe end of semester assessment for Digital Signal Processing will be held with written examination of 50marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- **2.** Tutorial
- **3.** Group Discussion
- 4. Practical Design Demonstration
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

(a)	Books	•
(a)	DOOU2	•

	(a) BOOKS :	[]				
S. No.	Title	Author	Publisher	Edition & Year		
1	Digital Signal Processing: A computer based approach	S. K. Mitra	McGraw Hill	2011		
2	Discrete Time Signal Processing	A.V. Oppenheim and R. W. Schafer,	Prentice Hall	1989		
3	Digital Signal Processing: Principles, Algorithms and Applications	J. G. Proakis and D.G. Manolakis	Prentice Hall	1997		
4	Theory and Application of Digital Signal Processing	L. R. Rabiner and B. Gold	Prentice Hall,	1992.		
5	Introduction to digital Signal Processing ,	J. R. Johnson	Prentice Hall,	1992.		
6.	Digital Signal Processing∥,	D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss	John Wiley & Sons,	1988.		
7	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.					

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: EE415 Course Title: DIGITAL SIGNAL PROCESSING

					Prog	gram (Outco	omes					-	n Specific come
	PO1	PO2	PO3	PO4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
Course Outcomes	Engi neeri ng kno wled ge	Prob lem Solvi ng	Desi gn Skill s	Labo rator y Skill s	Tea m wor k	Com muni catio n Skill s	Eth ical and Pro fess ion al Beh avio r	Life lon g Lea rni ng	Glo bal and Soci etal Imp act	Proje ct Man agem ent	Ada ptabi lity	Profe ssion al Deve lopm ent	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Understanding of Discrete time signals														
and systems. Significance of sampling and reconstruction.	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO 2: Applications of Z-transform in Digital signals and systems.	3	3	3	3	2	2	1	3	2	2	2	3	3	2
CO3: Identify the properties and characteristics of discrete Fourier Transform along with their Mathematical representation and analysis	3	2	3	2	2	1	2	2	2	2	2	3	3	2
CO 4: Understanding the basic concepts designing of different types of filters.	3	3	2	2	2	2	2	3	2	2	2	2	2	3
CO 5: Analyzing the Applications of Digital Signal Processing	3	3	3	3	2	3	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8 ,9,10,11,12	CO1: Understanding of Discrete time signals and systems. Significance of sampling and reconstruction.	SO1. 1 SO1. 2 SO1.3		UNIT-1: Discrete-time signals and systems 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	1,2,3
PSO 1,2		SO1.4			
PO:1,2,3,4,5,6,7,8 ,9,10,11,12	CO 2: Applications of Z-transform in Digital signals and systems.	SO2.1 SO2.2 SO2.3		UNIT-2: Z-Transform 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	1,2
PSO 1,2		SO2.4		2.8,2.9,2.10	
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO3: Identify the properties and characteristics of discrete Fourier Transform along with their Mathematical representation and analysis	SO3. 1 SO3. 2 SO3. 3		Unit-3: Discrete Fourier Transform 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8	1,2
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 4: Understanding the basic concepts designing of different types of filters.	SO4. 1 SO4. 2 SO4. 3		UNIT-4: Design of Digital filters 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8, 4.9,4.10,4.11	1,2
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1,2	CO 5: Analyzing the Applications of Digital Signal Processing	SO5.1 SO5.2 SO5.3		UNIT-5: Applications of Digital Signal Processing 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8	1,2

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester-VII

Course Code:	OEC409
Course Title:	ELECTRICAL MATERIALS
Pre- requisite:	Student should have knowledge of various electrical materials used for design and fabrication of different types of electrical circuits.
Rationale:	In current scenario we see the different types of electrical systems. Such systems are required to design and maintain by engineer. Therefore, the goal of this course is for students to become competent to understand fundamental of such type of materials used to design different types of electrical circuits.

Course Outcomes:

OEC409.1: Learn the various properties of conducting materials used in electrical engineering. **OEC409.2:** Realize the dielectric properties of different insulators in static and alternating fields. **OEC409.3:** Realize the magnetic properties of magnetic materials used in electrical engineering. **OEC409.4:** Learn the various properties of semiconducting materials used in electrical engineering.

Scheme of Studies:

Cours				Scheme of studies(Hours/Week)					
Cours e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)	
Open Electiv e Core (OEC)	OEC409	ELECTRICAL MATERIALS	3	0	1	1	5	3	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

					Scheme	of Ass	essment (N	Aarks)		
				Progress	ive Asse	ssment	(PRA)		End	Total
Cour se Cate gory	Couse Code	Course Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Clas s Acti vity any one (CA T)	Class Attendan ce (AT)	Total Marks (CA+C T+SA +CAT +AT)	Semester Assessme nt (ESA)	(PRA + ESA)
OEC	OEC40 9	ELEC TRIC AL MATE RIAL S	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC409.1: Learn the various properties of conducting materials used in electrical engineering. **Approximate Hours**

Item	Approx Hrs
Cl	11
LI	0
SW	2
SL	1
Total	14

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory Instruction	Class room Instruction (CI)	Self-Learning (SL)
(SOs)	(LI)		(61)
SO1.1		UNIT-1: CONDUCTIVITY OF	1. Fundamental
Understand		METALS	of conducting
the		1.1 Conductivity of Metal:	materials.
conductivit		Introduction	
y in metals.		1.2 Factors affecting the resistivity of	
SO1.2		electrical materials	
Understand		1.3 Motion of an electron in an electric	
the effect		field	
of		1.4 Equation of motion of an electron,	
temperatur		current carried by electrons,	
e on		mobility	
conducting		1.5 Thermionic emission	
materials.		1.6 Photo electric emission	
SO1.3 Understand		1.7 Field emission	
the various		1.8 Effect of temperature on electrical	
types of		conductivity of metals	
conducting		1.9 Electrical conducting materials.	
materials		1.10 Thermal properties, thermal	
and their		conductivity of metals	
properties.		1.11 Thermoelectric effects.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- Classify the different types of electrical materials. i.
- ii. Discuss the effect of temperature on conducting materials.

OEC409.2: Realize the dielectric properties of different insulators in static and alternating fields. **Approximate Hours**

Item	Approx Hrs
Cl	10
LI	0
SW	1
SL	1
Total	12

Faculty of Engineering and Technology **Department of Electrical Engineering** Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session	Laboratory	Class room Instruction	Self-Learning
Outcomes	Instruction	(CI)	(SL)
(SOs)	(LI)		
SO2.1 Understanding		Unit-2: DIELCTRIC	1. Fundamental of
the dielectric		MATERIALS	insulating
material.		2.1 Dielectric properties:	materials.
		introduction	
SO2.2 Understanding		2.2 Effect of a dielectric on the	
various		behaviour of a capacitor	
properties of		2.3 Polarization	
dielectric		2.4 The dielectric constant of	
materials.		monatomic gases	
		2.5 Dielectric losses, significance	
SO2.3 Understanding		of the loss tangent	
frequency and		2.6 Frequency and temperature	
temperature		dependence of the dielectric	
dependence of		constant	
the dielectric		2.7 Dielectric properties of	
constant.		polymeric system	
		2.8 Ionic conductivity in	
		insulators	
		2.9 Insulating materials	
		2.10 Ferro electricity,	
		piezoelectricity	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i.

Explain effect of a dielectric on behavior of capacitor.

OEC409.3: Realize the magnetic properties of magnetic materials used in electrical engineering. **Approximate Hours**

Item	Approx Hrs
Cl	8
LI	0
SW	2
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	Laboratory	Class room Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1 Understand the		Unit-3: MAGNETIC	1. fundamental
magnetic properties of		MATERIALS	of magnetic
materials.		3.1 Magnetic properties of	materials.
		Materials: Introduction	
SO3.2 Understand the		3.2 Classification of magnetic	
effect of temperature		materials	
on magnetic materials.		3.3 Diamagnetism, Para magnetism,	
		Ferromagnetism	
SO3.3 Understand the		3.4 Magnetization curve	
different types of		3.5 The hysteresis loop	
magnetic materials		3.6 Factors affecting permeability	
and their properties.		and hysteresis loss	
		3.7 Common magnetic materials	
		3.8 Magnetic resonance	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain how will you classify different types of magnetic materials.
- ii. Discuss some common magnetic materials and their properties used in electrical circuits.

OEC409.4: Learn the various properties of semiconducting materials used in electrical engineering. **Approximate Hours**

Item	Approx. Hrs
Cl	8
LI	0
SW	2
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO4.1Understand		Unit-4: SEMICONDUCTOR	1. Difference
the		MATERIALS	between
semiconductor		4.1 Semiconductors: Introduction	conductor,
its types and		4.2 energy band in solids, conductors,	semiconductor
various		semiconductors and insulators	and insulator.
properties.		4.3 types of semiconductors, Intrinsic semiconductors	
SO4.2Understand		4.4 impurity type semiconductor,	
the effect of		diffusion	
temperature on		4.5 the Einstein relation	
semiconductor.		4.6 hall effect	
		4.7 thermal conductivity of	
		semiconductors	
		4.8 electrical conductivity of doped	
		materials	

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Explain the effect of temperature on semiconductors.
 - ii. Draw the energy band diagram of conductor, semiconductor and insulator.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
OEC409.1: Learn the various properties of conducting materials used in electrical engineering.	11	2	1	14
OEC409.2: Realize the dielectric properties of different insulators in static and alternating fields.	10	1	1	12
OEC409.3: Realize the magnetic properties of magnetic materials used in electrical engineering.	8	2	1	11
OEC409.4: Learn the various properties of semiconducting materials used in electrical engineering.	8	2	1	11
Total Hours	37	7	5	48

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

00	CO Unit Titles	Ν	Total		
CO	Unit Titles	R	U	Α	Marks
CO-1	Conductivity of metals	07	05	01	13
CO-2	Dielectric materials	05	04	02	11
CO-3	Magnetic materials	06	04	01	11
CO-4	Semiconductor materials	08	05	02	15
	Total	26	18	6	50

Legend: R: Remember, U: Understand, A: Apply The end of semester assessment for Electrical Materials will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- **2.** Tutorial
- **3.** Group Discussion
- 4. Practical Design Demonstration
- **5.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year				
1	Engineering Materials	Kenneth G. Budinski	Pearson	2009				
2	An Introduction to Electrical Engineering materials	C.S.Indulkar and S. Thiruvengadam, S.,	S Chand & Company	2006				
3	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.							

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

COs, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: OEC409 Course Title: Electrical Materials

	Program Outcomes								Program Specific Outcome					
Course Outcomes	PO1	PO2	PO3	PO4	PO 5	PO6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2
		Prob lem Solvi ng	Desi gn Skill s	Labo rator y Skill s	Tea m wor k	Com muni catio n Skill s	Eth ical and Pro fess ion al Beh avio r	Life lon g Lea rni ng	Glo bal and Soci etal Imp act	Proj ect Man agem ent	Ada ptabi lity	Prof essio nal Deve lopm ent	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Learn the various properties of conducting materials used in electrical engineering.	3	3	2	2	2	1	1	2	2	1	2	2	2	3
CO2: Realize the dielectric properties of different insulators in static and alternating fields.	3	3	2	3	2	2	1	3	2	2	2	3	3	2
CO3: Realize the magnetic properties of magnetic materials used in electrical engineering.	3	2	3	2	2	1	2	2	2	1	2	3	2	2
CO4: Learn the various properties of semiconducting materials used in electrical engineering.	3	3	2	2	2	2	2	3	2	2	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning (SL)
,9,10,11,12	CO1: Learn the various properties of conducting materials used in electrical engineering.	SO1.1 SO1.2 SO1.3		UNIT-1: Conductivity of metals 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9, 1.10,1.11	1
	CO2: Realize the dielectric properties of different insulators in static and alternating fields.	SO2.1 SO2.2 SO2.3		UNIT-2 : Dielectric materials 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	1
,9,10,11,12	CO3: Realize the magnetic properties of magnetic materials used in electrical engineering.	SO3.1 SO3.2 SO3.3		Unit-3: Magnetic materials 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8	1
,9,10,11,12 PSO 1,2	CO4: Learn the various properties of semiconducting materials used in electrical engineering.	SO4.1 SO4.2		UNIT-4: Semiconductor materials 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VII

Course Code: OEC410

Course Title : Modern Manufacturing Process.

Pre- requisite: Basic knowledge of mathematical skill with some scientific temperament **Rationale:** Manufacturing Processes is the course used to introduce the basic concepts of materials and manufacturing technology to the student. Upon completing the course the student should have basic knowledge of classes of materials and the achievement of their service characteristics developed by the manufacturing process and the follow on heat treatments and other surface treatments.

Course Outcomes:

- **OEC410.1**: Understand various manufacturing processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality
- **OEC410.2**: Acquire fundamental knowledge and design widely used and very important primary manufacturing processes such as casting, forming ,forging rolling, extrusion
- **OEC410.3**: Acquire knowledge about the various tools, equipment, machinery and operations required for material removal processes
- **OEC410.4:** understand the unconventional machining processes ,like EDM,EBM,LBM etc.
- **OEC410.5:** Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.

Course				Tatal				
Course Categor y Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)
Open Elective Core (OEC)	OEC410	Modern Manufacturing Process.	3	0	1	1	5	3

Scheme of Studies:

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self-Learning,
 C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Th	eory									
				S	cheme of	Assessmen	t (Marl	ks)		
				Progressi	ve Assess	ment (PR	A)			Tatal
Course Catego ry	Cous e Code	Course Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test	Semin ar one (SA)	Class Activity any one (CAT)	Class Atten dance (AT)	Total Marks CA+C T+SA +CAT +AT)	End Semest er Assess ment (ESA)	Total Mark s (PRA + ESA)
OEC	OEC 410	Modern Manufact uring Process	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminatingin the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC410.1: Understand various manufacturing processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality

Approximate Hours

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1. 1 Define key concepts		SUnit-1.0 Manufacturing processes	1. Introducti
and applications of additive,		an classification:	on to
subtractive, and shaping		Introduction of manufacturing	Inter-
manufacturing processes.		processes	dependenc
SO1.2 Analyze and		1.1 Define manufacturing And	y of
compare the strengths and		various methods	geometry
weaknesses of each process,		1.2 introduction of additive,	
considering factors like		subtractive process, shaping	
speed, flexibility, and		processes	
material compatibility.		1.3 Advantages of additives,	
SO1.3 Examine how design		subtractive and shaping processes	
choices in geometry and		1.4 Limitations of additives,	
material affect the selection		subtractive and shaping processes	
of manufacturing processes.		1.5 Effect of material on product	
SO1.5 Learn criteria for		quality and cost	
selecting manufacturing		1.6 Effect of process on product	
processes, including		quality	
considerations for volume,		1.7 Effect of process on cost	
materials, and cost-		1.8 Part design for manufacturability;	
effectiveness.		1.9 Process selection criteria, Inter-	
		dependency of geometry	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Explain part design for manufacturability

OEC410.2: Acquire fundamental knowledge and design widely used and very important primary manufacturing processes such as casting, forming, forging rolling, extrusion

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	2
Total	12

Faculty of Engineering and Technology **Department of Electrical Engineering**

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction	Self Learning
(SOs) SO2.1 Understand metal casting methods (sand, die, investment) and bulk forming techniques (forging, rolling, extrusion, drawing), including their applications and limitations. SO2.2 Grasp the distinctions between thermoplastic and thermoset plastics; comprehend injection molding and blow molding principles; and evaluate their suitability for different applications. SO2.3 Define powder metallurgy, comprehend its steps, and understand the advantages of metal injection molding for complex	•	Instruction (CI) Unit-2.0 Material Shaping Processes 2.1 Introduction of Material Shaping Processes 2.2 Introduction of metal casting process, Types of metal casting process 2.3 Introduction of forming processes 2.4 Metal forging processes 2.4 Metal forging processes 2.5 Metal extrusion processes. 2.6 sheet forming (shearing, deep drawing, bending) processes	
metallurgy, comprehend its steps, and understand the advantages of metal injection molding for complex component production. SO2.4 Identify glass shaping processes (layup) and grasp the fundamentals of composite materials, exploring their applications and challenges. SO2.5 Integrate knowledge from previous sessions to solve manufacturing problems, analyze case studies, and discuss current		processes. 2.6 sheet forming (shearing, deep drawing, bending)	
trends in material shaping technologies			

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Thermoplastic processes

OEC410.3: Acquire knowledge about the various tools, equipment, machinery and operations required for material removal processes.

Item	AppX Hrs
Cl	9
LI	0
\mathbf{SW}	1
SL	2
Total	12

Session Outcomes (SOs)	LaboratoryClass roomInstructionInstruction(LI)(CI)		Self Learning (SL)
SO3.1 Understand key material		Unit-3.0 Material	1. Milling process
removal processes, cutting tools,		Removal Processes	2 surface finish,
materials, and the role of cutting fluids.		3.1 Introduction of	accuracy
SO3.2 Demonstrate expertise in		material removal	
turning and drilling, considering		processes and	
material removal rates, surface finish,		Turning process	
accuracy, and integrity.		3.2Introduction of	
SO3.3 Describe milling operations,		Drilling process	
assess machining parameters, and		3.3 Milling process,	
understand machinability for various		grinding process	
materials.		3.4 finishing processes	
SO3.4 Explain grinding principles,		3.5 Single and multi-	
surface finish requirements, and the		point cutting tools,	
impact of parameters on material		Cutting tool materials	
removal rates and accuracy.		3.6 Cutting fluids	
SO3.5 Integrate knowledge for		3.7 Material removal rate,	
optimizing material removal processes,		3.8 surface finish,	
analyze case studies, and discuss		accuracy	
current trends in machining		3.9 integrity and	
technologies.		machinability	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW): a. Assignments:

i. Explain single and multi-point cutting tools

OEC410.4: understand the unconventional machining processes, like EDM,EBM,LBM etc **Approximate Hours**

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes	Laboratory	Class room	Self-
(SOs)	Instruction	Instruction	Learning
	(LI)	(CI)	(SL)
SO4.1 Understand key		Unit-4.0 Other	1. Micro and nano
unconventional manufacturing		(unconventional)	manufacturing
processes, including abrasive jet		Manufacturing Processes	
machining, water jet machining,		4.1 Introduction of	
ultrasonic machining, EDM, wire		unconventional	
EDM, ECM, laser beam		manufacturing	
, ,		processes	
machining, plasma arc machining,		4.2 Abrasive Jet	
and electron beam machining.		Machining, Water	
SO4.2 Explore diverse		Jet Machining	
applications of unconventional		4.3 Ultrasonic	
machining techniques in different		Machining,	
industries.		Electrical Discharge	
SO4.3 Develop the ability to		Machining	
choose the most suitable process		4.4 Wire EDM, Electro-	
based on material properties,		Chemical	
design requirements, and project		Machining	
constraints.		4.5 Laser Beam	
SO4.4 Learn strategies to optimize		Machining	
efficiency and quality in		4.6, Plasma Arc	
unconventional machining.		Machining,	
SO4.5 Learn how to integrate		4.7 Electron Beam	
unconventional processes with		Machining;	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

traditional manufacturing for a	4.8 Micro	
comprehensive approach.	manufacturing	
	4.9 Nano manufacturing	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Explain the procedure of water Jet Machining

OEC410.5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1 -understand various welding		Unit-5.0 Joining	1. GTAW (TIG
methods, including arc welding, gas		and Fastening	1.01/10 (110
welding, shielded metal arc welding,		Processes	
GMAW (MIG), and GTAW (TIG)		5.1 Introduction of	
SO5.2 - Students will learn the		joining and	
process of in arc welding, focusing		fastening	
on safety, electrode selection, and		processes	
basic welding techniques.		5.2 Arc welding	
SO5.3 - learn advanced GMAW		5.3 Gas welding	
(MIG) and GTAW (TIG) welding		5.4Shielded metal	
techniques, focusing on electrode		arc welding	
selection and welding parameters		5.5 GMAW (MIG)	
SO5.4 acquire skills in gas welding		5.6 GTAW (TIG)	
and brazing, mastering equipment		5.7 Brazing	
		5.8 soldering	

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

usage, safety, and application techniques SO5.5 learn about different types of adhesives, surface preparation, and	5.9 Solid state joining, Adhesive	
bonding considerations		

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Explain shielded metal arc welding

Brief of Hours sugg	Brief of Hours suggested for the Course Outcome					
Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+LI+SW+SI)		
OEC410.1: Understand various manufacturing processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality	9	01	01	11		
OEC410.2: Acquire fundamental knowledge and design widely used and very important primary manufacturing processes such as casting, forming, forging rolling, extrusion.	9	01	02	12		
OEC410.3: Acquire knowledge about the various tools, equipment, machinery and operations required for material removal processes	9	01	02	12		
OEC410.4 : understand the unconventional machining processes ,like EDM,EBM,LBM etc.	9	01	01	11		
OEC410.5 : Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.	9	01	01	11		
Total Hours	45	05	07	57		

Brief of Hours suggested for the Course Outcome

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ν	Total		
0	Omt Titles	R	U	Α	Marks
CO-1	Manufacturing processes and classification		01	01	05
CO-2	Material shaping processes	02	06	02	10
CO-3	Material removal processes	03	07	05	15
CO-4	Unconventional manufacturing processes	03	05	07	15
CO-5	CO-5 Joining and Fastening processes.		02	-	05
	Total			15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Manufacturing Process will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 7. Brainstorming

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggested Learning Resources:

(a) Books :								
S. No.	Title	Author	Publisher	Edition & Year					
1	Manufacturing Science	Amitabha Ghosh and A.K. Mallick	Affiliated East-West Press Pvt Ltd.	Revised edition 2010					
2	Manufacturing Processes for Engineering Materials	Kalpakjian and Schmid	Pearson India	2014					
3	Manufacturing process	H.N. Gupta R.C.Gupta Arun Mittal	New Age International Publisher	Second edition 2009					
4	Manufacturing Technology	R.K. Rajput	Laxmi Publisher Ltd.	2007					
5	Training Manual								
6		Training Manual							
7	Lecture note provided by Dept. of Mechanical Engineering, AKS University, Satna.								

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey , Assistant Professor , Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor , Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: OEC410 Course Title: Manufacturing Process

		Program Outcomes										Program Specific Outcome		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engineer ing knowled ge	Problem	Design Skills	Laborat ory Skills	Team work	Skills	Ethical and Professio nal Behavior	g		ment	Adaptab ility	Professio nal Develop ment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1 Understand various manufacturing processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality	3	1	2	2	2	2	3	1	2	2	1	2	2	2
CO 2 Acquire fundamental knowledge and design widely used and very important primary manufacturing processes such as casting, forming , forging rolling, extrusion.	2	2	3	2	1	2	2	1	1	1	2	3	2	2
CO3 : Acquire knowledge about the various tools, equipment, machinery and operations required for material removal processes	2	2	1	1	2	2	2	1	1	2	1	2	2	1
CO 4: understand the unconventional machining processes ,like EDM,EBM,LBM etc.	3	2	2	2	3	1	3	1	2	1	2	2	3	3
CO 5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.	2	2	2	2	1	1	3	1	1	1	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (L I)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1 : Understand various manufacturing processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1.0 Manufacturing Processes and Classification 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 2 : Acquire fundamental knowledge and design widely used and very important primary manufacturing processes such as casting, forming ,forging rolling, extrusion.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 Material Shaping Processes 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12,2.13,2.14	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3 : Acquire knowledge about the various tools, equipment, machinery and operations required for material removal processes	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3 : Material Removal Processes 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 4 : understand the unconventional machining processes ,like EDM,EBM,LBM etc.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4 : Other (unconventional) Manufacturing Processes 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: Joining and Fastening Processes 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	1

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VII

Course Code: Course Title : Pre-requisite:	OEC411 Internet of Things Student should know basic knowledge of computer & digital electronics.
Rationale:	IoT is the super set of information technology driven by the sensors and cloud to make the real things like smart things for your network. The object of this course is to understand the concepts of web of Things, Cloud of Things and emphasis on Mobile cloud.
Course Outcomes	

Course Outcomes:

OEC411.1: Learn the basics of databases and data management.

OEC411.2: Understand various theoretical and practical principles involved in the design and use of databases systems with the help of database.

OEC411.3: Learn the Transaction management with grant and revoke.

OEC411.4: Design and implement databases for various scenarios.

OEC411.5: Design a database scenario for handling any organizations centralized data.

Scheme of Studies:

				Total				
Course Catego ry	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits
Open Elective (OEC)	OEC411	Internet of Things	3	0	0	0	3	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e., Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self-Learning,
C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment: Theory

				Schen	ne of As	sessme	ent (M	arks)		
	Cou		Class/Ho me Assignm ent 5	Progressive A Class Test 2 (2 best out				Total Marks	End Sem ester Asse ssm	Tota l Mar ks
Cours e Categ ory	se Cod e	Course Title	number 3 marks each (CA)	of 3) 10 marks each (CT)	(SA)	one (CA T)	ndan ce (AT)	(CA+CT +SA+C AT+AT)	ent (ES A)	(PR A+ ESA)
OEC	OEC 411	Internet of Things	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC411.1: Introduction to IoT, Definition, Characteristics of IoT, IoT Conceptual framework, IoT Architectural view, Physical design of IoT, Logical design of Io, Application of IoT.

Item	AppX Hrs.
Cl	8
LI	0
SW	0
SL	0
Total	8

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instructions (LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO1.1Understand the Definition and concept of Internet of Things. SO1.2 Understand the concept of Characteristics of IoT SO1.3 Understand the IoT Conceptual framework. SO1.4 Preparation of Physical design, Logical design of IoT with Architectural view. SO1.5 Preparation of Application of IoT. 		Unit-1.0 Theoretical Framework of IoT 1.1. Introduction to IoT 1.2 Definition of IoT 1.3 Characteristics of IoT 1.4 IoT Conceptual framework 1.5 IoT Architectural view 1.6 Physical design of IoT 1.7 Logical design of IoT 1.8 Application of IoT	

OEC411.2: Machine-to-Machine (M2M), SDN (Software defined networking) and NFV (Network function virtualization) for IoT, Data Storage in IoT, IoT cloud Based Services

Item	Appx Hrs
Cl	4
LI	0
SW	0
SL	0
Total	4

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instructions (LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO2.1 Concept of Machine-to-Machine (M2M) SO2.2 Understanding about the SDN (Software defined networking). SO2.3 Concept of NFV (Network function virtualization) for IoT. SO2.4 Understanding the Data Storage in IoT. SO2.5 Preparation of IoT cloud Based 		Unit 2.0 Machine-to- Machine (M2M) 2.1 SDN (Software defined networking) and 2.2 NFV (Network function virtualization) for IoT	(SL)
Services.		2.3 Data Storage in IoT2.4 IoT cloud Based Services.	

OEC411.3:Design principles for web connectivity, Web communication Protocols for connected devices, Message communication Protocols for connected devices, SOAP, REST, HTTP Restful and web Sockets, Internet Connectivity Principles: Internet Connectivity, Internet based communication, IP addressing in IoT, Media Access Control.

Item	Appx Hrs
Cl	8
LI	0
SW	0
SL	0
Total	8

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instructions (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO3.1 concept of Design principles for web connectivity		Unit-3.0 : Design principles for web connectivity	
SO3.2 Understanding Web communication Protocols for connected devices		3.1 Web communication Protocols for connected devices	
SO3.3 Understanding the Message communication Protocols for connected devices.		3.2 Message communication Protocols for connected devices.	
SO3.4 Understanding about SOAP, REST, HTTP Restful and web Sockets.		3.3 SOAP, REST, HTTP Restful and web Sockets.	
SO3.5 Concept of Internet Connectivity, Internet based communication, IP addressing in IoT and Media Access		3.4 Internet Connectivity Principles:3.5 Internet Connectivity3.6 Internet based communication	
Control.		3.7 IP addressing in IoT 3.8 Media Access Control	

OEC411.4: Sensor Technology, Participatory Sensing, Industrial IoT and Automotive IoT Actuator, Sensor data Communication Protocols, Radio Frequency Identification Technology Wireless sensor Network Technology.

Item	Appx Hrs
Cl	8
LI	0
SW	0
SL	0
Total	8

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instructions (LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO4.1 Understanding about the Sensor Technology SO4.2 Preparation of Participatory Sensing SO4.3 Understanding about the Industrial IoT and Automotive IoT SO4.4 Actuator, Sensor data Communication Protocols SO4.5 Understanding about the Radio Frequency Identification Technology and Wireless Sensor Network Technology. 		 Unit 4.0 Sensor Technology 4.1 Participatory Sensing 4.2 Industrial IoT 4.3 Automotive IoT 4.4 Actuator 4.5 Sensor 4.6 Data Communication Protocols 4.7 Radio Frequency Identification Technology 4.8 Wireless Sensor Network Technology. 	

OEC411.5: IoT Design methodology: Specification- Requirement, Process, Model, service Functional & Operational View, IoT Privacy and security solutions, Raspberry Pi & Arduino devices. **IoT Case Studies: Smart City Streetlights control & monitoring.**

Item	Appx Hrs
Cl	7
LI	0
SW	0
SL	0
Total	7

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instructions (LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO5.1 Understand about the concept of oT Design methodology: SO5.2 Preparation of Specification- Requirement, Process, Model, service. SO5.3 Preparation of necessary Functional & Operational View SO5.4 Understanding about the IoT Privacy and security solutions, Raspberry Pi & Arduino devices SO5.5 Understanding about the IoT Case Studies: Smart City Streetlights control & monitoring. 		 Unit 5.0: IoT Design methodology: 5.1 Specification-Requirement 5.2 Process, Model, service 5.3 Functional & Operational View 5.4 IoT Privacy and security solutions 5.5 Raspberry Pi 5.6 Arduinodevices. 5.7 IoT Case Studies: Smart City Streetlights control & monitoring. 	

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
OEC411.1: Acquire the knowledge of IoT concept and its Architecture.	8	0	0	8
OEC411.2: Acquire the basic concept of Software defined networking and Machine-to-Machine (M2M).	4	0	0	4
OEC411.3: Exposed to various web communication Protocols for connected devices & Message communication Protocols for connected devices.	8	0	0	8
OEC411.4: Familiarize and understand the basic Sensor data Communication Protocols.	8	0	0	8
OEC411.5: Smart City Streetlights control & monitoring.	7	0	0	7
Total Hours	35	00	00	35

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

СО	Unit Titles	Ν	bution	Total	
co	Cint Trues	R	U	Α	Marks
CO-1	Theoretical Framework of IoT.	01	01	03	05
CO-2	Machine-to-Machine (M2M)	01	01	03	05
CO-3	Design principles for web connectivity	-	03	10	13
CO-4	Sensor Technology	-	03	10	13
CO-5	IoT Design methodology:	01	03	10	14
	Total	03	12	36	50

Suggested Specification Table (For ESA)

Legend:R:Remember,U:Understand,A:ApplyThe end of semester assessment for 'Internet of things' will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Edition & Year								
1	"Internet of Things (A Hand book approach)	Vijay Madisetti & Arshdeeep Bahga	Universa l Press	First Edition							
2	"The Internet of Things: Connecting Objects"	Hakima Chaouchi	Wiley publication	2017							
3	"MySQL for The Internet of Things"	Charless Bell	A Press publication.	2016							
5	Department	Lecture note provided by Department of Computer Engineering, AKS University, Satna									

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: OEC411 Course Title: Internet of Things.

		Program Outcomes							Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engineer ing knowled ge	Problem Solving	Design Skills	Laborat ory Skills	Team work	Commu nication Skills	Ethical and Professio nal Behavior	g	Global and Societa l Impact	ment	Adaptah	Professio nal Develop ment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1: Acquire the knowledge of IoT concept and its Architecture.	3	1	2	2	2	2	3	1	2	2	1	2	2	2
CO2: Acquire the basic concept of Software defined networking and Machine- to-Machine (M2M).	2	2	3	2	1	2	2	1	1	1	2	3	2	2
CO3: Exposed to various web communication Protocols for connected devices & Message communication Protocols for connected devices.	2	2	1	1	2	2	2	1	1	2	1	2	2	1
CO4: Familiarize and understand the basic Sensor data Communication Protocols.	3	2	2	2	3	1	3	1	2	1	2	2	3	3
CO5: Smart City Streetlights control & monitoring.	2	2	2	2	1	1	3	1	1	1	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (L I)	Classroom Instruction(CI)	Self- Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1: Acquire the knowledge of IoT concept and its Architecture.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1.0 Theoretical Framework of IoT 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2: Acquire the basic concept of Software defined networking and Machine-to-Machine (M2M).	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 Machine-to-Machine (M2M) 2.1, 2.2, 2.3, 2.4	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3: Exposed to various web communication Protocols for connected devices & Message communication Protocols for connected devices.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3 : Design principles for web connectivity 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4: Familiarize and understand the basic Sensor data Communication Protocols.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4 : Sensor Technology 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5: Smart City Streetlights control & monitoring.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: IoT Design methodology: 5.1,5.2,5.3,5.4,5.5,5.6,5. 7	

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VII

Course Code: OEC412

- Course Title: Big Data Analytics
- **Pre- requisite:** Student should have a basic understanding of data mining, statistics, data visualization and a degree of programming knowledge.
- **Rationale:** Big data analytics is important because it helps organizations use data to identify new opportunities.

Course Outcome: After completion of this course the students will be able to

- **OEC412.1:** Understand and apply big data flow to actual projects as well as apply data analytics life cycle to big data projects.
- **OEC412.2:** Apply appropriate techniques and tools to solve big data problems
- **OEC412.3:** Describe big data and use cases from selected business domains
- **OEC412.4:** Explain NoSQL big data management
- **OEC412.5:** Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics

Scheme of Studies:

Course Catego ry	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)
OEC	OEC412	Big Data Analytics	3	2	1	1	7	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e., Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory

workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

Theory

				Scheme of Assessment (Marks)									
			F	Progressive Assessment (PRA)									
Course Catego ry	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test2 (2 best out of 3) 10 marks each (CT)	Semin ar one (SA)	Class Activity any one (CAT)	Class Atten danc e (AT)	Total Marks (CA + CT + SA + CAT + AT)	Semester Assessme nt (ESA)				
OEC	OEC41 2	Big Data Analytic s	15	20	5	5	5	50	50	100			

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC412.1. Understand and apply big data flow to actual projects as well as apply data analytics life cycle to big data projects.

Item	AppX Hrs
Cl	7
LI	0
SW	2
SL	1
Total	10

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO1.1 Understand about concept of Big data SO1.2 Understand about Traits of Big data SO1.3 Understand about Challenges of Conventional Systems SO1.4 Web Data, Evolution of Analytic, Scalability. SO1.5 Understand about Analysis vs Reporting SO1.6 use of Statistical Concepts SO1.7 Learn about Re- Sampling, Statistical Inference, Prediction Error 		 Module 1: Introduction to big data 1.1 Introduction to Big data Platform 1.2 Traits of Big data, 1.3 Challenges of Conventional Systems 1.4 Web Data, Evolution of Analytic, Scalability 1.5 Analysis vs Reporting 1.6 Statistical Concepts: Sampling Distributions 1.7 Re-Sampling, Statistical Inference, Prediction Error. 	1. Learn about different source of data

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. What is difference between structure, unstructured and semi structure data.
- ii Explain various challenge associated with big data.

b. Mini Project:

i. What is benefit you can derive from data analysis?

c. Other Activities (Specify):

- i. Main problems in using Concurrency
- **OEC412.2.** Apply appropriate techniques and tools to solve big data problems.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Item	AppX Hrs
Cl	8
LI	0
SW	2
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO2.1 Understand about Regression Modelling. SO2.2 About Multivariate Analysis, Bayesian 		Module 2: Basic data analysis and data analytic methods using R 2.1 Regression Modelling 2.2 Multivariate Analysis, Bayesian Modelling	1. Learn about basics of data analysis
Modelling. SO2.3 About Inference and Bayesian Networks SO2.4 Understand about Vector and Kernel Methods		 2.3 Inference and Bayesian Networks 2.4 Support Vector and Kernel Methods 2.5 Analysis of Time Series: Linear Systems Analysis, Nonlinear Dynamics, Rule Induction 	
 SO2.5 Analysis of Time Series. SO2.6 understand Neural Networks SO2.7 understand Fuzzy Logic 		2.6 Neural Networks: Learning and Generalization, Competitive Learning, Principal Component	

Faculty of Engineering and Technology Departament of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

SO2.8 about	Analysis and Neural
Introduction to R.	Networks
	2.7 Fuzzy Logic:
	Extracting Fuzzy
	Models from Data
	Fuzzy Decision Trees,
	Stochastic Search
	Methods.
	2.8 Introduction to R,
	Statistics for Model
	Building and
	Evaluation.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain Bayesian Networks.
- ii Explain challenges of Neural Networks

b. Mini Project:

i. Read Dataset with Pandas

c. Other Activities (Specify):

i. Explain Kernel Methods with example

OEC412.3. Describe big data and use cases from selected business domains

Item	AppX Hrs
Cl	6
LI	0
SW	2
SL	1
Total	9

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO3.1 Mining Frequent item sets: Market Based Model SO3.2 Understand about Apriori Algorithm. SO3.3 Understand about Handling Large Data Sets in Main Memory SO3.4 Understand about Limited Pass Algorithm SO3.5 Learn about Counting Frequent item sets in a Stream SO3.6 understand about different Clustering Techniques 		 Module-3.0 Frequent item sets and clustering 1.1 Mining Frequent item sets: Market Based Model 1.2 Apriori Algorithm 1.3 Handling Large Data Sets in Main Memory 1.4 Limited Pass Algorithm 1.5 Counting Frequent item sets in a Stream 1.6 Clustering Techniques: Hierarchical, K-Means, Frequent Pattern based Clustering Methods 	1. various types of Locks in Detail.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. What are the Requirements of Clustering Data Mining Techniques?

- b. Mini Project:
 - i. Write a program to implement clustering in R programming.

c. Other Activities (Specify):

i. Explain application of clustering.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

OEC412.4. Explain NoSQL big data management

Item	AppX Hrs		
Cl	6		
LI	0		
SW	2		
SL	1		
Total	9		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO4.1 Understand about Stream Data SO4.2 About Stream Computing SO4.3 understand about Sampling Data in a Stream: Filtering Streams, Counting Distinct Elements in a Stream 		 Module-4.0 Mining data streams 4.1 Introduction to Streams Concepts: Stream Data Model and Architecture 4.2 Stream Computing 4.3 Sampling Data in a Stream: Filtering Streams, Counting Distinct 	 Source of data About Unstructured text
 SO4.4 learn about Estimating Moments, Counting Oneness in a Window SO4.5 learn about Decaying Window, Real time Analytics Platform (RTAP) Applications SO4.6 Analysis and case studies 		 Elements in a Stream. 4.4 Estimating Moments, Counting Oneness in a Window 4.5 Decaying Window, Real time Analytics Platform (RTAP) Applications 4.6 Case Studies, Real Time Sentiment Analysis, Stock Market Predictions 	

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Explain REAL TIME ANALYTICS PLATFORM (RTAP) APPLICATION.

b. Mini Project:

i. Why the rapid growth of unstructured data is putting greater pressure on businesses. Explain it.

c. Other Activities (Specify):

i. CASE STUDIES - REAL TIME SENTIMENT ANALYSIS, STOCK MARKET PREDICTIONS.

OEC412.5: Design a database scenario for handling big data

Item	AppX Hrs
Cl	7
LI	0
SW	2
SL	1
Total	10

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO5.1 Understand about Hadoop SO5.2 Understand about MapR SO5.3 Learn about NoSQL Database and Hadoop Distributes File System SO5.4 Understand about Visual Data Analysis. SO5.5 Learn about Interaction Techniques SO5.6 Use of Statistical packages SO5.7 Understand about Application of Analytics		 Module -5.0 Framework, technologies, tools and visualization 5.1 Map Reduce: Hadoop 5.2 Hive, MapR, Sharding 5.3 NoSQL Databases: S3, Hadoop Distributed File Systems 5.4 Visualizations: Visual Data Analysis Techniques, 5.5 Interaction Techniques; Systems and Analytics Applications. 5.6 Analytics using Statistical packages 5.7 Industry challenges and application of Analytics 	1.Big Data

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Create Word Count Map Reduce program to understand Map Reduce Paradigm

b. Mini Project:

- i. To setup Hadoop.
- ii. To run sample program using hadoop.

c. Other Activities (Specify):

i. Implementing Matrix Multiplication with Hadoop Map Reduce

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self-	Total hour
	Lecture	Work	Learning	(Cl+SW+Sl)
	(Cl)	(SW)	(Sl)	
OEC412.1. Understand and apply big data flow to actual projects as well as apply data analytics life				
cycle to big data projects.	7	2	1	10
OEC412.2. Apply appropriate techniques and tools to solve big data problems	8	2	2	12

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

OEC412.3. Describe big data and use cases from selected business domains	6	2	2	10
OEC412.4. Explain NoSQL big data management	6	2	1	9
OEC412.5. Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics	7	2	1	10
Total Hours	34	10	7	51

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO		Μ	arks Di	Total	
	CO Unit Titles		U	Α	Marks
CO1	Introduction to big data	03	04	03	10
CO2	Basic data analysis and data analytic methods using R	05	03	02	10
CO3	Frequent item sets and clustering	05	03	02	10
CO4	Mining data streams	04	05	01	10
CO5	Framework, technologies, tools and visualization	03	05	2	10
	Total	20	17	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Big data analytics will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to IT Industry.
- 7. Demonstration

AKSUniversity

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition & Year
1	Analytics in a Big Data World: The Essential Guide to data Science and its Applications	Bart Baesens,	Wiley publications	2014
2	Big Data & Hadoop	V.K. Jain	Khanna Book Publishing Co., Delhi (ISBN 978- 93-82609-131)	2017
3	Intelligent Data Analysis",	Michael Berthold, David J. Hand	Springer	2003
4	Mining of Massive Datasets	Anand Rajaraman and Jeffrey David Ullman	Cambridge University Press, 2020.	2020
5	Beginner's Guide for Data Analysis using R Programming	Jeeva Jose	Khanna Book Publishing House, 2019	2019

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: OEC412 Course Title: Big data analytics.

				Program Outcomes Program Specific O					eific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Enginee ring knowled ge	Problem Solving	Design Skills	Laborat ory Skills	Team work	Commu nication Skills		g		Project Manage ment	Adaptab ility	Professi onal Develop ment	Apply electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services
CO1 Understand and apply big data flow to actual projects as well as apply data analytics life cycle to big data projects.	3	1	2	2	2	2	3	1	2	2	1	2	2	2
CO2 Apply appropriate techniques and tools to solve big data problems	2	2	3	2	1	2	2	1	1	1	2	3	2	2
CO3 Describe big data and use cases from selected business domains	2	2	1	1	2	2	2	1	1	2	1	2	2	1
CO4 Explain NoSQL big data management	3	2	2	2	3	1	3	1	2	1	2	2	3	3
CO5 Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics	2	2	2	2	1	1	3	1	1	1	2	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (L I)	Classroom Instruction(CI)	Self-Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1 Understand and apply big data flow to actual projects as well as apply data analytics life cycle to big data projects.	SO1.1, SO1.2 SO1.3, SO1.4 SO1.5, SO1.6 SO1.7		Unit-1. Introduction to big data 1.1,1.2,1.3,1.4,1.5,1.6,1.7	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2 Apply appropriate techniques and tools to solve big data problems	SO2.1, SO2.2 SO2.3, SO2.4 SO2.5, SO2.6 SO2.7, SO2.8		Unit-2 Basic data analysis and data analytic methods using R 2.1, 2.2, 2.3, 2.4,2.5.2.6,2.7,2.8	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3 Describe big data and use cases from selected business domains	SO3.1,SO3.2 SO3.3,SO3.4 SO3.5, SO3.6		Unit-3 : Frequent item sets and clustering 3.1, 3.2, 3.3, 3.4, 3.5, 3.6	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4 Explain NoSQL big data management	SO4.1, SO4.2 SO4.3, SO4.4 SO4.5, SO4.6		Unit-4 : Mining data streams 4.1, 4.2,4.3,4.4,4.5,4.6	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5 Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics	SO5.1, SO5.2 SO5.3, SO5.4 SO5.5, SO5.6 SO5.7		Unit 5: Framework, technologies, tools and visualization 5.1,5.2,5.3,5.4,5.5,5.6,5.7	1

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester- VII

Course Code:	HSMC06
Course Title :	Finance and Accounting
Pre-requisite:	The primary objective of studying accounting is to facilitate transparent and accurate financial reporting.
Rationale:	Accounting provides a structured and standardized system for recording, summarizing, and analyzing financial transactions This transparency is crucial for stakeholders, including investors, creditors, and management, to make informed decisions. Accounting helps maintain the integrity and reliability of financial information, contributing to trust and accountability in business and financial management.

Course Outcomes: On successful completion of this course, the students will be able:

HSMC06.1: to understand and apply financial management principles in decision-making. **HSMC06.2**: Analyze and determine optimal capital structures, assessing cost of capital. **HSMC06.3**: prepare financial statements and handling various aspects of company accounts.

HSMC06.4: handle debenture-related transactions and accounting entries.

HSMC06.5: Understand and comply with accounting standards, including Ind AS, IFRS, and international reporting standards.

Scheme of Studies:

				Total				
Course Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+S W+SL)	Credits (C)
HSMC	HSMC06	Finance and Accounting	3	0	2	1	6	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture(L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self-Learning,

C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback teachers ensure outcome of Learning.

Scheme of Assessment:

I neory				S	cheme of	Assessme	nt (Mar	ks)		
			Progressive Assessment (PRA)							T ()
			Class/Hom	Class				Total	Semes	Total Mark
Cours	Course	Cour	e	Test 2	Semin	Class	Class	Marks	ter	
e	Code	se	Assignmen	(2 best	ar	Activity	Attend		Assess	S
Categ	Couc	Title	t 5 number	out of 3)	one	any one	ance	(CA+C	ment	(PRA
ory			3 marks	10 marks				T+SA+		+
			each	each	(SA)	(CAT)	(AT)	CAT+	(ESA)	ESA)
			(CA)	(CT)				AT)		2011)
HSMC	HSMC0 6	Finan ce and Acco untin g	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC06.1: to understand and apply financial management principles in decision-making.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Approximate Hours

Item	Appx Hrs.	
Cl	9	
LI	0	
SW	2	
SL	1	
Total	12	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
 SO1.1 Financial Management: Ability to apply financial management principles for effective fund utilization. SO1.2 Risk-Return Analysis: Proficiency in evaluating risks and returns to enhance firm value. SO1.3 Skill in balancing profit maximization and wealth maximization as organizational objectives. SO1.4 Competence in applying discounted and non-discounted cash flow methods for investment decisions. 		 Unit I: Nature and Scope of Financial Management: 1.1 Nature, Scope and Objectives of Financial Management 1.2 Risk-Return and Value of the Firm, Objectives of the firm 1.3 Profit Maximization vs. Wealth Maximization 1.4 Emerging roles of Finance Managers 1.5 Capital Budgeting: Compounding and Discounting techniques 1.6 Concepts of Annuity and Perpetuity 1.7 Capital Budgeting Process, Techniques of Capital Budgeting 1.8 Discounted and Non- Discounted, Cash Flow Methods 	1. Engage in online simulations or case studies to self-learn risk evaluation and sensitivity analysis in financial decision- making.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

1.9 Capital Rationing, Risk	
Evaluation and Sensitivity	
Analysis.	

SW-1 Suggested Sessional Work (SW):

- **a.** Assignments: Calculate the Net Present Value (NPV) and Internal Rate of Return (IRR) for a given capital budgeting project using discounted cash flow methods.
- **b. Mini project**: Develop a proposal for a capital budgeting project, including a brief description, estimated costs, and potential return.
- c. Other Activities (Specify): Compare and contrast Profit Maximization and Wealth Maximization as objectives of the firm. Discuss their implications on long-term sustainability.

HSMC06.2: Analyze and determine optimal capital structures, assessing cost of capital. **Approximate Hours**

Item	Appx Hrs.	
Cl	9	
LI	0	
SW	2	
SL	1	
Total	12	

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Laboratory **Session Outcomes Classroom Instruction** Self-Learning Instruction (SOs) **(CI) (SL)** (LI)SO2. 1: Capability in **1.** Create a • **Unit 2: Capital Structure** presentation determining optimal capital **2.1** Introduction- Meaning and outlining the structure and analyzing its Significance capital impact on risk and **2.2** Optimal Capital Structure budgeting shareholder returns. **2.3** Determinants of Capital process, Structure Theories of Capital incorporatin **SO2.2** Skill in exploring Structure g concepts diverse sources for raising **2.4** EBIT – EPS Analysis of annuity long-term finance. 2.5 EBITDA Analysis; Risk and and **S02.3:** Cost of Capital Leverage perpetuity, Analysis: Proficiency in 2.6 Effects of Leverage on discounted calculating and Shareholders' Returns. and nonunderstanding the Weighted 2.7 Sources of raising long-term discounted Average Cost of Capital finance and Cost of Capital: cash flow (WACC). 2.8 Sources, Meaning, Factors methods. Affecting Cost of Capital; **SO2.4** : Competence in **2.9** Methods for Calculating cost analyzing the effects of of capital; Weighted Average leverage on shareholders' Cost of Capital (WACC); returns Marginal Cost of Capital

SW- 2 Suggested Sessional Work (SW):

- **a.** Assignments: Calculate the Weighted Average Cost of Capital (WACC) for a given company. Discuss the implications of the WACC in the context of the company's capital structure and investment decisions.
- **b. Mini project:** Assign a project where students assess the impact of the scope of supply on businesses in specific industries. This could involve considering how the definition affects pricing, tax liability, and compliance..
- c. Other Activities (Specify):Compare and contrast Profit Maximization and Wealth Maximization as objectives of the firm. Discuss their implications on long-term sustainability.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

HSMC06.3: prepare financial statements and handling various aspects of company accounts.

Approximate Hours

Item	Appx Hours		
Cl	9		
LI	0		
SW	2		
SL	1		
Total	12		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO3.1 Ability to prepare financial statements and manage various aspects of company accounts. SO3.2 Competence in handling share capital, bonus shares, rights shares, and related journal entries. SO3.3 Skill in understanding, issuing, and accounting for debentures, including conversion and interest payments.		 Unit 3: Introduction to Company Account 3.1 Introduction, Meaning of Company, 3.2 Salient Features of a Company, 3.3 Types of Companies, Books of Account, 3.4 Preparation of Financial Statements. 3.5 Introduction, Issue, Forfeiture and Reissue of Shares 3.6 Share Capital, Types of Shares. 3.7 Bonus share, Right share, Issue of Shares for Cash, 3.8 Journal Entries for issue of shares for cash. 	1. Formulate a buyback strategy for a real or hypothetical company.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SO3.4 Capability to understand and comply with accounting standards, including IndAS, IFRS, and international reporting standards.	3.9 Forfeiture of Shares, Buy back of share.	
---	---	--

SW- 3 Suggested Sessional Work (SW):

- **a.** Assignments :Investigate the company's share capital structure. Identify and explain the different types of shares issued by the company.
- **b.** Mini project : Research and report if the company has issued bonus shares or rights shares in recent years.
- c. Other Activities (Specify): Discuss the impact of these actions on the company's equity structure

HSMC06.4: handle debenture-related transactions and accounting entries.

Approximate Hours

Item Appx Hour			
Cl	9		
LI	0		
SW	2		
SL	1		
Total	12		

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO4.1 Ability to identify and explain features and types of debentures, along with understanding the issuance process. SO4.2 Competence in detailing the process and accounting treatment for the conversion of debentures into shares. ISO4.3: Skill in accurately accounting for interest payments on debentures. SO4.4 ability to perform accounting entries for the issuance and redemption of redeemable debentures.		 Unit 4:Issue of Debentures 4.1 Introduction, Meaning, Features of Debentures 4.2 Distinction between Debentures and Shares 4.3 Types of Debentures, Issue of Debentures, 4.4 Accounting entries for issue of Redeemable Debentures 4.5 Debenture Redemption Reserve 4.6 Conversion of Debenture in to Share 4.7 Accounting for issue of Debentures payable in installments. 4.8 Issue of Debentures as collateral security. 4.9 Issue of Debentures in consideration other than for cash, Interest on Debentures. 	1. How to gain skill on accurately accounting for interest payments on debentures

SW- 4 Suggested Sessional Work (SW):

- **a.** Assignments: Identify the types of debentures issued and elaborate on their terms and conditions. Explain how these terms align with the company's financial goals.
- **b. Mini project:** Analyze the impact of the debenture issuance on the company's financial statements. Consider aspects like debt-equity ratios and interest coverage ratios.
- **c.** Other Activities (Specify): Choose a publicly traded company that has recently issued debentures. Obtain relevant financial reports and announcements.

HSMC06.5: Understand and comply with accounting standards, including Ind AS, IFRS, and international reporting standards.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Approximate Hours

Item	Appx Hours
Cl	5
LI	0
SW	2
SL	1
Total	8

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO5.1 Ability to comprehend the meaning and significance of corporate reporting SO5.2 Proficiency in applying accounting standards, including Ind AS, IFRS, and understanding their applicability and scope. SO5.3 Capability to ensure compliance with international accounting standards, including an overview of International Financial Reporting Standard SO5.4 Skill in preparing comprehensive financial reports that adhere to the relevant accounting standards.		 UNIT-5 : Corporate Reporting - 5.1 Meaning of Corporate Reporting; 5.2 Accounting Standards 5.3 Applicability, Scope and Compliance 5.4 Ind AS, IFRS, International Financial 5.5 Reporting Standard Overview (National and International accounting Authorities) 	1. Review case studies or examples of companies that effectively demonstrate compliance with accounting standards.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

- **a. Assignments** : Analyze how the company's corporate reporting practices impact various stakeholders, including investors, creditors, and employees
- **b.** Mini project: Examine the company's compliance with relevant accounting standards and regulatory requirements. Highlight any instances of non-compliance or areas of improvement.
- c. Other Activities (Specify): Prepare a presentation on corporate reporting.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
HSMC06.1 : Ability to understand and apply financial management principles in decision-making.	9	2	1	12
HSMC06.2: Analyzing and determining optimal capital structures, assessing cost of capital.	9	2	1	12
HSMC06.3: Proficiency in preparing financial statements and handling various aspects of company accounts.	9	2	1	12
HSMC06.4 : Competence in handling debenture-related transactions and accounting entries.	9	2	1	12
HSMC06.5: Understanding and complying with accounting standards, including Ind AS, IFRS, and international reporting standards.	5	2	1	8
Total Hours	41	10	5	56

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Suggestion for End Semester Assessment

	Suggested Specification 1a		2011)		
СО	Unit Titles	Marks	Distribu	ition	Total Marks
	Chint Traces	R	U	Α	
CO-1	Nature and Scope of Financial Management:	01	01	03	05
CO-2	Capital Structure	01	01	03	05
CO-3	Introduction to Company Account	-	03	10	13
CO-4	Issue of Debentures	-	03	10	13
CO-5	Corporate Reporting	01	03	10	14
	Total	03	12	36	50

Suggested Specification Table (For ESA)

Legend:R: Remember,U: Understand,A:ApplyThe end of semester assessment for Finance and Accounting will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Brainstorming

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a) B	ooks:		
S.No.	Title	Author	Publisher
1.	Principles of Corporate Finance" by Richard A. Brealey.	SInghaniVinod K. and Monica Singhania	Published by McGraw-Hill Education)
2.	"Fundamentals of Financial Management".	Eugene F. Brigham and Joel F. Housto	Published by Cengage Learning)
3.	"Financial Management: Theory & Practice"	Eugene F. Brigham and Joel F. Housto	Published by Cengage Learning)
4.	"Financial Management: Principles and Application.	Sheridan Titman, Arthur J. Keown, and John D. Martin.	Published by Pearson
5.		Lecture note provided by Dept. of Commerce AKS University, Satna	1

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, Pos and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: HSMC06

Course Title: Finance and Accounting

		0					n Outco							cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng 835ct ive 835 835 ge	Prob lem Solvi ng	Desi gn Skill s	Labo rator y Skill s	Tea mwo rk	Com muni catio n Skill s	Ethic al and Prof essio nal Beha vior	Lifel ong Lear ning	Globa l and Societ al Impac t	Projec t Mana gemen t	Adapt ability	Profes sional Devel opme nt	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1 : Ability to understand and apply financial management principles in decision-making.	1	2	1	1	2	2	2	2	3	3	2	2	1	1
CO2: Analyzing and determining optimal capital structures, assessing cost of capital.	1	2	1	1	2	2	1	2	2	2	2	2	1	2
CO3: Proficiency in preparing financial statements and handling various aspects of company accounts.	1	2	1	1	1	2	2	2	2	1	2	3	2	1
CO4 : Competence in handling debenture-related transactions and accounting entries.	1	1	1	2	2	2	1	3	2	1	2	2	2	1
CO5: Understanding and complying with accounting standards, including Ind AS, IFRS, and international reporting standards.	1	1	1	1	2	3	2	3	1	2	2	2	1	2

Legend:1-Low,2-Medium, 3-High

Course Cur	riculum Map				
Pos & PSOs No.	Cos No .&Titles	Sos No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1, 2	CO1 : Ability to understand and apply financial management principles in decision-making.	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1: Nature and Scope of Financial Management: 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9	
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1, 2	CO2: Analyzing and determining optimal capital structures, assessing cost of capital.	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2: Capital Structure 2.1,2.2,2.3,2.4,2.5,2.6, 2.7, 2.8, 2.9	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1, 2	CO3: Proficiency in preparing financial statements and handling various aspects of company accounts.	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3 : Introduction to Company Account 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1, 2	CO4 : Competence in handling debenture-related transactions and accounting entries.	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4: Issue of Debentures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	1
PO:1,2,3,4,5,6,7,8 ,9,10,11,12 PSO 1, 2	CO5: Understanding and complying with accounting standards, including Ind AS, IFRS, and international reporting standards.	SO5.1 SO5.2 SO5.3 SO5.4		Unit 5: Corporate Reporting 5.1, 5.2, 5.3, 5.4, 5.5	1

A K S UNIVERSILY Faculty of Engineering and Technology

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VII

Course Code:	PROJ-EE401
Course Title :	Project Work-I
Pre-requisite:	In depth Technical knowledge of various subjects of electrical engineering.
Rationale:	Projects provide the chance to put the knowledge gained throughout the course of the degree in use. For successful completion of this course, a thesis must be submitted, a seminar presentation must be made, and the whole work must be shown in public. The projects undertaken span a diverse range of topics, including theoretical, simulation and experimental studies.

Course Outcomes: after the completion of this course the students will be able to

PROJ-EE401.1: Demonstrate a sound technical knowledge of their selected project topic.
PROJ-EE401.2: Analyze, design and implement solution methodologies.
PROJ-EE401.3: identify problem and formulate a solution for it.
PROJ-EE401.4: utilize system approach to provide engineering solutions.
PROJ-EE401.5: Demonstrate the knowledge, skills and attitudes of a professional engineer.

Scheme of Studies:

				Schem	e of stu	udies (H	ours/Week)	Total
Cours e Categ ory	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits I
Projects	PROJ- EE401	Project Work-1	0	8	0	3	11	4

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

					Sch	eme of	Assessmer	nt (Marks)	End Tota Semester Assessme nt s 	
Course category	838 ctiv e 838 Cod e	Course Title	2 Progres s Report number 5 marks each (PR)	Progre Intern al Viva (2) 5 marks each (IV)			Attenda nce (AT)	· · · · · ·	Semester Assessme nt	(PRA
Projects	PR OJ- EE4 01	Project Work-I	10	10	10	15	5	50	50	100

Project Assignment:

The goal of Project Work I's goal is to give the student the opportunity to engage in investigative study in the broad field of Electrical Engineering or its applied field. This can be done entirely theoretically or practically, or it can involve both. The Department will assign the work in two or three semesters. The work will be assigned by the Department on an individual basis or between the groups of two or three students under the guidance of project supervisor. It is anticipated that this will give the student or students a strong start in R&D work. Typically, the assignment will consist of:

- **1.** Survey and study of published literature on the assigned topic.
- 2. Working out a preliminary Approach to the Problem relating to the assigned topic.
- 3. Conducting preliminary Analysis/ Modelling/ Simulation/ Experiment/ Design/ Feasibility.
- 4. Preparing a Written Report on the Study conducted for presentation to the Department.
- 5. Final Seminar, as oral Presentation before a departmental committee

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: PROJ-EE401 Course Title: Project Work-I

						Program	n Outco	omes					Program Spe	cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng kno wled ge	Prob lem Solvi ng	Desi gn Skill s	Labo rator y Skill s	Tea mwo rk	Com muni catio n Skill s	Ethic al and Prof essio nal Beha vior	Lifel ong Lear ning	Globa l and Societ al Impac t	Projec t Mana gemen t	Adapt ability	Profes sional Devel opme nt	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Demonstrate a sound technical knowledge of their selected project topic.	3	3	3	2	2	2	2	3	3	3	3	2	3	3
CO2 : Analyze, design and implement solution methodologies	3	3	3	2	3	2	1	2	2	2	2	2	3	3
CO3 : identify problem and formulate a solution for it.	3	3	3	2	3	2	2	3	3	2	3	3	3	3
CO4 : utilize system approach to provide engineering solutions.	3	3	3	2	2	2	1	3	2	2	2	2	3	3
CO5: Demonstrate the knowledge, skills and attitudes of a professional engineer	3	3	3	2	2	3	2	2	3	2	3	2	3	3

Legend:1-Low,2-Medium, 3-High

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Semester-VIII

Course Code:	PROJ-EE402
Course Title :	Project work-II
Pre-requisite:	In-depth knowledge about selected research area.
Rationale:	The objective of research project is to identify the Problems related to electrical engineering and develop a solution for respective problem. The students will be able to develop a technical mindset to deal different issues related to electrical engineering
	that directly or indirectly affects the society

Course Outcomes: after the completion of this course

PROJ-EE402.1: Identify the real world power system problems

PROJ-EE402.2: Analyze, design and implement solution methodologies

PROJ-EE402.3: Apply modern engineering tools for solution

PROJ-EE402.4: learn about different software development process models, software, engineering principles and develop an ability to apply them to software design of real life problems.
 PROJ-EE402.5: Write technical reports following professional athias

PROJ-EE402.5: Write technical reports following professional ethics

Scheme of Studies:

Course				Schem	e of stu	udies (H	ours/Week)	Total	
category	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)	
Projects	PROJ- EE402	Project work-II	0	24	0	6	30	12	

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

					Sch	eme of	Assessmer	t (Marks)		ter Mark ne s	
				Progre	ssive As	ssessmo	ent (PRA)	End	Total	
Course category	Cour se Code	Course Title	2 Progres s Report number	Intern al Viva (2)	Semi nar one	Proj ect activ	Attenda nce	Total Marks	Semester Assessme nt		
	Couc		5 marks each (PR)	5 marks each (IV)	(SR)	ity (PA T)	(AT)	(PR+IV+ SR+PAT+ AT)	(ESA)	+	
Projects	PRO J- EE4 02	Project Work- II	10	10	10	15	5	50	50	100	

Project Assignment:

The object of Project Work II & Dissertation is to enable the student to extend further the investigative study taken up under Project Work-I either entirely theoretical/practical, or combining both theoretical and practical work, and supervised by a department supervisor exclusively or in conjunction with a supervisor from an R&D lab or industry. It is anticipated that this will give the student an excellent training in technical leadership and R&D work. Typically, the assignment will consist of:

- 1. In depth study of the topic assigned in the light of the Report prepared under Project Work-I.
- 2. Review and finalization of the Approach to the Problem relating to the assigned topic.
- **3.** Preparing an Action Plan for conducting the investigation, including team work.
- 4. Detailed Analysis/Modelling/Simulation/Design/Problem Solving/Experiment as needed.
- 5. Final development of product/process, testing, results, conclusions and future directions.
- **6.** Preparing a paper for Conference presentation/Publication in Journals, if possible.
- 7. Preparing a Dissertation in the standard format for being evaluated by the Department.
- 8. Final Seminar Presentation before a Departmental Committee

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: PROJ-EE402 Course Title: Project Work-II

						Program		omes						cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng kno wled ge	Prob lem Solvi ng	Desi gn Skill s	Labo rator y Skill s	Tea mwo rk	Com muni catio n Skill s	Ethic al and Prof essio nal Beha vior	Lifel ong Lear ning	Globa l and Societ al Impac t	Projec t Mana gemen t	Adapt ability	Profes sional Devel opme nt	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO.1: Identify the real world power system problems	1	2	1	1	2	2	2	2	3	3	2	2	2	2
CO2 : Analyze, design and implement solution methodologies	3	3	3	3	3	2	3	2	2	3	2	3	3	3
CO3 : Apply modern engineering tools for solution	3	3	3	3	2	1	2	2	2	1	2	3	3	3
CO4 : learn about different software development process models, software, engineering principles and develop an ability to apply them to software design of real life problems	3	3	3	3	2	2	1	3	2	3	2	3	2	3
CO5: Write technical reports following professional ethics	1	1	1	1	2	3	3	3	3	2	2	3	1	1

Legend:1–Low,2–Medium, 3–High

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Semester-VIII

- Course Code: OJT-EE401
- Course Title : On job plant training
- **Pre-requisite:** Knowledge of subjects of electrical engineering, PLC and SCADA, experience with analog and digital systems, and the ability to design and troubleshoot electrical equipment.
- **Rationale:** Students get the chance to apply the abilities they have learnt in the classroom through internships. Students should also be given the chance to improve such abilities, get insight into the working world, and profit from the knowledge and counsel of mentors or supervisors.

Course Outcomes: after the completion of this course students will

- OJT-EE401.1: Engage in industry initiatives as part of their internship.
- **OJT-EE401.2:** Demonstrate how to use the sophisticated equipment and methods the used during their internship.
- **OJT-EE401.3:** Engage with employees of the industry while maintaining the discipline and engineering processes that are required.
- **OJT-EE401.4:** Gain knowledge of appropriate workplace conduct and strengthen their ability to operate in a team and with others.
- OJT-EE401.5: Create expert work reports and presentations.

Scheme of Studies:

Course	G			Total				
category	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Projects	OJT-EE01	On job plant training	0	0	0	0	0	12

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) andothers),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Scheme of Assessment:

			Scheme of Assessment (Marks)								
				End							
Course category	Cou rse Cod e	Cour se Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Clas s Acti vity any one (CA T)	Class Attenda nce (AT)	Total Marks (CA+CT+ SA+CAT +AT)	Semester Assessme nt (ESA)	Total Marks (PRA + ESA)	
Projects	OJT - EE4 01	On job plant traini ng	-	-	-	-	-	-	100	100	

Evaluation Method:

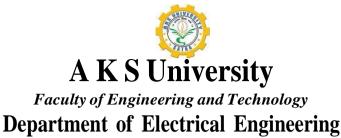
The student will give a seminar based on his/her training report, before an expert committee constituted by the Department of Electrical Engineering. The evaluation will be based on the following criteria:

- **1.** Quality of content presented.
- 2. Proper planning for presentation.
- **3.** Effectiveness of presentation.
- 4. Depth of knowledge and skills.
- **5.** Attendance record, daily diary, departmental reports shall also be analyzed along with the Internship Report.
- 6. Seminar presentation will enable sharing knowledge & experience amongst students & teachers and build communication skills and confidence in student

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: OJT-EE401 Course Title: On Job Training


	8					Program	m Outco	mes					Program Spe	cific Outcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2
Course Outcomes	Engi neeri ng know ledge	Probl em Solvi ng	Desig n Skills	Labo rator y Skills	Team work	Com muni catio n Skills	Ethic al and Profe ssion al Beha vior	Lifel ong Lear ning	Global and Societ al Impac t	Projec t Mana gemen t	Adapt ability	Profes sional Develo pment	Apply Electrical and interdisciplinary knowledge to analyze, design and manufacture products to address the needs of the society.	Apply state of the art tools and techniques to conceptualize, design and introduce new products, processes, systems and services.
CO1: Engage in industry initiatives as part of their internship.	2	2	1	1	3	2	2	2	3	3	2	2	2	2
CO2 : Demonstrate how to use the sophisticated equipment and methods the used during their internship.	3	2	1	2	2	2	1	2	2	2	2	2	2	2
CO3 : Engage with employees of the industry while maintaining the discipline and engineering processes that are required	2	2	1	1	3	2	2	2	2	1	2	3	2	1
CO4 : : Gain knowledge of appropriate workplace conduct and strengthen their ability to operate in a team and with others.	1	1	1	2	3	3	1	3	2	1	2	2	2	2
CO5: Create expert work reports and presentations.	1	1	1	1	2	3	2	3	1	2	2	2	1	2

Legend:1-Low,2-Medium, 3-High

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Skill Development Programs

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Electric Shock Workshop

1. INTROCUTION

An electric shock occurs when an electrical current enters the body. The effects can range from an unpleasant but harmless jolt of static electricity (like when you walk over a thick carpet on a dry day) to a lethal discharge from a power line. Most fatalities occur due to alternating current at housecurrent frequencies (60 hertz in North America, 50 hertz in Europe) and contact with conductors at less than 500 volts. High voltages are generally present only on utility company apparatus and supply lines, accessible only to trained personnel.

The physiological effects depend on the current (amperage) rather than voltage. The path the current takes through the body matters. Current density is highest along the direct path between points of contact. Common fatalities involve currents passing between an arm and legs, affecting organs within the chest. Electric shock can directly cause death by affecting the breathing center in the brain, heart paralysis, or ventricular fibrillation.

2. COURSE OBJECTIVE

objectives for an Electric Shock Prevention Workshop:

- Basic Knowledge of Electricity
- Hazards Associated with Electric Shock
- Means of Prevention
- Range of Effects
- Physiological Effects
- First Aid

3. LEARNING OUTCOMES

An Electric Shock Prevention Workshop can include

- Participants gain a deeper understanding of electrical hazards and the importance of safety precautions
- Participants acquire practical knowledge on safe practices when working with electricity.

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

- Participants are trained in first aid for electric shock victims. They learn how to respond promptly and effectively during an emergency.
- The workshop aims to reduce the occurrence of electric shock incidents in workplaces and homes. Participants leave with actionable steps to minimize risks and protect themselves and others.

4. COURSE CONTENT

Topics covered in an Electric Shock Workshop:

- Basic Knowledge of Electricity-They will understand the terms "amp," "voltage," and "Ohm
- Understanding Electricity Identifying hazards and injuries associated with electricity.
- Controlling Hazards- Safe practices when working with electrical equipment.
- First Aid for Electric Shock Victims-Steps to assist someone who has experienced electric shock.
- Risk Reduction-Actionable steps to minimize risks
- Hazards Associated with Electric Shock- explore scenarios where electric shock can occur
- Means of Prevention- safety practices to avoid electric shock while using power tools and cords.
- Range of Effects-Electric shocks can vary from a harmless jolt of static electricity (like when you walk over a thick carpet on a dry day) to a lethal discharge from a power line
- Physiological Effects-Electric shock can directly cause death by affecting the breathing center in the brain, heart paralysis, or ventricular fibrillation (rapid twitching of heart muscle).
- Industrial Visit-Industrial visits are crucial for students because they provide practical exposure to real-world manufacturing processes, machinery, and workplace environments.

Days	Days Titles
Titles	
Day 1	Basic Knowledge of Electricity
Day 2	Identifying hazards and injuries
Day3	Controlling Hazards

5. CLASS SCHEDULE

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Day4	First Aid for Electric Shock Victims
Day 6	Risk Reduction
Day 7	Hazards Associated with Electric Shock
Day 8	Means of Prevention, Physiological Effects
Day 9	Range of Effects
Day 10	Industrial Visit

6. EVALUATION PATTERN

Duration	02.00 Hrs
Maximum Marks	100 Marks
10 Multiple choice Questions (Written Type)	20 Marks
3 Very short answer type questions (Written Type)	30 Marks
Practical and viva	50 Marks

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

LED Bulb and ceiling fan installation and Repairing

1. **INTROCUTION:** -LED bulbs are energy-efficient lighting options commonly used in homes and offices. To install an LED bulb, turn off the power, remove the old bulb, and screw in the LED bulb securely. For ceiling fan repair, address issues like wobbling, noisy operation, unresponsiveness, slow speed, or broken blades. Regular maintenance ensures optimal performance.

2. COURSE OBJECTIVE

The course will give a brief on:

- Disassemble the Bulb:
- Identify the Faulty Component
- Celling Fan Repairing
- Wobbling: Adjust the balance by tightening loose screws or using a balancing kit.
- Noisy Operation: Lubricate the fan motor and check for loose parts.
- Non-Responsive: Check the wall switch, capacitor, and wiring.
- Slow Speed: Adjust the fan speed settings.
- Broken Blades: Replace damaged blades.

3. LEARNING OUTCOMES

- Upon successful completion of this course, students will to be able to understand the energyefficient lighting options and cost-effective LED bulb Installation.
- Learn about the different types of celling fan maintenance and repairing.

4. COURSE CONTENT

LED Bulb Installation: LED bulbs are energy-efficient lighting options commonly used in homes and offices. To install an LED bulb: Turn off the power to the existing bulb socket. Remove the old incandescent or CFL bulb. Screw in the LED bulb securely. Turn the power back on to test the bulb. Ceiling Fan Repair: Ceiling fans enhance air circulation and provide

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

comfort. Common ceiling fan issues: Wobbling: Adjust the balance by tightening loose screws or using a balancing kit. Noisy Operation: Lubricate the fan motor and check for loose parts.

Non-Responsive: Check the wall switch, capacitor, and wiring. Slow Speed: Adjust the fan speed settings. Broken Blades: Replace damaged blades.

5. CLASS SCHEDULE

Days	Days Titles				
Titles					
Day 1	Install an LED bulb				
Day 2	Comparison between old incandescent and CFL bulb				
Day3	Turn the power back on to test the bulb				
Day4	Ceiling Fan Repair				
Day 6	Lubricate the fan motor and check for loose parts.				
Day 7	Check the wall switch, capacitor, and wiring				
Day 8	Adjust the fan speed settings				
Day 9	Replace damaged blades				
Day 10	Energy conservation through fan and light				

6. EVALUATION PATTERN

Duration	02.00 Hrs
Maximum Marks	100 Marks
10 Multiple choice Questions (Written Type)	20 Marks
3 Very short answer type questions (Written Type)	30 Marks
Practical and viva	50 Marks

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

SOLAR PANEL INATALLATION AND MAINTENANCE

1. INTRODUCTION

Installing solar panels involves selecting the right system, assessing your roof, and hiring professionals. Routine maintenance includes keeping panels clean and monitoring energy production Certainly! Here are some common maintenance challenges associated with solar panels Dirt and Debris Accumulation, Shading Issues, Weather and Environmental Factors, Electrical Connections and Wiring, Inverter Maintenance.

2. COURSE OBJECTIVE The course will give a brief on:

- Understanding Solar PV Systems
- Safety Protocols and Equipment
- Installation Techniques
- Solar Panel Maintenance and Troubleshooting

3. LEARNING OUTCOMES

Upon successful completion of this course, students will to be able to understand the Understanding Solar PV Systems, System Design and Sizing, Installation Techniques and Testing and Maintenance. These skills empower professionals to contribute to renewable energy adoption and create a sustainable future.

4. COURSE CONTENT

topics typically covered in solar panel installation and maintenance courses:

- Solar Panels: Understanding different types (monocrystalline, polycrystalline, thin-film). Efficiency factors and performance characteristics.
- Solar Inverters: Role in converting DC power to AC for household use. Types (string inverters, microinverters, etc.).
- Batteries for Solar PV Systems: Energy storage solutions for off-grid or backup power. Maintenance and safety considerations.

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

- Racking of Solar Panels: Proper mounting techniques on roofs or ground. Ensuring stability and alignment.
- PV System Design Guidelines: Sizing the system based on energy needs. Shading analysis and optimal placement.
- PV System Installation Guide: Step-by-step installation process. Wiring, grounding, and safety protocols.
- Testing and Troubleshooting: Verifying system performance. Identifying and addressing issues.

5. CLASS SCHEDULE

Days	Topic Titles
Titles	
Day 1	Solar Panels
Day 2	Solar Inverters
Day3	Batteries for Solar PV Systems
Day4	Racking of Solar Panels
Day 6	PV System Design Guidelines
Day 7	PV System Installation Guide
Day 8	Testing
Day 9	Troubleshooting
Day 10	Safety Protocols and Equipment

6. EVALUATION PATTERN

Duration	02.00 Hrs
Maximum Marks	100 Marks
10 Multiple choice Questions (Written Type)	20 Marks
3 Very short answer type questions (Written Type)	30 Marks
Practical and viva	50 Marks

Faculty of Engineering and Technology Department of Electrical Engineering Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

> Value Added Programs

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Advance Electrical Machine Maintenance and Testing

Course Details

Course Name: Electrical Machine Maintenance and Testing **Contact Hours:** 6 weeks 40 Hours (30 Hours Teaching + 10 Hours of Workshop) **Duration:** 30 hours

Importance of Course

Electrical maintenance is the process of inspecting, testing, monitoring and replacing all electrical parts as required, using hand tools, thermal imaging, computerized programs and special measurement devices, to keep systems and machines working efficiently and safely It is the process of ensuring that electrical equipment is kept in good working order This includes inspecting, testing, and repairing electrical equipment as necessary to prevent problems that could lead to a loss of power or an electrical fire.

Course Objective:

The Electrical Machine Maintenance and Testing course at AKS University provides students with a comprehensive understanding of the rating and Fault of electrical Machine. Students will learn about the Fault prediction and technique used to maintenance it effectively.

Course Description:

This course provides maintenance about the various type of Machine.Machine is kept in good working condition through maintenance activity. Maintenance activity is a repairing and maintaining work is used for any electrical and mechanical equipment. When a equipment is installed then after passing sometimes like as three months then list of all we will have to health check. If any fault minor or major is present then it will be rectified through maintenance activity. Through a combination of illustrated lectures, examples and exercises, students will learn how electrical systems work, how to maintain electrical safety, and how to install and troubleshoot common electrical equipment.

Scope of this Course:

- Regular monitoring.
- Increase Good Quality production
- Safety
- Preventive Maintenance plan
- Public Awareness and Education: Raising awareness among the students and the general public about the impacts of Maintenance and Heavy Machine Installation. Educational programs can promote best practices, technological advancements, and policy initiatives.

Course Outcomes: After the completion of this course the student will be able to understand the following points:

- This subject will give general introduction Installation of Small and large machine.
- To know about the role and importance of Equipment's, relay and circuit breaker.

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

• To learn the basic techniques used in repairing and maintenance.

Main Objectives for Students:

The student learns about the various type of connection like single phase and three phase connection. They get practical experience regarding electrical equipment maintenance testing and trouble shooting.

Course Contents:

- Electrical Fundamentals- Basic Tools, personal protective equipment, Series, parallel, Delta and Star connection, Capacitor and inductor Association: series and parallel, Generation of DC, Single and three phase AC and Their Circuit operating principle
- Measuring and Testing- How to measure Ω, A, V, W and rpm, Attention when measuring Ω, A, V. Multimeter, Clamp on meter, Oscilloscope, Power quality and phase sequence meter, Insulation Resistance meter, how to measure insulation resistance in motor, transformer and MV/HV Insulator, How to choose Installation resistance in motor, Transformer and MV /HV Insulator, How to choose Installation resistance test voltage and Analyze results, Simulation of Ω, A, V, W, Hz Metering wave analyzer with Oscilloscope.
- Basic Skill and Knowledge for electrical Circuit trouble shooting
- Electrical Schematic Diagram Symbology, Voltage Levels used in LV Electrical Circuits, Local and Remote Control, Manual and Automatic Control, Sensors and Transducers, Power, Control and Signalling Circuits: Contactors, Relays, Interlocks, etc. Fuse, Circuit Breaker, Overload, Voltage and Frequency Relays Electrical Timer and Latch Relays, Electrical Switchboards Accessories: Terminal Block, Din Rail, Cable Trunking, Buttons, Switches, Selectors, Siren, Signalling LED, Design of Power, Control and Signalling Circuits ,AC and DC Motor Starting and Speed Control Methods, Example 1: Star-Delta Stater, Example 2: DC Motor with Separate Excitation Starting, Fundamental Rules for Creating and Reading Electrical Diagrams, Basics of Ladder Diagram and PLC Programming, Power, Control and Signalling Circuit Design
- Maintenance, Testing and troubleshooting of common electrical equipment's- Trouble shooting internal and external fault, Instruments and accessories for trouble shooting. Trouble shooting charts
- Safety- fire extinguisher, Electric shock, Accident in plant

Award of Certificate

The student will be evaluated through attendance, assignments, quizzes and a final test. The student must secure a minimum of 60% of the total marks to get the course completion certificate.

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

AUTOCAD ELECTRICAL

Course Name: Electrical Autocade **Contact Hours:** 6 weeks/ 40 Hours (30 Hours Teaching + 10 Hours of Workshop) **Students Strength:** 30

Importance of course

This course is designed for new users who require comprehensive training in AutoCAD® Electrical software. This hands-on course focuses on how to build intelligent ladder diagrams and panel layouts, and how to leverage this intelligence. The course provides an overview of many AutoCAD Electrical utilities designed to enable users to quickly build and manage electrical controls drawings.

Course Objective:

The primary objective of this course is for students to learn the basic commands necessary for creating professional electrical-controls drawings with AutoCAD Electrical software. After completing this course, students will be able to:

- Navigate the AutoCAD Electrical user interface.
- Use the fundamental features of AutoCAD Electrical.
- Build intelligent ladder diagrams and panel layouts.
- Create, view, and edit the project settings and properties.
- Extract data from drawings into reports formatted to match user's standards.
- Insert and edit parametric PLC modules, nonparametric PLC modules, and stand-alone PLC I/O points.

Course Description

- Line, Circle, Erase, Undo, Redo, Zoom Pan, Rectangle, Move, Copy, Area
- Function key, Snap & Settings
- Offset, Extend, Trim
- Line type LT & Lt scale
- Hatching & Gradient & Editing
- Ellipse (Centre and Axis-end) & Ellipse Arc , Arc, Spline, Solid, Donut
- Polygon, Polyline & Pedit, Fillet, Chamfer, Mirror, Rotate, Scale, Stretch, Join, Array
- Break, Grip
- Text, Table, Data Link to Excel
- Block (making & inserting), Attribute definition, Dynamic Block Editor
- Point, Mpoint, Ddptype, Divide, Measure, Layer), Layer tools, Setting of Units, Explode.
- Introduction of 3D modeling
- Viewports
- Surfacing & setting (Rulesurf, Revsurf, Tabsurf, Edgesurf)
- Extrude, Revolve, Sweep, Loft, Presspull, Polysolid, 3Dpoly

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

- Solids Editing (Sunstract, Union, Intersect, Shell, Operation on Edges & Faces)
- UCS Setting
- 3D Operation (3D Array, Mirror 3D, Rotate 3D, Slice, Interference)
- Layout Setting
- Plot
- Rendering, Lighting, Texturing

Scope of this Course:

Design and collaborate with flexibility

Work the way you want. Stay connected to projects with one AutoCAD experience on desktop, web and mobile to capture, share and review ideas on the go.

Manage design data across projects

Reliably streamline document review and approval workflows with Autodesk Docs, our cloudbased document management and common data environment available in the AEC Collection.

Course Outcomes: After the completion of this course the student will be able to understand the

following points:

Design across Project

Data with flexibility

Layout Setting and Tags

Main Objectives for Students:

The student learn about the various type of Command and design can be prepared by the Other engineers. Able to design single sine diagram for domestic wiring and industrial warning.

Course Contents:

- 1. Basics of electrical design engineering
 - a. Representation of electrical symbols
 - b. Design of lighting fixture Installation on platform
 (ii) Open area flood light fixture
 (iii) Street Light Fixture
 (iv) Floodlight mast
 - (v)more...
- 2. Design of Radial Systems
- 3. Design of SLD(Single line diagrams) (i)Basic lighting SLD (ii) Detailed SLD
- 4. Design of Control Schematics

 (i)DOL starter
 (ii)Forward Reverse Starter
 (iii)Star Delta Starter
 (iv)More
- 5. Electrical panels
- 6. Power Diagrams
- 7. Sub-station layout

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

- 8. Using PLC I/O Modules
- 9. Design of various Electrical machine, Transformers, induction machines-single phase and three phase, DC machines, etc

Award of Certificate

The student will be evaluated through attendance, assignments, quizzes and a final test. The student must secure a minimum of 60% of the total marks to get the course completion certificate.

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Solar Pannel Installation and Maintenance

Course Details

Course Name: Solar Pannel Installation and Maintenance **Contact Hours:** one weeks 30 Hours (10 Hours Teaching + 20 Hours of Workshop) **Students Strength:** 49

Importance of Course

This is a skill-oriented course in the study of solar photovoltaic (PV) cells, modules, and system components; electrical circuits; PV system design and sizing for use on homes, commercial building etc., understanding energy conversion from sunlight to electricity, and working with solar conversion equipment. This Course will give students the book knowledge and hands on experience needed to become entrepreneur / self-employed.

Course Objective:

- Develop highly skilled and technically qualified rooftop solar photovoltaic installer, and also give them a pathway towards becoming a successful professional and an entrepreneur.
- Establish a technical and administrative framework to train and certify 10,000 Rooftop Solar PV Installers per year throughout the country.
- Foster100 partnering training centers and empower them by building their internal human resource and infrastructural capacities.
- Translate global knowledge and national experience into local learning through standardized and regularly updated course curriculum and content.

Course Description

Rooftop Solar PV Installation is a platform to develop and promote solar capabilities in training and educational institutions by standardizing curriculum and content, assisting in setting up training infrastructure, monitoring training quality and certifying the successful technicians.

Scope of this Course:

The solar energy industry is booming. Since 2009, the amount of solar energy connected to the grid has increased more than 35-fold, reaching 62.5 GW today. This expansion has resulted in the creation of thousands of new solar industry jobs, with more than 240,000 people currently employed and projections of major growth in the future.

Course Outcomes

- Develop a knowledge bank
- Obtain technical and other capacity requirements from the solar industry
- Obtain learnings about the sector locally and globally from experts
- Obtain requirements from government, utilities and statutory bodies
- Process the information and knowledge into simple deliverable vocational material

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Develop capacities

- Guide educational and training institutions to set up relevant learning infrastructure
- Train trainers and provide teaching material with continuous upgradation and support
- Through competent trainers, develop skilled technicians in a decentralized manner
- Monitor the overall development and delivery process and in the process unify technical standards and aspects for the sector
- Standardize the teaching-learning process
- Provide skilled workforce to the sector to meet its targets

Course Contents:

- Basics of Solar Energy and Electrical Concept
- Identification and use of different tools and tackles used for installation of Solar PV syste m
- Site Survey for Solar PV Installation
- Interpretation of Drawings, Material Handling and storage of components on-site
- Installation of Electrical Components of Solar Photovoltaic Systems
- Install Civil and Mechanical Parts of Solar PV System
- Test & Commission Solar PV System

Course Outcomes:

Upon completion of this course, the student will be able to:

- Demonstrate knowledge of and apply key solar electric system terms and concepts, Size and design a photovoltaic system.
- Mount, ground, position, install, wire and connect a photovoltaic system.
- Test voltage generated by photovoltaic system Operate & Maintain of Solar Power.
- Participants will learn different types of solar PV module and batteries used in solar PV plant.
- Design of solar PV Plant based on estimated loads.

Job Opportunities:

- Become entrepreneur / self-employed.
- Design Electrical Engineer Solar.
- Area Sales Manager-Solar Thermal & PV Products.
- Service-in-charge.

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program (Revised as on 01 August 2023)

Industrial Automation

Course Details

Course Name: Industrial Automation **Contact Hours**: 2 weeks/ 36 Hours (10 Hours Teaching + 26 Hours of Workshop) **Students Strength:** 30

Importance of Course

Industrial automation is a complex, dynamically evolving and utterly fascinating technology field. This guide covers the basics of industrial automation, including its main principles and concepts, technological solutions powering modern-day automation and their applications in the industrial environments.

In the modern world, the industrial automation is omnipresent across virtually all fields and niches of the economy. Automation systems allow manufacturing, engineering, construction, power generation and other processes laying at the core of the economy to function with increasing efficiency and productivity. Industrial automation today is going through a new major developmental boom, which is fueled by innovative technologies such as artificial intelligence (AI), cloud computing, Big Data, Internet of Things (IoT) and others

Course Objective:

The Industrial Automation course at Production site provides students with a comprehensive understanding of the management, cost Reduction, Efficiency and Productivity. Students will learn about the environmental impact of Society and the various techniques and technologies used for Monitoring and Industrial Safety.

Course Description:

This industrial automation training course is designed & developed by industrial professionals having decades of industrial experience in Automation Domain. This automation training course is designed based on practical approach i.e. 'Hands-On' State-of-the-art(PLCs, SCADA) equipment.

Scope of this Course:

The rear-view mirror-Because of the relatively small production volumes and huge varieties of applications, industrial automation typically utilizes new technologies developed in other markets. Automation companies tend to customize products for specific applications and requirements. So the innovation comes from targeted applications, rather than any hot, new technology.

New technology directions-Industrial automation can and will generate explosive growth with technology related to new inflection points: nanotechnology and nanoscale assembly systems; MEMS and nanotech sensors (tiny, low-power, low-cost sensors) which can measure everything and anything; and the pervasive Internet, machine to machine (M2M) networking.

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

The fully-automated factory-Automated factories and processes are too expensive to be rebuilt for every modification and design change – so they have to be highly configurable and flexible. To successfully reconfigure an entire production line or process requires direct access to most of its control elements – switches, valves, motors and drives – down to a fine level of detail. High-value-added products- proprietary products and knowledge offered through effective global service providers, tailored to specific customer needs.

Course Content:

This course, provides an overall exposure to the technology of Industrial Automation and Control. It covers topics such as:

- Advantage and architecture of automation systems
- Measurement systems (including sensors and signal conditioning)
- Discrete and continuous variable control systems
- Hydraulic, pneumatic, and electric actuators
- Industrial communication and embedded countinghouse Content
- Ladder Programming
- SCADA Design
- PLC and SCADA Communication
- PLC and Sensors Communication

Course Outcomes: After the completion of this course the student will be able to understand the following points:

- This subject will give general introduction of automation and practices involved in Creating programming in PLC, its Coding, use and importance.
- To know about the role and importance of SCADA
- To Learn about Communication between PLC and SCADA

Employability-

Industrial automation offers promising job prospects across various sectors. Here are some potential career paths:

- Automation Engineer: Automation engineers design, develop, and maintain automated systems, including PLCs (Programmable Logic Controllers), SCADA (Supervisory Control and Data Acquisition) systems, and robotics. They work in manufacturing, automotive, pharmaceuticals, and other industries.
- **Control Systems Engineer:** Control systems engineers focus on designing and implementing control algorithms for industrial processes. They optimize efficiency, safety, and reliability of systems.
- **Robotics Engineer:** Robotics engineers specialize in designing, programming, and maintaining robotic systems used in manufacturing, logistics, and healthcare. They work on tasks like robot kinematics, vision systems, and motion planning.
- **Maintenance Technician:** Maintenance technicians troubleshoot and repair automated equipment. They ensure smooth operation and minimize downtime.
- **Process Automation Specialist:** These professionals improve production processes by implementing automation solutions. They analyze data, identify bottlenecks, and

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

optimize workflows.

- **Industrial IT Specialist:** Industrial IT specialists manage networks, cybersecurity, and data communication in automated systems. They ensure data integrity and system reliability.
- **Field Service Engineer:** Field service engineers install, maintain, and repair automation equipment on-site. They travel to different locations to support clients.
- **Consultant/Project Manager:** Consultants and project managers oversee automation projects. They plan, budget, and coordinate implementation.
- **Research and Development (R&D):** R&D roles involve creating innovative automation solutions. These professionals work on cutting-edge technologies.
- **Energy Management Specialist:** Energy management specialists optimize energy usage in automated systems. They focus on sustainability and cost reduction.

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Faculty of Engineering and Technology Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

IOT application in Smart city

Course Details

Course Name: IoT application in Smart city Contact Hours: 6 weeks/ 40 Hours (30 Hours Teaching + 10 Hours of Workshop) Students Strength: 50

Importance of Course

Smart cities are a technical solution to help city officials meet urban planning goals. Learn how IoT provides the foundation for smart cities and how connected solutions can help officials prove their impact and improve the lives of citizens.

Course Objective:

India predicted that by 2050, about 70% of the world's population will live in urban areas. This rapid urbanization will put enormous pressure on city officials to ensure their infrastructure can handle the demands of a growing population.

Without control over air quality, energy, transportation, building systems, and other critical facets of urban life, city officials will struggle to gather the data they need to improve infrastructure, implement smarter regulations, and foster a high quality of life. The idea of a "connected" or smart city changes that.

Course Description:

The Internet of things (IOT) is a field of study that covers physical objects that have Sensors, Processing Ability, software and other technologies that connects and exchange data with other such devices over the internet or other communication networks. Arduino is an opensource electronic platform that is based upon easy-to-use hardware and software. This programming course you to the basics of Arduino and explains how to use python

Course Contents:

Module 1 Interoperability and Arduino

Interoperability and Arduino Programming-In this module, we will introduced to interoperability in the internet of things(IoT). You will also be introduced to the basics of Arduino programming and the integration of sensor and actuators with the Arduino platform

Module 2 Python Programming and Raspberry Pi

In this module, You will be introduced to the python Programming language, you will also be introduced to Raspberry Pi, its importance in the development of internet of things and the implementation of IoT with Raspberry

Module 3Arduino communication with different sensors and application to develop a smart city

Department of Electrical Engineering

Curriculum of B.Tech. (Electrical Engineering) Program

(Revised as on 01 August 2023)

Main Objectives for Students:

- **Promote Economic Development:** Smart cities aim to boost economic growth by creating an environment conducive to business, innovation, and investment. This includes attracting industries, startups, and job opportunities.
- **Improve Quality of Life:** Smart cities prioritize residents' well-being. They enhance public services, healthcare, education, and safety. Technology-driven solutions improve daily life for citizens.
- **Generate Employment:** By fostering economic growth and attracting businesses, smart cities create employment opportunities. Job creation benefits both skilled professionals and marginalized communities.
- **Increase Income Equity:** Smart cities strive to reduce income disparities. They focus on inclusive development, ensuring that benefits reach all segments of society, especially those in need.
- **Sustainable Growth:** Smart cities balance growth with environmental conservation. They adopt eco-friendly practices, efficient resource utilization, and sustainable infrastructure.

Award of Certificate

The student will be evaluated through attendance, assignments, quizzes and a final test. The student must secure a minimum of 60% of the total marks to get the course completion certificate.

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering