Curriculum Book

and

Assessment and Evaluation Scheme

based on

Outcome Based Education (OBE)

and Choice-Based Credit System (CBCS)

in Master of Science in Physics

M.Sc. (Physics)

2 Year Degree Program

Revised as on 01 August 2023 Applicable w.e.f. Academic Session 2023-24

AKS University

Satna 485001, Madhya Pradesh, India

Faculty of Basic Science Department of Physics

Faculty of Basic Science Department of Physics Curriculum & Syllabus of M.Sc. (Physics) Program (Revised as on 01 August 2023)

CONTENTS

SI No	Item	Page No
1	Forwarding	i
2	Vice Chancellor Message	ii
3	Preface	iii
4	Introduction	1
5	Vision & Mission of the Physics Department	3
6	Program Educational Objectives (PEO)	4
7	Program Outcomes (POs)	5
8	General Course Structure and theme	7
9	Component of Curriculum	7
10	General Course Structure and Credit Distribution	8
11	Course code and definition	9
12	Category-wise Courses	10
13	Semester wise Course Structure	12
13	Semester wise Course details	13
13.1	Semester I	15-80
13.2	Semester -II	81-163
13.3	Semester -III	164-255
13.4	Semester -IV	256-334

ε

Department of Physics AKS University, Satna (M.P.) Dean

Faculty of Basic Science AKS University Satna (M.P.) 485001 Behopade

Professor B.A. Chopade Vice - Chancellor AKS University Satna, 485001 (M.P.)

A K S University Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Forwarding

I am thrilled to observe the updated curriculum of the Physics Department for Physics Master Program, which seamlessly integrates the most recent technological advancements and adheres to the guidelines set forth by UGC. The revised curriculum also thoughtfully incorporates the directives of NEP-2020 and the Sustainable Development Goals.

The alignment of course outcomes (COs), Program Outcome (POs) and Program specific outcomes (PSOs) has been intricately executed, aligning perfectly with the requisites of NEP-2020 and NAAC standards. I hold the belief that this revised syllabus will significantly enhance the skills and employability of our students.

With immense satisfaction, I hereby present the revised curriculum for the M.Sc. (Physics) program for implementation in the upcoming session.

ER. Anant Soni Pro Chancellor & Chairman

01 August 2023 AKS University, Satna

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

From the Desk of the Vice-Chancellor

AKS University is currently undergoing a process to revamp its curriculum into an outcomebased approach, with the aim of enhancing the teaching and learning process. The foundation of quality of quality education lies in the implementation of a curriculum that aligns with both societal and industrial needs, focusing on relevant outcomes. This entails dedicated and inspired faculty members, as well as impactful industry internships.

Hence, it is of utmost importance to begin this endeavor by crafting an outcome-based curriculum in collaboration with academia and researchers. This curriculum design should be informed by the latest technological advancements, market demands, the guidelines outlined in the National Education Policy (NEP) of 2020, and sustainable goals.

I'm delighted to learn that the revised curriculum has been meticulously crafted by the Physics Department, in consultation with an array of experts from the cement industry, research institutes, and academia. This curriculum effectively integrates the principles outlined in the NEP-2020 guidelines, as well as sustainable goals. It also adaptly incorporates the latest advancements in science and research.

Furthermore, the curriculum takes into account the specific needs of the scientific industry, focusing research in academics. This inclusion not only imparts knowledge but also encourages students' independent thinking for potential enhancements in this area.

The curriculum goes beyond theoretical learning and embraces practical applications by incorporating the utilization of science and research in education. To enhance students' skills, the curriculum integrates Hands- On Training, industrial visits, and On-Job Training experiences, research and progress. This well-rounded approach ensures that students receive a comprehensive education, fostering their skill development and preparing them for success in this course.

I am confident that the updated curriculum for Physics will not only enhance students' technical skills but also contribute significantly to their employability. During the process of revising the curriculum, I am pleased to observe that the Physics department has diligently adhered to the guidelines provided by the UGC. Additionally, they have maintained a total credit requirement of 91 for the M.Sc.(Physics) program.

It's worth noting that curriculum revision is an ongoing and dynamic process, designed to address the continuous evolution of technological advancements and both local and global concerns. This ensures that the curriculum remains responsive and attuned to the changing landscape of education and industry.

AKS University warmly invites input and suggestions from researchers, scientists, academicians and Alumni students to enhance the curriculum and make it more student-centered. Your valuable insights will greatly contribute to shaping an education that best serves the needs and aspirations of our students.

Professor B. A. Chopade Vice- Chancellor

AKS University, Satna 01 August 2023

Preface

As part of our commitment to ongoing enhancement, the Department of Physics consistently reviews and updates its M.Sc. (Physics) programs curriculum every three years. Through this process, we ensure that the curriculum remains aligned with the latest technological advancements, as well as local and global industrial and social demands.

During this procedure, the existing curriculum for the M.Sc. (Physics) Physics Program undergoes evaluation by a panel of scientists, researchers, industry specialists, and academics. Following meticulous scrutiny, the revised curriculum has been formulated and is set to be implemented starting from August 01, 2023. This implementation is contingent upon the endorsement of the curriculum by the University's Board of Studies and Governing Body.

This curriculum closely adheres to the UGC model syllabus distributed in May 2023. It seamlessly integrates the guidelines set forth by the Ministry of Higher Education, Government of India, through NEP-2020, as well as the principles of Sustainable Development Goals. In order to foster the holistic skill development of students, a range of practical activities, including Hands-On Training, Industrial Visits, Project planning and execution, Report Writing, Seminars, and Industrial On-Job Training, have been incorporated. Furthermore, in alignment with UGC's directives, the total credit allocation for the M.Sc. (Physics) program is capped at 91 credits.

This curriculum is enriched with course components in alignment with UGC guidelines, encompassing various disciplines such as Core Program Courses: 65 credits, Elective Program Courses: 12 credits, Open Electives: 04 credits, Project and Practical Training: 10 credits.

To ensure a comprehensive learning experience, detailed evaluation schemes and rubrics have also been meticulously provided.

For each course, a thorough mapping of Course Outcomes, Program Outcomes, and Program Specific Outcomes has been undertaken. As the course syllabus is being meticulously developed, various elements such as session outcomes, laboratory instruction, classroom instruction, self-learning activities, assignments, and mini projects are meticulously outlined.

We hold the belief that this dynamic curriculum will undoubtedly enhance independent thinking, skills, and overall employability of the students.

Professor G C Mishra Director Physics

AKS University 01 August 2023

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

1. Introduction

The Department of Physics was established as a full-fledged, self-supporting post-graduate and research department in 2012. The Department offers M.Sc. (Physics) and Ph.D. Programs. The Department of Physics has been exerting a major thrust in research and innovative teaching. The academic Program of this department has been designed to meet the requirement of the latest technological developments and envisages becoming state-of-the-art department with high quality education and cutting edge interdisciplinary research in Physical Science.

- > Competent and motivated scientific and academic staff members with a favorable age structure.
- The Young faculty members of the Department are extremely active in research activities, publishing research contents and dedicated for financial projects.

I. About the Subject

Physics is the natural science that studies the matter, its motion and behavior through space and time, and the related entities of energy and force. Physics is one of the most fundamental scientific disciplines and its main goal is to understand the behavior of universe and its characteristics. Physics uses the scientific method to help uncover the basic principles governing light and matter, and to discover the implications of those laws. It assumes that there are rules by which the universe functions, and that those laws can be at least partially understood by humans. It is also commonly believed that those laws could be used to predict everything about the universe's future if complete information was available about the present state of all light and matter. On inclusion of Astronomy, the Physics became one of the oldest academic disciplines. Physics intersects with many interdisciplinary areas of research. New ideas in Physics often explain the fundamental mechanisms studied by other branches of science and suggest new avenues of research in academic disciplines use and matters. Advancement in Physics often leads to new technologies.

II. About the Program (Nature, extent and aims)

M.Sc. (Physics) is a two year regular Program. There four semesters in this Program. Each semester is of sixteen weeks duration. Teaching and learning process of M.Sc. (Physics) involves theory and practical classes along with seminar presentation and research project work.

The curriculum will be taught through formal lectures with the aid of power-point presentations, audio and video tools and other teaching aids can be used as and when required. Emphasis will be given to laboratory work and visit to National laboratories to give hands on experience to students.

Students will be encourage to do semester long project in their own institutes as well as in reputed institutes of National level. Aims of the Program are as follows

- Understand the underlying Physics in respective specializations, and, be able to teach and guide successfully
- ▶ Introduce advanced ideas and techniques that are applicable in respective fields.
- Provide the students with a broad spectrum of Physics Courses
- Emphasize the role of Physics in other disciplines such as (Chemical Sciences, MathematicalSciences, Life Sciences and their applied areas)
- > Develop the ability of the students to observe, perform, analyse and report an experiment
- > Develop the ability of the students to deal with physical models and formulas mathematically
- Equip the students with different practical, intellectual and transferable skills.
- Strengthen the student knowledge of Physics and its applications in real world.
- Provide the student with mathematical and computational tools and models to be used insolving professional problems
- Improve the student's inter disciplinary skills.
- To develop human resources with a solid foundation in theoretical and experimental aspects of respective specializations as a preparation for career in academia and industry.

III. Qualification Descriptors (possible career pathways)

Upon successful completion of the course, the students receive a M.Sc. Degree in Physics. The Department of Physics is expected to opt different paths seeking sphere of knowledge and domain of professional work that can fulfill their dreams. Students will be ableto demonstrate their knowledge in advance branches of Physics. This will establish a platform over which students can pursue higher studies. The possible career paths for postgraduate in M.Sc. (Physics) are:

- 1. Teaching Assignments
- 2. Scientific Assignments
- 3. Instruments development
- 4. Research and Development in Industries

- 5. Simulation Techniques Development in Science
- 6. Role in Renewable Energy Resources
- 7. University/Institute Administrative Assignments
- 8. Technician in Lasers, Accelerators, Detectors and Electronics
- 9. Astronomer
- 10. Medical Device Designer
- 11. Radiologist

2. Vision & Mission of the Physics Department:

The physics department is fully committed to impart quality education both in theoretical as well as experimental physics with special emphasis on 'learning by doing' for socio-economic growth.

The Department of Physics include continuous improvement of the quality of scientific research, the development of innovative curricula and techniques based on research and the latest scientific discoveries, greater international visibility and recognition of the Department, as well as the increasing impact on the development of the economy and society as a whole.

Department of Physics achieves its mission by trying to evenly represent the underlying subdisciplines of physics in research and teaching, but also to promote new areas of research, with an emphasis on interdisciplinary and applied research.

The Department of Physics also encourages the development of educational physics through primary and secondary education by participating in the development of the curriculum, developing methodology of physics education, teaching aids and textbooks, through lifelong learning programs and training of teachers, and particularly through continued work with students that were recognized as extremely talented.

The Department of Physics actively promotes the highest ethical principles in scientific research, critical thinking, openness to social, scientific, technological and educational changes, as well as the working autonomy at the University, both scientific and educational.

Department of Physics is working on following objectives:

- 1. Construct basics of physics curriculum and smooth study plan.
- 2. Provide a sophisticated level of education for teaching of undergraduate and graduate studies.
- 3. To provide required contribution and support to other departments at AKSU.
- 4. Prepare the student in assets of physics and the principles of analytical methods required for the conclusion of physical tests.

- 5. Provide an opportunity for students to deepen their knowledge in the branches of physics.
- 6. Encouraging the students for the scientific research.
- 7. Work in the completion of applied research, basic scientific research, experimental, theoretical and applied.
- 8. To contribute to consulting services, training, addressing scientific and industrial problems
- 9. Continued development of faculty members by sending them for training courses so as to maintain a high degree of efficiency and performance.
- 10. Support and encourage the scientific cooperation between faculty members in the department and cooperation with other departments in the field of multi-purpose research.
- 11. Spread the spirit of competition and encouragement and give the opportunity to all members.

12. Preparation of national cadres by basic physics and knowledge that contribute to community service.

3. Program Educational Objectives (PEO)

PEO-1: To prepare science graduates to exhibit quality of excellence, critical thinking, creativity, inventiveness, and self-motivation for life-long learning to handle all kind of diverse situations in interdisciplinary and multidisciplinary environment.

PEO-2: To produce graduates who are globally acceptable professionals for government, corporate and research organizations along with skills for entrepreneurial pursuits in multidisciplinary areas.

PEO-3: To groom graduates who can demonstrate technical competence in the field of Physics and develop solutions to the complex problems.

PEO-4: To produce graduates who can ethically lead and work as a part of team towards the fulfillment of both individual and organizational goals.

PEO-5: To engage graduates in professional pursuits to enhance their own achievements along with serving the society at large.

4. Program Outcomes (POs)

M.Sc. (Physics) Program will able to perform:

PO 1: Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

PO 2: Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

PO 3: Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

PO 4: Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

PO 5: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

PO 6: The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

PO 7: Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO 8: **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO 9: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

PO 10: Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PO 11: Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

PO 12: Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) (Physics) Program (Revised as on 01 August 2023)

5. Program Specific Outcomes (PSOs)

The post graduates shall be able to realise the following specific outcomes by the end of program studies:

- PSO 1: Identify, formulate, and solve Physics problems.
- PSO 2: Design and conduct experiments, as well as to analyse and interpret data.
- **PSO 3:** Apply knowledge of Physics in a different stream of science and to communicate effectively.
- PSO 4: Ability to use the techniques, skills, and modern physical tools in real world application.
- **PSO 5**: Engage in life-long learning and will have recognition.

PEO	M 1	M 2	M 3	M 4
PEO 1	3	2	3	2
PEO 2	2	2	2	3
PEO 3	2	3	2	1
PEO 4	2	2	3	3
PEO 5	2	2	3	3

Consistency/Mapping of PEOs with Mission of the Department

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) "-": No correlation

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

GENERAL COURSE STRUCTURE & THEME

1. Definition of Credit

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
2 Hours Practical (P) per week	1 Credit

2. Range of Credits:

In the light of the fact that a typical Model Two-year Post Graduate degree program in Physics has about 91 credits, the total number of credits proposed for the two-year M.Sc. (Physics) is kept as 91 considering NEP-20 and NAAC guidelines.

3. Structure of PG Program in Physics:

The structure of PG program in Physics shall have essentially the following categories of courses with the breakup of credits as given:

Components of the Curriculum

Sl No	Course Component	% of total number of credits of the Program	Total number of Credits
1	Program Core (PCC)	71.42	65
2	Program Electives (PEC)	13.20	12
3	Open Electives (OEC)	4.40	04
4	Project(s) (PRC)/ On job Plant Training (OJT)	10.98	10
5	Seminar(PSC)	-	-
	Total	100.00	91

(Program curriculum grouping based on course components)

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

General Couse Structure and Credit Distribution

Curriculum of M.Sc. (Physics)

Semester -I		Semester - II		
Course Title	Credit	Course Title	Credit	
Mathematical Physics	4:0:0 = 4	Thermodynamics and Statistical Physics	4:0:0 = 4	
Classical Mechanics	4:0:0 = 4	Solid State Physics	4:0:0 = 4	
Condense Matter Physics	4:0:0 = 4	Quantum Mechanics-I	4:0:0 = 4	
Electronics Devices	4:0:0 = 4	Atomic, Molecular and Laser Physics	4:0:0 = 4	
General Physics Lab-I	0:0:3 = 3	General Physics Lab-II	0:0:3 = 3	
Electronics Lab-I	0:0:3 = 3	Electronics Lab-II	0:0:3 = 3	
Total Credit	22	Total Credit	22	
Semester -III		Semester - IV		
Course Title	Credit	Course Title	Credit	
Electrodynamics and Plasma Physics	4:0:0 = 4	Physics of Nano Materials	4:0:0 = 4	
Quantum Mechanics-II	4:0:0 = 4	Solar Cell and other Renewable Energy Devices	4:0:0 = 4	
Digital Electronics & Microprocessor	4:0:0 = 4	Computational and Experimental Techniques and Data Analysis	4:0:0 = 4	
Nuclear and Particle Physics	4:0:0 = 4	Physics of Solar Energy	4:0:0 = 4	
Digital signal processing	4:0:0 = 4	Astronomy and Space physics	4:0:0 = 4	
General Physics Lab-III	0:0:3 = 3	General Energy and Computational Lab	0:0:3 = 3	
Electronics Lab-III	0:0:3 = 3	Research Project Work	0:0:10 = 10	
Total Credit	22	Total Credit	25	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Course code and definition:

L	=	Lecture
Т	=	Tutorial
Р	=	Practical
С	=	Credit
M.Sc.	=	Master of Science
PCC	=	Professional core courses
PEC	=	Professional Elective courses
OEC	=	Open Elective courses
LC	=	Laboratory course
MC	=	Mandatory courses

Course level coding scheme:

Three-digit number (odd numbers are for the odd semester courses and even numbers are for even semester courses) used as suffix with the Course Code for identifying the level of the course. Digit at hundred's place signifies the year in which course is offered. e.g.

- 101, 102 ... etc. for first year.
- 201, 202 Etc. for second year.
- 301, 302 ... for third year.
- 401. 402--- for Fourth year

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Category-wise Courses

Sl.	Code No.	Subject	Semester	Credits
1	PCC-PH101	Mathematical Physics	1	4:0:0 = 4
2	PCC-PH102	Classical Mechanics	1	4:0:0 = 4
3	PCC-PH103	Condense Matter Physics	1	4:0:0 = 4
4	PCC-PH104	Electronics Devices	1	4:0:0 = 4
5	PCC-PH151	General Physics Lab-I	1	0:0:3 = 3
6	PCC-PH152	Electronics Lab-I	1	0:0:3 = 3
7	PCC-PH201	Thermodynamics and Statistical Physics	2	4:0:0 = 4
8	PCC-PH202	Solid State Physics	2	4:0:0 = 4
9	PCC-PH203	Quantum Mechanics-I	2	4:0:0 = 4
10	PCC-PH204	Atomic, Molecular and Laser Physics	2	4:0:0 = 4
11	PCC-PH251	General Physics Lab-II	2	0:0:3 = 3
12	PCC-PH252	Electronics Lab-II	2	0:0:3 = 3
13	PCC-PH301	Electrodynamics and Plasma Physics	3	4:0:0 = 4
14	PCC-PH302	Quantum Mechanics-II	3	4:0:0 = 4
15	PCC-PH303	Digital Electronics & Microprocessor	3	4:0:0 = 4
16	PCC-PH351	General Physics Lab-III	3	0:0:3 = 3
17	PCC-PH352	Electronics Lab-III	3	0:0:3 = 3
18	PCC-PH451	General Energy and Computational Lab	4	0:0:3 = 3
		Т	otal Credits:	65

PROGRAM CORE COURSES [PCC] (Total 20)

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

PROGRAM ELECTIVE COURSES [PEC]

Total 3 to be taken, at least one from each group – Technology and Industry Sector, based on Project topic and individual interest. Illustrative courses are listed here

Sl.	Code No.	Subject	Semester	Credits
1	PEC-PH304	Nuclear and Particle Physics	3	4:0:0 = 4
2	PEC-PH305	Digital signal processing	3	4:0:0 = 4
3	PEC-PH401	Physics of Nano Materials	4	4:0:0 = 4
4	PEC-PH403	Computational and Experimental Techniques and Data Analysis	4	4:0:0 = 4
5	5PEC-PH405Astronomy and Space physics4			
		Total Credit		12

Open Electives (OEC)

Sl.	Code No.	Subject	Semester	Credits
1			4	4.0.0.4
I	OEC-PH402	Solar Cell and other Renewable Energy Devices	4	4:0:0 = 4
2	OEC-PH404	Physics of Solar Energy	4	4:0:0=4
Total Credit				

RESEARCH PROJECT (3 Stages)

Sl.	Code No.	Semester	Credits	
1	PROJ-PH452	Research Project Work	4	0:0:10
		Total Credit		0:0:10

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Induction Program

Induction program for students to be offered right at the start of the first year. It is mandatory. AKS University has design an induction program for 1st year student, details are below:

- i. Physical activity
- ii. Creative Arts
- iii. Universal Human Values
- iv. Literary
- v. Proficiency Modules
- vi. Lectures by Eminent People
- vii. Visits to local Areas
- viii. Familiarization to Dept./Branch & Innovations

Mandatory Visits/ Workshop/Expert Lectures:

- i. It is mandatory to arrange one industrial visit every semester for the students.
- ii. It is mandatory to conduct a One-week workshop during the winter break after fifth semester on professional/ industry/ entrepreneurial orientation.
- iii. It is mandatory to organize at least one expert lecture per semester for each branch by inviting resource persons from industry.

Evaluation Scheme:

1. For Theory Courses:

- i. The weightage of Internal assessment is 50% and
- ii. End Semester Exam is 50%

The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

2. For Practical Courses:

- i. The weightage of Internal assessment is 50% and
- ii. End Semester Exam is 50%

The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

3. For Summer Internship / Projects / Seminar etc.

Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

<u>Semester wise Course Structure</u> Semester wise Brief of total Credits and Teaching Hours

Semester	L	Т	Р	Total Hour	Total Credit
Semester -I	16	00	06	28	22
Semester -II	16	00	06	28	22
Semester -III	16	00	06	28	22
Semester - IV	12	00	13	38	25
Total	60	00	31	122	91

Details of Semester Wise Course Structure

Semester – I

SN	Category	Code	Course Title	L	Т	Р	Total	
							Hour	Credit
1	Program Core Courses	77PH101		4	0	0	4	4
	(PCC)		Mathematical Physics					
2	Program Core Courses	77PH 102		4	0	0	4	4
	(PCC)		Classical Mechanics					
3	Program Core Courses	77PH103		4	0	0	4	4
	(PCC)		Condense Matter Physics					
4	Program Core Courses	77PH104		4	0	0	4	4
	(PCC)		Electronics Devices					
5	Program Core Courses	77PH151		0	0	3	6	3
	(PCC)		General Physics Lab-I					
6	Program Core Courses	77PH152		0	0	3	6	3
	(PCC)		Electronics Lab-I					
	Total				0	6	28	22

Semester – II

SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
1	Program Core Courses (PCC)	77PH201	Thermodynamics and Statistical Physics	4	0	0	4	4
2	Program Core Courses (PCC)	77PH 202	Solid State Physics		0	0	4	4
3	Program Core Courses (PCC)	77PH203	Quantum Mechanics-I	4	0	0	4	4
4	Program Core Courses (PCC)	77PH204	Atomic, Molecular and Laser Physics	4	0	0	4	4
5	Program Core Courses (PCC)	77PH251	General Physics Lab-II	0	0	3	6	3
6	Program Core Courses (PCC)	77PH252	Electronics Lab-II	0	0	3	6	3
Total						6	28	22

SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
1	Program Core Courses (PCC)	m Core Courses 77PH301 Electrodynamics and Plasma Physics		4	0	0	4	4
2	Program Core Courses (PCC)	77PH 302	7PH 302 Quantum Mechanics-II		0	0	4	4
3	Program Core Courses (PCC)	77PH303	Digital Electronics & Microprocessor	4	0	0	4	4
4	Program Elective Courses (PEC)	77PH304	Nuclear and Particle Physics		0	0	4	4
5	Program Elective Courses (PEC)	77PH305	Digital signal processing	4	0	0	4	4
6	Program Core Courses (PCC)	77PH351	General Physics Lab-III	0	0	3	6	3
7	Program Core Courses (PCC)	77PH352	Electronics Lab-III	0	0	3	6	3
	Total						28	22

Semester – III

Semester – IV

SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
1	Program Electives (PEC)	77PH401	Physics of Nano Materials	4	0	0	4	4
2	Open Electives (OEC)	77PH 402	Solar Cell and other Renewable Energy Devices	4	0	0	4	4
3	Program Elective Courses (PEC)	77PH403	Computational and Experimental Techniques and Data Analysis	4	0	0	4	4
4	Open Electives (OEC)	77PH404	Physics of Solar Energy		0	0	4	4
5	Program Electives (PEC)	77PH405	Astronomy and Space physics		0	0	4	4
6	Program Core Courses (PCC)	77PH451	General Energy and Computational Lab	0	0	3	6	3
7	Project(s) (PRC)/ On job Plant Training (OJT)	77PH452	Research Project Work		0	10	20	10
Total						13	38	25

Total credits : 91

Faculty of Basic Science **Department of Physics** Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-I

Course Code:	PH101
Course Title :	Mathematical Physics
Pre- requisite:	The broad education necessary to understand the different applications of mathematics to understand physics.
Rationale:	The students studying Physics should possess foundational understanding about historical binding materials employed in construction. This encompasses familiarity with the invention and evolution of Portland cement. Additionally, students ought to acquire fundamental insights into various cement types, their applications, as well as the Indian regulatory authorities responsible for supervising production standards and quality of cement.

Course Outcomes:

- PH101.1: Describe the mathematics concepts and their applications to complex numbers, complex functions, analytic functions, complex integration and theory of residues problems of physics.
- PH101.2: Understand and analyze the concept of Numerical Solution of Linear and Non-Linear Equations, Ordinary Differential Equations and Function of complex variable.
- **PH101.3:** Identify the applications of complex variables, tensors and group theory.
- PH101.4: Understand the concept of Bessel's function, Hermite function etc., with its properties like recurrence relations, orthogonal properties, generating functions etc. Understand how special function is useful in differential equations.
- **PH101.5:** Evaluate the Fourier transform of a continuous function and be familiar with its basic properties, Solution of integral equation and their application, Solve differential & amp; integral equations with initial conditions using Laplace transform.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of			Scheme of studies(Hours/Week)					
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	PH101	Mathematical Physics	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Schem	e of Assessment	(Marks)		
Board of	Couse				Progressiv	e Assessme	ent (PRA)		End Semester Assessment	Total Mark s
Study	Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3)	Semina r one	Class Activit y any one	Class Attendance	Total Marks		
			each (CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA + ESA)
PCC	PH101	Mathematic al Physics	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

PH101.1: Describe the mathematics concepts and their applications to complex numbers, complex functions, analytic functions, complex integration and theory of residues problems of physics.

Approximate Hours			
AppX Hrs			
12			
0			
1			
1			
14			

Session Outcomes (Sos)	Class Room Instruction (CI)	Self Learning
SO 1.1 understanding of the algebraic	Unit I (Vector spaces and	1: Explanation about
structures of vector spaces as well as	Matrices)	Basis and Dimension
their applications in solving problems	1.1 Definition of a linear vector	
across different domains.	space	2: Understand about
SO 1.2 understanding of the algebraic	1.2 Linear independence	(Orthogonal,
structures of matrices, as well as their	1.3 basis and dimension	Unitary, Hermitian
applications in solving problems across	1.4 scalar Product	matrices and Matrix
different domains.	1.5 Orthonormal basis	diagonalization)
SO1.3 Students should be able to	1.6 Gram-Schmidt Orthogonalization	
perform computations involving vectors	process	
and matrices.	1.7 Linear operators	
SO1.4 Solve problems related to linear	1.8 Matrices	
equations and matrices.	1.9 Orthogonal	
SO1.5 analyzes linear transformations,	1.10 Unitary and Hermitian matrices	
eigen values and eigen vectors.	1.11 Eigenvalues and eigenvectors of	
	matrices	
	1.12 Matrix diagonalization.	

SW-1 Suggested Sessional Work (SW):

- > Assignments
- Other Activity
 Power Point Presentation

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

PH101.02: Understand and analyze the concept of Numerical Solution of Linear and Non-Linear Equations, Ordinary Differential Equations and Function of complex variable.

Apj	Approximate Hours				
Item	AppX Hrs				
Cl	7				
LI	0				
SW	2				
SL	1				
Total	10				

SESSION OUTCOMES (SOs)		SELF LEARING
SESSION OUTCOMES (503)	CLASS ROOM INSTRUCTION (CI)	
SO2.1 students should have a solid	Unit II (Differential equations)	1: Explain about
understanding of how differential	2.1 Second order linear differential	Second order linear
equations are used to model physical	equation with variable coefficients	differential
systems and the ability to solve a variety	2.2 ordinary point	equation with
of differential equations encountered in	2.3 singular point	variable
mathematical physics using analytical	2.4 series solution around an ordinary	coefficients
and numerical techniques.	point	2: Explain Solution
SO2.2 Methods for solving systems of	2.5 series solution around a regular	of Laguarre and
linear and nonlinear differential	singular point	Hermite's equations
equations.	2.6 the method of Frobenius and getting	
SO2.3 Students should also be able to	a second solution	
interpret solutions in the context of the	2.7 Wronskian and getting a second	
physical phenomena being modeled.	solution	
SO2.4 ability to solve a variety of	2.8 Solution of Legendre's equation	
differential equations encountered in	2.9 Solution of Bessel's equation	
mathematical physics using analytical	2.10 Solution of Laguarre equations	
techniques.	2.11 Solution of Hermite's equations	
SO2.5 ability to solve a variety of	2.12 Problems	
differential equations numerical		
techniques.		

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

- > Assignments
- > Other Activity
 - Power Point Presentation

PH101.03: Identify the applications of complex variables, tensors and group theory.

Ap	Approximate Hours				
Item	AppX Hrs				
Cl	08				
LI	0				
SW	1				
SL	1				
Total	10				

SESSION OUTCOMES (SOs)	CLASS ROOM INSTRUCTION (CI)	SELF LEARING
SO3.1 Mastery of the fundamental concepts of	Unit – III (Elements of Complex	1. Mathematical
complex numbers, including representation,	Variable)	explanation
arithmetic operations, and geometric	3.1 Functions of a complex variable	about Taylor's
interpretation in the complex plane.	3.2 The derivative and the Cauchy-	series &
SO3.2 Comprehension of analytic functions	Riemann differential equations	Laurent's series
and the Cauchy-Riemann equations,	3.3 Line integrals of complex	
understanding their significance and	functions	
implications for differentiability in the	3.4 Cauchy's integral theorem	
complex plane.	3.5 Cauchy's integral formula	
SO3.3 students should be equipped with the	3.6 Taylor's series	
necessary knowledge and skills to understand	3.7 Laurent's series	
and apply complex variable theory effectively	3.8 Residues; Cauchy's residue	
in a variety of contexts.	theorem	
SO3.4 Familiarity with the residue theorem	3.9 Singular points of an analytic	
and its applications in evaluating complex	function	
integrals, particularly around singularities.	3.10 Evaluation of residues	
SO3.5 Ability to apply complex variable	3.11 Jordon-Lemma	
techniques to solve problems in various fields,	3.12 Evaluation of definite integrals.	
including physics, engineering, mathematics,		
and other sciences.		

SW-3 Suggested Sessional Work (SW):

- > Assignments
- Other Activity
 Power Point Presentation

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

PH101.04: Understand the concept of Bessel's function, Hermite function etc., with its properties like recurrence relations, orthogonal properties, generating functions etc. Understand how special function is useful in differential equations.

Ар	proximate Hours
Item	AppX Hrs
Cl	11
LI	0
SW	0
SL	2
Total	13

SESSION OUTCOMES (SOs)	CLASS ROOM INSTRUCTION (CI)	SELF LEARING		
SO 4.1 Mastery of the fundamental concepts	Unit IV (Special Functions)	Mathematical		
and properties of various special functions	4.1 Definition of special	explanation of		
including their definitions domains and	functions	Padrigua's		
including then definitions, domains, and	12 Converting forestions for	Kouligue s		
ranges.	4.2 Generating functions for	Iormula Ior		
SO4.2 Understanding the role of special	Bessel function of integral	Hermite		
functions in various branches of	order $J_n(x)$	polynomials		
mathematics, including calculus, differential	4.3 Recurrence relations			
equations, number theory, and	4.4 Integral representation			
combinatorics.	4.5 Legendre polynomials $P_n(x)$			
SO4.3 Understanding the applications of	4.6 Generating functions for			
special functions in physics, engineering,	$P_n(x)$			
and other applied sciences, including	4.7 Recurrence relations			
quantum mechanics, signal processing, fluid	4.8 Hermite Polynomials			
dynamics, and electromagnetism.	4.9 Generating functions			
SO4.4 Knowledge of important properties	4.10 Rodrigue's formula for			
and identities associated with special	Hermite polynomials			
functions, including recurrence relations,	4.11 Laguerre polynomials			
integral representations, and transformation	4.12 Generating function and			
formulas.	Recurrence relations.			
SO4.5 Development of problem-solving				
skills through the application of special				
functions to solve mathematical and				
physical problems.				

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

- > Assignments
- Other Activity
 Power Point Presentation

PH101.05: Evaluate the Fourier transform of a continuous function and be familiar with its basic properties. Solution of integral equation and their application. Solve differential & amp; integral equations with initial conditions using Laplace transform.

Item	AppX Hrs
Cl	08
LI	0
SW	1
SL	1
Total	10

SESSION OUTCOMES (SOs)	CLASS ROOM INSTRUCTION (CI)	SELF LEARING
SO 5.1 Mastery of fundamental concepts of	Unit V (Integral Transforms)	Mathematical
integral transforms, including the definition	5.1 Integral transform	proof of
of transforms and their role in mathematical	5.2 Laplace transform	Einstein's
physics.	5.3 some simple properties of Laplace	Coefficients
SO5.2 Understanding of operations	transform such as first and second shifting	
involving integral transforms, such as	property	
differentiation, integration, convolution, and	5.4 Inverse Laplace Transform by partial	
modulation.	fractions method	
SO5.3 Ability to solve differential	5.5 Laplace transform of derivatives,	
equations, integral equations, and boundary	5.6 Laplace Transform of integrals	
value problems using integral transform	5.7 Fourier series	
techniques.	5.8 Evaluation of coefficients of Fourier	
SO5.4 Development of problem-solving	series Cosine and Sine series	
skills through the application of integral	5.9 Fourier Transforms	
transform theory to solve mathematical and	5.10 Fourier sine Transforms	
physical problems.	5.11 Fourier cosine Transforms	
SO5.5 Development of critical thinking	5.12 Problems	
skills and the ability to analyze and interpret		
solutions involving integral transforms in		
mathematical and physical contexts.		

SW-5 Suggested Sessional Work (SW):

- > Assignments
- Other Activity

Power Point Presentation of Portland cement manufacture.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self-	Total hour
	Lecture	Work	Learning	(Cl+SW+Sl)
	(Cl)	(SW)	(Sl)	
PH101.01: Describe the mathematics concepts and their applications to complex numbers, complex functions, analytic functions, complex integration and theory of residues problems of physics.	8	1	1	10
PH101.02: Understand and analyze the concept of Numerical Solution of Linear and Non-Linear Equations, Ordinary Differential Equations and Function of complex variable.	7	2	1	10
PH101.03: Identify the applications of complex variables, tensors and group theory.	8	1	1	10
PH101.04: Understand the concept of Bessel's function, Hermite function etc., with its properties like recurrence relations, orthogonal properties, generating functions etc. Understand how special function is useful in differential equations.	11	0	2	13
PH101.05: Evaluate the Fourier transform of a continuous function and be familiar with its basic properties. Solution of integral equation and their application. Solve differential & amp; integral equations with initial conditions using Laplace transform.	8	1	1	10
Total Hours	42	05	6	53

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	Marks Distribution					
		R	U	Α	Marks			
CO-1	Vector spaces and Matrices	04	03	03	10			
CO-2	Differential equations	04	03	03	10			
CO-3	Elements of Complex Variable	04	03	03	10			
CO-4	Special Functions	04	03	03	10			
CO-5	Integral Transforms	04	03	03	10			
	Total	20	15	15	50			

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books:			
S.	Title	Author	Publisher	Edition
No.				& Year
1	Mathematical Methods for	G.B. Arfken and H.	Academic Press	Revised edition
	Physicists	J. Weber		21 edition 2020
2	A Course of Modern	E.T. Whittaker and	Cambridge University	2014
	Analysis	E.W. Watson	Press	
3	Group Theory and	M. Hammermesh	Dover publications,	2001
	Applications to Physical			
	Problems			
4	Theory of Linear Operator	N. I. Akhiezer and I.	Dover Publications	2018
	in Hilbert Space	M. Glazman		

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos, POs and PSOs Mapping

Course Title: M.Sc (Physics)

Course Code: PH101

Course Title: Mathematical Physics

		Program Outcomes						Program Specific Outcome									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life- long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturin g technology.	Ability to use the research based innovative knowledge for SDGs	Engage in life-long learning and will have recognition.
CO 1: Describe the mathematics concepts and their applications to complex numbers, complex functions, analytic functions, complex integration and theory of residues. problems of physics.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	2
CO 2: Understand and analyze the concept of Numerical Solution of Linear and Non- Linear Equations, Ordinary Differential Equations and Function of complex variable.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	2
CO 3: Identify the applications of complex variables, tensors and group theory.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2
CO 4: Understand the concept of Bessel's function, Hermite function etc., with its properties like recurrence relations, orthogonal properties, generating functions etc. Understand how special function is useful in differential equations.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	2
CO 5: Evaluate the Fourier transform of a continuous function and be familiar with its basic properties. Solution of integral equation and their application. Solve differential & amp; integral equations with initial conditions using Laplace transform.	2	2	1	1	1	3	3	3	1	1	2	2	3	3	1	3	2

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6	CO 1: Describe the mathematics concepts	SO1.1	Unit I (Vector spaces and Matrices)	
7,8,9,10,11,12	and their applications to complex numbers,	SO1.2	1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9,	
	complex integration and theory of residues	SO1.3	1.10, 1.11, 1.12	
PSO 1,2, 3, 4, 5	problems of physics.	SO1.4		
		SO1.5		
PO 1 2 3 4 5 6	CO 2: Understand and analyze the concept	SO2 1	Unit II (Differential equations)	
7 8 9 10 11 12	of Numerical Solution of Linear and Non-	SO2.1	$\begin{array}{c} \text{Ont } \mathbf{n} \text{ (Differential equations)} \\ 21 22 23 24 25 26 27 28 20 \end{array}$	
7,0,9,10,11,12	Linear Equations, Ordinary Differential	SO2.2 SO2.3	2.1, 2.2, 2.3, 2.4, 2.5, 2.0, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12	
PSO 1.2, 3, 4, 5	variable.	SO2.5	2.10, 2.11,2.12	
1.00 1,2, 0, 1,0		SO2.4		
PO 1,2,3,4,5,6	CO 3: Identify the applications of complex variables tensors and group theory	SO3.1	Unit – III (Elements of Complex	
7,8,9,10,11,12	variables, tensors and group theory.	\$03.2	Variable)	
PSO 1.2, 3, 4, 5		SO3.3	3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,	
,_,_,_,		SO3.4	3.10, 3.11, 3.12	
		503.5		
PO 1,2,3,4,5,6	CO 4: Understand the concept of Bessel's function Hermite function at with its	SO4.1	Unit IV (Special Functions) 41 42 43 44 45 46 47 48 49	
7,8,9,10,11,12	properties like recurrence relations.	SO4.2	4.10, 4.11, 4.12	
DEO 1 2 2 4 5	orthogonal properties, generating functions	SO4.3		
PSO 1,2, 5, 4, 5	etc. Understand how special function is	SO4.4		
	useful in differential equations.	304.3		
PO 1,2,3,4,5,6	CO 5: Evaluate the Fourier transform of a	SO5.1	Unit V (Integral Transforms) 51 52 53 54 55 56 57 58 59	
7,8,9,10,11,12	continuous function and be familiar with its	SO5.2	5.10, 5.11, 5.12	
PSO 1,2, 3, 4, 5	basic properties. Solution of integral	SO5.3	, , , , , , , , , , , , , , , , , , ,	
	equation and their application. Solve	SO5.4		
	initial conditions using Lanlage transform	505.5		
	initial conditions using Laplace transform.			

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-I

Course Code:	PH102
Course Title :	Classical Mechanics
Pre- requisite:	Student should have basic knowledge of mechanics of system of particles, D'Alembert'sprinciple, Lagrangian and Hamiltonian mechanics.
Rationale:	The students studying Physics should possess foundational understanding about historical background of classical mechanics.

Course Outcomes:

PH102.1. Understand the mechanics of system of particles, D'Alembert'sprinciple, Lagrangian mechanics, & Euler's equation of motion.

PH102.2. Learn about Hamiltonian formulation, Hamilton's Equations of Motion and principle of least action.

PH102.3. Learn about Canonical Transformations & Hamilton-Jacobi theory.

PH102.4. Learn about Rigid body dynamics including problems.

PH102.5. Understand the Relativistic Mechanics and its related aspects.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of		Scheme of studies(Hours/Week)						
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	PH102	Classical Mechanics	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
Board of	Couse			Progressive Assessment (PRA)						Total Mark s
Study	Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3)	Semina r one	Class Activit y any one	Class Attendance	Total Marks		
			each (CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA + ESA)
PCC	PH102	Classical Mechanics	15	20	5	5	5	50	50	100

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH102.1. Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion.

Approximate Hours	
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Lear
		ning (SL)
SO1.1 To understand the Newtonian	UNIT – I (Survey of Elementary Principles	(51)
mechanics of one and many particles	and Lagragian Formulation)	Survey of Elementary
systems and Conservation theorems	1.1 Newtonian mechanics of one and many	Principles
for linear momentum, angular	particles systems	related to mechanics
momentum and energy	1.2 Conservation theorems for linear	
SO1.2 To learn about the Constraints	momentum, angular momentum and energy	
and their classification; Principle of	1.3 Constraints and their classification	
virtual work; D'Alember's principle	1.4 Principle of virtual work; D'Alember's	
in generalized coordinates	principle in generalized coordinates	
SO1.3 To understand the Lagrangian	1.5 The Lagrangian, Lagrange's equations	
and demonstrate Lagrange's	1.6 velocity dependent potential and	
equations; velocity dependent	dissipative function.	
potential and dissipative function.	1.7 Configuration space, Hamilton's principle	
Configuration space	1.8 Generalized momenta and Lagrangian	
SO1.4 To learn about Hamilton's	formulation of the conservation theorems and	
principle; Generalized momenta and	Jacobi's integral	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

Lagrangian formulation of the	1.9 Reduction to the equivalent one body
conservation theorems and Jacobi's	problem
integral.	1.10 The equation of motion and first integrals
SO1.5 To learn about Reduction to	1.11 The differential equation for the orbit
the equivalent one body problem;	1.12 integration power law potentials
The equation of motion and first	
integrals.	

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
- i. Write conservation theorems for linear momentum, angular momentum and energy for a system of one or many particles.
- b. Other Activities (Specify): Present any one topic of this unit by power point presentation in front of departmental student and faculty.

PH102.2. Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action.

Approximate Hours	
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Lear
		ning
		(SL)
	UNIT – II (Kepler Problems)	1. Learn about
SO2.1 To understand The Kepler problem: inverse square law of force	2.1 The Kepler problem	motion and its different types
	2.2 inverse square law of force	And Kepler's
SO2.2 To learn about Artificial satellites and Scattering in a central	2.3 Artificial satellites	laws
force field and Rutherford scattering	2.4 Scattering in a central force field	
SO2.3 To learn about Legendre transformations and the Hamilton's equations of motion	2.5 Rutherford scattering	
	2.6 Legendre transformations	
	2.7 Hamilton's equations of motion	
SO2.4 Conservation theorems and the physical significance of the Hamiltonian. Derivation of Hamilton's equations from a variational principle	2.8 Conservation theorems	
	2.9 physical significance of the Hamiltonian	
	2.10 variational principle	
	2.11 Derivation of Hamilton's equations	
SO2.5 The principle of least action.	from a variational principle	
	2.12 The principle of least action.	

SW-2 Suggested Sessional Work (SW):

- a) Assignments:
 - i. Explain Legendre transformations.
 - ii. Discuss about physical significance of the Hamiltonian.
- b) Other Activities (Specify):
 Present any one topic of this unit by power point presentation in front of departmental student and faculty.

PH102.3. Learn about Canonical Transformations & Hamilton-Jacobi theory.

Approximate Hours	
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learn
		ing
		(SL)
SO3.1 To learn about the equations of	UNIT – III (Canonical Transformations)	1. Hamilton-Jacobi
canonical transformations and	3.1 The equations of canonical	equation
generating functions	transformations	
SO3.2 To understand Poisson's	3.2 generating functions	
Brackets: their canonical invariance;	3.3 Poisson's Brackets	
Simple algebraic properties of Poisson	3.4Poisson's Brackets: their canonical	
Brackets	invariance	
SO3.3 To learn about the equations of	3.5 Simple algebraic properties of Poisson	
motion in Poisson's Brackets notation;	Brackets	
Poisson's theorem	3.6 The equations of motion in Poisson's	
SO3.4 To understand Angular	Brackets notation	
momentum PB's Hamilton's principal	3.7 Poisson's theorem	
and characteristic functions	3.8 Angular momentum PB's Hamilton's	
SO3.5 To understand Hamilton-Jacobi	principal	
equation; Action Angle variables	3.9 characteristic functions	
	3.10 The Hamilton-Jacobi equation	
	3.11 Action Angle variables (2)	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Poisson's Brackets: their canonical invariance Advantages of use of PPC in construction.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student

and faculty.

Faculty of Basic Science Department of Physics

Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

PH102.4. Learn about Rigid body dynamics including problems.

Approximate	Hours
-------------	-------

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learn
		ing (SL)
SO4.1 To understand Theory	UNIT – IV (small oscillations and Moving	
of small oscillations, Equations of	coordinate systems)	1. Rotational motion and
motion, Eigen frequencies and general	4.1 Theory of small oscillations	oscillations
motion.	4.2 Equations of motion	
SO4.2 Learn about Normal modes and	4.3 Eigen frequencies and general motion	
coordinates. Applications to coupled	4.4 Normal modes and coordinates. 4.5	
pendulum and linear triatomic	Applications to coupled pendulum	
molecule.	4.6 linear triatomic molecule	
SO4.3 Learn about Rotating co-	4.7 Rotating co-ordinate systems, 4.8	
ordinate systems, Acceleration in	Acceleration in rotating frames. 4.9 Coriolis	
rotating frames. Coriolis force and its	force and its terrestrial and astronomical	
terrestrial and astronomical	applications	
applications.	4.10 Elementary treatment of Eulerian co-	
SO4.4 Elementary treatment of	ordinates and transformation matrices	
Eulerian co-ordinates and	4.11 Angular momentum inertia tensor	
transformation matrices. Angular	4.12 Eular equations of motion for a rigid	
momentum inertia tensor.	body. Torque free motion for a rigid body.	
SO4.5 Understanding about Eular	Symmetrical top and gyroscopic forces.	
equations of motion for a rigid body.		
Torque free motion for a rigid body.		
Symmetrical top and gyroscopic		
forces.		

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Write Eular equations of motion for a rigid body.
- ii. Describe briefly symmetrical top and gyroscopic forces.

b) Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

PH102.5. Understand the Relativistic Mechanics and its related aspects.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Lear
		ning
		(SL)

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

SO5.1 To understand	UNIT – V (Relativistic Mechanics)	1. General
s ymmetries of space and time	5.1 Symmetries of space and time	theory and special theory
SO5.2 Learn about Invariance under	5.2 Invariance under Galilion transformation	of relativity
Galilion transformation, Covariant	5.3 Covariant four- dimensional formulation	with
four- dimensional formulation. 4-	5.4 4-Vectors	unrerences
Vectors and 4-Scalars	5.5 4-Scalars	
SO5.3 Learn about relativistic	5.6 Relativistic generalisation of Newton's	
generalisation of Newton's laws, 4-1	laws	
momenturn and 4-force	5.7 4-momenturn	
SO5.4 Learn about invariance under	5.8 4-force	
Lorentz transformation relativistic	5.9 Invariance under Lorentz transformation	
energy	relativistic energy	
SO5.5 To understand	5.10 Lagrangian and Gange invariance	
Lagrangian and Gange invariance	5.11 Hamiltonian formulation in relativistic	
Hamiltonian formulation in relativistic	mechanics	
mechanics. Covariant Lagrangian,	5.12 Covariant Lagrangian	
covariant Hamiltonian, Examples.		

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Explain Covariant four- dimensional formulation.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lectur e (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+ Sl)
PH102.1. Understand the mechanics of system of particles, D'Alembert'sprinciple, Lagrangian	12	1	1	14
mechanics, & Euler's equation of motion.				
PH102.2. Learn about Hamiltonian formulation,				
Hamilton's Equations of Motion and Principle of	12	1	1	14
least action.				
PH102.3. Learn about Canonical Transformations &				14
Hamilton-Jacobi theory.	12	1	1	14
PH102.4. Learn about Rigid body dynamics				
including problems.	12	1	1	14
PH102.5. Understand the Relativistic Mechanics and its related aspects.	12	1	1	14
Total Hours	60	5	5	70

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Lin:4 Titles	Μ	Total		
co	Unit Titles	R	U	Α	Marks
CO-1	Survey of Elementary Principles and Lagragian Formulation	03	04	03	10
CO-2	Kepler Problems	03	04	03	10
CO-3	Canonical Transformations	03	04	03	10
CO-4	Small oscillations and Moving coordinate systems	03	04	03	10
CO-5	Relativistic Mechanics	03	04	03	10
	Total	15	20	15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :			
S. No.	Title	Author	Publisher	Edition & Year
1	Classical Mechanics	N. C. Rana and P.S. Jog	Tata Mc Graw Hill	1991
2	Classical Mechanics	H. Goldstein	Addision Wesley	1980
3	Mechanics	A Sommerfiels	Academi Press	1952
4	Introduction to Dynamics	I. Perceival and Richards	Cambridge Univ. Press	1982
5	Depa	Lecture note p rtment of Physics, AKS	provided by S University, Satna (M.	P.)

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH102

Course Title: Classical Mechanics

						Program	Outcomes							Program Specif	fic Outcome		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicat e effectively.	Ability to use the technique s, skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
PH102.1. Understand the mechanics of system of particles, D'Alembert's principle, Lagrangian mechanics, & Euler's equation of motion.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	1
PH102.2. Learn about Hamiltonian formulation, Hamilton's Equations of Motion and Principle of least action.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	1
PH102.3. Learn Canonical Transformations & Hamilton-Jacobi theory.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2
PH102.4. Learn about Rigid body dynamics including problems.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	2
PH102.5. Understand the Relativistic Mechanics and its related aspects.	2	1	2	1	1	3	3	3	1	1	2	2	3	3	1	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	PH102.1. Understand the	SO1.1	UNIT – I (Survey of Elementary	.Survey of
	mechanics of system of		Principles and Lagragian Formulation)	Elementary
7,8,9,10,11,12	particles, D'Alembert's	SO1.2		Principles related
	principle, Lagrangian	SO1.3		to mechanics
PSO 1,2, 3, 4, 5	mechanics, & Euler's equation of motion.	SO1.4	1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11	
		SO1.5		
PO 1,2,3,4,5,6	PH102.2. Learn about Hamiltonian	SO2.1	UNIT – II (Kepler Problems)	Learn about
7,8,9,10,11,12	Equations of Motion and Principle	SO2.2		motion and its
	of least action.	SO2.3	2.1. 2.2. 2.3. 2.4. 2.5. 2.6. 2.7.	And Kenler's laws
PSO 1.2, 3, 4, 5		SO2.4	2829210	And Replet 5 laws
,_,_,,,,,		SO2 5	2.0,2.7,2.10	
		502.5		
				. Hamilton-Jacobi
PO 1,2,3,4,5,6	PH102.3. Learn Canonical	SO3.1	UNIT – III (Canonical Transformations)	equation
7,8,9,10,11,12	Jacobi theory.	SO3.2		
	-	SO3.3	3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10,	
PSO 1,2, 3, 4, 5		SO3.4	3.11	
		SO3.5		
PO 1,2,3,4,5,6	PH102.4. Learn about Rigid	SO4.1	UNIT – IV (small oscillations and Moving	. Rotational
7,8,9,10,11,12	body dynamics including	SO4.2	coordinate systems)	motion and
	problems.	SO4.3	coor unitie systems)	oscillations
PSO 1,2, 3, 4, 5		SO4.4	4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10,	
		SO4.5	4.11, 4.12	
PO 1,2,3,4,5,6	PH102.5. Understand the	SO5.1	UNIT – V (Relativistic Mechanics)	General theory and
7,8,9,10,11,12	Relativistic Mechanics and its	SO5.2	5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9	special theory of
	related aspects.	SO5.3	5.10, 5.11, 5.12	relativity with
PSO 1,2, 3, 4, 5	_	SO5.4		unterences
1				

Faculty of science and Technology Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-I

Course Code:	PH103
Course Title :	Condense Matter Physics
Pre- requisite:	To study this course, a student must have had the subject Physics in Graduation.
Rationale:	The students studying Physics should possess a foundational understanding of Crystal Structure, X-ray and its Applications, Defects in Crystals, Crystal Mechanism, and Free Electron Theory.

Course Outcomes:

PH103.1: The course would empower the students to develop an idea about Crystal Structure. **PH103.2:** The students would be able to understand all about X-ray and Its Applications.

PH103.3: The students would be able to understand and identify Defects in crystals and can relate it to their daily life.

PH103.4: The students would acquire the knowledge of Crystal Mechanism.

PH103.5: The students would be able to understand the free electron theory.

Scheme of Studies:

Board of					Scher	Scheme of studies(Hours/Week)			
Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
Program Core (PCC)	PH103	Condense matter physics	4	0	1	1	6	6	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) And others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)SW: Sessional work (including assignments, seminars, mini-projects, etc.).),

SL: Self Learning,

C: Credits.

Note: SW and SL must be planned and performed under the continuous guidance and feedback of the teacher to ensure the outcome of Learning.

Faculty of science and Technology Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Assessment:

Theory

						Schen	ne of Assessmer	nt (Marks)		
Board of Course			Progressive Assessment (RA)					End Semester Assessment	Total Marks	
Study	Code	Course Ittle	Class/Home Assignment 5 numbers 3 marks each	Class Test2 (2 best out of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks	(ESA)	$(\mathbf{PR} \mathbf{A} +$
			(CA)	10 marks each (CT)	(SA)	(CAT)	(A1)	(CA+CT+SA+CAT+AT)	(2011)	ESA)
PCC	PH103	Condense matter physics	15	20	5	5	5	50	50	100

Faculty of science and Technology Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction, including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH103.1: The course would empower the students to develop an idea about Crystal Structure.

Approximate Hours				
Item	AppX Hrs			
Cl	12			
LI	0			
SW	1			
SL	1			
Total	14			

Session Outcomes	Class room Instruction	Self-Learning		
(SOs)	(CI)	(SL)		
SO1.1 Students will learn all about	Unit-I (Crystal Structure)	1. Simple crystal		
and other properties.	1.1 Crystalline and amorphous solids.	BCC.		
	1.2 The crystal lattice. Basis vectors.			
SO1.2 Students will be able to understand the unit cell and their plan and	1.3 Unit cell. Symmetry operations.	2. Nacl, Diamond, and ZnS		
spacing and other properties.	1.4 Point groups and space groups.	structure, HCP		
SO1.3 Students will be able to recognize	1.5 Plane lattices and their symmetries.	structure.		
the structure of crystals they are	1.6 Three-dimensional crystal systems.			
using in their daily life.	1.7 Miller indices.			
SO1.4 Students will identify the crystals	.8 Directions and planes in crystals.			
they are surrounded by.	.9 Inter-planar spacing.			
SO1.5 Study about the difference between several kinds of crystals.	1.10 Simple crystal structures: FCC, BCC,			
	1.11 Nacl, CsCl,			
	1.12 Diamond and ZnS structure, HCP structure.			

SW-1 Suggested Sessional Work (SW):

Faculty of science and Technology

Department of Physics

Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

i. Write a note on crystals and make a list of crystals we are using in our daily life.

b. Mini Project:

- (i) Prepare a chart on Crystal and its types.
- (ii) Prepare a chart on Crystal's structure of different types of crystals (Simple crystal structures: FCC, BCC. Nacl, NaCl, Diamond and ZnS structure, HCP structure).

c. Other Activities:

Take a crystal for an experiment and try to find out its properties by doing some experiments.

PH103.2: The students would be able to understand all about X-ray and Its Applications.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
SO2.1 Students will learn about X-rays and their interaction with matter.	 Unit - II (X-ray and Its Application) 2.1 Interaction of X-rays with matter, 2.2 absorption of X-rays, 	1. What are point defects, line defects, and planar (stacking)
SO2.2 Students will learn about Scattering of X-ray.	2.3 elastic scattering from a perfect lattice.2.4 The reciprocal lattice and its application to diffraction techniques,	faults? 2. What is the
SO2.3 Students will Study the reciprocal lattice and its application.	2.5 the Laue, Powder, and2.6 Rotating crystal methods.	observation of imperfections in crystals?
SO2.4 Students will learn about different methods of X-ray diffraction.	2.7 Crystal structure factor and intensity diffraction maxima.2.8 Extinction due to lattice centering.	
SO2.5 Students will learn about different types of defects in crystals.	 2.9 Point defects, line defects, and planar (stacking) faults. 2.10 The role of dislocation in plastic deformation and crystal growth. 2.11 The observation of imperfections in crystals. 2.12 X-ray and electron microscopic 	

Faculty of science and Technology Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Describe X-ray interactions and scattering with some examples of their applications.
- ii. Write a short note on X-rays and how they are applicable in our lives.
- **b.** Mini Project:

Make a list of applications of X-ray interactions and scattering.

c. Other Activities (Specify):

Try to identify crystals with defects and make a list of different types of defects.

PH103.3: The students would be able to understand and identify Defects in crystals and can relate it to their daily life.

Арլ	proximate Hours
Item	AppX
	Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
SO3.1 Students will learn about defects and impurities in crystals.	Unit III (Defects in Crystals): 3.1 Point defects	1. Structure and symmetries of liquids, liquid
SO3.2 Students will learn about the structure and symmetries of crystals.	3.2 Shallow impurity states in semiconductors3.3 Localized lattice vibrational states in solids3.4 Vacancies and interstitials in ionic crystals.	crystals, and amorphous solids 2.
SO3.3 Students will learn about Vacancies, interstitial in ionic crystals.	3.5 Colour centers in ionic crystals3.6 Structure and symmetries of liquids	
SO3.4 Students will learn about the Fibonacci sequence and interstitials be recognized n daily life.	3.7 Structure and symmetries of liquid crystals3.8 Structure and symmetries of amorphous solids3.9 Structure and symmetries of aperiodic solids	
SO3.5 Students will learn about lattices and their	3.10Structure and symmetries of quasicrystals 3.11 Fibonacci sequence,	

Faculty of science and Technology

Department of Physics

Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

extension in three dimensions.	3.12 Penrose lattice and their extension to three dimensions	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Study the structure and symmetry of different crystals
- ii. -
- **b.** Mini Project:

Prepare a chart on defects in crystals.

c. Other Activities (Specify):

Identify some real-life examples of the Fibonacci sequence and how it is applicable everywhere.

PH103.4: The students would acquire the knowledge of Crystal Mechanism.

Approximate Hours

Item	АррХ
	Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)		Class room Instruction (CI)		Self-Learning (SL)	
SO4.1 Students will learn about order and disorder in condensed matter.	d	UNIT – IV (Crystal Mechanism)	1.	• Application of the idea to	
	1.1	Disorder in condensed matter,		amorphous	
SO4.2 Study about structural descriptions of glasses.	1.2	substitutional, positional, and		semiconductors and hopping	
	1.3	Topographical disorder.		conduction.	
SO4.3 Students will study the structure o different types of crystals.	f 1.4	Short and long-range order,			
	1.5	Atomic correlation function,			
	1.6	structural descriptions of glasses			

Faculty of science and Technology Department of Physics

Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

SO4.4 Students will learn about	17	Structural descriptions of liquids	
electron localization and mobility	1./	Structural descriptions of fiquids.	
edge.	1.8	Anderson model for random systems	
	1.9	Electron localization.	
SO4.5 Students will study the qualitative application of hopping	1.10	Mobility edge.	
conduction.	1.11 ai	Qualitative application of the idea to morphous semiconductors	
	1.12	Qualitative pping conduction.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Write a short note on disorder in crystals.

d. Mini Project:

Describe the qualitative application of the idea to amorphous semiconductors with some examples.

C. Other Activities (Specify):

i.

Power Point Presentation of different types of disorder in crystals.

PH103.5: The students would be able to understand the free electron theory.

•	
Item	AppX
	Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
SO5.1 students will learn about free electrons and Fermi gas, while	Unit -V (Free Electron Theory) 5.1 Free electron Fermi gas	1.Study of
SO5.2 students will know about energy levels of orbitals in all directions.	5.2 Energy levels of orbitals in one and5.3 Energy levels of orbital in three dimensions.	metals, semimetals, semiconducto rs, and
SO5.3 Study about solids, their theorems, and classifications,	5.4 Electrons in a periodic lattice,5.5 Bloch theorem,	insulators.

Faculty of science and Technology

Department of Physics

Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

SO5.4 students will learn	5.6 band theory of solids,	
about different types of	5.7 Classification of solids,	
metals and their properties.	5.8 effective mass, Kronig Penney model	
SO5.5 covers the De Hass Alphen effect and ts	5.9 Metals–Semimetals–Semiconductors– Insulators,	
process.	5.10 Tight-binding, cellular, and pseudopotential methods.	
	5.11 Drude model, Lorentz theory, Sommerfeld theory of metals, Fermi surface.	
	5.12 De Hass van Alphen effect.	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

1. Introduction to the free electron theory.

b. Mini Project:

Write in detail about the band theory of solids and the classification of solids.

c. Other Activities (Specify):

Prepare a chart on the Drude Model.

Brief of Hours suggested for the Course Outcome.

Course Outcomes:	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hours (CHSWHS)-
PH103.1: The course would empower the students to develop an idea about Crystal Structure.	12	1	1	14
PH103.2: The students would be able to understand all about X-ray and Its Applications.	12	1	1	14
PH103.3: The students would be able to understand and identify Defects in crystals and can relate it to their daily life.	12	1	1	14
PH103.4: The students would acquire the knowledge of Crystal Mechanism.	12	1	1	14

Faculty of science and Technology Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

PH103.5: The students would be able to understand the free electron theory.	12	1	1	14
Total hours:	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit	M	Total		
	Titles	R	U	Α	Mark s
CO-1	Crystal Structure	6	2	2	10
CO-2	X-ray and Its Applications	6	2	2	10
CO-3	Defects in Crystals	6	2	2	10
CO-4	Crystal Mechanism	6	2	2	10
CO-5	Free Electron Theory	6	2	2	10
	Total	30	10	10	50

Legend: R: Remember, U: Understand, A: Apply

The end-of of-semester assessment for Mechanics and General Properties of Matter will be held with a written examination of 50 marks.

Note. Detailed assessment rubrics need to be prepared by the course-wise teachers for the above tasks.

Teachers can also design different tasks as per requirements for the end-semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to Science Museum
- 7. Demonstration

Faculty of science and Technology

Department of Physics

Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

- 8. ICT-Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a)	Books :			
S. No.	10	Author	Publisher	Edition & Year
1	Solid State Physics	Charles Kittle	Wiley	2018
2	Solid State Physics	Aschroft & Mermin	Saunders College	1976
3	Introduction to Solid State Physics	L.V. Azaroff Materials	McGraw-Hill Education - Europe	1985
4	Crystallographic Solid State Physics	Verma & Srivastava	New Age International	1991
5	Solid State Physics	A.J. Dekker	Macmillan	1965
6	Principles of Condense Matter Physics	P.M. Chaiken& T.C. Lubensky	Cambridge University Press; Reprint edition	(28 September 2000)
7	Lecture notes provided by Dept. of Physics, AKS Ur	niversity, Satna.		

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

<u>Cos,POs</u> and PSOs <u>Mapping</u>

Course Title: M.Sc. (Physics)

Course Code: PH103

Course Title: Condensed Matter Physics

	Program Outcomes:												Program Specific Outcome				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Course Outcomes:	Sience knowle dge	Pro b lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The scie ntist and soci ety	Enviro nment and sustain ability:	Ethics	Indiv idual and team work :	Com munic ation:	Project manage ment and finance:	Life- long learning	The ability to apply science knowled ge for Qualit y of technol ogies.	Ability to Understa nd the day-to- day science problems of science.	Ability to understa ndthe latest sience and technolo gy.	Ability to usethe research- based innovat ive knowle dgefor SDGs	Engage in life-long learning and will have recognition
CO1 : The course would empower the students to develop an idea about crystal structure.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	2
CO 2 : The students would be able to understand all about X- ray and its applications.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	2
CO3 : The students will be able to understand and identify defects in crystals and relate them to their daily life.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	3
CO 4: The students would acquire the knowledge of Crystal Mechanism.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	2
CO 5: The students would be able to understand the free electron theory.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3	2

Course Curriculum Map:

POs & PSOs	COs No.& Titles,	SOs	Classroom Instruction(CI),	Self Learning
No.,		No.		(SL)
PO 1 2 3 4 5 6	CO 1: The course would	SO1 1	Unit 1 Crystal Structure	1.2
7 8 9 10 11 12	empower the students to	SO1.1	1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10	1,2
7,0,7,10,11,12	develop an idea about	SO1.2 SO1.3	1.1, 1.2, 1.3, 1.4, 1.3, 1.0, 1.7, 1.0, 1.7, 1.0, 1.7, 1.10, 1.11, 1.12, 1.1	
PSO 1 2 3 4 5	crystal structure	SO1.3	1.11,1.12	
1501,2, 5, 4, 5		SO1.4		
		501.5		
PO 1,2,3,4,5,6	CO 2 : The students would be	SO2.1	Unit-2 X-ray and Its Applications,	1.2
7,8,9,10,11,12	able to understand all about	SO2.2		1,2
	A-ray and its applications.	SO2.3	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4, 5		SO2.4	2.8,2.9,2.10,2.11,2.12	
		SO2.5		
PO 1,2,3,4,5,6	CO3 : The students would be	SO3.	Unit-3 :Defects in Crystals,	
7,8,9,10,11,12	able to understand and	1	5	
	identify defects in crystals	SO3.		
	life	2		
	inc.	SO3.3	3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9	
PSO 1,2, 5, 4, 5		SO3.4		
		SO3.5	3.10,3.11,3.12	
PO 1,2,3,4,5,6	CO 4: The students would	SO4.1	Unit-4 : Crystal Mechanism,	1
7,8,9,10,11,12	acquire the knowledge	SO4.2	4 1 4 2 4 2 4 4 4 5 4 6 4 7 4 2 4 0 4 10	
	of crystal mechanism.	SO4.3	4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,	
PSO 1,2, 3, 4, 5		SO4.4	4.11,4.12	
		SO4.5		
PO 1,2,3,4,5,6	CO 5: The students would be	SO5.1	Unit 5: Free Electron Theory	1
7,8,9,10,11,12	able to understand the free	SO5.2	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,	
	electron theory.	SO5.3	5.10,5.11,5.12	
PSO 1,2, 3, 4, 5	-	SO5.4		
		SO5.5		

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

Semester-I

Course Code:	PH104					
Course Title :	Electronic Devices					
Pre- requisite:	Understanding fundamental concepts in physics like electricity, magnetism, voltage, current, resistance, and power is crucial. This knowledge forms the foundation of electronics.					
Rationale:	The students studying Physics should possess foundational understanding about electronic devices lies in their ability to manipulate and control the flow of electrons to perform specific functions. Electronic devices are designed to process, store, transmit, or display information, and they have become an integral part of modern technology. Here are some key rationales behind electronic devices.					

Course Outcomes

PH104.1: Understand the characteristics, properties, and functions of common electronic components such as resistors, capacitors, inductors, diodes, transistors, and integrated circuits.

PH104.2: Gain knowledge about semiconductor materials, their properties, and the operation of semiconductor devices such as diodes and transistors. Understand their applications in rectification, amplification, and switching

PH104.3: Learn about different types of amplifiers and their characteristics. Understand the operation and applications of operational amplifiers (op-amps) in various electronic circuits.

PH104.4: Explore the world of integrated circuits, including their types, fabrication methods, and applications. Understand the functionality and operation of common ICs, such as operational amplifiers, timers, voltage regulators, and digital logic ICs.

PH104.5: Dive deeper into the applications of operational amplifiers (op-amps). Explore opamp circuits such as active filters, oscillators, comparators, voltage regulators, and instrumentation amplifiers. Understand the design principles and analysis techniques for these circuits.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

Scheme of Studies:

Board of					Scher	Scheme of studies(Hours/Week)				
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)		
Program Core (PCC)	PH104	Electronic Devices	4	0	1	1	6	4		
Leg	(PCC) CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C:Credits.									
Note	: SW & S teacher t	SL has to be planned and to ensure outcome of Lea	performed u rning.	under the	continuous	guidance ai	nd feedback of			
Sch	eme of A	ssessment:								

Theory

		Couse Code Course Title	Scheme of Assessment (Marks)							
Board of	Couse		Progressive Assessment (PRA)				End Semester Assessment	Total Mark s		
Study	Code		Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activit y any one	Class Attendance	Total Marks	(FGA)	
			(CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA + ESA)
PCC	PH104	Electroni c Devices	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

PH104.1: Knowledge of Electronic Components: Understand the characteristics, properties,

and functions of common electronic components such as resistors, capacitors, inductors, diodes, transistors, and integrated circuits

Approximate Hours				
Item	AppX Hrs			
Cl	12			
LI	0			
SW	2			
SL	3			
Total	17			

Session Outcomes	Class room Instruction	Self-Learning
(SOs)	(CI)	(SL)
SO1.1 Understanding the principles	Unit 1: Diodes	i.Photodete-
of radiative and non-	1.1. Radiative and non-radiative transitions in thin	ctors
radiative transitions in thin	films	ii. Open
film materials.	1.2. Introduction to diode photodetectors	circuit
SO1.2 Exploring the factors	1.3. Principles of diode photodetection	voltage
affecting the efficiency of	1.4. Characteristics and performance parameters of	iii. population
radiative transitions, such as	diode photodetectors	inversion
material properties and	1.5. Introduction to solar cells	
defect states.	1.6. Open circuit voltage and short circuit current	
SO1.3 Analyzing the responsivity,	in solar cells	
quantum efficiency, and	1.7. Fill factor and its significance in solar cell	
noise characteristics of	performance	
photodetectors.	1.8. Analysis of solar cell characteristics and	
SO1.4 Understanding the principles	efficiency	
and operation of solar cells.	1.9. Introduction to light-emitting diodes (LEDs)	
SO1.5 Analyzing the open circuit	1.10. High-frequency limit of LEDs and	
voltage, short circuit current,	considerations for high-speed operation	
and fill factor of solar cells.	1.11. Effect of surface recombination and indirect	
SO1.6. Understanding the high-	recombination current in LEDs	
frequency limits of LED	1.12. LED operation principles and applications	
operation.	1.13. Introduction to diode lasers	
SO1.7. Exploring the operation and	1.14. Conditions for population inversion in diode	
characteristics of LEDs,	lasers	
including efficiency, color	1.15. Inactive region and its significance in diode	
emission, and temperature	lasers	
dependence.	1.16. Optical gain and threshold current for lasing in	
SO1.8. Understanding the	diode lasers	
conditions required for		
population inversion and		
lasing in diode lasers.		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. To Study bipolar junction transistors (BJT) and their construction, working and its Applications.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

ii. LED operation principles and applications

b. Other Activities (Specify): Seminar and group discussion related to subject

PH104.2: Understanding of Semiconductor Devices: Gain knowledge about semiconductor materials, their properties, and the operation of semiconductor devices such as diodes and transistors. Understand their applications in rectification, amplification, and switching

Approximate Hours				
Item	AppX Hrs			
Cl	12			
LI	0			
SW	2			
SL	2			
Total	16			

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learning
		(SL)
SO2.1.Understanding the	Unit 2: Transistors	i. Transistor
construction and structure of	2.1. Introduction to junction field-effect transistors	ii.Frequency
JFET.	(JFET) and their construction	iii. Semicondu-
SO2.2. Exploring the high-frequency	2.2. Working principles of JFETs and analysis of	ctor
limitations of JFET.	their I-V characteristics	
SO2.3. Understanding the construction	2.3. High-frequency limits of JFETs and	
and structure of BJT (both NPN	considerations for high-frequency applications	
and PNP).	2.4. Introduction to bipolar junction transistors	
SO2.4. Analyzing the working	(BJT) and their construction	
principle of BJT and its modes	2.5. Working principles of BJTs and analysis of	
of operation (active, cutoff, and	their I-V characteristics	
saturation).	2.6. High-frequency limits of BJTs and	
SO2.5 .Exploring the high-frequency	considerations for high-frequency applications	
limitations of BJT.	2.7. Introduction to metal-oxide-semiconductor	
SO2.6 Understanding the construction	2.8. field-effect transistors (FET)	
and structure of MOSFET (both	2.9. MESFET	
N-channel and P-channel).	2.10. Construction and working principles of	
SO2.7 .Understanding the construction	MOSFETs and MESFETs	
and structure of MESFET.	2.11. Derivation of equations for I-V	
SO2.8 .Exploring the I-V	characteristics under different conditions	
characteristics of MESFET and	2.12. High-frequency limits of MOSFETs and	
its high-frequency limitations.	MESFETs	

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Construction and working principles of MOSFETs and MESFETs

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

- ii. Working principles of BJTs and analysis of their I-V characteristics
- b. Other Activities (Specify): Seminar and group discussion related to subject
- **PH104.3: Amplifiers and Operational Amplifiers**: Learn about different types of amplifiers and their characteristics. Understand the operation and applications of operational amplifiers (op-amps) in various electronic circuits.

Approximate Hours			
Item	AppX Hrs		
Cl	10		
LI	0		
SW	2		
SL	3		
Total	12		

Session Outcomes (SOs)		Class room Instruction (CI)	Self- Learning
			(SL)
SO3.1	Understanding the characteristics and operating	Unit 3: Digital Integrated	
	principles of different logic families used in	Circuits	
	digital circuits.	1.1. Characteristics of logic	i. Logic gates
SO3.2	Analyzing parameters such as power	families: RTL, DCTL,	ii.Noise
	consumption, speed, noise immunity, voltage	1.2. DTL,	III. Digital Circuit
	levels, and fan-out of logic families.	1.3. TTL,	
SO3.3	Comparing and evaluating the advantages and	1.4. IIL,	
	disadvantages of different logic families.	1.5. HTL	
SO3.4	Analyzing the circuit configurations, voltage	1.6. Overview of non-	
	levels, and performance characteristics of	saturated bipolar logic	
	saturated logic families.	families: TTC, ECL	
SO3.5	Understanding non-saturated bipolar logic	1.7. Unipolar logic	
	families such as TTC (Transistor-Transistor	families: MOS and	
	Logic) and ECL (Emitter-Coupled Logic).	CMOS	
SO3.6	Analyzing the circuit configurations, voltage	1.8. Introduction to digital	
	levels, speed, and power consumption of non-	integrated circuits:	
	saturated bipolar logic families.	SSI,	
SO3. 7	Understanding unipolar logic families, which	1.9. MSI, LSI,	
	are based on a single type of charge carrier	1.10. VLSI circuits	
	(either electrons or holes).		
SO3.8	Understanding the classification of digital		
	integrated circuits based on their complexity		
	and functionality.		

SW-3 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Unipolar logic families: MOS and CMOS

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

ii. VLSI circuits

b. Other Activities (Specify): Seminar and group discussion related to subject

PH104.4: Integrated Circuits (ICs): Explore the world of integrated circuits, including their types, fabrication methods, and applications. Understand the functionality and operation of common ICs, such as operational amplifiers, timers, voltage regulators, and digital logic ICs.

Approximate Hours			
Item	AppX Hrs		
Cl	10		
LI	0		
SW	2		
SL	3		
Total	15		

(CI) Unit-4:Operational Amplifiers 4.1. Introduction to differential	Learning (SL) i. Amplifiers
Unit-4:Operational Amplifiers 4.1. Introduction to differential	(SL) i. Amplifiers
Unit-4:Operational Amplifiers 4.1. Introduction to differential	i. Amplifiers
 amplifiers 4.2. operational amplifiers (OP-AMP) 4.3. Parameters and specifications of OP-AMPs 4.4. Inverting modes of OP-AMP operation 4.5. non-inverting modes of OP-AMP operation 4.6. Applications of OP-AMPs: adder, subtractor, 4.7. inverter, differentiator, 4.8. integrator, 4.9. function generator 	ii. Inverting modes iii. Active filters.
implementation using OP- AMPs.	
1. 1. 1. 1. 1.	 amplifiers 2. operational amplifiers (OP-AMP) 3. Parameters and specifications of OP-AMPs 4. Inverting modes of OP-AMP operation 5. non-inverting modes of OP-AMP operation 6. Applications of OP-AMPs: adder, subtractor, 7. inverter, differentiator, 8. integrator, 9. function generator 10. Active filters and their implementation using OP-AMPs.

SW-4 Suggested Sessional Work (SW):

- a) Assignments:
- (i) Inverting modes of OP-AMP operation
- (ii) Active filters and their implementation using OP-AMPs.
 - c. Other Activities (Specify): Seminar and group discussion related to subject

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

PH104.5: Operational Amplifier Applications: Dive deeper into the applications of operational amplifiers (op-amps). Explore op-amp circuits such as active filters, oscillators, comparators, voltage regulators, and instrumentation amplifiers. Understand the design principles and analysis techniques for these circuits.

Approximated Hours			
Item	AppX Hrs		
Cl	12		
LI	0		
SW	2		
SL	3		
Total	17		

Session Outcomes	Class room Instruction	Self-
(SOs)	(CI)	Learning
		(SL)
SO5.1 Comprehending the principles, structures,	Unit 5: Memory Devices and Other Electronic	i. Memorie
and operation of static random access	Devices	ii. Active
memory (SRAM) and dynamic random	5.1. Static and dynamic random-access memories	device
access memory (DRAM).	(SRAM and DRAM)	iii. Piezoel
SO5.2 Differentiating between CMOS and	5.2. CMOS and NMOS technologies in memory	ectric
NMOS technologies and their	devices	materia
applications in memory devices.	5.3. Introduction to non-volatile memories:	18
SO5.3 Understanding the basics of magnetic,	magnetic, optical, and ferroelectric memories	
optical, and ferroelectric memories and	5.4. Charge-coupled devices (CCD) and their	
their uses in data storage.	applications	
SO5.4Understanding the principles and	5.5. Introduction to electro-optic, magneto-optic,	
operation of charge-coupled devices	and acousto-optic effects	
(CCD) and their applications in imaging	5.6. Active devices in integrated optics based on	
and signal processing.	these effects	
SO5.5.Analyzing the working principles of	5.7. Liquid crystal display (LCD) devices and	
CCDs as image sensors and their	their operation	
advantages in capturing high-quality	5.8. Piezoelectric effect and materials exhibiting	
images.	this property	
SO5.6Understanding the principles of electro-	5.9. Piezoelectric filters, resonators,	
optic, magneto-optic, and acousto-optic	5.10. High-frequency piezoelectric devices	
effects.	5.11. Capacitors, electrets,	
SO5.7. Exploring examples of active devices in	5.12. piezoelectric electromechanical transducer	
integrated optics based on these effects,	devices	
such as modulators, switches, and		
detectors.		

SW-5 Suggested Sessional Work (SW):

a. Assignments:

a. Study of non-volatile memories: magnetic, optical, and ferroelectric memories.

Faculty of Basic Science Department of Physics

Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

b. Study of piezoelectric electromechanical transducer devices .

b. Other Activities (Specify): Seminar and group discussion related to subject

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self	Total hour
	Lecture	Work	Learning	(Cl+SW+Sl)
	(Cl)	(SW)	(Sl)	
PH104.1: Knowledge of Electronic Components:				
Understand the characteristics, properties, and	16	2	2	21
functions of common electronic components such	10	Z	5	
as resistors, capacitors, inductors, diodes,				
transistors, and integrated circuits.				
PH104.2: Understanding of Semiconductor Devices:				
Gain knowledge about semiconductor materials, their	10	2	2	17
properties, and the operation of semiconductor devices	12	Z	3	
such as diodes and transistors. Understand their				
applications in rectification, amplification, and				
switching				
PH104.3: Amplifiers and Operational Amplifiers:				
Learn about different types of amplifiers and their	10	2	3	
characteristics. Understand the operation and				15
applications of operational amplifiers (op-amps) in				
various electronic circuits.				
PH104.4: Integrated Circuits (ICs): Explore the world	10	2	3	
of integrated circuits, including their types,	10	-	5	15
fabrication methods, and applications. Understand the				
functionality and operation of common ICs, such as				
operational amplifiers, timers, voltage regulators, and				
digital logic ICs.	10		2	17
PH104.5: Operational Amplifier Applications:	12	2	3	17
Dive deeper into the applications of operational				
amplifiers (op-amps). Explore op-amp circuits				
such as active filters.				
	60	10	15	85
Total Hours				

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	M	arks Di	stribution	Total
		R	U	Α	Marks
CO-1	Diodes	03	01	01	05
CO-2	Transistors	02	06	02	10
CO-3	Digital Integrated Circuits	03	07	05	15
CO-4	Operational Amplifiers	-	10	05	15
CO-5	Memory Devices and Other Electronic Devices	03	02	-	05
	Total	11	26	13	50

Legend:	R: Remember.	U: Understand.	A: Apply
Begena	itt ittemtennøer,	et enderstand,	· · · · · · · · · · · · · · · · · · ·

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books :			
S. No.	Title	Author	Publish er	Edition & Year
1	Semi-Conductor Devices – Physics and Technology :	SM Sze	Wiley,	1985
2	Instrumentation and Experimental Design in Physics and Engineering :	M. Sayer and A. Mansingh	Prentice Hall India Learning Private Limited	(1 January 1999)
3	Optical Electronics :	Ajoy Ghatak and K. Thygarajan	Cambridge Univ. Press.).	
4	Introduction to Semiconductor devices	M.S. Tyagi	(John Wiley and Sons)	

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics) Course Code: PH104 Course Title: Electronic Devices

					Pı	rogra	m Outc	omes				Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode m tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicate effectively.	Ability to use the techniques , skills, and modern physical tools in real world application	Engage in life- long learning and will have recognit ion.
PH104.1: Knowledge of Electronic Components: Understand the characteristics, properties, and functions of common electronic components such as resistors, capacitors, inductors, diodes, transistors, and integrated circuits.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	2	1
PH104.2: Understanding of Semiconductor Devices: Gain knowledge about semiconductor materials, their properties, and the operation of semiconductor devices such as diodes and transistors. Understand their applications in rectification, amplification, and switching	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	3	1
PH104.3: Amplifiers and Operational Amplifiers: Learn about different types of amplifiers and their characteristics. Understand the operation and applications of operational amplifiers (op-amps) in various electronic circuits.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2
PH104.4: Integrated Circuits (ICs): Explore the world of integrated circuits, including their types, fabrication methods, and applications. Understand the functionality and operation of common ICs, such as operational amplifiers, timers, voltage regulators, and digital logic ICs.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	2

PH1045: Operational Amplifier Applications: Dive deeper into	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3	3
the applications of operational amplifiers (op-amps). Explore op-amp circuits such as active																
filters.																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH104.1: Knowledge of Electronic Components: Understand the characteristics, properties, and functions of common electronic components such as resistors, capacitors, inductors, diodes, transistors, and integrated circuits.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO1.6 SO1.7 SO1.8	Unit-1. Diodes 1.1,1.2,1.3,1.4,1.5,1.6,1.7, 1.8, 1.9,1.10,1.11,1.12,1.13,1.14,1.15,1.16	i, ii,iii
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH104.2: Understanding of Semiconductor Devices: Gain knowledge about semiconductor materials, their properties, and the operation of semiconductor devices such as diodes and transistors. Understand their applications in rectification, amplification, and switching	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5 SO2.6 SO2.7 SO2.8	Unit-2 Transistors 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12	i, ii,iii
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH104.3: Amplifiers and Operational Amplifiers: Learn about different types of amplifiers and their characteristics. Understand the operation and applications of operational amplifiers (op-amps) in various electronic circuits.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6 SO3.7 SO3.8	Unit-3 : Digital Integrated Circuits 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10	i, ii,iii

PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH104.4: Integrated Circuits (ICs): Explore the world of integrated circuits, including their types, fabrication methods, and applications. Understand the functionality and operation of common ICs, such as operational amplifiers, timers, voltage regulators, and digital logic ICs.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	Unit-4 : Operational Amplifiers 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	i, ii,iii
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH1045: Operational Amplifier Applications: Dive deeper into the applications of operational amplifiers (op-amps). Explore op-amp circuits such as active filters.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	Unit 5: Memory Devices. 5.1,5.2,5.3,5.4,5.5,4.6,4.7,4.8,4.9,4.10,4.11,4.12	i, ii,iii

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-I

Course Code:	PH151
Course Title :	General Physics Lab-I
Pre- requisite:	Student should have basic knowledge of practical instruments in graduation.
Rationale:	The students studying Physics should possess foundational understanding about historical background of graduation.

Course Outcomes: After completion of this course, the students will be able to

PH151.1. learn various Physics aspects by performing the experiments related to light, wave optics, interference, diffraction and polarization.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

Scheme of Studies:

Board of					Schei	Total Credits		
Study	Course	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
	Code						, , , , , , , , , , , , , , , , , , ,	
Program	PH151	General	0	6	1	1	8	3
Core		Physics Lab-I						
(PCC)								

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)								
Board	Cous	Cous		Progressive Assessme	ent (PRA)	End Semester Assessment	Total Mark s				
of Study	e Cod e	Course Title	Lab work Assignment 5 number 7 marks each (LA)	Viva-Voice on Lab work 10 marks each (VV)	Lab Attendance	Total Marks	(TESA)				
					(LA)	(LA+VV+LA)	(ESA)	(PRA + ESA)			
PCC	PH151	General Physics Lab-I	35	10	5	50	50	100			

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH151.1. learn various Physics aspects by performing the experiments related to light, wave optics, interference, diffraction and polarization.

Ap	proximate Hours
Item	AppX Hrs
Cl	0
LI	90
SW	15
SL	15
Total	120

Session Outcomes (SOs)	Laboratory Instruction (LI)	Self Lea rnin
		g (SL)
 SO1.1 Learn about vernier calipers, screw gage and spherometer, microscope and spectrometer SO1.2 Understand spectral lines, grating spectra, and interference fringes SO1.3 Study and determine the phenomenon of interference. SO1.4 Study and determine the phenomenon of diffraction. SO1.5 Learn about Error analysis. 	 To determine the refractive index of a water/glycerin by using a hollow prism and spectrometer. To determine diameter of the odd and even rings by using Newton's rings apparatus. To determine the wavelength of light by using diffraction grating with the help of spectrometer. Measurement of the wavelength separation of sodium D-lines using a diffraction grating and to calculate the angular dispersive power of the grating. Determination of the Plank's Constant by Photo cell. To study polarizer & analyzer and hence verify the Malu's law. To determine the refractive index and Brewster's angle of air-glass interface and also verify the Brewster's law. 	1. Learn about basic instruments like- vernier calipers, screw guage

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)	
9. Determine angle of specific rotation of	
sugar solution by using Polarimeter.	
10. Measurement of thickness of thin wire	
with laser.	
11. To determine the wavelength of light by	
using Michelson Interferometer.	
12. Determine the fringe width β of an	
interference pattern by using Bi-prism	
experiments.	
••••P••••••••••	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Arrangement of Newton's rings apparatus by part
- **b.** Other Activities (Specify):

Perform experiment individual and present to others.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Laboratory Instruction (LI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PH151.1. learn various Physics aspects by performing the experiments related to light, wave optics, interference, diffraction and polarization.	90	15	15	120
Total Hours	90	15	15	120

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	General Physics Lab-I	11	26	13	50
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

AKSUniversity

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books:						
S. No.	Title	Author	Publisher	Edition & Year			
		Worsnon and	Little hampton				
1	Experimental Physics	worshop and	Book Services	9th Edition 1951			
	1 5	Flint	Ltd, United	Jui Lanuon, 1991			
			Kingdom				
	Experiments in Modern	A. C. Melissinos,	Academic Press,				
2	Dhusios	I Nanalitana	Cambridge,	2 nd Edition, 2003			
	Fllysics	J. Napontano	Massachusetts				
2	Lab manuals provided by						
3	Department of Physics, AKS University, Satna (M. P.)						

Curriculum Development Team

- 1. Dr O. P. Tripathi, Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH151

Course Title: General Physics Lab-I

		Program Outcomes									Program Specific Outcome						
Course	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Outcomes	Engin e ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mod e rn tool usag e	The engi neer and soci ety	Enviro n ment and sustain ability:	Ethic s	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life- long learnin g	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communic ate effectively.	Ability to use the techniqu es, skills, and modern physical tools in real world applicati on.	Engage in life- long learning and will have recogniti on.
PH151.1. learn various Physics aspects by performing the experiments related to light, wave optics, interference, diffraction and polarization.	2	1	2	1	1	3	3	3	1	1	2	2	3	3	3	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12	PH151.1. learn various Physics aspects by performing the experiments related to light, wave optics, interference,	SO1.1 SO1.2	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	15
PSO 1,2, 3, 4, 5	diffraction and polarization.	SO1.3 SO1.4 SO1.5		

AKSUniversity

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-I

Course Code:	PH152
Course Title :	Electronics Lab-I
Pre- requisite:	To study this course, a student must have had the Experimental knowledge of Physics in Graduation.
Rationale:	The students studying this course would have practical (Experimental) Knowledge of Diodes, Gates and Transistors.

Course Outcomes:

PH152: The course would empower the students to develop an idea about Electronic Devices, Experimental knowledge, working and characteristics curve of electronic apparatus.

Scheme of Studies:

Board of				Scheme of studies(Hours/Week)				Total Credits
Study	CourseCode	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Cl	LI	SW	SL	Total Study Hours	(C)
		Course Title					(CI+LI+SW+SL)	
Program	PH152	Electronic	0	6	1	1	8	3
Core		Devices						
(PCC)		(General)						

Legend:	CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial					
	(T) And others),					
	LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,					
	field or other locations using different instructional strategies)					
	SW: Sessional work (including assignments, seminars, mini-projects, etc.).),					
	SL: Self Learning,					
	C: Credits.					

Note: SW and SL must be planned and performed under the continuous guidance and feedback of the teacher to ensure the outcome of Learning.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Assessment:

Theory

				Progressive Assessmen	End Semester Assessment	Total Marks		
Board of Study	Course Code	Course Title	Lab work Assignment 5 number 7 marks each (LA)	Viva-Voice on Lab work 10 marks each (VV)	Lab Attendance (LA)	Total Marks (LA+VV+LA)	(ESA)	(PRA+ ESA)
PCC	PH152	Electronic Devices	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction, including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH152.1: The course would empower the students to develop an idea about Crystal Structure.

Ap	proximate Hours				
Item	AppX Hrs				
Cl	0				
LI	90				
SW	15				
SL	15				
Total	120				

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Self- Learning (SL)
SO1 Students will learn all about Basic electronic devices and their working.	 To Study Characteristics curve of P-N Junction Diode and Zener Diode. 	1. Identify all the electronic devices you use in your

AKSUniversity

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

SO2 Students will learn to verify truth table for basic logic	2.	To study characteristics of PNP and NPN transistor s with CB mode.	2.	daily life. Identify the use of
gates.	3.	To study characteristics of tunnel diode.		these electronic
SO3 Students will be able to	4.	To study characteristics curve of FET.		devices in your daily life electronic
Understand the	5.	To Study characteristics curve of UJT.		devices.
characteristic curve of electronic devices.	6.	To study characteristics curve of MOSFET.		
SO4 Students will be able to understand the Circuit	7.	Characteristics and application of silicon controller rectifier.		
diagram of all mentioned electronic devices.	8.	Response curve for CE mode amplifier with feedback and without feedback circuits.		
SO5 Students will learn to calculate error and analysis.	9.	Verification of truth table for basic logic electronic gates i.e. AND gate, OR gate and NOT gate by using basic passive electronic components.		
	10.	Use Operational amplifier (OP Amplifier) as a) Inverting and b) Non-inverting amplifier.		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Write a note on Electronic devices and make a list of devices (Having diodes and transistors) we are using in our daily life.

b. Mini Project:

- (i) Prepare a chart of Diode and its types.
- (ii) Prepare a chart of Transistor and its Characteristics curve.

c. Other Activities:

Try to do simple experiments using diode.

Brief of Hours suggested for the Course Outcome.

Course Outcomes:	Lab	Sessional	Self-	Total
	Instruction	Work	Learning	hours(LI+SW+SL)=
	(LI)	(SW)	(SL)	

Faculty of Basic Science

Department of Physics

Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

PH152: The course would empower the				
students to develop an idea about Electronic	00	4 5	15	120
Devices, Experimental knowledge, working and	90	15	15	120
characteristics curve of electronic apparatus.				

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Μ	Marks Distribution						
		R	U	Α	Marks				
СО	Electronic devices(General)	30	10	10	50				

Legend: R: Remember, U: Understand, A: Apply

The end-of-semester assessment for Mechanics and General Properties of Matter will be held with a writtenexamination of 50 marks.

Note. Detailed assessment rubrics need to be prepared by the course-wise teachers for the above tasks. Teachers can also design different tasks as per requirements for the end-semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to Science Museum
- 7. Demonstration
- 8. ICT-Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

AKSUniversity

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a	a) Books :			
S.No.	Books Name	Author	Publisher	Edition &Year
1.	Practical Physics	S.L. GUPTA, V. KUMAR	Pragati Prakashan	2018
2.	Semi Conductor Devices- Physics and Technology	SM Sze	Wiley	1985
3.	Introduction to Semiconductor devices	M.S. Tyagi	John Wiley and Sons	1991
4.	Measurement, Instrumentation and Experimental Design in Physics and Engineering	M. Sayer and A. Mansingh	Prentice-hall of india private limited	2000
5.	Optical Electronics	Ajoy Ghatak and K. Thygarajan	Cambridge Univ. Press.	1989
6.	Lab Manuals provided by Dept. of Physics, AKS U	/ niversity, Satna.		

Curriculum Development Team

- 1. Dr O.P. Tripathi, Head of the Department, Department of Physics
- 2. Dr C.P. Singh, Assistant Professor, Department of Physics
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics
- 6. Miss Swati Kushwaha, Lab Assistant (Teaching Associate), Department of Physics, AKS University

Cos,POs and PSOs Mapping

Course Title: M.Sc. Physics

Course Code: PH152

Course Title: Electronics Lab - I

	Program	Outcomes	6											Program Spe	cific Outcome		
Course	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Outcomes	Engin e ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mod e rn tool usag e	The engi neer and soci ety	Enviro n ment and sustain ability:	Ethic s	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life- long learnin g	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communic ate effectively.	Ability to use the techniqu es, skills, and modern physical tools in real world applicati on.	Engage in life- long learning and will have recogniti on.
CO: The course would empower the students to develop an idea about Electronic Devices, Experimental knowledge, working and characteristics curve of electronic apparatus.	2	1	2	1	1	3	3	3	1	1	2	2	3	3	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.,	COs No.& Titles,	SOs No.	Laboratory Instruction (LI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO- The course would empower the students to develop an idea about Electronic Devices, Experimental	SO1 SO2 SO3	Electronic Devices 1,2,3,4,5,6,7,8,9,10	1,2
PSO 1,2, 3, 4,5	knowledge, working and characteristics curve of electronic apparatus.	SO4 SO5		

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-II

Course Code:	PH201
Course Title :	Thermodynamics and Statistical Physics
Pre- requisite:	Student should have basic knowledge of thermodynamics, laws of thermodynamics and basic knowledge of statistical physics.
Rationale:	The students studying Physics should possess foundational understanding about historical background of Thermodynamics and Statistical Physics.

Course Outcomes:

PH201.1 Explain the various thermodynamical quantities and Maxwell's relations and apply the thermodynamics in ideal gas, magnetic and dielectric materials

PH201.2 D escribe various statistical approaches which describe systems of particles and compare microstates, macrostates, and statistical ensembles.

PH201.3 Understand the theories and mathematical approaches of statistical ensembles, equipartition theorem and Maxwell-Boltzmann statistics.

PH201.4 Illustatre the fundamental concepts of Bose-Einstein Statistics and phase transition.

PH201.5 Evaluate the formulae of random walk and diffusion equation and thermodynamical fluctuations.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of					Scher	ne of stud	ies(Hours/Week)	Total Credits
Study	Course	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
	Code	Course The						
Program	PH201	Thermodynamic	4	0	1	1	6	4
Core		s and Statistical						
(PCC)		Physics						

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Schem	e of Assessment	(Marks)		
Board of	Couse				Progressiv	e Assessme	ent (PRA)		End Semester Assessment	Total Mark s
Study	Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3)	Semina r one	Class Activit y any one	Class Attendance	Total Marks		
			each (CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA + ESA)
PCC	PH201	Thermod ynamics and Statistical Physics	15	20	5	5	5	50	50	100

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO201.1 Explain the various thermodynamical quantities and Maxwell's relations and

apply the thermodynamics in ideal gas, magnetic and dielectric materials.

Ap	proximate Hours
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learnin
		g (SL)
SO1.1 To understand the Concept of	UNIT-I (Thermodynamics)	
entropy	1.1 Concept of entropy	1. Introduction of thermodynamics
SO1.2 To understand the entropy of a	1.2 Change in entropy in adiabatic process	and laws of
perfect gas and Kelvin's thermodynamic	1.3 Change in entropy in reversible cycle	thermodynamics
scale of temperature	1.4 Principle of increase of entropy	
SO1.3 Learn about laws of	1.5 Change in entropy in irreversible	
Thermodynamics and their	process	
consequences	1.6 T-S diagram, Physical significance of	
SO1.4 Identity perfect gas scale and	Entropy	
absolute scale and Heat death of the	1.7 Entropy of a perfect gas	
universe	1.8 Kelvin's thermodynamic scale of	
SO1.5 To understand the Relation	temperature, The size of a degree,	
between thermodynamic variables	1.9 Laws of Thermodynamics and their	
(Maxwell's relations).	consequences. Thermodynamic and	
	chemical potentials, phase equilibria	
	1.10 Identity of a perfect gas scale and	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

absolute scale. Zero point energy, Negative	
temperatures (not possible)	
1.11 Heat death of the universe	
1.12 Relation between thermodynamic	
variables (Maxwell's relations)	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Explain Laws of Thermodynamics and their consequences, Thermodynamic and chemical potentials and phase equilibrium condition.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

CO201.2 D escribe various statistical approaches which describe systems of particles and

compare microstates, macrostates, and statistical ensembles.

Approximate Hours	
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learni
		ng (SL)
SO2.1 Learn about foundations of	UNIT-II (Fundamentals of Statistical	1. Concept of
statistical mechanics	Mechanics)	and statistics
SO2.2 To understand contact	2.1 Foundations of statistical mechanics	
between statistics and	2.2 Specification of states of a system	
thermodynamics	2.3 contact between statistics and	
SO2.3 To understand ensembles	thermodynamics	
and Phase space	2.4 classical ideal gas	
SO2.4 To understand density of	2.5 entropy of mixing and Gibb's paradox	
states and derive Liouville's	2.6 Microcanonical ensemble	
theorem	2.7 Phase space	
SO2.5 To understand partition	2.8 trajectories	
function and calculate for statistical	2.9 density of states	
quantities	2.10 Liouville's theorem	
	2.11 canonical and grand canonical ensembles	
	2.12 partition function calculation of statistical	
	quantities, Energy and density fluctuations.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Explain entropy of mixing and Gibb's paradox.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

CO201.3 Understand the theories and mathematical approaches of statistical ensembles, equipartition theorem and Maxwell-Boltzmann statistics.

Internations. Approximate mours

nucluations. Approximate mours	
Item	AppX Hrs
Cl	12

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

LI	0
SW	1
SL	1
Total	14

Session Outcomes	Class room Instruction	Self Learning
(508)		(3L)
SO3.1 To understand statistics of	UNIT – III (Condensation)	1. Basics of Statistical
ensembles and statistics of	3.1 Statistics of ensembles	Mechanics
indistinguishable particles	3.2 Statistics of indistinguishable particles	
SO3.2 To understand Density matrix,	3.3 Density matrix	
SO3.3 Learn about Fermi-Dirac and	3.5 Fermi-Dirac statistics	
Bose- Einstein statistics	3.6 Bose- Einstein statistics	
SO3.4 To understand Properties of	3.7 properties of ideal Bose gases	
ideal Bose gases and ideal Fermi gas	3.8 Bose-Einstein condensation	
SO3.5 To understand Boltzmann's	3.9 Properties of ideal Fermi gas	
transport equation	3.10 electron gas in metals (2)	
	3.11 Boltzmann's transport equation	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Explain Statistics of distinguishable and indistinguishable particles with examples.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

CO201.4 illustrates the fundamental concepts of Bose-Einstein Statistics and phase transition.

Ар	proximate Hours
Item	AppX Hrs
Cl	12
LI	0

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

SW	1
SL	1
Total	14

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learnin
		g (SL)
SO4.1 Learn about Cluster	UNIT – IV (Phase Transition)	
expansion for a classical gas	4.1 Cluster expansion for a classical gas (2)	1. Basics of condensation
SO4.2 Learn about Virial	4.2Virial equation of state	and B. E.
equation of state	4.3 Dynamical model of phase transition (2)	Condensation
SO4.3 Learn about Dynamical	4.4 Ising model in zeroth approximation (2)	
model of phase transition	4.5 Ising model in first approximation	
SO4.4 Learn about Ising	4.6 Exact solution in one-dimension	
model	4.7 Landau theory of phase transition (2)	
SO4.5 Learn about Landau	4.8 scaling hypothesis for thermodynamic	
theory of phase transition	functions	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

Explain Dynamical model of phase transition with neat and clean diagram.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

CO201.5 Evaluate the formulae of random walk and diffusion equation and thermodynamical fluctuations.

Ар	proximate Hours
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

Session Outcomes	Class room Instruction	Self			
(SOs)	(CI)	Learning			
		(SL)			
SO5.1 Learn about	UNIT – V (Thermodynamics	1. General theory of			
Thermodynamics fluctuation.	fluctuations)	motion and thermo			
,		dynamical			
SO5.2 To understand Spatial	5.1 Thermodynamics fluctuation (2)	fluctuations			
correlation and Brownian motion	5.2 spatial correlation				
SO5.3 To Understand and evaluate	5.3 Brownian motion (2)				
Langevin theory	5.4 Langevin theory (2)				
SO5.4 To Understand and evaluate	5.5 fluctuation dissipation theorem				
fluctuation dissipation theorem and	5.6 The Fokker-Planck equation				
Fokker-Planck equation	5.7 Onsager reciprocity relations (3)				
SO5.5 To Understand and evaluate					
Onsager reciprocity relations.					

SW-5 Suggested Sessional Work (SW):

a. Assignments: Discuss about Thermodynamics fluctuation.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
CO201.1 Explain the various thermodynamical				
quantities and Maxwell's relations and apply the				
thermodynamics in ideal gas, magnetic and	12	1	1	14
dielectric materials				

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as	on 01	August	2023)	
				Т

Total Hours	60	5	5	70
CO201.5 Evaluate the formulae of random walk and diffusion equation and thermodynamical fluctuations.	12	1	1	14
CO201.4 Illustatre the fundamental concepts of Bose-Einstein Statistics and phase transition.	12	1	1	14
CO201.3 Understand the theories and mathematical approaches of statistical ensembles, equipartition theorem and Maxwell-Boltzmann statistics.	12	1	1	14
CO201.2 D escribe various statistical approaches which describe systems of particles and compare microstates, macrostates, and statistical ensembles.	12	1	1	14

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	arks Dis	Total	
		R	U	Α	Marks
CO-1	Thermodynamics	03	04	03	10
CO-2	Fundamentals of Statistical Mechanics	03	04	03	10
CO-3	Condensation	03	04	03	10
CO-4	Phase Transition	03	04	03	10
CO-5	Thermodynamics fluctuations	03	04	03	10
	Total	15	20	15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :			
S. No.	Title	Author	Publisher	Edition & Year
1	Statistical Mechanics	R.K. Pathria	Elsevier	1916
2	Statistical Mechanics	Satya Prakash	KNRN	2004
3	Fundamentals of Statistical and Thermal Physics	F. Reif	McGraw Hill, New York	1965
4	Statistical Mechanics	K. Huang	Wiley	2 nd Ed. 1987
5	Depa	Lecture note p rtment of Physics, AKS	orovided by S University, Satna (M.	P.)

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH201

Course Title: Thermodynamics and Statistical Physics

						Program	Outcomes							Program Speci	fic Outcome		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicat e effectively.	Ability to use the technique s, skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
CO201.1 Explain the various thermodynamical quantities and Maxwell's relations and apply the thermodynamics in ideal gas, magnetic and dielectric materials	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	1
CO201.2 Describe various statistical approaches which describe systems of particles and compare microstates, macrostates, and statistical ensembles.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	1
CO201.3 Understand the theories and mathematical approaches of statistical ensembles, equipartition theorem and Maxwell-Boltzmann statistics.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2
CO201.4 Illustatre the fundamental concepts of Bose-Einstein Statistics and phase transition.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	2
CO201.5 Evaluate the formulae of random walk and diffusion equation and thermodynamical fluctuations.	2	1	2	1	1	3	3	3	1	1	2	2	3	3	1	3	3

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6,	CO201.1 Explain the various	SO1.1	UNIT-I (Thermodynamics)	
7,8,9,10,11,12	thermodynamical quantities and	SO1.2		
PSO 1 2 3 4 5	Maxwell's relations and apply the	SO1.3 SO1.4	11 12 13 14 15 16 17 18 19	
100 1,2, 5, 1, 5	thermodynamics in ideal gas magnetic	501.4	1.10, 1.11	
		SO1.5	,	
	and dielectric materials			
PO 1,2,3,4,5,6	CO201.2 D escribe various statistical	SO2.1	UNIT-II (Fundamentals of Statistical	
	approaches which describe systems of		Mechanics)	
7,8,9,10,11,12	particles and compare microstates,	SO2.2		
	macrostates, and statistical ensembles.	SO2.3	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4, 5		SO2.4	2.8,2.9,2.10	
		302.5		As mentionedin
PO 1,2,3,4,5,6	CO201.3 Understand the theories and	SO3.1	UNIT – III (Condensation)	page number
7,8,9,10,11,12	mathematical approaches of statistical	SO3.2		2 to 6
PSO 1 2 3 4 5	ansamples, aquinartition theorem and	SO3.3	3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,	
100 1,2, 3, 1, 3	ensembles, equipartition meorem and	SO3.4	3.10, 3.11	
	Maxwell-Boltzmann statistics.	305.5		
PO 1,2,3,4,5,6	CO201.4 Illustatre the fundamental	SO4.1	UNIT – IV (Phase Transition)	
7,8,9,10,11,12	concepts of Bose-Einstein Statistics and	SO4.2	41 42 43 44 45 46 47 48 49	
PSO 1 2 3 4 5	phase transition.	SO4.3 SO4.4	4.10, 4.11, 4.12	
1001,2, 3, 1, 3		SO4.5		
PO 1,2,3,4,5,6	CO201.5 Evaluate the formulae of	SO5.1	UNIT – V (Thermodynamics	
7,8,9,10,11,12	random walk and diffusion equation	SO5.2	fluctuations)	
PSO 1 2 3 4 5	and thermodynamical fluctuations.	SO5.3	51 52 53 54 55 56 57 58	
1501,2, 3, 4, 3		SO5.4	5.9, 5.10, 5.11, 5.12	
		505.5		

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-II

Course Code:	PH202
Course Title:	Solid State Physics
Pre- requisite:	To understand the fundamentals of intriguing phenomena such as direct lattice, reciprocal lattice, lattice vibration in solids, specific heat of metals, band formation in solids, effective mass, and superconductivity.
Rationale:	The solid-state physics is the branch of physics dealing with physical properties of solids particularly crystals, including the behavior of electrons in these solids. The course solid state physics is basically designed for fundamental understanding of several breakthrough phenomena such as crystal structure, lattice dynamics, various crystal bonding, free electrons theory, band theory and superconductivity in solids.

Course Outcomes:

- **PH202.01:** Describe the mathematics concepts and their applications to complex numbers, complex functions, analytic functions, complex integration and theory of residues. problems of physics.
- **PH202.02:** Understand and analyze the concept of Numerical Solution of Linear and Non-Linear Equations, Ordinary Differential Equations and Function of complex variable.
- PH202.03: Identify the applications of complex variables, tensors and group theory.
- **PH202.04:** Understand the concept of Bessel's function, Hermite function etc., with its properties like recurrence relations, orthogonal properties, generating functions etc. Understand how special function is useful in differential equations.
- **PH202.05:** Evaluate the Fourier transform of a continuous function and be familiar with its basic properties. Solution of integral equation and their application. Solve differential & amp; integral equations with initial conditions using Laplace transform.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of					Scher	ne of stud	ies(Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	PH202	Solid State Physics	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Schem	e of Assessment	(Marks)		
Board of	Couse				Progressiv	e Assessme	ent (PRA)		End Semester Assessment	Total Mark s
Study	Code	Course Title	Class/Home Assignment 5 number 3 marks each	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activit y any one	Class Attendance	Total Marks	(ESA)	
			(CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(EGA)	(PRA + ESA)
PCC	PH202	Solid State Physics	15	20	5	5	5	50	50	100

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

77PH202.01: Describe the basic principles of semiconductor physics, including band theory,

carrier transport, an	d semiconductor device behavior.	Approximate Hours
-----------------------	----------------------------------	-------------------

Item	AppX Hrs
Cl	08
LI	0
SW	1
SL	1
Total	10

SESSION OUTCOMES (SOs)	CLASS ROOM INSTRUCTION (CI)	SELF LEARING
SO 1.1 Energy Bands, carrier concentration and Fermi levels for Intrinsic and extrinsic semiconductors	Module 1.1 Understanding energy bands, carrier concentration, and Fermi levels in intrinsic and extrinsic semiconductors is crucial in semiconductor physics. Here's a breakdown for classroom instruction: Energy Bands (Valence Band & Conduction Band), Intrinsic Semiconductor (Definition, Energy band diagram, Carrier Concentration & Fermi Level), Extrinsic Semiconductor (Definition, Doping, N-type Semiconductor, P-type Semiconductor, Energy Band Diagram, Carrier Concentration & Fermi Level)	Role of Temperature: Discuss how temperature influences carrier concentration by providing energy for electrons to move between bands (through thermal excitation).
SO 1.2 Direct and Indirect band semiconductors	1.2 Understanding the differences between direct and indirect bandgap semiconductors is essential in various fields, including material science, semiconductor physics, and electronic device engineering. It forms a foundational concept in the design and optimization of semiconductor devices for specific applications.	2: Connecting these concepts to real-world applications helps students understand the significance of direct and
SO 1.3 Degenerate and compensated semiconductors	 1.3: When teaching about degenerate and compensated semiconductors in a classroom setting, it's essential to cover the following points: Basic Semiconductor Concepts: Begin by explaining the basics of semiconductors, intrinsic and extrinsic semiconductors, doping, and the 	indirect bandgap materials in various technologies.
	behavior of charge carriers. Degenerate Semiconductors: Discuss the conditions under which semiconductors become degenerate, emphasizing the high concentration of charge carriers and the impact on the semiconductor's behavior and energy levels.	
	Compensated Semiconductors: Explain how compensated semiconductors are created by intentionally adding impurities to balance the effects of dopants, resulting in a controlled carrier concentration.	
	Applications and Importance: Highlight the significance of these concepts in practical applications such as in semiconductor devices, electronics, and how understanding these states helps in designing semiconductor materials with	

Faculty of Basic Science Department of Physics

Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

	specific electrical properties.	
SO 1.4 Elemental (Si) and compound semiconductors (GaAs)	1.4: Elemental semiconductors like silicon (Si) and compound semiconductors like gallium arsenide (GaAs) are fundamental materials in the field of semiconductor physics and technology. When teaching about these materials in a classroom setting, it's essential to cover various aspects, including their properties, structures, and applications.	
SO 1.5 Replacement of group III element and Group V elements to get tertiary alloys such as Alx Ga(1-x) As or GaPyAs(1-y) and quaternary InxGa(1-x) PyAs(1-y) alloys and their important properties such as band gap and refractive index changes with x and Y	 1.5 Replacement of group III element and Group V elements to get tertiary alloys such as Alx Ga(1-x) As or GaPyAs(1-y) and quaternary InxGa(1-x)PyAs(1-y) alloys and their important properties such as band gap and refractive index changes with x and Y AlxGa(1-x)As: Band Gap: The bandgap of this alloy changes continuously with the composition x. For instance, as you increase the aluminum (Al) content (increase in x), the bandgap of the alloy will increase. It's used in semiconductor devices like LEDs, lasers, and solar cells. Refractive Index: The refractive index also changes with the composition x. Typically, as the bandgap increases, the refractive index also tends to increase. GaPyAs(1-y): Band Gap: Similar to AlxGa(1-x)As, the bandgap of GaPyAs(1-y) changes with the composition y. As you increase the phosphorus (P) content (increase in y), the bandgap decreases. Refractive Index: The refractive index also changes with y, but it's not as directly correlated as with the bandgap. Quaternary Alloy: InxGa(1-x)PyAs(1-y): Band Gap: This quaternary alloy has a more complex composition, where both x (Indium) and y (Phosphorus) contribute to the bandgap. The bandgap can be tuned by varying both x and y. Refractive Index: Similar to the bandgap, the refractive index changes with variations in x and y. However, predicting the exact change in refractive index with these compositional changes might require more sophisticated modeling. 	3: Discuss ongoing research or advanced concepts like strain engineering, defect control, and other methods used to further manipulate and optimize these materials for specific applications.
SO 1.6 Doping of Si (Group III (n) and Group V (P) compounds) and GaAs (Group II (P), IV (n-p) and VI (n compounds)	1.6: Doping is a fundamental process in semiconductor physics that involves intentionally introducing impurities into a semiconductor material to modify its electrical properties. The most commonly used semiconductors for doping include silicon (Si) and gallium arsenide (GaAs).	
SO 1.7 Diffusion of impurities (Thermal Diffusion, constant surface concentration)	 1.7: Diffusion of impurities, particularly through thermal diffusion with constant surface concentration, is a phenomenon encountered in various scientific disciplines, including material science, chemistry, and physics. In a classroom setting, this topic is often covered in courses related to transport phenomena, physical chemistry, or materials science.) Overview of Thermal Diffusion with Constant Surface Concentration 1. Introduction to Diffusion: Explain the concept of diffusion: the movement of particles from an area of high concentration to an area of low concentration. Describe the driving force behind diffusion: the tendency of particles to spread out and achieve a more uniform distribution. 2. Thermal Diffusion: 	Discuss numerical methods or computational approaches used to simulate and predict diffusion processes with constant surface concentration.
	 gradient. Discuss Fick's laws of diffusion, particularly Fick's Second Law, which describes the rate of change of concentration of a diffusing substance. 3. Constant Surface Concentration: Explain the scenario where the concentration of the diffusing substance at the 	
	surface remains constant.	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

	(nevised as on of August 2025)	
	Explore scenarios like the diffusion of impurities in solids or gases with a fixed surface concentration.4. Governing Equations:	
	Introduce the mathematical formulation for diffusion, emphasizing the equation that governs the concentration profile over time and space. Discuss boundary conditions that include the constant surface concentration. 5. Factors Affecting Diffusion:	
	Explore factors influencing the rate of diffusion, such as temperature, concentration gradient, surface area, and the medium through which diffusion occurs.6. Applications and Examples:	
	Discuss real-world applications of thermal diffusion with constant surface concentration, such as doping semiconductors, chemical processing, and material synthesis. Provide examples or case studies illustrating how this phenomenon is utilized in various industries.	
SO 1.8 Constant total dopant diffusion & ion implantation	1.8: In a classroom setting, these concepts can be taught using theoretical explanations, diagrams, and possibly practical demonstrations or simulations. Here are some teaching approaches:	
	Theory and Principles: Explain the fundamental concepts behind dopant diffusion and ion implantation, covering topics such as diffusion mechanisms, concentration profiles, energy levels, and their impact on semiconductor behavior.	
	Visual Aids and Diagrams: Use diagrams, graphs, and animations to illustrate the diffusion process and ion implantation setup. Visual aids can help students understand how dopants are introduced and distributed within the semiconductor material.	
	Simulation Tools: Utilize simulation software or online tools that simulate dopant diffusion or ion implantation processes. Students can experiment with different parameters to observe their effects on dopant profiles and understand the practical implications.	
	Real-life Examples: Discuss real-life applications of these processes in semiconductor manufacturing. Highlight how constant total dopant diffusion and ion implantation are critical steps in the production of electronic devices and integrated circuits.	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

- > Assignments
- > Other Activity

Power Point Presentation

Conduct simple experiments or demonstrations (even on a small scale) to showcase the diffusion or ion implantation process. This can offer students a tangible understanding of these concepts.

77PH202.02: A course on Carrier Transport in Semiconductors typically covers fundamental concepts related to the movement of charge carriers (electrons and holes) within semiconductor materials. The course outcomes may include, but are not limited to: Understanding Semiconductor Basics, Carrier Statistics and Equilibrium, Carrier Transport Mechanisms & Semiconductor Devices and Applications.

Approximate Hours		
Item	AppX Hrs	
Cl	7	
LI	0	
SW	2	
SL	1	
Total	10	

SESSION	CLASS ROOM INSTRUCTION (CI)	SELF LEARING
OUTCOMES (SOs)		
SO 2.1 Carrier Drift under low and high fields in (Si and GaAs) saturation of drift velocity	2.1: Carrier drift refers to the movement of charge carriers, such as electrons or holes, in a semiconductor material in response to an applied electric field. The drift velocity of carriers in a material depends on various factors, including the magnitude of the electric field and the material properties.	1: In a classroom setting, the study of high-field effects in two-valley semiconductors involves theoretical concepts and mathematical models to describe carrier behavior under strong electric fields. This often includes discussions on the band structure of specific semiconductor materials, carrier scattering mechanisms, transport properties, and their practical implications in device design and technology.
SO 2.2 High field effects in two valley semiconductors	2.2 High field effects in two-valley semiconductors refer to the behavior exhibited by certain semiconductor materials when subjected to strong electric fields, particularly those with two distinct	2: Explain Solution of Laguarre and Hermite's equations

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

	energy valleys in their band structure.	
	Two-valley semiconductors often possess an anisotropic band structure, meaning they have multiple minima (valleys) in their energy bands, resulting in different effective masses for charge	
	carriers in different directions. This characteristic becomes significant when these materials are subjected to high electric fields.	
	When a high electric field is applied to a semiconductor, such as in a diode or transistor under strong biasing conditions, the electrons and balas experience on ecceleration due to the force evented by the field	
	In two-valley semiconductors, this acceleration can cause the carriers to occupy different valleys in the energy band.	
SO 2.3 Carrier Diffusion carrier	2.3: Carrier diffusion and carrier injection are fundamental concepts in semiconductor physics, particularly in understanding how charge	
SO 2.4 Generation	2.4: The generation and recombination processes in semiconductors	
processes- Direct,	are essential phenomena that influence their electrical properties. This explanation will focus on direct and indirect bandgap semiconductors and their associated generation and recombination processes. Direct	
semiconductors	Bandgap Semiconductors:	
	Efficient light emission and absorption. Generation via optical absorption, excitation by light.	
	Recombination through radiative and non-radiative processes. Indirect Bandgap Semiconductors:	
	Inefficient light emission and absorption. Generation through thermal effects and impact ionization.	
SO 2 5 Minority	2.5: " Minority carrier lifetime " refers to the average time a	
carrier Life Time	minority carrier (either electrons in the P-type material or holes in the N-type material of a semiconductor) survives in a semiconductor davice before recombination. This is a crucial parameter in the	
	performance of semiconductor devices like transistors, diodes, and solar cells.	
SO 2.6 Drift and Diffusion of	2.6: In real semiconductor devices, both drift and diffusion occur simultaneously and influence the behavior of carriers. The net	
minority carriers (Haynes= Shockley	movement of carriers is the result of these two mechanisms acting together. The study of these mechanisms is crucial in understanding	
Experiment)	the behavior of semiconductor devices like diodes, transistors, and integrated circuits.	
	This experiment conducted by Shockley and Haynes provided valuable insights into how minority carriers behave in semiconductor materials under the influence of electric fields and concentration gradients, forming the basis for the understanding of semiconductor physics and device operations	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Four-Probe Technique:

SO 2.7 Determination of conductivity (a) four probe and (b) van der Pauw techniques. Hall coefficient, minority carrier Life Time.

The four-probe technique is commonly used to measure the resistivity (and thereby conductivity) of thin films or small semiconductor samples. Here's a simplified explanation of the process:

Setup: Four equally spaced probes are placed on the sample material. Two of the probes are used to pass a known current through the sample, while the other two measure the voltage across the sample.

Measurement: By applying a known current through the outer probes and measuring the voltage with the inner probes, the resistance of the sample can be determined using Ohm's law (R = V/I).

Calculation of Conductivity: Once the resistance is obtained, the conductivity (σ) can be calculated using the formula: $\sigma = 1 / (R * A)$, where A is the cross-sectional area of the sample and R is the resistance measured.

Van der Pauw Technique:

The van der Pauw method is another way to measure the resistivity and conductivity of a thin film or semiconductor material, particularly useful for irregularly shaped or non-uniform samples.

Setup: Similar to the four-probe technique, four equally spaced probes are placed on the sample. However, the van der Pauw method involves passing a current between two probes and measuring the voltage between the other two.

Measurement: By changing the current path and measuring voltages across different pairs of probes, a series of resistance measurements are taken. This data is then used to solve the van der Pauw equation to obtain the resistivity/conductivity of the material.

Hall Coefficient:

The Hall coefficient (RH) is a parameter that describes the relationship between the induced electric field and the applied magnetic field perpendicular to the current flow in a conducting material. It's determined by measuring the Hall voltage (VH) produced when a magnetic field is applied perpendicular to the current flow.

The formula for Hall coefficient is given by: RH = VH / (IB), where VH is the Hall voltage, I is the applied current, and B is the magnetic field strength.

Minority Carrier Lifetime:

Minority carrier lifetime refers to the average time it takes for minority carriers (electrons in p-type material or holes in n-type material) to recombine in a semiconductor. It's a crucial parameter for semiconductor devices, as it affects their performance and efficiency. These techniques are typically taught with hands-on demonstrations, theoretical explanations, and possibly laboratory experiments to help students understand their applications in material characterization and semiconductor device analysis.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

- > Assignments
- > Other Activity
 - Power Point Presentation

77PH202.03: Understanding the dielectric properties of materials is crucial in various fields, including electrical engineering, materials science, and telecommunications.

Approximate Hours	
Item	AppX Hrs
Cl	08
LI	0
SW	1
SL	1
Total	10

SESSION OUTCOMES (SOs)	CLASS ROOM INSTRUCTION (CI)	SELF LEARING (SL)
SO 3.1 Atomic and molecular Polariziblity	3.1 When teaching about atomic and molecular polarizability, instructors often cover several key points:	Provide problems and examples for students to calculate or estimate
	Theory and Conceptual Understanding:	polarizabilities and understand their
	Explain the concept of polarizability, emphasizing how atoms or molecules respond to external electric fields. Introduce terms like induced dipoles, electric fields, and the relationship between polarizability and atomic/molecular size. Factors Affecting Polarizability:	significance in various contexts
	Discuss factors influencing atomic and molecular polarizability, such as size, electron cloud distribution, and molecular geometry. Illustrate examples to showcase how different atoms or molecules exhibit varying polarizabilities. Measurement and Units:	
	Introduce methods used to measure polarizability experimentally. Explain relevant units of polarizability, such as cubic angstroms (Å ³) or square Bohr radii (a.u.). Real-life Applications:	
	Connect polarizability concepts to real-world applications, such as explaining the behavior of substances in electric fields, the optical properties of materials, or the formation of intermolecular	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

	forces.	
	Mathematical Treatment (if applicable):	
	For advanced courses, delve into mathematical	
	models or equations that describe polarizability	
	quantitatively, such as the relationship between	
	induced dipole moment and electric field strength.	
SO 3 2 Claussius-Mossotti	3.2 The Clausius-Mossotti relation is an equation	
relation	in physics that describes the polarizability of a	
Telation	dielectric material in an electric field. This relation	
	is particularly important in understanding how	
	materials respond to an external electric field and	
	how this response affects their optical properties	
	2.2 Delerizability refers to the ability of a melacula	
SO 3.3 Types of polarizability	5.5 Polarizability refers to the ability of a molecule	
	or atom to form instantaneous dipoles in the	
	presence of an external electric field. In a	
	classroom setting, the types of polarizabilities that	
	might be discussed can include:	
	Atomic Polarizability: This refers to the ability of	
	individual atoms to polarize when subjected to an	
	external electric field. It varies depending on the	
	size of the atom and the distribution of its electron	
	cloud. Larger atoms or atoms with more electrons	
	tend to have higher polarizability.	
	Molecular Polarizability: Molecules, composed	
	of multiple atoms, can also exhibit polarizability. It	
	depends on the arrangement of atoms within the	
	molecule, the type of bonds present, and the overall	
	geometry of the molecule	
	Isotronic and Anisotronic Polarizability:	
	Isotropic polarizability is when the polarizability of	
	a substance is the same in all directions, while	
	a substance is the same in an uncettons, while	
	Anisotropic polarizability valles with direction.	
	Amsouropic polarizability is common in crystals or	
	elongated molecules where the electron cloud can	
	be easily distorted along specific axes.	
	Electronic Polarizability: This relates to the	
	movement of electrons within atoms or molecules	
	in response to an external electric field. The more	
	easily electrons can move, the higher the electronic	
	polarizability.	
	Ionic Polarizability: It refers to the ability of ions	
	in a crystal lattice to shift their positions in	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

	response to an electric field. Ionic polarizability is	
	significant in ionic compounds where ions are held	
	together by electrostatic forces.	
	Static and Dynamic (Frequency-dependent) Polarizability: Static polarizability refers to the polarizability when the frequency of the applied electric field is zero or very low, while dynamic polarizability considers the variation of polarizability with changing frequency of the electric field.	
SO 3.4 Dipolar polarizability and	3.4 The dipolar polarizability refers to the ability	
frequency dependence of dipolar	of a molecule or an atom to form an induced dipole	
polarizability	moment in response to an external electric field.	
	This polarizability is a measure of how easily the	
	electron cloud within the molecule or atom can be	
SO 2.5 Jania and Electronia	distorted by an external electric field.	Discussing how the
so s.s ionic and Electronic	concents in physics and chemistry that describe	electronic structure of
polarizability	how a particle or a system responds to an external	atoms or molecules
	electric field by developing an induced dipole	influences their
	moment.	polarizability.
		polulizaoliity.
	Electronic Polarizability:	
	Electronic polarizability refers to the ability of	
	electrons within an atom or a molecule to shift	
	from their equilibrium positions when subjected to	
	an external electric field.	
	In molecules, this is primarily associated with the	
	distortion of the electron cloud around the atomic nuclei.	
	Larger molecules with more electrons generally	
	have higher electronic polarizability because the	
	electrons are more loosely bound and can move	
	more easily in response to an electric field.	
	Ionic Polarizability:	
	Ionic polarizability partains to the shility of ions in	
	a crystal lattice or jonic compound to rearrange	
	under the influence of an external electric field	
	In ionic materials, the positive and negative ions	
	can be displaced from their equilibrium positions.	
	creating temporary dipoles within the material.	
	Ionic polarizability is often significant in materials	
	composed of ions, such as salts or crystals, where	
	the ions are relatively large and can shift positions.	
SO 3.6 Hall Effect	3.6 Mathematical explanation about Hall Effect	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

SO 3.7 Quantum Hall Effects	3.7 Explore the applications of QHE in metrology, particularly in defining a precise standard for resistance.	
SO 3.8 Magneto Resistance	3.8 Mathematical Explanation about Magneto Resistance	

SW-3 Suggested Sessional Work (SW):

- > Assignments
- > Other Activity

Power Point Presentation

Providing problems or exercises to help students understand the quantitative aspects of polarizability and how to calculate it for different systems.

Drawing comparisons between electronic and ionic polarizability, emphasizing their differences and similarities.

77PH202.04: Understanding how magnetic properties are utilized in various technological applications such as magnetic storage devices, sensors, motors, generators, medical imaging (MRI), and magnetic materials used in industries.

A	pproximate Hours
Item	AppX Hrs
Cl	11
LI	0
SW	0
SL	2
Total	13

SESSION OUTCOMES (SOs)	CLASS ROOM INSTRUCTION (CI)	SELF LEARING
SO 4.1 Magnetic properties of solids	4.1 Definition of special functions Magnetic Materials: Materials can be classified based on their magnetic properties into three categories:	
	Diamagnetic Materials: These materials have no permanent magnetic moment and are weakly repelled by both poles of a magnet. They create their own magnetic field in the opposite direction to an externally applied magnetic field. Paramagnetic Materials: These materials have unpaired electrons, leading to a weak attraction when placed in an external magnetic field. However, they don't retain magnetization when the field is removed	

105

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

	Ferromagnetic and Ferrimagnetic Materials: These materials have domains where the magnetic moments of the atoms align spontaneously. They exhibit strong attraction to magnetic fields and retain some magnetization even after the removal of the external field. Magnetic Moments and Domains: The microscopic behavior of magnetic materials involves understanding atomic magnetic moments. In ferromagnetic materials, these moments tend to align spontaneously in regions called domains. Application of an external magnetic field can align these domains, resulting in macroscopic magnetization. Magnetic Hysteresis: When a ferromagnetic material is magnetized in one direction and then demagnetized, it doesn't return to its original state; it retains some residual magnetization. The relationship between the magnetic field and the magnetization of the material is described by a hysteresis loop. Curie Temperature: For ferromagnetic and ferrimagnetic materials,	
	there's a temperature called the Curie temperature above which the material loses its permanent magnetic properties.	
	Magnetic Susceptibility: This refers to how much a material can be magnetized under the influence of an external magnetic field.	
	Applications: Discussing real-world applications of magnetic materials, such as in data storage devices (hard disks), electric motors, transformers, MRI machines, etc., can further illustrate the importance and relevance of understanding magnetic properties.	
SO 4.2 Langevin equation	4.2 In a classroom setting, instructors might introduce the Langevin equation while discussing concepts related to statistical physics, Brownian motion, or stochastic processes. Students often learn how to interpret the equation's components and how it relates to the behavior of particles undergoing random motion influenced by external forces and the surrounding medium. Understanding the Langevin equation can provide insights into the behavior of particles in diverse physical systems and how random fluctuations affect their motion.	
SO 4.3 Quantum theory of Para magnetism	4.3 In a classroom setting, teaching the quantum theory of paramagnetism might involve the following key points:	
	Overview of Magnetism: Begin by discussing the basics of magnetism and its types (ferromagnetism, paramagnetism, and diamagnetism). Explain that paramagnetism arises from the alignment of atomic or molecular magnetic dipoles in a material.	
	Atomic Structure: Review the atomic structure, emphasizing the concept of electron spin and its relation to magnetism. Explain that unpaired electrons in an atom possess magnetic moments due to their intrinsic angular momentum or spin.	
	Pauli Exclusion Principle: Discuss the Pauli Exclusion Principle, which states that no two electrons in an atom can have the same set of quantum numbers, particularly their spin. This leads to the existence of unpaired electrons in certain atoms or ions.	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Г

	 Paramagnetic Materials: Introduce paramagnetic materials as substances containing atoms or ions with unpaired electrons. These unpaired electrons give rise to magnetic moments within the material. Zeeman Effect: Explain the Zeeman Effect, where the energy levels of atoms or ions with unpaired electrons split when exposed to an external magnetic field. This splitting occurs due to the interaction between the magnetic moment of the electron and the external field. Quantum Mechanical Model: Use the principles of quantum mechanics to describe how the magnetic field. Discuss the quantization of angular momentum and the alignment of magnetic moments along the field or against it. Magnetic Susceptibility: Introduce the concept of magnetic susceptibility, which quantifies a material's response to an applied magnetic field. Paramagnetic materials have positive magnetic field. Temperature Dependence: Explain how temperature influences paramagnetism. At higher temperatures, thermal energy disrupts the alignment of magnetic effect. Applications and Examples: Provide real-world examples of paramagnetic materials used in electronics, or certain chemical compounds. 	
SO 4.4 Curie law	4.4 Understanding the Curie Law helps in comprehending the magnetic behavior of materials and is essential in fields like material science, condensed matter physics, and electrical engineering.	
SO 4.5 Hund's rules	4.5 Summarize Hund's rules, emphasizing their importance and practical implications.	
SO 4.6 Para magnetism in rare earth and iron group ions	4.6 Para magnetism in rare earth and iron group ions arises from the presence of unpaired electrons, allowing them to weakly attract to an external magnetic field. Understanding these properties is crucial in various scientific and technological applications, including magnetic materials, data storage, and medical imaging.	One way to demonstrate Para magnetism is by using a paramagnetic salt (e.g., gadolinium sulfate or ferric chloride). When a strong magnet is brought close to the sample, it shows attraction due to the alignment of its magnetic moments with the external magnetic field.
crystal field effects	behavior of transition metal complexes. It focuses on the interaction	Visual Aids: Use

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

	between the electrons of a transition metal ion and the surrounding	diagrams or
	ligands (ions or molecules) in a crystal lattice.	models to
SO 4.8 Curie- weiss law	4.8 Mathematical explanation about Curie- weiss law for susceptibility	illustrate the
for susceptibility		crystal field
		splitting in
		different
		geometries
		(octahedral and
		(etrahedral) and
		how it correlates
		to observed colors
		Spectral Data:
		Show spectral
		data such as
		absorption spectra
		to relate the
		energy gans
		caused by crystal
		field splitting to
		the observed
		colors
SO 4.9 Heisenberg	4.9 Discuss how the Heisenberg exchange interaction leads to an	
exchange interaction	exchange energy between neighboring spins. The energy associated	
	with this interaction depends on the relative orientation of the spins.	
	When spins are aligned parallel (ferromagnetic alignment), the	
	exchange energy is usually lower than when they are anti-aligned	
	(antiferromagnetic alignment).	
SO 4.10 Mean field theory	4.10 Mean field theory is a concept used in various fields, such as	
	physics, neuroscience, and materials science, to simplify complex	
	systems by approximating the interactions among individual components. In the context of physics, it's often applied to describe the	
	behavior of many interacting particles such as atoms or spins in a	
	magnetic material	
SO 4.11 Neel point	4.11 The Neel point is a significant concept in the study of	
-	magnetism, particularly in the context of antiferromagnetic	
	materials. It's named after Louis Neel, a French physicist who	
	made notable contributions to the understanding of magnetism.	
SO 4.12 Nuclear magnetic	4.12 In a classroom setting, teaching NMR in the context of	
resonance	magnetism involves several key concepts:	
	g	
	Magnetic Moments: Atoms with an odd number of protons or	
	neutrons have a non-zero nuclear spin, resulting in a magnetic	
	moment. When placed in an external magnetic field, these nuclei	
	align either parallel or antiparallel to the field.	
	Energy Levels: The nuclei have different energy states based on	
	their alignment in the magnetic field. The energy difference	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

between these states is directly proportional to the strength of the magnetic field. Resonance Condition: When the frequency of an applied electromagnetic field matches the energy difference between these states, the nuclei absorb energy and transition between energy levels. This is known as the resonance condition. Larmor Frequency: The frequency at which the magnetic moments precess around the magnetic field is called the Larmor frequency. It's directly proportional to the strength of the magnetic field and the gyromagnetic ratio of the nucleus. NMR Spectroscopy: By applying a varying magnetic field or radiofrequency pulses to the sample, and then detecting the resulting emitted radio waves, an NMR spectrometer can provide detailed information about the chemical environment and structure of molecules, aiding in chemical analysis. Applications: Explain various applications of NMR, such as in chemistry for structure determination, in medical diagnostics for imaging (Magnetic Resonance Imaging - MRI), and in physics for studying material properties and dynamics.

SW-4 Suggested Sessional Work (SW):

- > Assignments
- > Other Activity

Power Point Presentation

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

77PH202.05: Students or participants should acquire a comprehensive understanding of the principles behind superconductivity, including the theories, properties, and phenomena associated with superconducting materials.

Item	AppX Hrs
Cl	08
LI	0
SW	1
SL	1
Total	10

SESSION	CLASS ROOM INSTRUCTION (CI)	SELF LEADING
OUTCOMES (SOs) SO 5.1 Concept of superconducting state	Module 5.1 The superconducting state is a fascinating phenomenon observed in certain materials when they are cooled to extremely low temperatures. In this state, these materials exhibit zero electrical resistance and expel magnetic fields, allowing currents to flow perpetually without any loss of energy. This phenomenon was first discovered in 1911 by Heike Kamerlingh Onnes when he observed the sudden disappearance of electrical resistance in mercury at very low temperatures. Key aspects of the superconducting state include: Zero Resistance: One of the most distinctive properties of superconductors is their ability to conduct electricity without	LEARING
	 any resistance. When a current starts flowing in a superconductor, it can continue indefinitely without losing any energy to resistance. Meissner Effect: Superconductors expel magnetic fields from their interiors when they transition into the superconducting state. This phenomenon is known as the Meissner effect and leads to the expulsion of magnetic fields. Critical Temperature: Each superconductor has a critical temperature below which it transitions into the 	
	superconducting state. This temperature varies from material to material. Some superconductors require extremely low temperatures (near absolute zero), while others, called "high-temperature superconductors," exhibit superconductivity at temperatures achievable using more practical cooling methods, though still very low by everyday	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

	standards.	
	Type I and Type II Superconductors: Superconductors can be categorized into Type I and Type II based on their response to magnetic fields. Type I superconductors expel all magnetic fields below their critical magnetic field strength. Type II superconductors allow partial penetration of magnetic fields even below their critical magnetic field strength.	
	Applications: Superconductors have numerous practical applications, especially in fields such as medical imaging (MRI machines), magnetic levitation trains (maglev), particle accelerators, sensitive detectors, and high-speed electronic circuits.	
SO 5.2 Persistent currer & Critical temperature	 5.2 Understanding these concepts can be fundamental in exploring the intriguing behavior of superconductors and their potential applications in various technological advancements. 	
SO 5.3 Meissner's effec	5.3 Meissner's effect might be taught as a significant discovery in the field of superconductivity, explaining how superconductors behave in the presence of magnetic fields at low temperatures. Teachers may demonstrate this effect using simple experiments involving superconducting materials, magnets, and cooling agents to illustrate the expulsion of magnetic fields from the superconductor's interior when it transitions to a superconducting state.	
SO 5.4 Thermodynamic of the superconducting transitions	5.4 Understanding the thermodynamics of superconducting transitions is crucial in developing applications such as superconducting magnets, power transmission lines, and sensitive instrumentation, as superconductors offer unique and advantageous properties in these fields due to their zero resistance and other extraordinary characteristics.	
SO 5.5 Isotope effect	5.5 The isotope effect refers to the change in the reaction rate or properties of a chemical reaction due to the substitution of isotopes of the same element in the reactants. Isotopes are atoms of the same element that have different numbers of neutrons and, consequently, different atomic masses.	Mathematical proof of Einstein's Coefficients
	There are two primary types of isotope effects: Kinetic Isotope Effect (KIE): This effect occurs when the rate of a chemical reaction is influenced by the substitution of isotopes. It's particularly noticeable in reactions involving the breaking or forming of chemical bonds, where the mass difference between isotopes influences the reaction rate. Typically, lighter isotopes often react faster than heavier	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

	isotopes due to their higher mobility and faster vibrational	
	frequencies.	
	Equilibrium Isotope Effect: This effect refers to the influence of isotopic substitution on the position of chemical equilibrium. It's observed in reactions where the isotopic composition affects the stability of reactants and products, thereby altering the equilibrium position.	
SO 5.6 Manifestations of	5.6 The concept of an "energy gap" can manifest in various	
energy gap	ways across different fields such as physics, electronics, and materials science. Here are a few manifestations or instances where the concept of an energy gap is important:	
	Semiconductors and Electronics: In solid-state physics, semiconductors have an energy gap between their valence band (where electrons are tightly bound to atoms) and the conduction band (where electrons can move freely). This energy gap determines the conductivity properties of the material. When electrons gain enough energy (often through thermal or optical excitation), they can jump the energy gap and move into the conduction band, allowing the material to conduct electricity. This forms the basis of electronic devices like diodes and transistors.	
	Photovoltaic Devices: Energy gaps are crucial in solar cells. When photons of light strike a semiconductor material, they can provide enough energy to electrons, allowing them to cross the energy gap and become free to conduct electricity. This process generates an electric current, converting light energy into electrical energy.	
	Superconductors: In the field of superconductivity, there's an energy gap involved as well. Superconductors have a "superconducting gap" which is related to the energy required for electrons to pair up and move without resistance through the material. This gap prevents the scattering of electrons and allows for zero resistance electrical conduction at low temperatures.	
	Optoelectronics: The energy gap also plays a significant role in optoelectronic devices such as light-emitting diodes (LEDs) and lasers. When electrons transition from a higher energy state to a lower one, they release energy in the form of light. The energy difference between these states determines the wavelength or color of the emitted light.	
	Band Theory in Materials Science: In materials science, the concept of energy bands and gaps between them helps to	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

	explain the electrical properties of materials. Conductors	
	have overlapping energy bands, insulators have a large	
	energy gap between bands, while semiconductors have a	
	small but finite energy gap.	
SO 5.7 London equation	5.7 The London equations describe how the supercurrent	
& papatration donth	responds to changes in the vector potential in a	
& penetration deput	superconductor. They illustrate that in a superconductor, the	
	electromagnetic response to an applied field is immediate	
	and there's no delay in the establishment of currents. This is	
	why superconductors can expel magnetic fields and remain	
	in a state of perfect diamagnetism (Meissner effect) when	
	cooled below their critical temperature	
CO 5 0 Trees flacid as a lal	5.9 The "two fluid model" is a concert used in various	Elementerry Dreef
SO 5.8 Two fluid model	5.8 The two-fluid model is a concept used in various	ef Equition Sing &
	scientific disciplines, particularly in physics and fluid	of Fourier Sine α
	dynamics. In the context of fluid dynamics, it refers to a	Fourier Cosine
	theoretical framework that describes certain phenomena by	Transforms
	considering two distinct fluids that interact with each other.	
SO 5.9 Flux quantization	5.9 The concept of flux quantization is often discussed in	
	courses related to condensed matter physics,	
	electromagnetism, or advanced topics in quantum	
	mechanics. It's a fundamental aspect of superconductivity	
	that showcases the unique behavior of materials at extremely	
	low temperatures and has implications for various	
	technological advancements. Teachers might use visual aids,	
	demonstrations, and mathematical explanations to help	
	students understand this concept.	
SO 5.10 single particle	5.10 This phenomenon has various real-world applications,	
tunneling	especially in electronics and nanotechnology. For instance,	
	it's crucial in the operation of tunneling diodes, where the	
	tunneling effect is exploited for creating extremely fast and	
	efficient electronic devices.	
SO 5.11 <i>dc</i> and <i>ac</i>	5.11 The DC and AC Josephson effects are fundamental	
Josephson effect	phenomena in superconductivity that involve the flow of	
_	electrical current across a weak link between two	
	superconducting materials.	
	DC Josephson Effect:	
	In the DC (direct current) Josephson effect, a supercurrent	
	flows through a junction of two superconductors separated	
	by a thin insulating barrier or a very thin normal conducting	
	region.	
	When two superconductors are brought into close proximity	
	but are not physically connected, Cooper pairs (pairs of	
	electrons bound together at low temperatures) can tunnel	
	through the barrier between the superconductors without any	
	resistance.	
	This tunneling of Cooper pairs results in the flow of a	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

	supercurrent which is characterized by a constant phase	
	difference between the wave functions of the	
	superconductors	
	The current voltage relationship in a losenhean junction is	
	described by the Josephson equations, which relate the	
	uescribed by the Josephson equations, which relate the	
	the sum and the function to the phase difference between	
	the superconducting wave functions.	
	AC Josephson Effect:	
	The AC (alternating current) Josephson effect occurs when	
	an external electromagnetic field is applied to the Josephson	
	junction.	
	When an AC voltage is applied across the junction, the	
	phase difference between the two superconductors oscillates	
	with the frequency of the applied voltage.	
	This leads to an alternating supercurrent, where the direction	
	of the current periodically reverses in response to the	
	changing phase difference induced by the applied AC	
	voltage.	
	The relationship between the applied voltage and the	
	frequency of the supercurrent oscillations is described by the	
	AC Josephson effect.	
	Both DC and AC Josephson effects have numerous	
	applications in superconducting electronics, including	
	superconducting quantum interference devices (SQUIDs),	
	high-speed digital circuits, and highly sensitive	
	magnetometers. They are also used in metrology to create	
	extremely precise voltage standards.	
SO 5.12 quantum	5.12 Quantum interference can be demonstrated using	
interference	various experiments, simulations, or visual aids to help	
	students comprehend this fascinating aspect of quantum	
	mechanics. Explaining the concept through analogies and	
	real-world examples often aids in students' understanding of	
	this complex but intriguing phenomenon.	
SO 5.13 Cooper pairing	Cooper pairing relies on quantum mechanical principles,	
	specifically the interaction between electrons and the	
	condensation of these pairs into a coherent quantum state,	
	where they behave collectively.	
SO 5.14 Interaction of	Quantum interference involving the interaction of electrons	
electrons with acoustic	with acoustic and optical phonons is a fundamental concept	
and optical phonons	in condensed matter physics, especially in the study of	
and optical phonons	semiconductor materials.	
	Electrons: In a crystal lattice, electrons behave as both	
	particles and waves due to their quantum nature. When an	
	electric field is applied or when electrons move through the	
	lattice, they can interact with lattice vibrations known as	
	phonons.	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

		1
	Phonons: Phonons are quantized lattice vibrations or quasiparticles representing the collective motion of atoms in a crystal lattice. There are two main types: acoustic and optical phonons.	
	Acoustic Phonons: These are associated with the elastic deformation of the crystal lattice. They have lower energies and longer wavelengths compared to optical phonons.	
	Optical Phonons: These arise due to the displacement of ions with respect to the equilibrium positions in the lattice and have higher energies than acoustic phonons.	
	Electron-Phonon Interaction: When electrons move through a crystal lattice, they can scatter off phonons, altering the electron's momentum and energy. This interaction is crucial for various physical phenomena observed in semiconductors, such as electrical resistivity, thermal	
	conductivity, and electronic band structure modifications.	
	the wave nature of electrons leads to constructive or destructive interference. This interference pattern is influenced by the paths electrons take and their interactions along these paths.	
	Electron-Phonon Scattering and Interference: The interaction of electrons with phonons introduces different scattering mechanisms. Depending on the momentum and energy transfer during scattering events, interference effects can arise. These effects can affect electron transport properties, like conductivity or mobility.	
	Applications: Understanding electron-phonon interactions and quantum interference is crucial for developing semiconductor devices. It impacts the design and performance of transistors, diodes, and other electronic components. Manipulating these interactions can lead to advancements in materials science and quantum	
	technologies.	
SO 5.15 BCS theory of superconductivity	5.15 The Bardeen-Cooper-Schrieffer (BCS) theory is a fundamental explanation of superconductivity, developed by John Bardeen, Leon Cooper, and Robert Schrieffer in 1957. It provides a framework for understanding how certain materials conduct electricity without resistance at low temperatures.	
SO 5.16 High	5.16 High-temperature superconductors (HTS) are a type of	
temperature	material that can conduct electricity with zero resistance at	1

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

superconductors and	relatively higher temperatures compared to conventional	
their applications	superconductors. These materials, typically ceramics or	
11	compounds containing copper, can superconduct at	
	temperatures above the boiling point of liquid nitrogen (77	
	Kelvin or -196 degrees Celsius). This is in contrast to	
	conventional superconductors that require much colder	
	temperatures, often near absolute zero.	

SW-5 Suggested Sessional Work (SW):

- > Assignments
- > Other Activity

Power Point Presentation

Discuss ongoing research efforts aimed at discovering new HTS materials with higher critical temperatures and better performance.

Course Outcomes	Class Lecture	Sessional Work	Self-	Total hour $(C1+SW+S1)$
	(Cl)	(SW)	(Sl)	(011511)
97PH202.01: Describe the basic principles of semiconductor physics, including band theory, carrier transport, and semiconductor device behavior.	8	1	1	10
97PH202.02: A course on Carrier Transport in Semiconductors typically covers fundamental concepts related to the movement of charge carriers (electrons and holes) within semiconductor materials. The course outcomes may include, but are not limited to: Understanding Semiconductor Basics, Carrier Statistics and Equilibrium, Carrier Transport Mechanisms & Semiconductor Devices and	7	2	1	10
97PH202.03: Understanding the dielectric properties of materials is crucial in various fields, including electrical engineering, materials science, and telecommunications.	8	1	1	10
97PH202.04: Understanding how magnetic properties are utilized in various technological applications such as magnetic storage devices, sensors, motors, generators, medical imaging (MRI), and magnetic materials used in industries.	11	0	2	13

Brief of Hours suggested for the Course Outcome

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

97PH202.05: Students or participants should acquire a comprehensive understanding of the principles behind superconductivity, including the theories, properties, and phenomena associated with superconducting materials.	8	1	1	10
Total Hours	42	05	6	53

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Understanding the fundamental concepts of semiconductors, crystal structures, band theory, doping, and intrinsic/extrinsic semiconductor properties.	03	01	01	05
CO-2	Understanding the significance of carrier transport in the development of new semiconductor materials, devices, and technologies.	02	06	02	10
CO-3	Understanding dielectric properties is crucial in various fields like electrical engineering, materials science, and physics.	03	07	05	15
CO-4	Students gain a fundamental understanding of the principles behind magnetism, including the behavior of magnetic fields, magnetic forces, and magnetic materials.	-	10	05	15
CO-5	Understanding the Basics: Gain a comprehensive understanding of the fundamental principles underlying superconductivity, including the Meissner effect, critical temperature, critical magnetic field, and Cooper pairs.	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Role Play
- 5. Demonstration
- 6. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 7. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books:			
S. No.	Title	Author	Publisher	Edition & Year
1	Introduction to Solid State Physics	L.V. Azaroff	Academic Press	Revised edition 21 edition 2020
2	Crystellographic Solid State Physics	Verma & Srivastava	Cambridge University Press	2014
3	Solid State Physics	A.J. Dekker	Dover publications,	2001
4	Principles of Condense Matter Physics	P.M. Chaiken& T.C. Lubensky	Dover Publications	2018

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc (Physics) Course Code: 77PH202 Course Title: Solid State Physics

	Program Outcomes										Program Specific Outcome						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Course Outcomes	Engi ne ering kno wle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life- long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturin g technology.	Ability to use the research based innovative knowledge for SDGs	Engage in life-long learning and will have recognition
CO 1: Understanding the fundamental concepts of semiconductors, crystal structures, band theory, doping, and intrinsic/extrinsic semiconductor properties.	2	2	2	2	3	2	3	2	2	1	3	2	2	3	3	1	3
CO 2: Understanding the significance of carrier transport in the development of new semiconductor materials, devices, and technologies.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	2
CO 3: Understanding dielectric properties is crucial in various fields like electrical engineering, materials science, and physics.	2	1	2	1	3	2	2	2	1	2	1	2	3	2	2	2	2
CO 4: Students gain a fundamental understanding of the principles behind magnetism, including the behavior of magnetic fields, magnetic forces, and magnetic materials.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	3
CO 5: Understanding the Basics: Gain a comprehensive understanding of the fundamental principles underlying superconductivity, including the Meissner effect, critical temperature, critical magnetic field, and Cooper pairs.	1	2	3	1	2	3	3	3	1	1	2	2	3	3	2	3	2

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6	CO 1 Understanding the fundamental concepts of semiconductors, crystal	SO1.1	UNIT-I (Semiconductor Materials)	
7,8,9,10,11,12	structures, band theory, doping, and	SO1.2	1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,	
PSO 1,2, 3, 4, 5	properties.	SO1.3 SO1.4	1.8, 1.9, 1.10, 1.11, 1.12	
		SO1.5		
PO 1,2,3,4,5,6	CO 2: Understanding the significance of carrier transport in the development of	SO2.1	UNIT-II (Carrier Transport in Semiconductors)	_
7,8,9,10,11,12	and technologies.	SO2.2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1.2, 3, 4, 5		SO2.3 SO2.4	2.8, 2.9, 2.10, 2.11, 2.12	
		SO2.5		As mentioned in
PO 1,2,3,4,5,6	CO 3: Understanding dielectric properties is	SO3.1	UNIT-III (Dielectric	page number
7,8,9,10,11,12	engineering, materials science, and	SO3.2	Properties)	2 10 0
PSO 1,2, 3, 4, 5	physics.	SO3.3 SO3.4	3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7,	
		SO3.5	3.8, 3.9, 3.10, 3.11, 3.12	
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO 4: Students gain a fundamental understanding of the principles	SO4.1 SO4.2	UNIT-IV (Magnetic Properties)	c
PSO 1 2 3 4 5	behavior of magnetic fields.	SO4.3	4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7 4.8, 4.9, 4.10, 4.11, 4.12	,
150 1,2, 5, 4, 5	magnetic forces, and magnetic materials.	SO4.4 SO4.5	,,,	
PO 1,2,3,4,5,6	CO 5: Understanding the Basics: Gain a	SO5.1	UNIT-V (Superconductivity)	
7,8,9,10,11,12	comprehensive understanding of the	SO5.2	51525354555657	
PSO 1,2, 3, 4, 5	fundamentalprinciplesunderlyingsuperconductivity,includingtheMeissner	SO5.3 SO5.4	5.8, 5.9, 5.10, 5.11, 5.12	
	effect, critical temperature, critical magnetic field, and Cooper pairs.	SO5.5		

Semester-II							
Course Code:	PH203						
Course Title :	Quantum Mechanics-I						
Pre- requisite:	A thorough understanding of mechanics. Knowledge of partial differential equation and variable separable method. Commendable knowledge of integral and differential calculus.						
Rationale:	This course gives an insight of applying different approximation methods for stationary states and deals with alternative pictures of time evolution and relativistic quantum mechanics. It also helps the students to acquire basic knowledge of quantum field theory.						

Course Outcomes:

CO203.1. To explain the theories and phenomena of vector space, operators, Dirac's notations, matrices, and commutators which are very helpful in solving the various Quantum mechanics problems and understand the uncertainty relation between two arbitrary operators.

CO203.2. To understand and solve the Schrödinger equation for a free particle. A comprehensive understanding of the behavior of particles in one and three dimensions enabling them to analyze and solve problems in a wide range of quantum systems.

CO203.3. Understand the potential energy function for a linear harmonic oscillator. Interpret the wave functions associated with harmonic oscillator states. To understand the significance of vibrational energy levels in molecular spectra.

CO203.4. To understanding the angular momentum, spin, and their applications in quantum mechanics, enabling them to analyze and solve problems in systems with angular momentum and spin. Understand the coupling of two angular momenta to obtain the total angular momentum.

CO203.5. Understanding of time-independent perturbation theory, variational methods, WKB approximation, Fermi's Golden Rule, and the semiclassical theory of interaction with radiation.

Scheme	of	Studi	ies:
--------	----	-------	------

				Scher	Scheme of studies(Hours/Week)					
Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)			
PH203.3	Quantum Mechanics-I	4	0	1	1	6	4			

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

		Scheme of Assessment (Marks)							
6	Course Title	Progressive Assessment (PRA)					End Semester Assessment	Total Marks	
Code		Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activity any one	Class Attendance	Total Marks		
		each (CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
PH203	Quantum Mechanics- I	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (Cl).

PH203.1: To explain the theories and phenomena of vector space, operators, Dirac's notations, matrices, and commutators which are very helpful in solving the various Quantum mechanics problems and understand the uncertainty relation between two arbitrary operators.

Ap	proximate Hours
Item	Approx. Hrs.
Cl	8
LI	0
SW	2
SL	1
Total	11

Session Outcomes	Class room Instruction	Self Learning
(SOs)	(CI)	(SL)

SO1.1 The state of a system is	Unit-1 Foundation of Quantum	
described by a mathematical function	mechanics	Developing a
called the wave function.		deep
SO1.2 The concept of wave-particle	1.1Why OM? Brief prevision. Basic	understanding
duality, suggesting that particles like	postulates of quantum mechanics	of these
electrons can exhibit both wave and	1.2 Wave-particle duality, wave packets,	postulates,
particle like properties. Using	wave function, expectation values,	solving
Heisenberg Uncertainty Principle for	continuity equation	problems using
position and momentum operators in	1.3 Ehrenfest theorem, Heisenberg	the
quantum mechanics.	uncertainty principle.	mathematical
	1.4 Equation of continuity, Normality,	formalism of
SO1.3 Explain the physical meaning of	orthogonality and closure properties of	quantum
each term in the Schrödinger equation.	eigen functions, Expectation values	mechanics and
Emphasize the significance of the	1.5 Free particle solution of Schrodinger	challenges
kinetic and potential energy terms.	equation, Box normalization.	posed by the
	1.6 Dirac delta-function and its properties	theory.
SO1.4 Discuss the mathematical	1.7 Solution of Schrodinger equation for	
idealization of the Dirac delta function	one dimensional (a) potential well (b)	
and its limitations in practical	potential step and (c) potential barrier (2).	
applications.		
SO1.5 Introduce approximations, such		
as a narrow rectangular pulse, that		
approach the behavior of the Dirac		
delta function. The evolution of a		
quantum system is governed by the		
Schrödinger equation, describing how		
the wave function changes over time.		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Heisenberg uncertainty principle.
- 2. Schrodinger wave equations
- **PH203.2:** To understand and solve the Schrödinger equation for a free particle. A comprehensive understanding of the behavior of particles in one and three dimensions enabling them to analyze and solve problems in a wide range of quantum systems.

Approximate Hours

••				
Item	Approx. Hrs.			
Cl	09			
LI	0			
SW	2			
SL	1			
Total	12			

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learn
		ing
		(SL)
SO2.1 To understand Introduce the concept	Unit-2 One and Three dimensional	A comprehensive
of a free particle with no external forces or	problems	understanding of
potentials. Introduce the concept of a	2.1 One-dimensional problems: Free	Perturbation Theory
potential step, where a particle encounters	particle, potential step	
a sudden change in potential energy.	2.2 Methods of variation of constant and	
SO2.3 Discuss the physical interpretation	harmonic perturbation	
of the variation of constants, emphasizing	2.3 One-dimensional problems: Free	
how the method provides insights into the	particle, potential step	
evolution of quantum states under time-	2.4 Rectangular barrier, tunneling, infinite	
dependent perturbations. Time-	square well	
independent perturbation theory to set the	2.5 Finite square well, periodic lattice and	
foundation for harmonic perturbation.	linear harmonic oscillator.	
SO2.3 Understanding the concept of	2.6 Three-dimensional problems: Free	
separating variables in the Schrödinger	particle (in Cartesian and Spherical	
equation for the three-dimensional free	coordinates)	
particle. The quantization of energy levels	2.7 Three dimensional Square well	
for the linear narmonic oscillator.	2.6 Inter-undensional inteal national	
SO2.4 Bridging the gap between	oscillator (ill Cartesiali and ill Spherical	
Cartesian and spherical coordinates. A	2.0 Rigid rotator Hydrogen atom and	
comprehensive understanding of the	notential barrier	
quantum mechanics of a particle in a		
SO2 5 Emphasizing a rigorous		
mathematical approach in solving the		
Schrödinger equation and understanding		
the eigen states and eigenvalues for each		
notential		
potentiai.		

SW-2 Suggested Sessional Work (SW):

a. Assignments:

1. Schrodinger wave equation for rectangular potential barrier.

2. Linear harmonic oscillator.

PH203.3: Understand the potential energy function for a linear harmonic oscillator. Interpret the wave functions associated with harmonic oscillator states. To analyze the significance of vibrational energy levels in molecular spectra.

A	pproximate Hours
Item	Approx. Hrs.
Cl	09
LI	0
SW	2

SL	1
Total	12

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learning
		(SL)
SO3.1 To develop a comprehensive	Unit-3: Solution and application of	Explore real-
understanding of the quantum mechanics of a	Schrodinger equation	world applications
particle in a three-dimensional square well and	3.1 Solution of Schrodinger equation	of the solutions,
its implications for various physical systems.	3.2 Solution of Schrodinger equation	such as their role in
Solving by appropriate potential and boundary	for: linear harmonic oscillator (2)	understanding
conditions	3.3 hydrogen-like atom	atomic and
SO3.2 Understanding the solutions for a	3.4 three-dimensional harmonic	molecular
harmonic oscillator potential. Explore the	oscillator	structures, electronic
solutions for the hydrogen atom, involving	3.5 Square well potential and their	properties of
spherical harmonics and radial wave functions.	respective	materials, and the
SO3.3 The theory of scattering in quantum	3.6 Applications to atomic spectra	behavior of particles
mechanics deals with the study of how particles	3.7 Molecular spectra	in different
interact with each other or with potentials	3.8 Low energy nuclear states	potentials.
	(deuteron).	
SO3.4 Understand the theory of scattering		
in quantum mechanics and interaction with each		
other or with potentials		
SO3.5 The focus is likely on imparting a broader		
understanding of the physical concepts		
underlying scattering processes.		

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Three dimensional harmonic oscillator.
- 2. Applications to atomic and molecular spectra.

PH203.4: To understanding the angular momentum, spin, and their applications in quantum mechanics, enabling them to analyze and solve problems in systems with angular momentum and spin. Understand the coupling of two angular momenta to obtain the total angular momentum.

Ар	Approximate Hours		
Item	Approx. Hrs.		
Cl	05		
LI	0		
SW	4		
SL	1		
Total	10		

Session Outcomes	Class room Instruction	Self	
(SOs)	(CI)	Learnin	
		g (SL)	
 SO4.1 Downfall of Klein-Gordon equation SO4.2 Relativistic quantum mechanics is a theoretical framework that merges quantum mechanics with special relativity. SO4.3 Interpretation of probability and current density. SO4.4 To understand how the Klein-Gordon equation is modified when an electromagnetic field is present. SO4.5 T he ability to derive and solve the Klein-Gordon equation in the presence of electromagnetic fields. 	Unit-4 : Quantum Equation-I 4.1 Short comings of Klein-Gordon Equation 4.2 Introduction to relativistic quantum mechanics 4.3 Probability and current density 4.4 Klein-Gordon equation in the presence of electromagnetic field (2)	The ability to derive and solve the equation in the presence of electromagnetic fields and understand the implications of such solutions in the context of particle physics.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Short comings of Klein-Gordon Equation
- 2. Klein-Gordon equation in the presence of electromagnetic field
- 3. Introduction to relativistic quantum mechanics
- 4. Probability and current density

PH203.5: Understanding of time-independent perturbation theory, variational methods, WKB approximation, Fermi's Golden Rule and the semiclassical theory of interaction with radiation.

Item	Approx. Hrs.
Cl	09
LI	0
SW	3
SL	2
Total	14

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learning
SOF 1 To describe the time evolution of	Unit 5. Quantum Equation II	(JL)
SO5.1 To describe the time evolution of operators corresponding to physical observables. For electrons, this includes operators for position, momentum, angular momentum and spin. SO5.2 Dirac's equation is a relativistic quantum mechanical wave equation.	 5.1 Hydrogen atom 5.2 Equation of motion for operators, position momentum and angular momentum, spin of an electron 	Applying Dirac matrices to formulate and solve problems in relativistic quantum mechanics. Interpreting physical implications of solutions obtained using Dirac matrices
 SO5.3 Understanding of Zitterbewegung refers to Dirac's equation predicts for an electron. SO5.4 Dirac's equation predicts both positive and negative energy solutions. SO5.5 Hyperfine splitting showing the energy difference between atomic energy levels that arise from the interaction between the magnetic moment associated with the electron's spin and the nuclear magnetic moment. 	 5.3 Dirac's relativistic equation for a free electron 5.4 Zitterbewegung Dirac's relativistic equation in electromagnetic field (2) 5.5 Negative energy states and their interpretation (2) 5.6 Hyperfine splitting 5.7 Dirac's matrices 	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- 1. Matrix representation of angular momentum.
- 2. Hyperfine splitting
- 3. Dirac matrices.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self	Total hour
	Lectur	Work	Learning	(Cl+SW+Sl)
	e	(SW)	(Sl)	
	(Cl)			

CO 203.1. To explain the theories and phenomena of vector space, operators, Dirac's notations, matrices, and commutators which are very helpful in solving the various Quantum mechanics problems and understand the uncertainty relation between two arbitrary operators.	8	2	1	11
CO 203.2. To understand and solve the Schrödinger equation for a free particle. A comprehensive understanding of the behavior of particles in one and three dimensions enabling them to analyze and solve problems in a wide range of quantum systems.	9	2	1	12
CO 203.3. Understand the potential energy function for a linear harmonic oscillator. Interpret the wave functions associated with harmonic oscillator states. To understand the significance of vibrational energy levels in molecular spectra.	9	2	1	12
CO 203.4. To understanding the angular momentum, spin, and their applications in quantum mechanics, enabling them to analyze and solve problems in systems with angular momentum and spin. Understand the coupling of two angular momenta to obtain the total angular momentum.	5	4	1	10
CO 203.5. Understanding of time-independent perturbation theory, variational methods, WKB approximation, Fermi's Golden Rule, and the semiclassical theory of interaction with radiation.	9	3	2	14
Total Hours	40	13	6	59

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	Α	Marks
CO-1	CO203.1. To explain the theories and phenomena of vector space, operators, Dirac's notations, matrices, and commutators which are very helpful in solving the various Quantum mechanics problems and understand the uncertainty relation between two arbitrary operators.	03	01	01	05
CO-2	CO203.2. To understand and solve the Schrödinger equation for a free particle. A comprehensive understanding of the behavior of particles in one and three dimensions enabling them to analyze and solve problems in a wide range of quantum systems.	02	06	02	10
CO-3	CO203.3. Understand the potential energy function for a linear harmonic oscillator. Interpret the wave functions associated with harmonic oscillator states. To understand the significance of vibrational energy levels in molecular spectra.	03	07	05	15
CO-4	CO203.4. To understanding the angular momentum, spin, and their applications in quantum mechanics, enabling them to analyze and solve problems in systems with angular momentum and spin. Understand the coupling of two angular momenta to obtain the total angular momentum.	-	10	05	15
CO-5	CO203.5. Understanding of time-independent perturbation theory, variational methods, WKB approximation, Fermi's Golden Rule, and the semiclassical theory of interaction with radiation.	03	02	-	05
	Total	11	26	13	50
L	egend: R: Remember, U: Understand,	A: Ap	ply		1

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement for end semester assessment.

Suggested Learning Resources:

(a)	Books :			
S. No.	Title	Author	Publisher	Edition & Year
1	Quantum Mechanics	L.I. Schiff	McGraw Hill Education	2017
2	Quantum Physics	S. Gasiorowicz	Wiley	2003
3	Quantum Mechanics	B. Craseman and J.L. Powel	Courier Dover Publications	2015
4	Quantum Mechanics	A.P. Messiah	Dover Publications Inc.	2014
5	A Text book of Quantum Mechanics	P.M. Mathews & K. Venkatesan	McGraw Hill Education	2017
6	Modern Quantum Mechanics	J.J. Sakurai & Jim Napolitano	Cambridge University Press	1985
7	Quantum Mechanics Concepts and Applications	Nouredine Zettili	Wiley	2017

Curriculum Development Team

- 1. Dr. O. P. Tripathi, Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr. C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr. Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr.Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code : PH203

Course Title: Quantum Mechanics-I

		Program Outcomes										Program Specific Outcome					
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life- long learning	Identify, formulate, and solve Physics problems	Design and conduct experiments, as well as to analyse and interpret data	Apply knowledge of Physics in a different stream of science and to communicate effectively	Ability to use the techniques, skills, and modern physical tools in real world application	Engage in life-long learning and will have recognition.
CO 203.1. To explain the theories and phenomena of vector space, operators, Dirac's notations, matrices, and commutators which are very helpful in solving the various Quantum mechanics problems and understand the uncertainty relation between two arbitrary Operators.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	2
CO 203.2. To understand and solve the Schrödinger equation for a free particle. A comprehensive understanding of the behavior of particles in one and three dimensions enabling them to analyze and solve problems in a wide range of quantum systems.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	3
CO 203.3. Understand the potential energy function for a linear harmonic oscillator. Interpret the wave functions associated with harmonic oscillator states. To understand the significance of vibrational energy levels in molecular spectra.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2

									A K S Un	iversity							
	Faculty of Basic Science																
								Dep	partment	t of Phys	sics						
							Curric	ulum	of M.Sc.	(Physic	s) Prograi	n					
							(R	evised	as on 0	1 Augus	t <i>,</i> 2023)						
CO 203.4. To understanding the angular momentum, spin, and their applications in quantum mechanics, enabling them to analyze and solve problems in systems with angular momentum and spin. Understand the coupling of two angular momenta to obtain the total angular momentum.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	1
CO 203.5. Understanding of time-independent perturbation theory, variational methods, WKB approximation, Fermi's Golden Rule, and the semiclassical theory of interaction with radiation.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6	CO 203.1. To explain the theories and phenomena of vector space, operators, Dirac's notations, matrices, and	SO1.1	Unit-1 Foundation of Quantum mechanics	
7,8,9,10,11,12	commutators which are very helpful in solving the various Quantum mechanics problems and understand the uncertainty relation between two arbitrary operators.	SO1.2	1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7	1
		SO1.3		
PSO 1,2, 3, 4, 5		SO1.4		
		SO1.5		
PO 1,2,3,4,5,6	CO 203.2. To understand and solve the Schrödinger equation for a free particle. A comprehensive	SO2.1	Unit-2 One and Three dimensional problems	1
7,8,9,10,11,12	understanding of the behavior of particles in one and three	SO2.2		
	dimensions enabling them to analyze and solve problems	SO2.3	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4, 5	in a wide range of quantum systems.	SO2.4	2.8,2.9	
		SO2.5		

	A K S	University								
	Faculty o	of Basic Science								
	Department of Physics									
Curriculum of M.Sc. (Physics) Program										
(Revised as on 01 August, 2023)										
PO 1,2,3,4,5,6	CO 203.3. Understand the potential energy function for a	SO3.1	Unit-3: Solution and application of							
7,8,9,10,11,12	linear harmonic oscillator. Interpret the wave functions	SO3.2	Schrodinger equation							
	associated with harmonic oscillator states. To understand	(2)								
	the significance of vibrational energy levels in molecular	SO3.3	3.1. 3.2.3.3.3.4.3.5.3.6.3.7.3.8							
PSO 1,2, 3, 4, 5	spectra.	503.4								
		503.T								
		305.5								
PO 1,2,3,4,5,6	CO 203.4. To understanding the angular momentum, spin,	SO4.1	Unit-4 : Quantum Equation-I	1						
7,8,9,10,11,12	and their applications in quantum mechanics, enabling	SO4.2	A = A = A = A = A = A = A = A = A = A =							
	them to analyze and solve problems in systems with	SO4.3	4.1, 4.2,4.3,4.4 (2)							
PSO 1.2. 3. 4. 5	angular momentum and spin. Understand the coupling of	SO4.4								
/ / - / / -	two angular momenta to obtain the total angular	•••								
	momentum.									
PO 1,2,3,4,5,6	CO 203.5. Understanding of time-independent	SO5.1	Unit 5: Quantum Equation-II	2						
	perturbation theory, variational methods, WKB	SO5.2	5.1,5.2,5.3,5.4,5.5, 5.6, 5.7							
	approximation, Fermi's Golden Rule, and the semiclassical	SO5.3								
	theory of interaction with radiation.	SO5.4								
		SO5.5								

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

Semester-II

Course Code: PH204

Course Title : Atomic, Molecular and Laser Physics

- **Pre- requisite:** It's important to note that specific course prerequisites may vary based on the institution and the level of the course. Students are advised to check the course catalog or consult with the instructor for the most accurate information regarding prerequisites for a particular Atomic, Molecular, and Laser Physics course.
- **Rationale:** The study of Atomic, Molecular, and Laser Physics is essential for understanding the fundamental nature of matter and has wide-ranging applications in technology, medicine, chemistry, physics, and various interdisciplinary fields. The knowledge gained in this field continues to drive innovations and discoveries with profound implications for diverse scientific and technological endeavors.

Course Outcomes:

- **PH204.1:** Atomic Spectra: To provide students with a comprehensive understanding of atomic spectra and quantum mechanics, preparing them for advanced studies and applications in the field. Students should be able to apply theoretical concepts to interpret experimental data.
- **PH204.2:** Molecular Spectra: To equip students with a strong foundation in molecular spectroscopy, enabling them to understand and analyze rotational spectra for different types of molecules. Students are expected to develop critical thinking, problem-solving skills.
- **PH204.3:** Oscillator: Students have a comprehensive understanding of the theoretical principles, mathematical models, and practical applications of molecular vibrations and spectroscopy in diatomic molecules.
- **PH204.4. Spectroscopy:** To provide students with a comprehensive understanding of various spectroscopic techniques and experimental methods, preparing them for applications in research, industry, and analytical chemistry.
- **PH204.5.** Laser: Course aims to provide students with a comprehensive understanding of laser physics and its applications, preparing them for advanced studies in optics, photonics, and laser technology.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

Scheme of Studies:

Board of					Scher	ne of studi	ies(Hours/Week)	Total Credits	
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
Program Core (PCC)	PH204	Atomic, Molecular and Laser Physics	4	0	1	1	6	4	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and

feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Schem	e of Assessment	(Marks)		
Board of Cous	Couse			End Semester Assessment	Total Mark s					
Study	Code	Course Inte	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activit y any one	Class Attendance	Total Marks		
			each (CA)	each (CT) (SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA + ESA)	
PCC	PH204	Atomic, Molecul ar and Laser Physics	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),

Curriculum of M.Sc. (Physics) Program

culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH204.1: Atomic Spectra: To provide students with a comprehensive understanding of atomic spectra and quantum mechanics, preparing them for advanced studies and applications in the field. Students should be able to apply theoretical concepts to interpret experimental data.

Approximate Hours							
Item	AppX Hrs						
Cl	14						
LI	0						
SW	2						
SL	3						
Total	19						

Session Outcomes	Class room Instruction	Self-Learning
(SOs)	(CI)	(SL)
SO1.1.: Understand the fundamental	Unit 1: Atomic Spectra	i. Quantum
principles of quantum mechanics	1.1. Introduction to Quantum	Mechanics
and their applications in atomic	Mechanics	ii. Alkali
and molecular physics.	1.2. Schrodinger Equation	Spectra
SO1.2.: Analyze and interpret atomic and	1.3. Atomic Orbitals	iii. Orbitals
molecular spectra.	1.4. Hydrogen Spectrum	
SO1.3.:Understand the methods and	1.5. Pauli's Principle	
models used in molecular	1.6. Overview of Alkali Elements	
quantum mechanics.	1.7. Spin-Orbit Interaction	
SO1.4.:Explain the principles behind	1.8. Line Structure of Alkali Spectra	
statistical models such as the	1.9. Molecular Quantum Mechanics	
Thomas-Fermi model.	1.10. Hartree and Hartree-Fock	
SO1.5.: Analyze the behavior of	Methods	
electrons in complex systems,	1.11. Two-Electron System	
including the two-electron system.	1.12. Interaction Energy in LS and JJ	
SO1.6.: Understand the mechanisms	Coupling	
behind hyperfine structure and	1.13. Hyperfine Structure	
line broadening in atomic and	1.14. Line Broadening Mechanisms	
molecular spectra		
SW-1 Suggested Sessional Work (SW):	•	

a. Assignments:

- Pauli's Principle i.
- ii. Line Broadening Mechanisms
- **b.** Other Activities (Specify):

Seminar and group discussion related to subject

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

PH204.2: Molecular Spectra: To equip students with a strong foundation in molecular spectroscopy, enabling them to understand and analyze rotational spectra for different types of molecules. Students are expected to develop critical thinking, problem-solving skills

Approximate Hours		
Item	AppX Hrs	
Cl	09	
LI	0	
SW	2	
SL	3	
Total	13	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Rotational Spectra of Diatomic Molecules (Rigid Rotor Model)
- ii. Spherical Top Molecules
- b. Other Activities (Specify):

Seminar and group discussion related to subject

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

PH204.3: Oscillator: Students have a comprehensive understanding of the theoretical principles, mathematical models, and practical applications of molecular vibrations and spectroscopy in diatomic molecules.

Approximate Hours								
Item	AppX Hrs							
Cl	09							
LI	0							
SW	2							
SL	3							
Total	12							

Session Outcomes	Class room Instruction	Self -Learning		
(SOs)	(CI)	(SL)		
SO3.1.:Understand the principles of	Unit3: Oscillator	i. Vibrations		
molecular vibrations and their	1.1. Overview of Molecular	ii. Spectrum		
significance.	Vibrations	iii. Potentia		
SO3.2.: Analyze the diatomic molecule	1.2. Diatomic Molecule as a Simple			
as a simple harmonic oscillator and	Harmonic Oscillator			
extend it to vibrational energy	1.3. Energy Levels of Vibrating			
levels.	Diatomic Molecules			
SO3.3.:Describe the characteristics of	1.4. Vibrational Spectrum of			
vibrational spectra in diatomic	Diatomic Molecules			
molecules, considering both simple	1.5. Morse Potential Energy Curve			
harmonic oscillators and Morse	1.6. Vibrational Energy Levels and			
potential models.	Spectrum with Morse Potential			
SO3.4.: Understand the combined	1.7. Molecules as Vibrating			
vibrational and rotational motion in	Rotators			
molecules.	1.8. PQR Branches in the Infrared			
SO3.5.: Explain the PQR branches in the	Spectrum			
infrared spectrum and understand	1.9. Qualitative Aspects of IR			
qualitative aspects of IR	Spectrometry			
spectrometry.	1 V			
1 V				

SW-3 Suggested Sessional Work (SW):

- a. Assignments:
 - i. IR Spectrometry
 - ii. Molecules as Vibrating Rotators

b. Other Activities (Specify):

Seminar and group discussion related to subject

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

PH204.4. Spectroscopy: To provide students with a comprehensive understanding of various spectroscopic techniques and experimental methods, preparing them for applications in research, industry, and analytical chemistry.

Approximate Hours							
Item	AppX Hrs						
Cl	13						
LI	0						
SW	2						
SL	3						
Total	18						

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learni
		ng
		(SL)
SO4.1: Understand the principles and	UNIT.4: Spectroscopy	
applications of various	4.1. Overview of Spectroscopy	i. Raman Effect
spectroscopic techniques.	4.2. UV-Visible Spectroscopy	" Detetional
SO4.2: Analyze electronic, vibrational,	4.3. Infrared (IR) Spectroscopy	II. Rotational
and rotational transitions in	4.4. Introduction to Raman	Spectra
UV-Vis, IR, and Raman	Spectroscopy	iii Photoelectron
spectra.	4.5. Pure Rotational and Vibrational	minitiotocicculor
SO4.3: Describe the techniques and	Spectra in Raman	
instrumentation used in UV-	4.6. Techniques and Instrumentation	
Vis, IR, and Raman	in UV-Vis and IR Spectroscopy	
spectroscopy.	4.7.Raman Spectroscopy	
SO4.4: Understand advanced Raman	Techniques	
techniques, including	4.8. Stimulated Raman Spectroscopy	
stimulated Raman	4.9. Experimental Techniques:	
spectroscopy.	Photoelectron Spectroscopy	
SO4.5: Explain the principles and	4.10. Introduction to Photoacoustic	
applications of experimental	Spectroscopy	
techniques such as	4.11. Introduction to Mossbauer	
photoelectron spectroscopy,	Spectroscopy	
photoacoustic spectroscopy,	4.12. Introduction to NMR	
Mossbauer spectroscopy, and	Spectroscopy	
NMR spectroscopy.	4.13. Applications of Various	
SO4.6: Analyze real-world applications	Spectroscopic Techniques.	
of various spectroscopic		
techniques.		

Suggested Sessional Work (SW):

a) Assignments:

i. To Study of NMR Spectroscopy

- ii. To Study Mossbauer Spectroscopy
- c. Other Activities (Specify): Seminar and group discussion related to subject

SW-

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

PH204.5. Laser: Course aims to provide students with a comprehensive understanding of laser physics and its applications, preparing them for advanced studies in optics, photonics, and laser technology.

	Approxin	nated Hours	
	Item	AppX Hrs	
	Cl	15	
	LI	0	
	SW	2	
	SL	3	
	Total 20		
		1 10 T	

Class room Instruction	Self-Learning
(CI)	(SL)
UNIT.5: Laser	i. Absorption
5.1. Introduction to Stimulated	ii. Emission
Emission	iii. Coupling
5.2. Population Inversion	
5.3. Laser Amplification	
5.4. Oscillation Condition for Lasers	
5.5. Characteristics of Laser Light	
5.6. Line Broadening Mechanism	
5.7. Spectral Narrowing in a Laser	
5.8. Gain Clamping	
5.9. Spatial and Spectral Hole	
Burning	
5.10. Power in Laser Oscillator	
5.11. Optimum Coupling	
5.12. Atomic and Molecular Gas	
Lasers	
5.13. Solid State Lasers	
5.14. Dye Lasers	
5.15. Applications of Lasers	
	Class room Instruction (CI) UNIT.5: Laser 5.1. Introduction to Stimulated Emission 5.2. Population Inversion 5.3. Laser Amplification 5.4. Oscillation Condition for Lasers 5.5. Characteristics of Laser Light 5.6. Line Broadening Mechanism 5.7. Spectral Narrowing in a Laser 5.8. Gain Clamping 5.9. Spatial and Spectral Hole Burning 5.10. Power in Laser Oscillator 5.11. Optimum Coupling 5.12. Atomic and Molecular Gas Lasers 5.13. Solid State Lasers 5.14. Dye Lasers 5.15. Applications of Lasers

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Dye Lasers
- ii. Applications of Lasers

b. Other Activities (Specify):

Seminar and group discussion related to subject

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Ι	Class Lectur e (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PH204.1: Atomic Spectra: To provide stude with a comprehensive understand of atomic spectra and quant mechanics, preparing them	ents ling tum for	14	2	3	19
advanced studies and application the field. Students should be able apply theoretical concepts interpret experimental data.	s in e to to				
PH204.2: Molecular Spectra: To equip stude with a strong foundation molecular spectroscopy, enable them to understand and anal rotational spectra for different ty of molecules. Students are expect to develop critical thinks problem-solving skills.	ents in ling yze vpes cted ing,	09	2	3	14
PH204.3: Oscillator: Students have comprehensive understanding of theoretical principles, mathemat models, and practical applications molecular vibrations and spectrosc in diatomic molecules.	a the tical s of copy	09	2	3	14
PH204.4. Spectroscopy: To provide students v a comprehensive understanding various spectroscopic techniq and experimental metho preparing them for applications research, industry, and analyt chemistry.	vith of jues ods, s in ical	13	2	3	18
PH204.5. Laser: Course aims to provide stude with a comprehensive understand of laser physics and its application preparing them for advanced stude in optics, photonics, and la technology.	ents ling ons, dies aser	15	2	3	20
Total Hours	60		10	15	85

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Unit Titles Marks Distribution									
		R	U	Α	Marks						
CO-1	Atomic Spectra	03	01	01	05						
CO-2	Molecular Spectra	02	06	02	10						
CO-3	Oscillator	03	07	05	15						
CO-4	Spectroscopy	2	10	05	17						
CO-5	Laser	03	02	3	08						
Total		11	26	13	50						

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :			
S. No.	Title	Author	Publisher	Edition & Year
1	Introduction to Atomic Spectra	H.E. White	MCGRAWHILL EXCLUSIVE (CBS)	(1 January 2019)
2	Fundamentals of molecular spectroscopy	C.B. Banwell	VISIONIAS	(1 January 2022)
3	Spectroscopy vol.I, II & III	Walker and Stanghen	Cambridge Univ. Press.)	
4	Introduction to molecular spectroscopy	G.M. Barrow	(John Wiley and Sons)	
4	Spectra of diatomic molecules	Herzberg.	Krieger Publishing Company;	2ndedition(1 December 1950)
5	Molecular spectroscopy	Jeanne L. Mc Hale	CRC Press;	2nd edition (16 May 2017)
6	Molecular spectroscopy	J.M.Brown	Oxford University Press	
7	Spectra of atoms and molecules	P.F.Bemath.	OUP USA;	4th edition (29 June 2020)
8	Modern spectroscopy	J.M. Halian	Wiley–Blackwell;	3rd edition (14 June 1996)
9	Lasers and Non-Linear Optics	B.B. Laud.	(Wiley Eastern Ltd.)	1991
10	Lasers principles and Applications (Lied)	Wilson & Hawkes	Prentice Hall	1987
11	Laser Fundamentals	William T. Silfvast	Cambridge Univ. Press.	

Curriculum Development Team

- 1. Dr O. P. Tripathi, Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos, POs and PSOs Mapping

Course Title: M.Sc. Physics

Course Code: PH204 Course Title: Atomic, Molecular and Laser Physics

	Program Outcomes Program Specific Outcome																
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Course Outcomes	Engin e ering knowle dge	Pro b lem ana l ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicate effectively.	Ability to use the technique s, skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
PH204.1: Atomic Spectra: To provide students with a comprehensive understanding of atomic spectra and quantum mechanics, preparing them for advanced studies and applications in the field. Students should be able to apply theoretical concepts to interpre- experimental data.		1	1	1	1	2	2	3	2	2	3	3	2	3	3	2	1
PH204.2: Molecular Spectra: To equip students with a strong foundation in molecular spectroscopy, enabling them to understand and analyze rotational spectra for different types of molecules. Students are expected to develop critica thinking, problem-solving skills.		1	2	2	1	2	3	2	1	1	2	2	2	2	2	2	1
PH204.3: Oscillator: Students have a comprehensive understanding of the theoretical principles, mathematical models and practical applications of molecular vibrations and spectroscopy in diatomic molecules.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2
PH204.4. Spectroscopy: To provide students with a comprehensive understanding of various spectroscopic techniques and experimental methods preparing them for applications in research, industry, and analytical chemistry.		1	2	2	2	1	2	2	3	2	1	2	3	2	2	2	2

PH204.5. Laser: Course aims to	2	2	•	1	1	2	2	2	1	1	2	2	2	2	1	2	2
provide students with a	2	2	2	1	1	3	3	3	1	1	2	2	3	3	1	3	3
comprehensive understanding of																	
laser physics and its applications,																	
preparing them for advanced																	
studies in optics, photonics, and																	
laser technology.																	

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No. & Titles	SOs No.	Classroom Instruction(CI)	Self - Learning(SL)
PO: 1,2,3,4,5,6 7,8,9,10,11,12 PSO: 1,2, 3, 4, 5	PH204.1: Atomic Spectra: To provide students with a comprehensive understanding of atomic spectra and quantum mechanics, preparing them for advanced studies and applications in the field. Students should be able to apply theoretical concepts to interpret experimental data.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO1.6	Unit-1. Atomic Spectra 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8.1.9,1.10,1.11,1.12,1.13,1.14	i,ii,iii
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH204.2: Molecular Spectra: To equip students with a strong foundation in molecular spectroscopy, enabling them to understand and analyze rotational spectra for different types of molecules. Students are expected to develop critical thinking, problem-solving skills.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5 SO2.6 SO2.7	Unit-2 Molecular Spectra: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9	i,ii,iii
PO:1,2,3,4,5,6 7,8,9,10,11,12 PSO: 1,2, 3, 4, 5	PH204.3: Oscillator: Students have a comprehensive understanding of the theoretical principles, mathematical models, and practical applications of molecular vibrations and spectroscopy in diatomic molecules.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	Unit-3 : Oscillator: 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,	i,ii,iii

PO: 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH204.4. Spectroscopy: To provide students with a comprehensive understanding of various spectroscopic techniques and experimental methods, preparing them for applications in research, industry, and analytical chemistry.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6	Unit-4 : Spectroscopy: 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11,4.12,4.13	i,ii,iii
PO: 1,2,3,4,5,6 7,8,9,10,11,12 PSO: 1,2, 3, 4, 5	PH204.5. Laser: Course aims to provide students with a comprehensive understanding of laser physics and its applications, preparing them for advanced studies in optics, photonics, and laser technology.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.5	Unit 5: Laser: 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12,5.13,5.14, 5.15	i,ii,iii

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-II

Course Code:	PH251
Course Title :	General Physics Lab-II
Pre- requisite:	Student should have basic knowledge of practical instruments in graduation.
Rationale:	The students studying Physics should possess foundational understanding about historical background of graduation.

Course Outcomes: After completion of this course, the students will be able to

CO251.1. learn various Physics aspects by performing the experiments related to

thermodynamics, dielectric and magnetic properties.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of					Scher	Scheme of studies(Hours/Week)			
Study	Course	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
	Code						(CITERIS (TIBE)		
Program	PH251	General	0	6	1	1	8	3	
Core		Physics Lab-							
(PCC)		II							

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Scheme of Assessment:

Theory

				Schem	e of Assessment	(Marks)		
Board	Couse	Course Title		End Semester Assessment	Total Mark s			
of Study	Code	Course fille	Lab work Assignment 5 number 7 marks each (LA)	Viva-Voice on Lab work 10 marks each (VV)	Lab Attendance	Total Marks		
					(LA)	(LA+VV+LA)	(ESA)	(PRA + ESA)
PCC	PH251	General Physics Lab-II	35	10	5	50	50	100

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO251.1. learn various Physics aspects by performing the experiments related to

thermodynamics, dielectric and magnetic properties.

Ap	proximate Hours
Item	AppX Hrs
Cl	0
LI	90
SW	15
SL	15
Total	120

Session Outcomes	Laboratory Instruction	Self
(SOs)	(LI)	Lea
		g (SL)
SO1.1 Learn about		
thermodynamics and laws of	1. To study of Hysteris loss and determine the	1. Learn about
thermodynamics.	B-H Curve.	basic
SO1.2 Understand magnetic		instrume nts lick-
properties by using experiment	2. Determine Stefan constant.	vernier
SO1.3 Study and determine the	3. Verification of Newton's cooling law.	calipers, screw
dielectric properties.	4. Measurement of Band positions and	gage
SO1.4 Determination of e/m of	r i i i i i i i i i i i i i i i i i i i	
electron.	determination of vibrational constants of N2	
SO1.5 Learn about Error	molecule	
analysis.	5. To study dielectric properties of a liquid.	
	6. To study dielectric properties of a Solid.	
	7.To study magnetic susceptibility.	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)								
8. To study the ferroelectric transition in TGS								
crystal and measurement of Curie								
temperature.								
9.To determine magnetoresistance of a								
Bismuth crystal as a function of magnetic								
field.								
10. Determination of e/m of electron by								
normal Zeeman effect using Febry Perot								
Etalon.								

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Ancient Binder Used for Constructions, Invention and properties of Portland, Cement strength development mechanism of Portland cement. Types of Cement produced in India.

b. Other Activities (Specify):

Note on Status of Indian cement industry in world and Major cement producing companies of India

Brief of Hours suggested for the Course Outcome

Course Outcomes	Laboratory Instruction (LI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
CO251.1. learn various Physics aspects by performing the experiments related to thermodynamics, dielectric and magnetic properties.	90	15	15	120
Total Hours	90	15	15	120

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	General Physics Lab-II	13	24	13	50
	Total	13	24	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books:									
S. No.	Title	Author	Publisher	Edition & Year						
		Worsnon and								
1	Experimental Physics	worshop and	Book Services	0th Edition 1051						
	1 5	Flint	Ltd, United	Jui Luition, 1991						
			Kingdom							
	Experiments in Modern	A. C. Melissinos,	Academic Press,							
2	Dhusios	I Nanalitana	Cambridge,	2 nd Edition, 2003						
	Fliysles	J. Napontano	Massachusetts							
5		Lab manuals p	provided by							
5	Depar	Department of Physics, AKS University, Satna (M.P.)								

Curriculum Development Team

- 1. Dr O. P. Tripathi, Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH251

Course Title: General Physics Lab-II

		Program Outcomes									Program Specific Outcome						
Course Outcomes	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicat e effectively.	Ability to use the technique s, skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
CO251.1. learn various Physics aspects by performing the experiments related to	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	1
thermodynamics, dielectric and magnetic properties.																	

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO105.1. learn various Physics aspects by performing the experiments related to light, wave optics, interference, diffraction and polarization.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	1, 2, 3, 4, 5, 6, 7, 8, 9, 10	15

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-II

Course Code:	PH252
Course Title :	Electronics Lab-II
Pre- requisite:	To study this course, a student must have had the Experimental knowledge of Physics in Graduation.
Rationale:	The students studying this course would have practical (Experimental) Knowledge of Diodes, Gates and Transistors.

Course Outcomes:

PH252.1: The course would empower the students to develop an idea about Electronic Devices, Experimental knowledge, working and characteristics curve of electronic apparatus. Scheme of Studies:

Board of					Scher	Total Credits		
Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	PH252	Electronics Lab-II	0	6	1	1	8	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) And others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional work (including assignments, seminars, mini-projects, etc.).),
 SL: Self Learning,
 C: Credits.

Note: SW and SL must be planned and performed under the continuous guidance and feedback of the teacher to ensure the outcome of Learning.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Assessment:

Practical

				Sc	heme of Assessm	nent (Marks)		
Depart of	Course			End Semester Assessment	Total Marks			
Study	Code	Course Title	Lab work Assignment 5 number 7 marks each (LA)	Viva-Voice on Lab work 10 marks each (VV)	Lab Attendance	Total Marks	(ESA)	(PRA+
					(LA)	(LA+VV+LA)		ESA)
PCC	PH252	Electronic Devices	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction, including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH252.1: The course would empower the students to develop an idea about Electronic Devices, Experimental knowledge, working and characteristics curve of electronic apparatus.

Appro	oximate Hours
Item	AppX Hrs
Cl	0
LI	90
SW	15
SL	15
Total	120

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Self-Learning (SL)
SO1 Students will learn all about Basic electronic devices and their working.	1. To determine the characteristics curve (Input, Output and Transfer) and current gain in CE mode of PNP.	1. Identify all the electronic devices you use in your daily
SO2 Students will learn to verify truth table for basic logic	2. To determine the characteristics curve (Input, Output and Transfer) and current	life.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

gates.		gain in CE mode of NPN transistor.	2.	Identify the use
				of these
SO3 Students will be able to	3.	To determine the basic parameters of Full		electronic
Understand the		wave, Half wave and Bridge Rectifiers.		devices in your
characteristic curve of				daily life
electronic devices.	4.	To determine voltage regulation for L &		electronic
		π section filters.		devices.
SO4 Students will be able to	5	To study characteristics of Zener diode		
understand the Circuit	5.	and its use in voltage Regulation		
diagram of all mentioned		and its use in voluge regulation.		
electronic devices.	6.	Study of a Regulated Power Supply using		
		transistor.		
SO5 Students will learn to				
calculate error and	7.	Measurement of Hybrid parameters of		
analysis.		transistor.		
	0	Macquement of magistivity of a		
	0.	semiconductor by four probe method at		
		different temperature and determination		
		of band gap.		
		5. C 8. F.		
	9.	Determination of Hall coefficient of a		
		given semiconductor and estimation of		
		charge carrier concentration.		
	10.	Estimation of band energy gap of a		
		semiconductor.		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Write a note on Electronic devices and make a list of devices (Having diodes and transistors) we are using in our daily life.

b. Mini Project:

- (i) Prepare a chart of Diode and its types.
- (ii) Prepare a chart of Transistor and its Characteristics curve.

c. Other Activities:

Try to do simple experiments using diode.

Brief of Hours suggested for the Course Outcome.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

Course Outcomes:	Lab	Sessional	Self-	Total
	Instruction	Work	Learning	hours(LI+SW+SL)=
	(LI)	(SW)	(SL)	
CO252.1: The course would empower the				
students to develop an idea about Electronic				
Devices, Experimental knowledge, working	90	15	15	120
and characteristics curve of electronic				
apparatus.				

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	Marks Distribution					
		R	U	Α	Marks			
СО	Electronic devices(General)	30	10	10	50			

Legend: F	R: Remember,	U: Understand,	A: Apply
-----------	--------------	----------------	----------

The end-of-semester assessment for Mechanics and General Properties of Matter will be held with a writtenexamination of 50 marks.

Note. Detailed assessment rubrics need to be prepared by the course-wise teachers for the above tasks. Teachers can also design different tasks as per requirements for the end-semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to Science Museum
- 7. Demonstration
- 8. ICT-Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a	a) Books :			
S.No.	Books Name	Author	Publisher	Edition &Year
1.	Practical Physics	S.L. GUPTA, V. KUMAR	Pragati Prakashan	2018
2.	Semi Conductor Devices- Physics and Technology	SM Sze	Wiley	1985
3.	Introduction to Semiconductor devices	M.S. Tyagi	John Wiley and Sons	1991
4.	Measurement, Instrumentation and Experimental Design in Physics and Engineering	M. Sayer and A. Mansingh	Prentice-hall of india private limited	2000
5.	Optical Electronics	Ajoy Ghatak and K. Thygarajan	Cambridge Univ. Press.	1989
6.	Lab Manuals provided by Dept. of Physics, AKS U	niversity, Satna.	L	1

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH252

Course Title: Electronics Lab-II

	Program O	utcomes												Program Specif	fic Outcome		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicat e effectively.	Ability to use the technique s, skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
PH252.1The course	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	1
would empower the																	
students to develop an																	
idea about Electronic																	
Devices, Experimental																	
knowledge, working and																	
characteristics curve of																	
electronic apparatus.																	

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.,	COs No.& Titles,	SOs No.	Laboratory	Classroom Instruction(CI),	Self Learning(SL)
			I)		
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	PH252.1The course would empower the students to develop an idea about Electronic Devices, Experimental knowledge, working and characteristics curve of electronic	SO1 SO2 SO3 SO4 SO5		Electronic Devices 1,2,3,4,5,6,7,8,9,10	1,2

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

Semester-III

Course Code:	PH301		
Course Title :	Electrodynamics and Plasma Physics		
Pre- requisite:	To understand of electrodynamics and plasma physics, a solid background in certain fundamental areas of physics and mathematics is essential. Here are the typical prerequisites for studying electrodynamics and plasma physics		
Rationale:	The rationale for electrodynamics and plasma physics lies in their fundamental importance for understanding natural phenomena, technological applications, and potential future energy sources. Both fields contribute significantly to our knowledge of the physical universe and have practical implications in various scientific and engineering domains.		

Course Outcomes:

- **PH301.1: Understanding Fundamental Electrostatic Concepts:** Students will review and deepen their understanding of fundamental electrostatic concepts, including electric fields, Gauss's law, Laplace's and Poisson's equations, and methods of images.
- **PH301.2: Maxwell's Equations:** Familiarity with Maxwell's equations, both in integral and differential forms, and the ability to apply them to solve problems in electrostatics and magnetostatics.
- **PH301.3: Relativistic Electrodynamics:** Exploring the extension of classical electrodynamics to the relativistic regime, including the invariance of electric charge and the transformation properties of electric and magnetic fields under Lorentz transformations.
- **PH301.4: Covariance of Electrodynamics:** Understanding the covariance of electrodynamics and deriving the Lagrangian and Hamiltonian for a relativistic charged particle in an external electromagnetic field.
- **PH301.5: Magnetohydrodynamic Equations:** Understanding the fundamental magnetohydrodynamic equations and their applications in describing plasma behavior.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

Scheme of Studies:

Board of				Scher	Scheme of studies(Hours/Week)			
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	PH301	Electrodynamics and Plasma Physics	4	0	1	1	6	4

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) **SW:** Sessional Work (includes assignment seminar mini project etc.)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

						Schem	e of Assessment	(Marks)		
Board of	Couse	Course Title			Progressiv	e Assessme	ent (PRA)		End Semester Assessment	Total Mark s
Study	Code		Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semina r one (SA)	Class Activit y any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	(ESA)	(PRA + ESA)
PCC	PH301	Electrodyn amics and Plasma Physics	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

PH301.1: Understanding Fundamental Electrostatic Concepts: Students will review and deepen their understanding of fundamental electrostatic concepts, including electric fields, Gauss's law, Laplace's and Poisson's equations, and methods of images.

Approximate Hours		
Item	AppX Hrs	
Cl	12	
LI	0	
SW	2	
SL	3	
Total	17	

Session Outcomes	Class room Instruction	Self Learning
(SOs)	(CI)	(SL)
SO1.1.Understanding the basics of	Unit 1: Electrostatics and	i.Electric field
electrostatics and magnetostatics.	Magnetostatics	ii.Electromagnetis
	1.1. Review of basics of electrostatics:	m
SO1.2. Familiarity with electric fields,	electric field.	ii.Conducting
Gauss's law, Laplace's and Poisson's	1.2. Gauss's law.	media
equations, and the method of images.	1.3. Laplace's and Poisson's equations	
SO1.3.Knowledge of Biot-Savart's law and	1.4. Method of images and its application in electrostatics	
Ampere's law.	1.5. Introduction to magnetostatics: Biot- Savart law,	
SO1.4 Understanding Maxwell's equations	1.6. Ampere's law	
and their application in electrostatic and magnetostatic scenarios.	1.7. Calculation of magnetic fields using Ampere's law	
	1.8. Maxwell's equations: overview and	
SO1.5.Understanding scalar and vector	significance	
potentials and their relationship to	1.9. Scalar and vector potentials in	
the electric and magnetic fields.	electromagnetism	
SO1.6. Understanding the concept of gauge transformation and familiarity with	 1.10.Gauge transformation 1.11.Different gauge choices (Lorentz gauge, Coulomb gauge) 	
the Coulomb gauge and Lorentz gauge.	1.12. Solution of Maxwell's equations in conducting media	
SO1.7. Ability to solve Maxwell's equations in conducting media.		

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
- i. Laplace's and Poisson's equations
- ii. Different gauge choices (Lorentz gauge, Coulomb gauge)
- (b) Other Activities (Specify): Seminar and group discussion related to subject

Faculty of Basic Science

Department of Physics

Curriculum of M.Sc.IIIrd (Physics) Program

(Revised as on 01 August 2023)

PH301.2: Maxwell's Equations: Familiarity with Maxwell's equations, both in integral and differential forms, and the ability to apply them to solve problems in electrostatics and magnetostatics.

Approximate Hours		
Item	AppX Hrs	
Cl	13	
LI	0	
SW	2	
SL	0	
Total	15	

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
SO2.1. Understanding the radiation emitted by moving charges.SO2.2. Familiarity with retarded potentials and Lienard-Wiechert potentials.	 Unit 2: Electrodynamics 2.1. Radiations by moving charges: acceleration radiation 2.2. Deceleration radiation 2.3. Retarded potentials 2.4. Lienard-Wiechert potentials 	 Potentials Charged particle Uniform motion
SO2.3. Understanding the electric and magnetic fields of charged particles in uniform motion, arbitrarily moving charged particles, and accelerated charged particles at low and high velocities.	 2.5. Electric and magnetic fields of charged particles in uniform motion 2.6. Electric and magnetic fields of charged particles in non-uniform motion 2.7. Fields of arbitrarily moving charged particles 	
SO2.4. Understanding the angular distributions of power radiated and concepts such as Bremsstrahlung.	 2.8. Fields of an accelerated charged particle at low velocity 2.9. Fields of an accelerated charged particle at high velocity 	
SO2.5. Familiarity with the reaction force of radiation and the Abrahm-Lorentz method of self-force.	2.10. Angular distributions of power radiated2.11. Bremsstrahlung and its	
SO2.6. Awareness of the challenges associated with the Abrahm-Lorentz model.SO2.7 Understanding the line-breadth and level-shift	characteristics2.12. Reaction force of radiation2.13. The Abrahm-Lorentz method of self- force	
of an oscillator.	10100	

- SW-2 Suggested Sessional Work (SW):
 - a. Assignments:
 - i. The Abrahm-Lorentz method of self-force
 - ii. Electric and magnetic fields of charged particles in uniform motion
- (b) Other Activities (Specify): Seminar and group discussion related to related subject.

Faculty of Basic Science Department of Physics Curriculum of M.Sc.IIIrd (Physics) Program (Revised as on 01 August 2023)

PH301.3: Relativistic Electrodynamics: Exploring the extension of classical electrodynamics to the relativistic regime, including the invariance of electric charge and the transformation properties of electric and magnetic fields under Lorentz transformations.

Approximate Hours			
AppX Hrs			
11			
0			
2			
3			
16			

Session Outcomes	Class room Instruction	Self-Learning
(SOs)	(CI)	(SL)
SO3.1.Reviewing four-vectors and Lorentz	Unit 3: Maxwell's Equations	i. Electric
transformations in 4-dimensional spaces.	3.1 Maxwell's Equations	charge
	3.2 Review of four-vector	ii. Space time
SO3.2.Understanding the invariance of electric	3.3 Lorentz transformations in 4-	III. Lorentz
charge and relativistic transformation	dimensional spaces	equation
properties of electric and magnetic fields.	3.4 Invariance of electric charge	
SO3.3. Exploring the extension of classical	3.5 Relativistic transformation	
electrodynamics to the relativistic regime,	properties of E fields	
including the invariance of electric charge	3.6 Relativistic transformation	
and the transformation properties of	properties of H fields	
electric and magnetic fields under Lorentz	3.7 Electromagnetic field tensor in 4-	
transformations.	dimensional Maxwell equations	
SO4.4 Applying four-vectors and Lorentz	3.8 Four-vector current	
transformations to describe Maxwell's	3.9 Potential under Lorentz	
equations in four-dimensional spacetime.	transformations	
	3.10 Invariance under Lorentz	
SO4.5. Familiarity with the electromagnetic field	transformations	
tensor in 4-dimensional Maxwell equations.	3.11 Applications of Maxwell's	
	equations in different reference	
SO4.6 Understanding A-vector current and	frames	
notential and their invariance under		
Lorentz transformations.		
	1	

SW-3 Suggested Sessional Work (SW):

b. Assignments:

i. Potential under Lorentz transformations

ii.Lorentz transformations in 4-dimensional spaces

c. **Other Activities (Specify):** Seminar and group discussion related to related subject

Faculty of Basic Science Department of Physics Curriculum of M.Sc.IIIrd (Physics) Program (Revised as on 01 August 2023)

PH301.4: Covariance of Electrodynamics: Understanding the covariance of electrodynamics and deriving the Lagrangian

and Hamiltonian for a relativistic charged particle in an external electromagnetic field.

Approximate Hours			
Item	AppX Hrs		
Cl	11		
LI	0		
SW	2		
SL	3		
Total	16		

Session Outcomes	Class room Instruction	Self-
(SOs)	(CI)	Learning
		(SL)
 SO4.1.Understanding the covariance of electrodynamics and the Lagrangian and Hamiltonian for a relativistic charged particle in an external electromagnetic field. SO4.2.Understanding the motion of charged 	 Unit 4: Electromagnetic Fields 4.1. Covariance of electrodynamics: 4.2. Lagrangian for a relativistic charged particle in an external EM field 4.3. Hamiltonian for a relativistic 	 i. Relativistic charge ii. Electromag netic
particles in electromagnetic fields, including uniform and non-uniform E and B fields.	charged particle in an external EM field 4.4 Motion of charged particles in	Charge iii. Invariance
SO4.3. Understanding the covariance of electrodynamics and deriving the Lagrangian and Hamiltonian for a relativistic charged particle in an external electromagnetic field.	 4.4. Motion of charged particles in electromagnetic fields: 4.5. Uniform E and B fields 4.6. Non-uniform E and B fields 4.7. Particle drifts in non-uniform fields 	
SO4.4. Familiarity with particle drifts in non- uniform fields and static magnetic fields.	 4.8. Particle drifts in non-uniform implications 	
SO4.5. Understanding adiabatic invariants and their relevance in electromagnetic fields.	4.9. Static magnetic fields and their properties4.10. Introduction to adiabatic	
SO4.6. Analyzing the motion of charged particles in uniform and non-uniform electric and magnetic fields, including particle drifts and the concept of adiabatic invariants.	invariants in electromagnetic fields4.11. Calculation and analysis of adiabatic invariants	

SW-4 Suggested Sessional Work (SW):

a) Assignments:

- (i) Lagrangian for a relativistic charged particle in an external EM field
- (ii) Static magnetic fields and their properties

Faculty of Basic Science Department of Physics Curriculum of M.Sc.IIIrd (Physics) Program (Revised as on 01 August 2023)

Other Activities (Specify):

Seminar and group discussion related to subject

PH301.5: Magnetohydrodynamic Equations: Understanding the fundamental magnetohydrodynamic

equations and their applications in describing plasma behavior.

Approximate Hours			
Item	AppX Hrs		
Cl	13		
LI	0		
SW	2		
SL	3		
Total	18		

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learning (SL)
 SO5.1.Understanding magnetohydrodynamic (MHD) equations and their application in plasma physics. SO5.2. Familiarity with magnetic diffusion, viscosity, and pressure in plasma. SO5.3. Understanding MHD flow between boundaries with crossed electric and magnetic fields. 	 Unit 5: Plasma Physics 5.1. Introduction to magnetohydrodynamic (MHD) equations 5.2. Magnetic diffusion, 5.3. viscosity, and pressure in plasma 5.4. Magnetohydrodynamic flow between boundaries with crossed electric fields 5.5. Magnetohydrodynamic flow between boundaries with crossed fields 5.6. Pinch effect 5.7. Instability in a pinched plasma 	i. State of matterii. Diffusioniii. Wave and oscillation
SO5.4. Knowledge of the pinch effect and instability in a pinched plasma column.	column 5.8. Magnetohydrodynamic waves 5.9. magnetoacoustic 5.10. Alfvén waves	
SO5.5. Understanding magnetohydrodynamic waves, including magneto-sonic and Alfvén waves.	5.11.Plasma oscillations and their characteristics5.12.Short-wavelength limit for plasma oscillations	
SO5.6. Familiarity with plasma oscillations, short wavelength limits for plasma oscillations, and Debye screening distance	5.13. Debye screening distance	

a. Assignments:

Faculty of Basic Science

Department of Physics

Curriculum of M.Sc.IIIrd (Physics) Program

(Revised as on 01 August 2023)

- i. Magnetohydrodynamic flow between boundaries with crossed electric fields
- ii. Alfvén waves.
- b. Other Activities (Specify): Seminar and group discussion related to subject

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lectur e (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW +Sl)
PH301.1: Understanding Fundamental Electrostatic Concepts: Students will review and deepen their understanding of fundamental electrostatic concepts, including electric fields, Gauss's law, Laplace's and Poisson's equations, and methods of images.	12	2	3	17
PH301.2:Maxwell's Equations: Familiarity with Maxwell's equations, both in integral and differential forms, and the ability to apply them to solve problems in electrostatics and magnetostatics.	13	2	3	18
PH301.3:Relativistic Electrodynamics: Exploring the extension of classical electrodynamics to the relativistic regime, including the invariance of electric charge and the transformation properties of electric and magnetic fields under Lorentz transformations.	11	2	3	16
PH301.4:Covariance of Electrodynamics: Understanding the covariance of electrodynamics and deriving the Lagrangian and Hamiltonian for a relativistic charged particle in an external electromagnetic field.	11	2	3	16
PH301.5:MagnetohydrodynEquations:Understandingthefundamentalmagnetohydrodynamicequationsandapplicationsin describing plasma behavior.	13	2	3	18
Total Hours	60	10	15	85

Faculty of Basic Science Department of Physics Curriculum of M.Sc.IIIrd (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	Α	Marks
CO-1	Electrostatics and Magnetostatics	03	03	03	09
CO-2	Electrodynamics	04	06	02	12
CO-3	Maxwell's Equations	05	08	05	18
CO-4	Electromagnetic Fields	4	08	05	17
CO-5	Plasma Physics	06	04	06	16
	Total	22	29	21	72

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc.IIIrd (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :			
S.	Title	Author	Publisher	Edition
No.				& Year
1	Classical Electronics :	John David Jackson	Wiley	3rd
				Edition,2022
2	Measurement, Instrumentation and	M. Sayer and A. Man	Prentice-hall of	2000
	Experiment Design in Physics and	Singh	india private	
	Engineering		limited, New	
			Delhi.	
3	Fundamentals of plasma physics	J.A. Bittencourt		3rd ed.2004
			Springer	
4	Classical Electricity and Magnetism	K. H., Phillips	Dover	Second edition
			Publications;	(12 July 2012)

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos, POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code : PH301

Course Title: Electrodynamics and Plasma Physics

	Program Outcomes												Program Specific Outcome				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode m tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life- long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicate effectively.	Ability to use the techniques , skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
PH301.1:Understanding Fundamental Electrostatic Concepts: Students will review and deepen their understanding of fundamental electrostatic concepts, including electric fields, Gauss's law, Laplace's and Poisson's equations, and methods of images	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	1
PH301.2:Maxwell's Equations: Familiarity with Maxwell's equations, both in integral and differential forms, and the ability to apply them to solve problems in electrostatics and magnetostatics	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	2	1
PH301.3: Relativistic Electrodynamics: Exploring the extension of classical electrodynamics to the relativistic regime, including the invariance of electric charge and the transformation properties of electric and magnetic fields under Lorentz transformations	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2
PH301.4: Covariance of Electrodynamics: Understanding the covariance of electrodynamics and deriving the Lagrangian and Hamiltonian for a relativistic charged particle in an external	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	2

electromagnetic field.																	
MPHY101.5:Magnetohydrody				1	1	3	3	3	1	1	2	2	3	3	1	3	3
n Equations: Understanding	-	-	-	1	1	3	3	3	1	1	4	2	5	3	1	5	5
the fundamental																	
magnetohydrodynamic																	
equations and their																	
applications in describing																	
plasma behavior.																	

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs	COs No.& Titles	SOs No.	Classroom Instruction(CI)	Self- Learning (SL)
No.				
	PH301 1. Understanding Eundamental	001.1		
PO 1,2,3,4,5,6	Electrostatic Concepts: Students will review	SOI.1	Unit-1. Electrostatics	1,11,111
7,8,9,10,11,12	and deepen their understanding of	SOI.2	1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.12	
FSO 1,2, 5, 4, 5	electric fields, Gauss's law, Laplace's and	SOI.3		
	Poisson's equations, and methods of images	SO1.4 SO1.5		
		SO1.5 SO1.6		
DO 1 2 2 4 5 6	PH301.2:Maxwell's Equations: Familiarity	SO1.0	Unit 2 Flootrodynamics	
PO 1,2,3,4,3,0 7 8 0 10 11 12	with Maxwell's equations, both in integral and differential forms and the ability to apply	SO2.1 SO2.2	21 22 23 24 25 26 27	1,11,111
PSO 1 2 3 4 5	them to solve problems in electrostatics and	SO2.2 SO2.3	2829210211212213	
100 1,2, 3, 1, 3	magnetostatics	SO2.3	2.0,2.7,2.10,2.11,2.12,2.10	
		SO2.4		
		SO2.6		
		SO2.7		
		502.7		
PO 1,2,3,4,5,6	PH301.3:Relativistic Electrodynamics:	SO3.1	Unit-3 : Maxwell equations	i,ii,iii
7.8.9.10.11.12	electrodynamics to the relativistic regime,	SO3.2	3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11	
	the transformation properties of electric and	SO3.3	- , - , - , - , - , - , - , - , - , - ,	
PSO 1,2, 3, 4, 5	magnetic fields under Lorentz transformations	SO3.4		
		SO3.5		
		SO3.6		
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH301.4:Covariance of Electrodynamics: Understanding the covariance of electrodynamics and deriving the Lagrangian and Hamiltonian for a relativistic charged particle in an external electromagnetic field.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6	Unit-4 : Electromagnetic Fields 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11	i,ii,iii
--	---	--	--	----------
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	MPHY101.5 :Magnetohydrodyn Equations: Understanding the fundamental magnetohydrodynamic equations and their applications in describing plasma behavior.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6	Unit 5: Plasma Physics 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12,5. 13	i,ii,iii

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August, 2023)

Semester-III			
Course Code:	PH302		
Course Title :	Quantum Mechanics-II		
Pre- requisite:	A thorough understanding of mechanics. Knowledge of partial differential equation and variable separable method. Commendable knowledge of integral and differential calculus.		
Rationale:	This course gives an insight of applying different approximation methods for stationary states and deals with alternative pictures of time evolution and relativistic quantum mechanics. It also helps the students to acquire basic knowledge of quantum field theory.		

Course Outcomes:

- **PH302.1:** Students will be able to apply different approximation methods for stationary states. Make extensive use of Schrodinger representation to learn about the newer concepts of quantization of energy.
- **PH302.2:** To solve time independent perturbed systems using various methods. Use of different approximation methods to perturbed systems. To describe the time evolution of quantum systems and discuss matter radiation interaction.
- **PH302.3:** To provide a formulation for quantum mechanical description of scattering phenomena and their applications.
- **PH302.4:** To describe the relativistic quantum phenomena and account for electron spin.
- **PH302.5:** To understand and appreciate the commutative and non-commutative algebra in the special context of angular momentum in general. To understand the extensive use of abstract operator algebra to learn about angular momentum and its importance.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August, 2023)

Scheme of Studies:

Board of					Scher	Scheme of studies(Hours/Week)		
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Quantum Mechanic s-II	PH302	Quantum Mechanics-II	4	0	1	1	6	4

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial
(T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)						End Semester Assessment Mark	
Board of Study	Cours e Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
PCC	PH302	Quantum Mechanics- II	15	20	5	5	5	50	50	100

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August, 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH302.1: Students will be able to apply different approximation methods for stationary states. Make extensive use of Schrodinger representation to learn about the newer concepts of quantization of energy.

Α	Approximate Hours		
ltem	Approx. Hrs		
Cl	11		
LI	0		
SW	02		
SL	01		
Total	14		

Session Outcomes	Class room Instruction	Self
(505)	(CI)	(SL)
 SO1.1 Develop an awareness of the broad applications of quantum mechanics. SO1.2 Understand the structure of normal Helium atom and the principles that govern it. SO1.3 Understand the Stark effect in hydrogen and its significance of WKB approximation method in quantum mechanics. SO1.4 Understand the concept of variation method and connection formula. SO1.5 Integrate the concepts to analyze potential barriers and apply them to the theory of alpha decay. 	 Unit-1.0 Approximation Methods 1.1 Introduction about Quantum Mechanics 1.2 Approximation method for bound states 1.3 Rayleigh-Schrodinger perturbation theory for non-degenerate and degenerate states 1.4 Application to perturbation of an oscillator 1.5 Normal Helium atom 1.6 Application to ground state of helium 1.7 First order Stark effect in Hydrogen 1.8 WKB Approximation methods 1.9 Variation Method 1.10 Connection formula 1.11 Ideas on potential barrier with applications to the theory of alpha- decay 	Exploring different approximation methods based on quantum mechanics. Understanding the concepts of quantum mechanics and various theories associated with it.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August, 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

1. Rayleigh-Schrodinger perturbation theory.

2. WKB approximation methods

PH302.2: To solve time independent perturbed systems using various methods. Use of different approximation methods to perturbed systems. To describe the time evolution of quantum systems and discuss matter radiation interaction.

Approximate	Hours
-------------	-------

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learnin
		g (SL)

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August, 2023)

SO2.1 To understand how perturbation	Unit-2 Perturbation Theory	A comprehensive
theory is extended to include time-		understanding of
dependent systems.	2.1 Time dependent Perturbation	absorption and
SO2.2 Understand the methods of variation	Theory	emission
of constants in the context to perturbation		mechanisms.
theory. Explore the application of	2.2 Methods of variation of	Einstein's A & B
perturbation theory with harmonic	constant and harmonic perturbation	coefficients
perturbations.	-	
	2.3 Transition probability	
SO2.3 Learn the adiabatic approximation.		
Understand the Hamiltonian formulation	2.4 Adiabatic and sudden	
for a charged particle in an external	approximation	
electromagnetic field. Analyze how an		
external electromagnetic field influences		
the behavior of a charged particle.	2.5 Hamiltonian for a charged	
	particle under the influence of	
SO2.4 Understand the concepts of	external electromagnetic field	
absorption and induced emission in the		
context of quantum transitions. Analyzing	2.6 Absorption and induced	
their contribution to the emission spectra of	emission.	
physical systems.		
SO2.5 Explore the transition probability for	2.7 Transition probability in electric	
electric dipole transitions and understand	dipole transition Physical	
the physical significance of transition		
probabilities in electric dipole transitions.	2.8 Einstein's A and B coefficients	
Physical interpretation of A and B		
coefficients in the context of absorption and		
emission processes.		
		1

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August, 2023)

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
- 1. Hamiltonian for a charged particle under the influence of electromagnetic field.
- 2. Relation between Einstein's A & B coefficients.
- **PH302.3:** To provide a formulation for quantum mechanical description of scattering phenomena and their applications.

Approximate Hours

Item	AppX Hrs
Cl	09
LI	0
SW	2
SL	1
Total	12

Session Outcomes	Class room Instruction	Self Learning
(SOs)	(Cl)	(SL)
 SO3.1 The theory of scattering and its interaction with (electrons and neutrons). SO3.2 Understanding the probability of scattering events. SO3.3 The theory of scattering by spherically symmetric potentials. SO3.4 Concept of Born Approximation Method. SO3.5 Understanding Pauli exclusion Principle and Pauli spin matrices. 	 Unit-3 : Scattering 3.1 Theory of Scattering 3.2 Scattering cross-section 3.3 Born Approximation and partial waves 3.4 Scattering by spherically symmetric potential 3.5 Identical particles with spin 3.6 Physical concepts and scattering amplitude 3.7 Symmetric and anti-symmetric wave functions 3.8 Pauli exclusion Principle 3.9 Pauli spin matrices 	Understanding the quantum mechanical aspects of scattering.

Faculty of Basic Science **Department of Physics** Curriculum of M.Sc. (Physics) Program (Revised as on 01 August, 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

1. Pauli exclusion Principle.

Born Approximation method.
 3.

PH302.4: To describe the relativistic quantum phenomena and account for electron spin.

Approximate Ho							
Item	AppX Hrs						
Cl	07						
LI	0						
SW	3						
SL	2						
Total	12						

Session Outcomes (SOs)	Class room Instruction (CI)	Self Learning (SL)
 SO4.1 Downfall of Klein-Gordon equation SO4.2 Exploring the framework of relativistic quantum mechanics. SO4.3 Interpretation of probability and current density. SO4.4 To understand the Klein-Gordon equation in an electromagnetic field. SO4.5 M at h e m at i c a l f o r m u l at i o n i n s u p p o r t o f Klein-Gordon equation. 	 Unit-4: Quantum Equation-I 4.1 Short comings of Klein-Gordon Equation 4.2 Introduction to relativistic quantum mechanics 4.3 Probability and current density 4.4 Klein-Gordon equation in the presence of electromagnetic field 	Comprehensive understanding of electromagnetic field. Relativistic quantum mechanics.

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Simple derivation of Klein-Gordon equation.
- 2. Probability and current density
- 3. Short comings of Klein-Gordon Equation

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August, 2023)

PH302.5: To understand and appreciate the commutative and non-commutative algebra in the special context of angular momentum in general. To understand the extensive use of abstract operator algebra to learn about angular momentum and its importance.

ltem	AppX Hrs
Cl	07
LI	0
SW	2
SL	2
Total	11

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learning
		(SL)
 (SOS) SO5.1 To describe the time evolution of operators corresponding to physical observables. SO5.2 Understanding of Dirac's equation for a free electron. SO5.3 Exploring the Zitterbewegung concept. SO5.4 Dirac's relativistic equation in electromagnetic field. SO5.5 Concept of hyperfine splitting refers to the energy difference between atomic energy levels that arise from the interaction between the magnetic moment associated with the electron's spin and the nuclear 	 (CI) Unit 5: Quantum Equation-II 5.1 Hydrogen atom 5.2 Equation of motion for operators, position momentum and angular momentum, spin of an electron. 5.3 Dirac's relativistic equation for a free electron 5.4 Zitterbewegung Dirac's relativistic equation in electromagnetic field 	Learning (SL) Understanding of atomic energy levels Hydrogen atom and its energy level splitting
electron's spin and the nuclear magnetic moment.	electromagnetic field 5.5 Negative energy states and their interpretation 5.6 Hyperfine splitting 5.7 Dirac's matrices	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

1. Theory of positron associated with negative energy states of electrons.

2. Position momentum and spin momentum.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August, 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self	Total hour
	Lecture	Work	Learning	(Cl+SW+SI)
	(CI)	(SW)	(SI)	
PH302.1: Students will be able to apply different				
approximation methods for stationary states.	11	2	1	
Make extensive use of Schrodinger representation	11	Z	L	14
to learn about the newer concepts of quantization				
of energy.				
PH302.2: To solve time independent perturbed				
systems using various methods. Use of different	o	2	2	
approximation methods to perturbed systems. To	0	2	2	12
describe the time evolution of quantum systems and				
discuss matter radiation interaction.				
PH302.3 : To provide a formulation for quantum	_	-		10
mechanical description of scattering phenomena and	9	2	1	12
their applications.				
PH302.4: To describe the relativistic quantum	7	3	2	
phenomena and account for electron spin.	,	3	-	12
PH302.5: To understand and appreciate the				
commutative and non-commutative algebra in the				
special context of angular momentum in general.	9	2	2	13
To understand the extensive use of abstract				
operator algebra to learn about angular				
momentum and its importance.				
Total Hours			_	
	44	11	8	63

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August, 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Approximation Methods	04	04	02	10
CO-2	Perturbation Theory	04	05	02	11
CO-3	Scattering	02	03	04	09
CO-4	Quantum equation-I	05	04	02	11
CO-5	Quantum equation-II	03	04	02	09
	Total	18	20	12	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August, 2023)

Suggested Learning Resources:

(a)	Books :			
S.	Title	Author	Publisher	Edition &
No.				Year
1	Quantum Mechanics	L.I. Schiff	McGraw Hill Education	2017
2	Quantum Physics	S. Gasiorowicz	Wiley	2003
3	Quantum Mechanics	B. Craseman and J.L. Powel	Courier Dover Publications	2015
4	Quantum Mechanics	A.P. Messiah	Dover Publications Inc.	2014
5	A Text book of Quantum Mechanics	P.M. Mathews & K. Venkatesan	McGraw Hill Education	2017
6	Modern Quantum Mechanics	J.J. Sakurai & Jim Napolitano	Cambridge University Press	1985
7	Quantum Mechanics Concepts and Applications	Nouredine Zettili	Wiley	2017

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Course Title: M.Sc. (Physics)

A K S University

Course Code : PH302

course coue.	FNJUZ			
	Nuantum Machanics II	Faculty of Basic Science		
course mile. C		Department of Physics		

	Curriculum of M.Spr(Beveries) Our Curriculum of M.Spr(Beveries) (Revised as on 01 August, 2023)												Program Specific Outcome				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	s Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate and solve Physics problems.	Design and conduct experiments , as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicate effectively.	Ability to use the techniques, skills, and modern physical tools in real world application.	Engage in life-long learning and will have recognitio n.
CO1: Students will be able to apply different approximation methods for stationary states. Make extensive use of Schrodinger representation to learn about the newer concepts of quantization of energy.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	2
CO2: To solve time independent perturbed systems using various methods. Use of different approximation methods to perturbed systems. To describe the time evolution of quantum systems and discuss matter radiation interaction.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	2
CO3: To provide a formulation for quantum mechanical description of scattering phenomena and their applications.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	3
CO4: To describe the relativistic quantum phenomena and account for electron spin.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	2
CO5: To understand and appreciate the commutative and non-commutative algebra in the special context of angular momentum in general. To understand the extensive use of abstract operator algebra to learn about angular momentum and its importance.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	^{COs} \ A . & iSeUnive	rsity ^{SOs No.}	Classroom Instruction(CI)	Self Learning(SL)
	Faculty of Basic Scie	ence		
	Department of Pl	lysics		
PO 1,2,3,4,5,6	CO1: Student Curriculuar of avalsc. (Phys	ics) Program 01.1	Unit-1.0 Historical progression	
7,8,9,10,11,12	apply different (RepresentionAugu	st, 2023) SO1.2	and advancements in binding	
	methods for stationary states. Make	SO1.3	materials for construction	
PSO 1,2, 3, 4, 5	extensive use of Schrodinger	SO1.4	1.1.1.2.1.3.1.4.1.5.1.6.1.7	
	representation to learn about the	SO1 5	, , -, , -, -,	
	newer concepts of quantization of	561.5		
	energy.			
PO 1,2,3,4,5,6	CO2: To solve time independent	SO2.1	Unit-2 Raw Materials and Fuel	
7,8,9,10,11,12	methods Use of different	SO2.2	used for cement manufacture	
	approximation methods to perturbed	SO2.3	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4, 5	systems To describe the time	SO2.4	2.8,2.9,2.10	
	evolution of quantum systems and	SO2.5		
	discuss matter radiation interaction.			As mentionedin
PO 1.2.3.4.5.6	CO3: To provide a formulation for	503.1 503.2	Unit-3 : Types of cement	page number
7.8.9.10.11.12	quantum mechanical description of		manufactured in India	2 to 6
.,-,-,,	scattering phenomena and their	503.3		
PSO 1.2. 3. 4. 5	applications.	SO3.5	3.1, 3.2,3.3,3.4,3.3,3.0,3.7,3.8	
, , -, , -		303.4		
		503.5		
PO 1,2,3,4,5,6	CO4: To describe the relativistic	SO4.1	Unit-4 : Concise Explanation of	
7,8,9,10,11,12	quantum phenomena and account for	SO4.2	the Portland Cement	
	electron spin.	SO4.3	Production Process:	
PSO 1,2, 3, 4, 5		SO4.4		
		SO4.5	4.1,	
			4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	
PO 1,2,3,4,5,6	CO5: To understand and appreciate	SO4.1	Unit 5: The Cement Sector in India and	
PSO 1,2, 3, 4, 5	the commutative and non-	SO4.2	Regulatory Obligations.	
	commutative algebra in the special	SO4.3	5.1,5.2,5.3,5.4,5.5	
	context of angular momentum in	SO4.4		
	general. To understand the	SO4.5		
	extensive use of abstract operator			
	algebra to learn about angular			
	momentum and its importance.			

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-III

Course Code:	PH303				
Course Title:	Digital Electronics & Microprocessor				
Pre- requisite:	The broad education necessary to understand the different applications of mathematics to understand physics.				
Rationale:	Now a day's application of digital circuits and microprocessors are extensively used in measurement and control applications in the field of electrical engineering and electrical power systems. So, the digital				
	electronics and microprocessor have been introduced as a subject in electrical engineering curriculum. This course covers digital circuits logic gates Flip-flop, microprocessor 8085 architecture, its instruction				
	set, programming and applications. After completing this subject, the student can write and execute programs for microprocessor- based applications.				

Course Outcomes:

- **PH303.01:** After studying this course, the student will be able to Observe logic circuits, assemble logic circuits and test the logic circuit
- PH303.02: Identify the applications of junction devices, amplifiers and logic circuits.
- PH303.03: Learn and to apply concepts learnt in analog and digital electronics in real life.
- **PH303.04:** Describe architecture and operation of microprocessor 8085 and develop assembly language programs using instruction set of 8085.
- PH303.05: Learn and to apply concepts learnt about Microprocessor & Peripheral Device.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of					Scher	ne of studi	ies (Hours/Week)	Total Credits	
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
Program Core (PCC)	PH303	Digital Electronics & Microprocessor	4	0	1	1	6	4	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e., Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

	Couse Code	ouse Code Course Title	Scheme of Assessment (Marks)							
Board of Study			Progressive Assessment (PRA)				End Semester Assessme nt	Total Mark s		
			Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activit y any one	Class Attendance	Total Marks		
			(CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA + ESA)
PCC	PH303	Digital Electronics & Microproce ssor	15	20	5	5	5	50	50	100

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH303.01: After studying this course, the student will be able to Observe logic circuits, assemble logic circuits and test the logic circuit

Approximate Hours			
Item	AppX Hrs		
Cl	08		
LI	0		
SW	0		
SL	2		
Total	10		

SESSION OUTCOMES (SOs)	CLASS ROOM INSTRUCTION (CI)	SELF LEARING
SO 1.1 Definition of Amplitude modulation	Module 1.1: Introduction on Generation of AM waves	
SO 1.2 Demodulation of AM waves	1.2 Prepare the modulating signal that carries the information you want to transmit. This signal could be an audio signal, data, or any other form of information that needs to be transmitted.	
SO 1.3 DSBSC modulation	1.3: Mathematical explanation about DSBSC modulation	
SO 1.4 Generation of DSBSC waves	1.4: Use a mixer or a modulator circuit to combine the carrier signal and the modulating signal. In DSBSC modulation, the carrier amplitude is modulated by the modulating signal.	
SO 1.5 Coherent detection of DSBSC waves	 1.5: Block Diagram Representation: Draw a block diagram illustrating the coherent detection process. It generally involves the following blocks: Signal Source: The DSBSC modulated signal. Local Oscillator (LO): Generates a reference carrier signal identical to the carrier signal used in modulation. 	If possible, perform a demonstration or use simulation software to illustrate the coherent detection process. Show how changes in the local oscillator
	 Multiplier/Mixer: Multiplies the incoming DSBSC signal with the local oscillator signal. Low-pass Filter (LPF): Filters out the high-frequency components, leaving the original baseband signal. Reconstructed Signal Output: The demodulated baseband signal. 	frequency or phase affect the recovered signal.
SO 1.6 SSB modulation	1.6: Carrier Signal: SSB starts with a carrier signal, which is a pure radio frequency signal.	
	Baseband Signal: The audio signal (voice, data, etc.) that needs to be transmitted is called the baseband signal.	
	Mixing: The baseband signal is modulated with the carrier signal using a mixer or a modulator. In SSB, the carrier signal is suppressed, and only one of the sidebands is	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

	transmitted.	
	Sideband Suppression: SSB removes one of the sidebands (either the upper or lower sideband) along with the carrier signal. This is done to reduce bandwidth usage since both sidebands carry similar information.	
	There are two types of SSB modulation:	
	Upper Sideband (USB): In USB, the carrier and the lower sideband are suppressed, and only the upper sideband is transmitted. The frequency range of the transmitted signal is above the carrier frequency.	
	Lower Sideband (LSB): In LSB, the carrier and the upper sideband are suppressed, and only the lower sideband is transmitted. The frequency range of the transmitted signal is below the carrier frequency.	
SO 1.7 Vestigial	1.7: AM Basis: Start with the concept of AM modulation (carrier wave, modulating	Mention potential
sideband modulation	signal, resultant modulated signal).	advancements or
	Bandwidth Efficiency Need: Explain the problem of excessive bandwidth use in	improvements in FDM
	VSB Solution: Introduce VSB as a solution that retains necessary information but	relevance in modern
	reduces bandwidth by transmitting a full sideband and a partial vestige of the other	communication
	sideband.	systems.
	compared to full AM modulation (with both sidebands)	
	Applications: Discuss where VSB is used (e.g., television broadcasting) due to its	
	bandwidth efficiency.	
SO 1.8 Frequency	1.8: Introduction to FDM:	
division multiplexing	Definition: FDM is a method of transmitting multiple signals simultaneously over a	
(FDM)	shared medium by allocating unique frequency bands to each signal.	
	Basic Concept: It involves dividing the available frequency spectrum into smaller	
	How FDM Works:	
	Frequency Spectrum Division: Explain the concept of the frequency spectrum and	
	how it represents the range of frequencies used in communication.	
	Signal Allocation: Describe how different signals are assigned specific frequency	
	bands within the spectrum.	
	Bandwidth Allocation: Discuss the importance of allocating sufficient bandwidth to	
	Components of FDM [.]	
	Multiplexer (MUX): Explain the role of the multiplexer in combining multiple	
	signals into a single composite signal for transmission.	
	Transmission Medium: Discuss the medium (e.g., cables, optical fibers, airwaves)	
	used to transmit the composite signal carrying all the individual signals.	
	Demultiplexer (DEMUX): Describe the demultiplexer's function in separating the	
	Advantages of FDM:	
	Efficient Use of Bandwidth: Discuss how FDM efficiently uses the available	
	frequency spectrum by allowing multiple signals to coexist without interference.	
	Simultaneous Transmission: Highlight the ability of FDM to transmit multiple	
	signals concurrently, enabling simultaneous communication.	
	Telecommunications: Explain how FDM is used in telephony broadcasting and	
	data communications to transmit multiple signals over a single medium.	
	Networking: Discuss FDM's role in certain networking technologies that utilize	
	multiple frequencies for data transmission.	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

- SW-1 Suggested Sessional Work (SW):
 - > Assignments
 - Other Activity
 Power Point Presentation

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

PH303.02: Identify the applications of junction devices, amplifiers and logic circuits.

Approximate Hours		
Item	AppX Hrs	
Cl	7	
LI	0	
SW	2	
SL	4	
Total	13	

SESSION OUTCOMES (SOs)	CLASS ROOM INSTRUCTION (CI)	SELF LEARING
SO 2.1 Boolean laws and Theorem	2.1: These laws and theorems are used to simplify Boolean expressions, design logic circuits, and perform logical operations in various fields such as computer science, digital electronics, and telecommunications.	1: Explain about Introduction to Logic Gates: Start by introducing basic logic gates (AND, OR, NOT, XOR, NAND, NOR, etc.) and their symbols. Explain how these gates take binary inputs (0s and 1s) and produce binary outputs based on predefined logical operations.
SO 2.2 Simple combinational circuits	2.2 Combinational circuits in digital electronics are circuits where the output is solely dependent on the current inputs. There is no memory element or feedback in these circuits, meaning the output is determined by the current state of inputs only. Here are explanations and examples of some simple combinational circuits: AND Gate, OR Gate, NOT Gate, XOR Gate (Exclusive OR) & NAND Gate (NOT-AND).	2 Adders: Half Adder: Begin with a half adder, which adds two single binary digits and produces the
SO 2.3 Karnaugh map pairs Quads and octets. Karnaugh simplications. Don't	2.3: When teaching Karnaugh maps in a classroom setting, here's an instructional breakdown:Introduction to Boolean Algebra:	sum and carry outputs. Explain its truth table and logic diagram.
care conditions.	Start by introducing the basic concepts of Boolean algebra, which includes logic gates, Boolean operators (AND, OR, NOT), truth tables, and Boolean expressions. Explanation of Karnaugh Maps:	Full Adder: Progress to a full adder, which adds two binary numbers along

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

	Explain the purpose of Karnaugh maps: simplifying Boolean expressions to their minimal forms. Describe the structure of a K-map: rows and columns representing different input combinations and cells representing the output for each combination. Show the importance of adjacency in K-maps for grouping terms. Constructing Karnaugh Maps:	with a carry input and generates a sum and carry output. Explain how multiple full adders can be cascaded to add multi-bit numbers.
	Begin with simple truth tables and guide students on how to create K- maps from these tables.	Adder/Subtractor
	Demonstrate how to fill in 0s and 1s in the K-map based on the truth	Circuits: Show
	Grouping and Simplification:	modified to
	Teach students how to group adjacent 1s (grouping should always be powers of 2: 1, 2, 4, 8, etc.). Explain the rules for grouping cells: groups should be rectangular and can wrap around edges.	perform subtraction by using 2's complement or by using additional control inputs.
	Emphasize the importance of maximizing the size of groups for better simplification.	Subtractor:
	Finding Simplified Expressions:	Half Subtractor: Introduce a half
	Show the process of finding simplified expressions using the grouped terms.	subtractor, which subtracts two
	Introduce the process of reading the simplified expression from the	single binary digits
	Examples and Practice:	and produces the difference and borrow outputs.
	Provide various examples of Boolean expressions and guide the students through the steps of creating K-maps, grouping terms, and simplifying the expressions	Full Subtractor:
	Encourage students to practice creating K-maps and simplifying	subtractor, capable
	expressions on their own or in groups.	of subtracting three
	Advanced Topics (it applicable).	minuend,
	If the class progresses well, introduce more complex expressions, including cases with don't care conditions in the truth tables	subtrahend, and
	Explore higher variable count K-maps.	producing the
SO 2.4 The ASCII	2.4: Students might learn how to convert between these codes,	difference and
code. Excess III code.	understand their properties, and potentially apply them in designing	borrow outputs.
Gray code	digital circuits, error correction mechanisms, or understanding character encoding in computing systems.	
SO 2.5 Binary addition,	2.5: When teaching binary addition and subtraction in a classroom, here's	3: Engaging
Subtraction, unsigned	a structured approach you can follow:	students with
binary numbers		interactive
	Binary Addition:	exercises, visual
	Explain the binary number system: Only 0s and 1s are used.	aids, and real-life
	Snow examples of addition, starting with simple cases like adding two binomediate $(0 + 0, 0 + 1, 1 + 0, 1 + 1)$	examples (like
	Dinary digits $(0 + 0, 0 + 1, 1 + 0, 1 + 1)$.	converting binary
	carrying (when the sum is greater than 1) and its similarity to corrying in	and vice versa) con
	the decimal system	make learning
	Have students practice addition using various binary numbers until	binary addition and

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

	they're comfortable.	subtraction more
	Binary Subtraction:	interesting and
	Introduce the concept of binary subtraction by showing examples of	understandable for
	subtracting smaller binary numbers (like 2 - 1, 3 - 2, etc.).	them.
	Explain borrowing in binary (similar to borrowing in decimal) and how it	
	works with only 0s and 1s.	
	Move on to larger binary numbers, emphasizing borrowing when	
	necessary.	
	Provide exercises for students to practice subtraction in binary until they	
	grasp the concept.	
SO 2.6 Sign magnitude	2.6: It's important to understand the representations and operations,	
numbers. 2's	practice with different numbers and scenarios, and learn how to identify	
compliment	and handle special cases like overflow or underflow during arithmetic	
representation. 2's	operations.	
compliment arithmetic		
SO 2.7 Arithmetic	2.7 Arithmetic building blocks in digital electronics often involve the use	Real-world
building blocks, The	of adders, subtractors, and logic gates to perform mathematical	Examples: Discuss
adder and subtractor &	operations and logical functions.	how these concepts
Logic Gates.		are utilized in
C		modern computer
		architecture and
		how arithmetic
		operations are
		performed at the
		hardware level.

SW-2 Suggested Sessional Work (SW):

> Assignments

- Provide various examples of Boolean expressions and guide the students through the steps of creating K-maps, grouping terms, and simplifying the expressions.
- Encourage students to practice creating K-maps and simplifying expressions on their own or in groups.

> Other Activity

- Power Point Presentation
- Conduct quizzes or exercises to test students' understanding of K-maps.
- Review the key concepts and address any remaining questions or confusion.

PH303.03: Learn and to apply concepts learnt in analog and digital electronics in real life.

Approximate Hours		
Item	AppX Hrs	
Cl	08	
LI	0	
SW	1	
SL	1	
Total	10	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

SESSION	CLASS ROOM INSTRUCTION (CI)	SELF
OUTCOMES (SOs)		LEARING
SO 3.1 Multiplexers & Demultiplexer	3.1 Begin by explaining the theory behind multiplexers and demultiplexers, their functions, basic operations, truth tables, and applications.	
SO 3.2 Decoder & Encoder	 3.2 In a classroom setting, these terms might also be used more broadly to explain teaching and learning strategies. Here's an analogy: Encoder: In a classroom context, an encoder could be likened to the teaching methods and resources used by educators to transmit information to students. These methods could include lectures, readings, discussions, or multimedia materials. They take raw information (the curriculum) and encode it into a format that is more easily absorbed or understood by students. Decoder: Students, acting as decoders, take in this encoded information, process it, and generate their understanding or output, which could be in the form of homework, projects, exams, or presentations. The decoding process involves comprehending, internalizing, and applying the information received from the encoder (teacher) to produce the desired learning outcomes. 	Use diagrams to illustrate the structure and functionality of MUX and DEMUX circuits. Show how the selection lines determine the input-output relationship.
SO 3.3 Parity generators- checkers	 3.3 Here's a classroom instruction guide on how to explain parity generators and checkers: Whiteboard or projector for diagrams Logic gates diagram (AND, XOR, etc.) Handouts or slides explaining the concepts Examples and exercises for students 	
SO 3.4 7400 Devices	 3.4 If you're seeking classroom instructions or guidance on how to use 7400 series devices in educational settings or practical applications, here's a general outline you might find helpful: Introduction to 7400 Series Devices: Begin by explaining what 7400 series devices are, their purpose, and their significance in digital electronics. Discuss their various types, functionalities, and applications. Basic Concepts: Introduce fundamental concepts related to digital electronics, such as logic gates (AND, OR, NOT, etc.), truth tables, Boolean algebra, and binary arithmetic. Explain how these concepts are implemented using 7400 series ICs. Circuit Design: Teach students how to design simple logic circuits using 7400 series ICs. Start with basic circuits 	
	involving a single type of gate, then progress to more complex	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023) circuits by combining multiple gates together.

Г

	circuits by combining multiple gates together.	
	Practical Experiments: Provide hands-on experience by having students build circuits on breadboards using 7400 series ICs. This allows them to understand the physical connections and functioning of these devices.	
	Troubleshooting and Debugging: Discuss common issues that may arise while working with these devices, and teach students how to troubleshoot and debug circuit problems effectively.	
	Applications and Projects: Encourage students to explore practical applications of 7400 series devices. Assign projects that require designing and implementing logic circuits for specific tasks or problems.	
	Simulation Software: Introduce simulation software tools that allow students to design and simulate digital circuits using 7400 series ICs. This can be useful for experimentation and learning without physical components.	
	Safety Precautions: Emphasize the importance of handling electronic components safely. Teach proper handling techniques and precautions to avoid damaging the ICs or other equipment.	
	Testing and Verification: Show students how to test their circuits to ensure they are functioning correctly. Teach them methods to verify the output against expected results.	
	Discussion and Assessment: Conduct discussions, quizzes, or assessments to gauge students' understanding of 7400 series devices, their applications, and their ability to design and troubleshoot circuits using these components.	
SO 3.5 Flip-flops	3.5 Flip-flops, in the context of computer science or digital electronics, refer to bistable multivibrator circuits used to store binary information. These are essential components in sequential logic circuits and memory units.	
	Here's an overview of flip-flops in a classroom instruction format:	
	Introduction: Flip-flops are fundamental building blocks in digital electronics. They store one bit of data, which is either a 0 or a 1, and retain this information until updated by a clock signal.	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

	Types of Flip-Flops:	
	SR Flip-Flop (Set-Reset): This flip-flop has two inputs: Set (S) and Reset (R). It can hold one of two stable states (0 or 1), but it's essential to avoid inputs that cause both S and R to be high simultaneously, as it results in an undefined state.	
	D Flip-Flop (Data): It has a single input (D) for data and a clock input. The stored output follows the input at the clock's rising or falling edge, allowing synchronization with the clock signal.	
	JK Flip-Flop: This flip-flop has three inputs: J (set), K (reset), and a clock input. It has behavior similar to the SR flip-flop but includes additional functionality to prevent the undefined state.	
	T Flip-Flop (Toggle): It has a single input (T) and a clock input. On the clock signal's rising or falling edge, the output toggles its state (0 to 1 or 1 to 0) based on the current state and the input.	
	Operation:	
	Flip-flops store data based on their inputs and the clock signal's timing. They have an internal state that changes based on the clock's rising or falling edge. The output remains constant until a clock transition occurs, updating the stored information. Clock signals synchronize the operations and prevent erratic behavior. Applications:	
	Memory Units: Flip-flops are the basic storage elements in sequential circuits and memory units. Counters: They are used in constructing different types of counters to count events or clock pulses. Registers: Flip-flops are used in various types of registers, such as shift registers and parallel-load registers.	
SO 3.6 A/D and D/A converters	3.6 When teaching A/D and D/A converters in a classroom setting, instructors often follow these steps:	
	Introduction to Concepts: Begin by explaining the fundamentals of analog and digital signals, highlighting the need for conversion between them.	
	Working Principles: Explain the working principles of A/D and D/A converters, covering sampling, quantization,	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

encoding, decoding, and conversion techniques. Types of Converters: Discuss different types of A/D and D/A converters, their applications, advantages, and limitations. Mention successive approximation, delta-sigma, flash, and other types of converters. Real-life Examples: Use real-life examples or demonstrations to illustrate how these converters are used in various devices and systems, like digital audio systems, temperature sensors, or communication systems. Hands-on Exercises or Projects: Engage students with practical exercises or projects involving designing circuits using A/D and D/A converters. This hands-on experience reinforces theoretical knowledge. Challenges and Applications: Discuss challenges in converter design, such as accuracy, speed, and resolution. Explore applications in different fields like telecommunications, instrumentation, music production, and more. Recent Advances: Introduce students to recent advancements in converter technology and emerging trends in the field. SO 3.7 Semiconductor 3.7 Simulation or Visual Representation: Use diagrams or memory, (RAM, ROM & online simulations to show the internal structure and EPROM). functioning of RAM, ROM, and EPROM. Hands-on Experiment: If possible, demonstrate how an EPROM erasure happens using a UV light source (UV lamp) on a dummy EPROM chip (non-functional) to show the erasure process. Role Play or Storytelling: Create a storytelling session or roleplay where RAM, ROM, and EPROM "characters" explain their roles and functions within a computer system. Comparison Exercise: Engage students in comparing the characteristics and uses of RAM, ROM, and EPROM, emphasizing their differences and similarities. SO 3.8 CMOS logic gates 3.8 Here's an overview of some common CMOS logic gates: CMOS Inverter: The basic CMOS logic gate is the inverter, which consists of a PMOS transistor and an NMOS transistor connected in series between the output and the power supplies. When the input is low, the PMOS transistor conducts, and the NMOS transistor is off, leading to a high output. Conversely, when the input is high, the NMOS transistor conducts, and the PMOS transistor is off, resulting in a low

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

output.	
CMOS AND Gate:	
A CMOS AND gate is constructed using multiple pairs of NMOS and PMOS transistors. When both inputs are high, the NMOS transistors conduct while the PMOS transistors are off, resulting in a low output. In all other cases, at least one PMOS transistor conducts, leading to a high output. CMOS OR Gate:	
The CMOS OR gate is constructed using parallel PMOS transistors and series NMOS transistors. When at least one input is high, the corresponding PMOS transistor conducts, causing the output to be low. Only when both inputs are low, both NMOS transistors conduct, resulting in a high output. CMOS NAND and NOR Gates:	
NAND and NOR gates can also be implemented using combinations of CMOS transistors. NAND gates are constructed similarly to AND gates but with an additional inverter stage at the output. NOR gates are constructed similarly to OR gates but with an inverter at the output.	

SW-3 Suggested Sessional Work (SW):

- > Assignments
- > Other Activity
 - Power Point Presentation
 - Practical demonstrations using simulation software or physical breadboard setups can further enhance the learning experience, allowing students to observe the behavior of CMOS gates in action. Additionally, discussing real-world applications of CMOS logic gates in various electronic devices can help students appreciate their significance in modern technology.
- **PH303.04:** Describe architecture and operation of microprocessor 8085 and develop assembly language programs using instruction set of 8085.

Approximate Ho		
Item	AppX Hrs	
Cl	11	
LI	0	
SW	1	
SL	2	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

Total

14

SESSION OUTCOMES (SOs)	CLASS ROOM INSTRUCTION (CI)	SELF LEARING
SO 4.1 8085 microprocessor	4.1 Teaching 8085 microprocessor architecture in a classroom setting can involve various methods and resources to ensure effective learning. Here's an organized plan for conducting a class on the 8085 microprocessor:	
	Introduction and Overview: Start the session by introducing the concept of a microprocessor and its significance. Explain the role of the 8085 microprocessor in computing and its historical relevance. Discuss the basic architecture and components of the 8085 microprocessor. Instruction Set Architecture (ISA): Explain the instruction set architecture of the 8085 microprocessor. Categorize instructions: data transfer, arithmetic, logic, branching, etc. Provide examples and demonstrate how instructions are encoded. Registers and Memory: Discuss various registers (Accumulator, B, C, D, E, H, L, etc.) and their functions. Explain the concept of memory addressing modes (direct, indirect, immediate). Discuss the memory organization, addressing, and data transfer between registers and memory. Programming: Introduce assembly language programming for the 8085 microprocessor. Demonstrate simple programs using mnemonics and corresponding opcodes. Emphasize the importance of efficient programming practices. Timing and Control: Explain the timing diagram of the 8085 microprocessor. Discuss machine cycles, instruction cycles, and the concept of T-states. Describe how the control signals coordinate various operations. Interfacing and Peripherals: Discuss input/output interfacing with devices like LEDs, switches, etc. Explain how to interface memory and I/O devices with the 8085 microprocessor.	
SO 4.2 Writing some programs in assembly language for 8085 microprocessor	4.2 Assembly language for the 8085 is based on mnemonics representing different instructions and requires a solid understanding of the processor's architecture and instruction set. Each instruction in the code above represents a particular operation (e.g., MVI for Move Immediate, LXI for Load Register Pair Immediate, MOV for Move, ADD for Add, STA for Store Accumulator).	
SO 4.3 Instruction set for 8085	4.3 he 8085 is an 8-bit microprocessor with a specific instruction set used in assembly language programming. Below, I'll provide a basic list of instructions categorized by their functionality:	
1	Data Transfer Instructions:	I

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

	MOV - Move data from one register/memory to another register/memory.	
	MVI - Move immediate data to a register.	
	LDA - Load accumulator with data from memory.	
	STA - Store accumulator data into memory.	
	LHLD - Load H-L pair direct.	
	SHLD - Store H-L pair direct.	
	LDAX - Load accumulator indirect	
	Arithmetic Instructions:	
	ADD - Add contents of a register/memory to the accumulator	
	ΔDL - Add immediate data to the accumulator.	
	ADC Add register/memory to accumulator with carry	
	SUP Subtrast contents of a register/memory from the accumulator	
	SUB - Subtract contents of a register/memory from the accumulator.	
	SOI - Subtract millediate data from the accumulator.	
	SBB - Subtract register/memory from the accumulator with borrow.	
	INR - Increment register/memory.	
	DCR - Decrement register/memory.	
	Logical Instructions:	
	ANA - Perform bitwise AND operation between register/memory and	
	accumulator.	
	ANI - Perform bitwise AND operation between immediate data and	
	accumulator.	
	XRA - Perform bitwise XOR operation between register/memory and	
	accumulator.	
	XRI - Perform bitwise XOR operation between immediate data and	
	accumulator.	
	ORA - Perform bitwise OR operation between register/memory and	
	accumulator.	
	ORI - Perform bitwise OR operation between immediate data and	
	accumulator.	
	CMA - Complement accumulator	
	CMP - Compare register/memory with accumulator	
	Branching Instructions:	
	IMD Jump to the specified address upconditionally	
	JMF - Jump to the specified address unconditionally.	
	JC - Jump II carry flag is set.	
	JNC - Jump II carry Hag Is not set.	
	JZ - Jump if zero flag is set.	
	JNZ - Jump if zero flag is not set.	
	JP - Jump if positive sign (MSB of accumulator) is set.	
	JM - Jump if negative sign (MSB of accumulator) is set.	
	CALL - Call a subroutine at the specified address.	
	RET - Return from subroutine.	
	RST - Restart the program execution from fixed memory locations.	
	Control Instructions:	
	HLT - Halt the processor.	
	NOP - No operation.	
SO 4.4 Stack, I/O and	4.4 To explore the fundamentals of machine control groups and their role	
machine control group	in computer architecture.	
internite control group	··· I ···· ···	
SO 4.5 Memory read &	4.5 about memory read and write in computer systems might involve a	
write	combination of lectures, demonstrations, and hands-on activities. Here's a	
	basic outline you might consider:	
	Introduction:	
	Define Memory Read and Write: Explain the concepts of memory read and	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

	write operations in computer systems. Introduce how data is stored and	
	retrieved in memory.	
	Purpose: Discuss why memory read and write operations are fundamental	
	in computer architecture and how they facilitate data processing.	
	Theory:	
	Memory Basics: Provide an overview of different types of memory (RAM,	
	ROM, cache) and their roles in storing data.	
	Binary Representation: Explain how data is represented in binary form and	
	how it's accessed during read and write operations	
	Memory Addresses: Introduce the concept of memory addresses and their	
	significance in locating specific data	
	Memory Read Operation:	
	Process Overview. Describe the steps involved in reading data from	
	memory	
	Fetch-Decode-Execute: Explain the CPU's role in initiating memory read	
	operations and retrieving data	
	Examples and Diagrams: Use diagrams or flowcharts to illustrate the	
	sequence of events during a read operation	
	Memory Write Operation:	
	Process Overview: Explain how data is written into memory	
	Write Cycles: Discuss the steps involved in storing data in memory	
	locations.	
	Memory Access Protocols: Introduce concepts like write-through, write-	
	back, and their implications in memory write operations.	
	Hands-on Activities/Demonstrations:	
	Simulation or Emulation: Use software tools or online simulators to	
	demonstrate memory read and write operations in action.	
	Assembly Language Examples: Show simple code snippets in assembly	
	language to demonstrate how read and write operations are performed at a	
	low level.	
	Real-world Examples:	
	Practical Applications: Discuss real-world scenarios where understanding	
	memory read and write operations is crucial (e.g., file storage, database	
	management. etc.).	
	Performance Optimization: Explain how optimizing memory read and write	
	processes can enhance system performance.	
	Recap and Assessment:	
	Review: Summarize key points covered during the session.	
	Quiz or Q&A: Engage students with a short quiz or question-and-answer	
	session to reinforce understanding.	
	Assignments/Projects: Provide assignments or projects that require students	
	to write simple programs involving memory read and write operations.	
SO 4.6 Timing diagrams	4.6 In the context of 8085 microprocessor architecture, timing diagrams are	
0 0	graphical representations that show the timing relationships between	
	various signals and operations within the microprocessor during instruction	
	execution. These diagrams help in understanding the sequence of events	
	that occur within the microprocessor's internal components during the	
	fetch, decode, and execute phases of an instruction cycle.	
SO 4.7 Interrupts	4.7 In the context of the Intel 8085 microprocessor, interrupts play a	
	crucial role in allowing the processor to handle external events or requests.	
	Interrupts can temporarily suspend the main program execution and divert	
	the processor's attention to another task.	
SO 4.8 Types of	4.8 Hardware Interrupts:	

Faculty of Basic Science

Department of Physics

Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

Interrupts in 8085	TRAP: Non-maskable interrupt. Highest priority.				
_	RST 7.5, RST 6.5, RST 5.5, RST 4.5, RST 3.5, RST 2.5, RST 1.5:				
	Maskable interrupts with different priorities.				
	Software Interrupts:				
	RST instructions: Similar to hardware interrupts but invoked by software				
	instructions.				
	SIM (Set Interrupt Mask): Used to disable or enable interrupts.				
	RIM (Read Interrupt Mask): Used to read the status of interrupt lines.				
SO 4.9 Interrupt Process:	4.9 Interrupt Request (IRQ): External devices can request an interrupt.				
-	2.Interrupt Acknowledge: The processor acknowledges the interrupt				
	request by sending an acknowledgment signal.				
	3.Interrupt Service Routine (ISR): The processor jumps to the				
	corresponding interrupt vector location (specific memory address) to				
	execute the ISR.				
	4. Handling Interrupts: The ISR executes the required operations and				
	typically ends with a return instruction (like RET or RETI) to return to the				
	main program.				
SO 4.10 Interrupt Vector	4.10				
Table:	• The 8085 uses an interrupt vector table to determine the address to				
	jump to when a particular interrupt occurs.				
	• The starting address of this table is fixed in memory, and each interrupt				
	has its specific vector address.				
SO 4.11 Maskable and	4.11				
Non-Maskable	• Maskable Interrupts: Can be disabled (masked) or enabled based on the				
Interrupts:	SIM instruction.				
	• Non-Maskable Interrupts: Cannot be disabled. They always get priority				
	over maskable interrupts.				

SW-4 Suggested Sessional Work (SW):

- > Assignments
- > Other Activity

Power Point Presentation

Assessments could include quizzes, assignments, or a small project that requires implementation or simulation of these concepts.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

PH303.05: Learn and to apply concepts learnt about Microprocessor & Peripheral Device

Item	AppX Hrs
Cl	08
LI	0
SW	1
SL	1
Total	10

SESSION OUTCOMES	CLASS ROOM INSTRUCTION (CI)	SELF LEARING
(SOS) SO 5.1 Programmable Interface devices	 Module 5.1 Programmable interface devices can be utilized in classroom instruction across various subjects to enhance learning experiences. These devices enable students to interact with technology, understand programming concepts, and apply them to solve problems. Here are some ways programmable interface devices can be used in classroom instruction: Coding and Robotics: Devices like Arduino, Raspberry Pi, or micro:bit can introduce students to coding and robotics. They can learn programming languages like Python, Scratch, or C/C++ to control sensors, motors, lights, and other components, allowing them to build robots or interactive projects. STEM Projects: These devices enable hands-on STEM (Science, Technology, Engineering, and Mathematics) projects. Students can build scientific instruments, weather stations, automated plant watering systems, etc., fostering practical application of STEM concepts. Internet of Things (IoT): Teach students about IoT by using devices like Raspberry Pi to create connected devices. They can build smart home prototypes, monitor environmental data, or create devices that respond to real-time data. 	
	and design classes to create interactive installations, kinetic	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

sculptures, or digital art projects, fostering creativity alongside technology. Physics and Electronics Experiments: Students can learn about circuits, sensors, and electronic components by building various projects. They can explore concepts like conductivity, resistance, and capacitance. Game Development: Engage students in creating their own games using programmable devices. This involves coding logic, game design principles, and graphics to develop interactive games. Collaborative Learning: Group projects involving programmable devices encourage teamwork, problem-solving, and communication skills as students work together to design, program, and debug their projects. Real-world Problem Solving: Encourage students to tackle real-world problems in their community using these devices. This can include designing solutions for energy conservation, waste management, or accessibility improvements. Computer Science Concepts: Use programmable devices to teach fundamental computer science concepts like loops, conditionals, variables, functions, and data structures in a practical, hands-on manner. Cross-curricular Integration: These devices can be integrated across subjects, such as using them in language classes to create interactive storytelling projects or in history classes to build simulations of historical events. SO 5.2 Internal 5.2 The Intel 8155 and 8255 are both programmable I/O Architecture and pin (Input/Output) devices commonly used in microprocessor-based out diagrams of 8155 systems. They are designed to provide parallel I/O interfacing with and 8255 microprocessors. The 8155 is a bit more complex as it includes not only I/O ports but also an on-chip timer and 256 bytes of RAM. 5.3 The Intel 8259 PIC is a critical component in managing interrupt SO 5.3 Programmable interrupt controller requests in early computer systems. Understanding its configuration, Intel 8259 modes of operation, and interrupt handling mechanisms is crucial for effectively managing system interrupts and ensuring proper functioning of devices connected to the CPU. 5.4 Discussing the architecture and working principles of the 8257 SO 5.4 Direct memory access and 8257 DMA DMA controller, including its channels and modes of operation. controller 8279 display/ key board controller SO 5.5 Interfacing 5.5 Interfacing with D/A (digital-to-analog) and A/D (analog-to-Discuss realwith D/A and A/D digital) converters is an essential aspect of working with digital and world

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

converters	analog signals in various electronic applications. Here's a brief	applications
	overview of how you might approach this topic in a classroom	where these
	setting:	converters play
		a crucial role,
	Understanding D/A Converters:	such as audio
		systems,
	Begin by explaining the purpose of D/A converters, which convert	instrumentation,
	digital signals into corresponding analog signals.	communication
	Discuss the types of D/A converters: binary-weighted resistor, R-2R	systems, and
	ladder, and sigma-delta converters, explaining their working	industrial
	principles and advantages/disadvantages.	automation.
	Demonstrate how to interface a microcontroller or digital system	
	with a D/A converter to generate analog output signals.	
	Understanding A/D Converters:	
	Explain the function of A/D converters, which convert analog signals	
	into digital values.	
	Cover different types of A/D converters, such as successive	
	approximation, integrating, and delta-sigma converters, highlighting	
	their characteristics and applications.	
	Discuss methods for interfacing analog sensors or signals with	
	microcontrollers or digital systems using A/D converters to process	
SO 5.6 Elementary	5.6 By demonstrating this basic DAC method practically, students	
method of digital to	can gain a better understanding of now digital signals can be	
analog conversion	converted into continuous analog signals, laying a foundation for further exploration in the field of analog and digital electronics	
SO 57 Warking of	5.7 it/s important to as through the datashasts of the DA CO202	
DAC 0808 and	2.5. and 2025 microprocessors understand their nin configurations	
programme for	control signals, and timing requirements. Then, step by step	
interfacing with 8255	demonstrate how to set up the connections, initialize the ports, and	
in 8085 based system.	transfer data between the devices using assembly language	
	instructions. Testing and troubleshooting are essential parts of such a	
	practical session to ensure correct interfacing and communication	
SO 5 8 Internal block	5.8 The ADC0809 operates by taking an analog input signal	
diagram of ADC 809	selecting its channel through the multiplexer initiating the	
and working	conversion with the start control, and then using the successive	
C	approximation algorithm with the help of a clock signal to produce	
	the digital output.	
SO 5.9 Interfacing of	5.9 It's essential to provide hands-on demonstrations, diagrams, and	
IC 809 with 8085	explanations of the IC 809 interfacing process. You can break down	
based systems.	the steps into manageable parts, explain the theory behind	
	interfacing, demonstrate connections on a development board or	
	simulation software, and show sample code snippets to communicate	
	between the 8085 and IC 809.	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

- > Assignments
- > Other Activity

Power Point Presentation of Portland cement manufacture.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
PH303.01: After studying this course, the student will be able to Observe logic circuits, assemble logic circuits and test the logic circuit	8	1	1	10
PH303.02: Identify the applications of junction devices, amplifiers and logic circuits.	7	2	4	13
PH303.03: Learn and to apply concepts learnt in analog and digital electronics in real life.	8	1	1	10
PH303.04: Describe architecture and operation of microprocessor 8085 and develop assembly language programs using instruction set of 8085.	11	1	2	14
PH303.05: Learn and to apply concepts about Microprocessor & Peripheral Device.	8	1	1	10
Total Hours	42	06	09	57

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	rks Dis	tribution	Total	
		R	U	Α	Marks	
CO-1	Acquire knowledge about various electronic components used in communication systems, such as amplifiers, oscillators, filters, and transmitters/receivers, and their functionalities in electronic communication.	03	01	01	05	
CO-2	Students will comprehend the basic principles of digital systems, including binary number systems, Boolean algebra, and logic gates.	02	06	02	10	
CO-3	These outcomes aim to ensure that students have a comprehensive understanding of digital electronics principles, enabling them to design, analyze, and troubleshoot digital circuits and systems effectively.	03	07	05	15	
CO-4	A course on microprocessors typically aims to equip students with a range of skills and knowledge related to the design, functioning, and application of microprocessors.	-	10	05	15	
CO-5	Acquire skills in designing both hardware and software components for effective device interfacing, including circuit design, sensor integration, and firmware development.	03	02	-	05	
	Total	11	26	13	50	

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Instructional/Implementation Strategies:

- Improved Lecture
- Tutorial
- Case Method
- Group Discussion
- Role Play
- Demonstration
- Brainstorming
- Quiz Coemption

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books:			
S. No.	Title	Author	Publisher	Edition & Year
1	Microelectronic Circuits	S. Sedra and K. C. Smith	Oxford University Press	Revised edition 21 edition 2020
2	Op-Amps and Linear Integrated Circuits	R. A. Gaykwad	Prentice- Hall of India	2014
3	Digital Principles and Applications	D. P. Leach, A. P. Malvino and G. Saha	Tata McGraw Hill.	2001
4	Digital Design - Principles and Practices	J. F. Wakerly	Prentice Hall of India	2018
5	Lecture note provided by Department of Physics, A	KS University, Satna ((M. P.)	

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos, POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code : PH303

Course Title: Digital Electronics & Microprocessor

	Program Outcomes										Program Specific Outcome						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life- long learning	The ability to apply technical & engineering knowledge for production quality cement	Ability to understand the day to plant operational problems of cement manufacture	Ability to understand the latest cement manufacturin g technology.	Ability to use the research based innovative knowledge for SDGs	Engage in life-long learning and will have recognition.
CO 1: Acquire knowledge about various electronic components used in communication systems, such as amplifiers, oscillators, filters, and transmitters/receivers, and their functionalities in electronic communication.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	2
CO 2: Students will comprehend the basic principles of digital systems, including binary number systems, Boolean algebra, and logic gates.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	2
CO 3: These outcomes aim to ensure that students have a comprehensive understanding of digital electronics principles, enabling them to design, analyze, and troubleshoot digital circuits and systems effectively.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	1
CO 4: A course on microprocessors typically aims to equip students with a range of skills and knowledge related to the design, functioning, and	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	3

application of microprocessors.	f																
CO 5: Acquire skills in designing both hardware and software components for effective device interfacing including circuit design sensor integration, and firmware development.	2	2	1	1	1	3	3	3	1	1	2	2	3	3	1	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 1: Acquire knowledge about various electronic components used in communication systems, such as amplifiers, oscillators, filters, and transmitters/receivers, and their functionalities in electronic communication.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	Unit I (Communication Electronics)	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 2 Students will comprehend the basic principles of digital systems, including binary number systems, Boolean algebra, and logic gates.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5	Unit II (Basics of Digital Electronics)	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 3: These outcomes aim to ensure that students have a comprehensive understanding of digital electronics principles, enabling them to design, analyze, and troubleshoot digital circuits and systems effectively.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	Unit – III (Digital Electronics)	page number 2 to 6
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO 4: A course on microprocessors typically aims to equip students with a range of skills and knowledge related to the	SO4.1 SO4.2 SO4.3	Unit IV (Microprocessor)	

PSO 1,2, 3, 4, 5	design, functioning, and application of microprocessors.	SO4.4 SO4.5		
PO 1,2,3,4,5,6	CO 5: Acquire skills in designing both	SO5.1	Unit V (Programmable Interface devices)	
7,8,9,10,11,12	hardware and software components for	SO5.2		
	effective device interfacing, including circuit	SO5.3		
PSO 1,2, 3, 4, 5	design, sensor integration, and firmware	SO5.4		
	development.	SO5.5		

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-III

Course Code:	PH304							
Course Title :	Nuclear and Particle Physics							
Pre- requisite:	Student should have basic knowledge of basic properties of nuclei, nuclear reactions, general knowledge nuclear model and elementary knowledge of particles.							
Rationale:	The students studying Physics should possess foundational understanding about historical background of nuclear and particle physics.							

Course Outcomes:

CO304.1. Understand the basic properties of nuclei and nuclear forces for studying nuclear structure.

CO304.2. Learn about nuclear models like- Liquid drop model and shell model to know nuclear structure.

CO304.3. Learn about nuclear decay and detection methods.

CO304.4. Learn about elementary particles and classify the particles and will be able to understand their properties.

CO304.5. Learn about cosmic rays and detection methods.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of					Scher	ne of stud	ies(Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Elective (PEC)	PH304	Nuclear and Particle Physics	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)									
Board of	Couse			End Semester Assessment	Total Mark s							
Study	Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activit y any one	Class Attendance	Total Marks	(FSA)			
			(CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA + ESA)		
PEC	PH304	Nuclear and Particle Physics	15	20	5	5	5	50	50	100		

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO304.1. Understand the basic properties of nuclei and nuclear forces for studying nuclear structure.

Ap	proximate Hours
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Class room Instruction (CI)	Self Learning (SL)
 SO1.1 Learn about Nuclear Interactions. SO1.2 Understand theory of nuclear forces. SO1.3 Learn about nuclear reaction. SO1.4 Understand direct and compound nuclear reaction mechanisms. SO1.5 Analysis of Breit-Wigner one– level formula. 	 UNIT – I (Nuclear Interactions and Nuclear Reactions) 1.1 Nuclear sizes and shapes, Experimental methods of determining nuclear radius 1.2Two-nucleon problem: Deuteron problem, Nucleon- nucleon interaction 1.3 Exchange forces and tensor forces 1.4 meson theory of nuclear forces 1.5 nucleon-nucleon scattering 1.6 Effective range theory, spin dependence of nuclear forces 1.7 charge independence and charge symmetry of nuclear forces 1.8Isospin formalism, Yukawa interaction 1.9 Direct and compound nuclear reaction 	1. Theory of Nuclear Interactions
	incentainsins	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

1.10 cross sections in terms of partial wave	
amplitudes	
1.11 compound nucleus, scattering matrix,	
Reciprocity theorem	
1.12 Breit- Wigner one-level formula,	
Resonance scattering.	

SW-1 Suggested Sessional Work (SW):

- a) Assignments: Explain Breit-Wigner one–level formula and Resonance scattering.
 b) Other Activities (Specify):
 - Present any one topic of this unit by power point presentation in front of departmental student and faculty.

CO304.2. Learn about nuclear models like- Liquid drop model and shell model to know

nuclear structure.

Approximate Hours

1.	
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Class room Instruction (CI)	Self Learning (SL)				
SO2.1 Learn about different	UNIT – II (Nuclear Models)	1. Learn about				
nuclear model.	2.1 Nuclear models	various Nuclear Models				
SO2.2 Understand nuclear	2.2 Liquid drop model, Semi empirical mass					
fission on the basis of	formula and isobaric stability					
nuclear model.	2.3 Bohr–wheeler theory of fission					
SO2.3 Aware about rotational and	2.4 Experimental evidence for shell effects-					
vibrational spectra.	shell model, spin, orbit coupling,					
SO2.4 Understand elementary idea of	f2.5 magic numbers, Angular momenta and					
unified model	parities of nuclear ground states					
SO2.5 Analysis of various nuclear	2.6 Qualitative discussion and estimates of					
models.	transition rates					
	2.7 magnetic moment and Schmidt lines					
	2.8 Collective model of Bohr and Mottelson					
	(2)					
	2.9Rotational and vibrational spectra					
	2.10 elementary idea of unified model. (2)					

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Explain Liquid drop model with Bohr-wheeler theory of fission.

b. Other Activities (Specify): Present any one topic of this unit by power point presentation in front of departmental student and

faculty.

CO304.3. Learn about nuclear decay and detection methods.

A	pproximate Hours
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Class room Instruction (CI)	Self Learning (SL)		
SO3.1 Deduce Fermi theory of	UNIT – III (Nuclear Decay)	1. General		
beta decay	3.1 Beta decay	ideas of		
SO3.2 Detection and properties of	3.2 Fermi theory of beta decay	nuclear		
neutrino Gamma decay.	3.3 Comparative half, lives, Parity violation	radiation		
SO3.3 Learn about nuclear detector	3.4 Two component theory of neutrino decay	detectors		
and detection technique.	3.5 Detection and properties of neutrino Gamma			
SO3.4 Understand alpha decay and	decay			
detect it.	3.6 Multipole transition in nuclei			
SO3.5 Understand and Analysis	3.7 Angular momentum and parity selection rules			
nuclear accelerator.	3.8 Internal conversion, Nuclear isomerism			
	3.9 General ideas of nuclear radiation detectors			
	3.10 linear acceleration			
	3.11 Betatron			
	3.12 Proton- synchrotron, Electron synchrotron.			

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Explain various nuclear detectors and give general ideas of nuclear radiation detectors.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

CO304.4. Learn about elementary particles and classify the particles and will be able to understand their properties.

Ар	proximate Hours
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

...

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Session Outcomes	Class room Instruction	Self			
(SOs)	(CI)	Lear			
		ning (SL)			
SO4.1 Learn about elementary	UNIT – IV (Elementary particle physics)				
particles	4.1 Types of interaction between elementary particles	1. Interaction			
SO4.2 Understand category of	4.2 Hadrons and leptons	between			
various elementary particles.	4.3 Symmetry and conservation laws	elementary particles			
SO4.3 Learn elementary ideas of	4.4 Elementary ideas of CP invariance	1			
invariance.	4.5 Elementary ideas of CPT invariance				
SO4.4 Understand particle symmetry	4.6 Classification of hadrons				
and conservation laws.	4.7 lie algebra and SU(2)				
SO4.5 Analysis of quark model.	4.8 SU (3) multiplets				
	4.9 Quark model				
	4.10 Gell Mann-Okubo mass formula for octet				
	4.11 decuplet hadrons				
	4.12 Charm, bottom and top quarks.				

SW-4 Suggested Sessional Work (SW):

a. Assignments:

Describe hadrons and classify it.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

CO304.5. Learn about cosmic rays and detection methods.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

Session Outcomes (SOs)	Class room Instruction (CI)	Self Learning (SL)
 SO5.1 Learn about Cosmic rays nature, composition, charge behavior. SO5.2 Understand origin of cosmic rays. SO5.3 Able to understand properties of cosmic rays. SO5.4 Understand relation with classical mechanics. SO5.5 Observe penetration of cosmic rays on atmosphere 	 UNIT – V (Cosmic Rays) 5.1 Cosmic rays, nature, composition, charge and energy (2) 5.2 spectrum of primary cosmic rays 5.3 production and propagation of secondary cosmic rays 5.4 Soft, penetrating and nucleonic components 5.5 Origin of cosmic rays 5.6 Rossi curve (2) 5.7 Bhabha–Heitler theory of cascade showers (2) 5.8 Covariant Lagrangian (2) 	. General theory of Cosmic Rays
rays on atmosphere.	D.0 Covariant Lagrangian (2)	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Explain Origin of cosmic rays, Rossi curve and Bhabha-Heitler theory of cascade showers.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
CO304.1. Understand the basic properties of				
nuclei and nuclear forces for studying nuclear	12	1	1	14
structure.				
CO304.2. Learn about nuclear models like-				
Liquid drop model and shell model to know	12	1	1	14
nuclear structure.				
CO304.3. Learn about nuclear decay and				
detection methods.	12	1	1	14
CO304.4. Learn about elementary particles				
and classify the particles and will be able to	12	1	1	14
understand their properties.	12	1	1	14
CO304.5. Learn about cosmic rays and detection				
methods.	12	1	1	14
	(0)			70
Total Hours	6U	5	5	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Nuclear Interactions and Nuclear	03	03	04	10
	Reactions				
CO-2	Nuclear Models	03	04	03	10
CO-3	Nuclear Decay	03	03	04	10
CO-4	Elementary particle physics	03	03	04	10
CO-5	Cosmic Rays	03	03	04	10
	Total	15	16	19	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :					
S. No.	Title	Author	Publisher	Edition & Year		
1	Introductory Nuclear Physics,	Kenneth S. Kiane	Wiley New York	1988		
2	Introduction to Nuclear Physics	H.A. Enge	Addison- Wesley	1975		
3	Nuclear Physics	I. Kaplan	2 Ed. Narosa	1989		
4	Atomic Nucleus	R.D.Evans	McGraw Hill, New York	1955		
5	Depar	Lecture note p tment of Physics, AKS	provided by S University, Satna (M.	P.)		

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos, POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH304

Course Title: Nuclear and Particle Physics

Program Outcomes Program Specific C								fic Outcome									
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicat e effectively.	Ability to use the technique s, skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
CO304.1. Understand the basic properties of nuclei and nuclear forces for studying nuclear structure.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	1
CO304.2. Learn about nuclear models like- Liquid drop model and shell model to know nuclear structure.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	1
CO304.3. Learn about nuclear decay and detection methods.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2
CO304.4. L e a r n a b o u t e lementary particles and classify the particles and will be able to understand their properties.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	2
CO304.5. Learn about cosmic rays and detection methods.	2	1	2	1	1	3	3	3	1	1	2	2	3	3	1	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	CO304.1 . Understand the basic properties	SO1.1	UNIT – I (Nuclear Interactions and	
	of pueloi and pueloar forces for studying		Nuclear Reactions)	
PSO 1.2. 3. 4. 5	or nuclei and nuclear forces for studying	SO1 4	11 12 13 14 15 16 17 18 19	
	nuclear structure.		1.10, 1.11	
		SO1.5		
PO 1,2,3,4,5,6	CO304.2. Learn about nuclear models like-	SO2.1	UNIT – II (Nuclear Models)	
7,8,9,10,11,12	Liquid drop model and shell model to know	SO2.2		
		SO2.3	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4, 5	nuclear structure.	SO2.4	2.8,2.9,2.10	
		SO2.5		As mentioned in
				As menuoneu m
PO 1,2,3,4,5,6	CO304.3. Learn about nuclear decay and	SO3.1	UNIT – III (Nuclear Decay)	2 to 6
7,8,9,10,11,12	detection methods	SO3.2		2 10 0
	detection methods.	SO3.3	3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9,	
PSO 1,2, 3, 4, 5		SO3.4	3.10, 3.11	
		SO3.5		
PO 1,2,3,4,5,6	CO304.4. Learn about elementary	SO4.1	UNIT – IV (Elementary particle physics)	
7,8,9,10,11,12	porticles and classify the particles and will	SO4.2		
	particles and classify the particles and will	SO4.3	4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9,	
PSO 1,2, 3, 4, 5	be able to understand their properties.	SO4.4	4.10, 4.11, 4.12	
		SO4.5		
PO 1,2,3,4,5,6	CO304.5. Learn about cosmic rays and	SO5.1	UNIT – V (Cosmic Rays)	
7,8,9,10,11,12	detection methods.	SO5.2	5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9.	
		SO5.3	5.10, 5.11, 5.12	
PSO 1,2, 3, 4, 5		SO5.4		
		SO5.5		

Course Code:	Semester-III PH305
Course Title :	Digital signal processing
Pre- requisite:	Student should have basic knowledge of Electrical signals, systems, Basic Electrical Laws, Z- Transform, Fourier transform and basic mathematical operations.
Rationale:	This course is designed to provide the knowledge to student's about Digital signal Processing besides the basic topics. It includes advanced topics of signals processing and its parameters, This course would help students to understand more advanced concepts of modern communication system

Course Outcomes:

PH305.1: Understanding of Discrete time signals and systems. Significance of sampling and reconstruction.

- PH305.2: Applications of Z-transform in Digital signals and systems.
- **PH305.3:** Identify the properties and characteristics of discrete Fourier Transform along with their Mathematical representation and analysis.

PH305.4: Understanding the basic concepts designing of different types of filters.

PH305.5: Analyzing the Applications of Digital Signal Processing

Board of					Schem	Scheme of studies(Hours/Week)		
Study			Cl	LI	SW	SL	Total Study	(C)
	Course	Course Title					Hours	
	Code						(CI+LI+SW+SL)	
Program		Digital Signal						
Elective	PH305	Processing	4	0	1	1	6	4
(PEC)		110000000000						

Scheme of Studies:

Legend:	CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L)		
	and Tutorial (T) and others),		
	LI: Laboratory Instruction (Includes Practical performances in laboratory		
workshop, field or other locations using different instructional strategies)			
	SW: Sessional Work (includes assignment, seminar, mini project etc.),		
	SL: Self Learning,		
	C: Credits.		

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Theor	у									
					Scheme	e of Asses	ssment (Ma	rks)	1	
				Progressive Assessment (PRA)				End	Tota	
Boar d of Stud y	Cous e Code	Course Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one (SA)	Class Activi ty any one (CAT)	Class Attendanc e (AT)	Total Marks (CA+C T+SA+ CAT+ AT)	Semester Assessme nt (ESA)	I Mar ks (PR A+ ESA)
PEC	PH3 05	Digital Signal Process ing	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH305.1: Understanding of Discrete time signals and systems. Significance of sampling and reconstruction.

1	Approximate nours
Item	Approx Hrs
Cl	08
LI	0
SW	1
SL	1
Total	10

Approximate Hours

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
SO1.1 Understand the concept of discrete time signals and	Unit-1: Discrete-time signals and systems	1. Basics of signal and systems
 systems SO1.2 Understand the different methods of representation of discrete time signals and systems SO1.3 Significance of sampling and reconstruction of signals and systems SO1.4 Importance and explanation of alising method sampling theorem and Nyquist rate. 	 1.1 Definition of discrete time signals and systems 1.2 Sequences representation of discrete time signals and systems 1.3 Representation of signals on orthogonal basis. 1.4 Representation of discrete systems using difference equations 1.5 Numerical of difference equations 1.6 Sampling and reconstruction of signals and systems 1.7 Explanation of alising 1.8 Sampling theorem and 	 Difference between Analog signals and discrete time signals Differential equations
	1.8 Sampling theorem and Nyquist rate.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Numerical Problems of sampling theorem and Nyquist rate

PH305.2: Applications of Z-transform in Digital signals and systems.

Approximate Hours

Item	Approx Hrs
Cl	10
LI	0
SW	1
SL	1
Total	12

Session Outcomes	Class room Instruction	Self Learning
(SOs)	(CI)	(SL)
 SO2.1 Understanding of Z- transform SO2.2 Solve different signals and systems using Z transform SO2.3 To understand the significance of Region of convergence. SO2.4 Basic knowledge of inverse Z-Transform. 	 Unit-2 Z-Transform 2.1 Introduction to Z-transform. 2.2 Region of Convergence 2.3 Analysis of linear shift invariant systems using Z- Transform 2.4 Numerical of Z-transform 2.5 Different properties of Z- Transform for Causal signals 2.6 Numerical on properties of Z-Transform 2.7 Interpretation of stability in z-domain 2.8 Inverse z-transforms. 2.9 Properties of Inverse Z- Transform 2.10 Numerical of Inverse Z- Transform 	 Basics of Z- Transform Properties of signals and systems

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems on Z-Transform.
- ii. Numerical Problems based on Inverse Z-Transform.
- **PH305.3:** Identify the properties and characteristics of discrete Fourier Transform along with their Mathematical representation and analysis.

Арр	Approximate Hours			
Item	Approx Hrs			
Cl	8			
LI	0			
SW	1			
SL	1			
Total	10			

Session Outcomes	Class room Instruction	Self Learning
(SOs)	(CI)	(SL)
 SO3.1 To Understand the concept of Discrete time Fourier Transform SO3.2 Significance of properties of discrete Fourier transform SO3.3 To Understand the concept of fast Fourier Transform 	 Unit-3 : Discrete Fourier Transform 3.1 Introduction to Discrete Fourier Transform 3.2 Properties of discrete Fourier transform 3.3 Numericals 3.4 Convolution of signals 3.5 Fast Fourier Transform Algorithm 3.6 Parseval's Identity 3.7 Implementation of Discrete Time systems 3.8 Numericals 	 Basics of Fourier transform. Discrete time signals

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problems based on Discrete Fourier transform.
- **ii.** Numerical Problems of Fast Fourier Transform.

PH305.4: Understanding the basic concepts designing of different types of filters.

Approximate Hours

Item	Approx Hrs
Cl	11
LI	0
SW	1
SL	1
Total	13

Session Outcomes (SOs)	Class room Instruction (CI)	Self- Learning (SL)		
SO4.1 Understanding the basic concepts of digital filtersSO4.2 Significance of design of digital filters and its types	 Unit-4 : Design of Digital filters 4.1 Introduction to digital filters and its significance in digital signal processing. 4.2 Window method for filter 	 i. Filters and types of filters ii. Difference between analog and digital filters 		
SO4.3 to illustrate the different methods involve in designing	4.3 Park-McClellan's method for			

of digital filters	filter designing	
	4.4 Introduction to Design of IIR	
	Digital Filters	
	4.5 Butterworth method	
	4.6 Chebyshev method	
	4.7 Elliptic Approximations	
	4.8 Low-pass, band pass, band stop	
	and high pass filters	
	4.9 Effect of finite register length	
	in FIR filter design.	
	4.10 Parametric and non-parametric	
	spectral estimation.	
	4.11 Introduction to multi-rate	
	signal processing	

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Explanation of designing of FIR and IIR filters
 - ii. Numerical problems based on window method.

b. Mini Project:

i.

Draw a chart of Different types of filters.

PH305.5: Analyzing the Applications of Digital Signal Processing.

Approximate Hours

Item	Approx Hrs
Cl	8
LI	0
SW	1
SL	1
Total	11

(SOs)	(CI)	Self-Learning (SL)
 SO5.1 To understand the correlation functions SO5.2 To understand the significance of power spectra SO5.3 Importance of linear mean square estimation. 	 Unit 5: Applications of Digital Signal Processing 5.1 Correlation Functions 5.2 Examples of correlation functions. 5.3 Power Spectra 5.4 Stationary Processes 5.5 Optimal filtering using ARMA Model 5.6 Linear Mean-Square 	 Remember the properties of filters Types of correlation function.

Estimation 5.7 Examples of Linear mean square Estimation 5.8 Wiener Filter	
J.8 WICHEI FILLEI.	l

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical Problem based on correlation function
- ii. Numerical Problem based on linear mean square Estimation.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture	Sessional Work	Self- Learning	Total hour
	(Cl)	(SW)	(SI)	(Cl+SW+Sl)
PH305.1: Understanding of Discrete time signals and systems. Significance of sampling and reconstruction.	8	1	1	10
PH305.2: Applications of Z-transform in Digital signals and systems.	10	1	1	12
PH305.3: Identify the properties and characteristics of discrete Fourier Transform along with their Mathematical representation and analysis.	8	1	1	10
PH305.4: Understanding the basic concepts designing of different types of filters.	11	1	1	13
PH305.5: Analyzing the Applications of Digital Signal Processing	8	1	1	10
Total Hours	45	5	5	55

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total							
		R U A								
CO-1	Discrete-time signals and systems	02	03	05	10					
CO-2	Z-transform	02	04	04	10					
CO-3	Discrete Fourier Transform	02	02	06	10					

CO-4	Design of Digital filters	03	07	05	15
CO-5	Applications of Digital Signal Processing	01	02	02	05
	Total	10	18	22	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Process calculation will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Design Demonstration
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 6. Brainstorming

Suggested Learning Resources:

(a) Books :

S.	Title	Author	Publisher	Edition &			
No.				Year			
1	Digital Signal Processing: A computer based approach	S. K. Mitra	McGraw Hill	2011			
2	Discrete Time Signal Processing	A.V. Oppenheim and R. W. Schafer,	Prentice Hall	1989			
3	Digital Signal Processing: Principles, Algorithms and Applications	J. G. Proakis and D.G. Manolakis	Prentice Hall	1997			
4	Theory and Application of Digital Signal Processing	L. R. Rabiner and B. Gold	Prentice Hall,	1992.			
5	Introduction to digital Signal Processing ^{II} ,	J. R. Johnson	Prentice Hall,	1992.			
6.	Digital Signal Processing∥,	D. J. DeFatta, J. G. Lucas and W. S. Hodgkiss	John Wiley & Sons,	1988.			
7	Lecture note provided b Dept. of Electrical Eng	oy ineering, AKS University, S	atna.				

Curriculum Development Team

- 1. Dr. O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr. C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr. Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

COs, POs and PSOs Mapping

Course Title: M.Sc. (Physics) Course Code: PH305 Course Title: DIGITAL SIGNAL PROCESSING

						Progra	m Outcomes	ł						Progr	am Specific O	utcome	
	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Course Outcomes	Engineer ing knowledg e	Proble m Solvin g	Desi gn Skill s	Laborat ory Skills	Tea m wor k	Communica tion Skills	Ethical and Professio nal Behavior	Lifelon g Learni ng	Globa l and Societ al Impa ct	Project Managem ent	Adaptabi lity	Profession al Developm ent	Identify , formula te, and solve Physics proble ms.	Design and conduct experime nts, as well as to analyse and interpret data.	Apply knowledg e of Physics in a different stream of science and to communic ate effectively	Ability to use the techniqu es, skills, and modern physical tools in real world applicati on.	Engage in life- long learning and will have recogniti on.
CO1: Understand ing of Discrete time signals and systems. Significance of sampling and reconstructi on.	3	3	2	2	2	1	1	2	2	1	2	2	2	3	2	2	1
CO 2: Application s of Z- transform in Digital signals and systems.	3	3	3	3	2	2	1	3	2	2	2	3	3	2	3	2	2

CO3: Identify the properties and characterist ics of discrete Fourier Transform along with their Mathematic al representati on and analysis	3	2	3	2	2	1	2	2	2	2	2	3	3	2	2	2	2
CO 4: Understand ing the basic concepts designing of different types of filters.	3	3	2	2	2	2	2	3	2	2	2	2	2	3	3	2	2
CO 5: Analyzing the Application s of Digital Signal Processing	3	3	3	3	2	3	2	3	2	2	2	2	3	3	3	2	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No. COs No.& Titles	SOs No.	Classroom Instruction(CI)	Self-Learning (SL)
--------------------------------	---------	---------------------------	-----------------------

PO:1,2,3,4,5,6,7,8	CO1: Understanding of Discrete time	SO1.1	UNIT-1: Discrete-time signals and systems	
,9,10,11,12	signals and systems. Significance of sampling and reconstruction.	SO1.2 SO1.3	1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	
PSO 1,2, 3, 4, 5		501.4		
PO:1,2,3,4,5,6,7,8	CO 2: Applications of Z-transform in	SO2.1	UNIT-2: Z-Transform	
,9,10,11,12	Digital signals and systems.	SO2.2		
		SO2.3	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10	
PSO 1,2, 3, 4, 5		SO2.4		
PO:1,2,3,4,5,6,7,8	CO3: Identify the properties and	SO3.1	Unit-3: Discrete Fourier Transform	
,9,10,11,12	characteristics of discrete Fourier Transform along with their	SO3.2 SO3.3	3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8	As mentioned in page number
PSO 1,2, 3, 4, 5	Mathematical representation and analysis			3 to 7
PO:1,2,3,4,5,6,7,8	CO 4: Understanding the basic	SO4.1	UNIT-4: Design of Digital filters	
,9,10,11,12	concepts designing of different types	SO4.2		
	of filters.	SO4.3	4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8, 4.9,4.10,4.11	
PSO 1,2, 3, 4, 5				
PO:1,2,3,4,5,6,7,8	CO 5: Analyzing the Applications of		UNIT-5: Applications of Digital Signal	
,9,10,11,12	Digital Signal Processing	SO5.1	Processing	
		SO5.2		
PSO 1,2, 3, 4, 5		SO5.3	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-III

Course Code:	PH351				
Course Title :	General Physics Lab-III				
Pre- requisite:	Student should have basic knowledge of practical instruments in graduation.				
Rationale:	The students studying Physics should possess foundational understanding about historical background of graduation.				

Course Outcomes: After completion of this course, the students will be able to

PH351.1. learn various Physics aspects by performing the experiments related to nuclear physics and decay detection methods.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of					Schei	Scheme of studies(Hours/Week)			
Study	Course	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
	Code								
Program	PH351	General	0	6	1	1	8	3	
Core		Physics Lab-							
(PCC)		III							

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Scheme of Assessment:

Practical Lab

			Scheme of Assessment (Marks)					
Board of	Со	Course Title		Progressive Assessme	ent (PRA)		End Semester Assessment	Total Mark s
Study	use Co de	Course Thie	Lab work Assignment 5 number 7 marks each (LA)	Viva-Voice on Lab work 10 marks each (VV)	Lab Attendance	Total Marks		
					(LA)	(LA+VV+LA)	(ESA)	(PRA + ESA)
PCC	PH35 1	General Physics Lab-III	35	10	5	50	50	100

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH351.1. learn various Physics aspects by performing the experiments related to nuclear physics and decay detection methods.

Ap	proximate Hours
Item	AppX Hrs
Cl	0
LI	90
SW	15
SL	15
Total	120

Session Outcomes	Laboratory Instruction	Self Learning
(SOs)	(LI)	(SL)
 SO1.1 Learn about scattering methods SO1.2 Understand Geiger muller counter by using experiment SO1.3 Study and determine operating voltage and dead time. SO1.4 study production techniques of nuclear reactors. SO1.5 Learn about Error analysis. 	 To determine the operating voltage, slope k of the plateau and dead time of a G.M. Counter. Features analysis using G.M. Counter. Study of Rutherford scattering with the help model. To determine half-life of a radio isotope using GM counter. To study characteristics of a GM counter and to study statistical nature of radioactive decay. Decoding and display of the outputs from the IC 7490. To study the Compton scattering using gamma 	Learn about basics of detection methods

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program

(Revised as on 01 August 2023)

rays of suitable energy.	
8. To study production techniques of nuclear	
reactors.	
9. To study of production methods of nuclear	
power energy.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Study production methods of nuclear power energy in India.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Laboratory Instruction (LI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PH351.1. learn various Physics aspects by performing the experiments related to nuclear physics and decay detection methods.	90	15	15	120
Total Hours	90	15	15	120

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marks Distribution			Total
		R	U	Α	Marks
CO-1	General Physics Lab-III	13	24	13	50
Total			24	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Engineering and Technology Department of Cement Technology Curriculum of B.Tech. (Cement Technology) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books:						
S. No.	Title	Author	Publisher	Edition & Year			
		Worsnon and	Little hampton				
1	Experimental Physics	worshop and	Book Services	Oth Edition 1051			
		Flint	Ltd, United	9111 Luition, 1931			
			Kingdom				
	Experiments in Modern	A. C. Melissinos,	Academic Press,				
2	Dhusios	I Nanalitana	Cambridge,	2 nd Edition, 2003			
	Filysics	J. Napontano	Massachusetts				
5	Lab manuals provided by						
5	Department of Physics, AKS University, Satna (M. P.)						

Curriculum Development Team

- 1. Dr O. P. Tripathi, Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH351

Course Title: General Physics Lab-III

						Program	Outcomes							Program Specif	ïc Outcome		
Course Outcomes	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicat e effectively.	Ability to use the technique s, skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
PH351.1. learn various Physics aspects by performing the experiments related to nuclear physics and decay detection methods.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	1

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH351.1. learn various Physics aspects by performing the experiments related to nuclear physics and decay detection methods.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12	15

AKSUniversity

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023) Semester-III

Course Code:	PH352
Course Title :	Electronics Lab-III
Pre- requisite:	To study this course, a student must have had the Experimental knowledge of Physics in Graduation.
Rationale:	The students studying this course would have practical (Experimental) Knowledge of Diodes, Gates and Transistors.

Course Outcomes:

PH352.1: The course would empower the students to develop an idea about Electronic Devices, Experimental knowledge, working and characteristics curve of electronic apparatus. Scheme of Studies:

Board					Sche	Scheme of studies(Hours/Week)			
of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credit s(C)	
Progra mCore (PCC)	PH352	Electronic s Lab-III	0	6	1	1	8	3	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) And others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional work (including assignments, seminars, mini-projects, etc.).),
 SL: Self Learning,
 C: Credits.

Note: SW and SL must be planned and performed under the continuous guidance and feedback of the teacher to ensure the outcome of Learning.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Assessment:

Theory

					Scheme o Assessme Marks)	f nt (
				Progres	ssive		End Semester Assessment	Total Marks
Board of Study	Course Code	Course Title	Lab work Assignment 5 number 7 marks each (LA)	Assessn (RA) Viva-Voice on Lab work 10 marks each (VV)	Lab Attendance (LA)	Total Marks (LA+VV+LA)	(ESA)	(PRA+ ESA)
РСС	PH352	Electronics Lab-III	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction, including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH352.1: The course would empower the students to develop an idea about Electronic Devices, Experimental knowledge, working and characteristics curve of electronic apparatus.

Аррге	Damate nours
Item	AppX
	Hrs
Cl	0
LI	90
SW	15
SL	15
Total	120

Session Outcomes	LaboratoryInstruction				Self-I	Learning	
(SOs)	(LI)				(SL)		
SO1 Students will learn all	1.	Astable,	Monostable	and	Bistable	1.	Identify

AKSUniversity

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

about Basic electronic devices	Multivibrator.	all the electronic			
and their working.	2. To assemble Logic gates using discrete	devices you use			
	components and to verify truth table.	in your daily			
SO2 Students will learn to	3. Study of logic circuits TTL, NAND, NOR	life.			
logic gates	and XOR gates.	2 Identify			
logic guies.	4. To study of R-S Flip-Flop and verify its	the use of these			
SO3 Students will be able to	truth table.	electronic			
Understand the characteristic	5. To study of J-K Flip-Flop and race around	devices in your			
curve of electronic devices.	condition followed by verifying its truth table.	daily life			
	6. Addition, Subtraction and Binary to BCD	electronic			
SO4 Students will be able to	conversion.	devices.			
of all mentioned electronic	7. Experiments on MUX and DEMUX.				
devices.	8. To study of encoder and Decoder				
	9. To study of shift register and counter.				
SO5 Students will learn to	10. Arithmetic operations using				
calculate error and analysis.	microprocessors 8085/8086.				
	11. D/A converter interfacing and				
	frequency/temperature measurement with				
	microprocessor 8085 / 8086.				
	12. A/D converter interfacing and AC/DC				
	voltage/current measurement using microprocessor				
	8085/8086.				
	13. Motor Speed control, Temperature control				
	using 8085/8086.				

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Write a note on Electronic devices and make a list of devices (Having diodes and transistors) we are using in our daily life.

b. Mini Project:

- (i) Prepare a chart of Diode and its types.
- (ii) Prepare a chart of Transistor and its Characteristics curve.

c. Other Activities:

Try to do simple experiments using diode.

Brief of Hours suggested for the Course Outcome.

Course Outcomes:	Lab	Sessional	Self-	Total
	Instruction	Work	Learning	hours(LI+SW+SL)=
	(Ll)	(SW)	(SL)	

Faculty of Basic Science

Department of Physics

Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

CO252.1:The course would empower the				
students to develop an idea about				
Electronic Devices, Experimental	90	15	15	120
knowledge, working and characteristics				
curve of electronic apparatus.				

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	А	Marks
СО	Electronic devices(General)	30	10	10	50

Legend: R: Remember, U: Understand, A: Apply

The end-of-semester assessment for Mechanics and General Properties of Matter will be held with a written examination of 50 marks.

Note. Detailed assessment rubrics need to be prepared by the course-wise teachers for the above tasks. Teachers can also design different tasks as per requirements for the end-semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to Science Museum
- 7. Demonstration
- 8. ICT-Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

AKSUniversity

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a) Books :						
S.No.	Books Name	Author	Publisher	Edition & Year			
1.	Practical Physics	S.L. GUPTA, V. KUMAR	Pragati Prakashan	2018			
2.	Semi Conductor Devices- Physics and Technology	SM Sze	Wiley	1985			
3.	Introduction to Semiconductor devices	M.S. Tyagi	John Wiley and Sons	1991			
4.	Measurement, Instrumentation and Experimental Design in Physics and Engineering	M. Sayer and A. Mansingh	Prentice-hall of india private limited	2000			
5.	Optical Electronics	Ajoy Ghatak and K. Thygarajan	Cambridge Univ. Press.	1989			
6.	Lab Manuals provided by Dept. of Physics, AKS University, Satna.						

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos.POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH352

Course Title: Electronics Lab-III

	Program (Outcomes	1											Program Spe	cific Outcome		
Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
Outcomes	Engin e ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mod e rn tool usag e	The engi neer and soci ety	Enviro n ment and sustain ability:	Ethic s	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life- long learnin g	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communic ate effectively.	Ability to use the techniqu es, skills, and modern physical tools in real world applicati on.	Engage in life- long learning and will have recogniti on.
PH352.1The course would empower the	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	1
students to develop																	
an idea about																	
Electronic Devices,																	
Experimental																	
knowledge, working																	
and characteristics																	
curve of electronic																	
apparatus.																	

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.,	COs No.& Titles,	SOs No.	Laboratory Instruction (LI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	PH352.1The course would empower the students to develop an idea about Electronic Devices, Experimental knowledge, working and characteristics curve of electronic apparatus.	SO1 SO2 SO3 SO4 SO5	Electronic Devices 1,2,3,4,5,6,7,8,9,10	1,2

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August, 2023)

Semester-IV

Course Code:	PH401
Course Title :	Physics of Nanomaterials
Pre- requisite: Rationale:	 To introduce knowledge on basics of nanoscience and the fundamental concepts behind size reduction in various physical properties. More specifically, the student will be able to understand the different properties of materials being used in various length scales. The objective of this course is to provide the knowledge on the Physics of nanostructure materials, materials growth aspects important for size control and size selection and application of nanoscale materials. The course lays foundation for advanced courses in engineering aspects of materials and their applications.

Course Outcomes:

PH401.1 Correlate properties of nanostructures with their size, shape and surface characteristics.

PH401.2 Qualitatively describe how the nanoparticle size can affect the morphology, crystal structure, reactivity and mechanical properties.

PH401.3 Understand the effects of quantum confinement on the electronic structure and corresponding physical and chemical properties of materials at nanoscale.

PH401.4 Describe several synthesis methods for fabrication of inorganic nanoparticles, one-dimensional nanostructures (nanotubes, nanorods, nanowires), thin films, nonporous materials, and nanostructured bulk materials, and also could describe how different lithography methods can be used for making nanostructures.

PH401.5 To comprehend basic knowledge on the characterization of nanomaterials by different methods. Understand some specific materials like graphene and carbon nanotubes for various applications.

Scheme of Studies:

Board					Sche	me of stu	dies(Hours/Week)	Total
of Study	Cours e Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credit s (C)
Program Elective (PEC)	PH401	Physics of Nanomaterials	4	0	0	0	4	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August, 2023)

SW: Sessional Work (includes assignment, seminar, mini project etc.),SL: Self Learning,C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

					S	cheme o	f Assessmer	nt (Marks)		
				Prog	gressive	Assessn	nent (PRA)	End Semester Assessme nt	Tota l Mark
Board of Stud y	Cou rse Cod e	Course Title	Class/H ome Assignm ent 5 number 3 mar ks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi na r one (SA)	Class Activ ity any one (CAT)	Class Attendance (AT)	Total Marks CA+CT+SA+CA T+AT)	nt (ESA)	(PR A+ ES A)
PEC	PH401	Physics of Nanoma terials	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH401.1: Correlate properties of nanostructures with their size, shape and surface characteristics.

Ap	Approximate Hours					
Item	Approx. Hrs					
Cl	09					
LI	0					
SW	03					
SL	01					
Total	13					

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August, 2023)

Session Outcomes	Class room Instruction	Self Learning
(SOs)	(CI)	(SL)
 SO1.1 Study of electronic band structures in materials. The density of states describes the distribution of energy levels available to electrons in a material. SO1.2 Emphasize the importance of the density of states in determining various electronic properties, such as conductivity, mobility, and optical characteristics. Emphasize the importance of the density of states in determining various electronic properties, such as conductivity, mobility, and optical characteristics. SO1.3 Solve the time-independent Schrödinger equation for a particle in an infinitely deep square well. Discuss the quantization of energy levels and the formation of discrete energy states. SO1.4 Understanding the quantization of energy levels in quantum dots due to confinement in all dimensions. how the size of quantum dots affects their electronic and optical properties. SO1.5 Elaborating different nanostructured materials like nanotubes, nanowires, nanosheets, nanofilms. 	Unit-1ConceptofQuantum Confinement1.11.1Density of states in bands1.2Variation of density of states with energy (2)1.3Electron confinement in infinitely deep square well1.4Confinement in two and three dimension1.5Idea of quantum well1.6Quantum wire and quantum dots1.7Classification of nanostructured materials (2)	Basics of Quantum mechanics and different energy levels

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Concept of density of states.
- 2. Classification of nano structured materials.
- 3. Concept of quantum well.

PH401.2: Qualitatively describe how the nanoparticle size can affect the morphology, crystal structure, reactivity and mechanical properties.

Ap	Approximate Hours					
Item	AppX Hrs					
Cl	10					
LI	0					

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August, 2023)

SW	2
SL	1
Total	13

Session Outcomes	Class room Instruction	Self	
(SOs)	(CI)	Learn	
		ing	
		(SL)	
SO2.1 To understand density of states (DOS) in	Unit-2 Quantum wells and	Understanding	of
quantum wells as the distribution of energy states	Superlattices	band structure	and
per unit energy range and quantum wells differs		lattice structure.	
from that in bulk materials due to the confinement.	2.1 Energy levels and density of		
SO2.2 Understand the the energy levels and	states in quantum wells		
density of states to the formation of energy bands			
in quantum wells. Illustrate how the band structure	2.2 Band structure in quantum well		
evolves with changes in well dimensions.	2.3 Coupling between the wells		
	2.4 Multiple quantum well		
SO2.3 Learn the how the discrete energy levels	structure, Absorption and induced		
within the well form subbands due to quantum	emission.		
confinement. Understand the concepts of	2.5 Superlattice dispersion relation		
absorption and induced emission in the context of	2.6 Density of states		
quantum transitions.	2.7Band structure in superlattice		
	2.8 Types of superlattices		
SO2.4 Define superlattices as periodic structures	2.9 Techniques of Fabrication of		
composed of alternating layers of different	MQW		
materials. Types of superlattices as binary	2.10 SL structures (MBE,		
superlattices, ternary superlattices, and graded	MOCVD, LPE etc)		
superlattices.			
CO2 5 Descrite and an end of the importance of			
SU2.5 Provide an overview of the importance of			
rabrication techniques in creating well-defined			
foly and SL structures. Now the choice of			
nation and interned influences the properties and			
performance of the resulting structures.			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Band structure in superlattice and their types.
- 2. Various fabrication techniques of multiple quantum well (MQW).

PH401.3 Understand the effects of quantum confinement on the electronic structure and corresponding physical and chemical properties of materials at nanoscale.

Item	AppX Hrs
Cl	09
LI	0
SW	3
SL	1
Total	13

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learn
		ing
 SO3.1 Synthesis of nanoparticles with an understanding of bottom-up approaches including various synthesis process. Exploring the role of precursors, reactants, and reaction conditions in chemical synthesis. SO3.2 Understanding the another synthesis technique: top down technique SO3.3 Physical properties of nanoparticles and the influence of impurities, composition, surface characteristics with an understanding of how these factors affect the behavior and applications of nanomaterials. SO3.4 Relevance of thermodynamics in the context of nanoparticles and their application to nanoscale materials. SO3.5 An overview of XRD as a technique for analyzing the crystal structure of materials. Introduce the Bragg equation and the principles of X-ray diffraction. 	 Unit-3: Nanoparticles 3.1 Synthesis of nanoparticles 3.2 Bottom up technique 3.3 Cluster beam evaporation 3.4 Ion beam deposition 3.5 Chemical bath deposition with capping techniques 3.6 Top down technique: Ball milling technique. 3.7 Physical properties of nanoparticles 3.8 Impurities and composition surfaceness, structure 3.9 Thermodynamic properties 3.10 Determination of particle size by width of XRD peaks. 	Knowledge of nano dimensional scale.

a. Assignments:

- Bottom-up and top-down techiques.
 Synthesization techniques for the fabrication of nanoparticles.
 Characterization method (XRD) of nanoparticles.

PH401.4: Describe several synthesis methods for fabrication of inorganic nanoparticles, one-dimensional nanostructures (nanotubes, nanorods, nanowires), thin films, nonporous materials and nanostructured bulk materials and also able to describe how different lithography methods can be used for making nanostructures.

Approximate Hours

ľ	I · · · · · · ·
Item	Approx. Hrs
Cl	07
LI	0
SW	5
SL	1
Total	13

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learn
		ing
		(SL)
SO4.1 Defining fullerenes as a class of carbon	Unit-4: Carbon Nanotubes	
allotropes consisting of unique structural		Structure of
characteristics of fullerenes. Various methods	4.1 Special carbon solids; fullerenes	carbon atom
used for the synthesis of fullerenes.	and tubules	
SO4.2 Exploring the framework of structural	4.2 Formation and characterization of	
characteristics of carbon nanotubes.	fullerenes and tubules. (2)	
SO4.3Synthesization techniques for carbon	4.3 Single wall and multi-wall carbon	
nanotubes such as arc discharge, chemical vapor	nanotubues.(2)	
deposition (CVD) and laser ablation.	4.4 Electronic properties of nanotubes.	
SO4.4 Understanding of the synthesis methods,	4.5 Carbon nanotube based electronic	
structural characteristics and characterization	devices.	
techniques associated with these unique carbon		
allotropes.		
SO4.5 Applications of carbon nanotubes in		
energy storage devices; supercapacitors and		
batteries, resistive random-access memory		
(RRAM) and non-volatile memory.		

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. Concept of carbon nanotubes (single and multiwalled).
- 2. Synthesization techniques of carbon nanotubes.

- 3. Characterization techniques of carbon nanotubes.
- 4. Electronic properties of carbon nanotubes.
- 5. Applications of nanomaterials.

PH401.5:To comprehend basic knowledge on the characterization of nanomaterials by different methods. Understand some specific materials like graphene and carbon nanotubes for various applications.

Item	Approx. Hrs
Cl	08
LI	0
SW	2
SL	1
Total	11

SO5.1 Familiarizing various characterization techniques (electrical, optical, structural, magnetic) for the understanding of unique properties of nanomaterials.Unit 5: Characteristics of nanomaterialsSynthesis of nanomaterialsSO5.2 Understanding of how light interacts with matter including absorption, fluorescence and phosphorescence and inelastic scattering of photons.Unit 5: Characteristics of nanomaterialsSynthesis of nanomaterialsSO5.3 Exploring the concept of heat flow in5.3 Thermal and MechanicalSynthesis of nanomaterials	Session Outcomes	Class room Instruction	Self Learning
	(SOs)	(CI)	(SL)
materials as a function of temperature, phase transitions, crystallization, melting and reactions in materials and also viscoelastic behavior, modulus, damping, and glass transition in materials.characterizations (DSC and DMA), spectral response.SO5.4 Understanding the basic principles of how X-rays interact with crystal lattices to produce diffraction patterns. Also charge transport mechanisms in nanoparticles including hopping, tunneling, and ballistic transport.5.4 Determination of particle size by shift in photoluminescence peaks 5.5 Determination of particle size by shift in XRD peaks.SO5.4 Understanding the basic principles of produce diffraction patterns. Also charge transport mechanisms in nanoparticles including hopping, tunneling, and ballistic transport.5.6 Electrical properties of nanostructured magnetic materials, stability of nanocrystals.SO5.5 Exploring the wideapplications of nanomaterials include optic, electro-optic, medicine, biotechnology and energy applications.5.8 Applications of nanostructured materials.	 SO5.1 Familiarizing various characterization techniques (electrical, optical, structural, magnetic) for the understanding of unique properties of nanomaterials. SO5.2 Understanding of how light interacts with matter including absorption, fluorescence and phosphorescence and inelastic scattering of photons. SO5.3 Exploring the concept of heat flow in materials as a function of temperature, phase transitions, crystallization, melting and reactions in materials and also viscoelastic behavior, modulus, damping, and glass transition in materials. SO5.4 Understanding the basic principles of how X-rays interact with crystal lattices to produce diffraction patterns. Also charge transport mechanisms in nanoparticles including hopping, tunneling, and ballistic transport. SO5.5 Exploring the wideapplications of nanomaterials include optic, electro-optic, medicine, biotechnology and energy applications. 	 Unit 5: Characteristics of nanomaterials 5.1 Special experimental techniques for characterization of nanostructured materials. 5.2 Optical properties (Absorption spectra, luminescence, Raman scattering) 5.3 Thermal and Mechanical characterizations (DSC and DMA), spectral response. 5.4 Determination of particle size by shift in photoluminescence peaks 5.5 Determination of particle size by shift in XRD peaks. 5.6 Electrical properties of nanoparticles. 5.7 Nanostructured magnetic materials, stability of nanocrystals. 5.8 Applications of nanostructured materials. 	Synthesis of nanomaterials with various techniques involved.

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
- 1. Different characterization techniques for nanomaterials.
- 2. Applications of nanomaterials.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PH302.1: Correlate properties of nanostructures with their size, shape and surface characteristics.	09	03	1	13
PH401.2: Qualitatively describe how the nanoparticle size can affect the morphology, crystal structure, reactivity and mechanical properties.	10	02	1	13
PH401.3: Understand the effects of quantum confinement on the electronic structure and corresponding physical and chemical properties of materials at nanoscale.	09	03	1	13
PH401.4: Describe several synthesis methods for fabrication of inorganic nanoparticles, one-dimensional nanostructures (nanotubes, nanorods, nanowires), thin films, nonporous materials, and nanostructured bulk materials, and also could describe how different lithography methods can be used for making nanostructures.	07	05	1	13
PH401.5 To comprehend basic knowledge on the characterization of nanomaterials by different methods. Understand some specific materials like graphene and carbon nanotubes for various applications.	08	02	1	11
Total Hours	41	15	5	63

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Concept of Quantum Confinement	04	04	02	10
CO-2	Quantum wells and Superlattices	04	05	02	11
CO-3	Nanoparticles	02	03	04	09
CO-4	Carbon Nanotubes	05	04	02	11
CO-5	Characteristics of nanomaterials	03	04	02	09
	Total	18	20	12	50

Legend: R: Remember, U: Understand, A: Apply

Note: Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

Text and Reference Books:

1. Introduction to Nanotechnology: Poole and Owners

- 2. Quantum Dots : Jacak, Hawrylak and Wojs
- 3. Handbook of Nanostructured Materials and Nanotechnology : Nalva (editor)
- 4. Nano Technology/ Principles and Practices: S.K. Kulkarni
- 5. Carbon Nanotubes: Silvana Fiorito
- 6. Nanotechlongy: Richard Booker and Earl Boysen
- 7. Nanotechnology Molecularly designed material by Gan-Moog, Chow,
- 8. Kenneth. E Gonsalves, AmericanChemical Society.
- 9. Quantum dot heterostructure by D. Bimerg, M. Grundmann and N.N.Ledentsov John Wiley and sons 1998.

11. Nanotechnology: Molecular Speculations on global abundance by B.C.Gran dall MIT Press 1996.

12. Physics of low dimensional semiconductors by John W. Davies, Cambridge Univ. Press 1999.

13. Physics of semiconductor nanostructures by K.R. Jain Narosa 1999

14. Nano-fabrication and bio-systems: Integrating materials science engineering Science and biology by Harvey C. Hoch,

Harold G. Craighead and Lynn Jelinski, Cambridge Univ. Press- 1996.

15. Nano particles and nano structured films: Preparation, characterization and application, Ed. J. H. Fendler, Jhon Wiley and sons 1998.

16. Wave mechanics applied to semiconductor heterostructures by Gerald Bastard.

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Course Title: M.Sc. (Physics)

Course Code: PH401

Course Title: Physics of Nanomaterials

						Progra	m Outcome	S						Program	Specific Outcome		
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life- long learning	Identify, formula te, and solve Physics problem s.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicate effectively.	Ability to use the techniques, skills, and modern physical tools in real world application.	Engage in life-long learning and will have recognition
CO1 Correlate properties of nanostructures with their size, shape and surface characteristics.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	2
CO2 Qualitatively describe how the nanoparticle size can affect the morphology, crystal structure, reactivity and mechanical properties.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	2
CO3 Understand the effects of quantum confinement on the electronic structure and corresponding physical and chemical properties of materials at nanoscale.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	1
CO4 Describe several synthesis methods for fabrication of inorganic nanoparticles, one- dimensional nanostructures (nanotubes, nanorods, nanowires), thin films, nonporous materials, and nanostructured bulk materials, and also could describe how different lithography methods can be	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	3

used for making nanostructures.															
CO5 To comprehend basic knowledge on the characterization of nanomaterials by different methods. Understand some specific materials like graphene and carbon nanotubes for various applications.	 -	1	1	3	3	3	1	1	2	2	3	3	1	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	CO1: Correlate properties of	SO1.1	Unit-1 Concept of Quantum Confinement	
	nanostructures with their size, shape		Historical progression	
7,8,9,10,11,12	and surface characteristics.	SO1.2(2)	and advancements in binding	
		SO1.3	materials for construction	
PSO 1,2, 3, 4, 5		SO1.4	1.1,1.2,1.3,1.4,1.5,1.6,1.7	
		SO1.5		
		SO1.6		
		SO1.7(2)		
PO 1,2,3,4,5,6	CO2: Qualitatively describe how the	SO2.1	Unit-2 Quantum wells and SuperlatticesRaw	
	nanoparticle size can affect the		Materials and Fuel	
7,8,9,10,11,12	morphology, crystal structure,	SO2.2	used for cement manufacture	
	reactivity and mechanical properties	SO2.3	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4, 5		SO2.4	2.8,2.9,2.10	
		SO2.5		A
		SO2.6		As mentioned in
		SO2.7		
		SO2.8		
		SO2.9		
		SO2.10		

PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO3: Understand the effects of quantum confinement on the electronic structure and corresponding physical and chemical properties of materials at nanoscale.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6 SO3.7 SO3.8 SO3.9 SO3.10	Unit-3 : Nanoparticles 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8	page number 2 to 6
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO4: Describe several synthesis methods for fabrication of inorganic nanoparticles, one-dimensional nanostructures (nanotubes, nanorods, nanowires), thin films, nonporous materials, and nanostructured bulk materials, and also could describe how different lithography methods can be used for making nanostructures.	SO4.1 SO4.2(2) SO4.3(2) SO4.4 SO4.5	Unit-4 : Carbon Nanotubes 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	
PO 1,2,3,4,5,6	CO5: TTo comprehend basic knowledge on the characterization of nanomaterials by different methods. Understand some specific materials like graphene and carbon nanotubes for various applications.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.7 SO5.8	Unit 5: Characteristics of nanomaterials . 5.1,5.2,5.3,5.4,5.5	

Faculty of Basic Science Department of Physics Curriculum of M.Sc.1st(Physics) Program

Semester-IV

Course Code:	PH402
Course Title :	Solar Cell and other Renewable Energy Devices
Pre- requisite:	To understand the technical feasibility of deploying specific renewable energy technologies. Consider factors such as the suitability of solar cells, wind turbines, or other devices based on the site conditions and energy requirements.
Rationale:	solar cells and other renewable energy devices revolves around mitigating environmental impact, ensuring long-term energy sustainability, fostering economic development, and addressing global challenges related to climate change and resource scarcity.

Course Outcomes

- **PH402.1** Develop a strong foundation in the physics and material properties relevant to photovoltaic energy conversion. They will be equipped with the knowledge to analyze and understand the operation of photovoltaic devices.
- **PH402.2** Develop a comprehensive understanding of different types of solar cells, their operating principles, and the underlying concepts of semiconductor physics. They will be able to analyze the performance and efficiency of solar cells, understand the principles of advanced solar cell technologies.
- **PH402.3** Gain a comprehensive understanding of hydrogen energy, its production through solar methods, and the storage processes and materials involved. They will be equipped with the knowledge to analyze the environmental and energy considerations associated with hydrogen, understand the physics and material characteristics.
- **PH402.4** Demonstrate a comprehensive understanding of safety factors associated with hydrogen production, storage, and utilization. Understand the use of hydrogen for electricity generation and assess its benefits for power production and Explain elementary concepts of proton-conducting batteries and compare them to other energy storage technologies.
- **PH402.5.** Demonstrate a thorough understanding of the elements and principles of solar thermal energy, wind energy, and ocean thermal energy conversion. Apply their knowledge to design and analyze practical applications of solar thermal energy, including solar cookers, water heaters, and air dryers.

Faculty of Basic Science Department of Physics Curriculum of M.Sc.1st(Physics) Program

Scheme of Studies:

Board of			Scheme of studies(Hours/Week)		Total Credits			
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Open Elective	PH402	Solar Cell and other Renewable Energy	4	0	1	1	6	4
(OEC) Devices				· · · · · · · · · · · · · · · · · · ·	T. 4 1			
Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tut (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C:Credits.			lutorial					

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)							
Board of	Couse				Progressiv	e Assessme	ent (PRA)		End Semester Assessment	Total Mark s
Study	Code	Course Hue	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3)	Semina r one	Class Activit y any one	Class Attendance	Total Marks		
			each (CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA + ESA)
OEC	PH402	Solar Cell and other Renewable Energy Devices	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Basic Science

Department of Physics

Curriculum of M. Sc. Vth (Physics) Program

(Revised as on 01 August 2023)

PH402.1 Students will develop a strong foundation in the physics and material properties relevant to photovoltaic energy conversion. They will be equipped with the knowledge to analyze and understand the operation of photovoltaic devices.

Approximate Hours		
Item	AppX Hrs	
Cl	12	
LI	0	
SW	2	
SL	2	
Total	16	

ession Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learning (SL)
 SO1.1.Demonstrate a comprehensive understanding of the fundamental principles underlying photovoltaic energy conversion. SO1.2.Apply knowledge of conversion physics and material properties to assess and design efficient photovoltaic systems. SO1.3.Evaluate the optical properties of solids and their importance in the context of solar energy conversion. SO1.4.Differentiate between direct and indirect transition semiconductors and analyze their characteristics. SO1.5.Establish the interrelationship between absorption coefficients and band gap in semiconductors. SO1.6.Assess the impact of carrier recombination on solar cell performance and propose strategies to mitigate its effects. SO1.7.Demonstrate practical skills in the analysis and design of solar energy conversion devices. SO1.8.Apply theoretical concepts to real-world scenarios in the field of solar energy technology 	 Unit 1: Solar Energy 1.1. Fundamentals of photovoltaic energy conversion 1.2. Conversion physics 1.3. Material properties 1.4. Relevant to photovoltaic energy conversion 1.5. Optical properties of solids 1.6. Importance in solar energy conversion 1.7. Direct and indirect transition semiconductors 1.8. Direct and indirect transition semiconductors 1.9. Interrelationship between absorption coefficients 1.10.Band gap in semiconductors 1.11.Recombination of carrier in photovoltaic materials 1.12.Impact of carrier recombination on solar cell performance 	 i. Photovoltaic effect ii. Conversion of energy iii. carrier recombination

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
- i. Importance in solar energy conversion
- ii. Fundamentals of photovoltaic energy conversion

Faculty of Basic Science Department of Physics Curriculum of M. Sc. Vth (Physics) Program

(Revised as on 01 August 2023)

b. Other Activities (Specify): Seminar and group discussion related to subject

4PHY101.2 Develop a comprehensive understanding of different types of solar cells, their operating principles, and the underlying concepts of semiconductor physics. They will be able to analyze the performance and efficiency of solar cells, understand the principles of advanced solar cell technologies.

Approximate Hours			
Item	AppX Hrs		
Cl	13		
LI	0		
SW	2		
SL	3		
Total	18		

Session Outcomes (SOs)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1.Demonstrate a comprehensive understanding of different types of solar cells and their working principles. SO2.1.Apply the principles of p-n junctions to analyze the operation of solar cells. SO2.3.Use the transport equation to model charge carrier movement within solar cells. SO2.4.Analyze and calculate key parameters such as current density, open-circuit voltage, and short-circuit current in solar cells. SO2.5.Describe the characteristics of single crystal silicon and amorphous silicon solar cells. SO2.6.Understand the basics of advanced solar cell technologies, including tandem cells and solid-liquid junction cells. SO2.7.Explain the principles behind photoelectrochemical solar cells and their potential applications. SO2.8.Apply theoretical knowledge to evaluate and design solar cell systems for specific applications 	 Unit 2: Solar Cells 2.1. Introduction to solar cells 2.2. Different types of solar cells 2.3. Principles of p-n junction solar cells 2.4. Transport equation in solar cells 2.5. Current density in solar cells 2.6. Open circuit voltage in solar cells 2.7. Short circuit current in solar cells 2.8. Brief descriptions of single crystal silicon 2.9. Amorphous silicon solar cells 2.10. Elementary ideas of advanced solar cells 2.11. Tandem solar cells 2.12. Solid-liquid junction solar cells 2.13. Principles of photoelectrochemical solar cells 	 i. Basic of cell ii. Photo electric effect iii. Amorphous materials

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Faculty of Basic Science Department of Physics

Curriculum of M. Sc. Vth (Physics) Program

(Revised as on 01 August 2023)

- i. Principles and working of p-n junction solar cells
- ii. Principles and working Tandem solar cells,

(b) Other Activities (Specify): Seminar and group discussion related to subject

PH402.3 Gain a comprehensive understanding of hydrogen energy, its production through solar methods, and the storage processes and materials involved. They will be equipped with the knowledge to analyze the environmental and energy considerations associated with hydrogen, understand the physics and material characteristics.

Approximate Hours		
Item	AppX Hrs	
Cl	12	
LI	0	
SW	2	
SL	3	
Total	17	

Session Outcomes (SOs)	Class room Instruction (CI)	Self Learning (SL)
 SO3.1.Understand the global relevance and environmental impact of hydrogen energy in the context of depleting fossil fuels. SO3.2.Comprehend the various methods for hydrogen production, with a focus on solar-driven processes. SO3.3.Apply the principles of physics and material science to analyze and design systems for the production of solar hydrogen. SO3.4.Evaluate different storage methods for hydrogen, considering their advantages and limitations. SO3.5.Understand the special features of solid-state hydrogen storage materials and their potential applications. SO3.6.Analyze the structural and electronic characteristics of hydrogen storage materials for effective storage solutions. 	 Unit 3: Eco-friendly Energy (Hydrogen Energy) 1.1. Relevance of hydrogen energy in depletion of fossil fuels 1.2. Environmental considerations of hydrogen energy 1.3. Hydrogen production methods 1.4. Solar hydrogen through photoelectrolysis processes 1.5. Photocatalytic processes 1.6. Physics for the production of solar hydrogen 1.7. Material characteristics for the production of solar hydrogen 1.8. Storage of hydrogen: overview of various storage processes 1.9. Special features of solid-state hydrogen storage materials 1.10. Structural characteristics of hydrogen storage materials 1.11. electronic characteristics of hydrogen storage materials 1.12. Introduction to new storage modes for hydrogen 	 i. fossil fuels ii. solar hydrogen ii. storage materials

Faculty of Basic Science Department of Physics Curriculum of M. Sc. Vth (Physics) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Principle of Photocatalytic processes
 - ii. Structural and electronic characteristics of hydrogen storage materials

Other Activities (Specify): Seminar and group discussion related to subject

PH402.4 Demonstrate a comprehensive understanding of safety factors associated with hydrogen production, storage, and utilization. Understand the use of hydrogen for electricity generation and assess its benefits for power production and Explain elementary concepts of proton-conducting batteries and compare them to other energy storage technologies

Approximate Hours			
Item	AppX Hrs		
Cl	11		
LI	0		
SW	2		
SL	0		
Total	13		

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learning
		(SL)
SO4.1 Demonstrate a comprehensive	Unit 4: Applications of Hydrogen	i.Batteries
understanding of hydrogen energy and its	Energy	ii.Electricity
potential applications.	4.1. Hydrogen Energy	generation
SO4.2 Analyze and apply safety considerations in	4.2. Safety considerations in the use	iii.Fuel
the production, storage, and use of	of hydrogen	
hydrogen in various contexts.	4.3. Utilization of hydrogen as fuel	
SO4.3 Evaluate the utilization of hydrogen as a	4.4. Hydrogen in vehicular transport	
fuel source in different industries.	4.5. Applications of Hydrogen	
SO4.4 Understand the role of hydrogen in	energy	
venicular transport, including hydrogen	4.6. Hydrogen for electricity	
SOM 5 Explore and assess diverse applications of	generation	
bydrogen energy including electricity	4.7. fuel cells	
generation and transportation	4.8. Proton-conducting batteries	
SO4 6 Comprehend the principles and	4.9. Elementary concepts of other	
functioning of fuel cells and proton-	hydrogen-based devices	
conducting batteries.	4 10 Air conditioners	
SO4.7. Gain elementary knowledge of other	1 11 Hydrida battarias	
hydrogen-based devices such as air	T.II. Hydride Datteries	
conditioners and hydride batteries.		

SW-4 Suggested Sessional Work (SW):

a) Assignments:

(i) Applications of Hydrogen energy

(ii) Elementary concepts of other hydrogen-based devices

Other Activities (Specify): Seminar and group discussion related to subject

Faculty of Basic Science Department of Physics Curriculum of M. Sc. Vth (Physics) Program (Revised as on 01 August 2023)

PH402.5.Demonstrate a thorough understanding of the elements and principles of solar thermal energy, wind energy, and ocean thermal energy conversion. Apply their knowledge to design and analyze practical applications of solar thermal energy, including solar cookers, water heaters, and air dryers.

Approximate Hours			
Item	AppX Hrs		
Cl	12		
LI	0		
SW	2		
SL	3		
Total	17		

Session Outcomes (SOs)	Class room Instruction (CI)	Self- Learning (SL)
 SO5.1.Demonstrate a comprehensive understanding of clean energy and its significance in addressing environmental challenges. SO5.2.Differentiate between renewable and non-renewable energy sources and analyze their environmental impacts. SO5.3.Understand the principles and applications of solar thermal energy, wind energy, and ocean thermal energy conversion. SO5.4.Analyze the design and functionality of solar cookers, water heaters, and air dryers. SO5.5.Explore specific examples of solar thermal energy applications in different sectors. SO5.6.Classify and describe various wind machines used for energy generation. 	 Unit 5: Clean Energy 5.1. Introduction of Clean Energy 5.2. Renewable energies 5.3. Non-Renewable energies 5.4. solar thermal energy, 5.5. wind energy, 5.6. Ocean thermal energy conversion 5.7. Solar cookers, 5.8. Water heaters, 5.9. Air dryers 5.10. Examples of solar thermal energy applications 5.11. Classification and description of wind machines 5.12. Performance analysis of wind machines (solidity factor, energy in the wind) 	 i. Energies ii. Thermal energy iii. Wind machines

Faculty of Basic Science Department of Physics Curriculum of M. Sc. Vth (Physics) Program (Revised as on 01 August 2023)

a. Assignments:

- Renewable energies and Non-Renewable energies
- ii. Solar cookers.

b. Other Activities (Specify):

i.

Seminar and group discussion related to subject

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PH402.1: Understanding Fundamental Electrostatic Concepts: Students will review and deepen their understanding of fundamental electrostatic concepts, including electric fields, Gauss's law, Laplace's and Poisson's equations, and methods of images.	12	2	3	17
PH402.2: Maxwell's Equations: Familiarity with Maxwell's equations, both in integral and differential forms, and the ability to apply them to solve problems in electrostatics and magnetostatics.	13	2	3	18
PH402.3: Relativistic Electrodynamics: Exploring the extension of classical electrodynamics to the relativistic regime, including the invariance of electric charge and the transformation properties of electric and magnetic fields under Lorentz transformations.	12	2	3	17
PH402.4: Covariance of Electrodynamics: Understanding the covariance of electrodynamics and deriving the Lagrangian and Hamiltonian for a relativistic charged particle in an external electromagnetic field.	11	2	3	16
PH402.5:MagnetohydrodynamicEquations:Understandingthefundamentalmagnetohydrodynamicequationsapplications in describing plasma behavior.	12	2	3	17
Total Hours	60	10	15	85

Faculty of Basic Science Department of Physics Curriculum of M. Sc. Vth (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	M	Total		
		R	U	Α	Mark
					S
CO-1	Unit-1: Solar Energy	03	10	01	14
CO-2	Unit 2: Solar cell	02	10	02	14
CO-3	Unit 3: Eco-friendly energy	03	10	05	18
CO-4	Unit 4: Applications of hydrogen energy	3	10	05	18
CO-5	Unit 5: Clean energy	03	10	05	18
	Total	14	60	18	92

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M. Sc. Vth (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :			
S. No.	Title	Author	Publisher	Editi on & Year
1	Fundamentals of Solar Cells Photovoltatic Solar Energy:	Fahrenbruch & Bube		
2	Photoelectrochemical Solar Cells	Chandra		
3	Solar energy Thermal Processs	Dluffie and Backman.	Wiley & Sons. New York	
4	Solar Energy	Jui Sheng Haieh,Prentic Hall,	New Jersey	
5	Solar Energy	S.P, Tata McGraw Hill,	New Delhi	
6	Hydrogen as an Energy Carrier Technologies System Economy	Winter & Nitch (Eds.)		

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code : PH402

Course Title: Solar Cell and other Renewable Energy Devices

		Program Outcomes												Program Specific Outcome				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5	
Course Outcomes	Engin e ering knowle dge	Pro b lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Enviro n ment and sustain ability:	Ethics	Indiv i dual and team work :	Com munic ation:	Project manage ment and finance:	Life- long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicat e effectively.	Ability to use the techniques, skills, and modern physical tools in real world application.	Engag e in life- long learnin g and will have recogn ition.	
PH402.1 Develop a strong foundation in the physics and material properties relevant to photovoltaic energy conversion. They will be equipped with the knowledge to analyze and understand the operation of photovoltaic devices.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	2	
PH402.2 Develop a comprehensive understanding of different types of solar cells, their operating principles, and the underlying concepts of semiconductor physics. They will be able to analyze the performance and efficiency of solar cells, understand the principles of advanced solar cell technologies.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	2	
PH402.3 Gain a comprehensive understanding of hydrogen energy, its production through solar methods, and the storage processes and materials involved. They will be equipped with the knowledge to analyze the environmental and energy considerations associated with hydrogen, understand the physics and material characteristics.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2	
PH402.4 Demonstrate a comprehensive understanding of safety factors associated with hydrogen production, storage, and utilization. Understand the use of hydrogen for electricity generation and assess its benefits	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	3	

for power production and Explain elementary concepts of proton-conducting batteries and compare them to other energy storage technologies.																
PH402.5. Demonstrate a thorough understanding of the elements and principles of solar thermal energy, wind energy, and ocean thermal energy conversion. Apply their knowledge to design and analyze practical applications of solar thermal energy, including solar cookers, water heaters, and air dryers.	2	2	1	1	3	3	3	1	1	2	2	3	3	1	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction(CI)	Self-Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH402.1 Develop a strong foundation in the physics and material properties relevant to photovoltaic energy conversion. They will be equipped with the knowledge to analyze and understand the operation of photovoltaic devices.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO1.6 SO1.7	Unit-1.Solar Energy 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11,1.12	i ii ii
PO 1 2 3 4 5 6	PH402.2 Develop a comprehensive understanding	SO1.8	Unit-2 :Solar cell	i
7,8,9,10,11,12 PSO 1,2, 3, 4, 5	of different types of solar cells, their operating principles, and the underlying concepts of semiconductor physics. They will be able to analyze the performance and efficiency of solar cells, understand the principles of advanced solar cell technologies.	SO2.2 SO2.3 SO2.4 SO2.5 SO2.6 SO2.7 SO2.8	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12, 2.13	ii ii
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH402.3 Gain a comprehensive understanding of hydrogen energy, its production through solar methods, and the storage processes and materials involved. They will be equipped with the knowledge to analyze the environmental and energy considerations associated with hydrogen, understand the physics and material characteristics.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6	Unit-3 : Eco-friendly energy 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11,3.12	i ii ii
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH402.4 Demonstrate a comprehensive understanding of safety factors associated with hydrogen production, storage, and utilization. Understand the use of hydrogen for electricity generation and assess its benefits for power production and Explain elementary concepts of proton- conducting batteries and compare them to other energy storage technologies.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6 SO4.7	Unit-4 : Applications of hydrogen energy 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11,4.12,	i ii ii
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH402.5. Demonstrate a thorough understanding of the elements and principles of solar thermal energy, wind energy, and ocean thermal energy conversion. Apply their knowledge to design and analyze practical applications of solar thermal energy, including solar cookers, water heaters, and air dryers.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6	Unit 5: Clean energy 5.1,5.2,5.3,5.4,5.5	i ii ii

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-IV

Course Code:	PH403
Course Title :	Computational and Experimental Techniques and Data Analysis
Pre- requisite:	Student should have basic knowledge of basic properties of nuclei, nuclear reactions, general knowledge nuclear model and elementary knowledge of particles.
Rationale:	The students studying Physics should possess foundational understanding about historical background of Computational and Experimental Techniques and Data Analysis.

Course Outcomes:

PH403.1: Computations techniques to solve various differential equations

PH403.2: The solutions of linear and non-linear equations along with solutions of differential equations.

PH403.3: Monte Carlo methods and its application to problems of physicalworld.

PH403.4 : To understand computer application to problems in condensed matter physics.

PH403.5: Learn about experimental techniques and data analysis used in physics.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of					Scher	ne of stud	ies(Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Elective (PEC)	PH403	Computational and Experimental Techniques and Data Analysis	4	0	1	1	6	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Scheme of Assessment:

Theory

						Scheme	e of Assessment	(Marks)		
Board of	Couse	Course Title			Progressiv	e Assessme	ent (PRA)		End Semester Assessment	Total Mark s
Study	Code	Course Hue	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3)	Semina r one	Class Activit y any one	Class Attendance	Total Marks		
			each (CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA + ESA)
PEC	PH403	Comput ational and Experi mental Techniq ues and Data Analysi s	15	20	5	5	5	50	50	100

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH403.1: Computations techniques to solve various differential equations

Approximate Hours		
Item	AppX Hrs	
Cl	12	
LI	0	
SW	1	
SL	1	
Total	14	

Session Outcomes (SOs)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 learn computations techniques	Unit I (Numerical Integration)	
to solve various numerical	1.1 Newton-cotes formulae (2)	Learn about Numerical
integration	1.2 Trapezoidal rule	Integration
SO1.2 learn computer programming to	1.3 Simpson's 1/3 rule	
solve various numerical integration	1.4 error estimates in trapezoidal rule (2)	
SO1.3 Able to create hypothetical	1.5 Simpson 1/3 rule using Richardson	
data sets for Physical Systems.	1.6 Gauss-Legender quadrature method (2)	
SO1.4 Aware of various Numerical	1.7 Monte Carlo method for single integral	
methods.	1.8 Monte Carlo method for double integral	
SO1.5 understand error analysis by	1.9 Monte Carlo method for triple integral	
various numerical integration		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- Explain Gauss-Legender quadrature method
- b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

faculty.

PH403.2: The solutions of linear and non-linear equations along with solutions of differential equations.

Ap	proximate Hours
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learning
		(SL)
SO2.1 Aware of various numerical	Unit-II (Differentiation equ and its solution)	1. Learn
differential methods.	2.1 Numerical Differentiation	about Numerical
SO2.2Understand error by various	2.2 Taylor Series method	Differentiati
numerical differential methods.	2.3 Generalized numerical differentiation	on
SO2 3 Learn computational	2.4 Truncation errors	
502.5 Learn computational	2.5 Numerical Solution of First Order Differential	
techniques to solve differential	Fans	
methods.	Lyns	
	2.6 First order Taylor Series method	
SO2.4 Use of differential methods.	2.7 Euler's method	
SO2.5 Able to create hypothetical	2.8 Runge Kutta methods	
data sets for physical systems.	2.9 Predictor corrector method	
	2.10 Elementary ideas of solutions of partial	
	differential eqns	
	2.11 Numerical Solutions of Second Order Differential	
	Eqns	
	2.12 Initial and boundary value problems: shooting	
	methods.	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Explain Numerical Solutions of Second Order Differential Equation.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty

faculty.

PH403.3: Monte Carlo methods and its application to problems of physicalworld.

proximate Hours
AppX Hrs
12
0
1
1
14

Session Outcomes	Class room Instruction	Self Learning	
(SOs)	(CI)	(SL)	
SO3.1 Learn molecular	UNIT – III Introduction to Computer Simulation	1. Introduction	
techniques. SO3.2 Familiar with random	 3.1 Molecular Dynamics 3.2 Molecular Dynamic Simulation Gas with random collisions (2) 	Simulation	
 sampling of large data sets. SO3.3 Able to create hypothetical data sets for Physical Systems. SO3.4 Aware of various 	al 3.3 N body gas, 3.4 Monte Carlo simulations (2) 3.5 The 2-D Ising model		
simulation methods. SO3.5 Understands error analysis by various simulation methods.	3.6 The 2-D Ising model for interacting spins3.7 Specific heat3.8 Average energy3.9 Magnetization3.10 Susceptibility		

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Explain Monte Carlo simulations with example.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

PH403.4: To understand computer application to problems in condensed matter physics.

Ap	proximate Hours
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Class room Instruction	Self Learning (SL)
SO4.1 Aware of problems in	UNIT – IV (Computer Application to problems	1 T
condensed matter physics.	in Condensed Matter Physics)	1. Learn simulation
SO4.2 Understand simulation of	4.1 Simulation of phonon dispersion curves (2)	techniques to
phonon.	4.2 density of states	solve problems in
SO4.3 Learn simulation	4.3 The reciprocal lattice (2)	condense
techniques to solve problems in	4.4 Harrison construction(2D) (3)	matter physics
condense metter physics	4.5 One dimensional phonon propagation (2)	
condense matter physics.	4.6 Two dimensional Lattice vibrations	
SO4.4 Use differential methods of	4.7 Two dimensional nearly free electrons	
free electron theory.		
SO4.5 Able to theory of		
symmetry and phonon		
propagation.		

SW-4 Suggested Sessional Work (SW):

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Explain Harrison construction.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

faculty.

PH403.5: Learn about experimental techniques and data analysis used in physics.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Class room Instruction (CI)	Self Learning (SL)
× ,	、	~ /
SO5.1 Learn about various types of	Unit-V (Experimental Techniques and Data	. General theory
transducer.	analysis)	of Experimental
SO5.2 Familiar with measurement	5.1 Transducers	Data analysis
and control Signal conditioning and	5.2 Temperature	
recovery.	5.3 pressure/vacuum	
SO5.3 Able to create hypothetical	5.4 magnetic field, vibration, optical and	
data sets for Physical Systems.	particle detectors	
SO5.4 Aware with Data	5.5 Measurement and control: Signal	
interpretation and analysis.	conditioning & recovery, impedance matching	
SO5.5 Understands error analysis by	5.6 Shielding and grounding	
linear and curve fitting.	5.7 Data interpretation and analysis	
	5.8 Precision and accuracy, error analysis,	
	propagation of errors	
	5.9 least squares fitting,	
	5.10 linear and non-linear curve fitting	
	5.11Chi-square test	
	5.12 Linear regression; Polynomial regression;	
	Exponential and Geometric regression	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments: Explain Linear regression; Polynomial regression; Exponential and Geometric regression.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PH403.1: Computations techniques to solve				
various differential equations	12	1	1	14
PH403.2: The solutions of linear and non-linear				
equations along with solutions of differential	12	1	1	14
equations.				
PH403.3: Monte Carlo methods and its				
application to problems of physical world.	12	1	1	14
PH403.4: To understand computer application to				
problems in condensed matter physics.	12	1	1	14
PH403.5: Learn about experimental techniques				
and data analysis used in physics.	12	1	1	14
	(0)		5	70
Total Hours	OU	5	5	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Numerical Integration	03	04	03	05
CO-2	Differentiation equ and its solution	04	03	03	10
CO-3	Introduction to Computer Simulation	04	03	03	15
CO-4	Computer Application to problems in Condensed Matter Physics	03	04	03	15
CO-5	Experimental Techniques and Data analysis	03	04	03	05
	Total	17	18	15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :						
S. No.	Title	Author	Publisher	Edition & Year			
1	Introductory methods of Numerical Analysis	S. S. Sastry	PHI	5 th & 2012			
2	Computer Oriented Numerical Methods	V. Rajaraman	PHI	4 th & 2019			
3	Numerical methods for Mathematics, Science and Engineering	John H. Mathew	Pearson Education (US)	2 nd & 1992			
5	Lecture note provided by Department of Physics, AKS University, Satna (M. P.)						

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH403

Course Title: Computational and Experimental Techniques and Data Analysis

							Program Outcomes						Program Specific Outcome				
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicat e effectively.	Ability to use the technique s, skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
PH403.1: Computations techniques to solve various differential equations	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	1
PH403.2: The solutions of linear and non-linear equations along with solutions of differential equations.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	1
PH403.3: Monte Carlo methods and its application to problems of physicalworld.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2
PH403.4: To understand computer application to problems in condensed matter physics.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	2
PH403.5: Learn about experimental techniques and data analysis used in physics.	2	1	2	1	1	3	3	3	1	1	2	2	3	3	1	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction(CI)	Self Learning (SL)
PO 1,2,3,4,5,6, 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH403.1: Computations techniques to solve various differential equationsPH403.2: The solutions of linear and non	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	Unit I (Numerical Integration) 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9	
PO 1,2,3,4,3,6, 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	linear equations along with solutions of differential equations.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5	solution) 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10, 2.11, 2.12	
PO 1,2,3,4,5,6 7,8,9,10,11,12	PH403.3: Monte Carlo methods and its application to problems of physicalworld.	SO3.1 SO3.2 SO3.3	UNIT – III Introduction to Computer Simulation	As mentioned in page number 2 to 6
PSO 1,2, 3, 4, 5		SO3.4 SO3.5	3.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12	PH403.4: To understand computer application to problems in condensed matter	SO4.1 SO4.2 SO4.3	UNIT – IV (Computer Application to problems in Condensed Matter Physics)	
PSO 1,2, 3, 4, 5	physics.	SO4.4 SO4.5	T.1, T.2, T.3, T.T, T.3, T.0, T.7	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1 2 3 4 5	PH403.5: Learn about experimental techniques and data analysis used in physics.	SO5.1 SO5.2 SO5.3	UNIT – V (Experimental Techniques and Data analysis) 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9.	
1501,2, 5, 4, 5		SO5.4 SO5.5	5.10, 5.11, 5.12	

Faculty of Basic Science **Department of Physics** Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-IV

Course Code:	PH404					
Course Title :	Physics of Solar Energy					
Pre- requisite:	There is no prerequisite or co- requisite for this course. But students are expected to know basic semiconductor physics.					
Rationale:	The students studying Physics should possess foundational understanding about historical background of solar energy.					

Course Outcomes:

PH404.1. The available solar energy and the current solar energy conversion and utilization processes, solar spectrum.

PH404.2. The factors that influence the use of solar radiation as an energy source.

PH404.3. The various active and passive technologies that are available for collecting solar energy; have

the ability to apply design principles to selection of an appropriate solar energy installation to meet requirements.

PH404.4. How solar cells convert light into electricity, how solar cells are manufactured, how solar cells are evaluated.

PH404.5. To examine the potential & drawbacks of currently manufactured technologies, as well as precommercial technologies. How to enhance solar cell performance and reduce cost, and the major hurdlestechnological and economic, towards widespread adoption.

Scheme of Studies:

Board of					Schei	Scheme of studies(Hours/Week)			
Study	Course		Cl	LI	SW	SL	Total Study Hours	(C)	
	Code	Course Title					(CI+LI+SW+SL)		
Open	PH404	Physics of	4	0	1	1	6	4	
Electives		Solar Energy							
(OEC)									

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C:Credits.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
Board of	Couse				Progressiv	e Assessme	ent (PRA)		End Semester Assessment	Total Mark s
Study	Code	Course 11tie	Class/Home Assignment 5 number 3 marks each	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activit y any one	Class Attendance	Total Marks	(ESA)	
			(CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(20.2)	(PRA + ESA)
OEC	PH404	Solar Energy	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH404.1. The available solar energy and the current solar energy conversion and utilization processes, solar spectrum.

Approximate Hour					
Item	AppX Hrs				
Cl	12				
LI	0				
SW	1				
SL	1				
Total	14				

Session Outcomes	Class room Instruction	Self Learning
(SOs)	(CI)	(SL)

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

SO1.1 To understand the radiation.	UNIT – I (Solar Radiation)	
SO1.2 To learn about the absorption of	1.1 origin	1. Study about
solar radiation in the atmosphere.	1.2 solar constant	Radiation
SO1.3 To understand the global and	1.3 spectral distribution of solar radiation	
diffused radiation, seasonal and daily	1.4 absorption of solar radiation in the	
variation.	atmosphere	
SO1.4 To learn about sun tracking	1.5 global and diffused radiation	
systems.	1.6 seasonal and daily variation of solar	
SO1.5 To learn about solar energy	radiation	
collector efficiency and its	1.7 measurement of solar radiation	
dependence on various parameters.	1.8 sun tracking systems	
	1.9 photo thermal conversion	
	1.10 solar energy collectors	
	1.11 collector efficiency and its dependence	
	on various parameters (2)	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain solar radiation and origin of radiation.
- **b.** Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

PH404.2. The factors that influence the use of solar radiation as an energy source.

Approximate Hou		
Item	AppX Hrs	
Cl	12	
LI	0	
SW	1	
SL	1	
Total	14	

Faculty of Basic Science **Department of Physics** Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

Session Outcomes	Class room Instruction	Self Learning
(SOs)	(CI)	(SL)
	UNIT – II (Solar energy)	1. Learn
SO2.1 To understand the solar		about solar
energy.	2.1 storage of solar energy	energy
SO2.2 To learn about storage of	2.2 solar pond	
solar energy.	2.3 solar water heater	
SO2.3 To learn about solar water	2.4 solardistillation	
heater and solar cooker.	2.5 solar cooker	
SO2.4 To learn about solar fuels	2.6 solar green houses	
	2.7 solar dryers	
SO2.5 Understand the principle of solar green houses	2.8 absorption air conditioning	
solu green nouses.	2.9 solar fuels	
	2.10 electrolysis of water	
	2.11 photoelectrochemical splitting of water (2)	

SW-2 Suggested Sessional Work (SW):

a) Assignments:

- i. Explain solar cooker with principle, construction and working.
- ii. Discuss about solar dryers.
- b) Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

PH404.3. The various active and passive technologies that are available for collecting solar energy; have the ability to apply design principles to selection of an appropriate solar energy installation to meet requirements.

Approximate Hours		
Item	AppX Hrs	
Cl	12	
LI	0	
SW	1	
SL	1	
Total	14	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)	
--------------------------------	--

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learn
		ing (SL)
SO3.1 To learn about Photo voltaic	UNIT – III (Fundamentals of solar cells)	1. fundamental of
effect.	3.1 Photo voltaic effect	solar cells.
SO3.2 To understand	3.2 semiconductor properties	
semiconductor properties.	3.3 energylevels	
its characteristics	3.4 basic equations	
SO3 4 To understand thermal	3.5 p-n junction its characteristics	
equilibrium condition	3.6 fabrication steps	
equinorium condition.	3.7 thermal equilibrium condition	
SO3.5 To understand Silicon based	3.8 depletion capacitance	
solar cells: single crystal,	3.9 junction breakdown	
polycrystalline and amorphous	3.10 heterojunction	
silicon solar cells.	3.11 Silicon based solar cells: single crystal,	
	polycrystalline and amorphous silicon solar	
	cells (2)	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Explain p-n junction and its characteristics.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student

and faculty.

PH404.4. How solar cells convert light into electricity, how solar cells are manufactured, how solar cells are evaluated.

Ар	proximate Hours
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Class room Instruction (CI)	Self Learn
		ing (SL)
SO4.1 To understand Solar	UNIT – IV (Device physics-I)	i
cell device structures.	4.1 Solar cell device structures	1. Learn about solar
SO4.2 Learn about Solar cell device	4.2 construction	devices.
construction.	4.3 output power, efficiency, fill factor and	
SO4.3 Learn about surface structures	optimization for maximum power(4)	
for maximum light absorption.	4.4 surface structures for maximum light	
SO4.4 Elementary treatment of	absorption	
current voltage characteristics in dark	4.5 current voltage characteristics in dark and	
and light.	light	
SO4.5 Understanding about charge	4.6 operating temperature vs conversion	
carrier generation recombination and	efficiency	
other losses.	4.7 charge carrier generation	
	4.8 recombination and other losses(2)	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Write Solar cell device structures.
- ii. Describe briefly operating temperature vs conversion efficiency.

b) Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

PH404.5. To examine the potential & drawbacks of currently manufactured technologies, as well as pre-commercial technologies. How to enhance solar cell performance and reduce cost, and the major hurdles-technological and economic, towards widespread adoption.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learning
 SO5.1 To understand Cadmiumtelluride solar cells. SO5.2 Learn about copper indium gallium selenide solar cells. SO5.3 Learn about organic solar cells. SO5.4 Learn about perovskite solar cells. SO5.5 To understand advanced concepts in photovoltaic research. 	 UNIT – V (Device physics-II) 5.1 Cadmiumtelluride solar cells 5.2 copper indium gallium selenide solar cells 5.3 organic solar cells 5.4 perovskite solar cells 5.5 Advanced concepts in photovoltaic research 	(SL) 1. Learn about solar devices.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Explain Covariant four- dimensional formulation.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

Brief of Hours	suggested	for the	Course	Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PH404.1. The available solar energy and the current				
solar energy conversion and utilization processes,	12	1	1	14
solar spectrum.				

Faculty of Basic Science **Department of Physics** Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

PH404.2. The factors that influence the use of solar radiation as an energy source.	12	1	1	14
PH404.3. The various active and passive technologies that are available for collecting solar energy; have the ability to apply design principles to selection of an appropriate solar energy installation to meet requirements.	12	1	1	14
PH404.4. How solar cells convert light into electricity, how solar cells are manufactured, how solar cells are evaluated.	12	1	1	14
PH404.5. To examine the potential & drawbacks of currently manufactured technologies, as well as pre- commercial technologies. How to enhance solar cell performance and reduce cost, and the major hurdles- technological and economic, towards widespread adoption.	12	1	1	14
Total Hours	60	5	5	70

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Solar Radiation	03	04	03	10
CO-2	Solar energy	03	04	03	10
CO-3	Fundamentals of solar cells	03	04	03	10
CO-4	Device physics-I	03	04	03	10
CO-5	Device physics-II	03	04	03	10
	Total	15	20	15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :						
S. No.	Title	Author	Publisher	Edition & Year			
1	Solar energy fundamentals and applications	H P Garg, J Prakash	Tata McGraw Hill publishing Co.Ltd	2006			
2	Principles of Solar Engineering	D. Yogi Goswami, Frank Kreith, Jan <u>F. Kreider</u>	Taylor and Francis	2000			
3	Semiconductor Devices, Basic Principles	Jasprit Singh	Wiley	2001			
4	Solar Cell Device Physics	Stephen J.Fonash	2nd edition, Academic Press	2003			
5	Lecture note provided by Department of Physics, AKS University, Satna (M. P.)						

Curriculum Development Team

- 1. Dr O. P. Tripathi, Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos, POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH404

Course Title: Physics of Solar Energy

						Program	Outcomes						Program Specific Outcome				
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicat e effectively.	Ability to use the technique s, skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
PH404.1. The available solar	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	1
energy and the																	
energy conversion																	
and utilization																	
processes, solar																	
spectrum.																	
PH404.2. The	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	1
influence the use																	
of solar radiation																	
as an energy																	
source.																	
PH404.3. The	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2
various active and																	
technologies that																	
are available for																	
collecting solar																	
energy; have the																l	
ability to apply																	
design principles																1	

to selection of an																	
appropriate solar																	
energy installation																	
to meet																	
requirements.																	
PH404.4. How	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	2
solar cells convert	Ū	-	-	-	Ũ	-	c	-	-	-	-	c.	U	C	C C	-	
light into																	
electricity, how																	
solar cells are																	
manufactured,																	
how solar cells are																	
evaluated.																	
PH404.5. To examine the potential & drawbacks of currently manufactured technologies, as well as pre- commercial technologies. How to enhance solar cell performance and reduce cost, and the major hurdles- technological and economic, towards widespread adoption.	2	1	2	1	1	3	3	3	1	1	2	2	3	3	1	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction(CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH404.1. The available solar energy and the current solar energy conversion and utilization processes, solar spectrum.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	UNIT – I (Solar Radiation) 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH404.2. The factors that influence the use of solar radiation as an energy source.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5	UNIT – II (Solar Energy) 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10, 2.11	As mentioned in
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH404.3. The various active and passive technologies that are available for collecting solar energy; have the ability to apply design principles to selection of an appropriate solar energy installation to meet requirements.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	UNIT – III (Fundamentals of solar cells) 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11	page number 2 to 6
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH404.4. How solar cells convert light into electricity, how solar cells are manufactured, how solar cells are evaluated.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	UNIT – IV (Device physics-I) 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	PH404.5. To examine the potential & drawbacks of currently manufactured technologies, as well as pre-commercial technologies. How to enhance solar cell performance and reduce cost, and the major hurdles-technological and economic, towards widespread adoption.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	UNIT – V (Device physics-II) 5.1, 5.2, 5.3, 5.4, 5.5	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-IV

Course Code:	PH405
Course Title :	Astronomy and Space physics
Pre- requisite:	To study this course, the student must had Physics as a subject in Diploma
Rationale:	The students studying Physics should possess foundational understanding about historical background of astronomy and space

Course Outcomes:

PH405.1. Student will be able to know the basic concepts of astronomy and space physics.

PH405.2. Student will be able to know about physical processes optical telescope, in stars and ' evolution of stars.

PH405.3. Student would be able to know about stellar distances and other.

physics.

PH405.4. Student would be able to differentiate between various coordinate systems and know about Binary stars and their motions.

PH405.5. Student would be able to know about the characteristics of Sun.

Scheme of Studies:

Board of					Scher	Scheme of studies(Hours/Week)			
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
Program Elective (PEC)	PH405	Astronomy and Space physics	4	0	1	1	6	4	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)								
Board of	Couse			End Semester Assessment	Total Mark s						
Study	Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activit y any one	Class Attendance	Total Marks	(FSA)		
			(CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA + ESA)	
PEC	PH405	Astronom y and Space physics	15	20	5	5	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH405.1. Student will be able to know the basic concepts of astronomy and space physics.

Ap	proximate Hours
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 To understand the	UNIT – I (Observational Data)	
Astronomical Coordinates.	1.1 Astronomical Coordinates-Celestial	1. Aspects of sky from
SO1.2 To learn about the Horizon,	Sphere	different places
Equatorial, Ecliptic and galactic system	1.2 Horizon, Equatorial, Ecliptic and	on the earth
of coordinates.	galactic system of coordinates	
SO1.3 To understand the Apparent and	1.3 Conversion from one coordinate system	
Mean solar time and their relations.	to another	
SO1.4 To learn about Calendar, Julian	1.4 Aspects of sky from different places on	
date and heliocentric correction.	the earth	
SO1.5 To learn about H-R Diagram.	1.5 Twilight, Seasons, Sidereal	
	1.6 Apparent and Mean solar time and their	
	relations	
	1.7 Calendar. Julian date and heliocentric	
	correction	
	1.8 Determination of Mass, luminosity,	
	radius, temperature and distance of a star	
	1.9 H-R Diagram	
	1.10 Empirical mass-luminosity relation	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain solar radiation and origin of radiation.
- **b.** Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

PH405.2. Student will be able to know about physical optical telescope, processes in stars and ' evolution of stars.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Class room Instruction (CI)	Self Learning (SL)
	UNIT – II (Telescopes)	1. Learn about
SO2.1 To understand the solar energy.	2.1 Basic Optics	Optics
	2.2 Optical Telescopes	2. Basic
SO2.2 To learn about storage of solar energy.	2.3 Radio Telescopes	knowledge of optical
	2.4 Infrared Astronomy	instruments
SO2.3 To learn about solar water heater and solar cooker.	2.5 Ultraviolet Astronomy	
	2.6 X-ray Astronomy	
SO2.4 To learn about solar fuels	2.7 Gamma-Ray Astronomy	
SO2.5 Understand the principle of	2.8 All-Sky Surveys	
solar green houses.	2.9 Virtual Observatories	

SW-2 Suggested Sessional Work (SW):

a) Assignments:

- i. Explain Optical Telescopes with principle, construction and working.
- ii. Discuss about X-ray Astronomy.

b) Other Activities (Specify):
 Present any one topic of this unit by power point presentation in front of departmental student and faculty.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Approximate HoursItemAppX HrsCl12

nem	i ippii ins
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Class room Instruction	Self Learning
(SOs)	(CI)	(SL)
 SO3.1 To learn about stellar motions. SO3.2 To understand secular and moving cluster parallaxes. SO3.3 To learn about atmospheric extinction. SO3.4 To understand Black-body approximation to the continuous radiation and temperatures of stars. SO3.5 To understand variable stars as distance indicators. 	 UNIT – III (Stellar Distances and Magnitudes) 3.1 Distances of stars from the trigonometric 3.2 secular andmoving cluster parallaxes 3.3 Stellar motions 3.4 Magnitude scale and magnitude systems 3.5 Atmospheric extinction 3.6 Absolute magnitudes and distance modulus 3.7 Colour index 3.8 Black-body approximation to the continuous radiation and temperatures of stars 3.9 Variable stars as distance indicators 	 Fundamental of Magnitude scale and magnitude systems for stellar motions.

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Explain Variable stars as distance indicators.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student

and faculty.

PH405.4. Student would be able to differentiate between various coordinate systems and know about Binary stars and their motions.

Approximate Hour				
Item	AppX Hrs			
Cl	12			
LI	0			

тт

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

SW	1
SL	1
Total	14

Session Outcomes	Class room Instruction	Self
(SOs)	(CI)	Learn
		ing (SL)
SO4.1 To understand Visual,	UNIT – IV (Binaries and Variable	
spectroscopic and eclipsing binaries.	Stars) 4.1 Visual, spectroscopic and eclipsing binaries	1. Learn about
SO4.2 Learn about importance of	4.2 Importance of binary stars as source of basic	Supernovae.
binary stars as source of basic	astrophysical data	2. Basics of
astrophysical data.	4.3 Classification and properties of various	stars and
SO4.3 Learn about classification and	types of intrinsic and eruptive variable stars	solar system
properties of various types of intrinsic	4.4 Astrophysical importance of the study of	
and eruptive variable stars.	variable stars.	
SO4.4 Astrophysical importance of	4.5 Novae	
the study of variable stars.	4.6 Supernovae	
SO4.5 Understanding about novae	-	
and supernovae.		

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Give classification and properties of varioustypes of intrinsic and eruptive variable stars.

b) Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

PH405.5. Student would be able to know about the characteristics of Sun.

Item	AppX Hrs
Cl	12
LI	0
SW	1

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

SL	1
Total	14

Session Outcomes	Class room Instruction	Self Learning
(SOs)	(CI)	(SL)
 SO5.1 To understand Physical Characteristic of Sun. SO5.2 Learn about solar magnetic fields. SO5.3 Learn about organic sun-spots. SO5.4 Learn about solar atmosphere-chromospheres and corona. SO5.5 To understand advanced concepts of Solar activity. 	UNIT – V (The Sun) 5.1 Physical Characteristic of Sun 5.2 Basic data, solar rotation 5.3 solar magnetic fields 5.4 Photosphere- granulation 5.5 sun-spots 5.6 Babcock model of sunspot formation 5.7 solar atmosphere- chromospheres and corona 5.8 Solar activity 5.9 flares 5.10 prominences 5.11 Solar wind and activity cycle 5.12 Helioseismology	 Learn about Solar wind and activity cycle. About interplanetary parameters

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Explain Solar activity.

b. Other Activities (Specify):

Present any one topic of this unit by power point presentation in front of departmental student and faculty.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
-----------------	--------------------------	---------------------------	--------------------------	--------------------------

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

Total Hours	60	5	5	70
PH405.5. Student would be able to know about the characteristics of Sun.	12	1	1	14
PH405.4. Student would be able to differentiate between various coordinate systems and know about Binary stars and their motions.	12	1	1	14
PH405.3. Student would be able to know about stellar distances and other.	12	1	1	14
PH405.2. Student will be able to know about physical processes optical telescope, in stars and ' evolution of stars.	12	1	1	14
PH405.1. Student will be able to know the basic concepts of astronomy and space physics.	12	1	1	14

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution			Total	
		R	U	Α	Marks	
CO-1	Observational Data	03	04	03	10	
CO-2	Telescopes	03	04	03	10	
CO-3	Stellar Distances and Magnitudes	03	04	03	10	
CO-4	Binaries and Variable Stars	03	04	03	10	
CO-5	The Sun	03	04	03	10	
	Total	15	20	15	50	

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books :			
S. No.	Title	AuthorPublisherEdition & Year		Edition & Year
1	Text book of Spherical Astronomy	W.M.Smart	Cambridge University Press	6th edition,1977
2	Astronomy, The evolving Universe	M. Zeilik	Cambridge University Press	1 st Edition,2002
3	Solar Astrophysics	P.V. Foukal	Wiley-VCH, United States	1 st Edition, 2004
4	Introduction to Astronomy and Cosmology	I. Morrison	Wiley, United States	1 st Edition,2008
5	Lecture note provided by Department of Physics, AKS University, Satna (M. P.)			

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH405

Course Title: Astronomy and Space physics

Course Outcomes	Program Outcomes												Program Specific Outcome				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicat e effectively.	Ability to use the technique s, skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
PH405.1. Student will be able to know the basic concepts of astronomy and space physics.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	1
PH405.2. Student will be able to know about physical processes optical telescope, in stars and ' evolution of stars.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	1
PH405.3. Student would be able to know about stellar distances and other.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	2
PH405.4. Student would be able to differentiate between various coordinate systems and know about Binary stars and their motions.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	2
PH405.5. Student would be able to know about the characteristics of Sun.	2	1	2	1	1	3	3	3	1	1	2	2	3	3	1	3	3

Legend: 1 – Low, 2 – Medium, 3 – High
Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12	PH405.1. Student will be able to know the basic concepts of astronomy and	SO1.1 SO1.2 SO1.3	UNIT – I (Observational Data)	
PSO 1,2, 3, 4, 5	space physics.	SO1.4 SO1.5	1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10	
PO 1,2,3,4,5,6	PH405.2. Student will be able to know	SO2.1	UNIT – II (Telescopes)	
7,8,9,10,11,12	about physical processes optical	SO2.2		
PSO 1,2, 3, 4, 5	telescope, in stars and evolution of stars.	SO2.3 SO2.4 SO2.5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9	As mentioned in
PO 1 2 3 4 5 6		SO3 1	UNIT – III (Stellar Distances and	page number
7,8,9,10,11,12	PH405.3. Student would be able to	SO3.2	Magnitudes)	2 10 0
PSO 1,2, 3, 4, 5	know about stellar distances and other.	SO3.3 SO3.4 SO3.5	3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9	
PO 1,2,3,4,5,6	PH405.4 Student would be able to	SO4.1	UNIT – IV (Binaries and Variable Stars)	
7,8,9,10,11,12	differentiate between various	SO4.2 SO4.3	4.1, 4.2, 4.3, 4.4, 4.5, 4.6	
PSO 1,2, 3, 4, 5	Binary stars and their motions.	SO4.4 SO4.5		
PO 1,2,3,4,5,6 7,8,9,10,11,12		SO5.1 SO5.2	UNIT – V (The Sun) 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10,	
PSO 1,2, 3, 4, 5	PH405.5. Student would be able to know about the characteristics of Sun.	SO5.3 SO5.4 SO5.5	5.11, 5.12	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-IV

Course Code:	PH451							
Course Title :	General Energy and Computational Lab							
Pre- requisite:	Student should have basic knowledge of practical instruments in graduation.							
Rationale:	The students studying Physics should possess foundational understanding about historical background of graduation.							

Course Outcomes: After completion of this course, the students will be able to

PH451.1. learn various Physics aspects by performing the experiments related to nano material synthesis and computational techniques.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of					Schei	Scheme of studies(Hours/Week)			
Study	Course	C	Cl	LI	SW	SL	Total Study Hours	(C)	
	Code	Course Thie					(CI+LI+SW+SL)		
Program	PH451	General Energy	0	6	1	1	8	3	
Core		and Computational							
(PCC)		Lab							

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Scheme of Assessment:

Practical Lab

Board of Co				Progressive Assessme	ent (PRA)		End Semester Assessment	Total Mark s
Study	use Co de	Course Thie	Lab work Assignment 5 number 7 marks each (LA)	Viva-Voice on Lab work 10 marks each (VV)	Lab Attendance	Total Marks		
					(LA)	(LA+VV+LA)	(ESA)	(PRA + ESA)
PCC	PH45 1	General Energy and Computat ional Lab	35	10	5	50	50	100

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH451.1. learn various Physics aspects by performing the experiments related to nano

material synthesis and computational techniques.

Approximate Hours

Item	AppX Hrs
Cl	0
LI	90
SW	15
SL	15
Total	120

Session Outcomes (SOs)	Laboratory Instruction (LI)	Self Lea
	、	rnin
		g (SL)
SO1.1 Learn about nanomaterial,		
nanofibre and nanotube.	1. To study of Cabon Nanotubes by Spray	1. Learn
SO1.2 Understand computational	Pysolysis method and its verification through x-ray diffraction.	basic
techniques.	2. To study the I-V characteristics of the	r and
SO1.3 Understand synthesis of	supplied solar cell and find its spectral	nano
nanocomoposite.	response.	material
SO1.4 Design and fabrication	3. Analysis of H-atom spectra in minerals.	
of solar papels	4. To study of Neutron activation analysis.	
SO15 Learn shout Error	5. Synthesis of Polymer electrolytes by	
SOI.5 Learn about Error	using solution cast method.	
analysis.	6. Study of preparation techniques for oxides nanomaterials.	
	7. Synthesis of Nanocomposite Polymer	
	electrolytes with the help of sol-gel	
	method.	
	8. Study of synthesis of nanofibers using	
	gel-spinning and electrospinning	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)							
	techniques.						
	9. To determine the current density, open						
	circuit voltage, power density for						
	hydrogen batteries (proton conducting).						
	10. To study design and fabrication of solar						
	11. To study of charging discharging						
	11. To study of charging-discharging						
	benavior of electrochemical devices.						
	12. To study production techniques of fuel cell.						
	13. To study production methods of wind energy devices.						
	14. Numerical solution of ordinary differential equation with the help of PC.						
	15. Numerical Solution of second order ordinary differential equations by using PC.						
	16. Numerical solution of simultaneous linear algebraic equations						
	17. To study of least square fitting with simple example.						
	18. Numerical solutions of equations (single veriable).						

SW-1 Suggested Sessional Work (SW):

Assignments: Study of charging-discharging behavior of electrochemical devices

Other Activities (Specify):

Perform experimental verification to other student and show it.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Laboratory Instruction (LI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PH451.1. learn various Physics aspects by performing the experiments related to nano material synthesis and computational techniques.	90	15	15	120
Total Hours	90	15	15	120

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	General Energy and Computational Lab	13	24	13	50
	Total	13	24	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books:								
S. No.	Title	Author	Publisher	Edition & Year					
		Worsnon and	Little hampton						
1	Experimental Physics	worshop and	Book Services	9th Edition 1951					
	1 5	Flint	Ltd, United	Jui Luition, 1991					
			Kingdom						
	Experiments in Modern	A. C. Melissinos,	Academic Press,						
2	Dhusios	I Nanalitana	Cambridge,	2 nd Edition, 2003					
	Fliysics	J. Napontano	Massachusetts						
3	Lab manuals provided by Department of Physics AKS University Sature (M. P.)								
	Department of Frysles, AKS Oniversity, Satia (N.T.)								

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH451

Course Title: General Energy and Computational Lab

		Program Outcomes									Program Specific Outcome						
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicat e effectively.	Ability to use the technique s, skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
PH451.1. learn various Physics aspects by	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	1
performing the																	
experiments related to																	
nano material synthesis																	
and computational																	
techniques.																	

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Self Learning(SL)
No.				
PO 1,2,3,4,5,6	PH451.1. learn various Physics	SO1.1	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,	1
7,8,9,10,11,12	aspects by performing the	SO1.2	18	
	material synthesis and	SO1.3		
PSO 1,2, 3, 4, 5	computational techniques.	SO1.4		
		SO1.5		

Faculty of Basic SCience Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Semester-IV

Course Code:	PH452
Course Title :	Research Project Work
Pre- requisite:	Student should have basic knowledge of practical instruments in graduation.
Rationale:	The students studying Physics should possess foundational understanding about historical background of graduation and post graduation.

Course Outcomes: After completion of this project, students will be able to:

PH452.1. learn various Physics aspects by performing the experiments related to nano material synthesis, space physics, general physics and other areas of physics.

Faculty of Basic SCience Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of					Scher	Scheme of studies(Hours/Week)				
Study	Course	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)		
Research Project	PH452	Research Project Work	0	10	1	1	12	10		

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Schem	e of Assessment	(Marks)			
Poord of	Co			End Semester Assessment	Total Mark s						
Study	use Co de	Course Title	Class/Home Assignment 5 number	Class Test 2 (2 best out of 3)	Semina r one	Class Activit y any one	Class Attendance	Total Marks			
				each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA + ESA)
Research Project	PH 452	Research Project Work	0	0	0	0	0	0	100	100	

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PH452.1. learn various Physics aspects by performing the experiments related to nano material synthesis, space physics, general physics and other areas of physics.

Approximate Hours

Item	AppX Hrs
Cl	0
LI	150
SW	15
SL	15
Total	180

Session Outcomes	Laboratory Instruction	Self
(SOs)	(LI)	Lea
		rnin
		g (SL)
SO1.1 Basic of literature review		
 SO1.2 Techniques used for performing research SO1.3 Analyze the results and tabulate them in a proper manner SO1.4 How to write and dissertation, making presentation and viva etc. SO1.5 Learn about Error analysis. 	 Any research project title related to physics. 1. Define a literature review related to project title. 2. Identify sources of information. 3. Conducting the literature review with working title of project. 4. Using bibliographic management software. 5. Managing the project process. 6. Writing the project. 	 Learn about basic computer and physics and mathematics Software (s) to be used, laboratory planning, data survey etc for the proposed research work.

SW-1 Suggested Sessional Work (SW):

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program

(Revised as on 01 August 2023)

- i. Ancient Binder Used for Constructions, Invention and properties of Portland, Cement strength development mechanism of Portland cement. Types of Cement produced in India.
- **b.** Other Activities (Specify):

Note on Status of Indian cement industry in world and Major cement producing companies of India

Brief of Hours suggested for the Course Outcome

Course Outcomes	Laboratory Instruction (LI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PH452.1. learn various Physics aspects by performing the experiments related to nano material synthesis, space physics, general physics and other areas of physics.	150	15	15	180
Total Hours	150	15	15	180

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total						
		R	U	Α	Marks				
CO-1	Research Project Work	10	20	20	50				
	Total	10	20	20	50				

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Faculty of Basic Science Department of Physics Curriculum of M.Sc. (Physics) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

	(a) Books:							
S. No.	Title	Author	Publisher	Edition & Year				
1	Experimental Physics	Worsnop and	Little hampton Book Services	9th Edition, 1951				
		Fint	Kingdom					
	Experiments in Modern	A. C. Melissinos,	Academic Press,					
2	Dhysics	I Nanalitana	Cambridge,	2 nd Edition, 2003				
	Physics	J. Napontano	Massachusetts					
3	A Text Book of	I. Prakash &	Kitab Mahal	11th Edition, 2011				
	Practical Physics	Ramakrishna						
4	Practical Physics	G. L. Squires	Cambridge	4 th Edition, 2015				
		*	University Press	,				
5	Lab manuals provided by Department of Physics, AKS University, Satna (M.P.)							

Curriculum Development Team

- 1. Dr O. P. Tripathi , Head, Department of Physics, AKS University Satna (M.P.)
- 2. Dr C. P. Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 3. Dr Lovely Singh, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics, AKS University Satna (M.P.)
- 6. Miss Swati Kushwaha, Lab Faculty, Department of Physics, AKS University Satna (M.P.)

Cos,POs and PSOs Mapping

Course Title: M.Sc. (Physics)

Course Code: PH452

Course Title: Research Project Work

	Program Outcomes									Program Specific Outcome							
Course Outcomes	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	PSO 5
	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Identify, formulate, and solve Physics problems.	Design and conduct experiments, as well as to analyse and interpret data.	Apply knowledge of Physics in a different stream of science and to communicat e effectively.	Ability to use the technique s, skills, and modern physical tools in real world applicatio n.	Engage in life-long learning and will have recognitio n.
PH452.1. learn various	1	1	2	2	3	2	3	2	2	1	3	2	2	2	3	3	3
Physics aspects by	_	_	_	_	-	_		_	_	_	-	_	_	_	-	-	
performing the																	
experiments related to																	
nano material synthesis,																	
space physics, general																	
physics and other areas																	
of physics.																	

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Self Learning (SL)
PO 1,2,3,4,5,6	PH452.1. learn various Physics aspects by	SO1.1	1, 2, 3, 4, 5, 6	1, 2
7,8,9,10,11,12	performing the experiments related to nano	SO1.2		
	material synthesis, space physics, genera	SO1.3		
PSO 1,2, 3, 4, 5	physics and other areas of physics.	SO1.4		
		SO1.5		