Curriculum Book

and

Assessment and Evaluation Scheme

based on

Outcome Based Education (OBE)

and Choice-Based Credit System (CBCS)

in Master of Science in Biotechnology M. Sc. (Biotechnology)

2 Year Degree Program

Revised as on 01 August 2023 Applicable w.e.f. Academic Session 2023-24

AKS University

Satna 485001, Madhya Pradesh, India

Faculty of Life Sciences and Technology Department of Biotechnology

Dr. Kamlesh Choure Professor & Head Department of Biotechnology AKS University, Satna (MP) 485001

Faculty of Life Sciences AKS University, Satna (M.R.

BAchoparde

Professor B.A. Chopade Vice - Chancellor AKS University Satna, 485001 (M.P.)

Curriculum & Syllabus of M.Sc. (Biotechnology) Program

(Revised as of 2023)

CONTENTS

Sr.	Item	Page No					
1	Foreword	i					
2	Vice Chancellor Message						
3	Preface	iii					
4	Introduction	1					
5	Vision & Mission of Biotechnology Department	1					
6	Programme Educational Objectives (POE)	2					
7	Programme Outcome (POs)	2					
8	Program Specific Outcomes	2					
9	General Course Structure and Credit Distribution	3					
10	Course code and definition	3					
11	Category-wise Courses	4					
12	Semester-wise Course Structure	5					
13	Semester-wise Course details	5					
	A. Semester I	8-86					
	B. Semester -II	87-168					
	C. Semester -III	169-307					
	D. Semester -IV	308-332					

AKS University Faculty of Life Sciences and Technology

Department of Biotechnology Curriculum of M.Sc. (Biotechnology) Program (Revised as on 2023)

Foreword

I am delighted to see that the Biotechnology Department's redesigned curriculum for the M. Sc. (Biotechnology) Programme smoothly incorporates the newest technological developments while adhering to UGC criteria. The curriculum has been redesigned with consideration to include the Sustainable Development Goals and NEP-2020 guidelines.

The alignment of course outcomes (COs), Programme Outcomes (POs), and Programme Specific Outcomes (PSOs) has been intricately executed, aligning perfectly with the requisites of NEP-2020 and NAAC standards. I hold the belief that this revised syllabus will significantly enhance the skills and employability of our students.

With immense satisfaction, I hereby present the revised curriculum for the M. Sc. (Biotechnology) program for implementation in the upcoming session.

Er. Anant Soni Pro Chancellor & Chairman AKS University, Satna

01 August 2023

AKS University, Faculty of Life Sciences and Technology

Department of Biotechnology Curriculum of M.Sc. (Biotechnology) Program (Revised as on 2023)

From the Desk of the Vice-Chancellor

AKS University is currently undergoing a process to revamp its curriculum into an outcome-based approach, to enhance the teaching and learning process. The foundation of quality of quality education lies in the implementation of a curriculum that aligns with both societal and industrial needs, focusing on relevant outcomes. This entails dedicated and inspired faculty members, as well as impactful industry internships. Hence, it is of utmost importance to begin this endeavor by crafting an outcome-based curriculum in collaboration with academia and industry experts.

This curriculum design should be informed by the latest technological advancements, market demands, the guidelines outlined in the National Education Policy (NEP) of 2020, and sustainable goals.

I'm delighted to learn that the revised curriculum has been meticulously crafted by the Biotechnology Department, in consultation with an array of experts from the Biotechnology industry, research institutes, and academia. This curriculum effectively integrates the principles outlined in the NEP-2020 guidelines, as well as sustainable goals. It also adeptly incorporates the latest advancements in Biotechnology manufacturing technology.

The curriculum tailored for the Indian biotechnology industry prioritizes the production of cost-effective, high-quality microbial products while emphasizing energy optimization. It integrates insights on waste heat recovery systems to minimize power consumption in biotechnological plants, fostering independent thinking among students for potential enhancements. This holistic approach not only equips students with essential knowledge but also nurtures a culture of innovation, preparing them to make meaningful contributions to the industry's advancement.

I am confident that the updated curriculum for M. Sc Biotechnology will not only enhance students' technical skills but also contribute significantly to their employability. During the process of revising the curriculum, I am pleased to observe that the Biotechnology department has diligently adhered to the guidelines provided by the UGC. Additionally, they have maintained a total credit requirement of 88 for the M. Sc. Biotechnology program.

It's worth noting that curriculum revision is an ongoing and dynamic process, designed to address the continuous evolution of technological advancements and both local and global concerns. This ensures that the curriculum remains responsive and attuned to the changing landscape of education and industry. AKS University warmly invites input and suggestions from industry expert technocrats and Alumni students to enhance the curriculum and make it more student-centered. Your valuable insights will greatly contribute to shaping an education that best serves the needs and aspirations of our students.

AKS University, Satna 01 August 2023 Professor B. A. Chopade Vice-Chancellor

Preface

As part of our commitment to ongoing enhancement, the Department of Biotechnology consistently reviews and updates its M. Sc. Biotechnology curriculum every three years. Through this process, we ensure that the curriculum remains aligned with the latest technological advancements, as well as local and global industrial and social demands.

During this procedure, the existing curriculum for the M. Sc. Biotechnology Program undergoes evaluation by a panel of technocrats, industry specialists, and academics. Following meticulous scrutiny, the revised curriculum has been formulated and is set to be implemented starting from August 01, 2023. This implementation is contingent upon the endorsement of the curriculum by the University's Board of Studies and Governing Body.

This curriculum closely adheres to the UGC model syllabus distributed in May 2023. It seamlessly integrates the guidelines set forth by the Ministry of Higher Education, Government of India, through NEP- 2020, as well as the principles of Sustainable Development Goals. To foster the holistic skill development of students, a range of practical activities, including Hands-On Training, Industrial Visits, Project planning and execution, Report Writing, Seminars, and Industrial on-the-job training, have been incorporated. Furthermore, in alignment with UGC's directives, the total credit allocation for the M. Sc. Biotechnology program is capped at 93 credits.

This curriculum is enriched with course components in alignment with UGC guidelines, encompassing various disciplines such as Fundamental Science Concepts: 24 credits, Engineering Science: 25 credits, Humanities and Social Sciences: 12 credits, Core Program Courses: 66 credits, Elective Program Courses: 9 credits, Open Electives: 9 credits, Project and Practical Training: 17 credits, Seminars: 3 credits, Indian Knowledge System: 2 credits, Sustainable Development Goals: 2 credits.

To ensure a comprehensive learning experience, detailed evaluation schemes and rubrics have also been meticulously provided.

For each course, a thorough mapping of Course Outcomes, Program Outcomes, and Programme Specific Outcomes has been undertaken. As the course syllabus is meticulously developed, various elements such as session outcomes, laboratory instruction, classroom instruction, self-learning activities, assignments, and mini-projects are meticulously outlined.

We hold the belief that this dynamic curriculum will undoubtedly enhance the independent thinking, skills, and overall employability of the students.

INTRODUCTION

OVERVIEW OF THE DEPARTMENT

The Department of Biotechnology was established in 2006 to provide excellent and sensible teaching with maximum practical and research exposure to create skilled and well-trained biotechnocrats and entrepreneurs as per academia and industry needs in the frontier areas of Microbiology and Biotechnology. We, at the Department of Biotechnology, endorse each student by providing them maximum practical approach to understanding their subjects in a better way of global standards and making them technologically advanced and ethically of high quality to serve society.

VISION

The vision of the department is to dedicate research to Human and Environmental welfare. To become a center of excellence for biotechnology education, research, training, and entrepreneurship under the direction of good scientific principles, excellent instruction, and an ambition for continuous improvisation.

MISSION

At the Biotechnology Department, our mission is to be at the forefront of biotechnological innovation, research, and education. We are committed to advancing the frontiers of biotechnology through cutting-edge research, interdisciplinary collaboration, and the development of skilled and ethical professionals. We aim to address global challenges, improve human well-being, and contribute to sustainable development through the application of biotechnological solutions by following aspects:

- M1. To develop a strong Biotechnology program based on quality education, research, and training.
- M2. To impart quality education to the students and enhance their skills which will make them globally competitive.
- M3. To create trained biotechnology professionals who can contribute to the continuous improvement of biotechnological services and products.
- M4. To design scientific and/or technical resources as per biotechnology industry demands.
- M5. To develop as a benchmark University in emerging technologies.
- M6. To provide a state-of-the-art teaching-learning process and R&D environment.
- M7. To harness human capital for sustainable competitive edge and social relevance.

PROGRAM OUTCOMES

- **PO1:** Students will able to understand all the fundamentals of the field of biotechnology while gradually introducing them to all the essentials of the field through solid practical instruction and exposure to the most cutting-edge ideas
- **PO2:** Exhibit technical proficiency in the use and upkeep of advanced apparatus so that the student would be qualified to start a domain-related job as well as discipline-specific study.
- **PO3:** Write and present a substantial technical report/research document.
- **PO4**: Apply research-based knowledge and biotechnological methods to investigate complex biological
- Problems related to energy, environment, health, safety, and society following ethical principles.
- PO5: Pursue life-long learning to enhance knowledge and skills for professional advancement

PROGAM EDUCATIONAL OBJECTIVES

PEO1: Pursue successful industrial, academic, and research careers in specialized fields of Biotechnology

PEO2: Apply the knowledge of advanced topics in Biotechnology to meet industrial and research needs

PEO3: Use modern computational, and analytical tools and techniques to address biotechnological challenges.

PEO4: Identify issues related to ethics, society, safety, and environment in the context of Biotechnology

applications

PEO5: Engage in lifelong learning for career and professional growth for society and the environment

Program Specific Objectives (PSOs) for M.Sc. Biotechnology program

PSO1 Consolidation of the fundamentals and principles of basic and applied aspects of biotechnology to serve society.

PSO2 Develop a technical skill set for generating, analyzing, and interpreting scientific data for employability, entrepreneurship, and research aptitude.

PSO3 Introducing scientific cognition, critical thinking, and analysis using in-age computational tools to develop competence for academic research and industry at par with the global scenario.

General Course Structure and Credit Distribution

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
1 Hr. Practical (P) per week	0.5 Credit
2 Hours Practical (P) per week	1 Credit

B. Range of Credits:

As per the UGC model Curriculum for the PG Degree Course in Biotechnology, the total number of credits proposed for the Two-year M. Sc. (Biotechnology) is kept as 92.

C. Structure of PG Program in Biotechnology:

The structure of the PG program in Biotechnology shall have essentially the following categories of courses with the breakup of credits as given:

S. No.	Category	Breakup of Credits
2.	Basic Science Courses	20
3.	Discipline Specific Courses	26
4.	Program Core Courses (Branch specific)	21
5.	Professional Elective Courses (Branch specific)	6
6.	Open Elective Courses (from Humanities, Technical Emerging or other Subjects)	-
7.	Project work, Seminars and Internships in Industry or elsewhere, or research courses	15
	TOTAL	88

D. Course Code and Definition:

Course code	Definitions
L	Lecture
Т	Tutorial
Р	Practical

С	Credits							
HS	Humanities & Social Science Courses							
BSC	Basic Science Courses							
DSC	Discipline Specific Courses							
PCC	Program Core Courses							
PE	Professional Elective Courses							
OE	Open Elective Courses							
AU	Audit Courses							
EEC	EEC Employment Enhancement Courses (Project/Summer Internship/Seminar)							

• Course level coding scheme: Three-digit number (odd numbers are for the odd semester courses and even numbers are for even semester courses) used as a suffix with the Course Code for identifying the level of the course. The digit at hundred's place signifies the year in which the course is offered. e.g. 101, 102 ... etc. for the first year. 201, 202 etc. for second year. 301, 302 ... for third year.

F. Evaluation Scheme (Suggestive only):

G. Mapping of Marks to Grades

Each course (Theory/Practical) is to be assigned 100 marks, irrespective of the number of credits, and the mapping of marks to grades may be done as per the following table:

Range of Marks	Assigned Grade
91-100	AA/A ⁺
81-90	AB/A
71-80	BB/B^+
61-70	BC/B
51-60	CC/C ⁺
46-50	CD/C
40-45	DD/D
< 40	FF/F (Fail due to less marks)
-	F^{R} (Fail due to shortage of attendance and therefore, to repeat the
	course)

Department of Biotechnology

Scheme and Syllabus

The department provides a two-year M.Sc. program in Biotechnology using a Choice Based Credit System (CBCS) that consists of four semesters. The regulations for the M.Sc. in Biotechnology provided by AKS University under the Choice Based Credit System (CBCS) are shown here.

	Semester I							
Sl. No.	Code	Category	Subject	L	Т	Р	С	
1	52BT101	BSC	Cell Structure & Dynamics	3	-	-	3	
2	52BT102	BSC	Microbial Technology	3	-	-	3	
3	52BT103	BSC	Advanced Biochemistry	3	-	-	3	
4	52BT104	DSC	Biostatistics & Computer					
			Application	2	1	-	3	
5	52BT105	BSC	Molecular Biology	3	-	-	3	
6	52BT106	DSC	Bioanalytical Tools and Techniques	3	_	_	3	
7	52BT151	BSC	Cell Structure & Dynamics Lab	-	-	2	1	
8	52BT152	BSC	Microbial Technology Lab	-	-	2	1	
9	52BT153	BSC	Advanced Biochemistry Lab	-	-	2	1	
10	52BT154	DSC	Biostatistics & Computer Application Lab	-	-	2	1	
11	52BT155	BSC	Molecular Biology Lab	-	-	2	1	
12	52BT156	DSC	Bioanalytical Tools and Techniques Lab	-	-	2	1	
			•					
			TOTAL	17	-	12	24	
			Semester II					
Sl. No.	Code	Catego ry	Subject	L	Т	Р	С	
1	52BT201	BSC	Immunology	3	_	-	3	
2	52B1202	DSC	Computational Biology & Bioinformatics	3	1	_	4	
3	52BT203	DSC	Stem Cell and Tissue Engineering	2	1	-	3	
5	52BT204		Animal Biotechnology	3	-	-	3	
6	52BT205	DSC	Industrial Microbiology	3	-	-	3	
	52BT206	PCC	Plant Biotechnology	2	1	_	3	
7	52BT251	BSC	Immunology lab	-	-	2	1	
8	52BT252	DSC	Computational Biology & Bioinformatics lab	_	-	2	1	

9	500 50	DSC	Stem Cell and Tissue			2	
	52BT253		Engineering lab				1
10	52BT254		Animal Biotechnology lab	otechnology lab		2	1
11	52BT255	52BT255 DSC Industrial Microbiology lab				2	1
12	52BT256	PCC	Plant Biotechnology lab			2	1
			TOTAL	16	3	12	25
			Semester III				
SI. No.	Code	Catego ry	Subject	L	Т	Р	С
1	52BT301		Environmental Biotechnology	3		_	3
2		PCC	Genetic Engineering &				
	5201502		Bionanotechnology	3	1	-	4
3	52BT303	PCC		3	-	_	3
4	52BT304	04 DSC Scientific Writing and Patenting Process		3	1	-	4
5	52BT305	PE		2	_	_	2
6	52BT306	PE	Elective 2 (Group A/B/C)	2	-	-	2
7	52BT351	PCC	Environmental Biotechnology lab	-	-	2	1
8	52BT352	PCC	Genetic Engineering & Bionanotechnology lab	-	_	2	1
9	52BT353	PCC	Agriculture Biotechnology lab	_	_	2	1
10	52BT354	DSC	Scientific Writing and Patenting Process lab	_	_	2	1
11	52BT355	PE	Elective 1 (Group A/B/C) lab	_	_	2	1
12	52BT356	PE				2	1
			Elective 2 (Group A/B/C) lab	-	-	10	
			TOTAL	16	2	10	24

LIST OF ELECTIVE SUBJECTS Semester III

Grou p	Name of Specialization	Elective no.	Name of subjects					
•		1	52BT305-A Design and Operation of Bioreactors					
А	Industrial	2	52BT306-A Down Stream Processing					
	Biotechnology	1	52BT355-A Design and Operation of Bioreactors Lab					
		2	52BT356-A Down Stream Processing Lab					
		1	52BT305-B Pharmaceutical Biotechnology					
В	Pharmaceutical Biotechnology	2	52BT306-B Vaccine Biotechnology and Drug Action					
		1	52BT355-B Pharmaceutical Biotechnology Lab					
		2	52BT356-BVaccine Biotechnology and DrugAction lab					
		1	52BT305-CMolecular Modelling andDrug Designing					
~		2	52BT306-C Bioprogramming and Soft Computing Techniques					
C	Bioinformatics	1	52BT305-CMolecular Modelling andDrug Designinglab					
		2	52BT306-CBioprogramming andSoft Computing Techniques lab					
Note: S	Students can choose o	nly one grou	p of the above and study both the subjects of the group					
		S	Semester IV					

Sl. No.	Code	Subject	L	Т	Р	С		
1	52BT451	6 Months Project work/ Dissertation	0	0	30	15		
		TOTAL	0	0	30	15		
	Total Credits=88							

Semester 1

Program Name	Master of Science in Biotechnology (M.Sc. (BT)					
Semester	Ι					
Course Code:	52BT101					
Course title:	Cell structure and dynamics Curriculum Developer: Chahana Desai, Teaching Associate					
Pre-requisite:	Students should have basic knowledge and understanding about structure and historical perspective about cell.					
Rationale:	The students studying Cell structure and dynamics would possess fundamental understanding about Cell structure, function, transport across the membrane and to understand how different cells communicate with one another through comprehending distinct signaling pathways and their function in cancer.					
Course Outcomes (COs):	 their function in cancer. CO1-52BT101.1- The student can comprehend how the cell, the fundamental structural and functional unit of life, is furnished with machinery to carry out operations CO2-52BT101.2- Understanding of the physical characteristics of cell organelles and machinery. CO3-52BT101.3- Understand the working principles of cellular phenomena. CO3-52BT101.4- Analyze the detailed concept of cell signaling and its regulation. CO3-52BT101.5- Elucidate the cellular development in various living organism and the knowledge about Cancer in detail. 					

Scheme of Studies:

		Course Title	Scheme of studies (Hours/Week)					
Board of Study	CourseCode		C1	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)
Basic Science Course (BSC)	52BT101	Cell structure and Dynamics	3	2	1	1	7	3+1=4

Legends:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);
SW: Sessional Work (includes assignment, seminar, mini project etc.);
SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)							
				Progre	essive Asse	essment (PF	RA)		End	Total Marks
Board of Study	(Ourse 11	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class act any one (CAT)	Class Attendance	Total Marks (CA+CT+CAT+SA+AT)	Semester Assessmen t (ESA)	
BSC	52BT101	Cell structure and Dynamics	15	20	5	5	5	50	50	100

Scheme of Assessment: Practical

					So	cheme of Assessr	nent (Marks)		
					Progressive As	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
BSC	52BT151	Cell structure and Dynamics	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the	Approximate Hours						
course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory		Item	Cl	LI	SW	SL	Total
Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Approx. Hrs	09	02	01	02	14
progresses, students should showcase their mastery of Session Outcomes (SOs),							
culminating in the overall achievement of Course Outcomes (COs) upon the							
course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT101.1-	SO1.1	LI1.1 To demonstrate the	Unit-1 Detailed overview of	SL1.1
An overview of cells and cell research.	Understand the basic knowledge about cell	structure of cell	cells and cell research	Historical perspective of cell.
	-		CI1.1	
			Origin and evolution of cell.	
	SO1.2 & SO1.3		CI1.2 & CI1.3	
	Concept of origin and		cell theory and experimental	
	evolution of cell		models.	
	SO1.4 & SO1.5		CI1.4 & CI1.5	SL1.2
	Understanding of cell		tools of cell biology.	Principle and
	theory and various			instrumentation of various
	instruments used in cell			tools used in cell biology.
	biology.			

SO1.6 & SO1.7 To understand the overall	CI1.6 & CI1.7 molecular composition of
composition of cell.	cells.
SO1.8 & SO1.9	CI1.8 & CI1.9
biosynthesis of cell	biosynthesis of cell
constituents.	constituents.

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	 Biosynthetic pathways for cell constituents. Experimental models to understand statements of cell theory
	SW1.2 Mini Project	Diagram of Instrumentation of different types of microscopy used to understand the structure of cell.
	SW1.3 Other Activities (Specify)	Find out the Visual aspects of how the cell evolved

This course syllabus illustrates the expected learning achievements, both at the course and s	session Approximate Hours
levels, which students are anticipated to accomplish through various modes of instruction inc	cluding
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Le	earning Item Cl LI SW SL Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes	
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclu	usion.

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-52BT101.2-	SO2.1	LI2.1 To demonstrate the	Unit-2 Cell	SL2.1
Acquire knowledge regarding	To Understand the detailed	various cell organelles in the	structure and	Study the various cell
detailed structure of cell and its	structure and function of	cell.	function:	organelles present in the
function.	various cell organelles		CI2.1	cell.
	present in the cell.		Structure and function of	
			Cell wall and plasma	
			membrane	
	SO2.2		CI2.2	
	To learn about the structure		Detailed structure and	
	and function of cell		function of Nucleus	
	organelles involved in			
	Bioenergetics and			
	metabolism			
	SO2.3		CI2.3	
	Elaborate the Types, structure		Types, structure and function	
	and function of the		of endoplasmic reticulumn	
	cytoskeleton		·	
	SO2.4		CI2.4	
	Elucidate the mechanism of		Structure and function of	

cell movement through the	Golgi apparatus,
microfibers and	
microfilaments.	
SO2.5	CI2.5
Formation, structure and	Formation, structure and
function of lysosomes.	function of lysosomes.
SO2.6	CI2.6
Structure and function of	Structure and function of
mitochondria and role in	mitochondria and role in
bioenergetics and	bioenergetics and
metabolism	metabolism
SO2.7	CI2.7
Structure and function of	Structure and function of
chloroplast.	chloroplast.
SO2.8	CI2.8
structure and function of	structure and function of
peroxisomes	peroxisomes
SO2.9	CI2.9
types, structure and function	types, structure and function
of cytoskeleton an	of cytoskeleton an
mechanism of cell	mechanism of cell
movement.	movement.

Suggested Sessional	SW2.1 Assignments	1. Diagram of plant cell and animal cell
Work (SW): anyone		2. Diagram of prokaryotic and eukaryotic cell.
	SW2.2 Mini Project	Detailed structure of cytoskeleton and show how they involved in cell movement
	SW2.3 Other Activities (Specify)	Show some visual content how cytoskeleton help in movement.

This course syllabus illustrates the expected learning achievements, both at the course and session levels,							
which students are anticipated to accomplish through various modes of instruction including Classroom	n						
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Item	Cl	LI	SW	SL	Total
progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall		Approx. Hrs	09	02	01	02	14
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Socian Autoomas (SAs)	Laboratory Instruction	Class room Instruction	Salf-Learning (SL)
Course outcome (CO)	Session Outcomes (SOs)	(LI)	(CI)	Self-Learning (SL)

CO3-52BT101.3- Gain an understanding of the various types of cell surface transport and cellular interactions	SO3.1 Elucidate Types of cellular transport	LI3.1 To demonstrate the transport of small molecules on cell surface.	Unit-3 Cell interaction and protein targeting: CI3.1 Cell surface-transport of small molecules	
	SO3.2 Various mechanisms of cell- cell interactions		CI3.2 Various mechanisms of cell- cell interactions	SL3.1 Basic concept of diffusion phenomena.
	SO3.3 & SO3.4 cell-cell interaction- adhesion junctions, gap junctions, plasmodesmata.		CI3.3 & CI3.4 cell-cell interaction- adhesion junctions, gap junctions, plasmodesmata.	SL3.2 Structure of cell organelles.
	SO3.5 & SO3.6 Elaborate the concept of protein targeting- nucleus, mitochondria, chloroplast, peroxisome.		CI3.5 & CI3.6 Protein targeting- nucleus, mitochondria, chloroplast, peroxisome.	
	SO3.7 molecular chaperons SO3.8 & SO3.9		CI3.7 molecular chaperons CI3.8 & CI3.9	
	SO3.8 & SO3.9 folding of polypeptides		CI3.8 & CI3.9 folding of polypeptides	

Suggested Sessional	SW3.1 Assignments	1. Differentiate between diffusion and osmosis.
Work (SW): anyone		2. Pathways of protein translocation.
		3. Mechanism of passive transport.
	SW3.2 Mini Project	Make a detailed diagram of functioning of different types of Cell Junctions
	SW3.3 Other	Get the practical knowledge about the mechanism of osmosis with experiment of raisin.
	Activities (Specify)	

This course syllabus illustrates the expected learning achievements, both at the course and session	Approximate	Hours					
levels, which students are anticipated to accomplish through various modes of instruction including							
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning		Item	Cl	LI	SW	SL	Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),		Approx. Hrs	09	02	01	02	14
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-52BT101.4-	SO4.1		Unit-4 Cell signaling and	

Analyze the detailed concept of	Elucidate the Basic		regulation	
cell signaling and its regulation.	concept of cell		CI4.1	
	Signaling mechanism and		Signaling molecules and	
	their receptor, function		their receptors, function	
	SO4.2		CI4.2	SL4.1
	pathways of intracellular		pathways of intracellular	characteristics of signaling
	signal transduction.		signal transduction.	molecules.
	SO4.3 & SO4.4	LI4.1 To demonstrate the	CI4.3 & CI4.4	SL4.2
	Understanding the cell	cell cycle phase.	Cell cycle- phases of cell	cell division and its types.
	cycle in detail with various		cycle.	
	phases and the regulation			
	aspect.			
	SO4.5		CI4.5	
	molecular events during		molecular events during cell	
	cell cycle.		cycle.	
	SO4.6 & SO4.7		CI4.6 & CI4.7	
	Regulation of cell cycle-		Regulation of cell cycle-	
	checkpoints, cyclins and		checkpoints, cyclins and	
	protein kinases.		protein kinases.	
	SO4.8 & SO4.9		CI4.8 & CI4.9	
	Elaborate the Basic		Cell death and renewal.	
	concept about cell death			
	and renewal mechanism.			

Suggested Sessional	SW4.1 Assignments	1. Write cell signaling pathway with required diagram.			
Work (SW): anyone		2. Describe briefly the cell death mechanism.			
	SW4.2 Mini Project	Draw a diagram of types of cell cycle with its phases and the checkpoints.			
	SW4.3 Other	1. Visual Presentation of cell signaling.			
	Activities (Specify)	2. Power point presentation of cell cycle regulation.			

This course syllabus illustrates the expected learning achievements, both at the course and session	Approximate Hours						
levels, which students are anticipated to accomplish through various modes of instruction including		<u> </u>					
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning	T4		Cl	LI	SW	SL	Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),	•	Hrs	09	02	01	02	14
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-52BT101.5-	SO5.1		Unit-5 Cellular development	SL5.1

Elucidate the cellular	To understand the	and cancer	Basics of developmental
development in various living	development of	CI5.1	biology.
organism and the knowledge	multicellular organisms- C.	Development of multicellular	
about Cancer in detail.	elegans.	organisms- C. elegans.	
	SO5.2 & CI5.3	CI5.2 & CI5.3	
	Development of	Development of multicellular	
	multicellular organisms-	organisms-Arabidopsis thaliana	
	Arabidopsis thaliana		
	SO5.4 & SO5.5	CI5.4 & CI5.5	
	Development of	Development of multicellular	
	multicellular organisms-	organisms-Drosophila	
	Drosophila melanogaster.	melanogaster.	
	SO5.6 & SO5.7	CI5.6 & CI5.7	
	Detailed knowledge about	Mutation- types and causes	
	mutation, its types and		
	mutagens.		
	SO5.8 & SO5.9	CI5.8 & CI5.9	SL5.2
	Give detailed mechanism,	Cancer as a multi evolutionary	Basic knowledge about
	types of Cancer and	process- tumor cells, proto-	cancer.
	carcinogens.	oncogenes, oncogenes, tumor	
		suppressor genes and	
		carcinogens.	

Suggested Sessional	SW5.1 Assignments	1. Development of Drosophila <i>melanogaster</i> .
Work (SW): anyone		2. Development of cancer.
	SW5.2 Mini Project	List out various carcinogens and its effect on development of cancer.
	SW5.3 Other	Search the videos about how cancer develops?
	Activities (Specify)	·

Course duration (in hours) to attain Course Outcomes:

Course Title: cell structure and dynami	cs		Course Code: 52BT101			
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)	
CO1-52BT101.1- An overview of cells and cell research.	9	2	2	1	14	
CO2-52BT101.2- Acquired the knowledge regarding	9	2	1	1	13	
detailed structure of cell and its function.						
CO3-52BT101.3- Gain an understanding of the various	9	2	2	1	14	
types of cell surface transport and cellular interactions.						
		10				

CO4-52BT101.4- Analyze the detailed concept of cell	9	2	2	1	14
signaling and its regulation.					
CO5-52BT101.5- Elucidate the cellular development in various living organism and the knowledge about Cancer in detail.	9	2	2	1	14
Total Hours	45	10	09	05	69

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Cell structure and dynamics

Course Code: 52BT101

Course Outcomes					
	Α	An	Ε	С	Total Marks
CO1-52BT101.1- An overview of cells and cell research.	2	1	1	1	5
CO2-52BT101.2- Acquired the knowledge regarding detailed structure of cell and its function.	2	4	5	1	12
CO3-52BT101.3- Gain an understanding of the various types of cell surface transport and cellular interactions.	3	5	5	1	14
CO4-52BT101.4- Analyze the detailed concept of cell signaling and its regulation.	2	3	5	1	11
CO5-52BT101.5- Elucidate the cellular development in various living organism and the knowledge about Cancer in detail.	2	4	1	1	10
Total Marks	11	17	17	05	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Cell & molecular biology- De Robertis B.J. publications Pvt.Ltd.
2	Cell & molecular biology - Gerald karp john wills & amp; essential cell biology Balberts D. Bray
3	Developmental biology- SF Gilbert senior associates.
4	Molecular Biology of Cell- Alberts, B et al.
5	Genetics- Strickberger, 2 nd.
6	Microbial Genetics – D. Frifielder.

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Role play
- 5. Demonstration
- 6. ICT Based teaching Learning
- 7. Brainstorming

CO, PO and PSO Mapping

Program Name: M.Sc. Biotechnology **Semester:** I Semester **Course Title:** Cell structure and dynamics. **Course Code:** 52BT101

CO)/PO/PSO	Mapping						
Course Outcome (COs)		Progran	n Outcom	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1-52BT101.1- An overview of cells and cell research.	1	2	-	1	2	2	2	1
CO2-52BT101.2- Acquired the knowledge regarding detailed structure of cell and its function.	-	1	1	-	-	1	1	2
CO3-52BT101.3- Gain an understanding of the various types of cell surface transport and cellular interactions.	1	1	2	1	-	3	1	1
CO4-52BT101.4- Analyze the detailed concept of cell signaling and its regulation.	1	1	1	-	2	1	1	3
CO5-52BT101.5- Elucidate the cellular development in various living organism and the knowledge about Cancer in detail.	2	1	1	-	-	1	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	Cos	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
	CO1-52BT101.1- An overview of cells	SO1.1 SO1.2	LI1.1	1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	1SL-1,2
PO 1,2,4,5	and cell research.	SO1.3 SO1.4			
		SO1.5 SO1.6			
PSO 1,2, 3		SO1.7 SO1.8			
		SO1.9			
	CO2-52BT101.2- Acquired the	SO2.1 SO2.2	LI2.1	2.1, 2.2,	2SL-1
PO 2,3,	knowledge regarding detailed structure	SO2.3 SO1.4		2.3,2.4,2.5,2.6,2.7,2.8,2.9	
	of cell and its function.	SO1.5 SO1.6			
PSO 1,2, 3		SO1.7 SO1.8			
		SO1.9			
	CO3-52BT101.3- Gain an understanding	SO3.1 SO3.2	LI3.1	3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	3SL-1,2
PO 1,2,3,4	of the various types of cell surface	SO3.3 SO3.4			
	transport and cellular interactions.	SO3.5 SO3.6			
PSO 1,2, 3	L	SO3.7 SO3.8			
		SO3.9			
	CO4-52BT101.4- Analyze the detailed	SO4.1 SO4.2	LI4.1	4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	4SL-1,2
PO 1,2,3,5	concept of cell signaling and its	SO4.3 SO4.4			
	regulation.	SO4.5 SO4.6			
PSO 1,2, 3		SO4.7 SO4.8			
		SO4.9			
	CO5-52BT101.5- Elucidate the cellular	SO5.1 SO5.2	LI5.1	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	5SL-1,2
PO 1,2,3,	development in various living organism	SO5.3 SO5.4			
	and the knowledge about Cancer in detail.	SO5.5 SO5.6			
PSO 1,2, 3	č	SO5.7 SO5.8			
		SO5.9			

Curriculum Developer Team: Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Masters of Science (M.Sc.)- Biotechnology	Masters of Science (M.Sc.)- Biotechnology				
Semester	Ι					
Course Code:	52BT102	2BT102				
Course title:	Microbial Technology	Microbial Technology Curriculum Developer: Mr. Vivek Kumar Agnihotri, Assistant Professor				
Pre-requisite:	rerequisites for studying microbial technology include a master's degree in microbiology, biotechnology, or related fields, along with bundational knowledge in biology, microbiology, genetics, and biochemistry. Proficiency in laboratory techniques, understanding microbial hysiology, basic chemistry principles, and some mathematics skills are also essential. Strong communication and computer skills are lvantageous.					
Rationale:	environmental cleanup and pharmaceutical dev	bility to harness microorganisms for diverse applications, from sustainable agriculture to elopment. By leveraging microbial metabolism and genetics, it offers solutions for pressing derstanding and driving innovation across various industries.				
Course Outcomes (COs):	 CO2- 52BT102.2: Identify and show the st microorganisms. CO3-52BT102.3: Analyze parameters to control CO4-52BT102.4: Can able to assess interaction 	 CO1-52BT102.1: Able to Recognize and evaluate the major groups of microorganisms; classification, diversity, and ubiquity CO2- 52BT102.2: Identify and show the structural, physiological, and genetic similarities and differences of the main categories of microorganisms. CO3-52BT102.3: Analyze parameters to control microbial growth. CO4-52BT102.4: Can able to assess interactions between microbes, hosts, and environment. CO5-52BT102.5: Microbial diversity assessment employs culture-dependent and culture-independent methods, each with distinct merits and 				

Scheme of Studies:

Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L: T: P=3:0:1)
Basic Science Course (BSC)	52BT102	Microbial Technology	3	2	1	3	9	3+1=4

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits.

 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					Scl	heme of Assessme	nt (Marks)	-	
Board of Study	Couse Code	Course Title	Class/Home	Class Test 2 (2 best out of 3) 10 marks each (CT)	Progressive Ass Seminar one (SA)	essment (PRA) Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
BSC	52BT102	Microbial Technology	15	20	10	5	50	50	100

Scheme of Assessment: Practical

					S	cheme of Assessn	nent (Marks)		
					Progressive A	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
BSC	52BT152	Microbial Technology	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which	Approximate Hours					
students are anticipated to accomplish through various modes of instruction including Classroom Instruction	Item	Cl	LI	SW	SL	Total
(CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of	Approx. Hrs	09	02	01	02	14
Course Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-52BT102.1: Able to Recognize and evaluate the major groups of microorganisms; classification, diversity, and ubiquity	Microbiology & discovery of the	LI1.1 Isolation of microbes from soil	CI1.1 Introduction to Microbiology & discovery of the microbial world	SL1.1 Try to visit the microbiology laboratory
	SO1.2 Explain controversy over spontaneous generation		CI1.2 Controversy over spontaneous generation	
	SO1.3 How the development of microbiology in the twentieth century		CI1.3 Development of microbiology in the Twentieth Century	
	SO1.4 what are the methods of Microbial life: - prokaryotes, eukaryotes, Archeas & protozoa		CI1.4 Microbial life: - prokaryotes, eukaryotes, Archeas & protozoa	
	SO1.5 Features and Classification of microorganism- Bacteria		CI1.5 Classification of microorganism- Bacteria	
	SO1.6 Classification of microorganism- fungi		CI1.6 Classification of microorganism- fungi	
	SO1.7 Classification of microorganism- and virus cyanobacteria		CI1.7 Classification of microorganism- and virus	

SO1.8 Structure of microbial cell, characteristics of cyanobacteria and actinomycetes			
SO1.9 Structure of microbial cell, characteristics of virus, nutrition, metabolism, propagation	CI1.9 Structure of microbial cell, characteristics of virus, nutrition, metabolism, propagation		

Suggested Sessional	SW1.1 Assignments	Summarizes classification of microorganism- Bacteria.
Work (SW): anyone	SW1.2 Mini Project	Demonstrate how to isolate microbes from soil.
	SW1.3 Other Activities (Specify)	correlate the structural differences between bacterial cells and viruses.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	02	01	02	14

Course	Session Outcomes (SOs)	Laboratory	Classroom Instruction (CI)	Self-Learning (SL)
Outcome (CO)		Instruction (LI)		
CO2-	SO2.1 What is Microscopy: light microscope-	LI2.1 Discuss how	CI2.1 Global and local alignments	SL2.1 Practice
52BT102.2:	basic principles	to prepare a	work	microscope
Identify and		permanent slide		optimization
show the	SO2.2 How many types of microscopy 1		CI2.2 Types of Microscopy	SL2.2 Recall types of
structural,				microscopes
physiological,				
and genetic	SO2.3 Understanding Electron microscopy –		CI2.3 Electron microscopy –	
similarities and	principles, working function		principles, working function	
differences of	SO2.4 electron probe, transmitted electron		CI2.4 electron probe, transmitted	
the main			electron	
categories of				
microorganisms				
	SO2.5 image formation, backscattering,		CI2.5 image formation, backscattering,	
	secondary electrons.		secondary electrons.	
	SO2.6 X-ray diffraction		CI2.6 X-ray diffraction	

SO2	2.7 Augur electron and cathode	CI2.7 Augur electron and cathode	
	luminescence's	luminescence's	
	2.8 Types of Electron Microscopy TEM & SEM	CI2.8 Types of Electron Microscopy TEM & SEM	
SO2	2.9 STEM-sample preparation for EM	CI2.9 STEM-sample preparation for	
	analysis	EM analysis	

Suggested Sessional	SW2.1 Assignments	Justify the role of SEM and TEM in biotechnology.	
Work (SW): anyone	SW2.2 Mini Project	Differentiate between SEM and TEM.	
	SW2.3 Other Activities (Specify)	Incorporate some YouTube videos based on features of how TEM works.	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	02	16

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO3-52BT102.3: Analyze parameters to control microbial growth.	SO3.1 What is Microbial Growth	LI3.1 Basics of three phases of growth based on OD	CI3.1 Microbial Growth	SL3.1 Learn how to culture microbes
	SO3.2 Mathematical expression of growth	LI3.2 How to cultivate in different media	CI3.2 Mathematical expression of growth	SL3.2 Recall growth curve
	SO3.3 Measurement of growth.		CI3.3 Measurement of growth.	
	SO3.4 Synchronous culture and continuous culture		CI3.4 Synchronous culture and continuous culture	
	SO3.5 Types of Cultural Media		CI3.5 Culture media	
	SO3.6 handling pathogens		CI3.6 handling pathogens	

SO3.7 sterilization, safety in the microbiology laboratory	CI3.7 sterilization, safety in the microbiology laboratory
SO3.8 Elaborate pure culture technique	CI3.8 Pure culture technique
SO3.9 Culture collection and preservation of microbial culture.	CI3.9 culture collection and preservation of microbial culture.

Suggested Sessional	SW3.1 Assignments	Write about the pure culture technique.
Work (SW): anyone	SW3.2 Mini Project	Make a flow chart of steps of pure culturing
	SW3.3 Other	How many types of cultural media are generally found with the help of the internet?
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	02	16

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO4-52BT102.4: Can able to assess interactions	SO4.1 Relate Microbiology & Man: - Pathogen	LI4.1 Basics of pathogenicity	CI4.1 Microbiology & Man: - Pathogen	
between microbes, hosts, and environment.	SO4.2 What is the mode & source of infection- carriers and vectors	LI4.2 Draw a flow chart of the source of infection.	CI4.2 Mode & source of infection- carriers and vectors	SL4.1 Study the source of infection
	SO4.3 Explain congenital infection		CI4.3 Congenital infection	
	SO4.4 pathogenesis and prophylaxis - Bacterial		prophylaxis - Bacterial	SL4.2 Study the pathogenesis & prophylaxis
	SO4.5 pathogenesis and prophylaxis - fungi		CI4.5 pathogenesis and prophylaxis - fungi	
	SO4.6 Pathogenesis and prophylaxis – viral and protozoans		CI4.6 Pathogenesis and prophylaxis – viral and protozoans	

SO4.7 Antimicrobial agents and	CI4.7 Antimicrobial agents and]
their mode of action-	their mode of action-	
antibacterial	antibacterial	
SO4.8 Antimicrobial agents and	CI4.8 Antimicrobial agents and	
their mode of action- antiviral	their mode of action- antiviral	
SO4.9 antiviral, antifungal, anti-	CI4.9 antiviral, antifungal, anti-	
parasitic agents.	parasitic agents.	

Suggested Sessional	SW4.1 Assignments	Write about antimicrobial agents.
Work (SW): anyone	SW4.2 Mini Project	pathogenesis and prophylaxis – Bacterial, fungi, and virus.
	SW4.3 Other	Search and learn via YouTube pathogenesis.
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	02	16

Course Outcome	Session Outcomes	Laboratory	Classroom Instruction	Self-Learning (SL)
(CO)	(SOs)	Instruction	(CI)	
		(LI)		
CO5-52BT102.5: Microbial	SO5.1 Microbial diversity:	LI5.1 How to	CI5.1 Microbial diversity:	SL5.1 Study the
diversity assessment employs	Methods to assess	perform CFU	Methods to assess	microbial diversity
culture-dependent and culture-	microbial diversity	in the lab	microbial diversity	
independent methods, each with	SO5.2 What are the	LI5.2 Basics of	CI5.2 Merits and demerits of	SL5.2 Classify different
distinct merits and demerits,	merits and demerits of	culture-	culture-dependent.	types of independent
including culture-dependent	culture-dependent	dependent		methods of culturing
methods' specificity and culture-		method		
independent methods' broader	SO5.3 Distinguish merits		CI5.3 Merits and demerits of	
	and demerits of culture-		culture-independent	
	independent			

SO5.4 & SO5.5 Elaborate molecular analysis of	CI5.4 & CI5.5 Molecular analysis of bacterial
bacterial community	CI5.6 gel electrophoresis
SO5.6 What is gel electrophoresis	C15.0 ger electrophoresis
SO5.7 How restriction	CI5.7 Restriction fragment
fragment length	length polymorphism
polymorphism	
SO5.8 & SO5.9 What is	CI5.8 & CI5.9 amplified
amplified ribosomal DNA	ribosomal DNA and restriction
and restriction	

Suggested Sessional	SW5.1 Assignments	Write about RFLP.
Work (SW): anyone	SW5.2 Mini Project	Molecular analysis of bacterial community.
	SW5.3 Other	Try to learn and apply gel electrophoresis of the DNA.
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Microbial Technology

Course Code: 52BT102

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-52BT102.1: Able to Recognize and evaluate the major groups of microorganisms; classification, diversity, and	9	2	2	1	14
ubiquity					
CO2-52BT102.2: Identify and show the structural, physiological, and genetic similarities and differences of the	9	2	2	1	14
main categories of microorganisms.					

CO3-52BT102.3: Analyse parameters to control microbial	9	4	2	1	16
growth.					
CO4-52BT102.4: Can able to assess interactions between	9	4	2	1	16
microbes, hosts, and environment.					
CO5-52BT102.5: Microbial diversity assessment employs culture-dependent and culture-independent methods, each with distinct merits and demerits, including culture-dependent methods' specificity and culture-independent methods' broader	9	4	2	1	16
Total Hours	45	16	10	05	76

End-semester Assessment Scheme for setting up question papers and assessments to evaluate the Course Outcome:

Course Title: Microbial Technology

Course Code: 52BT102

Course Outcomes	Marks Distribution				
	Α	An	Ε	С	Total Marks
CO1-52BT102.1: Able to Recognize and evaluate the major groups of microorganisms; classification, diversity, and ubiquity	02	03	04	1	10
CO2-52BT102.2: Identify and show the structural, physiological, and genetic similarities and differences of the main categories of microorganisms.	03	04	02	1	10
CO3-52BT102.3: Analyze parameters to control microbial growth.	02	05	02	1	10
CO4-52BT102.4: Can able to assess interactions between microbes, hosts, and environment.	02	05	02	1	10
CO5-52BT102.5: Microbial diversity assessment employs culture-dependent and culture- independent methods, each with distinct merits and demerits, including culture-dependent methods' specificity and culture-independent methods' broader	03	04	02	1	10
Total Marks	12	21	12	05	50

Legend: A- Apply; An- Analyze; E- Evaluate; C- Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Microbiology: Davis, B.D Dulbecco, R., Eiser, H.N. and Ginsberg, H.S. 2014
2	Microbiology: Pelczar, M.T 2023
3	A Textbook of Microbiology: R.C. Dubey and D. K. Maheshwari 2022

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Roleplay
- 6. Visit to Microbiology lab
- 7. Demonstration
- 8. ICT Based Teaching Learning
- 9. Brainstorming

CO, PO, and PSO Mapping

Program Name: M.Sc. Biotechnology **Semester:** Ist Sem **Course Title:** Microbial Technology **Course Code:** 52BT102

Course Outcome (Cos)	Program Specific Outcomes (PSOs)									
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3		
CO1-52BT102.1: Able to Recognize and evaluate the major groups of microorganisms; classification, diversity, and ubiquity	2	-	-	1	2	2	1	1		
CO2-52BT102.2: Identify and show the structural, physiological, and genetic similarities and differences of the main categories of microorganisms.	-	-	-	-	-	1	2	-		
CO3-52BT102.3: Analyze parameters to control microbial growth.	-	1	1	1	-	1	1	1		
CO4-52BT102.4: Can able to assess interactions between microbes, hosts, and environment.	-	1	1	-	2	2	1	3		
CO5-52BT102.5: Microbial diversity assessment employs culture-dependent and culture-independent methods, each with distinct merits and demerits, including culture-dependent methods' specificity and culture-independent methods' broader	1	1	1	-	-	1	3	2		

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs	COs	SOs No.	Laboratory Instruction	Classroom Instruction (CI)	Self-Learning (SL)
No.			(LI)		(SL)
РО	CO1-52BT102.1: Able to Recognize and evaluate the	SO1.1 SO1.2 SO1.3		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,	
1,2,3,4,5	major groups of microorganisms; classification,	SO1.4 SO1.5 SO1.6	IL 1	1.9	
PSO 1,2,	diversity, and ubiquity	SO1.7 SO1.8 SO1.9			1SL-1,2
3					
РО	CO2-52BT102.2: Identify and show the structural,	SO2.1 SO2.2 SO2.3		2.1, 2.2, 2.3, 2.4.2.5, 2.6, 2.7, 2.8, 2.9	
1,2,3,4,5	physiological, and genetic similarities and differences	SO2.4 SO2.5 SO 2.6	IL 1		
PSO 1,2,	of the main categories of microorganisms.	SO2.7 SO2.8 SO2.9			2SL-1,2
3					
РО	CO3-52BT102.3: Analyze parameters to control	SO3.1 SO3.2 SO3.3		3.1,3.2,3.3,3.4,3.5,3.6,3.7	
1,2,3,4,5	microbial growth.	SO3.4 SO3.5 SO3.6	IL 1	3.8,3.9	
DGO 1.0		SO3.7 SO3.8 SO3.9			3SL-1,2
PSO 1,2, 3					
РО	CO4-52BT102.4: Can able to assess interactions	SO4.1 SO4.2 SO4.3		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	
2,3,4,5	between microbes, hosts, and environment.	SO4.4,SO 4.5,SO4.6	IL 1		
		SO4.7 SO4.8 SO4.9	IL 2		4SL-1,2
PSO 1,2, 3					
PO	CO5-52BT102.5: Microbial diversity assessment	SO5.1 SO5.2 SO5.3		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	
1,2,3,5	employs culture-dependent and culture-independent	SO5.4 SO5.5 SO5.6	IL 1		
3 7- 7-	methods, each with distinct merits and demerits,	SO5.7 SO5.8 SO5.9	IL 2		5SL-1,2
PSO 1,	including culture-dependent methods' specificity and				
2, 3	culture-independent methods' broader				

Curriculum Developer Team: Prof. Kamlesh Choure

Prof. Ashwini A. Waoo

Prof. Deepak Mishra Dr. Kamlesh Choure Er. Arpit Srivastava

Program Name	Masters of Science (M.Sc.)- Biotechnology						
Semester	I						
Course Code:	52BT103						
Course title:	Advanced Biochemistry	Curriculum Developer: Mrs. Keerti Samdariya, Assistant Professor					
Pre-requisite:	Student should have basic knowledge of biom	olecules, their chemistry and metabolism of biomolecules.					
Rationale:	The paper on Advanced Biochemistry in an MSc Biotechnology program explores the role of biomolecules and their metabolic activity in biological systems. The living systems synthesize four primary types of biomolecules within the body. This study enables Students to learn how biomolecules promote different biological processes, which are necessary for life. They vary in structures and sizes. metabolism is a complex process that is essential for the body to function properly. It is important for students to understand the role of biomolecules and metabolism in maintaining a healthy body and lifestyle.						
Course Outcomes (COs):	CO1-52BT103.1: Understand the Structure, c	lassification and the properties of Biomolecules.					
	CO2-52BT103.2: Extend biochemistry of ami	ino acids and protein.					
	CO3-52BT103.3: Understanding of enzyme k	inetics and immobilization techniques.					
	CO4-52BT103.4: To become familiar with fur	ndamental Metabolic activity of carbohydrates and lipids.					
	CO5-52BT103.5: Apply the ideas and concep	t of bioenergetics and metabolism.					

Scheme of Studies:

	CourseCode Course Title							
Board of Study		Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L: T: P=3:0:1)
Basic Science Course (BSC)	52BT103	Advanced Biochemistry	3	2	1	1	7	3+1=4

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits.

 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

				Scheme of Assessment (Marks)						
Board of Study	Couse Code	Course Title	5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Progressive Ass Class Activity any one (CAT)	Class Attendance	Total Marks (CA+CAT+CT+SA+AT)	End Semester Assessmen t (ESA)	Total Marks (PRA+ ESA)
BSC	52BT103	Advanced Biochemistry	15	20	5	5	5	50	50	100

Scheme of Assessment: Practical

					Se	cheme of Assessr	nent (Marks)		
				Progressive Assessment (PRA)					
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
BSC	52BT153	Advanced Biochemistry	35	5	5	5	50	50	50

This course syllabus illustrates the expected learning achievements, both at the course	Approximate Hours						
and session levels, which students are anticipated to accomplish through various		-		* *	GXXX	GT	m 1
modes of instruction including Classroom Instruction (CI), Laboratory Instruction		Item	Cl	LI	SW	SL	Total
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses,		Approx. Hrs	09	04	01	02	16
students should showcase their mastery of Session Outcomes (SOs), culminating in							
the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-52BT103.1: Understand the structure, classification, and properties of Biomolecules.	SO1.1 Clarify the Chemical foundation of biology.	LI1 Calibration of Ph meter.	CI 1.1 Clarify the Chemical foundation of biology.	
	SO1.2 & SO1.3 Determine the structure of carbohydrates.	LI2 Detect the presence of biomolecules in the given sample.	CI 1.2 & CI1.3 Determine the structure of carbohydrates.	SL1.1 Understand the role of carbohydrates.

SO1.4 Explain the physical properties of carbohydrates.	CI 1.4 Explain the physical properties of carbohydrates.	SL1.2 Learn the naming system of carbohydrate and lipid
SO1.5 Explain the chemical properties of carbohydrates.	CI 1.5 Explain the chemical properties of carbohydrates.	
SO1.6 & SO1.7 Nomenclature, classification, structure, properties of lipid.	CI 1.6 & CI1.7 Nomenclature, classification, structure, properties of lipid.	
SO1.8 Structure and properties of fatty acids	CI1.8 Structure, and properties of fatty acids	
SO1.9 Differentiate the use of lipids and carbohydrates in biotechnology	CI 1.9 Differentiate the use of lipids and carbohydrates in biotechnology	

Suggested Sessional	SW3.1 Assignments	Differentiate between reducing and non-reducing disaccharides
Work (SW): anyone	SW3.2 Mini Project	Importance of biochemistry and its applications
	SW3.3 Other Activities (Specify)	Find out some you tube videos based on chemical tests for carbohydrates and lipids.

This course syllabus illustrates the expected learning achievements, both at the course	Approximate Hours						
and session levels, which students are anticipated to accomplish through various							
modes of instruction including Classroom Instruction (CI), Laboratory Instruction		Item	Cl	LI	SW	SL	Total
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students		Approx. Hrs	09	04	01	03	17
should showcase their mastery of Session Outcomes (SOs), culminating in the overall							
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO52BT103.2:	SO2.1	LI 1 focusing on Structure and	CI 2.1	SL2.1 Understand the role of
Extend	Clarify the Structure of amino	properties of amino acids	Clarify the Structure of	amino acids
biochemistry of	acids.		amino acids.	
amino acids and				
protein.				
	SO2.2		CI 2.2	
	Clarify the properties of amino		Clarify the properties of	
	acids.		amino acids.	
	SO2.3 Elucidation of primary	LI 2 To study	CI 2.3 Elucidation of	
	and higher order structures of	chemical	primary and higher order	
	protein	reaction of	structures of protein	
		protein and		

	amino acids		
SO2.4 & SO2.5 Understand Ramachandran plot, structure & function relationship in model proteins like ribonuclease A, myoglobin, and hemoglobin.	z	CI2.4 & CI2.5 Understand Ramachandran plot, structure & function relationship in model proteins like ribonuclease A, myoglobin, and hemoglobin.	SL2.2 Learn the Ramachandran plot and structure & function of ribonuclease A, myoglobin, and hemoglobin.
SO2.6 Classify Plant hormone and animal hormone		CI 2.6 Classify Plant hormone and animal hormone	
SO2.7 Explaining fat-soluble Vitamin- types and structure.		CI 2.7 Explaining fat soluble Vitamin- types and structure.	SL2.3 Discriminate Vitamin- types and structure.
SO2.8 & SO2.9 Explaining water-soluble Vitamin- types ar structure.	nd	CI 2.8 & CI2.9 explaining water-soluble Vitamin- types, and structure.	

Suggested Sessional	SW2.1 Assignments	Differentiate between fat- and water-soluble vitamins.
Work (SW): anyone	SW2.2 Mini Project	Draw ray diagram of classification of amino-acid classification
	SW2.3 Other Activities (Specify)	Find out some you tube videos based on the elucidation of primary and higher-order structures of
		protein.

This course syllabus illustrates the expected learning achievements, both at the course	Approximate Hours						
and session levels, which students are anticipated to accomplish through various		Térre	CI	тт	CW	CT.	T-4-1
modes of instruction including Classroom Instruction (CI), Laboratory Instruction		Item	CI	LI			Total
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses,		Approx. Hrs	09	04	01	02	16
students should showcase their mastery of Session Outcomes (SOs), culminating in							
the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO-3 52BT103.3: Understanding of enzyme kinetics and immobilization techniques.	SO3.1 Illustrating General Characteristics of Enzymes.	LI3.1 Chemical test for enzymes.	CI 3.1 Illustrating General Characteristics of Enzymes.	SL3.1 Read in detail the enzymes.

SO3.2 Explain classification, and of enzymes.		CI3.2 Explain classification, and of enzymes.	
SO3.3 Explain nomenclature of enzymes.	LI3.2 To study immobilization techniques.	CI3.3 Explain nomenclature of enzymes.	
SO3.4 & SO3.5 Explaining Kinetics of Single Substrate Reaction		CI 3.4 & CI3.5 Explaining Kinetics of Single Substrate Reaction	
SO3.6 Differentiate enzyme inhibition and its types,		CI 3.6 Differentiate enzyme inhibition and its types	
SO3.7 Explain Coenzymes and their role.		CI 3.7 Explain Coenzymes and their role.	
SO3.8 & SO3.9 Explain Immobilization of enzyme, technique and applications		CI 3.8 & CI3.9 Explain Immobilization of enzyme, technique and applications	SL3.2 Study the enzyme immobilization

Suggested Sessional Work	SW3.1 Assignments	Describe in detail on Classification and nomenclature of enzymes
(SW): anyone		
	SW3.2 Mini Project	Describe Isolation and purification of enzyme.
	SW3.3 other activity	Find out some you tube videos based on enzyme activity

This course syllabus illustrates the exp	e		Approximate	Hours						
and session levels, which students a modes of instruction including Class	A A	0			Item	Cl	LI	SW	SL	Total
(LI), Sessional Work (SW), and Self Le				Approx. Hrs	09	04	01	02	16	
should showcase their mastery of Sess achievement of Course Outcomes (CO	ng in the overall									
Course outcome (CO)	Session Outcomes (SOs)	struction (LI)	Cla	Classroom Instruction (CI)			Se	elf-Le (Sl	arning L)	

CO-4 52BT103.4: To become familiar with fundamental Metabolic activity of carbohydrates and lipids.	SO4.1 Illustrating Principles of bioenergetics.	LI4.1 To analyze the Immobilization process.	Unit-4 CI 4.1 Principles of bioenergetics	SL 4.1 Understand the metabolic role of ATP
	SO4.2 Illustrating Principles of biological oxidation-reduction reaction.	LI4.2 To study metabolic roles of ATP-phosphoryl group transfer	CI 4.2 Principles of Biological oxidation-reduction reaction.	
	SO4.3 Explaining metabolic roles of ATP- phosphoryl group transfer, and nucleotidyl group transfer.		CI4.3 Explaining metabolic roles of ATP-phosphoryl group transfer, nucleotidyl group transfer	
	SO4.4 & SO4.5 Differentiate glycolysis, gluconeogenesis		CI4.4 & CI4.5 Explain glycolysis, gluconeogenesis	SL 4.2 Learn the Differentiation glycolysis, gluconeogenesis
	SO4.6 Explain TCA cycle. SO4.7 Explain glycogen		CI4.6 Explain TCA cycle. CI4.7 explain the pathway of	
	synthesis. SO4.8 Explain glycogenolysis.		glycogen synthesis.CI4.8 explains the pathway of glycogenolysis.	
	SO4.9 Explain oxidative phosphorylation.		CI4.9 explains the pathway of oxidative phosphorylation.	

Suggested Sessional Work	SW4.1 Assignments	llustrating Principles of bioenergetics, biological oxidation-reduction reaction.
(SW): anyone	SW4.2 Mini Project	Describe the glycogen synthesis
	SW4.3 Other Activities (Specify)	Find out some you tube videos based on metabolic activity of carbohydrates

and session levels, which students are anticipated to accomplish through various modes
of instruction including Classroom Instruction (CI), Laboratory Instruction (LI),
Sessional Work (SW), and Self Learning (SL). As the course progresses, students
should showcase their mastery of Session Outcomes (SOs), culminating in the overall
achievement of Course Outcomes (COs) upon the course's conclusion.

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
----------------------------	------------------------	-----------------------------	-----------------------------------	--------------------

CO52BT103.5: Explain ideas and concepts of	SO5.1 Elucidate Biosynthesis of lipids	LI5.1 Detect the presence of lipids in the given sample.	Unit-5 CI5.1 Biosynthetic pathway of lipids.	SL5.1 Understand the metabolic role of lipids
bioenergetics and metabolism.				
	SO5.2 Explain the beta oxidation pathway of lipids.	LI5.2 Detect the presence of amino acid in the given sample.	CI5.2 Explain the beta oxidation pathway of lipids.	SL5.2 Learn the Differentiation between Disorder associated with defect in carbohydrate, amino acid and lipid metabolism
	SO5.3 Explain the alfa oxidation pathway of amino acids.		CI5.3 Explain the alfa oxidation pathway of amino acids.	
	SO5.4 & SO5.5 Disorder associated with defect in carbohydrate, amino acid and lipid metabolism.		CI5.4 & CI5.5 Disorder associated with defect in carbohydrate, amino acid and lipid metabolism.	
	SO5.6 Explain the degradation of amino acids.		CI5.6 Explain the degradation of amino acids.	
	SO5.7 Recognize Disorder associated with defects in carbohydrate.		CI 5.7 Recognize Disorder associated with defects in carbohydrate.	
	SO5.8 Recognize Disorder associated with defect in amino acids .		CI 5.8 Recognize Disorder associated with defect in amino acids .	
	SO5.9 Recognize Disorder associated with defect in lipid metabolism.		CI 5.9 Recognize Disorder associated with defect in lipid metabolism.	

Suggested Sessional Work (SW): anyone	SW5.1 Assignments	llustrating Biosynthesis Degradative pathway of lipids.			
	SW5.2 Mini Project A disorder associated with defects in carbohydrate, amino acid and lipid metabolism				
	SW5.3 Other	Prepare one article explaining the degradation of amino acid.			
	Activities (Specify)				

Course duration (in hours) to attain Course Outcomes:

Course Title: Advanced Biochemis		Course Code: 52BT103				
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)	
CO1-52BT103.1: Understand the Structure, classification and the properties of Biomolecules.	9	4	2	1	16	
CO2-52BT103.2: Extend biochemistry of amino acids and protein.	9	4	3	1	17	
CO3-52BT103.3: Understanding of enzyme kinetics and immobilization techniques.	9	4	2	1	16	
CO4-52BT103.4: To become familiar with fundamental Metabolic activity of carbohydrates and lipids.	9	4	2	1	16	
CO5-52BT103.5: Apply the ideas and concept of bioenergetics and metabolism.	9	4	2	1	16	
Total Hours	45	20	11	05	81	

End-semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Advanced Biochemistry

Course Code: 52BT103

Course Outcomes					
	Α	An	Ε	С	Total Marks
CO1-52BT103.1: Understand the Structure, classification and the properties of Biomolecules.	2	1	1	1	5
CO2-52BT103.2: Extend biochemistry of amino acids and protein.	2	4	2	2	10
CO3-52BT103.3: Understanding of enzyme kinetics and immobilization techniques.	3	5	5	2	15
CO4-52BT103.4: To become familiar with fundamental Metabolic activity of carbohydrates and lipids.	2	3	3	2	10
CO5-52BT103.5: Apply the ideas and concept of bioenergetics and metabolism.	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher detai	ls
1	Principles of biochemistry	David L. Nelson, Michael Cox WH Freeman 7 & 2017

2	Fundamentals of biochemistry j. l. jain; S.chand 6 & 2005
3	U. Satyanarayana Kindle Edition Elsevier India 5 & 2017

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: M. Sc. Biotechnology Semester: I Semester Course Title: Advanced Biochemistry Course Code: 52BT103

CO/PO/PSO Mapping											
Course Outcome (Cos)		Progran	1 Outcom	Program Specific Outcomes (PSOs)							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3			
CO1-52BT103.1: Understand the Structure, classification and the properties of Biomolecules.	1	2	2	3	1	2	2	1			
CO2-52BT103.2: Extend biochemistry of amino acids and protein.	1	2	3	2	1	1	1	2			
CO3-52BT103.3: Understanding of enzyme kinetics and immobilization techniques.	1	2	3	2	1	1	1	1			
CO4-52BT103.4: To become familiar with fundamental Metabolic activity of carbohydrates and lipids.	-	1	1	-	2	1	1	3			
CO5-52BT103.5: Apply the ideas and concept of bioenergetics and metabolism.	1	1	1	-	-	1	3	2			

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5	CO1-52BT103.1: Understand the	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5,1.6,1.7,	1SL-1,2
	Structure, classification and the	SO1.3, SO1.4	LI 2	1.8,1.9	
PSO 1,2,3	properties of Biomolecules.	SO1.5, SO1.6,			
		SO1.7, SO1.8			
		SO1.9			
PO 1,2,3,4,5	CO2-52BT103.2: Extend biochemistry	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3,	2SL-1,2
	of amino acids and protein.	SO2.3 SO2.4	LI 2	2.4,2.5,2.6,2.7,2.8,2.9	
PSO 1,2,3	L L	SO2.5, SO2.6,			
		SO2.7, SO2.8			
		SO2.9			
PO 1,2,3,4,5	CO3-52BT103.3: Understanding of	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	3SL-1,2
	enzyme kinetics and immobilization	SO3.3 SO3.4,	LI 2		
PSO 1,2,3	techniques.	SO3.5, SO3.6,			
		SO3.7, SO3.8			
		SO3.9			
PO 1,2,3,4,5	CO4-52BT103.4: To become familiar	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	4SL-1,2
	with fundamental Metabolic activity of	SO4.3 SO4.4,	LI 2		
PSO 1,2,3	carbohydrates and lipids.	SO4.5, SO4.6,			
		SO4.7, SO4.8			
		SO4.9			
PO 1,2,3,4,5	CO5-52BT103.5: Apply the ideas and	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	5SL-1,2
	concept of bioenergetics and	SO5.3 SO5.4	LI2		
PSO 1,2,3	metabolism.	SO5.5, SO5.6,			
		SO5.7, SO5.8			
		SO5.9			

Curriculum Developer Team:

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Master of Science (M. Sc)- Biotechnology	7						
Semester	Ι							
CourseCode:	52BT104							
Coursetitle:	Biostatistics and Computer Application	Curriculum Developer: Dr. Deepak Mishra And Er. Vinay Shrivastava						
Pre-requisite:	Student should have basic knowledge of Mathematical concepts i.e. Mean, Median, Mode, Correlation etc. and computer such as Input devices, central processing unit and output devices. Student should aware of how to power on computer and how to shut down computer.							
Rationale:	of evidence-based decision-making in the f and interpretation. It enables researchers a related data, facilitating advancements in di the suite of tools offered by Microsoft C applications streamline and enhance produc make informed decisions about their com Word helps craft documents, Excel crunc students with the knowledge and skills new	Application in M.Sc. Biotechnology programme. Biostatistics serves as the cornerstone fields of biotechnology by providing rigorous methods for data analysis, study design, and practitioners to extract meaningful insights from complex biological and health-isease prevention, diagnosis, and treatment. Computer Application software much like office, is an indispensable resource in today's digital era. Just as Microsoft Office ctivity in various office tasks, this subject empowers individuals and organizations to puting resources, resulting in increased productivity and cost-efficiency. Much like thes numbers, and PowerPoint delivers impactful presentations, our subject equips eded to navigate the dynamic world of personal computing. It's a bit like having the ding the right PC package configuration and customization is key to achieving desired						
Course Outcomes (COs):		indamental statistical concepts, methods, and techniques relevant to biostatistics,						
(COS):	CO1-52BT104.2: Apply statistical methods to analyze biological data sets, interpret results, and draw meaningful conclusions							
	*	vances knowledge of COMPUTER and its characteristics.						
	-	vances knowledge of C programming, and HTML programming.						
	CO1-52BT104.5: Acquire the basic and ad	vances knowledge of MS WORD, MS EXCEL, MS POWERPOINT.						

Scheme of Studies:

				Ś					
Board ofStudy	CourseCode	CourseTitle	Cl	LI	SW	SL	Total Study Hours(CI+LI+SW+S L)	Total Credits(C) (L:T:P=2:1:1)	
Discipline Specific Course (DSC)	52BT104	Biostatistics and Computer Application	3	2	1	5	11	2+1+1=4	

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

						-			
					Progressive As	sessment (PRA)			
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)		Seminar one (SA)	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
DSC	52BT104	Biostatistics and Computer Application	15	20	10	5	50	50	100

Scheme of Assessment: Practical

					Scł	neme of Assessi	ment (Marks)		
					Progressive As	ssessment (PRA)		
Board of Study	Course Code	Course Title	Class/Hom e Assignmen t 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+A T)	End Semester Assessmen t (ESA)	Total Marks (PRA+ ESA)
DSC	52BT154	Biostatistics & Computer Application	35	5	5	5	50	50	50

This course syllabus illustrates the expected learning achievements, both at	 Hours						
the course and session levels, which students are anticipated to accomplish		Téore	Cl	тт	SW	CI	Total
through various modes of instruction including Classroom Instruction (CI),		Item	Cl				
Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL).		Approx.Hrs	09	04	01	05	19
As the course progresses, students should showcase their mastery of Session							
Outcomes (SOs), culminating in the overall achievement of Course							
Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes(SOs)	Laboratory Instruction(LI)	Class room Instruction(CI)	Self-Learning(SL)
CO1-52BT104.1: Acquire	SO1.1 Define and		Unit 1	SL1.1
proficiency in fundamental	Describe concept of		CI1.1 Statistical	Search various reference

statistical concepts,	statistical population and		population	books and study material
methods, and techniques	basic terminology used			to start the learning
relevant to biostatistics				
	SO1.2 Describe about		CI1.2 sampling methods	SL1.2 Check the
	different sampling			application of sampling in
	methods			biological problems
	SO1.3 Explain about	LI1.1 Graphical	CI1.3 tabulation of data &	SL1.3 Learn about various
	Tabulation of Data & its	Representation of Data	its graphical	categories of data
	graphical representation.		representation.	presentation
	SO1.4 Study the different	LI1.2 Solve the numerical	CI1.4 Measures of central	SL1.4 Study the biological
	measures of central	Problems related to Central	tendency– Mean,	problems by application of
	Tendency	Tendency		measure of central
				tendency
	SO1.5 Study of median		CI1.5 Median,	
	SO1.6 Describe concept of		CI1.6 Mode	
	Mode			
	SO1.7 Assess the concept		CI1.7 Measures of	SL1.5 Study the biological
	of measures of Dispersion		dispersion – range,	problems by application of
				measure of dispersion
	SO1.8 Describe concept of		CI1.8 Standard deviation	
	Standard deviation			
	SO1.9 Describe concept of		CI1.9 variance	
	variance			

Suggested Sessional	SW1.1 Assignments	Explain various types of data and its presentation techniques
Work (SW): anyone	SW1.2 Mini Project	Describe the concept and application of measures of central tendency
	SW1.3 Other Activities	Find out examples of measures of central tendency in different biological processes and
	(Specify)	experiments.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	05	19

Course	Session Outcomes	Laboratory Instruction	Classroom Instruction	Self Learning (SL)
Outcome	(SOs)	(LI)	(CI)	
(CO)				
CO1-52BT104.2:	SO2.1 Simple and linear	LI2.1 Find out	Unit-II	SL2.1 Enlist the different
Apply statistical	regression	regression equation X	CI2.1 Simple and linear	biological problem related for
methods to analyze		on Y	regression	statistical analysis.
biological data sets,				
interpret results, and				
draw meaningful				
conclusions				
	SO2.2 Explain about concept	LI2.2 Problems related	CI2.2 correlation	SL2.2 Assess role of
	and methods of correlation	to correlation.		regression and correlation
	SO2.3 Explain about concept		CI2.3 Explain about	SL2.3 Learn about different
	of hypothesis		concept of hypothesis	types of hypothesis
	SO2.4 Explain about T-test		CI2.4 T-test	SL2.4 Learn about application
				of test of significance.
	SO2.5 Describe about F Test		CI2.5 F test	SL2.5 Learn about different
				parametric tests.
	SO2.6 Describe significance		CI2.6 Chi-Square Test	
	of Chi-Square Test			
	SO2.7 Describe about		CI2.7 one & two way	
	ANOVA		analysis of variance	
			(ANVOA)	

SO2.8 Assess	the concept of	CI2.8 randomization,	
block designs	_	randomized block	
		design	
SO2.9 Explai	in about data	CI2.9 Introduction of data	
mining		mining	

Suggested Sessional	SW2.1 Assignments	Describe various techniques used for testing hypothesis
Work (SW):anyone	SW2.2 Mini Project	Select any biological problems and investigate it statistically.
	SW2.3 Other Activities	Prepare list of application of parametric test.
	(Specify)	

Item	Cl	LI	SW	SL	Total
Approx.Hrs	09	04	01	05	19

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction(LI)	Class room Instruction (CI)	Self-Learning(SL)
CO1-52BT104.3: Acquire the basic and advances knowledge of COMPUTER and its characteristics	SO3.1 Understanding fundamentals of computer	LI3.1 Computer start and operating.	Unit-III CI3.1 Introduction of computer: Definition	SL 3.1 Search various reference books and study material to start the learning in computer
	SO3.2 & SO3.3 study different characteristics of computer	LI3.2 Computer software and hardware types.	CI3.2 & CI3.3 Characteristics, hardware, Software, Types of computer	SL3.2 Check the application of computer
	SO3.4 & SO3.5 learning flowchart , and binary number system and others		CI3.4 & CI3.5 flow chart, number systems.	SL3.3 Learn about various characteristics of computer.
	SO3.6 & SO3.7 criticizing OSI-model		CI3.6 & CI3.7 OSI Model	SL3.4. Learn internet model
	SO3.8 & SO3.9 understanding internet, its growth and application		CI3.8 & CI3.9 Internet & its application, E-mail concept PNS.	SL3.5 Study internet and its uses

Suggested Sessional	SW3.1 Assignments	Describe Characteristics, hardware, Software, and Types of computer
Work (SW):anyone	SW3.2Mini Project	Describe Internet & its application, E-mail concept PNS.
	SW3.3 Other Activities (Specify)	criticizing OSI-model

Items	CI	LI	SW	SL	TOTAL
Approax hrs	09	04	01	05	19

Course Outcome (CO)	Session Outcomes(SOs)	Laboratory	Classroom Instruction(CI)	Self-Learning(SL)
		Instruction(LI)		
CO1-52BT104.4: Acquire	SO4.1 Introduction to MS-DOS	LI4.1 Computer start MS-	CI4.1 Introduction to MS-	SL4.1 Search study material
the basic and advances		DOS operating.	DOS	to learn MS-DOS
knowledge of C				
programming, and HTML				
programming.				
	SO4.2 Introduction to C	LI4.2 MS-DOS	CI4.2 internal ms-dos	SL4.2Learn about external
	programming	commands	commands	commands
	SO4.3 Introduction to HTML		CI4.3 external ms-dos	
	AND ITS TAGS		commands	
	SO4.4 Introduction to Database		CI4.4 introduction to C	SL4.3 Learn c language
			language	0.0
	SO4.5 understanding		CI4.5 programming in c	
	advantages of DBMS			
	SO4.6 & SO4.7 introduction to		CI4.6 & CI4.7 introduction	SL4.4Study the html and its
	HTML and its tags		to HTML and its tags	tags
	SO4.8 & SO4.9 introduction to		CI4.8 & CI4.9 introduction to	SL4.5 Study database
	Database		Database	-

Suggested Sessional	SW4.1 Assignments	Describe internal, and external ms-dos commands.
Work (SW):anyone	SW4.2Mini Project	Describe C language and its programming.
	SW4.3 Other Activities	Introduction to database.
	(Specify)	

Item	CI	LI	SW	SL	TOTAL
Approx .Hrs	09	02	01	04	16

Course Outcome (CO)	Session Outcomes(SOs)	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self- Learning(SL)
CO1-52BT104.5: Acquire the basic and advances knowledge of MS WORD, MS EXCEL, MS POWERPOINT.	SO5.1 Introduction to MS Word and Document Creation & editing	LI5.1 Start MS-office operating & MS- word documents and editing.		SL5.1 learn all latest applications of internet and ms-office
	SO5.2 Introduction to Excel and Data Entry		CI5.2 Introduction to Excel and Data Entry & Working with numbers and formula	
	SO5.3 introduction of ms-excel, features of excel		CI5.3 introduction of ms- excel, features of excel	SL5.2 use MS EXCEL
	SO5.4 cell formatting, uses of function & formula		CI5.4 cell formatting, uses of function & formula	
	SO5.5 sorting & filtering & working with graph in excel		CI5.5 sorting & filtering & working with graph in excel	
	SO5.6 introduction to ms- powerpoint, feature of powerpoint		CI5.6 introduction to ms- powerpoint, feature of powerpoint	SL5.3 Study the MS- powerpoint
	SO5.7 inserting slide, working with slide		CI5.7 inserting slide, working with slide	
	SO5.8 working with slide animation & transaction		CI5.8 working with slide animation & transaction	

SO5.9 prepare a desired	CI5.9 prepare a desired	SL5.4 Learning
presentation in POWERPOINT	presentation in	presentation
	POWERPOINT	

Suggested Sessional	SW5.1 Assignments	Describe MS WORD and Document Creation, editing.
Work (SW):anyone	SW5.2Mini Project	Describe ms-excel, features of excel, cell formatting, uses of function & formula.
	SW5.3 Other Activities	prepare a desired presentation in POWERPOINT
	(Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Animal Biotechnology				Course Code: 5	52BT104
Course Outcomes(COs)	Class lecture (CI)	Laboratory Instruction(LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (LI+CI+SL+SW)
CO1-52BT104.1: Acquire proficiency in fundamental statistical concepts, methods, and techniques relevant to biostatistics	09	4	5	1	19
CO1-52BT104.2: Apply statistical methods to analyze biological data sets, interpret results, and draw meaningful conclusions	09	4	5	1	19
CO1-52BT104.3: Acquire the basic and advances knowledge of COMPUTER and its characteristics	09	4	5	1	19
CO1-52BT104.4: Acquire the basic and advances knowledge of C programming, and HTML programming.	09	4	5	1	19
CO1-52BT104.5: Acquire the basic and advances knowledge of MS WORD, MS EXCEL, MS POWERPOINT.	09	2	4	1	16
Total Hours	45	18	24	5	92

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Biostatistics and Computer Application

Course Code: 52BT104

Course Outcomes					
	Α	Α	E	C	Total Marks
CO1-52BT104.1: Acquire proficiency in fundamental statistical concepts, methods, and techniques relevant to biostatistics	03	02	02	03	10
CO1-52BT104.2: Apply statistical methods to analyze biological data sets, interpret results, and draw meaningful conclusions	03	02	02	03	10
CO1-52BT104.3: Acquire the basic and advances knowledge of COMPUTER and its characteristics	03	03	03	01	10
CO1-52BT104.4: Acquire the basic and advances knowledge of C programming, and HTML programming.	02	03	05	00	10
CO1-52BT104.5: Acquire the basic and advances knowledge of MS WORD, MS EXCEL, MS POWERPOINT.	05	04	00	01	10
Total Marks	16	14	12	8	50

Legend: A: Apply, A: Analyze E: Evaluate, C: Create

Suggested learning Resources:

(a) Books:

S.	Title
No.	
1	fundamentals of computers by E balagurusamy
2	fundamentals of computers by Pk sinha
3	fundamentals of computers by Rajaraman
4 I	Biostatistics, P.N.Arora, P.K.Malhan, Himalaya Publishing House, Edition2 & 2005
5 I	Fundamentals of biostatistics, Khan and Khanam, Ukaaz Publication 2 & 2004
6 I	Elements Of Biostatistics, Prasad Rastogi Publication, edition, 3& 2009

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Title: M. Sc. Biotechnology Semester: I Course Code: 52BT104 Course Title: Biostatistics and Computer Application

Course Outcome		Program Outcomes (POs)					Program Specific Outcomes (PSOs)		
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
CO1-52BT104.1: Acquire proficiency in fundamental statistical concepts, methods, and techniques relevant to biostatistics	1	2	2	2	3	2	2	2	
CO1-52BT104.2: Apply statistical methods to analyze biological data sets, interpret results, and draw meaningful conclusions	2	3	2	3	3	1	1	2	
CO1-52BT104.3: Acquire the basic and advances knowledge of COMPUTER and its characteristics	1	2	1	1	3	2	2	1	
CO1-52BT104.4: Acquire the basic and advances knowledge of C programming, and HTML programming	2	3	1	3	3	1	1	1	
CO1-52BT104.5: Acquire the basic and advances knowledge of MS WORD, MS EXCEL,MS POWERPOINT	3	1	1	3	2	2	2	1	

Legend: (1) Low (2) Medium (3) High

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5 PSO 1,2,3	CO1-52BT104.1: Acquire proficiency in fundamental statistical concepts, methods, and techniques relevant to biostatistics	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO1.6 SO1.7 SO1.8 SO1.9	LI1.1,1.2	1.1,1.2,1.3,1.4,1.5, 1.6, 1.7, 1.8, 1.9	1SL-1,2,3,4,5
PO 1,2,3,4,5 PSO 1,2,3	CO1-52BT104.2: Apply statistical methods to analyze biological data sets, interpret results, and draw meaningful conclusions	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5 SO2.6 SO2.7 SO2.8 SO2.9	LI2.1, 2.2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	2SL-1,2,3,4,5
PO 1,2,3,4,5 PSO 1,2,3	CO1-52BT104.3: Acquire the basic and advances knowledge of COMPUTER and its characteristics	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6 SO3.7 SO3.8 SO3.9	LI3.1,3.2	3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	3SL-1,2,3,4,5
PO 1,2,3,4,5 PSO 1,2,3	CO1-52BT104.4: Acquire the basic and advances knowledge of C programming, and HTML programming	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6 SO4.7 SO4.8 SO4.9	LI4.1,4.2	4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8.4.9	4SL-1,2,3,4,5
PO 1,2,3,4,5 PSO 1,2,3	CO1-52BT104.5: Acquire the basic and advances knowledge of MS WORD, MS EXCEL,MS POWERPOINT	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6 SO5.7 SO5.8 SO5.9	LI5.1	5.1,5.2,5.3,5.4,5.5, 5.6,5.7,5.8,5.9	5SL-1,2,3,4

Curriculum Developer Team:

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Masters of Science (M.Sc.)- Biotechnology						
Semester	Ι						
Course Code:	52BT105	52BT105					
Course itle:	Molecular Biology Developer: Mrs. Shaily Mishra, Assistant Professor						
Pre-requisite:	Student should have basic knowledge of biology, biological activity and related processes in living organisms.						
Rationale:	The paper on Molecular Biology in an M.Sc Biotechnology program aims to introduce and elaborate the students with the detailed understanding of structure and functional organization of gene with respect to molecular architecture and comparative analysis of both prokaryotic and eukaryotic organism. The course enlightens the students about the various processes such as DNA replication, transcription, translation, regulation, repair and advances in the topics in recent research.						
Course Outcomes (COs):	 CO1-52BT105.1 Understand molecular phenomena of DNA copying and transmission of information, its damage and repair mechanism. CO2-52BT105.2 Students are being able to understand mechanism of synthesis of RNA molecules from DNA and its processing. CO3-52BT105.3 Molecular basis of biological activity in and between cells including protein synthesis, modification and interaction. CO4-52BT105.4 The regulation of gene function, respond to environment and associated phenomena. 						
	CO5-52BT105.5 Recognize various transpos mapping.	able element in DNA, advances in molecular activity such as antisense technology, genome					

Scheme of Studies:

					Scheme of	fstudies (Hours/Week)			
Board ofStudy	CourseCode	CourseTitle	Cl	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)	
Basic Science Course (BSC)	52BT105	Molecular Biology	3	2	1	3	9	3+1=4	

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					Sch	neme of Assessme	nt (Marks)		
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Progressive Ass Seminar (SA)	essment (PRA) Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
BSC	52BT105	Molecular Biology	15	20	10	5	50	50	100

Scheme of Assessment: Practical

					S	cheme of Assessn	nent (Marks)		
					Progressive A	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
BSC	52BT155	Molecular Biology	35	5	5	5	50	50	50

This course syllabus illustrates the expected learning achievements, both at the course	ApproximateHours						
and session levels, which students are anticipated to accomplish through various modes		<u> </u>	~		~~~~	~~	
of instruction including Classroom Instruction (CI), Laboratory Instruction (LI),		Item	Cl				Total
Sessional Work (SW), and Self Learning (SL). As the course progresses, students should		Approx.Hrs	09	04	01	04	18
showcase their mastery of Session Outcomes (SOs), culminating in the overall							
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT105.1 Understand molecular phenomena of DNA	SO1.1 Understand organization and structure of	LI1.1 Isolation of	Unit 1 CI1.1 Organization of	SL1.1 Chemical structure of DNA and RNA
copying and transmission of	e	genomic DNA from bacteria.	prokaryotic &	Structure of DIVA and KIVA
information, its damage and	organization.		eukaryotic genomes.	
repair mechanism.	SO1.2 Understand the	LI1.2 Isolation of	CI1.2 Unit of	SL1.2
	Machinery involved in	plasmid DNA	replication, replication	Types of DNA
	DNA replication.	from bacteria	machinery in prokaryotes and	
			eukaryotes.	
	SO1.3 Learn about the role of		CI1.3 Enzymology of	SL1.3 Experiments to prove
	different enzymes in DNA replication.		DNA replication.	DNA as genetic Material

SO1.4 Learn the mechanism of DNA replication.	CI1.4 Steps involved in DNA replication.	SL1.4 Cell Division
SO1.5 Various causes of DNA damage.	CI1.5 Causes of DNA damage	
SO1.6 Understand the mechanism that involves repair of damaged DNA.	CI1.6 Repair mechanism for DNA damage.	
SO1.7 Genetic recombination process in prokaryotic	CI1.7 Genetic Recombination: Homologous and non - homologous recombination.	
SO1.8 Study the process of site specific mechanism	CI1.8 Site specific recombination.	
SO1.9 Genetic recombination process in eukaryotic organism.	CI1.9 Genetic recombination process in eukaryotic organism.	

Suggested Sessional	SW1.1 Assignments	Watson and Crick double helical model, machinery involved in DNA replication, causes of DNA
Work (SW):anyone		damage and process of recombination.
	SW1.2Mini Project	Diagrammatic representation of various processes you studied with neat labelling.
	SW1.3 Other Activities (Specify)	Find out some you tube videos based on working model of biological activity associated with
		DNA.

This course syllabus illustrates the expected learning achievements, both at the course and	ApproximateHours						
session levels, which students are anticipated to accomplish through various modes of		T/	CI	тт	aw	CT	T (1
instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional		Item	CI				Total
Work (SW), and Self Learning (SL). As the course progresses, students should showcase		Approx.Hrs	09	02	01	01	13
their mastery of Session Outcomes (SOs), culminating in the overall achievement of							
Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
---------------------	------------------------	--------------------------------	-----------------------------	--------------------

CO2-52BT105.2 Students are being able to understand mechanism of synthesis of RNA molecules from DNA and its processing.	SO2.1 Understand the process involved in synthesis of RNA molecules from DNA.		Unit-II CI2.1 Prokaryotic and eukaryotic transcription mechanism.	SL2.1 Structure of different types of RNA.
	SO2.2 & SO2.3 Enzymes involved in RNA synthesis.	LI2.1 Restriction digestion analysis.	CI2.2 & CI2.3 Enzymes involved in RNA synthesis.	SL2.2 DNA binding proteins and their interaction with DNA.
	SO2.4 Role of different transcription factors in process of transcription. SO2.5 Mechanism of RNA synthesis in prokaryotes.		 CI2.4 General and specific transcription factors, promoter. CI2.5 Mechanism of RNA synthesis in prokaryotes. 	
	SO2.6 Mechanism of RNA synthesis in eukaryotes.		CI2.6 Mechanism of RNA synthesis in eukaryotes.	
	SO2.7 Post transcriptional modification in synthesized RNA.		CI2.7 RNA processing of pre mRNA, tRNA and rRNA.	
	SO2.8 RNA processing of mRNA.		CI2.8 5'cap formation and 3'end processing and polyadenylation.	
	SO2.9 Learn the function of RNA splicing in regulation of gene expression.		CI2.9 Importance of RNA splicing.	SL2.3 Functions of regulatory proteins.

	SW1.1 Assignments	Describe mechanism of transcription in prokaryotes and eukaryotes.
Suggested Sessional	SW1.2Mini Project	Diagrammatic representation of process of RNA processing in different types of RNAs.
Work (SW):anyone	SW1.3 Other Activities (Specify)	Write the role of various proteins and enzyme involved in transcription process and RNA
		processing.

This course syllabus illustrates the expected learning achievements, both at the course and Approxim	nateHours				
session levels, which students are anticipated to accomplish through various modes of					
instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional	Item Cl	LI	SW	SL	Total
Work (SW), and Self Learning (SL). As the course progresses, students should showcase	Approx.Hrs 09	02	01	02	14
their mastery of Session Outcomes (SOs), culminating in the overall achievement of					

Course Outcomes	(COs) upon the	he course's conclusion.
-----------------	----------------	-------------------------

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO3-52BT105.3 Molecular basis of biological activity in and between cells including protein synthesis, modification and interaction.	SO3.1 Role of various proteins in translation process in prokaryotes.	LI3.1 Determination of molecular weight of DNA/RNA	Unit-III CI3.1 Translation machinery in prokaryotes.	SL3.1 Study the translation.
	SO3.2 Role of various proteins in translation process in eukaryotes.		CI.3.2 Translation machinery in eukaryotes.	
	SO3.3 Study of genetic code and wobble hypothesis.		CI3.2 Genetic code and wobble hypothesis	
	SO3.4 Steps involved in process of protein synthesis in prokaryotes.		CI3.4 Mechanism of translation initiation, elongation and termination in prokaryotes.	
	SO3.5 Steps involved in process of protein synthesis in eukaryotes.		CI3.5 Mechanism of translation initiation, elongation and termination in eukaryotes.	
	SO3.6 Post translational modifications.		CI3.6 Co and post translation modification of protein,	
	SO3.7 Role of molecular chaperones.		CI3.7 Molecular chaperones	
	SO3.8 & SO3.9 Learn about protein turnover and degradation.		CI3.8 & CI3.9 Protein turnover and degradation.	SL3.2 Study the protein turnover and degradation.

Suggested Sessional	SW3.1 Assignments	Describe the importance of post translation modification.
Work (SW):anyone	SW3.2Mini Project	Describe role of molecular chaperones in protein degradation.
	SW3.3 Other Activities (Specify)	Draw a chart of genetic code and watch you tube videos of models of protein structures.

Course-Curriculum: This course syllabus illustrates the expected learning achievements, both at the course and ApproximateHours session levels, which students are anticipated to accomplish through various modes of Item Cl LI SW SL Total instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Approx.Hrs 02 01 02 09 14 Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-52BT105.4 The regulation	SO4.1		Unit-4	
of gene function, respond to	Positive and negative		CI4.1 Transcriptional	
environment and associated	regulation of		regulation-positive &	
phenomena.	transcription.		negative.	
	SO4.2 Understand the		CI4.2 Operon concept	
	operon concept.			
	SO4.3 To study different		CI4.3 Lactose,	
	types of operon in		tryptophan and	
	prokaryotes		histidine operons.	
	SO4.4 Role of activator and	LI4.1	CI4.4 Activator and repressor	SL4.1
	repressor in control of gene	Cloning &	control of gene expression.	Concept of gene and unit of
	expression.	Transformation		gene.
	SO4.5 Understand the		CI4.5 Transcriptional control	SL4.2
	regulation mechanism in		in λ phage.	Gene expression in phage
	lambda phage.			
	SO4.6 Regulation control at		CI4.6 Control of gene	
	transcription.		expression at transcription.	
	SO4.7 Regulation control at		CI4.7 Regulation control at	
	RNA processing level.		RNA processing level.	
	SO4.8 & SO4.9 Regulation		CI4.8 & CI4.9 Regulation	
	control at translation level.		control at translation level.	

Suggested Sessional	SW4.1 Assignments	Describe mechanism of gene regulation in prokaryotic and eukaryotic organism.
Work (SW): anyone	SW4.2 Mini Project	Diagrammatic representation of gene regulation control at transcription, translation and processing level.
	SW4.3 Other Activities (Specify)	Prepare list of proteins and their functions involved in regulation and control of gene expression.

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and	ApproximateHours						
session levels, which students are anticipated to accomplish through various modes of			~		~~~~	~~	
instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional							Total
Work (SW), and Self Learning (SL). As the course progresses, students should showcase		Approx.Hrs	09	02	01	02	14
their mastery of Session Outcomes (SOs), culminating in the overall achievement of							
Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-52BT105.5: Recognize various	SO5.1 Understand the		Unit-5	SL5.1
transposable element in DNA, advances	function and structure of		CI5.1Transposable	Study about mobile
in molecular activity such as antisense	transposable elements in		element in prokaryotes.	genetic elements.
technology, genome mapping.	prokaryotes.		Insertion sequences,	
			transposons.	
	SO5.2 Understand the		CI5.2 Transposable	
	function and structure of		element in eukaryotes.	
	transposable elements in		DNA and	
	eukaryotes.		retrotransposons.	
	SO5.3 Study the		CI5.3 Mechanism of	
	mechanism of transposable		transposition in	
	elements in prokaryotes.		prokaryotes.	
	SO5.4 Study the		CI5.4 Mechanism of	
	mechanism of transposable		transposition in	
	elements in eukaryotes.		eukaryotes.	
	SO5.5 Understand the		CI5.5 Antisense &	
	molecular mechanism of		ribozyme technology-	
	antisense and ribozyme		molecular mechanism of	
	technology.		antisense technology,	
			ribozymes.	
	SO5.6 Understand concept		CI5.6 Introduction to	SL5.2
	and importance of genome		genome mapping.	Study the Human Genome
	mapping.			Project.
	SO5.7 Understand the		CI5.7 Genetic & physical	
	genetic and physical map		map.	
	and			
	SO5.8 Applications of	LI5.1	CI5.8 Molecular marker in	
	molecular markers.	PCR amplification study	genome analysis-RFLP,	
		using thermal cycler.	RAPD & AFLP analysis.	

Suggested Sessional SW5.1 Assignments	Write the mechanism of transposition in prokaryotes and eukaryotes.
---------------------------------------	---

Work (SW): anyone	SW5.2 Mini Project	Draw and describe human genome project.
	SW5.3 Other	Find out some you tube videos of completed genome maps of various organisms.
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Molecular Biolog	Course Title: Molecular Biology				Course Code: 52BT105				
Course Outcomes(COs)	Class lecture (CI)	Laboratory Instruction(LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)				
CO1-52BT105.1: Understand molecular phenomena of DNA copying and transmission of information, its damage and repair mechanism.	09	4	4	1	18				
CO2-52BT105. 2 Students are being able to understand mechanism of synthesis of RNA molecules from DNA and its processing.	09	2	1	1	13				
CO3-52BT105.3 Molecular basis of biological activity in and between cells including protein synthesis, modification and interaction.	09	2	2	1	14				
CO4-52BT105.4 The regulation of gene function, respond to environment and associated phenomena.	09	2	2	1	14				
CO5-52BT105.5: Recognize various transposable element in DNA, advances in molecular activity such as antisense technology, genome mapping.	09	2	2	1	14				
Total Hours	45	12	11	05	73				

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Molecular Biology

Course Code: 52BT105

Course Outcomes					
	Α	An	Ε	C	Total Marks
CO1-52BT105.1: Understand molecular phenomena of DNA copying and transmission of information, its damage and repair mechanism.	02	01	01	01	05
CO2-52BT105.2 Students are being able to understand mechanism of synthesis of RNA	02	04	02	02	10

molecules from DNA and its processing.					
CO3-52BT105.3 Molecular basis of biological activity in and between cells including protein synthesis, modification and interaction.	03	05	05	02	15
CO4-52BT105.4 The regulation of gene function, respond to environment and associated phenomena.	03	03	03	01	10
CO5-52BT105.5: Recognize various transposable element in DNA, advances in molecular activity such as antisense technology, genome mapping.	05	04	01	00	10
Total Marks	15	17	12	06	50

Legend:A, Apply;An, Analyze;E, Evaluate;C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Genes V by Benjamin Lewin, Oxford University Press, New York, 1994.
2	Gene IX, Benjamin Lewin Oxford University Press, New York,2006.
3	Principles of Genetics, Snustad and Simmons, Seventh Edition, John Wiley and Sons, Inc., 2015.
4	Molecular Cell Biology, Lodish et.al., W. H. Freeman and Company, Eighth Edition, 2016.
5	Genomes 5 by T.A. Brown, John Wiley and sons (Asia)PTE LTD, New York, Fifth Edition2023

(b) Online Resources: Research papers and Google articles.

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching L

Program Name: M. Sc. biotechnology Semester: I Course Title: Molecular Biology Course Code: 52BT105

CO)/PO/PSO	Mapping						
Course Outcome (Cos)		Progran	1 Outcom	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1-52BT105.1: Understand molecular phenomena of DNA copying and transmission of information, its damage and repair mechanism.	2	2	-	-	1	2	2	1
CO2-52BT105. 2 Students are being able to understand mechanism of synthesis of RNA molecules from DNA and its processing.	3	2	1	2	1	2	1	2
CO3-52BT105.3 Molecular basis of biological activity in and between cells including protein synthesis, modification and interaction.	2	2	-	1	-	1	1	3
CO4-52BT105.4 The regulation of gene function, respond to environment and associated phenomena.	2	2	1	1	1	1	1	3
CO5-52BT105.5: Recognize various transposable element in DNA, advances in molecular activity such as antisense technology, genome mapping.	1	1	1	-	1	1	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High

Course Curriculum:

POs & PSOs	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
No.					
РО	CO1-52BT105.1: Understand	SO1.1 SO1.2		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	1SL-1,2,3,4
1,2,3,4,5	molecular phenomena of DNA copying	SO1.3 SO1.4	LI 1		
DGO	and transmission of information, its	SO1.5 SO1.6	LI 1 LI 2		
PSO	damage and repair mechanism.	SO1.7 SO1.8			
1,2,3		SO1.9			
PO	CO2-52BT105.2 Students are being	SO2.1 SO2.2		2.1, 2.2, 2.3,	2SL-1
1,2,3,4,5	able to understand mechanism of	SO2.3 SO2.4	LI 1	2.4,2.5,2.6,2.7,2.8,2.9	
PSO	synthesis of RNA molecules from DNA	SO2.5 SO2.6			
1,2,3	and its processing.	SO2.7 SO2.8			
		SO2.9			
PO	CO3-52BT105.3 Molecular basis of	SO3.1 SO3.2		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	3SL-1,2
1,2,3,4,5	biological activity in and between cells	SO3.3 SO3.4 SO3.5 SO3.6	LI 1		
PSO	including protein synthesis, modification and interaction.	SO3.7 SO3.8			
1,2,3	mouncation and interaction.	SO2.9			
PO	CO4-52BT105.4 The regulation of	SO4.1 SO4.2		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	4SL-1,2
1,2,3,4,5	gene function, respond to environment	SO4.3 SO4.4	LI 1		1012 1,2
-,_,_,_,_,	and associated phenomena.	SO4.5 SO4.6			
PSO	L	SO4.7 SO4.8			
1,2,3		SO2.9			
РО	CO5-52BT105.5: Recognize various	SO5.1 SO5.2		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	5SL-1,2
1,2,3,4,5	transposable element in DNA, advances	SO5.3 SO5.4	LI 1		
	in molecular activity such as antisense	SO5.5 SO5.6			
PSO	technology, genome mapping.	SO5.7 SO5.8			
1,2,3		SO2.9			

Curriculum Developer Team:

Prof. Kamlesh Choure

Prof. Ashwini A. Waoo

Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program name	Master of Science (M.Sc.)- Biotechnology	Master of Science (M.Sc.)- Biotechnology						
Semester	I							
Course Code:	52BT106							
Course title:	Bioanalytical Tools and Techniques Developer: Dr. Kamlesh Kumar Soni, Assistant Professor							
Pre-requisite:	Student should have basic knowledge of physics,	chemistry and analytical techniques						
Rationale:		s" in MSc Biotechnology program give the opportunity to understand the working principle and hromatography, gel electrophoresis. The techniques like DNA microarray will advance the knowledge of tion						
Course Outcomes (COs):	CO3-52BT106.3: Calculate the Rf value from a c CO4-52BT106.4 : Understand the working princip	een colorimetry, fluorescence, and UV visible spectroscopy. hromatogram to study paper, ion exchange, and affinity chromatography apart.						

Scheme of Studies:

				of studies (Ho				
Board of Study	CourseCode	Course Title	Cl	LI	SW	N		Total Credits(C) (L:T:P=3:0:1)
Discipline Specific Course (DSC)	52BT106	Bioanalytical Tools & Techniques	3	2	1	3	9	3+1=4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

			Scheme of Asse	(,					
			Progressive Ass	sessment (PI	RA)					
Board of Study	Couse Code	Course Title	5 number 3 marks each	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Attendance	Total Marks	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
		Bioanalytical Tools								
DSC	52BT106	& Techniques	15	20	5	5	5	50	50	100

Scheme of Assessment: Practical

						Scheme of Assessn	nent (Marks)		
					Progressive A	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	viva voce i	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
DSC	52BT156	Bioanalytical Tools & Techniques	35	5	5	5	50	50	50

Unit-I: Introduction to Analysis						
Course-Curriculum:	Approximate Hor	ırs				
This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are						
anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction	Item	Cl	LI	SW	SL	Total
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of	Approx. Hrs	09	04	01	02	16
Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT106.1: Understand the essential ideas and immune system cells	1.1: Attain Good Laboratory Practice	1.1: Demonstration of working in the lab	1.1: Introduction to Analysis: Concept of Good Laboratory Practice and Quality Management	1.1: Study the various instructions of working in the labs
	1.2 &1.3: Discuss the Working principle and instrumentation of different instruments used in biotechnology laboratory		1.2 & 1.3: Working principle and instrumentation of different instruments used in biotechnology laboratory	
	1.4: Understand the Spectroscopy: Lambert Beer's Law, principle, instrumentation	1.2: Use and practices of Spectrophotometer	1.4: Spectroscopy: Lambert Beer's Law, principle, instrumentation	1.2: Principle of different spectroscopy
	1.5: Application of UV spectrophotometer		1.5: Application of UV spectrophotometer	
	1.6: Application of visible spectrophotometer		1.6: Application of visible spectrophotometer	
	1.7: Application of IR spectrophotometer		1.7: Application of IR spectrophotometer	
	1.8 & 1.9: NMR Spectroscopy		1.8 & 1.9: NMR Spectroscopy	

Suggested Sessional Work	SW1.1 Assignments	Explain in details about good laboratory practices
(SW): anyone	SW1.2 Mini Project	Ray diagram of all microscope you studied with neat labelling. And their applications
	SW1.3 Other Activities (Specify)	Find out the literature discussing about the advancement of spectrophotometer.

Unit-II: Different Techniques of Molecular Biology						
Course-Curriculum:	Approximate Ho	urs				
This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are						
anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction	Item	Cl	LI	SW	SL	Total
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of	Approx. Hrs	09	04	01	02	16
Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-52BT106.2: Recognize the differences between colorimetry, fluorescence, and UV visible spectroscopy	2.1: Learn about the chemical important for DNA and RNA. isolation	2.1: DNA isolation from bacteria/plant/animal blood cells	2.1: Isolation of DNA and RNA	2.1: DNA precipitation and storage
	2.2: Advance the knowledge of protein isolation		2.2: Isolation of protein	
	2.3: Detail knowledge about DNA fingerprinting,		2.3: DNA fingerprinting	
	2.4 DNA foot printing & Imprinting		24: DNA foot printing, DNA imprinting,	
	2.5 DNA microarray- fundamental understanding		2.5: DNA microarray	
	2.6: DNA sequencing: learn various methods		2.6: DNA sequencing	
	2.7: know the blotting techniques principle		2.7: Blotting techniques- Introduction	
	2.8 & 2.9 : Understand difference among the southern blotting, northern blotting and western blotting and their applications	2.2: Demonstration of Western blotting	2.8 & 2.9: Southern blotting, northern blotting and western blotting.	2.2: Read in details about the blotting techniques

Suggested Sessional Work	SW1.1 Assignments	Important precautions while working with RNA
(SW): anyone	SW1.2 Mini Project	Prepare the poster evaluating different DNA sequencing m, ethods
	SW1.3 Other Activities (Specify)	Find out the videos discussing about the different blot techniques

Unit-III: Separation & Identification of Material

Course-Curriculum: This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Approximate Hours

ItemClLISWSLTotalApprox. Hrs0904010216

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO3-52BT106.3: Calculate the Rf value from a chromatogram to study paper, ion exchange, and affinity chromatography apart	3.1: Read the principle behind the various chromatographic techniques	3.1: Thin layer chromatography	3.1: Concept of chromatography	3.1: Study the fundamentals of various chromatography
	3.2: Know the working principle of chromatography		3.2: Principle of chromatography	
	3.3 & 3.4: Paper chromatography, thin layer chromatography	3.2: Paper chromatography	3.3 & 3.4: Paper chromatography, thin layer chromatography	
	3.5: Column chromatography,		3.5: Column chromatography,	
	3.6: Understand about adsorption vs absorption and role in chromatography		3.6: Adsorption chromatography	
	3.7: Gas liquid chromatography,		3.7: Gas liquid chromatography,	3.2: Boost your knowledge for application of chromatographic techniques
	3.8: Affinity chromatography,		3.8: Affinity chromatography,	
	3.9: Gel permeation chromatography		3.9: Gel permeation chromatography	

Suggested Sessional Work	Assignments:	What are the materials used as bead in different chromatography machine; explain in details
(SW): anyone	Mini Project:	Make a poster explaining the principle of separation of ion exchange chromatography
	Other Activities (Specify):	Watch animation on explaining the functionality of HPLS and Gas chromatography

Unit IV: Electrophoresis						
Course-Curriculum:	Approximate Ho	urs				
This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are					-	
anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction	Item	Cl	LI	SW	SL	Total
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of	Approx. Hrs	09	04	01	03	17
Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-52BT106.4: Understand	4.1: Understanding the basic	4.1: DNA gel	4.1: Concept and basic principle of	4.1: Enhance your knowledge about
the working principle and	concept of electrophoresis	electrophoresis and DNA separation	electrophoresis	the agar gel electrophoresis and polyacrylamide gel electrophoresis
application of electrophoresis		DIAR separation		poryaci yrannuc ger electrophoresis
in real world				
	4.2: Fundamental	4.2: PAGE for the	4.2: Factors affecting electrophoretic mobility	4.2: Understand the basis of
	knowledge of key factors affecting the mobility	separation of protein		separation of protein in PAGE
	4.3: Learning of movement of		4.3: Free electrophoresis	4.3: learn the difference in DNA and
	DNA freely on electrophoresis			RNA gel electrophoresis
	4.4: Moving boundary electrophoresis		4.4: Moving boundary electrophoresis	
	4.5: learn how zones are created in electrophoresis		4.5: Zone electrophoresis	
	4.6: Paper electrophoresis		4.6: Paper electrophoresis	
	4.7: Understanding of		4.7: Gel electrophoresis, capillary	
	capillary electrophoresis and its application		electrophoresis	
	4.8: Immune-electrophoresis,		4.8: Immune-electrophoresis,	
	4.9: Isoelectric-focusing		4.9: Isoelectric-focusing	

Suggested Sessional Work	Assignments:	Working principle of Gel electrophoresis
(SW): anyone	Mini Project:	Application of DNA-Protein Interaction analysis
	Other Activities (Specify):	Find out the videos discussing about the various types of electrophoresis techniques.

Unit-V: Centrifugation & Imaging Techniques						
Course-Curriculum:	Approximate Ho	urs				
This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are						
anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction	Item	Cl	LI	SW	SL	Total
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of	Approx. Hrs	09	02	01	04	16
Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

Course outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-52BT106.5: Learn the essential ideas behind centrifugation and use them in real-world situations	5.1: Abstract he working principle of centrifugation	5.1: Separation of protein from given sample	5.1: Introduction & basic principle of centrifugation	5.1: Understand the centripetal and centrifugal forces
	5.2: Understand the major factors affecting the centrifugation		5.2: Factors affecting sedimentation	5.2: Understand the concept of centrifugation
	5.3: Learn how ultracentrifugation is different to that of centrifugation		5.3: Ultracentrifuge, analytical centrifuge,	5.3: Learnt the ultracentrifugation
	5.4: Gain a skill of gradient centrifugation		5.4: Density gradient centrifugation	
	5.5: Acquire a knowledge of differential centrifugation		5.5: Differential centrifugation,	
	5.6: Physical methods of imaging intact biological structures		5.6: Physical methods of imaging intact biological structures	
	5.7: Gain advance knowledge of X-Ray, CAT-Scan		5.7: X-ray, CAT-Scan	5.4: Discuss the different types of rays and applications in medical biotechnology
	5.8 & 5.9: Get to know about ECG and EEG		5.8 & 5.9: ECG and EEG	

Suggested Sessional	Assignments:	Working principle of Centrifugation
Work (SW): Anyone	Mini Project:	Image development and application of x-rays
	Other Activities (Specify):	Ultracentrifugation: Application in isolation of different cell organelles

Course duration (in hours) to attain Course Outcomes

(Course title: Bioanalytical Tools and Techniques) (Course code: 52BT106)

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-52BT106.1: Understand the essential ideas and immune system cells	9	4	2	1	16
CO2-52BT106.2: Recognize the differences between colorimetry, fluorescence, and UV visible spectroscopy	9	4	2	1	16
CO3-52BT106.3: Calculate the Rf value from a chromatogram to study paper, ion exchange, and affinity chromatography apart	9	4	2	1	16
CO4-52BT106.4 : Understand the working principle and application of electrophoresis in real world	9	4	3	1	17
CO5-52BT106.5: Learn the essential ideas behind centrifugation and use them in real-world situations	9	2	4	1	16
Total Hours	45	18	13	05	81

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome: (Course title: Bioanalytical Tools and Techniques) (Course code: 52BT106)

Course Outcomes		Total			
	Α	An	Е	С	Marks
CO1-52BT106.1: Understand the essential ideas and immune system cells	2	1	1	1	5
CO2-52BT106.2: Recognize the differences between colorimetry, fluorescence, and UV visible spectroscopy	2	4	2	2	10
CO3-52BT106.3: Calculate the Rf value from a chromatogram to study paper, ion exchange, and affinity chromatography apart	3	5	5	2	15
CO4-52BT106.4: Understand the working principle and application of electrophoresis in real world	2	3	3	2	10
CO5-52BT106.5: Learn the essential ideas behind centrifugation and use them in real-world situations	5	4	1	0	10
Total Marks	14	17	12	07	50
Legend: A-Apply, A- Analyze, E- Evaluate, C- Create	•	•	•	•	•

Suggested learning Resources:

S.no.	Title	Author	Publisher	Edition & Year
1	Principles and Techniques of Biochemistry and	Keith Wilson and	Cambridge	3 & 2018
1	Molecular Biology	John Walker	University Press	5 & 2018
2	Principles of Physical Biochemistry	K.E. Van Holde,	Pearson Prentice	2 & 2005
2	Finciples of Flysical Biochemistry	Prentice Hall	Hall	$2 \propto 2003$
3	Principles and Practice of Bioanalysis	Richard F. Venn	CRC Press Inc	2 & 2008

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to Cement Plant
- 7. Demonstration
- 8. ICT Based teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Program Title: M. Sc. Biotechnology, 1st Sem Course Code: **52BT106** Course Title: Bioanalytical Tools & Techniques

CO/PO Mapping (Range 1: Low, 2: Medium, 3:High)								
Course Outcomes	Program Outcomes (POs) Program Specific Outcomes (PSC				nes (PSOs)			
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1-52BT106.1: Understand the essential ideas and immune system cells	2	2	-	-	1	2	2	1
CO2-52BT106.2: Recognize the differences between colorimetry, fluorescence, and UV visible spectroscopy	3	2	1	2	1	2	1	2
CO3-52BT106.3: Calculate the Rf value from a chromatogram to study paper, ion exchange, and affinity chromatography apart	2	2	-	1	-	1	1	3
CO4-52BT106.4 : Understand the working principle and application of electrophoresis in real world	2	2	1	1	1	1	1	3
CO5-52BT106.5: Learn the essential ideas behind centrifugation and use them in real-world situations	1	1	1	-	1	1	3	2

Course Curriculum M	lap:				
POs & PSOs No.	COs No	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5 PSO 1,2,3	CO1-52BT106.1: Understand the essential ideas and immune system cells	1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9	LI 1 LI 2	1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9	1 SL-1,2
PO 1,2,3,4,5 PSO 1,2,3	CO2-52BT106.2: Recognize the differences between colorimetry, fluorescence, and UV visible spectroscopy	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	LI 1 LI 2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	2 SL-1,2
PO 1,2,3,4,5 PSO 1,2,3	CO3-52BT106.3: Calculate the Rf value from a chromatogram to study paper, ion exchange, and affinity chromatography apart	3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9	LI 1 LI 2	3.1,3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9	3 SL-1,2
PO 1,2,3,4,5 PSO 1,2,3	CO4-52BT106.4 : Understand the working principle and application of electrophoresis in real world	4.1,4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	LI 1 LI 2	4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	4 SL-1,2,3
PO 1,2,3,4,5 PSO 1,2,3	CO5-52BT106.5: Learn the essential ideas behind centrifugation and use them in real-world situations	5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9	LI 1	5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9	5 SL-1,2,3,4

Curriculum Developer Team: Prof. Kamlesh Choure

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Semester 2

Program name	Master of Science (M.Sc.)- Biotechnology						
Semester	П						
Course Code:	52BT201						
Course title:	Immunology	Developer: Mrs. Keerti Samdariya, Assistant Professor					
Pre-requisite:	Student should have basic knowledge about immunology.						
Rationale:	application of numerous cells involved in defer	nology" in M.Sc. Biotechnology program allow predicting the working principle and use responses. This subject will build up the basic and advanced mechanism of immune bject offers the students the opportunity to advance their knowledge of immunology.					
Course Outcomes (COs):	CO2-52BT201.2- comprehensive understandin CO3-52BT201.3- Understand the structure and CO4-52BT201.4- The molecular foundations of thoroughly understood by the students.	ng its organs, cells, and receptors, will be covered in class. ng of innate immunity and the cell types involved. I operation of antibodies. of antigen recognition, hypersensitivity reactions, and antigen-antibody interactions will be tranding of the fundamentals of immunology and how it can be used to treat diseases of humans					

Scheme of Studies:

Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L: T: P=3:0:1)
Basic Science Course (BSC)	52BT201	Immunology	3	2	1	2	8	3+1=4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

						Schem	e of Assessment	t (Marks)		
Board of Study	Couse Code	Course Title	5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Progressive Ass Class Activity any one (CAT)	essment (PRA) Class Attendance (AT)	Total Marks (CA+CAT+CT+SA+AT)	End Semester Assessmen t (ESA)	Total Marks (PRA+ ESA)
BSC	52BT201	Immunology	15	20	5	5	5	50	50	100

Scheme of Assessment: Practical

					So	cheme of Assessr	nent (Marks)		
					Progressive As	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
BSC	52BT251	Immunology	35	5	5	5	50	50	50

Course-Curriculum:

This course cullabus illustrates the expected learning achievements, both at the course and cossion levels	A	pproximate H	lours				
This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom	ΙΓ	Item	Cl	LI	SW	SL	Total
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall		Approx. Hrs	09	02	01	04	16
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT201.1- Understand the essential of immune system cells to the organism	SO 1.1: Able to define the immune system	LI 1.1: Demonstration of T- cell mediated immunity diagrammatically and with the help of animation.	CI 1.1: Able to define the immune system	SL 1.1: Study about the basic of immune systems
	SO 1.2: History and major milestones of Immunology		CI 1.2: History and Major Milestones of Immunology	SL 1.2: Learn about defense mechanism in lower organism
	SO 1.3: Understanding fundamental of immune system		CI 1.3: General concepts of the immune system	

	SO 1.4: In depth study about	CI 1.4: In depth study about the	
	the specific immune systems	specific immune systems	
	SO 1.5: In depth study about	CI 1.5: In depth study about the non-	SL 1.3: Read the working
	the non-specific immune	specific immune systems	principle of the non-specific
	systems		immune system
	SO 1.6 & CI 1.7	CI 1.6 & CI 1.7: Primary and	
	Categorizing the primary and	Secondary immune response,	
	secondary responses,	Haematopoiesis	
	Haematopoiesis		
	SO 1.8: Basic and advanced	CI 1.8: Basic and advanced	SL 1.4: Compare the B-cells
	understanding of B cells.	understanding of B cells.	and T-cells
	SO 1.9: Basic and advanced	CI 1.9: Basic and advanced	
	understanding of T cells	understanding of T cells	
	i i _ i _ i _		-
Suggested Sessional	SW1 1 Assignments	Describe in details the action of P calls on defense system	

Suggested Sessional	SW1.1 Assignments	Describe in details the action of B-cells on defence system
Work (SW): anyone	SW1.2 Mini Project	Draw well labelled diagram of different lymphoid organs
	SW1.3 Other Activities (Specify)	Watch animation on mode of action of first line of defence

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Approximate Hours						
Item	Cl	LI	SW	SL	Total	
Approx. Hrs	09	02	01	02	14	

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO 2-52BT201.2-	SO2.1: Discuss the	LI 2.1: Demonstration	CI 2.1: Antigens: Properties and	
Know the fundamentals of	properties of antigens	of Antibody-antigen	types, Haptens and Adjuvants	
immunoglobulins, antigens, and		interaction		
their classifications				
	SO2.2: Discuss the types of		CI 2.2: Antigens: Properties and	
	antigens, Haptens		types, Haptens	
	SO2.3 explain the Adjuvants		CI 2.3: Adjuvants	
	SO 2.4: Build up the		CI 2.4: Antibodies: Types,	SL 2.1: Fundamental
	concept about the		Molecular structure of Immuno-	structure of immunoglobins
	antibody's structures and		globulins	
	classes-Immunoglobulins			

SO 2.5: Build up the	CI 2.5: Antibodies: Types,	
concept about the	Molecular structure of allotypes &	
antibody's structures and	idiotypes	
classes-allotypes &		
idiotypes		
SO 2.6: Humoral &	CI 2.6: Humoral & Cellular immune	
Cellular immune responses	responses	
SO 2.7: Complement	CI 2.7: Complement System, and	
System, and Introduction to	Introduction to cytokines.	
cytokines.	-	
SO 2.8 & CI2.9: learn	CI 2.8 & CI2.9: Hybridoma	SL 2.2: Read in details about
about Hybridoma secreting	secreting monoclonal antibodies	the monoclonal and
monoclonal antibodies		polyclonal antibody

Suggested Sessional	SW1.1 Assignments	Discuss about cytokines and their role in immune responses
Work (SW): anyone	SW1.2 Mini Project	Draw well labelled diagram of immunoglobin and mention their types
	SW1.3 Other Activities (Specify)	Watch animation on Antibody-antigen interaction mechanism

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which	Approximate H	lours				
students are anticipated to accomplish through various modes of instruction including Classroom Instruction	Item	Cl	LI	SW	SL	Total
(CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses,	Approx. Hrs	09	02	01	02	14
students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of						
Course Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO3-52BT201.3- In-depth study about action of immune responses and their genetic regulations	SO3.1: generation of humoral and cell-mediated immune system		CI 3.1: generation of humoral and cell-mediated immune system	SL3.1: Figure out the fundamental differences between humoral and cell-mediated immune responses
	SO 3.2: Activation of B & T lymphocytes		CI 3.2: Activation of B & T lymphocytes	SL 3.2: Advance the knowledge of the regulation of B & T cells on exposure to the antigens
	SO 3.3: cytokines and their function		CI 3.3: cytokines and their function	
	SO 3.4 & SO 3.5: regulation of B & T cell	LI3.1 To perform the preparation of B & T cells	CI 3.4 & CI 3.5: regulation of B & T cell	
	SO 3.6 & SO 3.7: Learn the structure and function of class 1 MHC molecules.		CI 3.6 & CI 3.7: structure and function of 1 MHC molecules.	
	SO 3.8 & SO 3.9: Learn the structure and function of class 2 MHC molecules.		CI 3.8 & CI 3.9: structure and function of 2 MHC molecules.	

Suggested Sessional	Assignments:	Describe in hybridoma technology
Work (SW): anyone	Mini Project:	Draw structure of different types of antibodies
	Other Activities (Specify):	Watch animation on explaining the functionality of cell mediated immune system.

	Approximate H	Iours				
This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction	Item	Cl	LI	SW	SL	Total
(CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of	Approx. Hrs	09	02	01	03	15
Course Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-52BT201.4-	SO 4.1: Discuss about	LI 4.1	CI 4.1: Hypersensitivity-	SL 4.1: Study the
Elaborate the various	Hypersensitivity- Delayed	To perform a skin	Delayed hypersensitivity	hypersensitivity
immunodeficiency related	hypersensitivity	prick test (SPT) to		
diseases and functionality of		diagnose immediate		
immune system		hypersensitivity		
		reactions (Type I		
		hypersensitivity) to		
		common allergens.		
	SO 4.2: Discuss about		CI 4.2: Hypersensitivity-	
	Hypersensitivity- immediate		immediate hypersensitivity	
	hypersensitivity			
	SO 4.3: Discus Autoimmunity-		CI 4.3: Autoimmunity-	
	types of autoimmune diseases		types of autoimmune	
			diseases	
	SO 4.4: Explain the mechanism of		CI 4.4: mechanism of CD-	SL 4.2: Learn what are the CD4
	CD-4+ T-cell		4+ T-cell	& CD8
	SO 4.5: Discuss MHC and TCR in		CI 4.5: MHC and TCR in	
	autoimmunity		autoimmunity	
	SO 4.6: Discuss AIDS and immuno		CI 4.6: Autoimmune	SL 4.3: Study the nature of HIV
	deficiency disorder		diseases,	and why is it not curable so far
			Immunodeficiency-AIDS	

Suggested Sessional	Assignments:	Elaborate the function of MHCs
Work (SW): anyone	Mini Project:	Describe the AIDS in details
	Other Activities (Specify):	Make a poster explaining how pathogen make fool and escape from host immune machineries

	Approximate	Hours	S			
course syllabus illustrates the expected learning achievements, both at the course and session levels, which ents are anticipated to accomplish through various modes of instruction including Classroom Instruction , Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses,	Item	Cl	LI	SW	SL	Total
(CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses,	Approx. Hrs	09	02	01	02	14
students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of						
Course Outcomes (COs) upon the course's conclusion.						

Course outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-52BT201.5- Basic principles and applications of various immunization techniques as well as the various vaccinations	SO 5.1: Explain Vaccinology- Active immunization		CI 5.1: active immunization	SL 5.1: Apply the idea of Infection to suppress the immunity to human health
	SO 5.2: Explain Vaccinology- passive immunization		CI 5.2: Passive immunization	
	SO 5.3: Illustrate the vaccine technology and application		CI 5.3: Vaccines & Vaccination	
	SO 5.4 explain the types of vaccines		CI 5.4: Vaccines & Vaccination – adjuvants, cytokines, DNA vaccines, recombinant vaccines, bacterial vaccines, viral vaccines, vaccines to other infectious agents	
	SO 5.6: Immuno assay- RIA, ELISA, ELISPOT assay, western blotting and immunofluoroscense	LI 5.1: Demonstration of ELISA	CI 5.6: Immuno assay- RIA, ELISA, ELISPOT assay, western blotting and immunofluoroscense	SL 5.2: Revise the ELSIA for several diseases' diagnosis

Suggested Sessional	Assignments:	Detail explanation of principle of vaccine production
Work (SW): Anyone	Mini Project:	Discuss about the western blotting techniques and it application in infection detection
	Other Activities	How ELISA functioning differs from RIA.
	(Specify):	

Course duration (in hours) to attain Course Outcomes:

Course Title: Immunology	Course Title: Immunology				Course Code: 52BT201					
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)					
CO1-52BT201.1- The immune system, including its organs, cells, and receptors, will be covered in class.	9	2	4	1	16					
CO2-52BT201.2- comprehensive understanding of innate immunity and the cell types involved.	9	2	2	1	14					
CO3-52BT201.3- Understand the structure and operation of antibodies.	9	2	2	1	14					
CO4-52BT201.4- The molecular foundations of antigen recognition, hypersensitivity reactions, and antigenantibody interactions will be thoroughly understood by the students.	9	2	3	1	15					
CO5-52BT201.5- The student gains an understanding of the fundamentals of immunology and how it can be used to treat diseases of humans as a result of the course.	9	2	2	1	14					
Total Hours	45	10	13	05	73					

End-semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Immunology

Course Code: 52BT201

Course Outcomes		Marks Distribution						
	Α	An	Ε	С	Total Marks			
CO1-52BT201.1- The immune system, including its organs, cells, and receptors, will be	2	1	1	1	5			
covered in class.								
CO2-52BT201.2- comprehensive understanding of innate immunity and the cell types	2	4	2	2	10			
involved.								
CO3-52BT201.3- Understand the structure and operation of antibodies.	3	5	5	2	15			

CO4-52BT201.4- The molecular foundations of antigen recognition, hypersensitivity	2	3	3	2	10
reactions, and antigen-antibody interactions will be thoroughly understood by the students.					
CO5-52BT201.5- The student gains an understanding of the fundamentals of immunology and	5	4	1	0	10
how it can be used to treat diseases of humans as a result of the course.					
Total Marks	14	17	12	07	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Roitt I.M, Brostoff, J., Male D.K., Immunology (Illustrated Publisher, Mosby).
2	T. J. Kindt, R.A. G. B. A. Osborne, J. Kuby. Immunology (W.H. Freeman and Company, New York).
3	Paul, W.E. (2008). Fundamental immunology (Lippincott Williams & Wilkins).
4	T.G. Parslow, D.P. Stites, A.I. Terr. Medical immunology (Lange Medical Books/McGraw-Hill).

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: M. Sc. Biotechnology **Semester:** II Semester **Course Title:** Immunology **Course Code:** 52BT201

CO/PO/PSO Mapping											
Course Outcome (Cos)		Progran	rogram Outcomes (POs)				Program Specific Outcome (PSOs)				
	PO1	PO2	PO3	PSO1	PSO2	PSO3					
CO1-52BT201.1- The immune system, including its organs, cells,	1	2	2	3	1	2	2	1			
and receptors, will be covered in class.											
CO2-52BT201.2- comprehensive understanding of innate immunity	1	2	3	2	1	1	1	2			
and the cell types involved.											
CO3-52BT201.3- Understand the structure and operation of	1	2	3	2	1	1	1	1			
antibodies.											
CO4-52BT201.4- The molecular foundations of antigen recognition,	-	1	1	-	2	1	1	3			
hypersensitivity reactions, and antigen-antibody interactions will be											
thoroughly understood by the students.											
CO5-52BT201.5- The student gains an understanding of the	1	1	1	-	-	1	3	2			
fundamentals of immunology and how it can be used to treat diseases											
of humans as a result of the course.											

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5 PSO 1,2,3	CO1-52BT201.1- The immune system, including its organs, cells, and receptors, will be covered in class.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO1.6 SO1.7 SO1.8 SO1.9	LI 1	1.1,1.2,1.3,1.4, 1.5,1.6,1.7,1.8,1.9	1SL-1,2,3,4
PO 1,2,3,4,5 PSO 1,2,3	CO2-52BT201.2- comprehensive understanding of innate immunity and the cell types involved.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5 SO2.6 SO2.7 SO2.8 SO2.9	LI 1	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	2SL-1,2
PO 1,2,3,4,5 PSO 1,2,3	CO3-52BT201.3- Understand the structure and operation of antibodies.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6 SO3.7 SO3.8 SO3.9	LI 1	3.1,3.2,3.3,3.4,3.5,3.6,3.7.3.8,3.9	3SL-1,2
PO 1,2,3,4,5 PSO 1,2,3	CO4-52BT201.4- The molecular foundations of antigen recognition, hypersensitivity reactions, and antigen-antibody interactions will be thoroughly understood by the students.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6 SO4.7 SO4.8 SO4.9	LI 1	4.1,4.2,4.3,4.4,4.5,4.5,4.6,4.7,4.8,4.9	4SL-1,2,3
PO 1,2,3,4,5 PSO 1,2,3	CO5-52BT201.5- The student gains an understanding of the fundamentals of immunology and how it can be used to treat diseases of humans as a result of the course.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6 SO5.7 SO5.8 SO5.9	LI 1	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	5SL-1,2

Curriculum Developer Team:

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	M.Sc. BIOTECHNOLOGY
Semester	Π^{nd}
Course Code:	52BT202
Course title:	Computational Biology & Bioinformatics Curriculum Developer: Mr. Piyush Kant Rai, Assistant Professor
Pre-requisite:	To excel in Computational Biology & Bioinformatics, a strong foundation in molecular biology, genetics, is essential. Understanding algorithms, especially dynamic programming, and familiarity with bioinformatics tools like NCBI databases are advantageous. Exposure to structural biology and molecular modeling concepts, sequence analysis, alignment methods, and phylogenetics is valuable. Skills in molecular modeling software and techniques further enhance comprehension of advanced topics.
Rationale:	The proposed syllabus are critical for students embarking on a Computational Biology & Bioinformatics course due to its interdisciplinary nature. Proficiency in molecular biology, genetics, programming, and statistical analysis is fundamental for effective biological data interpretation and computational analysis. Familiarity with bioinformatics tools and databases enables efficient data handling and retrieval, while understanding algorithms enhances students' ability to develop and optimize bioinformatics algorithms. Exposure to structural biology concepts provides insights into molecular modeling techniques, essential for drug discovery and protein structure prediction. Overall, these prerequisites equip students with the necessary knowledge and skills to tackle complex biological problems using computational approaches.
Course Outcomes (COs):	CO1-52BT202.1- Acquire knowledge about a strong foundation in interdisciplinary sciences such as Computer Sciences and Biologic Sciences.
	CO2-52BT202.2- Address the challenges arising from the huge amount of genomic data.
	CO3-52BT202.3- Analyze the corresponding drug responses towards appropriate drug specified dosages.
	CO4-52BT202.4- Explore the EST database and protein databases to acquire knowledge about the protein structure.
	CO5-52BT202.5- To gain information about biochemical and molecular mechanics information regards to proteins.

Scheme of Studies:

	CourseCode	Code Course Title						
Board of Study			Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:1:1)
Discipline Specific Course (DSC)	52BT202	Computational Biology and Bioinformatics	3	2	1	2	8	3+1+1=5

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits.

 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

				Scheme of Assessment (Marks)								
Board of Study	Course Code	Course Title	Class/Home Class Test 2 Seminar one Class Total Marks As		End Semester Assessment (ESA)	Total Marks (PRA+ ESA)						
DSC	52BT202	Computational Biology and Bioinformatics	15	20	5	10	50	50	100			

Scheme of Assessment: Practical

				Progressive Assessment (PRA)					
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
DSC	52BT252	Computational Biology & Bioinformatics	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the	Approximate Hours						
course and session levels, which students are anticipated to accomplish through		[- .	~1	* *		a r	m 1
various modes of instruction including Classroom Instruction (CI). Laboratory		Item	Cl	LI	SW	SL	Total
•		Approx. Hrs	12	02	01	02	17
culminating in the overall achievement of Course Outcomes (COs) upon the							
course's conclusion.							
various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the		Item Approx. Hrs	Cl 12	LI 02	SW 01	SL 02	

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT202.1-Acquireknowledgeaboutastrong		LI1.1 Learn how to use databases	CI1.1 & CI1.2 Introduction to the NCBI data model	SL1.1 Explore NCBI website
foundation in interdisciplinary sciences such as	SO1.3 & SO1.4 Embl		CI1.3 & CI1.4 EMBL	SL1.2 Visit EMBL database site
Computer Sciences and Biological Sciences	SO1.5 & SO1.6 DDBJ, Swissprot		CI1.5 & CI1.6 DDBJ, Swissprot	
	SO1.7 & SO1.8 GENBANK		CI1.7 & CI1.8 GENBANK	
	SO1.9 & SO1.10 Entrez, Unigene .		CI1.9 & CI1.10 Entrez, Unigene	
	SO1.11 & SO1.12 Understanding the Databases and rapid sequence analysis		CI1.11 & CI1.12 Understanding the Databases and rapid sequence analysis	

Suggested Sessional	SW1.1 Assignments	Summarizes the GenBank, EMBL and DDBJ		
Work (SW): anyone	SW1.2 Mini Project	Demonstrate how to retrieve data from EMBL		
	SW1.3 Other Activities (Specify)	correlate the data redundancy among INSDC databases		

Item	Cl	LI	SW	SL	Total
Approx. Hrs	12	02	01	02	17

Course	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction	Self Learning (SL)
Outcome			(CI)	
(CO)				
CO2-52BT202.2-	SO2.1 & SO2.2	LI2.1 Discuss how to	CI2.1 & CI2.2	SL2.1 Practice sequence
Address the	How Global and local alignments	analyze raw reads of	Global and local alignments	alignment
challenges arising	works	DNA/RNA.	works	
from the huge	SO2.3 & SO2.4		CI2.3 & CI2.4	
amount of genomic	What is Pairwise and multiple		Pairwise and multiple	
data	alignment		alignment	

SO2.5 & SO2.6	CI2.5 & CI2.6	SL2.2 Recall Dynamic
How dynamic programming	Dynamic programming	programming
algorithms, alignment by hidden	algorithms, alignment by	
Markov models	hidden Markov models	
SO2.7 & SO2.8	CI2.7 & CI2.8	
Understanding consensus word	consensus word analysis	
analysis		
SO2.9 & SO2.10	CI2.9 & CI2.10	
more complex scoring	more complex scoring	
SO2.11	CI2.11	
Pattern searching programs	Pattern searching programs	
SO2.12	CI2.12	
family and superfamily	family and superfamily	
representation	representation	

Suggested Sessional	SW2.1 Assignments	Justify the role of dynamic programming in alignment		
Work (SW): anyone	SW2.2 Mini Project	Interpret the MSA result concerning the DNA		
	SW2.3 Other Activities (Specify)	Incorporate some youtube videos based on features of how to do MSA		

Item		Cl	LI	SW	SL	Total
Approx.	Hrs	12	04	01	02	19

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Class room	Self-Learning (SL)
		(LI)	Instruction	
			(CI)	
CO3-52BT202.3-	SO3.1 & SO3.2	LI3.1 Basics of tree	CI3.1 & CI3.2	SL3.1 Learn steps of phylogenetic
Analyze the corresponding	Show Trees-splits and	metrices and tree splits	Trees-splits and	tree generation
drug responses towards	metrices on trees, tree		metrices on trees,	
appropriate drug specified	interpretation		tree interpretation	
dosages	SO3.3 & SO3.4		CI3.3 & CI3.4	SL3.2 Practice Phylip software
	Learn the, Distance –		Distance – additive,	
	additive, ultrameric and		ultrameric and	
	nonadditive distances, tree		nonadditive	
	building methods		distances, tree	
			building methods	
	SO3.5 & SO3.6	LI3.2 Interpretation of	CI3.5 & CI3.6	
	How to do phylogenetic	phylogenetic tree	phylogenetic	
	analysis, parsimony, tree		analysis, parsimony,	

evaluation, maxi	mum	tree evaluation,	
likelihood trees		maximum likelihood	
		trees	
SO3.7 & SO3.8		CI3.7 & CI3.8	
tree evaluation		tree evaluation	
SO3.9 & SO3.1	0	CI3.9 & CI3.10	
Estimating the ra	ate of change	Estimating the rate of	
		change	
SO3.11		CI3.11	
Estimate likeliho	ood and trees	Estimate likelihood	
		and trees	
SO3.12		CI3.12	
analysis software	e	analysis software	

Suggested Sessional	SW3.1 Assignments	Write about distance matrix.
Work (SW): anyone	SW3.2 Mini Project	Make a flow chart of steps of phylogenetic tree generations
	SW3.3 Other	Search and find the amrita lab and there find alignment methods.
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	12	04	01	02	19

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO4-52BT202.4- Explore the EST database	SO 4.1 & SO4.2 Features of ESTs – databases	LI4.1 Basics of computer	CI4.1 & CI4.2 ESTs – databases	
and protein databases to acquire knowledge about the protein structure.	SO4.3 & SO4.4 What is clustering, gene discovery and identification,	LI4.2 How to search any phylogenetic tree.		SL4.1 Learn techniques of gene discovery
	SO4.5 & SO4.6 How to do gene discovery and identification		CI4.5 & CI4.6 gene discovery and identification	
	SO4.7 & SO4.8 explain methods of Protein identification and its physical properties		CI4.7 & CI4.8 Protein identification and its physical properties	SL4.2 remember protein characteristics
	SO4.9 & SO4.10 Describe motifs and patterns, structure, folding classes		CI4.9 & CI4.10 Motifs and patterns, structure, folding classes	

SO4.11 & SO4.12		CI4.11 & CI4.12	
Elaborate structure classification	1	Structure classification	

Suggested Sessional	SW4.1 Assignments	Write about mathematical associated with phylogenetic analysis.
Work (SW): anyone	SW4.2 Mini Project	explain methods of Protein identification and its physical properties
	SW4.3 Other	Search and learn via YouTube how to interpret phylogenetic tree.
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	12	06	01	03	22

Course Outcome (CO)	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
CO5-52BT202.5- To gain information about biochemical and molecular	SO5.1 Features of PDB and MMDB	LI5.1 How to search and download any protein structures	CI5.1 PDB and MMDB	SL5.1 Learn how protein functions
mechanics information regards to proteins.	SO5.2 What is advance structure modeling.	LI5.2 Basics of drug and protein interactions	CI5.2 advance structure modeling	SL5.2 Classify different types of modelling techniques
	SO5.3 & SO5.4 Distinguish Internal and external co-ordinate system, cartesian and cylindrical polar co-ordinate system	LI5.3 How to do homology modelling	CI5.3 & CI5.4 Internal and external co- ordinate system, cartesian and cylindrical polar co- ordinate system	SL5.3 How many types of molecular force fields used in the MMDD
	SO5.5 & SO5.6 Convey Potential energy calculations using semiempirical potential energy function		CI5.5 & CI5.6 Potential energy calculations using semiempirical potential energy function	
	SO5.7 & SO5.8 What is Molecular mechanics and dynamics		CI5.7 & CI5.8 Molecular mechanics and dynamics	
	SO5.9 & SO5.10 How Docking of Molecules can be done, Knowledge base	407	CI5.9 & CI5.10 Docking of Molecules, Knowledge base structure	

structure prediction	predi	ction
805.11	CI5.1	11
What is Molecular Design,	Mole	cular Design, structure
structure similarity searching	; simil:	arity searching;
Secondary structure prediction	n Secon	ndary structure
in proteins	predi	ction in proteins
S05.12	CI5.1	12
Elaborate Prediction of burie	d predi	ction of buried residues
residues in proteins.	in pro	oteins

Suggested Sessional	SW5.1 Assignments	Write about Lipinski rule of five
Work (SW): anyone	SW5.2 Mini Project	What is Molecular Design, structure similarity searching; Secondary structure prediction in proteins
	SW5.3 Other	Try to learn and apply protein homology modelling using virtual lab.
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Computational Biology and Bioinformatics

Course Code: 52BT202

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-52BT202.1- Acquire knowledge about a strong foundation in interdisciplinary sciences such as Computer Sciences and Biological Sciences.	12	2	2	1	17
CO2-52BT202.2- Address the challenges arising from the huge amount of genomic data.	12	2	2	1	17
CO3-52BT202.3- Analyze the corresponding drug responses towards appropriate drug specified dosages.	12	4	2	1	19
CO4-52BT202.4- Explore the EST database and protein databases to acquire knowledge about the protein structure.	12	4	2	1	19
CO5-52BT202.5- To gain information about biochemical and molecular mechanics information regards to proteins.	12	6	3	1	22
Total Hours	60	18	11	5	94

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Computational Biology and Bioinformatics

Course Code: 52BT202

Course Outcomes		Marks I	Distributio	n		
	Α	An	E	С	Total Marks	
CO1-52BT202.1- Acquire knowledge about a strong foundation in interdisciplinary sciences such as Computer Sciences and Biological Sciences.	02	03	04	1	10	
CO2-52BT202.2- Address the challenges arising from the huge amount of genomic data.	03	04	02	1	10	
CO3-52BT202.3- Analyze the corresponding drug responses towards appropriate drug specified dosages.	02	05	02	1	10	
CO4-52BT202.4- Explore the EST database and protein databases to acquire knowledge about the protein structure.	02	05	02	1	10	
CO5-52BT202.5- To gain information about biochemical and molecular mechanics information regards to proteins.	03	03	03	1	10	
Total Marks	12	20	13	05	50	

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher det	ails			
1	Bioinformatics Tho	nas Dandekar , Meik Ku	nz Springer-Verlag GmbH German	ny, part of Springer Nature	2023
2	Introduction to bioinformat	ics Arthur Lesk	Oxford University Press	2023	
3	Essential bioinformatics	Jin Xiong	Cambridge University Press	2007	

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method

- 4. Group Discussion
- 5. Role play
- 6. Visit to bioinformatics lab
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: B.Tech. Biotechnology Semester: IIIrd Sem Course Title: Computational Biology and Bioinformatics Course Code: 52BT202

Course Outcome (Cos)			Prog	ram Speci	ific Outcor	nes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1-52BT202.1- Acquire knowledge about a strong foundation in interdisciplinary sciences such as Computer Sciences and Biological Sciences.	1	2	3	2	1	3	3	1
CO2-52BT202.2- Address the challenges arising from the huge amount of genomic data.	1	1	2	1	1	1	1	2
CO3-52BT202.3- Analyze the corresponding drug responses towards appropriate drug specified dosages.	1	1	1	2	1	1	1	1
CO4-52BT202.4- Explore the EST database and protein databases to acquire knowledge about the protein structure.	-	1	1	1	2	1	2	3
CO5-52BT202.5- To gain information about biochemical and molecular mechanics information regards to proteins.	1	1	1	-	1	1	-	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

POs & PSOs	COs	SOs No.	Laboratory	Classroom Instruction (CI)	Self-Learning
No.			Instruction (LI)		(SL)
	CO1-52BT202.1- Acquire	SO1.1, SO1.2		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11,1.12	
PO 1,2,3,4,5	knowledge about a strong	SO1.3, SO1.4			
101,2,3,4,3	foundation in interdisciplinary	SO1.5, SO1.6	IL 1		1SL-1,2
PSO 1,2, 3	sciences such as Computer	SO1.7, SO1.8			1012-1,2
100 1,2, 5	Sciences and Biological	SO1.9, SO1.10			
	Sciences.	SO1.11, SO1.12			
	CO2-52BT202.2- Address the	SO2.1, SO2.2		2.1, 2.2, 2.3,	
PO 1,2,3,4,5	challenges arising from the huge	SO2.3, SO2.4 ,		2.4.2.5,2.6,2.7,2.8,2.9,2.10,2.11,2.12	
101,2,3,4,3	amount of genomic data.	SO 2.5, SO 2.6,	IL 1		2SL-1,2
PSO 1,2, 3		SO2.7, SO2.8			201 1,2
150 1,2, 5		SO2.9, SO2.10			
		SO2.11, SO2.12			
	CO3-52BT202.3- Analyze the	SO3.1, SO3.2		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11,3.12	
PO 1,2,3,4,5	corresponding drug responses	SO3.3, SO3.4			
1 0 1,2,3, 1,5	towards appropriate drug	SO3.5,SO3.6	IL 1		3SL-1,2
PSO 1,2, 3	specified dosages.	SO3.7, SO3.8	IL 2		
_ ~ ~ _ ,_ , ~		SO3.9, SO3.10			
		SO3.11, SO3.12			
	CO4-52BT202.4- Explore the	SO4.1, SO4.2		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11,4.12	
PO 2,3,4,5	EST database and protein	SO4.3, SO4.4	IL 1		
,_,_,_	databases to acquire knowledge	SO 4.5, SO4.6	IL 2		4SL-1,2
PSO 1,2, 3	about the protein structure.	SO4.7, SO4.8			
, ,		SO4.9. SO4.10			
		SO4.11, SO4.12			
	CO5-52BT202.5- To gain	SO5.1, SO5.2		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12	
PO 1,2,3,5	information about biochemical	SO5.3, SO5.4	IL 1		
	and molecular mechanics	SO5.5, SO5.6	LI 2		5SL-1,2,3
PSO 1, 3	information regards to proteins.	SO5.7, SO5.8	LI 3		
-		SO5.9, SO5.10			
		SO5.11, SO5.12			

Curriculum Developer Team:

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program name	Master of Science (M. Sc.)- Biotechnology			
Semester	II nd			
Course Code:	52BT203			
Course title:	Stem Cell & Tissue Engineering	Curriculum Developer: Dr. Monika Soni, Assistant Professor		
Pre-requisite:	Students should have basic knowledge of stem cell & tissue engineering			
Rationale:	The subject aims to provide an overview of stem cell & tissue engineering offer innovative approaches to treating a wide range of medical conditions, with the potential to transform healthcare by providing personalized, regenerative solutions for patients in need.			
Course Outcomes	CO1-52BT203.1- To understand the basics of stem cells.			
(COs):	CO2-52BT203.2- To discuss the properties of embryonic stem cells, including their various cell types.			
	CO3-52BT203.3- To understand the concept of adult stem cells.			
	CO4-52BT203.4- To understand the roles of stem cells in drug discovery & tissue engineering including their applications, & cell protection strategies.			
	CO5-52BT203.5 - To analyze the role of stem	cells in gene therapy and cloning & addressing to various diseases.		

Scheme of Studies:

					Scheme of	studies (Hou	ırs/Week)		
Board of Study	Course Code	Course Title	CI	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:1:1)	
Discipline Specific Course (DSC)	52BT203	Stem Cell & Tissue Engineering	3	2	1	2	8	2+1+1=4	

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others); LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies); SW: Sessional Work (includes assignment, seminar, mini project etc.); SL: Self Learning; C: Credits. Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

						Scher	ne of Assessm	ent (Marks)			
					Progres	sive Assess	ment (PRA)				
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)	
DSC	52BT203	Stem Cell & Tissue Engineering	15	20	5	5	5	50	50	100	

Scheme of Assessment: Practical

					Sc	heme of Assessr	nent (Marks)		
					Progressive As	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
DSC	52BT253	Stem Cell & Tissue Engineering	35	5	5	5	50	50	50

This course syllabus illustrates the expected learning achievements, both at the course and session						
levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI). I charactery Instruction (LI). Sessional Work (SW), and Self	Item	CI	LI	SW	SL	Total
including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session	Approx.	9	4	1	3	17
Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the	Hours					
course's conclusion.						

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
CO1-52BT203.1- To understand the basics of stem cells.	SO1.1 Describe & define the stem cells.		Unit-1 CI1.1 Brief in detail introduction to stem cells.	SL1.1 Search various reference books and other study material to start the learning about stem cells & tissue engineering

SO1.2 Explain in detail the properties of stem cells.	LI1.1 To observe and compare the properties of embryonic and adult stem cells.	CI1.2 Describe the properties of stem cells.	SL1.2 Gain a fundamental understanding of stem cells & their properties.
SO1.3 Explain in detail the types of stem cells: Embryonic stem cells.		CI1.3 Explain in detail the types of stem cells: Embryonic stem cells.	
SO1.4 Explain in detail the types of stem cells: Adult stem cells.		CI1.4 Explain in detail the types of stem cells: Adult stem cells.	
SO1.5 Explain in detail the types of stem cells: Umbilical cord stem cells.	LI1.2 To isolate and culture stem cells from umbilical cord tissue.		
SO1.6 Explain in detail the similarities & dissimilarities between embryonic & adult stem cells.		CI1.6 Study the similarities & dissimilarities between embryonic & adult stem cells.	SL1.3 Analyse the similarities and differences between embryonic & adult stem cells.
SO1.7 Explain in detail the application of stem cells.		CI1.7 Study the applications of stem cells.	
SO1.8 & SO1.9 Describe & define the conditioned media & other cell culture reagents.		CI1.8 & CI1.9 Discuss the challenges & ethical considerations to stem cells.	

Suggested Sessional	SW1.1 Assignment	Explain in detail the various types of stem cells.
Work (SW): anyone	SW1.2 Mini Project	Describe in detail the stem cells.
	SW1.3 Other Activities (Specify)	Explain the challenges & ethical considerations to stem cells.

This course syllabus illustrates the expected learning achievements, both at the course and session						
levels, which students are anticipated to accomplish through various modes of instruction	·					
including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self	Item	CI	LI	SW	SL	Total
Learning (SL). As the course progresses, students should showcase their mastery of Session	Approx.	9	4	1	6	20
Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the	Hours	-			-	
course's conclusion.						

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
СО2-52ВТ203.2- То			Unit-2	
discuss the properties of embryonic stem cells, including their various cell types.	SO2.1 Describe & define the introduction to embryonic stem cells.		CI2.1 Brief in detail introduction to embryonic stem cells.	SL2.1 Search various reference books and other study material to start the learning about embryonic stem cells.
	SO2.2 Explain in detail the In- <i>vitro</i> fertilization technique using stem cells.		CI2.2 Explain in detail the In- <i>vitro</i> fertilization technique using stem cells.	SL2.2 Understand the steps involved in IVF and its role in generating embryos for embryonic stem cell research.
	SO2.3 Describe & define the culturing of embryos.	LI2.1 To understand the process of isolating and culturing embryonic stem cells (ESCs) from blastocysts.	CI2.3 Describe & define the culturing of embryos.	SL2.3 Learn about the methods used to culture embryos in laboratory settings for research purposes.
	SO2.4 Explain in detail the isolation of embryonic stem cells.		CI2.4 Explain in detail the isolation of embryonic stem cells.	SL2.4 Gain insight into the methods used to isolate embryonic stem cells from early-stage embryos.
	SO2.5 Explain in detail the stimulation of embryonic stem cells for differentiation.	LI2.2 To understand the process of stimulating ESCs	CI2.5 Explain in detail the stimulation of embryonic stem cells for differentiation.	SL2.5 Understand how embryonic stem cells can be induced to differentiate into

	for differentiation into specific cell types.		specialized cell types for various applications.
SO2.6 Discuss the properties of embryonic stem cells.		CI2.6 Discuss the properties of embryonic stem cells.	SL2.6 Explore the unique characteristics and diverse applications of embryonic stem cells in biomedical research and therapy.
SO2.7 Describe & define the trophoblast stem cells.		CI2.7 Describe & define the trophoblast stem cells.	
SO2.8 & SO2.9 Discuss the ethical considerations to embryonic stem cells.		CI2.8 & CI2.9 Discuss the ethical considerations to embryonic stem cells.	

Suggested Sessional	SW1.1 Assignment	Describe in detail the embryonic stem cells.
Work (SW): anyone	SW1.2 Mini Project	Explain in detail the stimulation of embryonic stem cells for differentiation.
	SW1.3 Other Activities (Specify)	Write a one review article on trophoblast stem cells.

This course syllabus illustrates the expected learning achievements, both at the course and session						
levels, which students are anticipated to accomplish through various modes of instruction	Item	CI	LI	SW	SL	Total
including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the	Approx. Hours	9	4	1	5	19
course's conclusion.						

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
СОЗ-52ВТ203.3- То			Unit-3	
understand the concept of adult stem cells.	SO3.1 Describe & define the adult stem cells.		CI3.1 Brief in detail to introduction & characterization of adult stem cells.	SL3.1 Search various reference books and other study material to start the learning about adult stem cells.
	SO3.2 Discuss the somatic stem cells.		CI3.2 Discuss the somatic stem cells.	
	SO3.3 Explain in detail the adult stem cells differentiation.		CI3.3 Explain in detail the adult stem cells differentiation.	SL3.2 Understand the processes and signalling pathways involved in the differentiation of adult stem cells into specialized cell types.
	SO3.4 Discuss the trans- differentiation & plasticity.		CI3.4 Discuss the trans- differentiation & plasticity.	SL3.3 Learn about the phenomenon of trans-differentiation and the plasticity of adult stem cells.
	SO3.5 Describe the types of adult stem cells.		CI3.5 Describe the types of adult stem cells.	SL3.4 Explore the diverse types of adult stem cells found in various tissues and their roles in tissue maintenance and repair.
	SO3.6 Describe & define the epidermal stem cells.	LI3.1 To isolate and culture epidermal stem cells from mouse skin tissue.	CI3.6 Describe & define the epidermal stem cells.	
	SO3.7 Describe & define the liver stem cells.	LI3.2 To induce differentiation of liver stem cells into hepatocyte-like cells in- <i>vitro</i> .	CI3.7 Describe & define the liver stem cells.	
	SO3.8 Describe & define the pancreatic stem cells.		CI3.8 Describe & define the pancreatic stem cells.	

SO3.9 Discuss	the	SO3.9 Discuss the experimental	SL3.5 Learn about
experimental technique	s &	techniques & applications to adult	experimental methods and
applications to adult	stem	stem cells.	techniques used in the study of
cells.			adult stem cells.

Suggested Sessional	SW3.1 Assignment	Describe in detail the adult stem cells.
Work (SW): anyone	SW3.2 Mini Project	Explain in detail the adult stem cells differentiation, trans-differentiation, & plasticity.
	SW3.3 Other Activities (Specify)	Prepare one review article on liver & pancreatic stem cells.

This course syllabus illustrates the expected learning achievements, both at the course and session						
levels, which students are anticipated to accomplish through various modes of instruction	Item	CI	LI	SW	SL	Total
including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session			4	1	5	19
Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the	Hours					
course's conclusion.						

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
СО4-52ВТ203.4- То			Unit-4	
	SO4.1 Describe and define the stem cells.		CI4.1 Brief in detail introduction to stem cells.	SL4.1 Search various reference books and other study material to start the learning about stem cells in drug discovery & tissue engineering.
	SO4.2 Explain in detail to stem cells in tissue engineering.		CI4.2 Explain in detail to stem cells in tissue engineering.	

SO4.3 Understanding the stem cell therapy Vs cell protection.	LI4.1 To compare the effectiveness of stem cell therapy versus cell protection in promoting cell survival and functionality under stress conditions.	CI4.3 Understanding the stem cell therapy Vs cell protection.	SL4.2 Understanding stem cell therapy Vs cell protection.
SO4.4 Discuss the stem cells in cellular assays for screening.		CI4.4 Discuss the stem cells in cellular assays for screening.	SL4.3 Exploring stem cell- based assays for drug screening.
SO4.5 Describe in detail the stem cells based drug discovery.	LI4.2 To utilize stem cell- based assays for drug screening and toxicology assessment.	CI4.5 Describe in detail the stem cells based drug discovery.	SL4.4 Exploring the stem cells based drug discovery.
SO4. Discuss the stem cells in toxicology.		CI4.6 Discuss the stem cells in toxicology.	SL4.5 Exploring the drug screening & toxicology using stem cells.
SO4.7 Discuss the ethical considerations with stem cell research.		CI4.7 Discuss the ethical considerations with stem cell research.	
SO4.8 Discuss the future directions & challenges in stem cell research.		CI4.8 Discuss the future directions & challenges in stem cell research.	
SO4.9 Analyze the case studies related to stem cells based drug discovery & tissue engineering.		CI4.9 Analyze the case studies related to stem cells based drug discovery & tissue engineering.	

Suggested Sessional	SW4.1 Assignments	Describe & define the stem cells in cellular assays for screening.
Work (SW): anyone	SW4.2 Mini Project	Explain in detail the stem cells based drug discovery & toxicology.
	SW4.3 Other Activities (Specify)	Analyze the one case study related to stem cells based drug discovery & tissue engineering.

This course syllabus illustrates the expected learning achievements, both at the course and session						
levels, which students are anticipated to accomplish through various modes of instruction	Item	CI	LI	SW	SL	Total
including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session			4	1	5	19
Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Hours					

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
СО5-52ВТ203.5- То			Unit-5	
analyze the role of stem cells in gene therapy and cloning & addressing to various diseases.	SO5.1 Describe & define the gene therapy.	LI5.1 To introduce students to gene therapy techniques and their applications in treating genetic and acquired diseases.	CI5.1 Brief in detail introduction to gene therapy.	SL5.1 Search various reference books and other study material to start the learning about gene therapy, cloning etc.
	SO5.2 Explain in detail the stem cells in regenerative medicines.		CI5.2 Explain in detail the stem cells in regenerative medicines.	
	SO5.3 Explain in detail the animal cloning techniques.		CI5.3 Explain in detail the animal cloning techniques.	SL5.2 Exploring the animal cloning & transgenic animals: application in biomedical research & biotechnology.
	SO5.4 Discuss the transgenic animals and stem cells.		CI5.4 Discuss the transgenic animals and stem cells.	
	SO5.5Discussthetherapeuticapplicationsofgenetherapy& stemcells:Parkinson'sdisease&Alzheimer's disease.	LI5.2 To explore the potential of stem cells in regenerative medicine and therapeutic applications for various medical conditions.	CI5.5 Discuss the therapeutic applications of gene therapy & stem cells: Parkinson's disease & Alzheimer's disease	SL5.3 Exploring the gene therapy in neurological disorders: Parkinson's & Alzheimer's disease.
	SO5.6 Discuss the therapeutic applications of gene therapy & stem cells:		CI5.6 Discuss the therapeutic applications of gene therapy & stem	SL5.4 Understanding the stem cell therapies for tissue

Limb amputation & Heart disease	cells: Limb amputation & Heart disease	regeneration: Limb amputation & Heart disease.
SO5.7 Discuss the therapeutic applications of gene therapy & stem cells: Spinal cord injuries & Burns	CI5.7 Discuss the therapeutic applications of gene therapy & stem cells: Spinal cord injuries & Burns	
SO5.8 Discuss the therapeutic applications of gene therapy & stem cells: Diabetes.	CI5.8 Discuss the therapeutic applications of gene therapy & stem cells: Diabetes.	
SO5.9 Explain in detail the HLA typing & transplantation.	CI5.9 Explain in detail the HLA typing & transplantation.	SL5.5 HLA typing & its importance in organ transplantation.

Suggested Sessional	SW5.1 Assignments	Explain in detail the gene therapy.
Work (SW): anyone	SW5.2 Mini Project	Discuss the therapeutic applications of gene therapy & stem cells: Parkinson's, & Alzheimer's
		disease.
	SW5.3 Other Activities (Specify)	Prepare one review article on HLA typing & transplantation.

Course duration (in hours) to attain Course Outcomes:

Course Title: Stem Cells & Tissue Engineering

Course Code: 52BT203

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-52BT203.1- To understand the basics of stem cells.	9	4	3	1	17
CO2-52BT203.2- To discuss the properties of embryonic stem cells, including their various cell types.	9	4	6	1	20

CO3-52BT203.3- To understand the concept of adult stem cells.	9	4	5	1	19
CO4-52BT203.4- To understand the roles of stem cells in drug discovery & tissue engineering including their applications, & cell protection strategies.	9	4	5	1	19
CO5-52BT203.5- To analyze the role of stem cells in gene therapy and cloning & addressing to various diseases.	9	4	5	1	19
Total Hours	45	20	24	05	94

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcomes:

Course Title: Stem Cells & Tissue Engineering

Course Code: 52BT203

Legend: R, Remember; U, Understand; A, Apply; A, Analyze; E, Evaluate; C, Create

Course Outcomes	Marks Distribution						Total Marks
	R	U	Α	Α	E	C	
CO1-52BT203.1- To understand the basics of stem cells.	1	1	3	2	2	1	10
CO2-52BT203.2 - To discuss the properties of embryonic stem cells, including their various cell types.	1	1	2	3	2	1	10
CO3-52BT203.3- To understand the concept of adult stem cells.	1	1	3	2	2	1	10
CO4-52BT203.4 - To understand the roles of stem cells in drug discovery & tissue engineering including their applications, & cell protection strategies.	1	1	2	3	2	1	10
CO5-52BT203.5 - To analyze the role of stem cells in gene therapy and cloning & addressing to various diseases.	1	1	2	3	2	1	10
Total Marks	05	05	12	13	10	05	50

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1.	Stewart Sell, Stem Cells Handbook: Human Press, 2010.
2.	Asok Mukhopadyay, Animal Cell Technology, IK Intl. Ltd, Text Book.
3.	S. Indumathi, Stem cell therapy for organ failures, Springer Verlag, 2015.
4.	Stem cell and future of regenerative medicine by committee on the biological and biomedical applications of stem cell Research, National
	Academic Press.

(b) Online Resources: Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to Stem cells & Tissue engineering lab
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: M. Sc. Biotechnology

Semester: IInd Semester

Course Title: Stem Cells & Tissue Engineering

Course Code: 52BT203

	CO/PO/PS	O Mappin	g						
Course Outcome (Cos)		Program Outcomes (POs)			Program	Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
CO1-52BT203.1- To understand the basics of stem cells.	1	1	3	2	1	1	1	1	
CO2-52BT203.2- To discuss the properties of embryonic stem cells, including their various cell types.	1	2	3	2	1	1	1	-	
CO3-52BT203.3- To understand the concept of adult stem cells.	1	1	2	1	1	1	1	1	
CO4-52BT203.4- To understand the roles of stem cells in drug discovery & tissue engineering including their applications, & cell protection strategies.	1	2	1	1	1	1	2	3	
CO5-52BT203.5- To analyze the role of stem cells in gene therapy and cloning & addressing to various diseases.	1	1	2	2	1	1	2	3	

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO1,2,3,4,5	CO1-52BT203.1- To understand the basics of	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5,	1SL-1,2,3
	stem cells.	SO1.3 SO1.4	LI 2	1.6,1.7,1.8,1.9	
PSO 1,2,3		SO1.5 SO1.6			
		SO1.7 SO1.8			
		SO1.9			
PO1,2,3,4,5	CO2-52BT203.2- To discuss the properties of	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4,5,6
	embryonic stem cells, including their various	SO2.3 SO2.4	LI 2	2.5,2.6,2.7,2.8,2.9	
PSO 1,2,3	cell types.	SO2.5 SO2.6			
	51	SO2.7 SO2.8			
		SO2.9			
PO1,2,3,4,5	CO3-52BT203.3- To understand the concept	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,	3SL-1,2,3,4,5
	of adult stem cells.	SO3.3 SO3.4	LI 2	3.6,3.7,3.8,3.9	
PSO 1,2,3		SO3.5 SO3.6			
		SO3.7 SO3.8			
		SO3.9			
PO1,2,3,4,5	CO4-52BT203.4- To understand the roles of	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,4.5,	4SL-1,2,3,4,5
	stem cells in drug discovery & tissue	SO4.3 SO4.4	LI 2	4.6,4.7,4.8,4.9	
PSO 1,2,3	engineering including their applications, &	SO4.5 SO4.6			
	cell protection strategies.	SO4.7 SO4.8			
		SO4.9			
PO1,2,3,4,5	CO5-52BT203.5- To analyze the role of stem	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,	5SL-1,2,3,4,5
	cells in gene therapy and cloning & addressing	SO5.3 SO5.4	LI2	5.6,5.7,5.8,5.9	
PSO 1,2,3	to various diseases.	SO5.5 SO5.6			
		SO5.7 SO5.8			
		SO5.9			

Curriculum Developer Team: Prof. Kamlesh Choure

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Master of Science (M. Sc)- Biotechnology					
Semester	II					
Course Code:	52BT204					
Course title:	Animal Biotechnology Curriculum Developer: Dr. Ashwini A. Waoo, Professor					
Pre-requisite:	Student should have strong foundations in genetics, cellular biology, and hands-on laboratory experience for pursuing animal biotechnology courses at the post graduate level.					
Rationale:	Genetic engineering and bio nanotechnology offer unprecedented avenues to manipulate biological systems at the molecular level, revolutionizing medicine, agriculture, and environmental sustainability. By harnessing genetic modification and nanoscale tools, these fields pave the way for tailored therapies, enhanced crop resilience, and novel solutions to global challenges, driving innovation across diverse scientific domains.					
Course Outcomes COs):	CO1-52BT204.1- Recognize and understand the basics of animal cell culture					
CO1-52BT204.2- Have a thorough understanding of the organ culture, tissue engineering and monoclonal antibodies CO1-52BT204.3- Establish professional abilities in cell cloning and transgenic technologies						
	*					
	CO1-52BT204.4- Apply and analyze use of animal husbandry, aqua culture for commercial purpose CO1-52BT204.5- Evaluate applications and ethical concern in animal biotechnology					

Scheme of Studies:

Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)	
Program Core (PCC)	52BT204	Animal Biotechnology	3	2	1	1	7	3+1=4	

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					Sc	heme of Assessm	nent (Marks)	_	
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each	(2 best out of 3)	Seminar one (SA)	sessment (PRA) Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
Program Core (PCC)		Animal Biotechnology	15	20	10	5	50	50	100

Scheme of Assessment: Practical

					So	cheme of Assessi	nent (Marks)		
					Progressive As	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PCC	52BT254	Animal Biotechnology	35	5	5	5	50	50	50

This course syllabus illustrates the expected learning achievements, both at the	Approximate Hours						
course and session levels, which students are anticipated to accomplish through			~	* *	GTT I	GT	m 1
various modes of instruction including Classroom Instruction (CI), Laboratory		Item	Cl	LI	SW	SL	Total
Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Approx. Hrs	09	06	01	05	21
progresses, students should showcase their mastery of Session Outcomes (SOs),							
culminating in the overall achievement of Course Outcomes (COs) upon the							
course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT204.1- Recognize and understand the basics of animal cell culture		LI1.1 Microscopic examination of animal cell		SL1.1 Study and draw structure of animal cell
	SO1.2 Categorize various equipment for animal cell culture.	5	CI1.2 Equipment for animal cell culture.	SL1.2 What are various equipment and their company used in animal cell culture lab
	SO1.3 Understand types and composition of culture media	LI1.3 Prepare Hank's basal salt solution	CI1.3 Culture media,	SL1.3 Write composition of different media used in animal cell culture
	SO1.4 types and mode of action of DNA modifying enzymes		CI1.4 Primary cell culture	SL1.4 Differentiate between primary and secondary cell culture
	SO1.5 Describe secondary cell culture.		CI1.5 and secondary cell culture	
	SO1.6 Illustrate the biology and characterisation of cultured cells		CI1.6 Biology and characterisation of cultured cells.	
	SO1.7 & SO1.8 Evaluate various factors for Maintenance of animal cell culture		CI1.7 & CI1.8 Maintenance of animal cell culture.	
	SO1.9 Knowledge about Measuring parameters of growth		CI1.9 Measuring parameters of growth.	

Suggested Sessional	SW1.1 Assignments	Explain various types of culture media used for animal cell culture			
Work (SW): anyone	SW1.2 Mini Project	Describe lab set up and instruments required for ani animal cell culture			
	SW1.3 Other Activities (Specify)	Find out differences between primary and secondary cell culture.			

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	02	01	04	16

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT204.2- Have a thorough understanding of the organ culture, tissue engineering and monoclonal antibodies	organ culture		Unit-II CI2.1 Organ culture,	SL2.1 Learn types of organ culture and applications
	SO2.2 & SO2.3 Illustration of three-dimensional culture and scaffolds		CI2.2 & CI2.3 three-dimensional culture and scaffolds	SL2.2 Describe examples of 3 D culture and implantation in patient
	SO2.4 & SO2.5 Understand use of tissue engineering in disease treatment		CI2.4 & CI2.5 tissue engineering.	SL2.3 Learn about tissue engineering
	SO2.6 & SO2.7 Describe hybridoma technology- production of monoclonal antibody	LI2.1 To perform the monoclonal antibody	CI2.6 & CI2.7 Hybridoma technology-production of monoclonal antibody,	SL2.4 Discuss the production of monoclonal antibodies
	SO2.8 & SO2.9 application of monoclonal antibodies.		CI2.8 & CI2.9 application of monoclonal antibodies.	

Suggested Sessional	SW2.1 Assignments	Describe various techniques of organ culture with diagram.
Work (SW): anyone	SW2.2 Mini Project	Explain the tissue engineering and its advantages.
	SW2.3 Other Activities (Specify)	Prepare list of applications of monoclonal antibodies

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	02	01	05	17

Course Outcome (CO)	Course Outcome (CO) Session Outcomes (SOs)		Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT204.3- Establish professional abilities in cell cloning and transgenic technologies	SO3.1 Demonstrate the different cell cloning techniques		Unit-III CI3.1 Cell cloning	SL3.1 Read about cell cloning
	SO3.2 Illustration of micromanipulator	LI3.1 Demonstration of micromanipulator	CI3.2 micromanipulations	SL3.2 Draw a diagram of micro manipulator
	SO3.3 invitro fertilization and embryo transfer,		CI3.3 invitro fertilization and embryo transfer,	SL3.3 Describe invitro fertilization and embryo transfer
	SO3.4 Artificial insemination,		CI3.4 Artificial insemination,	
	SO3.5 scaling up of animal cell culture.		CI3.5 scaling up of animal cell culture.	
	SO3.6 & SO3.7 Transgenic animals: vector, selectable markers,		CI3.6 & CI3.7 Transgenic animals: vector, selectable markers,	SL3.4 Write a note on transgenic animals
	SO3.8 transfection methods, their applications		CI3.8 transfection methods, their applications	SL3.5 Describe gene delivery methods and their applications
	SO3.9 examples of transgenic animals.		CI3.9 examples of transgenic animals.	

Suggested Sessional	SW3.1 Assignments	Describe Micromanipulator
Work (SW): anyone	SW3.2 Mini Project	Describe the significance of IVF
	SW3.3 Other	Prepare list of transgenic animals their production and application.
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	02	01	05	17

Course Outcome (CO)	ourse Outcome (CO)Session Outcomes (SOs)		Classroom Instruction (CI)	Self-Learning (SL)
CO1-52BT204.4- Apply	SO4.1		Unit-IV	SL4.1
and analyze use of animal husbandry, aqua culture for commercial purpose	Develop understanding of aquaculture		CI4.1 Aquaculture: fresh water fish culture techniques,	Learn about Aquaculture
	SO4.2 seri culture: production of silk.		CI4.2 seri culture: production of silk.	SL4.2 Discuss challenges of seri culture
	SO4.3		CI4.3	SL4.3 Video for animal
	Ananlyze key requirements of animal husbandry		Animal husbndry,	husbandry
	SO4.4		CI4.4	SL4.4 Studies related
	Understand livestock imrovement		livestock improvement.	livestock management
	SO4.5		CI4.5	
	Techniques: microarray,		Techniques: microarray,	
	SO4.6		CI4.6	SL4.5 Explain technique of
	Evaluate the need of DNA Fingerprinting		DNA fingerprinting,	DNA fingerprinting and its applications
	SO4.7		CI4.7	
	Apply FISH in clinical purpose		Flurecsent insitu hybridization	
	SO4.8 & SO4.9	LI4.1 Demonstration of	CI4.8 & CI4.9	
	FACS, chromosome mapping,	FACS	FACS, chromosome mapping	

Suggested Sessional	SW4.1 Assignments	Describe requirements and maintenance of animal husbandry
Work (SW): anyone	SW4.2 Mini Project	Describe the technique of DNA fingerprinting
	SW4.3 Other	Write short notes on FACS.
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	02	01	05	17

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-52BT204.5- Evaluate applications and ethical concern in animal biotechnology	SO5.1 Describe applications of animal cell culture		Unit-V CI5.1 Application of animal cell culture,	SL5.1 learn all latest applications
	SO5.2 Illustrate the production of biopharmaceuticals		CI5.2	SL5.2 Prepare list of biopharmaceuticals produced by animal cell culture
	SO5.3 Evaluate the need of cell culture based vaccines,	LI5.1 To demonstrate the preparation of vaccine	CI5.3 cell culture based vaccines	SL5.3 Give role of cell culture based vaccine
	SO5.4 & SO5.5 Describe strategies of gene therapy		CI5.4 & CI5.5 gene therapy	SL5.4 Learn about gene therapy and gene disorders
	SO5.6 & SO5.7 Analyze the Bio hazard and Biosecurity in animal biotechnology work		CI5.6 & CI5.7 hazard and Biosecurity in Animal Biotechnology,	SL5.5Giveexampleofbiohazards
	SO5.8 & SO5.9 Describe ethical concerns in animal biotechnology		CI5.8 & CI5.9 Ethical aspects in Animal Biotechnology.	

Suggested Sessional	SW5.1 Assignments	Describe applications of animal cell culture
Work (SW): anyone	SW5.2 Mini Project	Describe the production of biopharmaceuticals
	SW5.3 Other	Prepare list of hazards occurred and biosecurity measures in animal biotech lab
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Animal Biotechnology		Course Code: 52BT204					
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)		
CO1-52BT204.1- Recognize and understand the basics of animal cell culture		6	5	1	21		
CO1-52BT204.2- Have a thorough understanding of the organ culture, tissue engineering and monoclonal antibodies	9	2	4	1	16		
CO1-52BT204.3- Establish professional abilities in cell cloning and transgenic technologies	9	2	5	1	17		
CO1-52BT204.4- Apply and analyze use of animal husbandry, aqua culture for commercial purpose	9	2	5	1	17		
CO1-52BT204.5- Evaluate applications and ethical concern in animal biotechnology	9	2	5	1	17		
Total Hours	45	14	24	05	88		

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Animal Biotechnology

Course Code: 52BT204

Course Outcomes					
	Α	Α	Ε	С	Total Marks
CO1-52BT204.1- Recognize and understand the basics of animal cell culture		01	01	01	06
CO1-52BT204.2- Have a thorough understanding of the organ culture, tissue engineering and monoclonal antibodies		04	02	02	10
CO1-52BT204.3- Establish professional abilities in cell cloning and transgenic technologies	03	05	05	01	14
CO1-52BT204.4- Apply and analyze use of animal husbandry, aqua culture for commercial purpose		03	05	00	10
CO1-52BT204.5- Evaluate applications and ethical concern in animal biotechnology		04	00	01	10
Total Marks		17	13	05	50

Legend: A: Apply, A: Analyze E: Evaluate, C: Create

Suggested learning Resources:

(a) Books:

S.	Title
No.	
1	
	Animal Biotechnology, M.M. Ranga, (2007).
2	Culture of Animal Cells (3rd Edition), R. lan Froshney, Wiley-Liss.
3	Instant Notes in Animal Biology, Richard D. Turd, (2003).

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Title: M. Sc. Biotechnology Semester: II Course Code: 52BT204 Course Title: Genetic Engineering & Bionanotechnology

Course Outcome					Program (PSOs)	rogram Specific Outcomes PSOs)		
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1-52BT204.1- Recognize and understand the basics of animal cell culture	1	1	-	3	3	2	1	-
CO1-52BT204.2- Have a thorough understanding of the organ culture, tissue engineering and monoclonal antibodies	2	1	2	2	3	2	1	1
CO1-52BT204.3- Establish professional abilities in cell cloning and transgenic technologies	-	3	-	1	2	1	2	-
CO1-52BT204.4- Apply and analyze use of animal husbandry, aqua culture for commercial purpose	2	2	1	3	3	2	-	-
CO1-52BT204.5- Evaluate applications and ethical concern in animal biotechnology	3	1	1	3	2	2	2	-

Legend: (1) Low (2) Medium (3) High

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5	CO1-52BT204.1- Recognize and understand the basics of animal cell culture	SO1.1 SO1.2 SO1.3 SO1.4	LI1, LI2, LI3	1.1,1.2,1.3,1.4,1.5, 1.6, 1.7, 1.8, 1.9	1SL-1,2,3,4,5
PSO 1,2,3		SO1.5 SO1.6 SO1.7 SO1.8 SO1.9		,,,	
PO 1,2,3,4,5	CO1-52BT204.2- Have a thorough understanding of the organ culture, tissue	SO2.1 SO2.2 SO2.3 SO2.4	LI1	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,	2SL-1,2,3,4
PSO 1,2,3	engineering and monoclonal antibodies	SO2.5 SO2.6 SO2.7 SO2.8 SO2.9		2.9	
PO 1,2,3,4,5	CO1-52BT204.3- Establish professional abilities in cell cloning and transgenic	SO3.1 SO3.2 SO3.3 SO3.4	LI1,	3.1,3.2,3.3,3.4,3.5, 3.6, 3.7, 3.8, 3.9	3SL-1,2,3,4,5
PSO 1,2,3	technologies	SO3.5 SO3.6 SO3.7 SO3.8 SO3.9			
PO 1,2,3,4,5	CO1-52BT204.4- Apply and analyze use of animal husbandry, aqua culture for	SO4.1 SO4.2 SO4.3 SO4.4	LI1,	4.1,4.2,4.3,4.4, 4.5, 4.6, 4.7, 4.8, 4.9	4SL-1,2,3,4,5
PSO 1,2,3	commercial purpose	SO4.5 SO4.6 SO4.7 SO4.8 SO4.9			
PO 1,2,3,4,5	CO1-52BT204.5- Evaluate applications and ethical concern in animal biotechnology	SO5.1 SO5.2 SO5.3 SO5.4	LI1	5.1,5.2,5.3,5.4,5.5, 5.6, 5.7, 5.8, 5.9	5SL-1,2,3,4,5
PSO 1,2,3		SO5.5 SO5.6 SO5.7 SO5.8 SO5.9			

Curriculum Developer Team: Prof. Kamlesh Choure

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Masters of Science (M.Sc.)- Biotechnology					
Semester	II					
Course Code:	52BT205					
Course title:	Industrial Microbiology	Curriculum Developer: Er. Arpit Srivastava, Assistant Professor				
Pre-requisite:	Students should have basic knowledge of microbiology and fermentation					
Rationale:	in the pipes of a chemical factory, monitor the in cheese production to ensure quality. Fermenta pharmaceuticals, energy, food and feedstock,	ction processes using variety of microbial strains. They may examine microbial growth found impact industrial waste has on the local ecosystem, or oversee the microbial activities used in ation is frequently used for the cultivation of biomass and in the production of enzymes, bioactive compounds, biopolymers, etc., in which different microorganisms, and including bjective of this subject is to make student more relative about their best career opportunity in				
Course Outcomes (COs):	CO1-52BT205.1- Describe the fundamentals of Industrial Microbiology and Fermentation Technology CO2-52BT205.2- Define the role of microbiology for the production of desired bioproducts					
	CO3-52BT205.3- Derive the working mechanism of upstream and downstream processing CO4-52BT205.4- Interpretate the mechanism of fermentation process in industry					
	-	biological product development using microbes				

Scheme of Studies:

Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)	
Discipline Specific Course (DSC)	52BT205	Industrial Microbiology	3	2	1	3	9	3+1=4	

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits.

 Nate: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcomes

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					Sch	eme of Assessme	ent (Marks)		
Board of Study	Couse Code	Course Title	5 number 3 marks each	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar	Class Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
DSC	52BT205	Industrial Microbiology	15	20	10	5	50	50	100

Scheme of Assessment: Practical

					So	cheme of Assessr	nent (Marks)		
					Progressive As	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
DSC	52BT255	Industrial Microbiology	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Appro	Approximate Hours								
Iter	n	Cl	LI	SW	SL	Total			
Ap	Approx. Hrs 09 04 01 05 19								

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT205.1-	SO1.1	LI1.1	Unit-1	SL1.1
Describe the fundamentals	Explain the concept of	To Demonstrate the	CI1.1	Search various reference
of Industrial Microbiology	Fermentation	working of a Bench	Introduction, fermentation and	books and study material to
and Fermentation		Top bioreactor	fermenters	start the learning of
Technology				microorganisms
	SO1.2	LI1.2	CI1.2	SL1.2
	Elaborate the historical	To perform the	Brief history and developments in	Find out the literature
	perspective of fermentation	isolation of	industrial microbiology	showing use of fermentation
		microorganisms from		technology in ancient India
		different kinds of		
		samples		

SO1.3		CI1.3	SL1.3
Differentiate between S	Solid-state	Solid-state and liquid-state	Derive the equation
and liquid-state (station	ary and	(stationary and submerged)	representing various mode of
submerged) fermentation	ons	fermentations	fermentations
SO1.4 & SO1.5		CI1.4 & CI1.5	SL1.4
Derive the equations ba	used on	Batch, fed-batch and continuous	Explore different bioproducts
Batch, fed-batch and co	ontinuous	fermentations	manufacture in laboratory
fermentations			
SO1.6 & SO1.7		CI1.6 & CI1.7	SL1.5
Explain & compare the		Components of a typical bioreactor,	Draw a well labelled diagram
components of a typica	1	types of bioreactors-Laboratories,	of a bioreactor
bioreactor, types of bio	reactors-	pilot- scale and production	
Laboratories, pilot- sca	le and	fermenters	
production fermenters			
SO1.8 & SO1.9		CI1.8 & CI1.9	
Continuous stirred tank	fermenter,	Continuous stirred tank fermenter,	
tower fermenter, fixed	bed,	tower fermenter, fixed bed, fluidized	
fluidized bed bioreactor	rs and air-	bed bioreactors and air-lift fermenter	
lift fermenter			

Suggested Sessional	SW1.1 Assignments	Describe in detail "Applications of Microorganisms in various Sectors"				
Work (SW): anyone	SW1.2 Mini Project	Draw various types of Fermenters with specifications				
	SW1.3 Other Activities (Specify)	List down the tables of different domains of microorganisms which are industrially important				

This course syllabus illustrates the expected learning achievements, both at the course and	Approximate Hours						
session levels, which students are anticipated to accomplish through various modes of							
instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional		Item	Cl	LI	SW	SL	Total
Work (SW), and Self Learning (SL). As the course progresses, students should showcase		Approx. Hrs	09	04	01	05	19
their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course							
Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT205.2-	SO2.1		Unit-1	SL2.1
Define the role of	Explain the role of industrial		CI2.1	Search various reference
microbiology for the	scope of fermentation		Overview on industrial	books and study material to
production of desired	_		fermentation- measurement of	start the learning of
bioproducts			parameters	microorganisms

SO2.2 Derive the roles of Isolation of strains, media and ingredients: pH, temperature, dissolved oxygen, foaming and aeration		CI2.2 Isolation of strains, media and ingredients: pH, temperature, dissolved oxygen, foaming and aeration	SL2.2 Find out the literature showing use of fermentation technology in ancient India
SO2.3 Compare different identification, screening & preservation techniques		CI2.3 Primary and secondary screening, strain development, preservation and maintenance of industrial strains	SL2.3 Derive the equation representing various mode of fermentations
SO2.4 Differentiate among different kinds of media used in industrial microbiology	LI2.3 To prepare the different kinds of nutrient media for microbial culture	CI2.4 Crude and synthetic media; molasses, corn-steep liquor, sulphite waste liquor, whey and yeast extract	SL2.4 Explore different bioproducts manufacture in laboratory
SO2.5 Describe the Downstream processing: Filtration, centrifugation		CI2.5 Downstream processing: Filtration, centrifugation	SL2.5 Draw a well labelled diagram of a bioreactor
SO2.6 & SO2.7 Cell disruption, solvent extraction, precipitation and ultrafiltration		CI2.6 & CI2.7 Cell disruption, solvent extraction, precipitation and ultrafiltration	
SO2.8 & SO2.9 Analyse the difference between Lyophilization and Spray Drying		CI2.8 & CI2.9 Lyophilization and Spray drying	

Suggested Sessional	SW1.1 Assignments	Write down any 5 kinds of Unit Operations used in Downstream Processing
Work (SW): anyone	SW1.2 Mini Project	Draw a well labelled diagram of Bacterial Cell Wall showing gram+/- staining
	SW1.3 Other Activities (Specify)	Watch animation related to working of different kinds of bioreactor used in various industries

This course syllabus illustrates the expected learning achievements, both at the course and session	Approximate	Hours					
levels, which students are anticipated to accomplish through various modes of instruction including						· · · · · · · · · · · · ·	
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning		Item	Cl	LI	SW	SL	Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),		Approx. Hrs	09	04	01	05	19
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT205.3-	SO3.1		Unit-3	SL3.1
Derive the working	Explain the role of Metabolic		CI3.1	Search various reference
mechanism of upstream and	pathways		Metabolic pathways and metabolic	books and study material to
downstream processing			control mechanisms	start the learning of microorganisms
	SO3.2 & SO3.3	LI3.1To perform the	CI3.2 & CI3.3	SL3.2
	Define the concept of	citric acid production	Industrial production of citric acid,	Find out the literature
	biological product production	by given sample	lactic acid	showing use of Lactic Acid in industries
	SO3.4 & SO3.5	LI3.2 To check the	CI3.4 & CI3.5	SL3.3
	Industrial production of	quantity of alpha-	Industrial production of Enzymes	Derive the mechanism for
	Enzymes (alpha-amylase,	amylase by given	(alpha-amylase, lipase, xylase,	fermentation of ethanol
	lipase, xylase, pectinases, proteases)	sample	pectinases, proteases)	
	SO3.6 & SO3.7		CI3.6 & CI3.7	SL3.4
	ABE Fermentation		ABE Fermentation	Write about different
				bioproducts manufacture in
				laboratory
	SO3.8 & SO3.9		CI3.8 & CI3.9	SL3.5
	Microbial Production of		Microbial Production of Lysine and	Find out the applications of
	Lysine and Glutamic acid		Glutamic acid	enzymes in industries

Suggested Sessional	SW3.1 Assignments	Describe in detail cultivation of microorganisms
Work (SW): anyone	SW3.2 Mini Project	Prepare a flowchart showing industrial production of biological products using fermentation
	SW3.3 Other Activities (Specify)	Make a Power Point Presentation on "Different Types of Microbial Culture Media"

This course syllabus illustrates the expected learning achievements, both at the course and session levels,	s, Approximate Hours						
which students are anticipated to accomplish through various modes of instruction including Classroom	20m						
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Item	Cl	LI	SW	SL	Total
progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall		Approx. Hrs	09	04	01	05	19
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-52BT205.4	SO4.1	LI4.1	Unit-4	SL4.1
Interpretate the mechanism of	Importance and production	To perform the antibiotic	CI4.1	Find out more antibiotics and
fermentation process in industry	of Beta-lactam,	production using fungi	Importance and production	their production process
	aminoglycosides,		of Beta-lactam,	
	(Rifamycin)		aminoglycosides,	
			(Rifamycin)	
	SO4.2 & SO4.3	LI4.2	CI4.2 & CI4.3	SL4.2
	Understand the production	To perform the microbial	Microbial production of	List out the role of Antibiotic
	of antibiotics	growth kinetics by	Peptide antibiotics	Resistance Genes
		observing the biomass	Quinolinones	
		produced and representation		
		on graph		
	SO4.4 & SO4.5		CI4.4 & CI4.5	SL4.3
	Biotransformation of		Biotransformation of	Explore the medical
	steroids and its microbial		steroids and its microbial	applications of Steroids
	production		production	
	SO4.6 & SO4.7		CI4.6 & CI4.7	SL4.4
	Vitamin B12 and Riboflavin		Vitamin B12 and Riboflavin	Make a flowchart showing
	production through		production through	metabolic pathway for
	fermentation		fermentation	Vitamin B ₁₂ and Vitamin B ₂
	SO4.8 & SO4.9		CI4.8 & CI4.9	SL4.5
	Production of Biogas;		Production of Biogas;	Explore how Biogas is
	Anaerobic digestion		Anaerobic digestion	produced in rural areas of
				India

Suggested Sessional	SW4.1 Assignments	Explain the role of Antibiotics and its disadvantages
Work (SW): anyone	SW4.2 Mini Project	Describe how therapeutics being produced in biotech-based industries
	SW4.3 Other	Make a list of "Biogas producing centres in India"
	Activities (Specify)	

This course syllabus illustrates the expected learning achievements, both at the course and	Approximate Hours						
session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional		Item	Cl	LI	SW	SL	Total
Work (SW), and Self Learning (SL). As the course progresses, students should showcase		Approx. Hrs	09	02	01	05	17
their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course							
Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-52BT205.5	SO5.1	LI5.1	Unit-5	SL5.1
Examine the mechanism of	Identify Modern trends in	To perform the growth of	CI5.1	Explore the various kinds of
biological product development	microbial production of	Algae using a	Modern trends in microbial	biopolymers and their
using microbes	bioplastics	photobioreactor column	production of bioplastics	applications
			(PHA, PHB)	
	SO5.2 & SO5.3		CI5.2 & CI5.3	SL5.2
	Recognize the production		Production of bioinsectices	Read research on
	mechanism of different		(Thuricide), Biopolymer	advancement in production
	polymer		(Dextran, Alginate, Xanthan,	of biofertilizers
			Pullulan)	
	SO5.4 & SO5.5		CI5.4 & CI5.5	SL5.3
	Explain the role of		Biofertilizers (Nitrogen fixer	Find out different centres
	biofertilizers in agriculture		Azotobacter, Phosphate	where Single Cell Proteins
			solubilizing	are used
			microorganisms)	
	SO5.6 & SO5.7		CI5.6 & CI5.7	
	Microbial production of		Microbial production of	
	Single Cell Protein		Single Cell Protein	
	SO5.8 & SO5.9		CI5.8 & CI5.9	
	Production of biological		Production of biological	
	weapons with reference to		weapons with reference to	
	anthrax		anthrax	

Suggested Sessional	SW5.1 Assignments	Explain general characteristics of Biopolymers & their applications
Work (SW): anyone	SW5.2 Mini Project	Describe the production process of Single Cell Production
	SW5.3 Other	Prepare one article on Applications of Biofertilizers
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Industrial Microbio		Course Code: 52BT205				
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)	
CO1-52BT205.1- Describe the fundamentals of Industrial	9	4	5	1	19	
Microbiology and Fermentation Technology						
CO2-52BT205.2- Define the role of microbiology for the production of desired bioproducts	9	4	5	1	19	
CO3-52BT205.3- Elaborate the working mechanism of upstream and downstream processing	9	4	5	1	19	

CO4-52BT205.4- Interpretate the mechanism of	9	4	5	1	19
fermentation process in industry					
CO5-52BT205.5- Examine the mechanism of biological	9	2	5	1	17
product development using microbes					
Total Hours	45	18	25	05	93

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Industrial Microbiology

Course Code: 52BT205

Course Outcomes		n			
	Α	An	E	С	Total Marks
CO1-52BT205.1- Describe the fundamentals of Industrial Microbiology and Fermentation Technology	2	1	1	1	5
CO2-52BT205.2- Define the role of microbiology for the production of desired bioproducts	2	4	2	2	10
CO3-52BT205.3- Elaborate the working mechanism of upstream and downstream processing	3	5	5	2	15
CO4-52BT205.4- Interpretate the mechanism of fermentation process in industry	2	3	3	2	10
CO5-52BT205.5- Examine the mechanism of biological product development using microbes	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Textbook of Microbiology by Ananthnarayanan and Paniker's, eighth edition, Universities Press
2	Microbiology; Lansing M Prescott, John P. Harley, Donald A Klein, Sixth edition, Mc Graw Hill Higher education.
3	J.E. Bailey and D.F. Ollis, Biochemical Engineer-ing Fundamentals, McGraw-Hill, New York
4	Industrial Microbiology and Biotechnology, Pradeep Verma, Springer, 2022
5	An Introduction to Industrial Microbiology, Sivakumar, K. Sukesh and Joe, S. Chand Publications, 2010

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method

- 4. Group Discussion
- 5. Role play
- 6. Visit to Industrial plant of Biotech-based organizations
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: M. Sc. Microbiology **Semester:** II Semester **Course Title:** Industrial Microbiology **Course Code:** 52BT205

C	O/PO/PSO	Mapping								
Course Outcome (Cos)		Program Outcomes (POs)					Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3		
CO1-52BT205.1- Describe the fundamentals of Industrial	2	-	-	1	2	2	2	1		
Microbiology and Fermentation Technology										
CO2-52BT205.2- Define the role of microbiology for the		1	1	-	-	1	1	2		
production of desired bioproducts										
CO3-52BT205.3- Elaborate the working mechanism of upstream	1	1	1	1	-	1	1	1		
and downstream processing										
CO4-52BT205.4- Interpretate the mechanism of fermentation	1	1	1	-	2	1	1	3		
process in industry										
CO5-52BT205.5- Examine the mechanism of biological product	1	1	1	-	-	1	3	2		
development using microbes										

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5	CO1-52BT205.1- Describe the fundamentals of Industrial	SO1.1 SO1.2 SO1.3 SO1.4	LI 1 LI 2	1.1,1.2,1.3,1.4,1.5 1.6,1.7,1.8,1.9	1SL-1,2,3,4,5
PSO 1,2,3	Microbiology and Fermentation Technology	SO1.5 SO1.4 SO1.5 SO1.6 SO1.7 SO1.8 SO1.9			
PO 1,2,3,4,5	CO2-52BT205.2- Define the role of microbiology for the production of	SO2.1 SO2.2 SO2.3 SO2.4	LI 1 LI 2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,2.8,2.9	2SL-1,2,3,4,5
PSO 1,2,3	desired bioproducts	SO2.5 SO2.6 SO2.7 SO2.8 SO2.9			
PO 1,2,3,4,5	CO3-52BT205.3- Elaborate the working mechanism of upstream and	SO3.1 SO3.2 SO3.3 SO3.4	LI 1 LI 2	3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	38L-1,2,3,4,5
PSO 1,2,3	downstream processing	SO3.5 SO3.6 SO3.7 SO3.8 SO3.9			
PO 1,2,3,4,5	CO4-52BT205.4- Interpretate the mechanism of fermentation process in	SO4.1 SO4.2 SO4.3 SO4.4	LI 1 LI 2	4.1,4.2,4.3,4.4, 4.5,4.6,4.7,4.8,4.9	4SL-1,2,3,4,5
PSO 1,2,3	industry	SO4.5 SO4.6 SO4.7 SO4.8 SO4.9			
PO 1,2,3,4,5	CO5-52BT205.5- Examine the	SO5.1 SO5.2 SO5.3 SO5.4	LI 1	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	5SL-1,2,3,4,5
PSO 1,2,3	mechanism of biological product development using microbes	SO5.5 SO5.4 SO5.5 SO5.6 SO5.7 SO5.8 SO5.9			

Curriculum Developer Team:

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Masters of Science (M.Sc.)- Biotechnology				
Semester	II				
Course Code:	52BT206				
Course title:	Plant Biotechnology	Curriculum Developer: Dr. Deepak Mishra, Professor			
Pre-requisite:	Student should have basic knowledge of Bi	Student should have basic knowledge of Biotechnology, Genetic Engineering and Botany.			
Rationale:	growth of plant tissues in laboratorial conditi plants. The second part of this course will pro stable genetic transformation. This study enab	c. Biotechnology program explores the concept and techniques used for development and ons. It delves into the use of precise instruments and techniques for micro propagation of vide precise knowledge of genetic engineering tools for improvement in plant varieties and eles students to understand how recombinant DNA technology helps us for development of lige of biotechnology for generation of novel characteristics in plants.			
CourseOutcomes (COs):	CO1-52BT206.1- Familiarization with the basic needs and lab layout for conducting investigations with plant cell cultures. CO2-52BT206.2- Development of critical skills for generation of tissue culture raised plantlets and applies protoplast fusion for production of hybrids.				
	 CO3-52BT206.3- Acquired Skills of the various methods and processes used to create recombinant plants. CO4-52BT206.4- Recognize various methods related to genetic profiling of plants and analyze the techniques for improvement in plants. CO5-52BT206.5- Explore application of transgenic plants for improvement and development of novel characters in plants. 				

Scheme of Studies:

Board of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:1:1)
Program Common Course (PCC)	52BT206	Plant Biotechnology	4	2	1	5	12	2+1+1=4

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits.

 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					Sch	neme of Assessme	ent (Marks)		
Board of Study	Couse Code	Course Title	Class/Home	Class Test 2 (2 best out of 3) 10 marks each (CT)	Progressive Ass Seminar one (SA)	essment (PRA) Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PCC	52BT206	Plant Biotechnology	15	20	10	5	50	50	100

Scheme of Assessment: Practical

					S	cheme of Assessn	nent (Marks)		
					Progressive A	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PCC	52BT256	Plant Biotechnology	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the	Approximate Hours						
course and session levels, which students are anticipated to accomplish through		.	01	T T	CIV	CT	m (1
various modes of instruction including Classroom Instruction (CI), Laboratory		Item	Cl	LI	SW	SL	Total
Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Approx. Hrs	09	04	01	05	19
progresses, students should showcase their mastery of Session Outcomes (SOs),							
culminating in the overall achievement of Course Outcomes (COs) upon the							
course's conclusion.							

Course outcome (CO)	Session Outcomes(SOs)	Laboratory Instruction(LI)	Class room Instruction(CI)	Self-Learning(SL)
CO1-52BT206.1- Familiarization with the basic needs and lab layout for conducting investigations with plant cell cultures.	Describe concept of plant	LI1.1 preparation of stock solutions and Plant tissue culture media	Unit-1 CI1.1 Introduction to plant tissue culture: Plant tissue culture media	SL1.1 Search various reference books and study material to start the learning of plant tissue culture
	SO1.2 Describe about method of sterilization & culture initiation	LI1.2 Perform sterilization and culture initiation	CI1.2 Sterilization & Culture Initiation,	SL1.2 Method of sterilization for living and non living articles used in PTC
	SO1.3 Explain about callus culture and suspension culture		CI1.3 Initiation and maintenance of callus and Suspension culture	SL1.3 To optimize protocol for callus culture and cell suspension culture for specific plants.
	SO1.4 Describe about plants from single plant cell		CI1.4 single cell clones	
	SO1.5 Study the concept of totipotency and organogenesis.		CI1.5 Totipotency, Organoganesis;	SL1.4 To analyze impact of hormones on totipotency and organogenesis
	SO1.6 Study of somatic embryogenesis.		CI1.6 somatic embryogenesis	
	SO1.7 Describe concept of hardening		CI1.7 transfer and establishment of whole plants in soil (hardening).	SL1.5 To optimize protocols for somatic embryogenesis and hardening of tissue cultured plants
	SO1.8 Study about methods of production of virus free plants.		CI1.8 production of virus -free plants.	
	SO1.9 Describe the concept of embryo culture		CI1.9 embryo culture and embryo rescue	

Suggested Sessional	SW1.1 Assignments	Describe in detail plant tissue culture methods.
Work (SW):anyone	SW1.2Mini Project	Standardize the protocols of plant tissue culture for different plant varieties
	SW1.3 Other Activities (Specify)	Collection of explants materials and their culture initiation.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	05	19

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-52BT206.2- Development of critical skills for generation of tissue culture raised plantlets and applies protoplast fusion for production of hybrids.	and techniques of protoplast isolation and protoplast fusion.	LI2.1 Isolation of protoplast from given explants.	Unit-II CI2.1 Protoplast isolation and Protoplast fusion	SL2.1 Search various contents for protoplast isolation and protoplast fusion
	SO2.2 Describe the contents of hybrid cells		CI2.2 Selection of hybrid cells;	SL2.2 design the protocol for protoplast fusion
	SO2.3 Reflecting about hybrids and cybrids.		CI2.3 symmetric and asymmetric hybrids, cybrids	
	SO2.4 & SO2.5 Explain about concept and mechanism of somaclonal variations.		CI2.4 & CI2.5 somaclonal variations and nuclear cytology of cultured plant cells.	SL2.3 to learn about mechanism of somaclonal variation.
	SO2.6 & SO2.7 Assessing the role of anther culture for haploid plant production.	LI2.2 Perform anther culture for haploid plant production.	CI2.6 & CI2.7 Production of haploid plants	SL2.4 standardize the protocol for explants sterilization
	SO2.8 Explaining the steps of cryopreservation.		CI2.8 Cryopreservation	SL2.5 to learn the methods of cryopreservation.
	SO2.9 Explaining the methods of germplasm conservation		CI2.9 slow growth for germplasm conservation	

Suggested Sessional	SW2.1 Assignments	Describe in detail about different stages of execution of research by using research process.
Work (SW):anyone	SW2.2Mini Project	Designing of a research thesis.
	SW2.3 Other Activities (Specify)	Take a research problem a select a specific research design for solving it.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	05	19

Course Outcome (CO)	Session Outcomes(SOs)	Laboratory	Class room Instruction	Self-Learning(SL)
		Instruction(LI)	(CI)	
CO3-52BT206.3- Acquired	SO3.1 Explain the role of	LI3.1 Preparation of	Unit-III	SL3.1 Read about various types
Skills of the various methods	Agrobacterium for cloning in			of vectors used for cloning in
and processes used to create	plants.	plant cloning.	for higher plant	plants.
recombinant plants.			transformation: Agrobac	
			terium tumefaciens	
	SO3.2 Assessing the concept			SL3.2 Study the structure and
	of Ti and Ri plasmid		plasmids,	function of Ti and Ri Plasmid
	SO3.3 T-DNA, mechani-	-	-	
	sms of DNA transfer,	transformation.	sms of DNA transfer,	mechanism of TDNA transfer.
	SO3.4 Role of virulence		CI3.4 Role of virulence	
	genes.		genes.	
	SO3.5 Viral vectors and their			SL3.4 Study of different viruses
	application:		their application:	used for cloning in plants.
	SO3.6 direct gene transfer:		•	SL3.5 Assess role of direct gene
	particle bomba-rdment,		•	transfer methods used for plants
	electroporation,		rdment, electroporation,	
	microinjection:		microinjection:	
	SO3.7 transformation of		CI3.7 transformation of	
	monocots;		monocots;	
	SO3.8 & SO3.9 transgene		CI3.8 & CI3.9	
	stability and gene silencing		transgene stability and	
			gene silencing	

Suggested Sessional	SW3.1 Assignments	Describe in detail plant cloning vector and mechanism of TDNA transfer in plants.
Work (SW): anyone	SW3.2 Mini Project	Describe the role of different vectors in genetic transformation in plants.
	SW3.3 Other	Prepare a list of plant viruses and cloning vectors used for genetic engineering in plants.
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx.Hrs	09	04	01	05	19

Course Outcome (CO)	Session Outcomes(SOs)	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning(SL)
CO4-52BT206.4-	SO4.1	LI4.1 Demonstration of	Unit-IV	SL4.1
Recognize various	Exploring the concept of	RFLP Analysis	CI4.1 Molecular marker-	Learn about different
methods related to genetic	Molecular markers and their		aided breeding RFLP maps.	categories of molecular
profiling of plants and	types			markers
analyze the techniques for				
improvement in plants.				
	SO4.2 Assessing role of	LI4.2 Demonstration of	CI4.2 RAPD markers, STS,	SL4.2 Compare RAPD,
	RAPD and STS marker in	RAPD Analysis	microsatellites,	RFLP and AFLP markers
	phylogenetic analysis			
	SO4.3 Explaining the concept		CI4.3 SCAR (sequence	SL4.3 Learn about various
	of SCAR marker		characterized amplified	types of arid and semi arid
			region)	plants
	SO4.4 & SO4.5 Explaining		CI4.4 & CI4.5 AFLP and	SL4.4 Case studies related to
	the role of AFLP and QTLs		QTLs	application of biotechnology
	markers in diversity analysis.			for plant improvement.
	SO4.6 & SO4.7 Arid and Semi		CI4.6 & CI4.7 Arid and	SL4.5 Case studies related to
	Arid Plant Biotechnology		Semi Arid Plant	application of molecular
			Biotechnology	markers
	SO4.8 & SO4.9 Green House		CI4.8 & CI4.9 Green House	
	and Green Home Technology		and Green Home Technology	

Suggested Sessional	SW4.1 Assignments	Explain about different types of PCR and Non PCR based genetic markers
Work (SW): anyone	SW4.2 Mini Project	Describe the various techniques used in development of arid and semi arid plant biotechnology
	SW4.3 Other	Prepare one article on green house and green home technology.
	Activities (Specify)	

Item		Cl	LI	SW	SL	Total
Appr	ox.Hrs	09	04	01	05	19

Course Outcome (CO)	Session Outcomes(SOs)	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self- Learning(SL)
CO5-52BT206.5: Explore application of transgenic plants for improvement and development of novel characters in plants.	SO5.1 Define the concept and objective of chloroplast transformation.		Unit-V CI5.1 Chloroplast transformation: advantages, vectors,	SL5.1 learn about basic concept & requirement of chloroplast genome
	SO5.2 success with tobacco and potato;		CI5.2 success with tobacco and potato;	SL5.2 Review concept of chloroplast transformation
	SO5.3 Application of plant transformation for productivity and performance: herbicide resistance,	LI5.2 Demonstration of transgenic plant products and varieites	CI5.3 Application of plant transformation for productivity and performance: herbicide resistance,	apply transgenic
	SO5.4 insect resistance,		CI5.4 insect resistance,	
	SO5.5 virus resistance,		CI5.5 virus resistance,	
	SO5.6 disease resistance,		CI5.6 disease resistance,	SL5.4 Learn about novel characters of plants varieties
	SO5.7 Apply the RDT for controlling post harvest loss and abiotic stress		CI5.7 abiotic stress, post harvest losses,	
	SO5.8 & SO5.9 long shelf life of fruits and flowers, edible vaccine		CI5.8 & CI5.9 long shelf life of fruits and flowers, edible vaccines	

Suggested Sessional	SW5.1 Assignments	Explain general characteristics and application of chloroplast transformation.
Work (SW): anyone	SW5.2 Mini Project	Describe the role of transgenic technology for improvement in plants.
	SW5.3 Other	Prepare a detail document on application of transgenic plants.
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Plant Biotechnology			Course Code: 52BT206			
Course Outcomes(COs)	Class lecture (CI)	Laboratory Instruction(LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)	
CO1-52BT206.1- Familiarization with the basic needs and lab layout for conducting investigations with plant cell cultures.	9	4	5	1	19	
CO2-52BT206.2- Development of critical skills for generation of tissue culture raised plantlets and applies protoplast fusion for production of hybrids.	9	4	5	1	19	
CO3-52BT206.3- Acquired Skills of the various methods and processes used to create recombinant plants	9	4	5	1	19	
CO4-52BT206.4- Recognize various methods related to genetic profiling of plants and analyze the techniques for improvement in plants.	9	4	5	1	19	
CO5-52BT206.5- Explore application of transgenic plants for improvement and development of novel characters in plants.	9	4	5	1	19	
Total Hours	45	20	25	05	95	

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Plant Biotechnology

Course Code: 52BT206

Course Outcomes		Marks I			
	Α	An	Ε	С	Total Marks
CO1-52BT206.1- Familiarization with the basic needs and lab layout for conducting investigations with plant cell cultures.	2	1	1	1	5
CO2-52BT206.2- Development of critical skills for generation of tissue culture raised plantlets and applies protoplast fusion for production of hybrids.	2	4	2	2	10
CO3-52BT206.3- Acquired Skills of the various methods and processes used to create recombinant plants	2	3	3	2	10
CO4-52BT206.4- Recognize various methods related to genetic profiling of plants and analyze the techniques for improvement in plants.	3	5	5	2	15
CO5-52BT206.5- Explore application of transgenic plants for improvement and development of novel characters in plants.	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	TH.S. Chawla: Biotechnology in Group Improvement, International Book Distributing Company. 1998.
2	P.K. Gupta Elements of Biotechnology. Rastogi and Co. Meerut. 1996.
3	R.J. Henry: Practical Application of Plant Molecular Biotechnology. Chapman and Hall. 1997.
4	K.K. De Plant Tissue Culture- 2000.
5	B.D. Singh, Plant Biotechnology- Kalyani Pulication- 2004.

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: M. Sc. Biotechnology **Semester:**II Semester **Course Title:** Plant Biotechnology **Course Code:** 52BT206

CO)/PO/PSO	Mapping									
Course Outcome (Cos)		Program Outcomes (POs)					Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3			
CO1-52BT206.1- Familiarization with the basic needs and lab layout for conducting investigations with plant cell cultures.	1	2	3	2	1	2	2	3			
CO2-52BT206.2- Development of critical skills for generation of tissue culture raised plantlets and applies protoplast fusion for production of hybrids.	1	1	2	2	1	2	3	3			
CO3-52BT206.3- Acquired Skills of the various methods and processes used to create recombinant plants	1	2	2	3	1	1	2	3			
CO4-52BT206.4- Recognize various methods related to genetic profiling of plants and analyze the techniques for improvement in plants.	1	1	3	3	2	1	2	3			
CO5-52BT206.5- Explore application of transgenic plants for improvement and development of novel characters in plants.	1	1	3	3	2	1	2	2			

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5	CO1-52BT206.1- Familiarization with the basic needs and lab layout for conducting	SO1.1 SO1.2 SO1.3 SO1.4	1.1,1.2	1.1,1.2,1.3,1.4,1.5, 1.6, 1.7, 1.8, 1.9	1SL-1,2,3,4,5
PSO 1,2,3	investigations with plant cell cultures.	SO1.5 SO1.6 SO1.7 SO1.8 SO1.9		1.0, 1.7, 1.0, 1.9	
PO 1,2,3,4,5	CO2-52BT206.2- Development of critical skills for generation of tissue culture raised		2.1, 2.2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,	2SL-1,2,3,4,5
PSO 1,2,3	plantlets and applies protoplast fusion for production of hybrids.			2.9	
PO 1,2,3,4,5	CO3-52BT206.3- Acquired Skills of the various methods and processes used to create	SO3.1 SO3.2 SO3.3 SO3.4	3.1,3.2	3.1,3.2,3.3,3.4,3.5, 3.6, 3.7, 3.8, 3.9	3SL-1,2,3,4,5
PSO 1,2,3	recombinant plants	SO3.5 SO3.6 SO3.7 SO3.8 SO3.9			
PO 1,2,3,4,5	CO4-52BT206.4- Recognize various methods related to genetic profiling of plants	SO4.1 SO4.2 SO4.3 SO4.4	4.1,4.2	4.1,4.2,4.3,4.4, 4.5, 4.6, 4.7, 4.8,	4SL-1,2,3,4,5
PSO 1,2,3	and analyze the techniques for improvement in plants.	SO4.5 SO4.6 SO4.7 SO4.8 SO4.9		4.9	
PO 1,2,3,4,5	CO5-52BT206.5- Explore application of transgenic plants for improvement and	SO5.1 SO5.2 SO5.3 SO5.4	5.1,5.2	5.1,5.2,5.3,5.4,5.5, 5.6, 5.7, 5.8, 5.9	5SL-1,2,3,4,5
PSO 1,2,3	development of novel characters in plants.	SO5.5 SO5.6 SO5.7 SO5.8 SO5.9			

Curriculum Developer Team: Prof. Kamlesh Choure

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Semester 3

Program Name	Masters of Science (M.Sc.)-Biotechnology						
Semester	III						
Course Code:	52BT301	52BT301					
Course title:	Environmental Biotechnology	Curriculum Developer: Mr. Paras Koshe, Assistant Professor					
Pre-requisite:	Student should have basic knowledge of Enviro	onmental science and Biotechnology					
Rationale:	aspects of environment including its protection and environmental crisis, this course will emph environmental applications. The course is struc- highlighting the importance of microbial ecolog Bioremediation and biodegradation principles, oil recovery, biohydrometallurgy, biofuel, carb on how modern biotechnology is developed to	to introduce and elaborate the fundamental concepts and applications of biotechnology in all , restoration and sustainability. Considering the rising challenges of climate change, energy asize upon the recent development of biotechnology for harnessing microbial potential in tured to provide the students with fundamental concepts of environmental biotechnology, gy, their metabolism, and methods for their characterization and scopes for implementation. processes and applications will be discussed along with advanced applications in wastewater, on storage and capture, etc. This course will offer the students a broad sense of understanding achieve better environmental protection and sustainability through the use of microbes and to mitigation of climate change, bioenergy, biomaterial to enzyme discovery					
Course Outcomes (COs):	CO4-52BT301.4 Interpretate the mechanism o	recycling of waste nediation in cleaning of waste from environment and know about monitoring environment					

Scheme of Studies:

			Scheme of studies (Hours/Week)						
Board of Study	Course Code	Course Title	CI	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)	
Program Core Course (PCC)	52BT301	Environmental Biotechnology	3	2	1	3	9	3+1=4	

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits;

 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					Sch	eme of Assessme	ent (Marks)		
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one	Class Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PCC	52BT301	Environmental Biotechnology	15	20	10	5	50	50	100

Scheme of Assessment: Practical

					Se	cheme of Assessr	nent (Marks)		
					Progressive As	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PCC	52BT351	Environmental Biotechnology	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the	Approximate Hours						
course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory		Item	CI	LI	SW	SL	Total
Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),		Approx. Hrs	09	04	01	05	19
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT301.1-	SO1.1 Introduction to		Unit 1 Environment	SL1.1 Role of
Explain basic concepts and	Environmental Biotechnology		CI1.1 Introduction to	Biotechnology in
components of environment.			Environmental Biotechnology	environment
	SO1.2 Define various		CI1.2 Basic concepts and	
	components of environment.		components of environment.	
	SO13 Define Conventional		CI 1.3 Conventional energy	SL1.2 Types of energy
	energy sources		sources	sources used in your locality (
				Area)
	SO1.4 Define		CI 1.4 Nonconventional	
	Nonconventional energy		energy sources	
	sources			

SO 1.5 Modern f their impact	fuels and	CI 1.5 Modern fuels and their impact	SL1.3 Learn some recent modern fuels produced by biotech and compare cost
SO.1.6 Focus on Me producing bacteria.	thane LI1.1 To understand the role of methanogenic bacteria in biogas production and observe the process of biogas generation from organic waste.		
SO 1.7 Illustrate the of Biogas production	-	CI1.7 Biogas Production	SL1.4 visit any biogas production plant and try to learn it practically
SO1.8 Evaluate the production of hydrog microorganism.	ien by	CI1.8 Microbial hydrogen production	
SO1.9 Describe the s mechanism of conver sugar to ethanol.	*		SL1.5 Use of ethanol as energy source and try to find out limitation of ethanol production

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	1. 2.	Write about the Environmental biotechnology and its role in human welfare. Write about modern fuels and latest technology and their impact on environment.
	SW1.2 Mini Project	2.	Which types of energy sources are more used .in your area? Visit any fermentation plant and make a rough sketch of ethanol production
	SW1.3 Other Activities (Specify)	3.	visit any fermentation plant and make a rough sketch of ethanol production

Item	CI	LI	SW	SL	Total
Approx. Hrs	09	04	01	04	18

Outcome (CO)			Classroom Instruction	Self Learning (SL)
	(SOs)		(CI)	
CO2-52BT301.2-	SO2.1	LI2.1	Unit-II Waste water	SL2.1
Explain waste treatment	Understand Concept of waste	To understand and observe the	treatment	Observing the physical and
and recycling of waste	water treatment	primary, secondary, and final		chemical properties of water.
		1	CI2.1 Primary, Secondary and	And focus on save water.
		wastewater treatment.	final treatment of water.	
				SL2.2
	SO2.2		CI2.2 Solid Waste: Sources	Observe different types of solid
	Understand Concept of solid		and Management.	waste. And their impacts.
	waste Management		und management.	waste. And then impacts.
	SO2.3		CI2.3 Composting	SL2.3
	Composting			Gain knowledge about some
				other method such as landfills,
				incineration etc.
	5024			
	SO2.4 Vermiculture		CI2.4 Vermiculture	
	SO2.5		CI2.5 Methane production	
	Methane production			
	SO2.6 Elucidate the process of		CI2.6 Disposal of medical	
	disposal of waste		waste	
	SO2.7 Illustrate the process of		CI2.7 Recycling of waste	
	recycling of waste(5R'S)			
	SO2.8 Define types and	LI2.2	CI2.8 Biofertilizers	SL2.4 Understanding the role
	importance of biofertilizers	To explore the preparation and		bio fertilizers and bio pesticides
		application of biofertilizers and		in crop improvement.
		biopesticides.		
	SO2.9 Describe types and		CI2.9 Biopesticides	
	importance of biopesticides.			

Suggested Sessional	SW2.1 Assignments	Comparative study between chemical and biofertilizer
Work (SW): anyone		
	SW2.2 Mini Project	Try to find out the earthworm varies found in your area and find most variety used in vermicomposting
	SW2.3 Other Activities (Specify)	Visit some of the dumping sites and see types of solid waste generated and suggest some
		method of energy generation.

Item	CI	LI	SW	SL	Total
Approx. Hrs	09	04	01	03	17

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO3-52BT301.3- Understand the role of bioremediation in cleaning of waste from environment and know about monitoring environment.	Bioremediation in		Unit-3 Bioremediatio n CI3.1 In -situ bioremediation techniques	SL3.1 Explore the basic concepts of bioremediation and its types correlate with unit 1 and energy generation from bioremediation
	SO3.2 Learn about the utility of Bioremediation.		CI3.2 Ex -situ bioremediation techniques.	
	SO3.3 Bioremediation of soil contaminated with oil spills		CI3.3 . Bioremediation of soil contaminated with oil spills	SL3.2 Learn different other techniques used in bioremediation of soil and water.
	SO3.4 Analyze the role of Plants in bioremediation		CI3.4 Bioremediation of water contaminated with oil spills	
	SO3.5 To learn how bioremediation methods are useful in removing heavy metal from water.	LI3.1 To study the bioremediation of water contaminated with heavy metals and detergents using microbial cultures.	bioremediation methods	

SO3.6 Outline the steps of removing detergents from water by bioremediation methods.		CI3.6 Removal of detergents from water by bioremediation methods	
SO3.7 Define phytoremediation and its role in reducing pollution	LI3.2 To explore different types of phytoremediation techniques and their applications in cleaning up contaminated soil and water.	CI3.7 Phytoremediation: Types and its applications	
SO3.8 Analyze the role of living (Bio things in environmental monitoring.		CI3.8 Environmental monitoring:	
SO3.9 Describe various types of Bioindicators.		CI3.9 Bioindicators	SL3.3 Understand the role of bioindicators in aspects of farmer's life.

Suggested Sessional	SW3.1 Assignments	• Explain diagrammatically about in situ and ex situ bioremediation techniques with
Work (SW): anyone		examples.
		Write about different types of Bio indicators.
	SW3.2 Mini Project	How bioreactors are used in bioremediation. Explain different types of bioreactors used.
	SW3.3 Other	Find out some Bioremediation sites in your area or nearby cities, and also find microorganism and plant
	Activities (Specify)	species found in your lab or area which can be used as bio indicators.

Item	CI	LI	SW	SL	Total
Approx. Hrs	09	04	01	02	16

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO4-52BT301.4 - Interpretate the mechanism of biodegradation and energy production	SO4.1 . To study the concept of Biodegradation		Unit-IV CI 4.1 Biodegradation	SL4.1 Understand the basic knowledge of biodegradation and correlate with bioremediation.
	SO4.2 To learn the biodegradation of various compounds		CI 4.2 Biodegradation of chlorinated hydrocarbons compounds	
	SO4.3 To learn the biodegradation of various compounds		CI 4.3 Biodegradation of xenobiotic compounds	
	SO4.4 Elucidate the process of Bioleaching and its steps.		CI 4.4 Bioleaching	SL4.2 Learn the steps of bioleaching Identify strain of microorganism used for bioleaching and try to culture and extract.
	SO4.5 Analyze bioleaching of important metals and role of microorganism in bioleaching		CI 4.5 Leaching of ores by microorganisms (bioleaching of Gold)	
	SO4.6 To study about bioleaching		CI 4.6 Leaching of ores by microorganisms (leaching of copper)	
	SO4.7 Understand the role of microorganism in leaching of uranium		CI 4.7 Leaching of ores by microorganisms (uranium)	

SO4.8 Describe the r	ole of LI4.1	CI 4.8 Cellulose degra	adation
microorganism in cel	lulose To study the deg	gradation of for combustible fuel	
degradation to use as	fuel cellulose	by	
	microorganisms	and the	
	production of a	combustible	
	fuel (ethanol).		
SO4.9 Elucidate the	production LI4.2	CI 4.9 Biopetroleum	
of petroleum from bio	0	production Production	
materials.	of biopetroleum	using algae	
	or other microor	ganisms.	

Suggested Sessional	SW4.1 Assignments	1. Explain biodegradation in detail.
Work (SW): anyone		2. Describe the process of Bioleaching.
	SW4.2 Mini Project	Try to produce ethanol in laboratory.
	SW4.3 Other	Prepare one article on the bioleaching and also focus on diamond mining.
	Activities (Specify)	

Item	CI	LI	SW	SL	Total
Approx. Hrs	09	04	01	01	15

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction(LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5-52BT301.5- Learn about environmental protection act and examine various global environmental problems.	SO5.1 Over viewing of various environmental protection act and different Environmental laws		Unit-V CI5.1 Environment protection Act: Environmental laws	SL 5.1 Learn about different agencies and pollution board and their location of head offices.
	SO5.2 To know about environmental policies		CI5.2 Environmental policies	
	SO5.3 Explain about environmental ethics		CI5.3 Environmental ethics	
	SO5.4 To study the environmental impact and assessment		CI5.4 Environmental Impact Assessment	

SO5.5 Describe the importance of ecoplanning		CI5.5 Ecoplanning	
SO5.6 Elucidate the role of sustainable development in conservation of energy.	LI5.1 To explore the principles of ecoplanning and sustainable development through a practical project.	CI5.6 Sustainable Development	
SO5.7 To learn about global environmental problems and its impact.	LI5.2 To understand the causes, effects, and mitigation strategies of global environmental problems such as ozone depletion, the greenhouse effect, and acid rain.	CI5.7 Global environmental problems	
SO5.8 Elaborate the causes and impact of Green House effect.		CI5.8 Green house effect	
SO5.9 Explain acid rain and its effects on environment.		CI5.9 Acid rain	

Suggested Sessional	SW5.1 Assignment	Describe in detail about Global environment problems.
Work (SW): anyone		
	SW5.2 Assignment	Write a brief note on Sustainable Development Goals.
	SW5.2 Mini Project	Try to find out environmental problems of your Locality or area.
	SW5.3 Other	• Find out the water level of your area and compare it with water table.
	Activities (Specify)	• Identify Major pollutant of your area and suggest steps to reduce them.

Course duration (in hours) to attain Course Outcomes:

Course Title: Environmental Biotechn	nology	Course Code: 52BT301				
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)	
CO1-52BT301.1- Explain basic concepts and components of environment.	9	4	5	1	19	
CO2-52BT301.2- Explain waste treatment and recycling of waste	9	4	4	1	18	
CO3-52BT301.3- Understand the role of bioremediation in cleaning of waste from environment and know about monitoring environment.	9	4	3	1	17	
CO4-52BT301.4- Interpretate the mechanism of biodegradation and energy production	9	4	2	1	16	
CO5-52BT301.5- Learn about environmental protection act and examine various global environmental problems.	9	4	1	1	15	
Total Hours	45	20	15	05	85	

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Outcomes		Marks I	Distributio	n	- Total Marks	
	Α	An	Ε	С		
CO1-52BT301.1- Explain basic concepts and components of environment.	2	1	1	1	5	
CO2-52BT301.2- Explain waste treatment and recycling of waste	2	4	2	2	10	
CO3-52BT301.3- Understand the role of bioremediation in cleaning of waste from environment and know about monitoring environment.	3	5	5	2	15	
CO4-52BT301.4- Interpretate the mechanism of biodegradation and energy production	2	3	3	2	10	
CO5-52BT301.5- Learn about environmental protection acts and examine various global environmental problems.	5	4	1	0	10	
Total Marks	14	17	12	07	50	

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Fitle/Author/Publisher details					
1	• Environmental Microbiology, W.D. Grant & P.E. Long, Blakie, Glassgow and London.					
2	Environmental Biotechnology by Bruce Rittmann and Perry McCarty					
3	Environmental biotechnology, 1995 S.N.Jogdand. Himalaya Publishing House, Bombay, Delhi, Nagpur.					
4	Bioremediation 1994 Baker, K.H.and Herson, D.S. McGraw Hill, Inc.New York.					
5	Environmental Microbiology, W.D. Grant & P.E. Long, Blakie, Glassgow and London.					

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: M.Sc. Biotechnology **Semester:** III Semester **Course Title:** Environmental Biotechnology **Course Code:** 52BT301

CO)/PO/PSO	Mapping								
Course Outcome (Cos)		Program Outcomes (POs)					Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3		
CO1-52BT301.1- Explain basic concepts and components of environment.	2	-	-	1	2	2	2	1		
CO2-52BT301.2- Explain waste treatment and recycling of waste	-	-	-	-	-	1	1	2		
CO3- 52BT301.3- Understand the role of bioremediation in cleaning of waste from environment and know about monitoring environment.	-	1	1	1	-	1	1	1		
CO4-52BT301.4- Interpretate the mechanism of biodegradation and energy production	-	1	1	-	2	1	1	3		
CO5-52BT301.5- Learn about environmental protection act and examine various global environmental problems.	1	1	1	-	-	1	3	2		

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5	CO1-52BT301.1- Explain basic concepts and components of	SO1.1 SO1.2 SO1.3 SO1.4	LI 1 LI 2	1.1,1.2,1.3,1.4,1.5 1.6,1.7,1.8,1.9	18L-1,2,3,4,5
PSO 1,2,3	environment.	SO1.5 SO1.6 SO1.7 SO1.8 SO1.9			
PO 1,2,3,4,5	CO2-52BT301.2- Explain waste treatment and recycling of waste	SO2.1 SO2.2 SO2.3 SO2.4	LI 1 LI 2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,2.8,2.9	28L-1,2,3,4
PSO 1,2,3		SO2.5 SO2.6 SO2.7 SO2.8 SO2.9			
PO 1,2,3,4,5	CO3-52BT301.3- Understand the role of bioremediation in cleaning of waste	SO3.1 SO3.2 SO3.3 SO3.4	LI 1 LI 2	3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	38L-1,2,3
PSO 1,2,3	from environment and know about monitoring environment.	SO3.5 SO3.6 SO3.7 SO3.8 SO3.9			
PO 1,2,3,4,5	CO4-52BT301.4- Interpretate the mechanism of biodegradation and	SO4.1 SO4.2 SO4.3 SO4.4	LI 1 LI 2	4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	4SL-1,2
PSO 1,2,3	energy production	SO4.5 SO4.6 SO4.7 SO4.8 SO4.9			
PO 1,2,3,4,5	CO5-52BT301.5- Learn about environmental protection act and	SO5.1 SO5.2 SO5.3 SO5.4	LI 1 LI 2	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	5SL-1
PSO 1,2,3	examine various global environmental problems.	SO5.5 SO5.4 SO5.5 SO5.6 SO5.7 SO5.8 SO5.9			

Curriculum Developer Team:

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Master of Science (M. Sc.)- Biotechnology					
Semester	III					
Course Code:	52BT302					
Course title:	Genetic Engineering & Bionanotechnology Curriculum Devel	oper: Dr. Ashwini A. Waoo, Professor				
Pre-requisite:	Student should have basic knowledge of gene, vector, cloning					
Rationale:	revolutionizing medicine, agriculture, and environmental sustainabili	I avenues to manipulate biological systems at the molecular level, ty. By harnessing genetic modification and nanoscale tools, these fields lovel solutions to global challenges, driving innovation across diverse				
Course Outcomes (COs):	 CO1-52BT302.1: Understanding the basic steps of gene cloning and the role of enzymes and vectors responsible for gene manipulation transformation and genetic engineering. CO1-52BT302.2: Selection of expression strategies for heterologous gene- expression in bacteria, yeast, insects, and in mammalian cells. 					
	 CO1-52BT302.5: Acquiring theoretical knowledge in the technique therapy. CO1-52BT302.4: Studying the basics of nanotechnology, synthesis, CO1-52BT302.5: Applications of bionanotechnology in medicine, a 					

Scheme of Studies:

			Scheme of studies (Hours/Week)					
Board of Study	CourseCode	urseCode Course Title		LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:1:1)
Program Core Course (PCC)	52BT302	Genetic Engineering & Bionanotechnology	3	2	1	1	7	3+1+1=5

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits;

 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					S	cheme of Assess	ment (Marks)	-	
					Progressive A	ssessment (PRA)	Γ	-	
Board of Study	Couse Code	Course Title	Class/Hom e Assignmen t 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	(SA)	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
(PCC)		Genetic Engineering & Bionanotechnology	15	20	10	5	50	50	100

Scheme of Assessment: Practical

					So	cheme of Assessr	nent (Marks)		
					Progressive As	ssessment (PRA)	-		
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PCC	52BT352	Genetic Engineering & Bionanotechnology	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the	Approximate Hours						
course and session levels, which students are anticipated to accomplish through		.	01	T T	CILL	CT	T (1
various modes of instruction including Classroom Instruction (CI), Laboratory		Item	Cl	LI	SW	SL	Total
Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Approx. Hrs	12	04	01	05	22
progresses, students should showcase their mastery of Session Outcomes (SOs),							
culminating in the overall achievement of Course Outcomes (COs) upon the							
course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI) 98BT155	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT302.1: Understanding the basic steps of gene cloning and the role of enzymes and vectors responsible for gene manipulation, transformation and genetic engineering.	SO1.1 Understand history and scope of genetic engineering		Unit-1 CI1.1 Scope of genetic engineering,	SL1.1 Study of history and introduction of genetic engineering
	SL1.2 Molecular tools & their application		CI1.2 Molecular tools & their application	SL1.3 What are molecular tools
	SO1.3 & SO1.4 Understand types and mechanisms of restriction endonucleases		CI1.3 & CI1.4 restriction endonuclease,	SL1.3 Write mechanism of type II restriction endonuclease
	SO1.5 & SO1.6 Understand types and mode of action of DNA modifying enzymes		CI1.5 & CI1.6 DNA modifying enzymes,	SL1.4 Differentiate between all DNA modifying enzymes
	SO1.7 & SO1.8 Describe different methods of DNA extraction.		CI1.7 & CI1.8 Isolation and purification of DNA from bacteria, plant & animal cell,	
	SO1.9 & SO1.10 Illustrate the technique of c DNA Synthesis	LI1.2 Electrophoresis of separated DNA.	CI1.9 & CI1.10 cDNA synthesis and cloning- mRNA enrichment, reverse transcription, DNA primers	
	SO1.11 & SO1.12 Evaluate and apply the linkers and adaptors according to need		CI1.11 & CI1.12 linker adaptors and their chemical synthesis,	

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	What are restriction endonucleases? Give nomenclature, classification, applications and mode of action.
	SW1.2 Mini Project	Describe mode of action of alkaline phosphatases and their applications in genetic engineering.
	SW1.3 Other Activities (Specify)	Find out DNA extraction protocol for insect cell.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	12	02	01	05	20

Course outcome (CO)	rse outcome (CO) Session Outcomes (SOs) Laboratory Instruction (CI) (LI) Class room Instruction (CI)		Self-Learning (SL)	
CO1-52BT302.2: Selection of expression strategies for heterologous gene- expression in bacteria, yeast, insects, and in mammalian cells.	SO2.1 Illustration of types of cloning vectors for E coli and their properties	LI2.1 Preparation of competent cells	Unit-II CI2.1 Cloning vector for E.coli, cloning vector for eukaryotes,	SL2.1 Learn types cloning vectors for E coli
	SO2.2 Illustration of plant-based vectors		CI2.2 plant-based vector,	SL2.2 List out plant based vectors
	SO2.3 Understand use of yeast vectors		CI2.3 yeast vector	SL2.3 Learn about yeast vector
	SO2.4 Determine the selection strategies for recombinants		CI2.4 Method for selection and screening of recombinant clone,	SL2.3 Discuss the screening of recombinants
	SO2.5 & SO2.6 Assessing the need of heterologous gene- expression in bacteria		CI2.5 & CI2.6 Expression strategies for heterologous gene- expression in bacteria,	
	SO2.7 & SO2.8 Explaining the expression in yeast		CI2.7 & CI2.8 expression in yeast	
	SO2.9 & SO2.10 Explaining expression in insect cell		CI2.9 & CI2.10 Expression in insects	SL2.5 Give baculovirus expression system
	SO2.11 & SO2.12 Understand expression in mammalian cells		CI2.11 & CI2.12 expression in mammalian cells.	

Suggested Sessional	SW2.1 Assignments	Describe various expression strategies of heterologous gene.
Work (SW): anyone	SW2.2 Mini Project	Explain the extraction of DNA from blood sample.
	SW2.3 Other Activities (Specify)	Prepare list of properties of good cloning vector.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	12	02	01	02	17

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)			
CO1-52BT302.3: Acquiring theoretical knowledge in the techniques, tools, application and safety measures of genetic engineering and gene therapy.	SO3.1 Demonstrate the production of DNA RNA probe		Unit-III CI3.1 labeling of DNA and RNA probes	SL3.1 Read about electrophoresis			
	SO3.2 Illustration of agarose gel electrophoresisSO3.3 Apply the reporter assay for specific purpose		CI3.2 gel retardation technique CI3.3 reporter assays,	SL3.2 Draw a diagram of electrophoretic appartus			
	SO3.4 Evaluate and apply the PCR for specific purpose	LI3.1 Demonstration of PCR	CI3.4 Polymerase chain reaction and its application,				
	SO3.5 & SO3.6 Describe production of recombinant pharmaceuticals,		CI3.5 & CI3.6 Application of genetic engineering- production of recombinant pharmaceuticals,				
	SO3.7 & SO3.8 Demonstrate the use of Gene therapy.		CI3.7 & CI3.8 gene therapy,				
	SO3.9 & SO3.10 Describe disease diagnosis via genetic engineering		CI3.9 & CI3.10 disease diagnosis,				
	SO3.11 & SO3.12 Analyze biohazards and enlist biosafety regulation		CI3.11 & CI3.12 Biosafety regulation- biological and physical containment.				

Suggested Sessional	SW3.1 Assignments	Describe principles and types of PCR
Work (SW): anyone	SW3.2 Mini Project	Describe the significance of PCR in forensics.
	SW3.3 Other	Prepare list of compounds produced by Biotech industries and their raw materials with production
	Activities (Specify)	process.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	12	02	01	05	20

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO-52BT302.4: Studying	SO4.1	LI4.1 Demonstration of	Unit-IV	SL4.1
the basics of	Develop understanding of bio	nanoparticle synthesis	CI4.1	Learn about bio
nanotechnology, synthesis,	nanotechnology	(virtual)	Introduction to	nanotechnology
characterization of nanoparticles.			Bionanotechnology	
	SO4.2 Illustrate opportunities		CI4.2 Opportunities &	SL4.2 Discuss challenges
	& challenges of		challenges of	of bio nanotechnology
	Bionanotechnology.		Bionanotechnology.	
	SO4.3 & SO4.4 Ananlyze key		CI4.3 & CI4.4 Key features	SL4.1 Video for
	features of nanoparticles		of Nano-size,	nanoparticle
				producation
	SO4.5 & SO4.6 Understand		CI4.5 & CI4.6 Comparison of	SL4.4 Studies related
	properties nanosize to macro		particle behavior at nanosize to	properties of nanoparticles
	size.		macrosize.	
	SO4.7 & SO4.8 Evaluate		CI4.7 & CI4.8 Strategies for	
	strategies of nanoarchitecture		Nanoarchitecture (top down &	
			bottom up approaches).	
	SO4.9 & SO4.10 Evaluate the		CI4.9 & CI4.10 Biomolecular	SL4.5 Evaluate the
	need of biomolecular design		design and	technique of biomolecular design
	SO4.11 & SO4.12 Apply		CI4.11 & CI4.12	
	bionanomachines for various purposes.		Bionanomachines in action.	

Suggested Sessional	SW4.1 Assignments	Describe principles and strategies of bionanotechnogy
Work (SW): anyone	SW4.2 Mini Project	Describe the properties of nanoparticle sand their applications
	SW4.3 Other	Prepare list of nanoparticles and their production process.
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	12	02	01	05	20

Course Outcome	Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
(CO)	(SOs)	Instruction (LI)	(CI)	(SL)
CO-52BT302.5: Applications of bio nanotechnology in medicine, agriculture and the environment.	SO5.1 Demonstrate microarray technology		Unit-V CI5.1 Microarray technology.	SL5.1 learn about principle of centrifuge
	SO5.2 Illustrate the basics of bionanoimaging		CI5.2 Principle, types and Applications of Bionanoimaging,	SL5.2 learn about analytical centrifuge
	SO5.3 Evaluate the need of Nanobiosensors,		CI5.3 Nanobiosensors	SL5.3 Give role of rotors its capacity range and applications
	SO5.4 Evaluate the need of, Biochips, Biorobotics		CI5.4 Biochips, Biorobotics,	SL5.4 Learn about properties of radioisotopes
	SO5.5 & SO5.6 Analyze the advantages of biomolecular motars		CI5.5 & CI5.6 Biomolecular motors; ATP Synthase, flagellar motors;	SL5.5 Give example of biomolecular designs
	SO5.7 & SO5.8 Describe Traffic across membranes- K channels		CI5.7 & CI5.8 Traffic across membranes- K channels	
	SO5.9 & SO5.10 Apply the DNA computers.		CI5.9 & CI5.10 DNA computers.	
	SO5.11 & SO5.12 Evaluate the need of Nano drug delivery	LI5.1 In-Silico analysis of nano- drug delivery by using software	CI5.11 & CI5.12 Nano drug delivery.	

Suggested Sessional	SW5.1 Assignments	Describe principles of microarray technology
Work (SW): anyone	SW5.2 Mini Project	Describe the applications of bionanoimaging in clinical field
	SW5.3 Other	Prepare list of hazards occurred due to improper use and dispose of radioisotopes.
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Genetic Engineering & Bionanotechnology

Course Title: Genetic Engineering & Bionanotechnology				Course Code: 52D 1 502			
Course Outcomes (COs)	Class lecture	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)		
	(CI)						
CO-52BT302.1: Understanding the basic steps of gene cloning and	12	4	5	1	22		
the role of enzymes and vectors responsible for gene manipulation,							
transformation and genetic engineering.							
CO-52BT302.2: Selection of expression strategies for heterologous	12	2	5	1	20		
gene- expression in bacteria, yeast, insects, and in mammalian cells.							
CO-52BT302.3: Acquiring theoretical knowledge in the techniques,	12	2	2	1	17		
tools, application and safety measures of genetic engineering and gene							
therapy.							
CO-52BT302.4: Studying the basics of nanotechnology, synthesis,	12	2	5	1	20		
characterization of nanoparticles.							
CO-52BT302.5: Applications of bionanotechnology in medicine,	12	2	5	1	20		
agriculture and the environment.							
Total Hours	60	12	22	05	99		

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Genetic Engineering & Bionanotechnology

Course Code: 52BT302

Course Outcomes					
	Α	Α	Ε	С	Total Marks
CO-52BT302.1: Understanding the basic steps of gene cloning and the role of enzymes and vectors responsible for gene manipulation, transformation and genetic engineering.	03	01	01	01	06
CO-52BT302.2: Selection of expression strategies for heterologous gene- expression in bacteria, yeast, insects, and in mammalian cells.	02	04	02	02	10
CO-52BT302.3: Acquiring theoretical knowledge in the techniques, tools, application and safety measures of genetic engineering and gene therapy.	03	05	05	01	14
CO-52BT302.4: Studying the basics of nanotechnology, synthesis, characterization of nanoparticles.	02	03	05	00	10
CO-52BT302.5: Applications of bionanotechnology in medicine, agriculture and the environment.	05	04	00	01	10
Total Marks	15	17	13	05	50

Legend: A: Apply, A: Analyze E: Evaluate, C: Create

Course Code: 52BT302

Suggested learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition &Year
1	• Introduction to Genomics .	Arthur Lesk.	Oxford University Press,	2008
2	• Genomes,	T.A. Brown	Garland Science,.	3rd Edition, 2006
3	• Molecular Cloning, A laboratory Manual.	Sambrook, J., Fritsch, E.F., Mariatis.	Cold Spring Harbor Laboratory, USA.	2001, 3rd edition.
4	• Gene Cloning by	T.A. Brown		
5	Nanotribology and Nanomechanics - An introduction, Springer.	,		
	 Nanobiotechnology- next big idea. 	g Mark, Ratner Daniel Ratner		

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Title: M. Sc. Biotechnology Semester: III Course Code: 52BT302 Course Title: Genetic Engineering & Bionanotechnology

Course Outcome	Program Outcomes (POs)					Program Specific Outcomes (PSOs)		
COs	PO1	PO2	РО3	PO4	PO5	PSO1	PSO2	PSO3
CO-52BT302.1: Understanding the basic steps of gene cloning and the role of enzymes and vectors responsible for gene manipulation, transformation and genetic engineering.	2	1	-	3	2	2	1	-
CO-52BT302.2: Selection of expression strategies for heterologous gene- expression in bacteria, yeast, insects, and in mammalian cells.	2		-	-	3	2	1	1
CO-52BT302.3: Acquiring theoretical knowledge in the techniques, tools, application and safety measures of genetic engineering and gene therapy.	2	1	-	3	-	1	1	-
CO-52BT302.4: Studying the basics of nanotechnology, synthesis, characterization of nanoparticles.	2		-	3	3	2	-	-
CO-52BT302.5: Applications of bionanotechnology in medicine, agriculture and the environment.	2	1	-	3	2	2	2	-

Legend: (1) Low (2) Medium (3) High

Course Curriculum:

POs & PSOs	COs	SOs No.	Laboratory	Classroom Instruction	Self-Learning (SL)
No.			Instruction (LI)	(CI)	
PO 1,2,3,4,5	CO-52BT302.1: Understanding the basic	SO1.1 SO1.2	LI1	1.1,1.2,1.3,1.4,1.5, 1.6,	1SL-1,2,3,4,5
	steps of gene cloning and the role of	SO1.3 SO1.4	LI2	1.7,1.8,1.9,1.10,1.11,1.12	
PSO 1,2,3	enzymes and vectors responsible for gene	SO1.5 SO1.6			
	manipulation, transformation and genetic	SO1.7 SO1.8			
	engineering.	SO1.9 SO1.10			
		SO1.11 SO1.12			
PO 1,2,3,4,5	CO-52BT302.2: Selection of expression	SO2.1 SO2.2	LI1	2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	2SL-1,2,3,4,5
	strategies for heterologous gene-	SO2.3 SO2.4		2.7, 2.8, 2.9, 2.10, 2.11, 2.12	
PSO 1,2,3	expression in bacteria, yeast, insects, and	SO2.5 SO2.6			
	in mammalian cells.	SO2.7 SO2.8			
		SO2.9 SO2.10			
		SO2.11 SO2.12			
PO 1,2,3,4,5	CO-52BT302.3: Acquiring theoretical	SO3.1 SO3.2	LI1	3.1,3.2,3.3,3.4,3.5,3.6,3.7,	3SL-1,2
	knowledge in the techniques, tools,	SO3.3 SO3.4		3.8,3.9,3.10,3.11,3.12	
PSO 1,2,3	application and safety measures of genetic	SO3.5 SO3.6			
	engineering and gene therapy.	SO3.7 SO3.8			
		SO3.9 SO3.10			
		SO3.11 SO3.12			
PO 1,2,3,4,5	CO-52BT302.4: Studying the basics of	SO4.1 SO4.2	LI1	4.1,4.2,4.3,4.4,4.5,4.6,	4SL-1,2,3,4,5
	nanotechnology, synthesis,	SO4.3 SO4.4		4.7,4.8,4.9,4.10,4.11,4.12	
PSO 1,2,3	characterization of nanoparticles.	SO4.5 SO4.6			
		SO4.7 SO4.8			
		SO4.9 SO4.10			
		SO4.11 SO4.12			
PO 1,2,3,4,5	CO-52BT302.5: Applications of	SO5.1 SO5.2	LI1	5.1,5.2,5.3,5.4,5.5,5.6,5.7,	5SL-1,2,3,4,5
	bionanotechnology in medicine,	SO5.3 SO5.4		5.8,5.9,5.10,5.11,5.12	
PSO 1,2,3	agriculture and the environment.	SO5.5 SO5.6			
		SO5.7 SO5.8			
		SO5.9 SO5.10			
		SO5.11 SO5.12			

Curriculum Developer Team:

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Master of Science in Biotechnology (M.Sc. (H	BT)
Semester	III	
Course Code:	52BT303	
Course title:	Agriculture Biotechnology	Curriculum Developer: Chahana Desai, Teaching Associate
Pre-requisite:	Students should have basic knowledge and engineering.	understanding about traditional agricultural practices and concept of genetic
Rationale:	 applications of biotechnology in the fie The course aims to equip students with enhancing crop productivity, improving 	the knowledge and skills necessary to utilize biotechnological tools and techniques for g plant genetics, and developing sustainable agricultural practices. critical thinking and ethical awareness among students regarding the potential benefits, risks,
Course Outcomes (COs):	 CO1-52BT303.1- An overview of Biotechnolo CO2-52BT303.2- Acquire knowledge regard CO3-52BT303.3- Gain an understanding of he and characteristics. CO4-52BT303.4- Elucidate the detailed role of CO5-52BT303.5- Elaborate the mechanism of m 	ing transgenesis and genetic engineering. rbicide resistance crops and different types of biofertilizers and its importance various microbes in the field of agriculture.

Scheme of Studies:

			Scheme of studies (Hours/Week)					
Board of Study	CourseCode	Course Title	rse Title Cl LI SW SL		Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)		
Program Core Course (PCC)	52BT303	Agriculture Biotechnology	3	2	1	1	7	3+1=4

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits.

 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

						Scheme	of Assessme	ent (Marks)		
				Progre	essive Asse	essment (PF	RA)		End	Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class act any one (CAT)	Class Attendance	Total Marks (CA+CT+CAT+SA+AT)	Semester Assessmen t (ESA)	
РСС	52BT303	Agriculture Biotechnology	15	20	5	5	5	50	50	100

Scheme of Assessment: Practical

					Se	cheme of Assessr	nent (Marks)		
					Progressive As	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PCC	52BT353	Agriculture Biotechnology	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the	Approximate Hours						
course and session levels, which students are anticipated to accomplish through		Thomas	Cl	тт	CW	CI	Tatal
various modes of instruction including Classroom Instruction (CI), Laboratory		Item	Cl		SW		Total
Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Approx. Hrs	09	02	01	02	14
progresses, students should showcase their mastery of Session Outcomes (SOs),							
culminating in the overall achievement of Course Outcomes (COs) upon the							
course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT303.1- An overview of Biotechnology in agriculture.	SO1.1 Elaborate the risk and challenges in agriculture biotechnology.	LI1.1 The physiological changes in fruit during ripening process	Unit-1 Biotechnology in Agriculture CI1.1 Historical perspective. Risk and challenges in Agricultural Biotechnology	SL1.1 Basic idea about traditional agricultural practices.
	SO1.2 Concept of possible improvement techniques for major crop plants.		CI1.2 Major crop plants and their improvement.	
	SO1.3	100	CI1.3	SL1.2

	nding the impact of	Impact of fertilizers and	Chemical fertilizers and its
	fertilizers and its	possible alternatives.	effects.
	lternatives.		
SO1.4		CI1.4	
	the losses due to	Losses due to biotic and abiotic	
biotic and	abiotic stresses.	stresses.	
SO1.5		CI1.5	
Explanation	on about the	Plant growth regulators: auxin,	
importanc	e of plant growth	gibberlins, cytokinins, abscicic	
regulators		acid, etylene.	
		CI1.6	
To learn a	bout the	To learn about the	
biosynthe	sis, transport and	biosynthesis, transport and	
physiolog	ical effects of	physiological effects of Auxin.	
Auxin.			
		CI1.7	
To learn a	bout the	To learn about the	
biosynthe	sis, transport and	biosynthesis, transport and	
	ical effects of	physiological effects of	
	s, cytokinins	gibberlins, cytokinins	
SO1.8 &		CI1.8 & CI1.9	
To learn a	bout the	To learn about the	
biosynthe	sis, transport and	biosynthesis, transport and	
	ical effects of	physiological effects of	
abscicic a	cid, ethylene	abscicic acid, ethylene	

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	 Biosynthetic pathways for Auxin. Possible alternatives of chemical fertilizers.
	SW1.2 Mini Project	Ray Diagram of Ethylene biosynthetic pathway
	SW1.3 Other Activities (Specify)	Find out the Visual aspects of how plant stressors affect the plant

This course syllabus illustrates the expected learning achievements, both at the course and session	Approximate Hours					
levels, which students are anticipated to accomplish through various modes of instruction including				-		
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning	T 4	Cl	LI	SW	SL	Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),	Approx. Hi	s 09	04	01	01	15
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-52BT303.2- Acquire knowledge regarding transgenesis and genetic engineering.	SO2.1 Elaborate the detailed mechanism of transgenesis.	LI2.1 Isolation of plant cell DNA using CTAB method.	Unit-2 Transgenesis and genetic engineering: CI2.1 Transgenic plants.	
	SO2.2 To learn about the resistance against biotic and abiotic stresses	LI2.2 To perform agarose gel electrophoresis for DNA identification.	CI2.2 Engineering for resistance against salinity, drought, herbicide, frost ant pest.	SL2.1 Differences between Biotic stress and abiotic stress.
	SO2.3 Elucidate the Mechanisms of genetic engineering for the gene transfer in plants for nitrogen fixation.		CI2.3 transfer of nif gene to transgenic plant	
	SO2.4 To learn about the how therapeutic molecules produced by the plants.		CI2.4 Production of therapeutic molecule in plants	
	SO2.5 Explanation about production and importance of edible vaccines		CI2.5 edible vaccines	
	SO2.6 Explanation about production and importance of golden rice		CI2.6 Golden rice.	
	SO2.7 Elucidate the mechanism of flower color modification.		CI2.7 flower and color modification	
	SO2.8 Explanation about the mechanism of delaying fruit ripening.		CI2.8 Delaying fruit ripening.	
	SO2.9 Elaborate the ethical issues	004	CI2.9 Ethical issues associated	

associated with GM crops	with GM crops and GM	
and GM food.	food.	

Suggested Sessional	SW2.1 Assignments	1. Diagram of how the nif gene transfer to plant.
Work (SW): anyone		2. Strategies for delaying fruit ripening technology.
	SW2.2 Mini Project	Detailed explanation about different types of gene transfer method with diagram.
	SW2.3 Other Activities (Specify)	Show some visual content how transgenesis takes place in plants.

This course syllabus illustrates the expected learning achievements, both at the course and session levels,	Аррі	roximate Hours	5				
which students are anticipated to accomplish through various modes of instruction including Classroom							
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Item	Cl	LI	SW	SL	Total
progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall		Approx. Hrs	09	04	01	02	16
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO3-52BT303.3- Gain an understanding of herbicide resistance crops and different types of biofertilizers and its importance and characteristics.	SO3.1 Various effects of herbicide resistance crops to the environment and human health.		Unit-3 environmental impact of transgenic plant and Biofertilizers: CI3.1 Environmental impact of herbicide resistance crops and superweeds.	
	SO3.2 Mechanisms and importance of biological nitrogen fixation.	LI3.1 To perform isolation and identification of rhizobium/azotobacter species from soil.	CI3.2 Biological nitrogen fixation: importance and mechanism	SL3.1 Basics of nitrogen fixation process.
	SO3.3 Elucidate the regulation of biological nitrogen fixation SO3.4 Elucidate the mode of action and production of VAM	LI3.2 Testing of nodulation ability by rhizobia.	CI3.3 Elucidate the regulation of biological nitrogen fixation CI3.4 Biofertilizers: types, production, VAM	SL3.2 Basic idea about chemical and biofertilizers and its
	biofertilizer. SO3.5 Explanation about the mode of action and production of		CI3.5 Biofertilizers: types, production of Rhizobium	effect.

Rhizobium	
SO3.6 Explanation about the mode of action and production of Azotobacter	CI3.6 Biofertilizers: types, production of Azotobacter
SO3.7 Elucidate the mode of action and production of Mycorhiza.	CI3.7 Biofertilizers: types, production of Mycorhiza,
SO3.8 Explanation about the mode of action and production of Actinorhiza.	CI3.8 Biofertilizers: types, production of Actinorhiza.
SO3.9 Elaborate the methods, types and applications of vermicomposting technology	CI3.9 Vermicomposting technology.

Suggested Sessional	SW3.1 Assignments	1. Mechanism of nitrogen fixation.
Work (SW): anyone		2. Methods of vermicomposting technology.
	SW3.2 Mini Project	Phases of vermicomposting production with required diagram.
	SW3.3 Other	Get the practical knowledge about the nodulation by the symbiotic bacteria in plants for nitrogen
	Activities (Specify)	fixation.

	* *	Hours					
levels, which students are anticipated to accomplish through various modes of instruction including	Г	T /	01	.	CITY	07	T 1
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning		Item					Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),		Approx. Hrs	09	04	01	03	17
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-52BT303.4- Elucidate the	SO4.1	LI4.1 To observe, identify,	Unit-4 Role of microbes in	
detailed role of various	Understanding about the	and document the general	agriculture	
microbes in the field of	Basic concept and	symptoms of plant diseases	CI4.1	
agriculture.	Mechanism of plant diseases	in a variety of plant	General symptoms of plant	
		specimens.	diseases.	

к р	SO4.2 Knowledge about how the plant infected by plant pathogen.		CI4.2 Mode of infection.	
	SO4.3 Understanding about the plant pathogen id dispersed and the control measures.		CI4.3 Dispersal of plant pathogens and control of pathogens.	SL4.1 Knowledge about plant pathogen.
E L	SO4.4 Basic concept about ntegrated Pest nanagement.		CI4.4 Integrated pest management	
E T	SO4.5 Elucidate the concept of Ferminator gene echnology.		CI4.5 Concept of terminator gene technology	
	SO4.6 Elaborate the mechanism of Ferminator gene echnology.		CI4.6 Mechanism of Terminator gene technology.	
	SO4.7 Detailed understanding bout role and importance of Biopesticides.	LI4.2 To prepare a neembased biopesticide and test its effectiveness against common garden pests.	CI4.7 Biopesticides	SL4.2 Basic idea about pesticides.
к С	SO4.8 Knowledge about how Germplasm conservation can be done.		CI4.8 Germplasm conservation	SL4.3 Characteristics of germplasm.
	SO4.9 Understanding about the Mechanism of how the seed Bank is developed.		CI4.9 seed bank	

Suggested Sessional Work (SW): anyone	SW4.1 Assignments	 Write mode of action of different biopesticides. Describe briefly the terminator gene technology.
	SW4.2 Mini Project	Draw a ray diagram of how plant pathogens are controlled
	SW4.3 Other	1. Observe symptoms of plant diseases.
	Activities (Specify)	2. Power point presentation of dispersal of plant pathogen.

This course syllabus illustrates the expected learning achievements, both at the course and session	Approximate H	Iours					
levels, which students are anticipated to accomplish through various modes of instruction including	-						/
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning		Item	Cl	LI	SW	SL	Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),		Approx. Hrs	09	02	01	02	14
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-52BT303.5- Elaborate the	SO5.1	LI5.1	Unit-5 Metabolic engineering	SL5.1
mechanism of metabolic	Explanation about plant	Separation of plant	of plants	Basic knowledge of plant
engineering in plants	cell culture.	pigments using different		tissue culture.
		plant samples by paper	CI5.1	
		chromatography	Plant cell culture for the	
			production of useful chemicals	
			and secondary metabolites	
			(Hairy root culture,	
			Biotransformation, Elicitation.	
	SO5.2		CI5.2	
	Elucidate about the		Production of useful chemicals	
	production of useful			
	chemicals			
	SO5.3		CI5.3	SL5.2
	Detailed knowledge about		Production of pigments, flavonoids	Basic knowledge about plant
	plant pigments and pathways for the flavonoid		navonoids	pigments.
	production			
	SO5.4		CI5.4	
	Elucidate the mechanism		Production of pigments,	
	and importance of alkaloid		alkaloids	
	production		aikaioius	
	\$05.5		CI5.5	
	Explain the detailed		Mechanism and manipulation of	
	mechanism and		shikimate pathway.	
	manipulation of the pathway			
	which is responsible for			
	synthesis of aromatic amino			
	acids.			
	SO5.6		CI5.6	
	Elucidate the mechanism		Production of Industrial	
	about production of		enzymes.	
	industrial enzymes.			

SO5.7 Understanding about biodegradable plastics and its importance.	CI5.7 Biodegradable plastics.
SO5.8 Explanation about production of therapeutic protein.	CI5.8 Production of therapeutic protein
SO5.9 Elucidate the role of therapeutic protein.	CI5.9 Role of therapeutic protein.

Suggested Sessional	SW5.1 Assignments	1. Production of flavonoid and alkaloids plant pigments.	
Work (SW): anyone		2. Ray diagram of Shikimate pathway.	
	SW5.2 Mini Project	tailed diagram of industrial enzyme production.	
	SW5.3 Other	Acquire knowledge about how bioplastics are made.	
	Activities (Specify)	· · · ·	

Course duration (in hours) to attain Course Outcomes:

Course Title: Agriculture biotechnolog	Course Code: 52BT303				
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-52BT303.1- An overview of Biotechnology in agriculture.	09	2	2	1	14
CO2-52BT303.2- Acquire knowledge regarding transgenesis and genetic engineering.	09	4	1	1	15
CO3-52BT303.3- Gain an understanding of herbicide resistance crops and different types of biofertilizers and its importance and characteristics.	09	4	2	1	16
CO4-52BT303.4- Elucidate the detailed role of various microbes in the field of agriculture.	09	4	3	1	17
CO5-52BT303.5- Elaborate the mechanism of metabolic engineering in plants	09	2	2	1	14
Total Hours	45	16	10	05	76

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Outcomes	Marks Distribution					
	Α	An	Ε	С	Total Marks	
CO1-52BT303.1- An overview of Biotechnology in agriculture.	2	1	1	1	5	
CO2-52BT303.2- Acquire knowledge regarding transgenesis and genetic engineering.	2	4	5	1	12	
CO3-52BT303.3- Gain an understanding of herbicide resistance crops and different types of biofertilizers and its importance and characteristics.	3	5	5	1	14	
CO4-52BT303.4- Elucidate the detailed role of various microbes in the field of agriculture.	2	3	5	1	11	
CO5-52BT303.5- Elaborate the mechanism of metabolic engineering in plants	2	4	1	1	10	
Total Marks	11	17	17	05	50	

Course Code: 52BT303

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Course Title: Agriculture Biotechnology

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details	
1	Biotechnology fundamental and application (4th edition) - S.S.Purohit.	
2	Plant Biotechnology – B.D.Singh	
3	Plants, Genes and agriculture by Maartein, J.Christpeels, David E.Sdava.	
4	Crop Biotechnology by P.R.Yadav, Rajiv Tyagi.	
5	Plant Biotechnology by Chawla. Gendel,	

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Role play
- 5. Demonstration
- 6. ICT Based teaching Learning
- 7. Brainstorming

CO, PO and PSO Mapping

Program Name: M.Sc. Biotechnology **Semester:** III Semester **Course Title:** Agriculture Biotechnology **Course Code:** 52BT303

CO/PO/PSO Mapping								
Course Outcome (COs)		Program Outcomes (POs)				Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1-52BT303.1- An overview of Biotechnology in agriculture	1	2	-	1	2	2	2	1
CO2-52BT303.2- Acquired the knowledge regarding transgenesis and genetic engineering	-	1	1	-	-	1	1	2
CO3-52BT303.3- Gain an understanding of herbicide resistance crops and different types of biofertilizers and its importance and characteristics	1	1	2	1	-	3	1	1
CO4-52BT303.4- Elucidate the detailed role of various microbes in the field of agriculture.	1	1	1	-	2	1	1	3
CO5-52BT303.5- Elaborate the mechanism of metabolic engineering in plants.	2	1	1	-	-	1	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	Cos	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
	CO1-52BT303.1- An overview of	SO1.1 SO1.2	LI1.1	1.1,1.2,1.3,1.4,1.5, 1.6,	1SL-1,2
PO 1,2,4,5	Biotechnology in agriculture	SO1.3 SO1.4		1.7, 1.8,1.9	
		SO1.5 SO1.6			
PSO 1,2, 3		SO1.7 SO1.8			
		SO1.9			
	CO2-52BT303.2- Acquired the	SO2.1 SO2.2	LI2.1, LI2.2	2.1, 2.2,	2SL-1
PO 2,3,	knowledge regarding transgenesis and	SO2.3 SO2.4		2.3,2.4,2.5,2.6,2.7,2.8,2.9	
	genetic engineering.	SO2.5 SO2.6			
PSO 1,2, 3		SO2.7 SO2.8			
		SO2.9			
	CO3-52BT303.3- Gain an understanding	SO3.1 SO3.2	LI3.1, LI3.2	3.1,3.2,3.3,3.4, 3.5, 3.6,	3SL-1,2
PO 1,2,3,4	of herbicide resistance crops and different	SO3.3 SO3.4		3.7, 3.8, 3.9	
	types of biofertilizers and its importance	SO3.5 SO3.6			
PSO 1,2, 3	and characteristics	SO3.7 SO3.8			
		SO3.9			
	CO4-52BT303.4- Elucidate the detailed	SO4.1 SO4.2	LI4.1, LI4.2	4.1,4.2,4.3,4.4, 4.5,	4SL-1,2,3
PO 1,2,3,5	role of various microbes in the field of	SO4.3 SO4.4		4.6,4.7,4.8, 4.9	
	agriculture.	SO4.5 SO4.6			
PSO 1,2, 3		SO4.7 SO4.8			
		SO4.9			
	CO5-52BT303.5- Elaborate the	SO5.1 SO5.2		5.1,5.2,5.3,5.4,5.5,5.6,5.7,	5SL-1,2
PO 1,2,3,	mechanism of metabolic engineering in	SO5.3 SO5.4	LI5.1	5.8, 5.9	
	plants.	SO5.5 SO5.6			
PSO 1,2, 3		SO5.7 SO5.8			
		SO5.9			

Curriculum Developer Team:

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Masters of Science (M.Sc.)- Biotechnology				
Semester	III				
Course Code:	52BT304				
Course title:	Scientific Writing and Patenting Process Curriculum Developer: Dr. Deepak Mishra, Professor				
Pre-requisite:	Student should have basic knowledge of Biotechnology, Genetic Engineering and practical as well as research skills.				
Rationale:	The paper on Scientific Writing and Patenting Process in an MSc Biotechnology program explores the critical role of specialized research and scientific tools in analyzing biotechnology and RDT research. It delves into the use of precise instruments for monitoring and analyzing data and literature, development of scientific writing skills and research aptitudes. This study enables students to understand how systematic research process helps us for doing any research in a systematic manner along with data publication. It also explore the knowledge of law and legislation, patenting and ethics in biotechnology.				
Course Outcomes (COs):	CO1-52BT304.1: Students are being knowledgeable with essentials of scientific writing and research methods through various tools available for scientific research.				
	CO2-52BT304.2: Development of critical thinking skills for evaluating scientific literature and identifying research problems				
	CO3-52BT304.3: Proficiency in communicating research findings through various written forms.				
	CO4-52BT304.4: Recognize various issues related to RDT research and analyze the regulatory frameworks, law and legislations related to				
	biotechnological research.				
	CO5-52BT304.5: Understanding of patenting process, laws, and drafting patent applications.				

Scheme of Studies:

					Scheme of	studies (Hou	ırs/Week)	
Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:1:1)
Discipline Specific Course (DSC)	52BT304	Scientific Writing and Patenting Process	4	2	1	2	9	3+1+1=5

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits.

 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					Sch	eme of Assessme	ent (Marks)		
Board of Study	Couse Code		Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Progressive Asse Seminar one (SA)	Class Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
DSC	52BT304	Scientific Writing and Patenting Process	15	20	10	5	50	50	100

Scheme of Assessment: Practical

					So	cheme of Assessr	nent (Marks)		
					Progressive As	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
DSC	52BT354	Scientific Writing & Patenting Process	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the	Approximate Hours						
course and session levels, which students are anticipated to accomplish through		-	~1			a r	m 1
various modes of instruction including Classroom Instruction (CI), Laboratory		Item	Cl	LI	SW	SL	Total
Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Approx. Hrs	12	04	01	05	22
progresses, students should showcase their mastery of Session Outcomes (SOs),							
culminating in the overall achievement of Course Outcomes (COs) upon the							
course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
52BT304.1: Students are being knowledge-able with essentials of scientific writing and research methods through various tools available for scientific research.	scientific writing and research, its types		Unit-1 CI1.1 Scientific Writing & Research- meaning, types,	SL1.1 Search various reference books and study material to start the learning of research and scientific writing
	SO1.2 Describe about objectives and		5 / 11	SL1.2 Differentiation of research problems based on objective

approaches of research			
SO1.3 Explain about methods and sources of literature		CI1.3 Literature collection: Different sources	SL1.3 Searching and literature on different online resources.
SO1.4 Describe about biological online database	LI1.1 To learn how to collect scientific literature from various sources and use biological online databases for research.	CI1.4 Biological online databases,	
SO1.5 & SO1.6 Study of sampling techniques		CI1.5 & CI1.6 Determining sample design	SL1.4 Use of sampling methods for collection of scientific data related to different research problems
SO1.7 & SO1.8 Study of data collection methods		CI1.7 & CI1.8 collecting data	
SO1.9 & SO1.10 Describe concept of hypothesis testing		CI1.9 & CI1.10 analysis and hypothesis testing	SL1.5 Setting up the Hypothesis and their application in research
SO1.11 & SO1.12 Study about generalization and interpretation of research findings		CI1.11 & CI1.12 Generalization and interpretation.	

Suggested Sessional	SW1.1 Assignments	Describe in detail research and its types
Work (SW): anyone	SW1.2 Mini Project	Collection of data and literature related to any biotechnological research problem
	SW1.3 Other Activities (Specify)	Searching of online databased available on internet and their application in research

Item	Cl	LI	SW	SL	Total
Approx. Hrs	12	04	01	05	22

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
52BT304.2: Development of critical thinking skills for evaluating scientific literature and identifying research problems	reviews	LI2.1 To understand the process of writing scientific reviews, journal articles, books, and monographs, and to learn how to create a bibliography.	Unit-II CI2.1 Writing review articles,	SL2.1 Search various contents for writing a review article
	SO2.2 Describe the contents of research article		CI2.2 Writing Journal articles, bibliography	SL2.2 designing of a research article
	SO2.3 Reflecting about the concept and contents of books and monograph		CI2.3 books, and monographs-	SL2.3 Learn about contents of an ideal book
	SO2.4 Explain about contents of an ideal thesis	LI2.2 To understand the structure of a thesis and the process of manuscript and proof correction. To learn about the research process, including the selection of research problems, stages of research execution, and research designs.		SL2.3 Searching and literature on different online resources.
	SO2.5 & SO2.6 Assessing the role of manuscript and proof correction in research		CI2.5 & CI2.6 Manuscript and proof correction	
	SO2.7 & SO2.8 Explaining the steps of research process		CI2.7 & CI2.8 Research Process: selection of problems:	SL2.5 Use of research process to solve different research problems
	SO2.9&SO2.10Explaining the stages of execution of research		CI2.9 & CI2.10 stages in the execution of research	
	SO2.11 & SO2.12 explain		CI2.11 & CI2.12 Research	

about different types of	Designs.	
research designs.		

Suggested Sessional	SW2.1 Assignments	Describe in detail about different stages of execution of research by using research process.
Work (SW): anyone	SW2.2 Mini Project	Designing of a research thesis.
	SW2.3 Other Activities (Specify)	Take a research problem a select a specific research design for solving it.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	12	04	01	05	22

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
52BT304.3: Proficiency in communicating research findings through various written forms.	SO3.1 Explain the role of different types of data in research.	To understand the	Unit-III CI3.1 Data Collection: Secondary Data, Primary Data	SL3.1 Read about various types of data and their applications in research
	SO3.2 Assessing different methods used in data collection		CI3.2 Methods of collection	SL3.2 Collection of research data using different tools
	SO3.3 & SO3.4 Explaining concept and types of scales			SL3.3 Illustration about different scaling techniques
	 SO3.5 & SO3.6 Assessing different scaling methods used in research SO3.7 & SO3.8 Describe about 		CI3.5 & CI3.6 Rating scales and Ranking scales, Scale Construction techniques CI3.7 & CI3.8 Multi-	
	multi-dimensional scaling SO3.9 & SO3.10 Assessing the role of research journals in research and their standards		Dimensional Scaling. CI3.9 & CI3.10 Journals: Standard of research Journals	SL3.4 Collection of different research journals
	SO3.11 & SO3.12 Describe about concept of impact factor		CI3.11 & CI3.12 Impact factor, citation index	SL3.5 Assess role of impact factor and citation index in research

and citation index	standards of research
	journals, and to learn
	about impact factor,
	citation index, and their
	significance in evaluating
	the quality of research.

Suggested Sessional	SW3.1 Assignments	Describe in detail different categories of data and its collection methods.
Work (SW): anyone	SW3.2 Mini Project	Describe the role of scaling methods in research and their application for data validation
	SW3.3 Other	Prepare a list of research journal and checking their standard parameters.
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	12	04	01	05	22

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
52BT304.4: Recognize various issues related to RDT research and analyze the regulatory frameworks, law and legislations related to biotechnological research.	SO4.1 Exploring the legal and socioeconomic issues related to biotechnology	LI4.1 To understand the legal, socioeconomic, and ethical aspects of biotechnology research and innovation, including intellectual property rights and regulatory frameworks.	The legal and socioeconomic	SL4.1 Learn about legal and socioeconomic impact of biotechnology
	SO4.2 Assessing the ethical issues of RDT research and biotechnology			SL4.2 Discuss ethical concern of biotechnology and its impact on society.
	SO4.3 Explaining the concept and types of IPRs	L14.2 To gain a deep understanding of intellectual property rights related to biotechnology and the regulatory frameworks governing GMOs in India.	CI4.3 Intellectual property rights,	SL4.3 Learn about various types of Intellectual Property
	SO4.4 Explaining the administrative framework of biotech and RDT research		CI4.4 Regulatory framework in India governing GMOs	SL4.4 Case studies related to RDT and biotech laws
	SO4.5 Evaluate impact of law on RDT research		CI4.5 Recombinant DNA Guidelines (1990),	
	SO4.6 Describe the impact of law on research on transgenics.		CI4.6 Revised Guidelines for Research in Transgenic Plants (1998),	
	SO4.7 & SO4.8 Assessing the role of law on preventing food adulteration		CI4.7 & CI4.8 Prevention Food Adulteration Act (1955),	SL4.5 Case studies related to Food laws
	SO4.9 & SO4.10 Describe law and standards of food regulation and safety		CI4.9 & CI4.10 The Food Safety and Standards Bill (2005),	
	SO4.11 & SO4.12 Define the role of environmental policy on solving environmental issues		CI4.11 & CI4.12 National Environment Policy (2006)	

Suggested Sessional	SW4.1 Assignments	Explain about regulation of RDT research through different law
Work (SW): anyone	SW4.2 Mini Project	Describe the various issues related to biotechnology and RDT research.
	SW4.3 Other	Prepare one article on law and safety issues related to food and food ingradients
	Activities (Specify)	

			Item		Cl	LI	SW	SL	Total		
			Approx		12	04	01	05	22		
Course Outcome (CO)	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Classroom Instruction	n (CI)	Sel	Self-Learning (SL)					
52BT304.5: Understanding of patenting process, laws, and drafting patent applications.	SO5.1 Define the concept and objective of patenting.		Unit-V CI5.1 Objectives of the system: Basic principle	SL5.1 learn about basic concept & requirement of patents							
	SO5.2 Able to execute to perform role of patent law		CI5.2 general requirem patent law,	ents of		. 5.2 Re lian pa			ent		
	SO5.3 Apply the role of patenting system in biotech research	LI5.1 To understand the basic principles and general requirements of patent law, the application of patent law to biotechnological inventions, and the legal developments related to patenting living organisms.	Ū.	CI5.3 Biotechnological inventions and patent law,				SL5.3 learn how get legal protection for invention b patenting			
	SO5.4 Apply the patents for protection of innovation		CI5.4 Patentable subject protection in biotechnol								
	SO5.5 & SO5.6 Evaluate the patenting process for living organisms		CI5.5 & CI5.6 The pather organisms,	enting							
	SO5.7 & SO5.8 Describe international patent law and its impact on patenting	LI5.2 To explore international conventions on patents, methods of patent application, and the legal implications of patenting in the context of biotechnology, including biodiversity and farmer rights.	s, and le			ernatio	onal pa	atentii	ng law		
	SO5.9 & SO5.10 Describe process of patenting		CI5.9 & CI5.10 method application of patents	ds of							

SO5.11 & SO5.12 Elaborate	0	CI5.11 & CI5.12	SL5.5 Learn about
the role of biodiversity and	B	Biodiversity and farmer right.	biodiversity and former right
for plant protection			acts

Suggested Sessional	SW5.1 Assignments	Explain general characteristics of patent and impact of patent law on research
Work (SW): anyone	SW5.2 Mini Project	Describe the role of patent law for protection of biotechnological innovations
	SW5.3 Other	Prepare a detail document on patent law of different countries
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Scientific Writing and Patenting Process

Course Code: 52BT304

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-52BT304.1: Students are being knowledgeable with essentials of scientific writing and research methods through various tools available for scientific research.	12	4	5	1	22
CO2-52BT304.2: Development of critical thinking skills for evaluating scientific literature and identifying research problems	12	4	5	1	22
CO3-52BT304.3: Proficiency in communicating research findings through various written forms.	12	4	5	1	22
CO4-52BT304.4: Recognize various issues related to RDT research and analyze the regulatory frameworks, law and legislations related to biotechnological research.	12	4	5	1	22
CO5-52BT304.5: Understanding of patenting process, laws, and drafting patent applications.	12	4	5	1	22
Total Hours	60	20	25	05	110

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Scientific Writing and Patenting Process

Course Code: 52BT304

Course Outcomes		Marks Distribution					
	Α	An	Ε	С	Total Marks		
CO1-52BT304.1: Students are being knowledgeable with essentials of scientific writing and	2	1	1	1	5		
research methods through various tools available for scientific research.							

CO2-52BT304.2: Development of critical thinking skills for evaluating scientific literature and identifying research problems	2	4	2	2	10
CO3-52BT304.3: Proficiency in communicating research findings through various written forms.	2	3	3	2	10
CO4-52BT304.4: Recognize various issues related to RDT research and analyze the regulatory frameworks, law and legislations related to biotechnological research.	3	5	5	2	15
CO5-52BT304.5: Understanding of patenting process, laws, and drafting patent applications.	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Beier, F.K., Crespi, R.S. and Straus, T. Biotechnology and Patent protection-Oxford and IBH Publishing Co. New Delhi.
2	Singh K, Intellectual Property rights on Biotechnology, BCIL, New Delhi
3	Writing the doctoral dissertation. Barrons Educational series, 2nd edition, Davis, G.B. and C.A. Parker, 1997. pp 160.
4	Authoring a PhD, thesis: how to plan, draft, write and finish a doctoral dissertation, Duncary, P. 2003.
5	Beier, F.K., Crespi, R.S. and Straus, T. Biotechnology and Patent protection-Oxford and IBH Publishing Co. New Delhi.

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: M. Sc. Biotechnology Semester: III Semester Course Title: Scientific Writing and Patenting Process Course Code: 52BT304

CC	CO/PO/PSO Mapping									
Course Outcome (Cos)		Program Outcomes (POs)					Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3		
CO1-52BT304.1: Students are being knowledgeable with essentials of scientific writing and research methods through various tools	2	1	3	3	2	2	2	3		
available for scientific research.										
CO2-52BT304.2: Development of critical thinking skills for evaluating scientific literature and identifying research problems	2	1	3	2	3	1	3	3		
CO3-52BT304.3: Proficiency in communicating research findings through various written forms.	1	2	3	2	3	1	2	2		
CO4-52BT304.4: Recognize various issues related to RDT research and analyze the regulatory frameworks, law and legislations related to biotechnological research.	1	1	3	3	2	1	3	3		
CO5-52BT304.5: Understanding of patenting process, laws, and drafting patent applications.	1	1	3	3	2	1	3	2		

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5	CO1-52BT304.1: Students are	SO1.1 SO1.2	LI1	1.1,1.2,1.3,1.4,1.5, 1.6, 1.7,	1SL-1,2,3,4,5
	being knowledgeable with	SO1.3 SO1.4	LI2	1.8,1.9,1.10,1.11,1.12	
PSO 1,2,3	essentials of scientific writing and	SO1.5 SO1.6			
	research methods through various	SO1.7 SO1.8			
	tools available for scientific	SO1.9 SO1.10			
	research.	SO1.11 SO1.12			
PO 1,2,3,4,5	CO2-52BT304.2: Development	SO2.1 SO2.2	LI1	2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,2.	2SL-1,2,3,4,5
	of critical thinking skills for	SO2.3 SO2.4	LI2	10,2.11,2.12	
PSO 1,2,3	evaluating scientific literature and	SO2.5 SO2.6			
	identifying research problems	SO2.7 SO2.8			
		SO2.9 SO2.10			
		SO2.11 SO2.12			
PO 1,2,3,4,5	CO3-52BT304.3: Proficiency in	SO3.1 SO3.2	LI1	3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.	3SL-1,2,3,4,5
	communicating research findings	SO3.3 SO3.4	LI2	10,3.11,3.12	
PSO 1,2,3	through various written forms.	SO3.5 SO3.6			
		SO3.7 SO3.8			
		SO3.9 SO3.10			
		SO3.11 SO3.12			
PO 1,2,3,4,5	CO4-52BT304.4: Recognize	SO4.1 SO4.2	LI1	4.1,4.2,4.3,4.4,4.5,4.6,4.7,	4SL-1,2,3,4,5
	various issues related to RDT	SO4.3 SO4.4	LI2	4.8,4.9,4.10,4.11,4.12	
PSO 1,2,3	research and analyze the	SO4.5 SO4.6			
	regulatory frameworks, law and	SO4.7 SO4.8			
	legislations related to	SO4.9 SO4.10			
	biotechnological research.	SO4.11 SO4.12			
PO 1,2,3,4,5	CO5-52BT304.5: Understanding	SO5.1 SO5.2	LI1	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.	5SL-1,2,3,4,5
	of patenting process, laws, and	SO5.3 SO5.4	LI2	10,5.11,5.12	
PSO 1,2,3	drafting patent applications.	SO5.5 SO5.6			
		SO5.7 SO5.8			
		SO5.9 SO5.10			
		SO5.11 SO5.12			

Curriculum Developer Team:

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Masters of Science in Biotechnology (M.	Sc. BT)				
Semester	III					
Course Code:	52BT305-A					
Course title:	Design and Operation of Bioreactor	Curriculum Developer: Er. Arpit Srivastava, Assistant Professor				
Pre-requisite:	Students should have basic knowledge of de	esign & operation of bioreactor.				
Rationale:	the design and study of bioreactors (operative engineers find employment opportunities in industry, pharmaceuticals, chemical manuf knowledge about the living organisms such	In glomerate of mathematics, biology and industrial design, and consists of various spectrums like onal mode, instrumentation, and physical layout) to the creation of kinetic models. Biochemical in various industries. They provide their services in the food sector, nuclear sector, healthcare facturing companies, research laboratories and other areas. This course provides us about the as plants, animals, bacteria and fungi but the bioprocess engineering helps in development of the organisms for the betterment of the human beings and the nature itself.				
Course Outcomes (COs):	CO1-52BT305-A.1. Recall the basic fundamentals of Design and Operation of Bioreactor CO1-52BT305-A.2. Describe the fluid flow dynamics and calculate and apply heat & mass transfer coefficient. CO1-52BT305-A.3. Comprehensive understanding the advanced bioreactor designs and their applications. CO4-52BT305-A.4. Comprehensive understanding the bioreactor designs and operation principles. CO5-52BT305-A.5. Comprehensive understanding the animal and plant cells cultivation techniques and applications.					

Scheme of Studies:

					Scheme of	studies (Hou	ırs/Week)	
Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:1)
Professional Elective Course (PE)	52BT305-A	Design and Operation of Bioreactor	3	2	1	3	9	2+1=3

Legends:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);
SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					Sche	eme of Assessm	ent (Marks)		
				Progre	ssive Assessment	(PRA)	1	End	Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment	Class Test 2 (2 best out	Seminar one	Class Attendance	Total Marks	Semester Assessment (ESA)	(PRA+ ESA)
			5 number 3 marks each (CA)	of 3) 10 marks each (CT)	(SA)	(AT)	(CA+CT+CAT+SA+AT)		
PE	52BT305- A	Design and Operation of Bioreactor	15	20	10	5	50	50	100

Scheme of Assessment: Practical

					So	cheme of Assessr	nent (Marks)		
					Progressive As	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PE	52BT355-A	Design and Operation of Bioreactor	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels,	Appr	oximate Hours					
which students are anticipated to accomplish through various modes of instruction including Classroom			-				
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Item	Cl	LI	SW	SL	Total
progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall		Approx. Hrs	06	04	01	03	14
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT305-A.1.	SO1.1	LI1.1	CI1.1	SL1.1
Recall the basic fundamentals of	Explain Fundamental	To Demonstrate the working	Fundamental studies &	Find out some examples of
Design and Operation of	studies & mathematical	of a Bench Top bioreactor	mathematical Model	bioprocess technique used in
Bioreactor	Model	with all its parts		ancient India
	SO1.2	LI1.2	CI1.2	SL1.2
	Determine the basic	To perform the isolation of	Applications of Batch, Fed	Search various reference
	Applications of Batch, Fed	microorganisms from	Batch and Continuous	books and study material to
	Batch and Continuous	different kinds of samples	Fermentation	start the learning of
	Fermentation			microorganisms
	SO1.3		CI1.3	SL1.3
	Elaborate the Wall growth		Wall growth and Wash out	Draw a flow chart showing
	and Wash out Conditions		Conditions	upstream and fermentation
				processing
	SO1.4		CI1.4	

	Define the Aerobic and	Aerobic and Anaerobic			
	Anaerobic Fermentations	Fermentations			
	SO1.5	CI1.5			
	Explain Bioreactor,	Bioreactor, Introduction and			
	Introduction and type Plug	type Plug flow reactor			
	flow reactor				
	SO1.6	CI1.6			
	Define Maintenance of	Maintenance, Engineering,			
	Reactors	& applications of Reactors			
Suggested Sessional	SW1.1 Assignments	Describe in detail "Applications of Microorganisms in various Sectors"			
Work (SW): anyone	SW1.2 Mini Project	Draw various types of Fermenters with specifications and parts			
	SW1.3 Other Activities (Specify)	Make a power point presentation on "Role of Fermentations in Ancient India"			

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including					
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning	Item C		SW		
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),		06 04	01	02	13
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.					

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT305-A.2. Describe the fluid flow dynamics and calculate and apply heat & mass transfer coefficient.	SO2.1 Types of Fluid flow		CI2.1 Types of Fluid flow	
	SO2.2 Differentiate Newtonian and Non-Newtonian Fluid flow		CI2.2 Newtonian and Non- Newtonian Fluid flow	SL2.1 To understand and differentiate between various types of fluid flow, including Newtonian and Non- Newtonian fluids, and to analyze different fluid flow regimes.
	SO2.3 Explain the Fluid flow Regimes	LI2.1 Analysis of Types of Fluid Flow and Fluid Flow Regimes	CI2.3 Fluid flow Regimes	
	SO2.4		CI2.4	SL2.2

Explain Fundamentals of		Fundamentals of Heat	To understand the
Heat transfer		transfer	fundamentals of heat and
			mass transfer, and to learn
			how to determine heat and
			mass transfer coefficients.
SO2.5		CI2.5	
Determine Fundamentals of		Fundamentals of Mass	
Mass transfer		transfer	
SO2.6	LI2.2	CI2.6	
Elaborate Heat & mass	Investigation of Heat and	Application of Heat & mass	
transfer coefficient	Mass Transfer Coefficients	transfer coefficient	

Suggested Sessional	SW2.1 Assignments	Explain the Fluid flow Regimes
Work (SW): anyone	SW2.2 Mini Project	Explain Fundamentals of Heat & mass transfer
	SW2.3 Other Activities (Specify)	Application of Heat & mass transfer coefficient

This course syllabus illustrates the expected learning achievements, both at the course and session levels,	Аррі	oximate Hours	5				
which students are anticipated to accomplish through various modes of instruction including Classroom							
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Item	Cl	LI	SW	SL	Total
progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall		Approx. Hrs	07	04	01	02	14
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT305-A.3.	SO3.1		CI3.1	
Comprehensive understanding	Explain Stirred Tank		Stirred Tank reactors	
the advanced bioreactor designs	reactors			
and their applications.				
	SO3.2		CI3.2	
	Explain Reactors with		Reactors with recycle	
	recycle			
	SO3.3	LI3.1	CI3.3	SL3.1
	Explain Series of connected	Investigation of Reactors	Series of connected Reactors	To explore the effects of
	Reactors	with Recycle and Series of		different reactor
		Connected Reactors		configurations, including
				reactors with recycle and
				series of connected reactors,
				on reaction performance and

			efficiency.
SO3.4 Explain Bubble-column	LI3.2 Comparative Analysis of Different Types of Reactors	CI3.4 Bubble-column	SL3.2 To understand the operation principles, advantages, and applications of various reactor types including stirred tank reactors, bubble-column reactors, fluidized bed reactors, trickle bed reactors, photobioreactors, and bioreactors for solid-state fermentation.
SO3.5		CI3.5	
 Explain Fluidized bed		Fluidized bed	
SO3.6 Explain Trickle bed Photobioreactor		CI3.6 Trickle bed Photobioreactor	
SO3.7 Explain Bioreactor for Solid State Fermentation		CI3.7 Bioreactor for Solid State Fermentation	

Suggested Sessional	SW3.1 Assignments	Explain Series of connected Reactors
Work (SW): anyone	SW3.2 Mini Project	Explain Bubble-column, & Trickle bed Photobioreactor
	SW3.3 Other	Explain Bioreactor for Solid State Fermentation
	Activities (Specify)	

This course syllabus illustrates the expected learning achievements, both at the course and session	Approximate	Hours					
levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning		Item	Cl	LI	SW	SL	Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),		Approx. Hrs	06	04	01	03	14
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-52BT305-A.4.	SO4.1		Unit-4	SL4.1

Comprehensive understanding the bioreactor designs and operation principles.	Elucidate Residence Time in Bioreactor		CI4.1 Residence Time in Bioreactor	To understand and calculate the residence time and Damkohler number (Da) in a bioreactor through self- directed study and experimentation.
	SO4.2 Derive the mathematical expression for Damkohler Number and its numerical	LI4.1 To understand and calculate the residence time and Damkohler number (Da) in a bioreactor.	CI4.2 Damkohler Number and its numerical	
	SO4.3 Explain & Analyze the Aeration system ,Agitation System & Agitator blade patterns	LI4.2 To study the effects of aeration, agitation systems, and agitator blade patterns on the performance of a bioreactor.	CI4.3 Aeration system, Agitation system & agitator blade patterns in reactors	SL4.2 To explore the principles and practices of aeration systems in bioreactors & To understand the role of agitation systems and the impact of different agitator blade patterns in bioreactors.
	SO4.5 Interpretate Power No., Design Requirements of different parts of bioreactors		CI4.5 Power No., Design Requirements of different parts of bioreactors	
	SO4.6 Explain Materials of construction of Bioreactors & Numerical Problem on empirical formula		CI4.6 Materials of construction of Bioreactors & Numerical problem on empirical formula	SL4.3 To explore the design requirements and materials of construction for bioreactors.

Suggested Sessional	SW4.1 Assignments	Derive the mathematical expression for Damkohler Number and its numerical
Work (SW): anyone	SW4.2 Mini Project	Explain Materials of construction of Bioreactors & Numerical Problem on empirical formula
SW4.3 Other		Explain & Analyze the Aeration system, Agitation System & Agitator blade patterns
	Activities (Specify)	

This course syllabus illustrates the expected learning achievements, both at the course and session	d session Approximate Hours						
levels, which students are anticipated to accomplish through various modes of instruction including							
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning		Item	Cl	LI	SW	SL	Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),		Approx. Hrs	06	04	01	04	15
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-52BT305-A.5. Comprehensive understanding the animal and plant cells cultivation techniques and applications	SO5.1 Elucidate the Animal, plant cell cultivation techniques	LI5.1 To learn and practice the techniques of animal cell culture, including sourcing cells, using cell banks, preparing cell culture media, and setting up bioreactors for animal cell cultivation.	CI5.1 Animal, plant cell cultivation techniques	
	SO5.2 Describe the Sources of cells, cell bank, Techniques of cell culture	LI5.2 To learn and practice the techniques of plant cell culture, including sourcing plant cells, preparing culture media, and using bioreactors for plant cell cultivation.	CI5.2 Sources of cells, cell bank, Techniques of cell culture	SL5.1 To understand the sources of cells for animal and plant cell culture and the role of cell banks in maintaining cell lines.
	SO5.3 Explain in detail the Substrate on which cells grow in Laboratory		CI5.3 Substrate on which cells grow in Laboratory	SL5.2 To learn the fundamental techniques of cell culture and understand the substrates used for growing cells in the laboratory.
	SO5.4 Describe Media handling Equipment, Cell culture media		CI5.4 Media handling Equipment, Cell culture media	SL5.3 To explore the equipment used for media handling and preparation and to understand the composition and preparation of cell culture media.
	SO5.5 Explain the process of Preparation of material		CI5.5 Preparation of material	
	SO5.6 Define Types of animal cell		CI5.6 Types of animal cell culture	SL5.4

culture bioreactors & products from plant cell culture	plant cell culture	To learn about the different types of bioreactors used for animal cell culture and the products derived from plant cell culture.
--	--------------------	--

Suggested Sessional	SW5.1 Assignments	Define Types of animal cell culture bioreactors
Work (SW): anyone	SW5.2 Mini Project	Describe the Sources of cells, cell bank, Techniques of animal & plant cell culture
	SW5.3 Other	Explain the process of Preparation of material in animal & plant cell culture.
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Design and Operation of Bior	reactor		Course Code: 52BT305-A					
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)			
CO1-52BT305-A.1. Recall the basic fundamentals of	6	4	3	1	14			
Design and Operation of Bioreactor								
CO1-52BT305-A.2. Describe the fluid flow dynamics and	6	4	2	1	13			
calculate and apply heat & mass transfer coefficient.								
CO1-52BT305-A.3. Comprehensive understanding the	7	4	2	1	14			
advanced bioreactor designs and their applications.								
CO4-52BT305-A.4. Comprehensive understanding the	6	4	3	1	14			
bioreactor designs and operation principles.								
CO5-52BT305-A.5. Comprehensive understanding the	6	4	4	1	15			
animal and plant cells cultivation techniques and								
applications								
Total Hours	31	20	14	05	70			

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Design and Operation of Bioreactor

Course Code: 52BT305-A

	Marks Distribution					
Α	An	Ε	С	Total Marks		
2	1	1	1	5		
2	4	5	1	12		
_	A 2 2					

²³³

transfer coefficient.					
CO1-52BT305-A.3. Comprehensive understanding the advanced bioreactor designs and their	3	5	5	1	14
applications.					
CO4-52BT305-A.4. Comprehensive understanding the bioreactor designs and operation	2	3	5	1	11
principles.					
CO5-52BT305-A.5. Comprehensive understanding the animal and plant cells cultivation	2	4	1	1	10
techniques and applications					
Total Marks	11	17	17	05	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Crueger and Crueger, 'Biotechnology' Panima Publishing Corporation, New Delhi.
2	Patel A.H., 'Industrial Microbiology', MacMillian India Ltd.
3	Geankoplis C.J., Transport Processes and Unit Operations. Prentice Hall India.2002.
4	McCabe W.L. & Smith J.C., Unit Operations In Chemical Engineering.5th Edition.Mcgrawhill.1993.
5	Incropera F.P., Fundamentals of Heat And Mass Transfer. John Wiley. 1998.

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to Beverage producing plants & Distillery/Fermenter units
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: M.Sc. Biotechnology **Semester:** III Semester **Course Title:** Design and Operation of Bioreactor **Course Code:** 52BT305-A

CO/PO/PSO Mapping										
Course Outcome (COs)		Program Outcomes (POs)					Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3		
CO1-52BT305-A.1. Recall the basic fundamentals of Design and Operation of Bioreactor	1	-	-	1	2	2	2	1		
CO1-52BT305-A.2. Describe the fluid flow dynamics and calculate and apply heat & mass transfer coefficient.	-	1	1	-	-	1	1	2		
CO1-52BT305-A.3. Comprehensive understanding the advanced bioreactor designs and their applications.	1	1	1	1	-	1	1	1		
CO4-52BT305-A.4. Comprehensive understanding the bioreactor designs and operation principles.	1	1	1	-	2	1	1	3		
CO5-52BT305-A.5. Comprehensive understanding the animal and plant cells cultivation techniques and applications	1	1	1	-	-	1	3	2		

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course	Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5	CO1-52BT305-A.1. Recall the basic	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5,1.6	1SL-1,2,3
	fundamentals of Design and Operation of	SO1.3 SO1.4	LI 2		
PSO 1,2, 3	Bioreactor	SO1.5 SO1.6			
PO 1,2,3,4,5	CO1-52BT305-A.2. Describe the fluid flow	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2
	dynamics and calculate and apply heat &	SO2.3 SO2.4	LI 2	2.4,2.5, 2.6	
PSO 1,2, 3	mass transfer coefficient.	SO2.5 SO2.6			
PO 1,2,3,4,5	CO1-52BT305-A.3. Comprehensive	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4, 3.5,	3SL-1,2
FO 1,2,5,4,5	understanding the advanced bioreactor	SO3.3 SO3.4	LI 2	3.6	
PSO 1,2, 3	designs and their applications.	SO3.5 SO3.6			
DO 1 2 2 4 5	CO4-52BT305-A.4. Comprehensive	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4, 4.5,	4SL-1,2,3
PO 1,2,3,4,5	understanding the bioreactor designs and	SO4.3 SO4.4	LI 2	4.6	
PSO 1,2, 3	operation principles.	SO4.5 SO4.6			
PO 1,2,3,4,5	CO5-52BT305-A.5. Comprehensive	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,	5SL-1,2,3,4
101,2,3,4,3	understanding the animal and plant cells	SO5.3 SO5.4	LI 2	5.6	· · ·
PSO 1,2, 3	cultivation techniques and applications	SO5.5 SO5.6			

Curriculum Developer Team: Prof. Kamlesh Choure

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Masters of Science (M.Sc.)- Biotechnology						
Semester	III						
Course Code:	52BT305-B						
Course title:	Pharmaceutical Biotechnology Curriculum Developer: Mrs. Keerti Samdariya, Assistant Professor						
Pre-requisite:	Students should have basic knowledge of pharmaceutical biotechnology						
Rationale:	The paper on Pharmaceutical Biotechnology in an MSc Biotechnology program explores the role of biotechnology in drug discovery, development, and production, including the use of recombinant DNA technology and biopharmaceutical manufacturing. Students need to develop practical skills in laboratory techniques and methods used in producing, purifying, and analyzing pharmaceutical biotechnology products.						
Course Outcomes (COs):	CO1-52BT305-B.1 - Understand the role of biotechnology in drug discovery, development, and production, including recombinant DNA technology and biopharmaceutical manufacturing.						
	CO2-52BT305-B.2 - Extend practical skills in laboratory techniques and methods used in producing, purifying, and analyzing pharmaceutical biotechnology products.						
	CO3-52BT305-B.3- Evaluate knowledge of regulatory frameworks and quality control practices specific to pharmaceutical biotechnology.						
	CO4-52BT305-B.4 - Understand the application of biotechnology in the pharmaceutical industry. Apply regulatory aspects, ethical considerations, and safety requirements associated with pharmaceutical biotechnology.						
	CO5-52BT305-B.5- Apply the knowledge of GLP and GMP in the Pharmaceutical laboratory.						

Scheme of Studies:

					Scheme of studies (Hours/Week)						
Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L: T: P=2:0:1)			
Professional Elective Course (PE)	15781305-R	Pharmaceutical Biotechnology	3	2	1	3	9	2+1=3			

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others); LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies); SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)						
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PE	52BT305-B	Pharmaceutical Biotechnology	15	20	10	5	50	50	100

Scheme of Assessment: Practical

			Scheme of Assessment (Marks)								
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)		
PE	52BT355-B	Pharmaceutical Biotechnology	35	5	5	5	50	50	50		

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course	Approximate Hours						
and session levels, which students are anticipated to accomplish through various		-	<u></u>	* *	GTTT		
modes of instruction including Classroom Instruction (CI), Laboratory Instruction		Item	Cl	LI	SW	SL	Total
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses,		Approx. Hrs	06	04	01	01	12
students should showcase their mastery of Session Outcomes (SOs), culminating in							
the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1 - 52BT305-B.1-	SO1.1	LI1.1	Unit 1	SL1.1
Understand the role of	A brief outline of the	Demonstration of antibiotic	CI1.1	Explore the various antibiotics
biotechnology in drug discovery,	discovery of antibiotics.	action with bacterial strain.	A brief outline of the	_
development,			discovery of antibiotics.	
and production, including				
recombinant DNA technology and				
biopharmaceutical manufacturing.				
	SO1.2	LI1.2	CI1.2	
	Define and describe synthetic antimicrobial agents.	Diagrammatic presentation of types of antibiotics.	Antibiotics and synthetic antimicrobial agents.	

SO1.3		CI1.3	
Differentiate antifunga	L	Comparative study of	
antibiotics, antitumor		antifungal antibiotics,	
substances		antitumor substances	
S01.4		CI1.4	
Classification and		Classification and	
Explanation of Peptide		Explanation Peptide	
antibiotics.		antibiotics.	
SO1.5		CI1.5	
Classification, Explanat	on &	Classification, Explanation &	
mechanisms of antib	otics,	mechanisms of antibiotics,	
antifungal, anti	umor	antifungal, antitumor	
substances		substances	
SO1.6		CI1.6	
Classification and mecha	nism	Classification and mechanism	
of action of Chloramphe	nicol,	of action of Chloramphenicol,	
Sulphonamides, and		Sulphonamides, and	
Quinolinone antimicrobi	1	Quinolinone antimicrobial	
agents		agents	

Suggested Sessional	SW3.1 Assignments	Describe in detail about Antibiotics and their classification.
Work (SW): anyone	SW3.2 Mini Project	Describe the role of antibiotics in medical system
	SW3.3 Other	Prepare a diagrammatic poster for different antiviral, antibacterial and antifungal drug and their role in health.
	Activities (Specify)	

This course syllabus illustrates the expected learning achievements, both at the course	Approximate Hours						
and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction		Item	Cl	LI	SW	SL	Total
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses,		Approx. Hrs	06	04	01	02	13
students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1 - 52BT305-B.2-	SO2.1	LI2.1	Unit 2	SL2.1
Extend practical skills in laboratory techniques and methods for producing, purifying, and analyzing pharmaceutical biotechnology products	To explain the Mechanism of action of antibiotics inhibitors of cell wall, nucleic acid, & protein synthesis.	To perform the Mode of action of antibiotic & non-antibiotic antimicrobial agents.	CI1.1 Mechanism of action of antibiotics inhibitors of cell wall, nucleic acid, protein synthesis.	Read the Mode of action of antibiotics.
	SO2.2 To describe Molecular principles of drug targeting.		CI2.2 Molecular principles of drug targeting.	SL2.2 Learn Molecular principles of drug targeting.
	SO2.3 To describe the Mode of action of bacterial killing by quinolinones.		CI2.3 Mode of action of bacterial killing by quinolinones and Bacterial resistance to quionolinones.	
	SO2.4 To explain the cellular permeability barrier.		CI2.4 How the antimicrobial agents reach the targets cellular permeability barrier.	
	SO2.5 To elaborate on drug diffusion		CI2.5 How the antimicrobial agents reach the targets by drug diffusion	
	SO2.6 To explain the Drug delivery system in gene therapy.		CI2.6 How the antimicrobial agents used in Drug delivery system in gene therapy.	

Suggested Sessional	SW2.1 Assignments	Describe in detail Mechanism of action of antibiotics .
Work (SW): anyone	SW2.2 Mini Project	Various Mode of action of Bacterial resistance to quionolinones
	SW2.3 Other Activities (Specify)	How the antimicrobial agents reach the targets (cellular permeability barrier, cellular transport)

This course syllabus illustrates the expected learning achievements, both at the course	Approximate Hours						
and session levels, which students are anticipated to accomplish through various		Thoma	Cl	тт	CW	CI	Tatal
modes of instruction including Classroom Instruction (CI), Laboratory Instruction		Item	CI	LI	SW	SL	Total
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses,		Approx. Hrs	06	04	01	03	14
students should showcase their mastery of Session Outcomes (SOs), culminating in							
the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO3-52BT305-B.3- Evaluate knowledge of	SO3.1 Explain the Microbial	LI3.1 Demonstrate the sterilization process.	Unit 3 CI3.1	SL3.1 Read the sterilization
regulatory frameworks and quality control practices specific to pharmaceutical biotechnology.	contamination.		Microbial contamination and spoilage of pharmaceutical products and their sterilization.	process in industrial production of drugs.
	SO3.2 Define and differentiate sterile injectibles, and non-injectibles.	LI3.2 Perform the production of microbial culture.	CI3.2 Define and differentiate sterile injectibles, and	
			non-injectibles.	
	SO3.3 Describe Manufacturing procedures and in process control of pharmaceuticals		CI3.3 Manufacturing procedures and sterilization process used in the pharmaceutical industry.	
	SO3.4 pharmaceuticals produced by microbial fermentations (streptokinase, streptodornase).		CI3.4 pharmaceuticals produced by microbial fermentations (streptokinase, & streptodornase)	SL3.2 pharmaceuticals produced by microbial fermentations (streptokinase, streptodornase).
	SO3.5 Explain New vaccine technology: DNA vaccines.		CI3.5 New vaccine technology: DNA vaccines,	SL3.3 Discuss various types of vaccines involved in health system
	SO3.6 Illustrates new vaccine technology: synthetic peptide vaccines, multivalent subunit.		CI3.6 New vaccine technology: synthetic peptide vaccines, multivalent.	

Suggested Sessional	SW3.1 Assignments	Describe in detail on New vaccine technology, DNA vaccines, synthetic peptide vaccines.
Work (SW): anyone	SW3.2 Mini Project	Describe the role of different vaccines.
	SW3.3 other activity	Prepare one article on different types of diseases and their vaccines.

This course syllabus illustrates the exp	oth at the course	Approximate H	Iours							
-	and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction						II	SW	SL	Total
modes of instruction including Class	room Instruction (CI), Laborat	tory Instruction			Item	CI				
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses,					Approx. Hrs	06	04	01	02	13
students should showcase their master	ry of Session Outcomes (SOs),	culminating in								
the overall achievement of Course Out	he overall achievement of Course Outcomes (COs) upon the course's conclusion.									
Course outcome (CO)	Course outcome (CO) Session Outcomes (SOs) Laboratory Inst		struction (LI)	Classroo	m Instruction (C	(I)	5	Self-Le	arnir	ig (SL)

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO4-52BT305-B.4-	SO4.1 Describe the	LI4.1 To analyze the	Unit-4	SL4.1 Learn about the
Understand the application of	classification of	Immobilization process.	CI4.1 Explain classification of	Government regulatory
biotechnology in the pharmaceutical	pharmacopeia.		pharmacopeia.	practices and policies.
industry. Apply regulatory aspects,				
ethical considerations, and safety				
requirements associated with				
1				
pharmaceutical biotechnology				
	SO4.2 Explain the IP,		CI4.2 IP, Government regulatory	
	Government regulatory		practices and policies, FDA	
	practices and policies,		perspective	
	and FDA perspective.			
	SO4.3 Describe BP, USP,		CI4.3 BP, USP, Government	
	Government regulatory		regulatory practices and policies,	
	practices and policies,		FDA perspective	
	FDA perspective			
	SO4.4 Evaluate		CI4.4 Reimbursement of drugs and	
	reimbursement of drugs and		biologicals, legislative perspective.	
	biologicals.		Rational drug design.	
	SO4.5 Define and describe	LI4.2 To develop a model of	CI4.5 Immobilization procedures for	SL4.2 Learn about
	Immobilization procedures	the application of microbial	pharmaceutical applications	various types of
	for pharmaceutical	enzymes in pharmaceuticals.	(liposomes), Macromolecular,	Immobilization
	applications.		cellular and synthetic drug carriers.	procedures for

		pharmaceutical applications.
SO4.6 Biosensors in pharmaceuticals. Application of microbial enzymes in pharmaceuticals	CI4.6 Biosensors in pharmaceuticals. Application of microbial enzymes in pharmaceuticals	

Suggested Sessional Work	SW4.1 Assignments	Explain Biosensors and their application in the pharmaceutical industry.
(SW): anyone	SW4.2 Mini Project	Describe the various types of Pharmacopeias.
	SW4.3 Other Activities (Specify)	Prepare one article on the IP, BP, USP, Government regulatory practices and policies, FDA perspective.

This course syllabus illustrates the expected learning achievements, both at the course	Approximate Hours						
and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction		Item	Cl	LI	SW	SL	Total
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses,		Approx. Hrs	06	02	01	03	12
students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5-52BT305-B.5:			Unit-5	SL5.1 Find out the
Apply the knowledge of Quality	SO5.1 Explain Good	LI5.1 Use of Good Laboratory	CI5.1	role of Good
Assurance and Validation, GLP, and	Manufacturing Practices	Practices (GLP)	Good Manufacturing Practices	Manufacturing
GMP in the Pharmaceutical	(GMP and GLP) in the		(GMP) and Good Laboratory	Practices (GMP) and
laboratory.	pharmaceutical industry.		Practices (GLP) in the	Good Laboratory
			pharmaceutical industry.	Practices (GLP) in
				the pharmaceutical
				industry.
	SO5.2 Define quality		. CI5.2 Define quality control,	
	control, quality assurance,		quality assurance, and quality	
	and quality management in		management in pharmaceuticals.	
	pharmaceuticals.			
	SO5.3 Elaborate ISO,		CI5.3 ISO, WHO and US	SL5.2 ISO, WHO and
	WHO, and US certification		certification	US certification

SO5.4 Evaluate the Sterilization control and sterility testing.	CI5.4 Sterilization control and sterility testing (heat sterilization, D value, z value, survival curve, Radiation, gaseous and filter sterilization)	
SO5.5 Elaborate Chemical and biological indicators	CI5.5 Chemical and biological indicators.	SL5.3 Elaborate Chemical and biological indicators
SO5.6 Design and layout of sterile product manufacturing unit. (Designing of Microbiology laboratory), Safety in the microbiology laboratory.	CI5.6 Design and layout of sterile product manufacturing unit. (Designing of Microbiology laboratory), Safety in the microbiology laboratory.	

Suggested Sessional	SW5.1 Assignments	Explain Sterilization control and sterility testing.	
Work (SW): anyone	SW5.2 Mini Project	5.2 Mini Project Describe the Design and layout of the sterile product manufacturing unit.	
	SW5.3 Other	Prepare one article on ISO, WHO, and US certification.	
	Activities (Specify)		

Course duration (in hours) to attain Course Outcomes:

Course Title: Pharmaceutical Biotechnology			Course Code: 52BT305-B			
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)	
CO1-52BT305-B.1 - Understand the role of biotechnology in drug discovery, development, and production, including recombinant DNA technology and biopharmaceutical manufacturing.	6	4	1	1	12	
CO2-52BT305-B.2 - Extend practical skills in laboratory techniques and methods used in producing, purifying, and analyzing pharmaceutical biotechnology products.	6	4	2	1	13	
CO3-52BT305-B.3 - Evaluate knowledge of regulatory frameworks and quality control practices specific to pharmaceutical biotechnology.	6	4	3	1	14	

CO4-52BT305-B.4- Understand the application of	6	4	2	1	13
biotechnology in the pharmaceutical industry.					
Apply regulatory aspects, ethical considerations, and safety requirements associated with pharmaceutical biotechnology.					
CO5-52BT305-B.5 - Apply the knowledge of GLP and GMP in the Pharmaceutical laboratory.	6	2	3	1	12
Total Hours	30	18	11	05	64

End-semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Pharmaceutical Biotechnology

Course Code: 52BT305-B

Course Outcomes		Marks Distribution			
		An	Ε	С	Total Marks
CO1-52BT305-B.1 - Understand the role of biotechnology in drug discovery, development, and production, including recombinant DNA technology and biopharmaceutical manufacturing.		1	1	1	5
CO2-52BT305-B.2 - Extend practical skills in laboratory techniques and methods used in producing, purifying, and analyzing pharmaceutical biotechnology products.	2	4	2	2	10
CO3-52BT305-B.3 - Evaluate knowledge of regulatory frameworks and quality control practices specific to pharmaceutical biotechnology.	3	5	5	2	15
CO4-52BT305-B.4 - Understand the application of biotechnology in the pharmaceutical industry. Apply regulatory aspects, ethical considerations, and safety requirements associated with pharmaceutical biotechnology.		3	3	2	10
CO5-52BT305-B.5 - Apply the knowledge of GLP and GMP in the Pharmaceutical laboratory.	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No	. Title/Author/Publisher details
1	Pharmaceutical Microbiology – Edt. By W.B.Hugo & A.D.Russell Sixth edition. Blackwell scientific Publications.
2	Analytical Microbiology – Edt by Frederick Kavanagh Volume I & II. Academic Press New York.

3	Quinolinone antimicrobial agents – Edt. by David C. Hooper, John S.Wolfson .ASM Washington DC.
4	Pharmaceutical Microbiology – Edt. By W.B.Hugo & A.D.Russell Sixth edition. Blackwell scientific Publications.
5	Analytical Microbiology – Edt by Frederick Kavanagh Volume I & II. Academic Press New York.

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: M. Sc. Biotechnology Semester: III Semester Course Title: Pharmaceutical Biotechnology Course Code: 52BT305-B

CC)/PO/PSO	Mapping							
Course Outcome (Cos)		Program Outcomes (POs)				Program Specific Outcome (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
CO1-52BT305-B.1 - Understand the role of biotechnology in drug discovery, development, and production, including recombinant DNA technology and biopharmaceutical manufacturing.	1	2	2	3	1	2	2	1	
CO2-52BT305-B.2 - Extend practical skills in laboratory techniques and methods used in producing, purifying, and analyzing pharmaceutical biotechnology products.	1	2	3	2	1	1	1	2	
CO3-52BT305-B.3 - Evaluate knowledge of regulatory frameworks and quality control practices specific to pharmaceutical biotechnology.	1	2	3	2	1	1	1	1	
CO4-52BT305-B.4 - Understand the application of biotechnology in the pharmaceutical industry. Apply regulatory aspects, ethical considerations, and safety requirements associated with pharmaceutical biotechnology.	-	1	1	-	2	1	1	3	
CO5-52BT305-B.5 - Apply the knowledge of GLP and GMP in the Pharmaceutical laboratory.	1	1	1	-	-	1	3	2	

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5	CO1-52BT305-B.1 - Understand the role of biotechnology in drug discovery,	SO1.1 SO1.2 SO1.3, SO1.4,	LI 1 LI 2	1.1,1.2,1.3,1.4,1.5,1.6	1SL-1
PSO 1,2,3	development, and production, including recombinant DNA technology and biopharmaceutical manufacturing.				
PO 1,2,3,4,5	CO2-52BT305-B.2 - Extend practical skills in laboratory techniques and methods used	SO2.1 SO2.2 SO2.3 SO2.4	LI 1 LI 2	2.1,2.2,2.3,2.4,2.5,2.6	2SL-1,2
PSO 1,2,3	in producing, purifying, and analyzing pharmaceutical biotechnology products.	SO2.5, SO2.6			
PO 1,2,3,4,5	CO3-52BT305-B.3 - Evaluate knowledge of regulatory frameworks and quality control	SO3.1 SO3.2 SO3.3 SO3.4	LI 1 LI 2	3.1,3.2,3.3,3.4,3.5,3.6	3SL-1,2,3
PSO 1,2,3	practices specific to pharmaceutical biotechnology.	SO3.5, SO3.6			
PO 1,2,3,4,5	CO4-52BT305-B.4- Understand the	SO4.1 SO4.2 SO4.3 SO4.4	LI 1 LI 2	4.1,4.2,4.3,4.4,4.5,4.6	4SL-1,2
PSO 1,2,3	application of biotechnology in the pharmaceutical industry.	SO4.5, SO4.4 SO4.5, SO4.6			
	Apply regulatory aspects, ethical considerations, and safety requirements associated with pharmaceutical biotechnology.				
PO 1,2,3,4,5	CO5-52BT305-B.5 - Apply the knowledge of GLP and GMP in the Pharmaceutical	SO5.1 SO5.2 SO5.3 SO5.4	LI 1	5.1,5.2,5.3,5.4,5.5,5.6	58L-1,2,3
PSO 1,2,3	laboratory.	SO5.5, SO5.6			

Curriculum Developer Team:

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	M.Sc. Biotech	
Semester	Semester III	
Course Code:	52BT305-C	
Course title:	Biomolecular Modelling and Drug Designing	Curriculum Developer: Mr. Piyush Kant Rai, Assistant Professor
Pre-requisite:	Students must have knowledge of Molecular m	odels and their structures which is important in drug designing.
Rationale:	structure modeling and in analyzing microbia	am explores the critical role of specialized mechanisms of protein 2D and 3D al evolution and diversity. It delves into the use of tools for understanding ore about how these data are generated and what biological mystery can be
Course Outcomes (COs):	 CO2-52BT305-C.2: To introduce the fundam energy minimization techniques. CO3-52BT305-C.3: Comprehensive understant for conformational analysis CO4-52BT305-C.4: Understand the principles design of ligands for known macromolecular identification 	ading of Drug Targets and Drug Discovery Process ental concepts of molecular modeling, molecular structure, internal energy, and ding of molecular dynamics (MD) and Monte Carlo (MC) simulation techniques s of macromolecular modeling and its application in drug design, including the targets, drug-receptor interactions, classical QSAR studies, and pharmacophore ading of finding new drug targets for treating diseases, particularly anti-cancer

Scheme of Studies:

				(Scheme of	studies (Ho	urs/Week)	
Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:1)
Professional Elective Course (PE)	52BT305-C	Biomolecular Modelling and Drug Designing	3	2	1	2	8	2+1=3

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others); Legends: LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional

strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

				Scheme of Assessment (Marks)							
				Progre	essive Asses	sment (PRA)					
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)		Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessmen t (ESA)	Total Marks (PRA+ ESA)		
PE	С	Biomolecular Modelling and Drug Designing	15	20	5	5	45	5	50		

Scheme of Assessment: Practical

					Scł	neme of Assessi	ment (Marks)		
					Progressive As	ssessment (PRA)		
Board of Study	Course Code		Class/Hom e Assignmen t 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+A T)	End Semester Assessmen t (ESA)	Total Marks (PRA+ ESA)
PE	52BT355- C	Biomolecular Modeling & Drug Designing	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish	* *						
through various modes of instruction including Classroom Instruction (CI),		Item	Cl	LI	SW	SL	Total
Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL).		Approx. Hrs	06	04	01	02	13
As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course							
Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT305-C.1: Comprehensive Understanding of Drug Targets and Drug Discovery Process				SL1.1 To self-learn and understand the classification and importance of various drug targets, including DNA, RNA, post-translational processing enzymes, metabolic enzymes involved in nucleic acid synthesis, G- protein coupled receptors, small molecule receptors, and transporters.
	SO1.2 Describe the major characteristics and modes of action of various drugs		CI1.2 Characteristics and Mode of Action of Drugs	
	SO1.3 Explore the history of drug discovery and the various approaches used		CI1.3 Drug Discovery and History	
	SO1.4 Understand the role of serendipity in drug discovery		CI1.4 Serendipity in Drug Discovery	
	SO1.5 Describe the concept of hit and lead compounds in the drug discovery process		CI1.5 Concept of Hit and Lead in Drug Discovery	SL1.2 To self-learn and understand the drug discovery process, including major characteristics of drugs, their modes of action, the concepts of agonist and antagonist, the history of drug discovery, classical approaches,

		serendipity, and the drug discovery pipeline.
-	LI1.2 To understand the process of drug discovery and development, including classical approaches, serendipity, the concept of hit and lead, and the drug discovery pipeline.	

Suggested Sessional	SW1.1 Assignments	Describe the major characteristics and modes of action of various drugs
Work (SW): anyone	SW1.2 Mini Project	Describe the concept of hit and lead compounds in the drug discovery process
	SW1.3 Other Activities (Specify)	Understand the steps involved in the drug discovery pipeline

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	02	13

Course	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction	Self-Learning (SL)
Outcome			(CI)	
(CO)				
CO2-52BT305-C.2:	SO2.1 Introduce the fundamental		CI2.1 Introduction to	
To introduce the	concepts of molecular modeling		Molecular Modeling	
fundamental	and its importance in			
concepts of	computational chemistry and			
molecular modeling,	drug discovery			
molecular structure,	SO2.2 Understand the components	LI2.1 To introduce students to	CI2.2 Molecular Structure	SL2.1 To self-learn the
internal energy, and	of molecular structure and	molecular modeling and	and Internal Energy	fundamental concepts of molecular

energy minimization	internal energy, and their	visualization techniques,		modeling, molecular structure, and
techniques.	e	focusing on understanding		internal energy components.
	modeling	molecular structure and		
		internal energy components.		
	SO2.3 How to use molecular		CI2.3 Application of	
	graphics tools for visualizing		Molecular Graphics	
	and manipulating molecular			
	structures			
	SO2.4 Understand the concept of	LI2.2 To perform energy	CI2.4 Energy Minimization	SL2.2 To self-learn the principles
	energy minimization and its		of Small Molecules	of energy minimization, the
	application in finding stable	0		empirical representation of
	molecular conformations	mechanics methods and		molecular energies, and the use of
		understand the empirical		force fields and molecular
		representation of molecular		mechanics methods
		energies and force fields		
	SO2.5 Explain how molecular		CI2.5 Empirical	
	energies are empirically		Representation of	
	represented and the role of force		Molecular Energies and	
	fields in molecular mechanics		Use of Force Fields	
	SO2.6 Understand the concepts of		CI2.6 Local and Global	
	local and global energy minima		Energy Minima	
	and their significance in			
	molecular modeling			

Suggested Sessional	SW2.1 Assignments	How to use molecular graphics tools for visualizing and manipulating molecular structures
Work (SW): anyone	SW2.2 Mini Project	Explain how molecular energies are empirically represented and the role of force fields in
		molecular mechanics
	SW2.3 Other Activities	Understand the components of molecular structure and internal energy, and their significance in
	(Specify)	molecular modeling

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	02	13

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO3-52BT305-C.3:		LI3.1 To perform a molecular		SL3.1 To independently
comprehensive	principles and	dynamics (MD) simulation to		explore and understand the
understanding of	applications of molecular	analyze the conformational	Simulation	use of molecular dynamics
molecular dynamics	dynamics (MD)	changes of a small molecule		(MD) simulations for
(MD) and Monte	simulations in			conformational analysis of
Carlo (MC)	conformational analysis			molecules.
simulation techniques			CI3.2 Introduction to Monte	
for conformational	principles and	Carlo (MC) simulation to	Carlo (MC) Simulation	explore and understand the
analysis	applications of Monte	explore the conformational		use of Monte Carlo (MC)
	Carlo (MC) simulations	space of a small molecule		simulations and quantum
	in conformational			chemistry methods (ab
	analysis			initio, DFT, semi-empirical)
				for conformational analysis.
	SO3.3 Introduce the		CI3.3 Principles of Ab Initio	
	principles and		Methods	
	applications of ab initio methods in computational			
	chemistry			
	SO3.4 Introduce the		CI3.4 Principles of Density	
	principles and		Functional Theory (DFT)	
	applications of density		Functional Theory (DFT)	
	functional theory (DFT)			
	in computational			
	chemistry			
	SO3.5 & SO3.6 Introduce		CI3.5 & CI3.6 Principles of	
	the principles and		Semi-Empirical Methods	
	applications of semi-		Senii-Empiricai Metilous	
	empirical methods in			
	computational chemistry			
	computational chemistry			

Suggested	SW3.1 Assignments	Introduce the principles and applications of Monte Carlo (MC) simulations in conformational analysis
Sessional	SW3.2 Mini Project	Introduce the principles and applications of density functional theory (DFT) in computational chemistry
Work (SW):	SW3.3 Other	Introduce the principles and applications of semi-empirical methods in computational chemistry
anyone	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	02	13

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (CI)	Self-Learning (SL)
		(LI)		
CO4-52BT305-C.4:	SO4.1 Understand the basics		CI4.1 Introduction to	
Understand the	of macromolecular		Macromolecular Modeling	
principles of	modeling and its			
macromolecular	importance in drug design			
modeling and its	SO4.2 Learn to design	LI4.1 To design ligands	CI4.2 Design of Ligands for	SL4.1 To independently
application in drug	ligands that specifically	for known macromolecular	Known Macromolecular	explore the design of
design, including the	interact with known	target sites and analyze	Target Sites	ligands for known
design of ligands for	macromolecular targets	drug-receptor interactions		macromolecular target sites
known macromolecular	C C	using computational tools		and analyze drug-receptor
targets, drug-receptor				interactions using
interactions, classical				computational tools
QSAR studies, and	SO4.3 Understand the		CI4.3 Drug-Receptor	
pharmacophore	mechanisms of drug-		Interactions	
identification	receptor interactions and			
	their implications for drug			
	efficacy			
		LI4.2 To perform QSAR	CI4.4 Classical QSAR	SL4.2 To independently
		studies and identify	-	explore classical QSAR
		pharmacophores for novel		studies and pharmacophore
	3D modeling and drug			identification techniques for
	design			novel drug design
	SO4.5 Learn to use 2D and		CI4.5 2D and 3D Database	
	3D databases for drug		Searching	
	JD Ualabases for ulug		Searching	

design and discovery		
SO4.6 Identify	CI4.6 Pharmacophore	
pharmacophores and use	Identification and Novel	
them for designing novel	Drug Design	
drugs		

Suggested	SW4.1 Assignments	Explore classical QSAR studies and understand their impact on 3D modeling and drug design
Sessional Work	SW4.2 Mini Project	Learn to use 2D and 3D databases for drug design and discovery
(SW): anyone	SW4.3 Other Activities	Understand the mechanisms of drug-receptor interactions and their implications for drug efficacy
	(Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	02	13

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5-52BT305-C.5: Comprehensive understanding of finding new drug targets for treating diseases, particularly anti-cancer drugs, and the application of structure-based drug	SO5.1 Understand the basics of discovering new drug targets and focus on novel targets for anti-cancer drugs	LI5.1 To explore the process of discovering new drug targets, particularly for anticancer drugs, and to apply structure-based drug design principles to these targets	CI5.1 Introduction to Drug Target Discovery and Anti- Cancer Targets	SL5.1 To independently explore the process of discovering new drug targets, especially for anti-cancer drugs, and apply structure-based drug design techniques
design	SO5.2 Explore the structure-based drug design and its application to different types of drug targets		CI5.2 Structure-Based Drug Design for All Classes of Targets	
	SO5.3 Understandtheconceptsofpharmacogenomicsandpharmacogeneticsand	LI5.2 To investigate the concepts of pharmacogenomics and pharmacokinetics and	CI5.3 Introduction to Pharmacogenomics vs. Pharmacogenetics	SL5.2 To independently learn about pharmacogenomics, pharmacogenetics,

their implications for drug development	their applications in personalized medicine.		pharmacokinetics, pharmacodynamics, and the role of personalized medicine, including its ethical considerations
SO5.4 Explore the principles of pharmacokinetics and pharmacodynamics and their role in drug development		CI5.4 Pharmacokinetics and Pharmacodynamics	
SO5.5 Understand the concept of personalized medicine and its impact on drug development and patient care		CI5.5 Personalized Medicine	
SO5.6 Explore the ethical issues related to pharmacogenomics and personalized medicine		CI5.6 Ethical Issues in Pharmacogenomics	

Suggested	SW5.1 Assignments	Explore the structure-based drug design and its application to different types of drug targets
Sessional	SW5.2 Mini Project	Understand the concept of personalized medicine and its impact on drug development and patient
Work (SW):	_	care
anyone	SW5.3 Other Activities	Explore the ethical issues related to pharmacogenomics and personalized medicine
	(Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Biomolecular modeling and Drug designing

Course Code: 52BT305-C

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-52BT305-C.1: Comprehensive	06	04	02	1	13
Understanding of Drug Targets and Drug					
Discovery Process					
CO2-52BT305-C.2: To introduce the fundamental	06	04	02	1	13
concepts of molecular modeling, molecular					
structure, internal energy, and energy minimization					
techniques.					
CO3-52BT305-C.3: comprehensive understanding	06	04	02	1	13
of molecular dynamics (MD) and Monte Carlo					
(MC) simulation techniques for conformational					
analysis					
CO4-52BT305-C.4: Understand the principles of	06	04	02	1	13
macromolecular modeling and its application in					
drug design, including the design of ligands for					
known macromolecular targets, drug-receptor interactions, classical QSAR studies, and					
pharmacophore identification					
CO5-52BT305-C.5: Comprehensive understanding	06	04	02	1	13
of finding new drug targets for treating diseases,	00	04	02	1	15
particularly anti-cancer drugs, and the application					
of structure-based drug design					
Total Hours	30	20	10	05	65

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Biomolecular modeling and Drug designing

Course Code: 52BT305-C

Course Outcomes	Ι	n			
	Α	An	E	C	Total Marks
CO1-52BT305-C.1: Comprehensive Understanding of Drug Targets and Drug	02	03	04	1	10
Discovery Process					
CO2-52BT305-C.2: To introduce the fundamental concepts of molecular modeling,	02	05	02	1	10
molecular structure, internal energy, and energy minimization techniques.					
CO3-52BT305-C.3: comprehensive understanding of molecular dynamics (MD) and	04	04	01	1	10
Monte Carlo (MC) simulation techniques for conformational analysis					
CO4-52BT305-C.4: Understand the principles of macromolecular modeling and its	03	04	02	1	10
application in drug design, including the design of ligands for known macromolecular					
targets, drug-receptor interactions, classical QSAR studies, and pharmacophore					
identification					
CO5-52BT305-C.5: Comprehensive understanding of finding new drug targets for	04	03	02	1	10
treating diseases, particularly anti-cancer drugs, and the application of structure-based					
drug design					
Total Marks	15	19	11	05	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details							
1	N. Clauden Cohen-Guide book on Molecular Modelling in Drug Design 2011							
2	Paul.S Charifson –Practical application of computer Aided Drug Design							
3	Molecular Modeling in Drug Design Rebecca Wade and Outi Salo-Ahen MDPI 2019							

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to bioinformatics lab
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: M. Sc. Biotechnology Semester: III Sem Course Title: Biomolecular modeling and Drug designing Course Code: 52BT305-C

Course Outcome (Cos)	Program Specific Outcomes (PSOs)							
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1-52BT305-C.1: Comprehensive Understanding of Drug	1	2	2	3	1	-		
Targets and Drug Discovery Process							-	-
CO2-52BT305-C.2: To introduce the fundamental concepts of	1	2	3	2	1	-		
molecular modeling, molecular structure, internal energy, and							-	-
energy minimization techniques.								
CO3-52BT305-C.3: comprehensive understanding of	1	2	3	2	1	-	1	
molecular dynamics (MD) and Monte Carlo (MC) simulation								1
techniques for conformational analysis								
CO4-52BT305-C.4: Understand the principles of	1	2	3	2	1	1	1	
macromolecular modeling and its application in drug design,								
including the design of ligands for known macromolecular								1
targets, drug-receptor interactions, classical QSAR studies, and								
pharmacophore identification								
CO5-52BT305-C.5: Comprehensive understanding of finding	1	2	2	3	1	-	-	
new drug targets for treating diseases, particularly anti-cancer								-
drugs, and the application of structure-based drug design								
Total	5	10	13	12	5			

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs	COs	SOs No.	Laboratory	Classroom Instruction (CI)	Self-Learning (SL)
No.			Instruction (LI)		
PO 1, 2, 3, 4, 5 PSO 1, 2, 3	CO1-52BT305-C.1: Comprehensive Understanding of Drug Targets and Drug Discovery Process	SO1.1, SO1.2, SO1.3, SO1.4, SO1.5, SO1.6	LI 1 LI 2	CI1.1, CI1.2, CI1.3, CI1.4, CI1.5, CI1.6	1SL- 1, 2
PO 1, 2, 3, 4, 5 PSO 1, 2, 3	CO2-52BT305-C.2: To introduce the fundamental concepts of molecular modeling, molecular structure, internal energy, and energy minimization techniques	SO2.1, SO2.2, SO2.3, SO2.4, SO2.5, SO2.6	LI 1 LI 2	CI2.1, CI2.2, CI2.3, CI2.4, CI2.5, CI2.6	2SL- 1, 2
PO 1, 2, 3, 4, 5 PSO 1, 2, 3	CO3-52BT305-C.3: comprehensive understanding of molecular dynamics (MD) and Monte Carlo (MC) simulation techniques for conformational analysis	SO3.1, SO3.2, SO3.3, SO3.4, SO3.5, SO3.6	LI 1 LI 2	CI3.1, CI3.2, CI3.3, CI3.4, CI3.5, CI3.6	3SL- 1, 2
PO 1, 2, 3, 4, 5 PSO 1, 2, 3	CO4-52BT305-C.4: Understand the principles of macromolecular modeling and its application in drug design, including the design of ligands for known macromolecular targets, drug-receptor interactions, classical QSAR studies, and pharmacophore identification	SO4.1, SO4.2, SO4.3, SO4.4, SO4.5, SO4.6	LI 1 LI 2	CI4.1, CI4.2, CI4.3, CI4.4, CI4.5, CI4.6	4SL- 1, 2
PO 1, 2, 3, 4, 5 PSO 1, 2, 3	CO5-52BT305-C.5: Comprehensive understanding of finding new drug targets for treating diseases, particularly anti-cancer drugs, and the	SO5.1, SO5.2, SO5.3, SO5.4, SO5.5, SO5.6	LI 1 LI 2	CI5.1, CI5.2, CI5.3, CI5.4, CI5.5, CI5.6	5SL- 1, 2

application of structure-based		
drug design		

Curriculum Developer Team:

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Masters of Science in Biotechnology	Masters of Science in Biotechnology (M.Sc. Biotech)							
Semester	III								
Course Code:	52BT306-A								
Course title:	Downstream Processing Curriculum Developer: Er. Arpit Srivastava, Assistant Professor								
Pre-requisite:	Students should have basic knowledge	of fermentation and downstream processing							
Rationale:	manufacturing of pharmaceuticals such and environmental impact. This course	and the purification of biosynthetic products. Downstream processing constitutes a critical step in h as antibiotics, hormones, antibodies and vaccines and enzymes with regards to product purity, cost, e offers the importance of downstream processing in biotechnology and its problems associated with f this course is to impart knowledge and skills on different separation, purification, recovery and							
Course Outcomes (COs):	CO2-52BT306-A.2. To comprehend the CO3-52BT306-A.3. To understand the various methods for protein precipitation CO4-52BT306-A.4. A comprehensive	e key concepts, methods, and stages involved in bioseparation processes and downstream processing. he principles and applications of various separation techniques. he principles and applications of aqueous two-phase extraction, membrane separation techniques and on. e understanding of chromatography principles, techniques, and applications. e principles of crystallization and various drying techniques.							

Scheme of Studies:

Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:1)
ProgramElective (PE)	52BT306-A	Downstream Processing	3	2	1	3	9	2+0+1=3

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits.

 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Progr Class Test 2 (2 best out of 3) 10 marks each (CT)	essive Assessment Seminar one (SA)	(PRA) Class Attendance (AT)	Total Marks (CA+CT+CAT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PE	52BT306- A	Downstream Processing	15	20	10	5	50	50	100

Scheme of Assessment: Practical

					So	cheme of Assessi	nent (Marks)		
					Progressive As	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PE	52BT356-A	Downstream Processing	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session	 ate Hours					
levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL).	Item	Cl	LI	SW	SL	Total
As the course progresses, students should showcase their mastery of Session Outcomes (SOs),	Approx. Hrs	06	04	01	03	14
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT306-A.1. To understand the key concepts, methods, and stages involved in bioseparation processes and downstream processing.	· ·		Unit-1 CI1.1 Introduction to bioseparation processes	SL1.1 Develop a comprehensive understanding of bioseparation processes, including various techniques used for separating biological
	SO1.2 Analyze and evaluate the efficiency of bioseparation processes SO1.3		CI1.2 Analysis of Bioseparations CI1.3	products. SL1.2

Understand the key stages involved in downstream processing and their importance SO1.4		Stages in Downstream Processing CI1.4	Gain a thorough understanding of the stages in downstream processing, and how to ensure process and product quality.
Importance of process and product quality in biomanufacturing		Process and Product Quality in Bioseparation	
SO1.5 Understand different methods of cell disruption and their applications	LI1.1 To perform cell disruption using mechanical, enzymatic, and chemical methods, and to analyze the effectiveness of bioseparation techniques in isolating and purifying the target biomolecule.	CI1.5 Cell Disruption for Product Release	SL1.3 Understand various methods for cell disruption and the stabilization of bioproducts to enhance their quality and shelf-life.
SO1.6 Methods for pretreatment and stabilization of bioproducts to ensure their quality and shelf-life	downstream processing,	CI1.6 Pretreatment and Stabilization of Bioproducts	

Suggested Sessional	SW1.1 Assignments	Understand the key stages involved in downstream processing and their importance
Work (SW): anyone	SW1.2 Mini Project Elaborate the methods for pretreatment and stabilization of bioproducts to ensure t	
		and shelf-life
	SW1.3 Other Activities (Specify)	Importance of process and product quality in biomanufacturing

This course syllabus illustrates the expected learning achievements, both at the course and session levels,	s, Approximate Hours						
which students are anticipated to accomplish through various modes of instruction including Classroom	· · · · · · · · · · · · · · · · · · ·						
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Item	Cl	LI	SW	SL	Total
progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall		Approx. Hrs	06	04	01	03	14
achievement of Course Outcomes (COs) upon the course's conclusion.	_						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-52BT306-A.2. To comprehend the principles and applications of various separation techniques	SO2.1 Understand the basic principles of filtration, including conventional and cross-flow filtration methods		Unit-2 CI2.1 Introduction to Filtration Principles	SL2.1 Gain a comprehensive understanding of filtration principles, including conventional and cross-flow filtration, filter media, and membrane fouling
	SO2.2 Explore different types of filter media and understand the concept of membrane fouling		CI2.2 Filter Media and Membrane Fouling	
	SO2.3 Describe the rotary vacuum filtration equipment and its operation	LI2.1 To understand and apply principles of filtration and sedimentation, including conventional and cross-flow filtration, and to measure the sedimentation coefficient of particles	CI2.3 Rotary Vacuum Filtration	
	SO2.4 Understand the principles of sedimentation and the concept of the sedimentation coefficient		CI2.4 Sedimentation Principles and Sedimentation Coefficient	SL2.2 Understand the principles of sedimentation, the sedimentation coefficient, and the operational principles of tubular and disk centrifuges
	SO2.5 Explore tubular and disk centrifuges and their applications	LI2.2 To perform and analyze centrifugation using tubular and disk centrifuges, and to understand and demonstrate the principles of flocculation	CI2.5 Centrifugation – Tubular and Disk Centrifuges	
	SO2.6 Understand ultracentrifugation for sedimentation at low accelerations and the principles of flocculation		CI2.6 Ultracentrifugation and Flocculation Principles	SL2.3 Develop an understanding of the principles of flocculation and its practical applications

Suggested Sessional	SW2.1 Assignments	Describe the rotary vacuum filtration equipment and its operation	
Work (SW): anyone	SW2.2 Mini Project	Understand ultracentrifugation for sedimentation at low accelerations and the principle	
		flocculation	
	SW2.3 Other Activities (Specify)	Explore different types of filter media and understand the concept of membrane fouling	

This course syllabus illustrates the expected learning achievements, both at the course and session	ion Approximate Hours					
levels, which students are anticipated to accomplish through various modes of instruction including						
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL).	14	Cl	LI	SW	SL	Total
As the course progresses, students should showcase their mastery of Session Outcomes (SOs),	A TT	06	04	01	03	14
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO3.1		Unit-3	SL3.1
Understand the principles of		CI3.1	Understand the principles of
aqueous two-phase		Principles of Aqueous Two-	aqueous two-phase
extraction, including phase		Phase Extraction	extraction, including phase
separation mechanisms and			separation mechanisms and
their applications			applications
	LI3.1	CI3.2	
		Plate Extraction Columns	
phase extraction			
	of phase separation	0.00	
		Centrifugal Extractors	
			SL3.2
			Learn about membrane
		Ultrafiltration	separation techniques,
in membrane separation	-		specifically ultrafiltration and
			dialysis, and their
	using different methods		applications
	SO3.1 Understand the principles of aqueous two-phase extraction, including phase separation mechanisms and	Session Outcomes (SOS)(LI)SO3.1Understand the principles of aqueous two-phase extraction, including phase separation mechanisms and their applicationsLI3.1SO3.2LI3.1To perform aqueous two- phase extraction using a plate extraction columns, their design, and their use in aqueous two- phase extractionLI3.1SO3.2LI3.1To perform aqueous two- phase extraction using a 	Session Outcomes (SOS)(LI)(CI)SO3.1 Understand the principles of aqueous two-phase extraction, including phase separation mechanisms and their applicationsLI3.1 To perform aqueous two- phase extraction using a plate extraction column and a centrifugal extractor, and to understand the principles of phase separationCI3.2 Plate Extraction ColumnsSO3.2 Describe the plate extraction columns, their design, and their use in aqueous two- phase extractionCI3.2 Plate Extraction ColumnsSO3.3 Understand the principles and operation of centrifugal extractors used in aqueous two-phase extractionCI3.3 Centrifugal ExtractorsSO3.4 Explore the principles and applications of ultrafiltration in membrane separationLI3.2 To perform membrane separation using ultrafiltration and dialysis, and to precipitate proteinsCI3.4 Membrane Separation - Ultrafiltration

U	O3.5 Understand the principles nd applications of dialysis n membrane separation	CI3.5 Membrane Separation – Dialysis	
D m pi	O3.6 Describe the various methods of protein recipitation and their pplications	CI3.6 Protein Precipitation Methods	SL3.3 Explore various methods of protein precipitation and understand their applications in protein purification.

Suggested Sessional	SW2.1 Assignments	Understand the principles of aqueous two-phase extraction, including phase separation
Work (SW): anyone		mechanisms and their applications
	SW2.2 Mini Project	Explore the principles and applications of ultrafiltration in membrane separation
	SW2.3 Other Activities (Specify)	Describe the various methods of protein precipitation and their applications

This course syllabus illustrates the expected learning achievements, both at the course and session	Approxim	ate Hours					
levels, which students are anticipated to accomplish through various modes of instruction including							
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL).		Item	Cl	LI	SW	SL	Total
As the course progresses, students should showcase their mastery of Session Outcomes (SOs),		Approx. Hrs	06	04	01	03	14
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-52BT306-A.4.	SO4.1		Unit-4	SL4.1
A comprehensive understanding	Understand the fundamental		CI4.1	Gain a comprehensive
of chromatography principles,	principles of		Introduction to	understanding of the basic
techniques, and applications.	chromatography and its various applications		Chromatography Principles	principles of chromatography and familiarize yourself with the equipment used in chromatographic techniques
	SO4.2		CI4.2	
	Describe the various types of		Chromatography Equipment	
	chromatography equipment		and Detectors	
	and detectors used in			
	analysis			
	SO4.3	LI4.1	CI4.3	SL4.2
	Understand the principles	To perform and analyze	Principles of Reverse Phase	Understand the principles and
	and applications of reverse	chromatographic separations	Chromatography	applications of reverse phase

phase chromatography	using reverse phase and ion- exchange chromatography techniques		and ion-exchange chromatography techniques
SO4.4 Describe the ion-exchange chromatography, including its principles and applications	^ 	CI4.4 Principles of Ion-Exchange Chromatography	
SO4.5 Understand the principles and applications of size exclusion and hydrophobic interaction chromatography	LI4.2 To perform and analyze chromatographic separations using size exclusion and bioaffinity chromatography techniques	CI4.5 Principles of Size Exclusion Chromatography (SEC) and Hydrophobic Interaction Chromatography (HIC)	
SO4.6 Explore the principles of bioaffinity and pseudo-affinity chromatography and their applications		CI4.6 Principles of Bioaffinity and Pseudo-Affinity Chromatography	

Suggested Sessional	SW4.1 Assignments	Describe the various types of chromatography equipment and detectors used in analysis
Work (SW): anyone	SW4.2 Mini Project	Describe the ion-exchange chromatography, including its principles and applications
SW4.3 Other		Explore the principles of bioaffinity and pseudo-affinity chromatography and their applications
	Activities (Specify)	

This course syllabus illustrates the expected learning achievements, both at the	Approximate Hours						
course and session levels, which students are anticipated to accomplish through		.	<u></u>	* *	CITY	CT.	T 1
various modes of instruction including Classroom Instruction (CI), Laboratory		Item	Cl	LI	SW	SL	Total
Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Approx. Hrs	06	04	01	03	14
progresses, students should showcase their mastery of Session Outcomes (SOs),							
culminating in the overall achievement of Course Outcomes (COs) upon the course's							
conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-52BT306-A.5.	SO5.1	LI5.1	Unit-5	SL5.1
To understand the principles of	Understand the fundamental	To observe the process	CI5.1	To understand the
crystallization and various	principles of crystallization	of crystallization and	Introduction to Crystallization	fundamental principles of
drying techniques.	and how they apply to the	understand the factors	Principles	crystallization, including the

formation of solid crystals	affecting crystal		factors influencing crystal
from a solution	formation.		formation and purity.
 SO5.2	LI5.2	CI5.2	SL5.2
Describe the operation and	To understand and	Vacuum Shelf Dryers –	To understand the operational
application of vacuum shelf	compare the drying	Operation and Application	principles and applications of
dryers in the drying process	processes using different	operation and reprication	vacuum shelf dryers and
	types of dryers: vacuum		batch vacuum rotary dryers.
	shelf dryer, batch		
	vacuum rotary dryer,		
	freeze dryer, and spray		
	dryer.		
SO5.3	~	CI5.3	
Understand the principles		Batch Vacuum Rotary Dryers –	
and operation of batch		Principles and Operation	
vacuum rotary dryers			
SO5.4		CI5.4	SL5.3
Describe the principles and		Freeze Dryers – Operation and	To gain an understanding of
operation of freeze dryers		Applications	the principles and operations
and their applications			of freeze dryers and spray
			dryers, including their
			applications and limitations.
SO5.5		CI5.5	
Understand the principles		Spray Dryers – Principles and	
and operation of spray dryers		Operation	
and their applications in			
drying processes.			
SO5.6		CI5.6	
Compare and contrast		Comparative Analysis of Drying	
different drying techniques:		Techniques	
vacuum shelf dryers, batch			
vacuum rotary dryers, freeze			
dryers, and spray dryers			

Suggested Sessional	SW5.1 Assignments	Understand the fundamental principles of crystallization and how they apply to the formation of solid
Work (SW): anyone		crystals from a solution
	SW5.2 Mini Project	Understand the principles and operation of batch vacuum rotary dryers
	SW5.3 Other	Compare and contrast different drying techniques: vacuum shelf dryers, batch vacuum rotary dryers,
	Activities (Specify)	freeze dryers, and spray dryers

Course duration (in hours) to attain Course Outcomes:

Course Title: Downstream Processing	Course Code: 52BT306-A							
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)			
CO1-52BT306-A.1. To understand the key concepts, methods, and stages involved in bioseparation processes and downstream processing.	6	4	3	1	14			
CO2-52BT306-A.2. To comprehend the principles and applications of various separation techniques	6	4	3	1	14			
CO3-52BT306-A.3. To understand the principles and applications of aqueous two-phase extraction, membrane separation techniques and various methods for protein precipitation.	6	4	3	1	14			
CO4-52BT306.A.4. A comprehensive understanding of chromatography principles, techniques, and applications.	6	4	3	1	14			
CO5-52BT306-A.5. To understand the principles of crystallization and various drying techniques.	6	4	3	1	14			
Total Hours	30	20	15	05	70			

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Downstream Processing

Course Code: 52BT306-A

Course Outcomes		Marks Distribution			
	Α	An	Ε	С	Total Marks
CO1-52BT306-A.1. To understand the key concepts, methods, and stages involved in bioseparation processes and downstream processing.	2	1	1	1	5
CO2-52BT306-A.2. To comprehend the principles and applications of various separation techniques	2	4	4	1	11
CO3-52BT306-A.3. To understand the principles and applications of aqueous two-phase extraction, membrane separation techniques and various methods for protein precipitation.	3	5	5	1	14
CO4-52BT306-A.4. A comprehensive understanding of chromatography principles, techniques, and applications.	2	3	4	1	10
CO5-52BT306-A.5. To understand the principles of crystallization and various drying techniques.	5	4	1	0	10
Total Marks	14	17	15	04	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Roger G. Harrison, Paul Todd, Scott R.Rudge and Demetri P. Pterides - Biosepartions Science and Engineering - Oxford University
	Press - 2003
2	R.O. Jenkins, (Ed.) - Product Recovery In Bioprocess Technology - Biotechnology By Open Learning Series, Butterworth-Heinemann
	(1992).
3	J.C. Janson And L. Ryden, (Ed.) – Protein Purification – Principles, High Resolution Methods And Applications, VCH Pub. 1989.
4	R.K. Scopes – Protein Purification – Principles and Practice, Narosa Pub. (1994).

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: M. Sc. Biotechnology **Semester:** III Semester **Course Title:** Downstream Processing **Course Code:** 52BT306-A

CO/PO/PSO Mapping									
Course Outcome (Cos)		Program Outcomes (POs)			Program Specific Outcome (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	
CO1-52BT306-A.1. To understand the key concepts, methods, and	1	-	-	1	2	2	2	1	
stages involved in bioseparation processes and downstream									
processing.									
CO2-52BT306.A.2. To comprehend the principles and applications	-	1	1	-	-	1	1	2	
of various separation techniques									
CO3-52BT306-A.3. To understand the principles and applications of	1	1	1	1	-	1	1	1	
aqueous two-phase extraction, membrane separation techniques and									
various methods for protein precipitation.									
CO4-52BT306-A.4. A comprehensive understanding of	1	1	1	-	2	1	1	3	
chromatography principles, techniques, and applications.	L								
CO5-52BT306-A.5. To understand the principles of crystallization	1	1	1	1	-	1	3	2	
and various drying techniques.	<u> </u>								

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs	COs	SOs No.	Laboratory	Classroom	Self-Learning (SL)
No.			Instruction (LI)	Instruction (CI)	
PO 1,2,3,4,5	CO1-52BT306-A.1. To understand the key	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5,1.6	1SL-1,2,3
FO 1,2,3,4,3	concepts, methods, and stages involved in	SO1.3 SO1.4	LI 2		
PSO 1,2, 3	bioseparation processes and downstream	SO1.5 SO1.6			
FSO 1,2, 5	processing.				
DO 1 2 2 4 5	CO2-52BT306-A.2. To comprehend the	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4, 2.5,	2SL-1,2,3
PO 1,2,3,4,5	principles and applications of various	SO2.3 SO2.4	LI 2	2.6	
PSO 1,2, 3	separation techniques	SO2.5 SO2.6			
	CO3-52BT306-A.3. To understand the	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,	3SL-1,2,3
PO 1,2,3,4,5	principles and applications of aqueous two-	SO3.3 SO3.4	LI 2	3.6	
	phase extraction, membrane separation	SO3.5 SO3.6			
PSO 1,2, 3	techniques and various methods for protein				
	precipitation.				
PO 1,2,3,4,5	CO4-52BT306-A.4. A comprehensive	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,4.5,4.6	4SL-1,2,3
	understanding of chromatography principles,	SO4.3 SO4.4	LI 2		
PSO 1,2, 3	techniques, and applications.	SO4.5 SO4.6			
PO 1,2,3,4,5	CO5-52BT306-A.5. To understand the	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,5.6	5SL-1,2,3
101,2,3,7,3	principles of crystallization and various	SO5.3 SO5.4	LI 2		
PSO 1,2, 3	drying techniques.	SO5.5 SO5.6			

Curriculum Developer Team: Prof. Kamlesh Choure

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program Name	Master of Science in Biotechnology (M. Sc. BT)							
Semester	III							
Course Code:	52BT306-B							
Course title:	: Vaccine Biotechnology and Drug Action Curriculum Developer: Er. Arpit Srivastava, Assistant Pro	fessor						
Pre-requisite:	Students should have basic knowledge of immunology and vaccines							
Rationale:	Vaccines are one of the most important discoveries in the history of Medicine. These biological preparations have been highly successful in preventing infectious diseases, significantly reducing the incidence of childhood diseases and mortality. Importance of Designing New Vaccine - Vaccine "teach" your body to defend itself from pathogens like viruses and bacteria. There are numerous viruses and bacteria discovered which can be potential disease-causing agents to Humans. To tackle these potential threats effective vaccines are required. This course will help students to explore new horizons of innovations in Vaccine designing domain.							
Course Outcomes (COs):	 CO1-52BT306-B.1 Explain fundamental principles of vaccine science and its role in biotechnology CO2-52BT306-B.2 Outline the effects of Vaccine over immunity CO3-52BT306-B.3 Identify novel strategies for vaccine design and preservation CO4-52BT306-B.4 Examine methods to test the concentration of vaccine CO5-52BT306-B.5 Predict, Design and Compare different vaccines the basis of its production 							

Scheme of Studies:

Board of Study	CourseCode	Course Title						
			Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:1)
Professional Elective Course (PE)	52BT306-B	Vaccine Biotechnology and Drug Action	3	2	1	3	9	2+1=3

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits.

 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

		Course Title	Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)							Total Marks
Board of Study	Couse Code		Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity (CAT)	Class Attendance (AT)	Total Marks (CA+CT+CAT+SA+AT)	End Semester Assessment (ESA)	(PRA+ ESA)
PE	52BT306- B	Vaccine Biotechnology and Drug Action	15	20	5	5	5	50	50	100

Scheme of Assessment: Practical

					So	cheme of Assessr	nent (Marks)		
					Progressive As	ssessment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)		Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PE	52BT356-B	Vaccine Biotechnology & Drug Action	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including							
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning		Item	Cl		SW		
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),		Approx. Hrs	06	04	01	04	15
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-52BT306-B.1 Explain	SO1.1		Unit-1	SL1.1
fundamental principles of	Explain the Introduction &		CI1.1	Understand the history and
vaccine science and its role in	History of Vaccine		Introduction & History of	development of vaccines and
biotechnology			Vaccine	their impact on public health.
	SO1.2		CI1.2	SL1.2
	Describe & define the		Vaccine immunization:	Differentiate between active
	Vaccine immunization:		active & passive	and passive immunization
	active & passive		immunization	and understand their
	immunization			mechanisms.
	SO1.3	LI1.1	CI1.3	SL1.3
	Elaborate the Immune	To understand and perform	Immune response & its	Understand the body's
	response & its detection	an Enzyme-Linked	detection	immune response to vaccines
	•	284	•	<u>.</u>

	Immunosorbent Assay (ELISA) to detect the presence of antibodies in a sample, which indicates an immune response to a vaccine.		and learn about methods for detecting immune responses.
SO1.4		CI1.4	
Explain in detail the designing of vaccines		Designing of vaccines	
SO1.5		CI1.5	SL1.4
Describe the Preservation of		Preservation of vaccines,	Learn the principles of
vaccines, method of		method of vaccination, and	vaccine design, preservation,
vaccination, and dosage		dosage	methods of administration, and appropriate dosage.
SO1.6	LI1.2	CI1.6	
Explain in detail the	To understand and perform	Concept of antigen &	
Concept of antigen &	an agglutination test to detect	antibody, and antigen-	
antibody, and antigen-	the presence of antigens or	antibody reactions.	
antibody reactions.	antibodies in a sample		
	through visible clumping.		

Suggested Sessional	SW1.1 Assignments	Describe in detail about Vaccine immunization: active & passive immunization
Work (SW): anyone	SW1.2 Mini Project	Elaborate the Immune response & its detection
		Draw a flowchart compiling all procedures used in performing Immunoinformatics

This course syllabus illustrates the expected learning achievements, both at the course and session levels,							
which students are anticipated to accomplish through various modes of instruction including Classroom							
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Item	Cl	LI	SW	SL	Total
progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall		Approx. Hrs	06	04	01	04	15
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)					
CO2-52BT306-B.2	SO2.1	LI2.1	Unit-2	SL2.1					
Outline the effects of Vaccine	Explain in detail the live &	To compare the immune	CI2.1	Understand the concepts,					
over immunity	attenuated vaccines	responses generated by live,	Live & attenuated vaccines	mechanisms, and examples					
		attenuated, and killed		of live, attenuated, and killed					
		vaccines using an animal		vaccines.					
	285								

	model or cell culture.		
SO2.2		CI2.2	
Explain in detail the killed		Killed Vaccines &	
& recombinant vaccines.		Recombinant vaccines	
SO2.3	LI2.2	CI2.3	SL2.2
Explain in detail the Subunit & conjugate vaccines	To characterize and evaluate the efficacy of subunit, conjugate, and peptide vaccines using antigen- antibody reactions and protective immunity assays.	Subunit & conjugate vaccines	Learn about the principles, development, and examples of recombinant DNA, subunit, conjugate, and peptide vaccines.
SO2.4 Explain in detail the Peptide vaccines & specific viral vaccines		CI2.4 Peptide vaccines & specific viral vaccines	
SO2.5 Elaborate the Viral Vaccine- Vaccinia, Polio, Hepatitis B, Influenza and HIV		CI2.5 Viral Vaccine-Vaccinia, Polio, Hepatitis B, Influenza and HIV	SL2.3 Gain knowledge about specific viral vaccines, their development, and their impact on disease prevention.
SO2.6 Elaborate the Bacterial Vaccine -Pertusis, Cholera vaccine, Tetanus, BCG Vaccine		CI2.6 Bacterial Vaccine -Pertusis, Cholera vaccine, Tetanus, BCG Vaccine	SL2.4 Understand the development, mechanisms, and public health impact of specific bacterial vaccines.

Suggested Sessional	SW2.1 Assignments	Describe the Killed Vaccines & Recombinant vaccines
Work (SW): anyone	SW2.2 Mini Project	Elaborate the Viral Vaccine-Vaccinia, Polio, Hepatitis B, Influenza and HIV
	SW2.3 Other Activities (Specify)	Elaborate the Bacterial Vaccine -Pertusis, Cholera vaccine, Tetanus, BCG Vaccine

This course syllabus illustrates the expected learning achievements, both at the course and session levels,	vels, Approximate Hours						
which students are anticipated to accomplish through various modes of instruction including Classroom	om						
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Item	Cl	LI	SW	SL	Total
progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall		Approx. Hrs	06	04	01	04	15
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
		(L1)	(CI)	

CO3-52BT306-B.3 Identify novel strategies for vaccine design and preserva			Unit-3 CI3.1 Introduction to Antibiotics and Mechanisms of Action	SL3.1 Understand the basics of antibiotics, their history, significance, and general mechanisms of action.	
	SO3.2 Explain in detail the Beta- lactam, Pencillins, Cephalosporins, Antibiotics: Structure, Chemistry, and SAR	LI3.1 To analyze the structure, chemistry, and structure- activity relationship (SAR) of various classes of antibiotics and understand their mechanisms of action.	CI3.2 Beta-lactam, Pencillins, Cephalosporins, Antibiotics: Structure, Chemistry, and SAR	SL3.2 Understand the structure, chemistry, and structure- activity relationship (SAR) of beta-lactam antibiotics, including penicillins and cephalosporins.	
	SO3.3 Explain in detail the Tetracyclines, Macrolides, and Aminoglycosides: Structure, Chemistry, and SAR		CI3.3 Tetracyclines, Macrolides, and Aminoglycosides: Structure, Chemistry, and SAR		
	SO3.4 Miscellaneous Antibiotics and Antitubercular Agents	LI3.2 To understand the mechanisms of action of antitubercular agents and anti-HIV drugs and evaluate their effectiveness through biochemical assays.	CI3.4 Miscellaneous Antibiotics and Antitubercular Agents	SL3.3 Learn about antitubercular agents, their mechanisms of action, and their role in treating tuberculosis.	
	SO3.5 Elaborate the AIDS and Life Cycle of HIV		CI3.5 AIDS and Life Cycle of HIV	SL3.4 Understand the biology of HIV, the progression of AIDS, and the mechanisms of action of nucleoside and non-nucleoside reverse transcriptase inhibitors.	
	SO3.6 Explain in detail Anti-HIV Agents: Nucleoside and Non-Nucleoside Analogues		CI3.6 Anti-HIV Agents: Nucleoside and Non- Nucleoside Analogues		
Suggested Sessional Work (SW): anyone	SW3.1 Assignments	SAR	cillins, Cephalosporins, Antibio	tics: Structure, Chemistry, and	
	SW3.2 Mini Project	Elaborate the AIDS and Life Cycle of HIV Explain in detail Anti-HIV Agents: Nucleoside and Non-Nucleoside Analogues			
	SW3.3 Other Activities (Specify)	Explain in detail Anti-HIV Ag	gents: Nucleoside and Non-Nucl	eoside Analogues	

This course syllabus illustrates the expected learning achievements, both at the course and session levels,							
which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course	[Item	Cl	LI	SW	SL	Total
progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall		Approx. Hrs	06	04	01	04	15
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-52BT306-B.4	SO4.1	LI4.1	Unit-4	SL4.1
Examine methods to test the	Explain in details the	Evaluation of Anti-Cancer	CI4.1 Introduction to Cancer and	To understand the basics of cancer and the classification
concentration of vaccine	Introduction to Cancer and Classification of Anti-	Agents:Structure,Chemistry,SAR, and	Classification of Anti-Cancer	of anti-cancer agents.
	Cancer Agents	Mechanism of Action	Agents	
<u> </u>	SO4.2		CI4.2	
	Explain in details the		Alkylating Agents and	
	Alkylating Agents and Antimetabolites: Structure,		Antimetabolites: Structure, Chemistry, and SAR	
	Chemistry, and SAR		chemistry, and brint	
	SO4.3		CI4.3	SL4.2
	Elaborate the Anti-Cancer		Anti-Cancer Antibiotics and	To explore the structure,
	Antibiotics and Plant Products: Structure,		Plant Products: Structure, Chemistry, and SAR	chemistry, and structure- activity relationship (SAR) of
	Chemistry, and SAR		Chemistry, and Srik	various anti-cancer agents.
	SO4.4		CI4.4	SL4.3
	Explain in detail the		Miscellaneous Anti-Cancer	To study the mechanism of
	Miscellaneous Anti-Cancer		Agents and Mechanisms of	action of different classes of
	Agents and Mechanisms of Action		Action	anti-cancer agents.
	SO4.5	LI4.2	CI4.5	SL4.4
	Elaborate the Anti-	Investigation of Anti-	Anti-Parkinson's Agents and	Anti-Parkinson's Agents,
	Parkinson's Agents and Introduction to Dementia	Parkinson's Agents and Introduction to Dementia	Introduction to Dementia and Alzheimer's Disease	Dementia, Alzheimer's
	and Alzheimer's Disease	and Alzheimer's Disease	Aizheinnei S Disease	Disease, and Narcotic Analgesics
	SO4.6		CI4.6	
	Explain in detail the Narcotic		Narcotic Analgesics	
	Analgesics			

Suggested Sessional	0	Elaborate the Anti-Cancer Antibiotics and Plant Products: Structure, Chemistry, and SAR
Work (SW): anyone	SW4.2 Mini Project	Elaborate the Anti-Parkinson's Agents and Introduction to Dementia and Alzheimer's Disease
	SW4.3 Other Activities (Specify)	Explain in detail the Narcotic Analgesics

This course syllabus illustrates the expected learning achievements, both at the course and session levels,	Approximate Hours					
which students are anticipated to accomplish through various modes of instruction including Classroom						
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the	T 4	Cl	LI	SW	SL	Total
course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in	A TT	06	04	01	04	15
the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-52BT305.5 Predict, Design and Compare different vaccines the basis of its production	SO5.1 Describe Introduction to Antipyretics and NSAIDs	LI5.1 Analysis of the Properties and Mechanism of Action of Antipyretics and NSAIDs	Unit-5 CI5.1 Introduction to Antipyretics and NSAIDs	SL5.1 To gain a foundational understanding of antipyretics and non-steroidal anti- inflammatory drugs (NSAIDs), their classifications, and clinical uses.
	SO5.2 Explain in detail the Biosynthesis of Eicosanoids		CI5.2 Biosynthesis of Eicosanoids	SL5.2 To understand the biosynthesis of eicosanoids and their role in inflammation.
	SO5.3 Elaborate the Mechanism of Anti-Inflammatory Action of NSAIDs and Side Effects		CI5.3 Mechanism of Anti- Inflammatory Action of NSAIDs and Side Effects	SL5.3 Mechanism of Anti- Inflammatory Action and Side Effects of NSAIDs
	SO5.4 Describe & define the Chemistry, Structure, and SAR of Salicylates - Aspirin as an Example		CI5.4 Chemistry, Structure, and SAR of Salicylates - Aspirin as an Example	

SO5.5 Describe & define the Chemistry, Structure, and SAR of p-Aminophenol Derivatives - Paracetamol as an Example		CI5.5 Chemistry, Structure, and SAR of p-Aminophenol Derivatives - Paracetamol as an Example	SL5.4 To analyze the chemistry, structure, and structure- activity relationship (SAR) of salicylates and p- aminophenol derivatives, using aspirin and paracetamol as examples.
SO5.6 Comparative Analysis of Aspirin and Paracetamol	LI5.2 Comparative Study of the Chemistry, Structure, and Structure-Activity Relationship (SAR) of Aspirin and Paracetamol	CI5.6 Comparative Analysis of Aspirin and Paracetamol	

Suggested Sessional	SW5.1 Assignments	Elaborate the Mechanism of Anti-Inflammatory Action of NSAIDs and Side Effects
Work (SW): anyone	SW5.2 Mini Project	Describe & define the Chemistry, Structure, and SAR of p-Aminophenol Derivatives - Paracetamol as an
		Example
	SW5.3 Other	Comparative Analysis of Aspirin and Paracetamol
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Vaccine Biotechnology and Dru	Course Code: 52BT306-B				
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-52BT306-B.1. Explain fundamental principles of vaccine science and its role in biotechnology	6	4	4	1	15
CO2-52BT306-B.2. Outline the effects of Vaccine over immunity	6	4	4	1	15
CO3-52BT306-B.3. Identify novel strategies for vaccine design and preservation	6	4	4	1	15
CO4-52BT306-B.4. Examine methods to test the concentration of vaccine	6	4	4	1	15
CO5-52BT306-B.5. Predict, Design and Compare different vaccines the basis of its production	6	4	4	1	15
Total Hours	30	20	20	05	75

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Vaccine Biotechnology and Drug Action

Course Code: 52BT306-B

Course Outcomes		Marks Distribution				
		An	E	С	Total Marks	
CO1-52BT306-B.1. Explain fundamental principles of vaccine science and its role in biotechnology	2	1	1	1	5	
CO2-52BT306-B.2. Outline the effects of Vaccine over immunity	2	4	5	1	12	
CO3-52BT306-B.3. Identify novel strategies for vaccine design and preservation	3	5	4	1	13	
CO4-52BT306-B.4. Examine methods to test the concentration of vaccine	2	3	4	1	10	
CO5-52BT306-B.5. Predict, Design and Compare different vaccines the basis of its production	5	4	1	0	10	
Total Marks	14	17	15	04	50	

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Advanced vaccination technologies for infectious and chronic diseases. (2024). In Elsevier eBooks.
2	An Introduction to Medicinal Chemistry ; Graham.L.Patrick , John Spencer, 2009
3	Pharmaceutical Chemistry 2; Dr.A.V.Kasture, Dr.S.G.Wadodkar
4	Kuby, 'Immunology', W. H. Freeman & Compan
5	Medicinal Chemistry; Ashuthosh Khar Revised Third Edition, New Age Publishers

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: M.Sc. Biotechnology **Semester:** III Semester **Course Title:** Vaccine Biotechnology and Drug Action **Course Code:** 52BT306-B

Course Outcome	Program Specific Outcomes (PSOs)							
COs	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1-52BT306-B.1. Explain fundamental principles of vaccine science and its role in biotechnology	-	1	-	1	2	1	2	1
CO2-52BT306-B.2. Outline the effects of Vaccine over immunity	-	1	-	-	1	2	-	2
CO3-52BT306-B.3. Identify novel strategies for vaccine design and preservation	-	1	1	1	-	3	2	-
CO4-52BT306-B.4. Examine methods to test the concentration of vaccine	-	-	1	-	2	2	1	3
CO5-52BT306-B.5. Predict, Design and Compare different vaccines the basis of its production	1	-	1	2	-	1	1	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs	COs	SOs No.	Laboratory	Classroom	Self-Learning (SL)
No.			Instruction (LI)	Instruction (CI)	
PO 1,2,3,4,5	CO1-52BT306-B .1. Explain	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5,1.6	1SL-1,2,3,4
	fundamental principles of vaccine science	SO1.3 SO1.4	LI 2		
PSO 1,2, 3	and its role in biotechnology	SO1.5 SO1.6			
PO 1,2,3,4,5	CO2-52BT306-B .2. Outline the	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4
	effects of Vaccine over immunity	SO2.3 SO2.4	LI 2	2.5,2.6	
PSO 1,2, 3		SO2.5 SO2.6			
PO 1,2,3,4,5	CO3-52BT306-B .3. Identify novel	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,3.6	3SL-1,2,3,4
	strategies for vaccine design and	SO3.3 SO3.4	LI 2		
PSO 1,2, 3	preservation	SO3.5 SO3.6			
PO 1,2,3,4,5	CO4-52BT306-B .4. Examine	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,4.5,4.6	4SL-1,2,3,4
	methods to test the concentration of vaccine	SO4.3 SO4.4	LI 2		
PSO 1,2, 3		SO4.5 SO4.6			
PO 1,2,3,4,5	CO5-52BT306-B .5. Predict, Design	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,5.6	5SL-1,2,3,4
101,2,3,4,5	and Compare different vaccines the basis of	SO5.3 SO5.4	LI 2		
PSO 1,2, 3	its production	SO5.5 SO5.6			

Curriculum Developer Team: Prof. Kamlesh Choure

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Program name	Masters of Science (M.Sc.)- Biotechnology						
Semester	Ш						
Course Code:	52BT306-C						
Course title:	Bioprogramming and Soft Developer: Mr. Piyush Kant Rai, Assistant Professor Computing Techniques Computing Techniques						
Pre-requisite:	Fundamental understanding of bio-programming and soft computing techniques to enable effective engagement with advanced concepts in the subject						
Rationale:	Incorporating bio-programming and soft computing techniques is essential. It equips students with foundational knowledge, empowering them to comprehend and apply advanced concepts in the subject, ensuring a seamless integration of computational methodologies into biological frameworks.						
Course Dutcomes COs):	of bioprogramming and soft comput CO2-52BT306-C.2. To develop stud to solve computational problems. CO3-52BT306-C.3. To explore t techniques in various domains. CO4-52BT306-C.4 To learn and bioinformatics.	ain a thorough understanding of the underlying principles and theories ing techniques dents' skills in applying bioprogramming and soft computing techniques he potential applications of bioprogramming and soft computing practice soft computing technique and algorithm with its uses in sual basic and data array labelling in biological sciences.					

Scheme of Studies:

				Sc				
Board of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:1)
Professional Elective Course (PE)	52BT306-C	Bio programming and Soft Computing Techniques	3	2	1	1	7	2+1=3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

						Scheme	of Assessm	ent (Marks)		
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best		Class	Class Attendanc e (AT)	A) Total Marks (CA+CT+SA+CAT+ AT)	End Semester Assessm ent (ESA)	Total Marks (PRA+ ESA)
PE	52BT30 6-C	Bio programming and Soft Computing Techniques	15	20	5	5	5	50	50	100

					Sche	me of Assess	ment (Marks)		
				Pr	ogressive As	ssessment (PF	RA)		
Board of Study	Course Code	Course Title	Class/Ho me Assignm ent 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+S A+AT)	End Semester Assessm ent (ESA)	Total Marks (PRA+ ESA)
PE	52BT356 -C	Bioprogrammin g & Soft Computing Techniques	35	5	5	5	50	50	50

Unit-1 Introduction to R Programming

Course-Curriculum:

This course syllabus illustrates the expected learning						
achievements, both at the course and session levels, which						
students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI),	Item	Cl	LI	SW	SL	Total
Laboratory Instruction (LI), Sessional Work (SW), and Self	Approx.	06	02	01	02	11
Learning (SL). As the course progresses, students should	Hrs					
showcase their mastery of Session Outcomes (SOs),						
culminating in the overall achievement of Course Outcomes						
(COs) upon the course's conclusion.						

Course outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-52BT306- C.1. Students will gain a thorough understanding of the underlying principles and theories of	SO1.1 Overview of the R Language; Defining	LI1.1 Demonstration of basic of linux- UI	CI1.1 Overview of the R Language	SL1.1 Draw a flow chart diagram of R-programming installation and working.
	SO1.2 Introduction to R Project; Obtaining R, where to get help Generating		CI1.2 R Project; Obtaining R, where to get help Generating	SL1.2 Read the R-project documentation.
bioprogramming	SO1.3 Elaborate workflow of R Code – Basic Programming Concepts		CI1.3 R Code –Basic Programming Concepts	
	SO1.4 how many types of Datasets included in R Packages; Manipulating objects		CI1.4 Datasets included in R Packages; Manipulating objects	
	SO1.5 What is Graphics (Basics) Mathematical Operations		CI1.5 Graphics (Basics) Mathematical Operations	
	SO1.6 Explain Hypothesis testing and data handling; t-tests.		CI1.6 Hypothesis testing and data handling; t-tests.	

SW-1 Suggested Sessional Work (SW): anyone

Assignments:	1.describe about the timeline of R-code
	2. Prepare list of programs available in the R project for biologist.
Mini Project:	2. Find out some research paper reflecting "Datasets included in R Packages"
Other Activities	3. Describe the Graphics (Basics) Mathematical Operations
(Specify):	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	02	13

Unit-2 Introduction to MATLAB

Course outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
C.2. Students will gain a thorough	SO2.1 & SO2.2 how to use MATlab as calculator or standard Matlab windows	LI2.1 Demonstration of MATLAB	CI2.1 & CI2.2 MATlab as calculator, standard Matlab windows	SL2.1 Find out the uses of MATLAB
understanding of the underlying principles and theories of	SO2.3 & SO2.4 Able to write script files, writing functions, simple graphics, Data types.	LI2.2 Perform primary analysis of statistical data using MATLAB	CI2.3 & CI2.4 writing script files, writing functions, simple graphics, Data types.	SL2.2 Apply MATLAB for the given data
	SO2.5 & SO2.6 File Input-output, Communication with external devices.		CI2.5 & CI2.6 File Input- output, Communication with external devices.	

SW-2 Suggested Sessional Work (SW): anyone

Assignments:	1. Explain the difference graphics and data.
Mini Project:	2. list the array and string for the MATLAB data
Other Activities	3. Describe the File Input-output, Communication with external devices.
(Specify):	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	07	04	01	02	14

Unit-3 Introduction to Python

Course outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
C.3. To explore the potential applications of bioprogramming and soft computing techniques in	SO3.1 basic of Features of Python its data types and variables	LI3.1 Demonstrate the python environments and variable setup	CI3.1 Features of Python, Data types, Variables operators, Features of Python, Data types, Variables, operators and expressions, control flow tools, functions, Data structures, Input and Output	SL3.1 Explore Python libraries and list their uses
various domains.	SO3.2 Introduction to object-oriented programming CSS and Zope	LI3.2 Determine the growth kinetics using wet Lab data	CI3.2 Introduction to object- oriented programming CSS and Zope	SL3.2 Find out list tools in python library for the raw data handling
	SO3.3 Introduction to PERL, Variable Types, Data types, operators, control structures, lists and Arrays, Subroutines, Hash functions, other useful functions, Regular expressions		CI3.3 Introduction to PERL, Variable Types, Data types, operators, control structures, lists and Arrays, Subroutines, Hash functions, other useful functions, Regular expressions	
	SO3.4 Introduction to BIO-PERL, BIO-PERL objects, implementation of Bioinformatics algorithms for searching and matching in PERL		CI3.4 Introduction to BIO- PERL, BIO-PERL objects, implementation of Bioinformatics algorithms for searching and matching in PERL	
	SO3.5 BLAST parsing		CI3.5 BLAST parsing	
	SO3.6 Database concept, working with forms, Data Definition & Manipulation Languages, Data Control Languages		CI3.6 Database concept, working with forms, Data Definition & Manipulation Languages, Data Control Languages	
	SO3.7 Introduction to PL/SQL, SQL plus and SQLJ.		CI3.7 Introduction to PL/SQL, SQL plus and SQLJ.	

SW-3 Suggested Sessional Work (SW): anyone

Assignments:	1. Elaborate the Perl database concept and its working
Mini Project:	2. Introduction to PL/SQL, SQL plus and SQLJ.
Other Activities	3. Describe the BLAST parsing
(Specify):	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	02	01	02	11

Unit-4 Introduction to Soft computing

Course outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-52BT306- C.4 To learn and practice soft Computing	SO4.1 General concept of soft computing		CI4.1 General concept of soft computing	SL4.1 Practice the soft computing technique and algorithm with its uses in bioinformatics
technique and algorithm with its uses in bioinformatics.	SO4.2 Able to elaborate Hidden Markov Models and its Application in Bioinformatics ANN (Artificial Neural Networks)	LI4.1 Demonstrate the ANN with respect biologically active proteins function	CI4.2 Hidden Markov Models: Application in Bioinformatics ANN (Artificial Neural Networks)	SL4.2 Elaborate the different kinds of ANN
	SO4.3 & SO4.4 basics of SVM (Support Vector Machines)		CI4.3 & CI4.4 Concepts and Applications of SVM (Support Vector Machines)	
	SO4.5 & CI4.6 understand Basic concepts and Applications of Genetic Algorithms		CI4.5 & CI4.6 Basic concepts and Applications of Genetic Algorithms	

SW-4 Suggested Sessional Work (SW): anyone

Assignments:	1. Explain the Support vector machines
	2. prepare a list of command for the genetic algorithm
Mini Project:	2. Generalize the difference between HMM and ANN
Other Activities	3. Find out literature sources on genetic algorithm.
5	

Unit-5 Introduction to VB

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	02	01	02	11

Course outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
labelling in	Client/Server Technology		CI5.1 Visual Basic- Introduction to Client/Server Technology	SL5.1 Collect the information regarding major functional genes and protein associated with cancer
biological sciences.	SO5.2 Able to understand different sterilization equipment and instruments		CI5.2 Recognize the different sterilization equipment and instruments	SL5.2 Elaborate the different sterilization equipment and instruments
	SO5.3 Interpret the Thermal Death Time and Decimal Reduction time	LI5.1 Differentiate the Thermal death time and decimal reduction time	CI5.3 Interpret the Thermal Death Time and Decimal Reduction time	
	SO5.4 Classify different antimicrobial agents		CI5.4 Classify different antimicrobial agents	
	SO5.5 To understand the role of bactericidal and bacteriostatic chemicals		CI5.5 understand the role of bactericidal and bacteriostatic chemicals	
	SO5.6 Introduction to Data Connectivity, Different Database Connectivity.		CI5.6 Introduction to Data Connectivity, Different Database Connectivity.	

SW-5 Suggested Sessional Work (SW): anyone

Assignments:	1. Elaborate various antimicrobial agents playing important role.
Mini Project:	2. Find the difference bactericidal and bacteriostatic chemicals.
Other Activities (Specify):	3. Find out literature sources on data connectivity.

Brief of hours suggested for the Course Outcome

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self- Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-52BT306-C.1. Students will gain a thorough understanding of the underlying principles and theories of bioprogramming and soft computing techniques	6	2	2	1	11
CO1-52BT306-C.2. Students will gain a thorough understanding of the underlying principles and theories of bioprogramming and soft computing techniques	6	4	2	1	13
CO3-52BT306-C.3. To explore the potential applications of bioprogramming and soft computing techniques in various domains.	7	4	2	1	14
CO4-52BT306-C.4 To learn and practice soft Computing technique and algorithm with its uses in bioinformatics.	6	2	2	1	11
CO4-52BT306-C.5 To recite the visual basic and data array labelling in biological sciences.	6	2	2	1	11
Total Hours	31	14	10	05	60

Suggestion for End semester Assessment

Course Outcome		Marks Di	Total Marks		
		Α	Ε	С	
CO1-52BT306-C.1. Students will gain a thorough understanding of the underlying principles and theories of bioprogramming and soft computing techniques	2	1	1	1	5
CO1-52BT306-C.2. Students will gain a thorough understanding of the underlying principles and theories of bioprogramming and soft computing techniques	2	4	2	2	10
CO3-52BT306-C.3. To explore the potential applications of bioprogramming and soft computing techniques in various domains	3	5	5	2	15
CO4-52BT306-C.4 To learn and practice soft Computing technique and algorithm with its uses in bioinformatics.	2	3	3	2	10
CO4-52BT306-C.5 To recite the visual basic and data array labelling in biological sciences.	5	4	1	0	10
Total	14	17	12	07	50

Legend: A: Apply, A: Analyze, E: Evaluate, C: Create

Suggested learning Resources:

(a) Books:

S.no.	Title	Author	Publisher	Edition & Year
1	Introduction to MATLAB-6	D.M.Etter	Pearson College Div	2004
2	Programming Python	Mark Lutz	O'Reilly Media	2011
3	BioinformaticsGenes, Proteins and Computers	Christine Orengo, David Jones, Janet Thornton	Taylor & Francis	2003

(b) Online sources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Demonstration
- 7. ICT Based teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 8. Brainstorming

CO, PO and PSO Mapping

Program Title: M. Sc. Biotechnology, 3rd Sem **Course Code:** 52BT306-C **Course Title:** Bio-programming and Soft Computing Techniques

CO/PO Mapping								
Course Outcome	Program Outcomes (POs)		Program Specific Outcomes (PSOs)					
COs	PO1	PO2	РОЗ	PO4	PO5	PSO1	PSO2	PSO3
CO1-52BT306-C.1. Students will gain a thorough understanding of the underlying principles and theories of bioprogramming and soft computing techniques	1	2	2	3	1	1	2	1
CO1-52BT306-C.2. Students will gain a thorough understanding of the underlying principles and theories of bioprogramming and soft computing techniques	1	2	3	2	1	1	1	2
CO3-52BT306-C.3. To explore the potential applications of bioprogramming and soft computing techniques in various domains	1	2	3	2	1	2	1	3
CO4-52BT306-C.4 To learn and practice soft Computing technique and algorithm with its uses in bioinformatics.	1	1	2	3	2	2	1	1
CO4-52BT306-C.5 To recite the visual basic and data array labelling in biological sciences.	1	2	3	3	1	1	1	2

Legend: CO, PO Mapping Comparison Range (1) Low (2) Medium (3) High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5 PSO 1,2,3	CO1-52BT306-C.1. Students will gain a thorough understanding of the underlying principles and theories of bioprogramming and soft computing techniques	1.1,1.2,1.3,1.4,1.5,1.6	LI 1	1.1,1.2,1.3	1.1,1.2
PO 1,2,3,4,5 PSO 1,2,3	CO1-52BT306-C.2. Students will gain a thorough understanding of the underlying principles and theories of bioprogramming and soft computing techniques	2.1,2.2,2.3,2.4,2.5,2.6	LI 1 LI2	2.1, 2.2, 2.3	2.1,2.2
PO 1,2,3,4,5 PSO 1,2,3	CO3-52BT306-C.3. To explore the potential applications of bioprogramming and soft computing techniques in various domains	3.1,3.2,3.3,3.4,3.5,3.6,3.7	LI 1 LI 2	3.1,3.2,3.3,3.4,3.5	3.1,3.2
PO 1,2,3,4,5 PSO 1,2,3	CO4-52BT306-C.4 To learn and practice soft Computing technique and algorithm with its uses in bioinformatics.	4.1,4.2,4.3,4.4,4.5,4.6	LI 1	4.1,4.2,4.3	4.1,4.2
PO 1,2,3,4,5 PSO 1,2,3	CO4-52BT306-C.5 To recite the visual basic and data array labelling in biological sciences.	5.1,5.2,5.3,5.4,5.5,5.6	LI 1	5.1,5.2,5.3,5.4	5.1,5.2

Curriculum Developer Team: Prof. Kamlesh Choure

Prof. Kamlesh Choure Prof. Ashwini A. Waoo Prof. Deepak Mishra Dr. Monika Soni Er. Arpit Srivastava

Semester 4

Course Code:	52BT451		
Course Title:	6 Months Project work/ Dissertation		
Course Outcomes:			
52BT451.1	Analyze complex biotechnological data to draw informed conclusions and drive		
	research initiatives.		
52BT451.2	Evaluate contemporary biotechnological research to identify knowledge gaps and		
	propose innovative methodologies.		
52BT451.3	Design and execute experimental protocols to investigate specific biotechnological		
	questions.		
52BT451.4	Synthesize research findings to generate new insights and advancements in		
	biotechnology.		
52BT451.5	Communicate research outcomes effectively through comprehensive written		
	dissertations and professional presentations.		

AKS UNIVERSITY DEPARTMENT OF BIOTECHNOLOGY

Guideline for Project/Dissertation/Industrial Internship

Guidelines and Format for M. Sc. Biotechnology M. Sc. Microbiology Thesis Preparation

For internal use only

April 2022

TABLE OF CONTENT

S. No.	Content	Page
1	Part 1: Must – Know Issues	3
2	Thesis Content	6
3	Thesis Format	9
4	Thesis Defense	16
5	Format for Thesis Cover Page	17
6	Relevant Forms	18
7	Sample papers	28

PART 1: MUST-KNOW ISSUES

1. Enrolment and Pre-requisites

Your research project begins in your last semester. The project/dissertation is considered as a credit course which must be completed within the same semester to qualify for M. Sc. Biotechnology/Microbiology degree. Other important courses such as Biostatistics, Scientific Writing Workshop and Research Methodology should be taken prior to the start of your thesis project.

2. Goals and Objectives

The aim of the research project is to provide students with practice on how to undertake original research in the major fields of biotechnology. The results will be presented to examiners set up by the University. By the end of the research project students will have gained experience in conducting independent research and should be capable in it.

3. Duration and workload

The research project comprises a credit module equivalent to 6 working months. Students are expected to devote regular time in preparing the research proposal, commencing the research project, writing the thesis and presenting it before an Evaluation Committee.

S. No.	Nomenclature for M. Sc. degree program	Duration
1	Dissertation (4 th Sem)	6 Months

Industrial training/Internship/Apprentice Program

Students who are getting opportunity to initiate their project/internship/apprentice/dissertation for 6-month program, can apply by getting a recommendation letter against the acceptance from any biotechnology/food/pharma/dairy or relevant industry. The department will accept the work on the basis of its relevance and their evaluation can be done on the basis of the work given or presented by the student. Department of Biotechnology of AKS University has a Life Membership of **LSSSDC** program of Skill India and students will also get an opportunity in this sector would be consider as their project/internship/apprentice/dissertation for 6-month program.

4. Scope

Projects should be original laboratory, field-based or survey research on a topic proposed an internal adviser at university or any outside relevant organization/research lab or industry. You could also conduct their thesis project outside the University given that your proposal is approved with adequate supervision by external supervisor.

5. Choice of projects

Department of Biotechnology and its faculty members will offer a list of possible projects for students' consideration. The proposed projects are closely related to the supervisor's expertise and considered feasible given the current conditions of the University laboratory system or alternatives elsewhere. Students can select the project they are most interested in and discuss with the faculty member proposing the project. Competition may exist when more than one student is interested in the same project. The supervisor has the right to select the most suitable student but criteria for selection should be publicized.

It is possible for students to propose and arrange these projects themselves, but the topic and scientific content must be endorsed by an Advisor of the Department of the University. For project that will be conducted outside the University and supervised by non-University employer, students are requested to provide evidence for such an arrangement by completing Form BT01 along with a CV of your supervisor.

6. Assessment

The thesis will be evaluated by an anonymous examiner assigned by the University. Students are allowed to present his/her thesis only if the examiner approved the same. Viva-Voce can be conducted in which student have to present his/her work in form of PowerPoint presentation 15-20 slides, on the basis of presentation, quality of work and viva, the assessment can be done through external and internal members of evaluation committee.

7. Importance

The student will gain extensive exposure to scientific instruments, their handling, and the ability to easily set up a research pipeline that will assist them in completing project work on the topics assigned to them. The in-house training program is known as CEBRT, and students can contact the Head of the Department directly for more information. The format and guidelines presented here are for the 6-month dissertation program; students are advised to follow the entire structure of guidelines so that they can easily proceed. Students from other colleges and universities must present an official recommendation letter signed by the concerned authority or Head of the Department of their university or college; they are welcomed under the domain of CEBRT; they must also follow the same procedure outlined in this guideline once they contact the training coordinator and Head of the Department.

8. Progress report

About four weeks after the start of your research you are required to submit a progress report to the Department using <u>Form BT02</u>. This progress report must becertified by the supervisor. Change of the initial research title and/or objectives, if well justified, are possible and should be officially approved by the Department.

9. Thesis submission and revision

- The date for submission of completed theses is set by the Department (i.e., six months depending on the course scheme and commencement of the research) and will be confirmed before the beginning of the semester.
- Two copies of thesis (soft-bounded) should be submitted to the Department <u>two weeks</u> before the date set for thesis defense.
- After a successful defense, the student revises his/her thesis according to the comments and amendments required by the Examiner. The adviser should make sure that all corrections are followed by the student by approving the revised thesis using Form BT03.
- The revised thesis is finally checked and approved by the Department.
- Students are required to submit two copies of thesis (hard binding is required) and a and the electronic versions of the thesis (in both .doc and /pdf formats) and the presentation in PowerPoint.

PART 2: THESIS CONTENT

From 2022 onwards students are required to write theses in the form of an extended paper. This new requirement is not only to train students with manuscript preparation, but also to facilitate later publication of good research by the Department. For your thesis the following sections are required in the order shown below. Start each section on a new page.

- Cover page: use the format issued by the Department
- Acknowledgment
- Certificate
- Index including (List of Figures, Tables)
- Main body: paper-styled, including
 - *Title, student name and affiliation* (internal cover page same as main cover page)
 - Abstract
 - Introduction
 - *Review of Literature*
 - Materials and Methods
 - Results
 - Discussion
 - Conclusion
 - References
- Appendix (if needed only)

ACKNOWLEDGMENT

This section is to recognize the people, and institutions who have helped you in completing your research project. The page is very informal and you can write in any style that you want. It is best to keep this section short. List here those individuals who provided help during the research (e.g., providing funding, language help, writing assistance or proof reading the article, etc.).

ABSTRACT

The abstract is a very brief overview of your entire study. It must come immediately after the title page. The abstract should briefly state the purpose of the research (introduction), how the problem was studied (methods), the important findings (results), and what the findings mean (conclusion). It is important to be descriptive but concise and to say only what are essential, using no more than 200 words. The author should also suggest some keywords that well represent the content of the research.

INTRODUCTION

This section is short (about 2 - 3 pages) and should be comprehensible to an informed lay person and give enough background to enable the reader to place the particular research problem in a context of common knowledge. It is important to state (i) the research problems (ii) a snap-shot literature review on what have been known or not known yet in

relation to relevant hypotheses or assumptions suggested by you, (iii) the purposes of your research, (iv) scope and limitation and (v) expected outcomes.

More specifically, all problem elements, including the variables to be studied, should be expressed in an orderly system of relationships. Research questions must be clear, consistent, and measurable. They guide the research design process. Indicate "why" the study is being proposed.

<u>Provide an adequate background (literature review) and clearly state the objectives of the work</u>, avoiding a detailed literature survey or a summary of the results. Try to answer the question: "what potential impact will the results of the study have on the current body of knowledge?

MATERIALS & METHODS

This section should provide an accurate description of all methods and materials used inyour study. It should be written in the past tense in the passive voice. Provide sufficient detail to allow the work to be reproduced, with details of supplier and catalogue number when appropriate. Methods already published should be indicated by a reference: only relevant modifications should be described. See Appendix 2 for an example of this section.

Recommended structure of the section:

- 2.1 Research object and location (information about the object of your research and where it was conducted)
- 2.2 Experimental design: describe the experimental design, methods adopted or developed to collect data. Relevant instruments and materials should be mentioned along with their description. Do not just simply list all the chemicals, instruments or devices used in the research. If you use standard methods(published and used by many similar studies, for example Kjeldall method to determine crude protein concentration), just mention the name of the methods and cite the reference that describe the method. In case the method should be described but too long, detailed information can be presented in the Appendix.
- 2.3 Data analysis: describe statistical methods used for data analysis with enough details so that the reliability of your research can be assessed. Data should be analyzed using statistics, either descriptive or inferential or both. Raw data are never included in your thesis unless they are needed to give evidence for specific conclusions which cannot be obtained by looking at an analysis, or summation, of the data. If your study includes more than one experiment, describe one by one.

RESULTS

<u>Summarize the findings without interpretation</u>. Results should be clear and concise. Only analyzed data should be presented in forms of figures, graphs, tables and/or text descriptions of observations. When presenting statistically summarized data, you should state whether the number is a mean or median and clearly state how the data spread is expressed (\pm standard deviation, \pm standard error of the mean, or interquartile range). When claiming a statistically significant result, you must support such a statement with declaration of the probability (p) value and the test that was used to generate that value. Consult a statistician if you feel you need help in doing your statistical test and seek his advice in presenting your results. All Figures and Tables should be numbered chronologically as they appear in your thesis. All Figures and Tables must be referred to in the text to facilitate reading. See further guidelines for constructing tables and figures in Part 3.

DISCUSSION

This should explore the significance of the results of the work, not repeat them. Discuss all the significant outcomes of your research; see how they fit with our current understanding the research areas or what implications it implies for future studies or industrial application. Any limitation or weakness of the research should also be discussed and ended up with recommendations for possible improvement.

CONCLUSION

This section should state the conclusions and recommendations that you have drawn from your work (in relation to the research question or tested hypothesis) and relate the findings of your study to previously published work. Students should avoid to state the key results here instead of conclusions. Recommendations should be relevant to your research findings in order to provide the readers with tips, suggestions or modes of action so that they can follow if interested.

REFERENCES

This must contain complete list of all references cited in the text (see Section 5.2 on referencing).

APPENDIX

Any other relevant information that cannot be appropriately accommodated elsewhere can be placed in an Appendix (or Appendices) at the end of the dissertation. Try not to use them unless you absolutely have to. They are considered useful for listing raw data or details of experimental protocols if you feel it is necessary to do so.

PART 3: THESIS FORMAT

From 2022 onwards students at the Department of Biotechnology are required to write their theses in the form of an extended paper. The format of your thesis is, therefore, a blended design of a traditional thesis, i.e. with the cover page, followed by Acknowledgment and ended up with an Appendix. The main body of the thesis is, however, a paper which is allowed to be a bit longer than the standard. In order to facilitate professional writing, the format of Journal of Innovation in Applied Research (jiar.in). You are advised to strictly follow the instructions below.

THESIS LAYOUT

- The thesis must be word-processed in English (American or British usage is accepted, but not a mixture of these) using Time New Roman font 12-point size with 1.5 line spacing. The text should be fully justified and leave 1 space between sentences; Heading and Sub Headings can be typed as in Time New Roman, Bold and 14 font size in numbers like 1, 1.1, 1.1.2 etc.
- Page set-up: use A4 paper with the left margin of 4.0 cm to allow binding. All the other margins are 2.5 cm.
- Each page of the main body must be numbered, starting with the page that has the title of your research and the abstract. Place the number in the center of the bottom of the page. No header/footer is allowed.
- <u>Hard Binding is accepted for 6 months dissertation</u> once you submit the final version of your thesis.

NUMBER OF PAGES

- Keep your writing short, informative and as concise as possible.
- No page number is required for the Cover page, Acknowledgment, References and Appendix.
- The length of the main body of your thesis should be <u>ideally between 40-50 pages approx</u>. for 6-month <u>dissertation</u>. When needed the addition of few more pages are allowed, but the total number of pages of the main body should not exceed 80.
- Your supervisor will advise you on the length of each section and the level of details required.

COVER PAGE

- The cover page is designed to highlight your research title while providing important information such as the name of the educational provider, name of student and adviser(s) and year of publication.
- Use the standard format provided by the Department (see Appendix 1).

HEADINGS

The appropriate use of headings is a great assistance to the reader, breaking the text into logical blocks. Divide your thesis into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. Any subsection may be given a brief heading. Each heading should appear on its own separate line. The recommended structure and headings of the main body is as follows:

Title

Author name(s) and affiliation

Abstract

Keywords

- 1. Introduction
- 2. Materials & Methods

2.1 Research object and location

- 2.2 Experimental design
- 2.3 Data analysis
- 3. Results
 - 3.1 sub-headline 1

3.2 sub-headline 2

3.n sub-headline n

- 4. Discussion
- 5. Conclusion

References

Constructed molecular sensor to enhance metal detection by bacterial ribosomal switch-ion channel protein interaction

Raul Cuero^{a,*}, J. Lilly^a, David S. McKay^b ^a Prairie View ASM University, CARC, Prairie View, TX 77446, USA ^b NASA Johnson Space Center, Houston, TX 77058, USA

TITLE PAGE INFORMATION (see the example above)

- ☐ The title should be concise and informative as it will be used in information- retrieval systems. Avoid abbreviations and formulae where possible.
- ☐ Author names and affiliations: where the family name may be ambiguous (e.g., adouble name), please indicate this clearly. Your official affiliation address is "Department of Biotechnology, AKS University, Satna". Indicate all affiliations with a lower-case superscript letter immediately

after the author's name and in front of the appropriate address if your adviser/co-worker is from another institution. Provide the e-mail address of the corresponding author, i.e. yours in most cases.

ABSTRACT

- Not more than 200 words and should be as a single paragraph.
- Keywords: immediately after the abstract. Provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

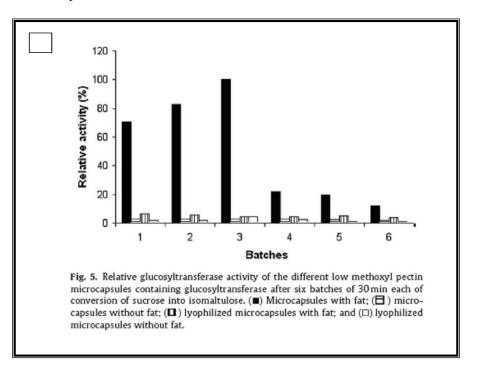
ABSTRACT

Molecular biosensors are useful tools that detect metal ions or other potentially toxic chemicals. However, the efficiency of conventional sensors is limited in mixed metals substrates, which is the common way they are found in nature. The use of biosensors constructed from genetically modified living microbial systems has the potential of providing sensitive detection systems for specific toxic targets. Consequently, our investigation was aimed at assembling different genetic building blocks to produce a focused microbial biosensor with the ability to detect specific metals. This objective was achieved by using a synthetic biology approach. Our genetic building blocks, including a synchronized ribosomal switch-iron ion channel, along with sequences of promoters, metal-binding proteins (Fe, Pb), ribosomal binding sites, yellow fluorescence reporter protein (YFRP), and terminators, were constructed within the same biobrick in *Escherichia coli*. We used an rpoS ribosomal switch containing an aptamer, which responds to the specific metal ligands, in synchronization with an iron ion channel, TonB. This switch significantly stimulates translation, as expressed by higher fluorescence, number of colonies, and concentration of RNA in *E. coli*. The positive results show the effectiveness of using genetically tailored synchronized ribosomal switch-ion channels to construct microbial biosensors to detect specific metals, as tested in iron solutions.

Keywords: Biosensor Ribosomal switch Ion channel

TABLES

- Number tables consecutively in accordance with their appearance in the text.
- Place footnotes to tables below the table body and indicate them with superscriptlowercase letters. Avoid vertical rules.
- Be sparing in the use of tables and ensure that the data presented in tables donot duplicate results described elsewhere in the article.


Examples:

Assay	Variables			Conversion of sucrose into isomaltulose (%)		
	pH	Enzyme (U/g of Celite)	Glutaraldehyde (%)	1° batch	2° batch	3º batc
1	-1 (5.6)	-1 (32.6)	-1 (0.10)	7.38	7.38	9.03
2	+1(7.4)	-1 (32.6)	-1 (0.10)	0.00	0.00	0.00
3	-1 (5.6)	+1(87.0)	-1 (0.10)	21.92	21.92	23.63
4	+1(7.4)	+1(87.0)	-1 (0.10)	1.34	1.34	1.59
5	-1 (5.6)	-1 (32.6)	+1(0.40)	1.51	0.00	1.59
6 7	+1(7.4)	-1 (32.6)	+1(0.40)	0.00	0.00	0.00
	-1 (5.6)	+1(87.0)	+1 (0.40)	12.75	8.73	10.64
8	+1(7.4)	+1(87.0)	+1(0.40)	0.00	1.52	1.15
9	-1.68(5.0)	0(59.8)	0(0.25)	19.81	18.09	20.32
10	+1.68(8.0)	0(59.8)	0(0.25)	0.00	0.00	0.09
11	0(6.5)	-1.68 (14.1)	0(0.25)	0.00	0.00	0.00
12	0(6.5)	+1.68 (105.5)	0(0.25)	7.23	8.00	7.19
13	0(6.5)	0(59.8)	-1.68 (0.00)	16.94	14.12	11.54
14	0(6.5)	0(59.8)	+1.68 (0.50)	3.25	2.87	3.77
15	0(6.5)	0(59.8)	0(0.25)	4.31	6.33	4.62
16	0(6.5)	0(59.8)	0(0.25)	6.18	5.96	4.29

FIGURE CAPTION

Ensure that each illustration has a caption. A caption should comprise a brief title and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Example:

CITATION IN TEXT

publication date with either 'Unpublished results' or 'Personal communication'. Citation of areference as 'in press' implies that the item has been accepted for publication.

All citations in the text should refer to:

- Single author: the author's name (without initials, unless there is ambiguity) and theyear of publication;
- *Two authors:* both authors' names and the year of publication;
- Three or more authors: first author's name followed by 'et al.' and the year of publication.

Citations may be made directly (or parenthetically). Groups of references should belisted first alphabetically, then chronologically.

There are several works in the literature reporting bacterial cell immobilization in isomaltulose production (Kawaguti et al., 2006; Oliva-Neto and Menão, 2009). However, few studies are focused on the immobilization of extracted glucosyltransferase, which converts sucrose into isomaltulose. The immobilization of the enzyme presents some advantages compared to cell immobilization, such as lower risk of microbial contamination of the product, the former prevents the risk of unwanted catalytic activity; whole cells bring along further resistance to mass transfer due to the presence of the cell wall, which drastically reduces reaction rates (Chen, 2007). Thus, this work aimed to immobilize the glucosyltransferase from *Erwinia* sp. D12, in two different supports by adsorption (Celite) and entrapment (low-methoxyl pectin

WEB REFERENCE

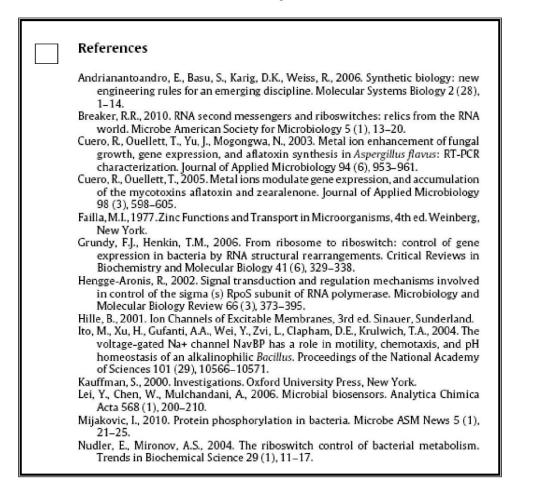
As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list. Avoid using websites as reference unless absolutely necessary.

REFERENCE LIST (APA Format)

References should be arranged first alphabetically and then further sorted chronologically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters 'a', 'b', 'c', etc., placed after the year of publication. Journal name must be written in full name.

Examples:

Reference to a journal publication:


Van der Geer, J., Hanraads, J.A.J., Lupton, R.A., 2010. The art of writing a scientificarticle. Journal of Science Communication 163, 51–59.

Reference to a book:

Strunk Jr., W., White, E.B., 2000. The Elements of Style, fourth ed. Longman, New York.

Reference to a chapter in an edited book:

Mettam, G.R., Adams, L.B., 2009. How to prepare an electronic version of your article, in: Jones, B.S., Smith, R.Z. (Eds.), Introduction to the Electronic Age. E-Publishin.

APPENDIX

All materials placed in the appendix must be directly relevant to the paper. The material must be cross-referenced to the development of the research in the text of the paper using an explanatory note or a parenthetical reference. Avoid the temptation to use the appendix to bulk up the paper.

LANGUAGE AND GRAMMAR

- Use simple but clear language
- Take time to check your work for misspelled words, typographical error, mislabeled figures, tables or photos.
- If you need help in grammar, seek the help of an editor before submitting your work to your adviser. Your adviser is not expected to correct errors in spelling, punctuation, grammar, and formatting.

ABBREVIATION

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

ACKNOWLEDGING THE WORK OF OTHERS

Plagiarism

Plagiarism is copying another person's idea or written work and claiming it as your own. This is an academic offence and you are strictly prohibited from doing this. Make sure thatall information, photos, figures and tables are properly acknowledged. Less Than 5% plagiarism is accepted only as per the authenticate software used. DO NOT COPY/PASTE ANY CONTENT FORM WEB OR RESEARCH PAPERS, the project can be disqualified once it found with unfair means. Therefore, no evaluation can be done for the dame.

Citations

You must always acknowledge your sources of factual information and diagrams you wish touse. This is known as a *citation*.

PART 4: THESIS DEFENCE

PRESENTATION

- Presentation should last up to 15 minutes with another 15 minutes for questions and answers
- Slides should be prepared using Microsoft PowerPoint and presented from a disk.
- Rehearse your presentation and anticipate questions that may be asked by theEvaluation Committee.
- If you are not sure about the pronunciation of certain terminologies, be sure to ask aknowledgeable person before your defense.
- Try not to read from your slides and maintain eye contact with your audience
- Use pointers or laser devices properly
- Ask your supervisor for advice on the content and structure of your presentation.
- Even a successful defense is generally followed by certain minor adjustments in your document, and some final paperwork amendments. You should take notes during the Q&A session, and contact the Secretary of the Evaluation Committee for a detailed request for thesis improvement.

CONTENT OF PRESENTATION

- The presentation should be a brief introduction of your topic, purpose of your study; description of the methods used and the results.
- It is advisable that your presentation has enough important details in order to avoid misunderstanding or excessive questions. Also, keep it short as time is limited.
- Make sure your answers are relevant to the questions of the Evaluation Committee.

APPENDIX 1: FORMAT OF THESIS COVER PAGE

AKS University, Satna

(5 lines from logo)

TITLE OF THESIS

(3 lines)

A thesis submitted to The Department of Biotechnology, AKS University In partial fulfillment of the requirements for the degree of M. Sc. in

(6 lines)

Student name: Full name of student – Student Code. Supervisor: Title and full name of supervisor(s)

(7 lines)

Month/Year

APPENDIX 2: RELEVANT FORMS

(proposal development, proposal defense, midway progress report, evaluation, etc.)

Content	Page
Form No 1: Thesis registration	19
Form No 2: Thesis progress report	20
Form No 3: Academic Adviser	22
Form No 4: Thesis Reviewer	23
Form No 5: For Examiner Of The Scientific Committee	24
Form No 6: Thesis Evaluation Memo	25
Form No 7: Report on thesis revision	27

Form **BT01**

THESIS REGISTRATION

1.	(Student's name) (ID)
2.	(Department)
3.	(Thesis title)
•••••	
4.	(Objectives)
5.	(Research content)
6.(F	Research location)
7.	(Duration) (from): (to):
8.	(Supervisor):
	(Full name)
	(Address)
	Email:

(Supervisor)

(Department)

THESIS PROGRESS REPORT

1.	Student name: Student's ID
2.	Supervisor
3.	Thesis title

<u>SECTION A</u>: to be completed by student

Thesis processing management

Content	Status		Tentative	
Content	Complete	On going	completion time	
1.				
2.				
3.				
n.				

Presence of obstacles to thesis completion, if any,

Important note: Date to submit the completed thesis:	
important note. Dute to submit the completed mesis.	
	Date:
	Signature of student

SECTION B : to be completed by the principal Supervisor		
Has the student:	Yes	No
(i) Shown relevant knowledge and understanding toward specific project field?		
(ii) Shown initiative consistent with the requirements of the research program?		
(iii) Made satisfactory progress in the research program?		
(iv) Shown the ability to complete the research program by the due date?		
If no, please recommend extension for completion or cut some parts of the prop	oosal	
		••
		••
		••
	•••••	••
	•••••	
	•••••	
	•••••	
	•••••	••
	•••••	
		••
		••
		••
		••
		••
Date:	••••••	
Signature of supervisor		

Form **BT03**

Evaluation Form

Academic Adviser

Name of Student ID:

Criteria	Maximum marks	Your mark
Independence in work	10	
Creativity	10	
Level of commitment	20	
Writing skill	20	
Overall quality of thesis *	40	
Total	100	

* The maximum mark should not exceed 30 unless the student produced a manuscript for possible publication. A hard copy of the manuscript should be enclosed with this evaluation form.

Name of Adviser

Date Signed

Evaluation Form

Thesis Reviewer

Name of Student	ID:
-----------------	-----

Criteria	Maximum mark	Your mark
Project goal and objectives (clear, achievable)	15	
Quality of Literature Review	15	
(comprehensive, relevant)		
Materials and Methods	25	
(sound methods, appropriate materials and supporting equipment)		
Results and Significant contribution	30	
(please evaluated against the specific objectives of the project)		
Writing skill and format (including compliance do thesis guidelines)	15	
Total	100	

Comments and recommendations for improvement/ correction (blank section is not acceptable)

Name of Examiner (Signature and Date)

Date Signed

Form BT05

Evaluation Form For examiner of the Scientific Committee

Name of Student ID:

Criteria	Maximum mark	Your mark
Introduction (research problem well stated, clear objectives)	10	
Good understanding of the research field	10	
Methodology (sound, appropriate or creative)	20	
Quality of results (evaluated against the research objectives)	20	
Presentation skills (quality of slides, speaking skills, timing)	20	
Quality of answers (relevant to questions, satisfied by the committee members)	20	
Total	100	

Additional comments/suggestions for improvement:

Name of Examiner

Date Signed