Curriculum Book

and

Assessment and Evaluation Scheme

Based on

Outcome Based Education (OBE)

and Choice-Based Credit System(CBCS)

in M.Sc. Mathematics Program

2Year Degree Program

Revised as on 01 August 2023 Applicable w.e.f. Academic Session 2023-24

AKS University

Satna 485001, Madhya Pradesh, India

Faculty of Basic Science Department of Mathematics

Faculty of Basic Science Department of Mathematics Curriculum & Syllabus of M.Sc. Mathematics program (Revised as on 01 August 2023)

CONTENTS

S. No	Item	Page No
1	Forwarding	i
2	Vice Chancellor Massage	ii
3	Preface	iii
4	Introduction	iv
5	Vision & Mission of the Department of Mathematics	iv
6	Program Educational Objectives(PEOs)	v
7	Program Outcomes (POs)	v
8	Program Specific Outcomes (PSOs)	vi
9	General Course Structure and theme	vi
10	Component of Curriculum	vii
11	General Course Structure and Credit Distribution	vii
12	Course code and definition	viii
13	Category-wise Courses	viii-x
14	Semester wise Course Structure	x-xii
15	Semester wise Course details	1 -332
15.1	Semester I	1-72
15.2	Semester -II	73-156
15.3	Semester -III	157-257
15.4	Semester -IV	258-332

O.D Department of Mathematics Ars Howersity, Satna (M.P.)

D Faculty of Basic Solence AKS L. ersity Satna (M H. 1951)

reachopade

Professor B.A. Chopade Vice - Chancellor AKS University Satna, 485001 (M.P.)

Faculty of Basic Science Department of Mathematics Curriculum & Syllabus of M.Sc. Mathematics program (Revised as on 01 August 2023)

Forwarding

I am thrilled to observe the updated curriculum of the Department of Mathematics for M.Sc. Mathematics Program, which seamlessly integrates the most recent technological advancements and adheres to the guidelines set forth by UGC. The revised curriculum also thoughtfully incorporates the directives of NEP-2020 and the Sustainable Development Goals.

The alignment of course outcomes(COs), Programme Outcome (POs) and Programme specific outcomes(PSOs) has been intricately executed, aligning perfectly with the requisites of NEP-2020 and NAAC standards. I hold the belief that this revised syllabus will significantly enhance the skills and employability of our students.

With immense satisfaction, I hereby present the revised curriculum for the *M.Sc. Mathematics* program for implementation in the upcoming session.

ER. Anant Soni Pro Chancellor & Chairman AKS University, Satna

01 August 2023

Faculty of Basic Science Department of Mathematics Curriculum & Syllabus of M.Sc. Mathematics program (Revised as on 01 August 2023) From the Desk of the Vice-Chancellor

AKSUniversityiscurrentlyundergoingaprocesstorevampitscurriculumintoanoutcomebased approach, with the aim of enhancing the teaching and learning process. The foundation of quality of quality education lies in the implementation of a curriculum that aligns with both societal and industrial needs, focusing on relevant outcomes. This entails dedicated and inspired

Hence, it is of utmost importance to begin this endeavor by crafting an outcome-based curriculum in collaboration with academia and industry experts. This curriculum design should be informed by the latest technological advancements, market demands, the guidelines outlined in the National Education Policy (NEP) of 2020, and sustainable goals.

I'm delighted to learn that the revised curriculum has been meticulously crafted by the Mathematics Department, in consultation with an array of experts from the different universities of the mathematics research institutes and academia. This curriculum effectively integrates the principles outlined in the NEP-2020 guidelines, as well as sustainable goals. It also adeptly incorporates the latest advancements in the area of Mathematic.

Our University is known for conducting its academic programmes and examinations as per schedule. The credit based semester system at the postgraduate level and the choice based credit system for the two year (four semesters) Master's degree programme are working well.

To enhance student's skills, the curriculum integrates the research skills, research and progress. This wellrounded approach ensures that students receive a comprehensive education, fostering their skill development and preparing them for success in the field of Mathematics.

I am confident that the updated curriculum for Mathematics will not only enhance students' technical skills but also contribute significantly to their employability. During the process of revising the curriculum, I am pleased to observe that the mathematics department has diligently adhered to the guidelines provided by the UGC. Additionally, they have maintained a total credit requirement of Mathematics for M.Sc. Mathematics program.

It's worth noting that curriculum revision is an ongoing and dynamic process, designed to address the continuous evolution of technological advancements and both local and global concerns. This ensures that the curriculum remains responsive and attuned to the changing landscape of education and industry.

AKS University warmly invites input and suggestions from industry experts and technocrats and Alumni students to enhance the curriculum and make it more student-centered. Your valuable insights will greatly contribute to shaping an education that best serves the needs and aspirations of our students.

AKS University, Satna 01 August 2023 Professor B. A. Chopade Vice- Chancellor

Faculty of Basic Science Department of Mathematics Curriculum & Syllabus of M.Sc. Mathematics program (Revised as on 01 August 2023) Preface

As par to four commitments to ongoing enhancement, the Department of Mathematics consistently reviews and updates its M.Sc. Mathematics program curriculum every two years. Through this process, we ensure that the curriculum remains aligned with the latest technological advancements, as well as local and global industrial and social demands.

During this procedure, the existing curriculum for the M.Sc. Mathematics Program undergoes evaluation by a panel of technocrats, industry specialists, and academics. Following meticulous scrutiny, the revised curriculum has been formulated and is set to be implemented starting from August 01,2023. This implementation is contingent upon the endorsement of the curriculum by the University's Board of Studies and Governing Body.

This curriculum closely adheres to the UGC model syllabus distributed in May 2023. It seamlessly integrates the guide lines set forth by the Ministry of Higher Education, Government of India, through NEP- 2020, as well as the principles of Sustainable Development Goals. In order to foster the holistic skill development of students, a range of practical activities, including Hands-On Training, Project planning and execution, Report Writing, Seminars, and Industrial On-Job Training, have been incorporated. Furthermore, in alignment with UGC's directives, the total credit all allocation on for the M.Sc. Mathematics program is capped at 87 credits.

This curriculum is enriched with course components in alignment with UGC guidelines, encompassing various disciplines such as ,Core Program Courses : 60 credits, Program Elective Courses: 04 credits, Open Electives: 04 credits, Research Courses :19 credits.

To ensure a comprehensive learning experience, detailed evaluations schemes and rubrics have also been meticulously provided.

For each course, a thorough mapping of Course Outcomes, Program Outcomes and Programme Specific Out comes has been undertaken. As the courses syllabus is being meticulously developed, various elements such as session outcomes, laboratory instruction, classroom instruction, self-learning activities, assignments, and mini projects are meticulously outlined.

We hold the belief that this dynamic curriculum will undoubtedly enhance independent thinking, skills, and overall employability of the students.

Dr. R.S. Nigam Dean, Faculty of Basic Science AKS University, Satna

01August2023

Faculty of Basic Science Department of Mathematics Curriculum & Syllabus of M.Sc. Mathematics program (Revised as on 01 August 2023)

Introduction

The Department of Mathematics was established in the academic year 2017. Department of Mathematics is a diverse and vibrant academic unit, of AKS University, consisting of expertise in Mathematics that offers a wide variety of courses and degree options in Pure Mathematics and Applied Mathematics at the Bachelors, Masters, and Ph.D. levels. Department of Mathematics is engaged in outstanding research in Pure and Applied Mathematics.

The department provides opportunities for the students to choose their careers in education and research in various fields of Mathematics. Department has striven to set high standards of teaching.. Graduates of Mathematics Department are distinctively placed in reputed institutions and organizations. It has been the cherished goal of the Department to inculcate in the students a desire to excel, to demonstrate originality and to develop a sense of responsibility towards the society. Accordingly, the Department continuously reviews and monitors the curriculum of its academic programs.

Vision

Imparting the quality of Mathematics education and inculcating education of the spirit of research through innovative teaching and research methodologies.

Mission

M-1: To provide an environment where student can learn, become competent users of Mathematics and understand the use of Mathematics in other disciplines.

M-2: To produce post graduate students with strong foundation to join research or to serve industry.

M-3: To provide the best possible facilities for our students, particularly in the area of computer facilities, library facilities and administrative support.

M-4: To strive by introducing the students to main ideas and methods of Mathematics for building up their reasoning and analytical skills.

Program Educational Outcomes (PEOs)

The Postgraduate students will:

PEO-1: Have significant opportunities in various service domains at National and International levels like banking, insurance, government jobs, consultancy, teaching, defence, industry, research and entrepreneurial pursuit.

PEO-2: Achieve peer recognition as an individual or as a team member having specialized knowledge and expertise to investigate, formulate, analyze and implement on the problems of pure, applied and computational mathematics to compete at global level.

PEO-3: Have leadership quality to handle all kind of circumstances in diversities by providing interdisciplinary and multidisciplinary learning environment.

Faculty of Basic Science Department of Mathematics Curriculum & Syllabus of M.Sc. Mathematics program

(Revised as on 01 August 2023)

PEO-4: Have continuous learning attitude to adopt new skills and techniques to overcome the problems related with new technologies.

PEO-5: Inculcate value system while working in a team assigned with a important targets they will contribute through their critical thinking and mathematical competence holding the ethical values.

Program Outcomes (Pos)

Students will:

1. Advanced Mathematical Knowledge: Students will: Graduates gain a comprehensive understanding of various branches of pure mathematics, including algebra, analysis, topology, geometry, number theory, and logic.

2. Problem-solving Skills: They develop advanced problem-solving skills, essential for various fields like finance, engineering, and data analysis and the ability to tackle complex mathematical problems using logical reasoning and critical thinking.

3. Research Abilities: Many pursue a Ph.D. after their M.Sc. to become mathematicians or professors. This can involve conducting research, publishing papers, and teaching at universities.

4.Quantitative Analysis: Graduates are adept at quantitative analysis, which is highly sought after in fields like finance, economics, and computer science.

5. Teaching and Academia: Many pursue careers in academia as professors or researchers, contributing to the development of mathematical theories and teaching future mathematicians.

6. Theoretical Understanding: A strong foundation in mathematical theory helps students understand abstract concepts and their applications in various areas, such as physics, computer science, and finance.

7. Communication Skills: Graduates learn to effectively communicate complex mathematical ideas both in written and oral forms, essential for presenting research findings or teaching.

8.Operations Research: Mathematicians optimize processes and solve complex problems in industries such as logistics, supply chain management and manufacturing.

9. Application in Industry: Graduates might find opportunities in sectors like finance, data analysis, cryptography, or technology, where strong analytical skills and problem-solving abilities are highly valued.

10.Engineering and Technology: Mathematics is the backbone of engineering and technology fields, enabling graduates to work in areas like cryptography, robotics, and computer graphics.

Faculty of Basic Science Department of Mathematics Curriculum & Syllabus of M.Sc. Mathematics program

(Revised as on 01 August 2023)

11.Government and Public Sector: Mathematicians are employed in government agencies for statistical analysis, policy development, and research.

12. Consulting: Mathematicians often work as consultants, providing expertise in problem-solving and quantitative analysis to various industries.

Program Specific Outcomes (PSOs)

Students will:

PSO-1: Understand the mathematical concepts and applications in the field of algebra, analysis, computational techniques, optimization, differential equations, engineering, finance and actuarial science.

PSO-2: Handle the advanced techniques in algebra, analysis, computational techniques, optimization, differential equations, engineering, finance and actuarial science to analyze and design algorithms solving variety of problems related to real life problems.

PSO-3: Develop necessary skills and expertise in the field of research and developments through seminar and dissertation.

PSO-4: Creates Mathematical Models.

	PEO	M1	M2	M3	M4
	PEO-1	3	2	2	3
	PEO-2	2	3	3	3
	PEO-3	1	3	3	1
1: Slight	PEO-4	3	2	3	2
erate	PEO-5	1	2	2	3

Consistency/Mapping of PEOs with Mission of the Department

(Low), 2: (Medium), 3: (High) "-": No

correlation

GENERAL COURSE STRUCTURE & THEME

1. Definition of Credit

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit

2. Range of Credits:

Moderate

Substantial

In the light of the fact that a typical Model Two-year Post Graduate degree program in Basic Science has about 87 credits, the total number of credits proposed for the Two-year M.Sc.Mathematics is kept as considering NEP-20 and NAAC guidelines.

Faculty of Basic Science Department of Mathematics Curriculum & Syllabus of M.Sc. Mathematics program

(Revised as on 01 August 2023)

3. Structure of PG Program in Mathematics:

The structure of PG program in Mathematics shall have essentially the following categories of courses with the breakup of credits as given:

Components of the Curriculum

(Program curriculum grouping based on course components)

SI No	Course Component	% of total number of	Total number of
		credits of the	Credits
		Program	
2	Program Core (PCC)		
		68.97	60
3	Program Electives (PEC)		
		4.59	4
4	Open Electives (OEC)		
		4.59	4
5	Project(s) (PRC)/ On job Plant Training		
	(OJT) and seminar	21.84	19
	Total		87
		100.00	

General Course Structure and Credit Distribution

Curriculum of M.Sc. Mathematics

Semester -I		Semester - II		
Course Title	Credit	Course Title	Credit	
1. Advanced Abstract Algebra-I	3:1:0=4	1. Advanced Abstract Algebra-II	3:1:0=4	
2. Real Analysis-I	3:1:0=4	2. Real Analysis-II	3:1:0=4	
3.Topology	3:1:0=4	3.Complex Analysis-II	3:1:0=4	
4.Complex Analysis-I	3:1:0=4	4. Ordinary and Partial differential		
		Equations	3:1:0=4	
5.Research Methodology	3:1:0=4	5. Advanced Discrete Mathematics	3:1:0=4	
		6. Review of Literature	2:0:0=2	
Total Credit	20	Total Credit	22	
Semester -III		Semester - IV		
Course Title	Credit	Course Title	Credit	
1. Operational Research	3:1:0=4	Analytic Number Theory	3:1:0=4	
2. Integral Equation	3:1:0=4	Functional Analysis	3:1:0=4	
3. Advanced Numerical Techniques	3:1:0=4	General Theory of Relativity	3:1:0=4	

Faculty of Basic Science

Department of Mathematics

Curriculum & Syllabus of M.Sc. Mathematics program

(Revised as on 01 August 2023)

4. Special Function	3:1:0=4	Research Project and Seminar	10
5. Fundamentals of Computers &	3:0:1=4	-	
6. Scientic writing	2:1:0=3	-	
Total Credit	23	Total Credit	22

RM: Research Methodology; Research Project: RP; T- Theory Course, P – Practical course. 1T means 1hr of teaching per week and 1P means 2hrs of teaching/practical /tutorial/lab per week for 15 weeks.

Total Credit : 87

Course code and Definition

L	=	Lecture
т	=	Tutorial
Р	=	Practical
С	=	Credit
ESC	=	Engineering Science Courses
PEC	=	Professional Elective courses
OEC	=	Open Elective courses
IKS	=	Indian Knowledge System
SDGs	=	Sustainable Development Goals

Course level coding scheme:

Three-digit number (odd numbers are for the odd semester courses and even numbers are for even semester courses) used as suffix with the Course Code for identifying the level of the course. Digit at hundred's place signifies the year in which course is offered. e.g.

- 101, 102 ... etc. for first Semester.
- 201, 202 Etc. for second Semester.
- 301, 302 ... for third Semester.

401. 402--- for Fourth Semester

Program Core Course

(Total Credit-60)

SI.	CodeNo.	Subject	Semester	Credits
1	78MS101	Advanced Abstract Algebra-I	I	4
2	78MS102	Real Analysis-I	I	4
3	78MS103	Topology	I	4
4	78MS104	Complex Analysis-I	I	4
5	78MS201	Advanced Abstract Algebra-II	II	4
6	78MS202	Real Analysis-II	II	4
7	78MS203	Complex Analysis-II	II	4
8	78MS204	Ordinary and Partial differential Equations	II	4

Faculty of Basic Science

Department of Mathematics

Curriculum & Syllabus of M.Sc. Mathematics program

(Revised as on 01 August 2023)

9	78MS205	Advanced Discrete Mathematics	II	4
10	78MS301	Operational Research	111	4
11	78MS302	Integral Equation	111	4
12	78MS303	Advanced Numerical Techniques		4
13	78MS304	Special Function		4
14	78MS401	Analytic Number Theory	IV	4
15	78MS402	Functional Analysis	IV	4
		Total Credit		60

Category-wise Courses

PROGRAM ELECTIVE COURSE (PEC)

(Total 01 from the Program elective subjects = 04 Credit)

SI.	CodeNo.	Subject	Semester	Credits
1	78MS403- A	General Theory of Relativity	IV	04
2	78MS403- B	Jacobi polynomial and H-function	IV	04
3	78MS403-C	Advanced Mathematical Statistics	IV	04
4	78MS403-D	Swayam/Mooc Course: (Probability and Statistics)	IV	04
		Total Credit		04

OPEN ELECTIVE COURSE (OEC)

(Total 01 from Open elective subjects= 04 Credits)

SI.	CodeNo.	Subject	Semester	Credits
1	78MS305-A	Fundamentals of Computers & Programming	=	04
2	78MS305-B	Swayam/Mooc Course: (Math for Data Science)	III	04
3	78MS305-C	Swayam/Mooc Course: (Python Programming)		04
		Total Credit		04

RESEARCH COURSE (RC)

(Any One Research Course from each semester = 19 Credits)

SI.	CodeNo.	Subject	Semester	Credits
1	78MS105	Research Methodology	I	0:0:4=4
2	78MS206	Review of Literature	II	0:0: 2=2
3	78MS306-A	Scientic Writing	III	0:0:3=3
	79M6206 P	Swayam/Mooc Course: (Academic and Research		0:0:3=3
	701VI3500-B	Report Writing)		
4	78MS451	Research Project and Seminar	IV	0:0:10=10
Total Credit				

Induction Program

Faculty of Basic Science Department of Mathematics Curriculum & Syllabus of M.Sc. Mathematics program

(Revised as on 01 August 2023)

Induction program for students to be offered right at the start of the first year. It is mandatory. AKS University has design an induction program for 1st year student, details are below:

- i. Physical activity
- ii. Creative Arts
- iii. Universal Human Values
- iv. Literary
- v. Proficiency Modules
- vi. Lectures by Eminent People
- vii. Visits to local Areas
- viii. Familiarization to Dept./Branch & Innovations

Evaluation Scheme:

1. For Theory Courses:

- i. The weightage of Internal assessment is 50% and
- End Semester Exam is 50%
 The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

2. For Practical Courses:

- i. The weightage of Internal assessment is 50% and
- End Semester Exam is 50%
 The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.
- 3. For Summer Internship / Projects / Seminar etc.

Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc

Semester Wise Course Structure

Semester wise Brief of total Credits and Teaching Hours

Semester	L	Т	Р	Total Hour	Total Credit
Semester -I	15	5	00	20	20
Semester -II	17	5	00	22	22
Semester -III	18	5	00	23	23
Semester - IV	9	3	00	12	22
Total	59	18	00	77	87

Semester Wise Course Details

	Semester – I								
SN	SN Category Code Course Title				Т	Р	Total	Credit	
			()						

Faculty of Basic Science

Department of Mathematics

Curriculum & Syllabus of M.Sc. Mathematics program

(Revised as on 01 August 2023)

						Hour		
1	PCC	78MS101	Advanced Abstract Algebra-I	3	1	-	4	4
2	PCC	78MS102	Real Analysis-I	3	1	-	4	4
3	PCC	78MS103	Topology	3	1	-	4	
4	PCC	78MS104	Complex Analysis-I 3 1 - 4		4	4		
5	RC	78MS105	Research Methodology	3	1	-	4	4
			Total	15	5	-	20	20

Semester –II

S.N.	Category	Code	Course Title	L	т	Ρ	Total H	Credit s
1	РСС	78MS201	Advanced Abstract Algebra-II	3	1	-	4	4
2	РСС	78MS202	Real Analysis-II	3 1 -		4	4	
3	РСС	78MS203	Complex Analysis-II	3 1 -		4	4	
4	РСС	78MS204	Ordinary and Partial differential Equations	differential 3 1			4	4
5	РСС	78MS205	Advanced Discrete Mathematics	3 1 -		4	4	
6	RC	78MS206	Review of Literature	2	0	-	2	2
			Total	17	5		22	22

Semester-III

S.	Cate	Codo	Course Title		т	D	Total H	Credit
N.	gory	Code	course ritie	L	I	F	TOLAT H	S
1	PCC	78MS301	Operational Research	3	1	-	4	4
2	PCC	78MS302	Integral Equation	3	1	-	4	4
3	PCC	78MS303	Advanced Numerical Techniques		1	-	4	4
4	PCC	78MS304	Special Function		1	-	4	4
5	Open	Elective Course	s (OEC) - [Choose any one]	3	0	1	4	4
	78MS	305-A	Electives I: Fundamentals of Computers & Programming					

Faculty of Basic Science Department of Mathematics

Curriculum & Syllabus of M.Sc. Mathematics program

(Revised as on 01 August 2023)

	78MS305-B	Electives II: Swayam/Mooc Course: (Math for Data Science)					
	78MS305-CElectives III: Swayam/Mooc Course: (Python Programming)						
6	Research Courses [C	3	0	-	3	3	
78N	IS306-A	Scientific Writing					
78MS306-B		Swayam/Mooc Course: (Academic and Research Report Writing)					
		Total	18	4	1	23	23

Semester –IV

S.N	Category	Code	Course Title	L	т	Ρ	Total H	Credits
1	PCC	78MS401	Analytic Number Theory	3	1	-	4	4
2	PCC	78MS402	Functional Analysis	3	1	-	4	4
3	Program Elective Courses(PEC)- [Choose any one]					-	4	4
	78MS	403- A	Electives IV: General Theory of Relativity					
	78MS	5403- В	Electives V: Jacobi polynomial and H-function					
	78MS	5403-C	Electives VI: Advanced Mathematical Statistics					
	78MS	5403-D	Electives VII: Swayam/Mooc Course: (Probability and Statistics)					
4	RC	78MS451	Research Project and Seminar					10
			Total	9	3	-	12	22

Total credit: 87

PCC – Program Core Courses, PEC - Program Elective Courses OEC - Open Elective Courses RC -Research Course, L – Lecture; T - Tutorial; P - Practical

Semester-I

Course Code:	78MS101					
Course Title :	Advanced Abstract Algebra-I					
Pre- requisite:	Students should have basic knowledge of group					
	theory					
Rationale:	The program aims to develop advanced problem- solving and analytical skills and prepares students					
	for careers in academia, research, industry, or					
	other sectors that require advanced					
	mathematical expertise.					

Course Outcome :

- **CO1-78MS101.1** Understand the importance of algebraic properties with regard to working within various number systems.
- **CO2-78MS101.2**. Students will determine whether a given binary operation on the given set gives a group structure by applying the axioms.
- **CO3-78MS101.3**. Students will determine whether a given binary operation on the given set gives algebraic structure by applying the axioms of Ring.
- **CO4-78MS101.4** Connecting ring theory to other areas of mathematics or applications in computer science, physics, or cryptography.
- **CO5-78MS101.5** Students will create the concept of a group action to real life problems such as Counting.

Scheme of Studies:

Board of Study	Course Code	Course Title	Scheme of st	Scheme of studies (Hours/Week)						
,			Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	s (C)		
Program Core (PCC)	78MS101	Advanced Abstract Algebra-I	4[3+1]	0	1	1	6	4		

Legend:

Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
Ll: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Board of	Couse Code	Course Title	S	cheme of Ass	essment (Mark	(S)				
Study			Progressi	Progressive Assessment (PRA)						Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendanc e (AT)	Total Marks (CA+CT+SA +CAT+AT)		
PCC	78MS101	Advanced Abstract Algebra-I	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS101.1

Understand the importance of algebraic properties with regard to working within various number systems.

Approximate Hours

Item	AppX Hrs
Cl	13
LI	0
SW	1
SL	1
Total	15

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1.1		Unit-1.0	SL.1
Understand the concept of		Group-I:	Understand the
Group.		1.1 Introduction of Group and	concept of Set
SO1.2		properties of group	theory.
Understand the			SL.2
relationships between	-	1.2 Implimentation of Cyclic	Decide whether a
abstract algebraic structures		group	given group is
with familiar numbers		1.3 Centre of a group	cyclic, and given a
systems such as the integers		1.4 Tutirial -I	finite cyclic group.
and real numbers		1.5 Normal subgroup	SL.3
SO1.3		1.6 Quotient group	Understand to Find
Understand the relation		1.7 Class Equation	a generator for a
between order of group and		1.8 Composition series, Normal	subgroup of a
all its possible subgroups.		and subnormal series,	given order.
So1.4		1.9 Jorden-Holder theorem	
Understand the hypothesis		1.10 Tutirial -II	
of Cauchy's Theorem		1.11Homomorphism of Group	
So1.5		1.12 Isomorphism of a group	
Understand the concept of		1.13 Theorems on Mappings	
Mapping.			

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Relationships between abstract algebraic structures with familiar numbers systems such as the Set of natural numbers, Set of rational numbers, Set of integers, Set of real numbers, Set of complex numbers.

ii. Application of group theory in real life.

iii. Derivation of Cauchy's Theorem for finite groups.

iv. Mapping defined on groups

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO2-78MS101.2

Students will determine whether a given binary operation on the given set gives a group structure by applying the axioms.

Approximate Hours

			Item		AppX Hrs	
			Cl		12	
			LI		0	
			SW		1	
			SL		1	
			Total		14	
Session Outcomes	Labora	Class room Instruction	า	Se	f Learning	•
(SOs)	tory	(CI)		(SL	.)	
	Instruc					
	tion					
	(LI)					
SO2.1		Unit-2.0		SL.	1	
Understand the relationships		Group II: Ve		Ve	Verify relationships	
between operations and mapping.		2.1 Permutation groups between		tween opera	tions	
SO2.2		2.2 Composition series satisfying variou		us		
Learn about structure preserving		2.3 Normal and subnormal properties.				
maps between groups and their		series				
consequences.		2.4 Jordan-Holder theorem SL.2				
SO2.3		2.5 Tutirial -I		Pre	esent concep	ts of the
Understand the concept of		2.6 Introduction of Rir	ıg	rel	ationships be	etween
Composition series		27 Unit element, Zero		ор	erations satis	sfying
		devisors various properties		ies		
SO2.4		2.8 Elementary properties of SL.3				
Understand the Uses of		Ring				
Composition series in Jordan-		2.9 Tutirial -II Knowledge of				
Holder theorem		2.10 Theorems on Ring polynomial and its			its	
SO2.5		2.11 Nilpotent element degree				

4

Understand the Relation of Ring and Various polynomials	2.12 Polynomial Ring in one and several variables.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Relationships between algebraic structures of ring with familiar numbers systems.
- ii. Application of Ring group theory in real life.
- iii. Permutation group.
- iv. Mapping defined on Rings.
- V. Polynomial Ring

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test

CO3-78MS101.3

Students will determine whether a given binary operation on the given set gives algebraic structure by applying the axioms of Ring.

Approximate Hours

ltem	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laborat ory Instructi on (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1		Unit-3.0 Ring	SL.1
Understand the relationships		3.1 SubRings :	Understand
between operations and mapping.		Definition, Properties	the concept
SO3.2		3.2 Quotent ring	of Mapping.
Structural Understanding: Exploring		3.3 Fundamental theorem on	SL.2
rings and subrings helps		ring	Understand

mathematicians understand the	3.4 Ideals in quotent ring	the
underlying structure of mathematical	3.5 Tutorial-I	structure of
objects, providing insight into their	3.6 Ring Homomorphism and	kernel of
properties and behaviors.	Ring Isomorphism	Mapping
	3.7 Kernel of Homomorphism	
SO3.3	3.8 Theorems on Ideals	
Algebraic Properties: Understand the	3.9 Relation between Ring and	
Rings and subrings properties, which	Ideal	
help in studying algebraic properties	3.10 Tutorial-II	
such as factorization, divisibility, and	3.11 Theorems on Rings	
solution of equations within these	3.12 Application of Ring in Real	
structures.	life.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Relationships between algebraic structures of ring with familiar numbers systems.
- ii. Application of Ring group theory in real life.
- iii. Permutation group.
- iv. Mapping defined on Rings.
- V. Polynomial Ring

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO4-78MS101.4

Connecting ring theory to other areas of mathematics or applications in computer science, physics, or cryptography.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laborator	Class room Instruction	Self Learning
(SOs)	y	(CI)	(SL)
	Instructio		
	n (r.)		
	(LI)		
SO4.1		Unit-4.0 Integral domain and Field	SL.1
Understand the		4.1 Integral domain : Definition and	Verify relationships
examples of integral		properties	between operations
domains, exploring the		4.2 Proof of the Properties Integral	satisfying various
properties that define		domain	properties.
them.		4.3 Theorems on Integral Domain	
SO4.2		4.4 Tutorial-I	SL.2
Understand the		4.5 Establish the relationship	Basic properties of Ring
demonstration of, how		between Ring and Integral Domain	with properties
they differ from other		4.6 Field: Definition and properties	
types of rings.		4.7 Proof of the Properties of Field	
5		4.8 Establish the relationship	
504.3		between Ring and Field	
Understand The		4.9 Tutorial-II	
Difference between		4.10 Theorems on field	
Integral domain and		4.11 Theorems on Relation between	
Field		Integral domain and Field	
		4.12 Implimentation of the	
		conceptes in number system	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Relationships between algebraic structures of ring with familiar numbers systems.
- ii. Application of Ring group theory in real life.
- iii. Permutation group.
- iv. Mapping defined on Rings.
- V. Polynomial Ring

b. Mini Project:

- Oral presentation, Poster presentation, Power Point Presentation.
- **c.** Other Activities (Specify): Quiz, Class Test.

CO5-78MS101.5

Students will create the concept of a group action to real life problems such as Counting.

Approximate Hours				
Item	AppX Hrs			
Cl	11			
LI	0			
SW	1			
SL	1			
Total	13			

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning (SL)
	(LI)		
SO5.1		Unit-5.0 Ideals	SL.1
Understand the		5.1	Verify
concept of left and		Ideals : Left and right ideals	relationships
right ideal		5.2	between
SO5.2		Relation between Ideals and ring	operations
Understand the		5.3 Quotient Ring	satisfying various
relationships between		5.4Relation between Ideal and	properties.
quotent ring and Ideal.		Quotient Ring	
SO5.3		5.5 prime ideals	SL.2
Understand the		5.6 Generator of Basic properties of	understand the
relationships between		ideals	criteria to be a
ring and Ideal		5.7 Maximal ideas	subring.
		5.8 Algebra of ideals	SL.3
		5.9 Ideals in quotent ring	Basic properties
		5.10 PID (Principal Ideal Domain)	of Quotient ring .
		5.11 Tutorial	

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-78MS101.1 Understand the importance of algebraic properties with regard to working within various number systems.	13	1	1	15
CO1-78MS101.2 Determine whether a given binary operation on the given set gives a group structure by applying the	12	1	1	14

axioms.				
CO1-78MS101.3 Students will determine whether a given binary operation on the given set gives algebraic structure by applying the axioms of Ring.	12	1	1	14
CO1-78MS101.4 Compute the expression of permutation groups by using permutation multiplication.	12	1	1	14
CO1-78MS101.5 Create the concept of a group action to real life problems such as Counting.	11	1	1	13
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution			Total Marks
		R	U	Α	
CO-1	Group-I	05	03	02	10
CO-2	Group-II	05	03	02	10
CO-3	Ring	05	03	02	10
CO-4	Integral Domain and Field	05	04	01	10
CO-5	Ideals	05	04	01	10
	Total	25	17	08	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6. Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S.	Title	Author	Publisher	Edition & Year
No.				
1	Advanced Abstract Algebra	Dr.H.K.Pathak	Shree Sahitya Siksha Prakashan, Meerut.	
2	Contemporar y Abstract Algebra	J. A. Gallian	Narosa Publishing house, New Delhi	4th edition, 2009
3	Abstract Algebra,	D. S. Dummit & R. M.,Foote	John Wiley & Sons, Indian reprint, New Delhi	3rd edition, 2011
4	Basic Abstract Algebra	P.B. Bhattacharya , S.K.Jain &S.R. Nagpaul	Cambridge University press	
5	Basic Algebra,Vol.	N.Jacosan	Hindustan Publishing Company	

I,II & VIII		

b) Reference Book:

S.	Title	Author	Publisher	Edition & Year
No.				
1	Abstract Algebra	I.N. Herstein:,	ISBN-10:	3rd Edition, 1996
		Macmillan	0471368792	
2	Topics in	I.N. Herstein	ISBN-10:	2nd Edition,1975
	Algebra, John Wiley and Sons		0471010901	
3	An Introduction to Ring Theory	P.M. Cohn	Springer Undergraduate Series, ISBN-10: 1852332069	2001
4	Topics in Algebra	Herstein, I. N.	John Wiley & Sons, Indian reprint, New Delhi	2nd edition, 2006
5	A First Course in Abstract Algebra	Fraleigh, J. B.	Pearson Education India, New Delhi	7th edition, 2008

c) Suggetsed Digital Platform Web links :

Suggested	https://epgp.inflibnet.ac.in
Digital	https://www.highereducation.mp.gov.in/?page=xhzlQmpZwkylQo2b%2Fy5G7w
Platforms	%3D%3D
Web links:	http://www.bhojvirtualuniversity.com
Suggested Equivalent online courses:	https://nptel.ac.in/courses/111/106/111106137/ https://nptel.ac.in/courses/111/105/111105112/ https://ugemoocs.inflibnet.ac.in/index.php/courses/view_ug/32

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS101 Course Title: Advanced Abstract Algebra-I

Course	PO1	PO2	PO 3	РО 4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
Outcome	Adva nced Math emati cal Know ledge	Pro ble m- solv ing Skill s	Re se ar ch Ab ilit ies	Qu an tit ati ve An aly sis	Tea chin g and Aca de mia	Theo retic al Unde rstan ding	Com muni catio n Skills	Op era tio ns Res ear ch	Applicati on in Industry	Engin eerin g and Tech nolog Y	Govern ment and Public Sector	Co nsu Itin g	Understan d the mathemat ical concepts and applicatio ns in the field of algebra	Han dle the adva nced tech niqu es	Develop necessar y skills and expertis e in the field of research	Creat es Math emati cal Mode ls
CO1- 78MS101.1 Understand the importance of algebraic properties with regard to working within various number systems.	2	3	1	2	1	2	2	2	1	1	1	1	2	1	1	3
CO2-78MS101.2. Students will determine whether a given binary operation on the given set gives a group structure by applying the axioms.	1	3	2	1	1	1	1	1	1	2	3	1	3	1	1	2
CO3-78MS101.3. Students will determine whether a given binary operation on the given set gives algebraic structure by applying the axioms of Ring.	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	2
CO4-78MS101.4 Connecting ring theory to other areas of mathematics or applications in computer science, physics, or cryptography.	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	2
CO5-78MS101.5 Students will create the concept of a group action to real life problems such as Counting	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Labo rator y Instr uctio n(LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1- 78MS101.1 Understand the importance of algebraic properties with regard to working within various number systems.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	-	Unit-1.0 Group 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1 .8,1.9,1.10,1.11,1.12,1.13	SL1.1 SL1.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2-78MS101.2. Students will determine whether a given binary operation on the given set gives a group structure by applying the axioms.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-2 Ring 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10, 1.11,1.12	SL2.1 SL2.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3-78MS101.3. Students will be able to describe all elements in a cyclic subgroup by using generators.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-3 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10, 1.11,1.12	SL3.1 SL3.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4- 78MS101.4 Connecting ring theory to other areas of mathematics or applications in computer science, physics, or cryptography.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-4 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10, 1.11,1.12	SL4.1 SL4.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5-78MS101.5 Students will create the concept of a group action to real life problems such as Counting.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-5 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10, 1.11	SL5.1 SL5.2 SL5.3

Semester-I

Course Code:	78MS102
Course Title :	Real Analysis-I
Pre- requisite:	Students should have basic knowledge of and deep understanding of the theory of the functions of real variables and Riemann-Stieltjes Integral
Rationale:	The program aims to develop advanced problem- solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced mathematical expertise.

CO1-78MS102.1 Understand the importance of properties of Riemann-Stieltjes integrals.

CO2-78MS102.2 Determine the Rearrangements of terms of a series.

CO3-78MS102.3 Demonstrate an understanding of the theory of sequence and Students will be able to describe all elements in Uniform Convergence of Sequence.

CO4-78MS102.4 Define and recognize the series and Students will compute the expression of Linear transformations.

CO5-78MS102.5 Students will create the concept of a Differential forms, Stoke's theorem to sequences, and series.

Scheme of Studies:

Board of	ard of Course Course		Scheme of studies (Hours/Week)					
Study	Coue	litle	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credi ts (C)
Program Core (PCC)	78MS102	Real Analysis-I	4[3+1]	0	1	1	6	4

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Т	heory									
Board of	Couse	Course Title	Scheme of	Assessme	nt (Marks)				
Study	Code		Prog	ressive As	sessment (PRA)			End	Total
									Semester	Marks
									Assessm	(PRA+
									ent	ESA)
							-		(ESA)	
			Class/Ho	Class	Seminar	Class	Class	Total		
			me	Test 2	one	Activit	Attend	Marks		
			Assignme	(2 best	(SA)	y any	ance	(CA+CT+		
			nt 5	out of		one	(AT)	SA		
			number	3)		(CAT)		+CAT+A		
			3 marks	10				T)		
			each	marks						
			(CA)	each						
				(CT)						
PCC	78MS102	Real	15	20	5	5	5	50	50	100
		Analysis-I								

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS102.1

Understand the importance of Understand the concept of Riemann-Stieltjes Integral

Approximate Hours					
Item	AppXHrs				
Cl	14				
LI	0				
SW	1				
SL	1				
Total	16				

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1		Unit-1.0	
Understand the		1.1 Introduction of	SL.1
concept of		Riemann-Stieltjes	Theorems on Riemann
Riemann-Stieltjes		Integral,	Stieltjes Integrals
Integral SO1.2		1.2 Some theorems on	
Understand the		Riemann-Stieltjes	
Properties of the		Integral,	
Riemann Stieltjes		1.3 Riemann-Stieltjes	
Integral		Integral, as limit of sum	
SO1.3		1.4 Some classes of	
Understand The		Riemann-	
fundamental		Stieltjesfunction.	
theorem		1.5 Properties of the	
SO1.4		Riemann-Stieltjes	
Understand the		Integral,	
Rectifiable Curves		1.6 Integration	
SO1.5		1.7 differentiation,	
Understand the		1.8 The fundamental	
Mean value		theorem of calculus	
theorem		1.9 Tutorial 1	
		1.10 Mean value	
		theorem	
		1.11 Integration of vector	
		valued function	
		1.12 Rectifiable Curves-	
		Introduction	
		1.13 Rectifiable Curves-	
		theorems	
		1.14 Tutorial 2	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. State and prove fundamental theorem of calculus
- ii. State and prove Mean Value theorem
- iii. Properties of R S Integral.
- iv. Theorems on Rectifiable Curve

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO2-78MS102.2

determine Rearrangements of terms of a series Approximate Hours

Item	AppXHrs
Cl	5
LI	0
SW	1
SL	1
Tatal	7

		lotal	/	
Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning (SL.1) Some examples	
(SOs)	(LI)	(CI)		
SO2.1A Relation		Unit2.0	on Riemann's	
between the Riemann				
Integral and RS		2.1A Relation between		
Integral,		the Riemann Integral		
SO2.2Rearrangements		and Riemann stieltjes		
of terms of a series,		Integral,		
SO2.3Riemann's		2.2 Tutorial 1		
		2.3 Rearrangements of		
		terms of a series		
		2.4 Tutorial 2		
		2.5 Riemann's theorem		

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. The sum of an absolute convergent series does not alter with any rearrangements of terms.

ii. State and prove Riemanns theorems

iii. some theorems on Riemanns

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO3-78MS102.3

Students will be able to describe all elements in Uniform Convergence of Sequence

Approximate Hours

ltem	AppXHrs
Cl	15
LI	0
SW	1
SL	1
Total	17

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
602.4	(LI)		
503.1		Unit-	SL.1Algebra of
Understand the Cauchy			Power Series
criterion for uniform		3.1 Sequence and Series of	
convergence		function,	
SO3.2 Understand the		3.2 Point wise convergence in a	
Power series,		metric space	
		3.3Pointwise and uniform	
SO3.3 Understand the		convergence of sequence.	
hadius of convergence		3.4 Cauchy criterion for uniform	
SO3.4Understand the		convergence,	
Natios of convergence		3.5Test for uniform convergence	
		3.6 Weierstrass M-Test,	
		3.7 Abel's test	
		3.8 Direchlets test	

3.9 Uniform convergence and
continuity,
3.10Weierstrass'sapproximation
theorem,
3.11Power series,
3.12Uniqueness for power series,
3.13Radius of Convergence of
power series,
3.14Abel's theorem,
3.15Tauber's theorem.

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. state and prove Tauber's theorem.

ii. State and prove Weierstrass's approximation theorem

iii. State and prove Cauchy 's general principle.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO4-78MS101.4

Students will compute the expression of Linear transformations

Approximate Hours

Item	AppXHrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO4.1 Understand the linear transformations SO4.2 Understand the Taylor's theorem SO4.3 Understand the Inverse function theorem		Unit-4.0 4.1 Linear transformation, 4.2 Derivatives in an open subset of R ⁿ , 4.3Chain rule of Differentiation, 4.4Interchange of order of Differentiation, 4.4 Derivatives of higher order, 4.5 Taylor's theorem, 4.6 Inverse function theorem, 4.7The Implicit function theorem 4.8 Derivatives of higher order 4.9 interchange of order of differentiation 4.10 Tutorial 1 4.11 Repeated partial derivatives 4.12 Tutorial 2	SL.1 Properties of Linear transformation

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Taylor's theorem
- ii. Inverse function theorem
- iii. The Implicit function theorem

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO5-78MS101.5

Students will create the concept of a Differential forms ,Stoke's theorem.

Approximate Hours			
Item	AppXHrs		
Cl	14		
LI	0		
SW	1		
SL	1		
Total	16		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1		Unit-5.0	SL.1
Understand the		5.1Jacobian	Examples Lagrange's
concept of Jacobian		5.2 Jacobian of	multiplier method.
SO5.2		Functions of functions	
Understand the		5.3 Jacobian of implicit	
Properties of the		functions,	
Extremum problem		5.4 Extremum problem	
SO5.3		with constraints,	
Understand The		5.5Lagrange's	
Differentiation of		multiplier method, 5.6	
Integrals		Differentiation of	
		Integrals	
SO5.4 Understand The		5.7Differential forms-	
Stoke's theorem		Introduction	
		5.8 Elementary	
		Properties	
		5.9 Basic K- forms	
		5.10 Product of basic K	
		form	
		5.11 Tutorial	
		5.12Stoke's theorem-	
		statement	
		5.13Stoke's theorem-	
		Proof	
		5.14 Tutorial 2	

Brief of Hours suggested for the Course Outcome

Class Lecture	Sessional	Self Learning	Total hour
(CI)	Work	(SI)	(CI+SW+SI)
	(SW)		
14	1	1	16
5	1	1	7
15	1	1	17
12	1	1	14
14	1	1	16
60	5	5	70
	Class Lecture (Cl) 14 5 15 12 14 14 60	Class Lecture (CI)Sessional Work (SW)1415151151121141605	Class Lecture (CI)Sessional Work (SW)Self Learning (SI)14115115111511121114116055

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles		Marks Distribution			Total Marks
		R	U	Α		
CO-1	Understand the importance of Riemann-Stieltjes Integral	03	01	01		05
CO-2	Determine the Rearrangements of terms of a series	02	06	02		10
CO-3	Students will be able to describe all elements in Uniform Convergence of Sequence	03	07	05		15

CO-4	Students will compute the expression of Linear transformations.	-	10	05		15
CO-5	Students will create the concept of a Differential forms,Stoke's theorem	03	02		-	05
Total		11	26		13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6 .Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S.	Title	Author	Publisher	Edition & Year
Ν				
о.				
1	Real Analysis-I	Dr.H.K.Pathak	Shree Sahitya Siksha	
			Prakashan, Meerut.	2018
-			Willey Eastern Ltd.,ew	
2	Real Analysis	S. C. Malik	Delhi, 1985.	
			Cambridge University	
2	Roal Analysis	N. I. Carathara	Droce LIK 2000	
э	Redi Alidiysis,.	N. L. Caroliners,	PTESS, UK, 2000	
	Flementary Analysis	Kenneth & Ross	The theory of Calculus	
4		Refine the residence of	Springer New York	
			2004.	
5	Principles of	Walter Rudin	3 rd Edition, McGraw	
	Mathematical Analysis		 Hill International 	
			Book Company,	
			Singapore, 1982.	

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS102 Course Title: Real Analysis-I

	РО	PO	PO3	PO4	PO5	PO	PO7	PO8	PO9	PO1	PO1	Ρ	PSO	PS	PSO	PSO
Course	1	2				6				0	1	0	1	O 2	3	4
Outcome												1				
												2				
	Ad	Pr	Resea	Quan	Teac	Th	Com	Ope	Appli	Engi	Gov	С	Unde	На	Dev	Cre
	van	obl	rch	titati	hing	eor	muni	rati	catio	neer	ern	0	rstan	ndl	elop	ates
	ced	em	Abiliti	ve	and	eti	catio	ons	n in	ing	men	n	d the	е	nec	Mat
	Ma	-	es	Analy	Acad	cal	n	Res	Indus	and	t	S	math	the	essa	hem
	the	sol		sis	emia	Un	Skills	earc	try	Tec	and	u	emat	adv	ry	atic
	ma	vin				der		h		hnol	Publ	lt	ical	anc	skill	al
	tica	g				sta				ogy	ic	i	conc	ed	S	Мо
		Skil				ndi					Sect	n	epts	tec	and	dels
	Kn	ls				ng					or	g	and	hni	exp	
	owl												appli	qu	ertis	
	ed												catio	es	e in	
	ge												ns in		the	
													the		field	
													field		Of	
													OT		rese	
													algeb		arcn	
<u> </u>	2	2	1	2	1	2	2	2	1	1	1	1		1	1	
79/15102 1	2	э	1	2	1	Z	2	2	L L	L L	1	T	<u> </u>	<u> </u>	<u> </u>	
/olvi3102.1																
the																
une 																
importance																
of																
Understand																
the concept																
of Riemann-																
Stieltjes																
Integral																
CO1-	1	3	2	1	1	1	1	1	1	1	1	1	1	1	1	
78MS102.2		-	_										_	-		

Determine the Rearrangem ents of terms of a series																
CO1-	2	3	1	1	1	1	3	2	2	1	2	2	<u>1</u>	<u>2</u>	<u>1</u>	
Students will be able to describe all element in Uniform Convergen ce of Sequence.																
CO1-	2	3	1	2	3	2	1	1	1	1	1	2	<u>2</u>	<u>1</u>	<u>1</u>	
78MS102.4 Students will compute the expression of Linear transformatio ns.																
CO1-	1	2	3	2	2	2	2	2	1	1	1	1	<u>1</u>	<u>1</u>	<u>1</u>	
78MS102.5 Students will create the concept of a Differential forms, Stoke's theorem																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction (CI)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1-78MS102.1 Understand the importance of properties of Riemann-Stieltjes integrals	SO1.1 SO1.2		Unit-1.0 Riemann-Stieltjes Integral 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9.
		SO1.3 SO1.4		1.10,1.11,1.12,1.13,1.14
		SO1.5		
PO 1,2,3,4,5,6	CO2-78MS102.2	SO2.1		Unit-2 Rearrangements of term
PSO 1,2, 3, 4	Rearrangements of terms of a series	SO2.2		2.1, 2.2, 2.3, 2.4,2.5
		SO2.3		
DO 1 2 2 4 5 6		502.1		Linit 2 Liniform Convergence of
789101,2,3,4,3,0	CO3-78MS102.3 Students will be	SO3 2		Sequence
PSO 1.2. 3. 4	Liniform Convergence of	SO3.3		3.1. 3.2. 3.3. 3.4. 3.5. 3.6. 3.7.
	Sequence	SO3.4		3.8,3.9,3.10,3.11,3.12,3.13,2.14,3 .15.
PO 1.2.3.4.5.6		SO4.1		Unit-4
7,8,9,10,11,12 PSO 1,2, 3, 4	CO4-78MS102.4 Students will compute the expression of Linear transformations	SO4.2		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7,4.8,4.9,4.10,4.11,4.12
		SO4.3		
PO 1,2,3,4,5,6	CO5-78MS102.5 Students will create the concept of a Differential	SO5.1		Unit-5
PSO 1,2, 3, 4	forms, Stoke's theorem	SO5.2		5.6,5.7,5.8,8.9,5.10,5.11,5.12,5.1 3,5.14
		SO5.3 SO5.4		
		1		

Semester-I

Course Title:	Topology					
Course Code: -	78MS103					
Prerequisite:	Students should review the fundamentals of B.Sc. class in					
	topics of series and functions and basic knowledge of					
differential and integration.						
Rationale:	The program aims to develop abstract and hypothetical					
	thinking problem-solving					
and analytical skills and prepares students for careers						
	academia, research, industry, or other sectors that					
	require advanced mathematical expertise.					

Course Outcomes (CO):

CO1-78MS103.1

Define and understand the concept of sets, theorems based on countable and uncountable sets, algebraicallyhypotheiss of continum ,topolocal space .Apply to know the interior , exteriorand boundary point, limit points. Continuous functions and homeomorphism.

CO2-78MS103.2

Define and understand the basic concepts of countable spaces I and II ,lindelofftheorem,seperable space compactness and finite intersection property sequentially and countably compact set , logical compactness.connectness on real line component and locally connectness spaces

CO3- - 78MS103.3

Define and computeseperations axiomsT0,T1,T2,T3,T4and their characterstics and basic properties .lemma of uryshons and tietz extension

CO4- - 78MS103.4

Understand the definition of product compact space ,connected space, and path connectedness , path component . tychnoff product space in terma of subspace and its characterization projection map.

CO5- - 78MS103.5

Understand and state the embedding and metrization .embedding lemma and tychnoff embedding . the uryshonsmetrizationtheorem . nets and filters . topology convergence of nets ,hausdroffness and nets . compactness and nets filters and their convergence. Canonoical way of converting nets and filters and vice versa. Ultrafilter and compactness.

Scheme of Studies:

Board of Study	Course Code	Course Title	Scheme of studies (Hours/Week)						
Study			CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
PCC	78MS103	Topology	4[3+1]	0	1	1	6	4	

Legend:

Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others)

- LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
- SW: Sessional Work (includes assignment, seminar, mini project etc.)

SL: Self Learning,

C:Credits

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theor	'Y									
Board of	Couse Code	Course Title	Scheme of Asse	ssment (Mar	rks)					
Study			Progressiv	Progressive Assessment (PRA) End Sen Ass (ES) Lass/Home Class Seminar Class Class Total Marks					End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendanc e (AT)	Total Marks (CA+CT+SA +CAT+AT)		
PCC	78MS103	Topology	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As

the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1- - 78MS103.1

Define and understand the concept of sets, theorems based on countable and uncountable sets, algebraicallyhypotheiss of continum ,topolocal space .Apply to know the interior , exterior and boundary point, limit points. Continuous functions and homeomorphism.

Approximate Hours

Item	AppXHrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1.1		Unit-1.0	SL.1
Understand the concept of			State and prove
sets and countable of		1.1.countable and	schreoder Bernstein
numbers or		uncountable sets.	theorem
uncountablility.		1.2. cardinal number and its	
SO1.2	-	arithmetic.	SL.2
Understand the topological		1.3. schreoderbernstein	Apply topological spce
space with their properties		theorem	to find bases , closure ,
and theorems.		1.4.cantor theorem and	interior, exterior and
SO1.3		continuum hypotheis	boundary point , limit
Apply limit points , interior		1.5 topological space ,bases,	point.
and exterior and boundary		1.6 Tutorial-1	SL.3
points.		1.7. subspace	Apply theorems and
So1.4		,neighbourhood	problem based on
Understand the bases and		1.8. closure, inferior	continuous functions
subspace of a topological		1.9exterior ,boundary	and homeomorphism
space.		1.10 limit points	and equivalence
So1.5		1.11continous function and	relation.
Understand the concept of		homeomorphism	

continuous and homeomorphism.	1.12 Tutorial- 2	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. State and prove schreoder Bernstein theorem.
- ii. Define topological space with their properties.
- iii. Apply topological aspace and find bases, subspaces, interior point exterior points and boundary points and limit points as well as closure points.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO2-78MS103.2

Define and understand the basic concepts of countable spaces I and II ,lindelofftheorem,seperable space compactness and finite intersection property sequentially and countably compact set , logical compactness.connectness on real line component and locally connectness spaces

Approximate Hours

Item	AppXHrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)

SO2.1		Unit-2.0	SL.1
Define and		2.1.countable space I & II	Explore more advanced
understand the		2.2. lindeloff theorem	topics, compactness
basic concepts of		2.3.seperable space	and finite intersection
first and second		2.4-compactness	property
countable space.	-	2.5. finite intersection	SL.2
SO2.2		property	Understand
Perform seperable		2.6. sequentially and	sequentially and
space and		countabliy compact sets	countably compactness
compactness and		2.7. logical comactness	SL.3
finite intersection		2.8. separated sets and	Apply connectness on a
property.		connected spaces.	real line and locally
SO2.3		2.9. connectness on a real	connectned space.
Understand the		line	
sequentially and		2.10 component	
countabily		2.11 locally connected space	
compact sets and		2.12 Tutorial-1	
logicalcompactnes			
S.			
SO2.4			
Define and			
separated sets			
connected space			
SO2.5			
Understand			
connectness on a			
real line.			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the first and second countable space.
- ii. Write the sequentially and countabily compact set and logically compactness.
- iii. Write a short note on separated sets and connected space.
- iv. Describe the method of connectness on a real line.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO3-78MS103.3

Define and computeseperations axiomsT0,T1,T2,T3,T4and their characterstics and basic properties .lemma of uryshons and tietz extension

Approximate Hours

Item	AppXHrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		

SO3.1	Unit-3.0	SL.1
Define and		Apply seperations
Compute separation	3.1. separation axioms	axioms with examples.
axioms	3.2. TO space	SL.2
SO3.2	3.3. T1 space	Applycharactersctics
Understand the	- 3.4. T2 space	and basic properties of
T0,T1,T3,T4 spaces	3.5. T3 space	seperationsaxioms
SO3.3	3.6.T4 space	SL.3
Apply the chain rule to	3.7. characterization	Solve and prove
compute basic properties	3.8basic properties	uryshons lemma and
of seperations axioms.	3.9. uryshons lemma	tietz extension
SO3.4	3.10. tietz extension	h theorem.
Understand mixed	theorem	
characterization of	3.11 theorems of	ו
seperations axioms	seperations axioms	
theorem	3.12 Tutorial-1	
SO3.5		
Identify uryshons lemma		
and tietz extension		
theorem.		

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the seperations axioms with exmples.
- ii. Explain the characterization and basic properties of separation axioms.
- iii. Write the uryshons lemma and tietz extension theorem.

b. Mini Project:

Oral presentation,

c. Other Activities (Specify): Quiz, Class Test.

CO4-78MS103.4

Understand the definition of product compact space ,connected space, and path connectedness , path component . tychnoff product space in terma of subspace and its characterization projection map.

Approximate Hours

Item	AppXHrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning (SL)
()	(LI)		
SO4.1		Unit-4.0	SL.1
Understand the			Apply product of
definition of a product		4.1.product of compact space	compact space.
of compact space.		4.2connectd space	SL.2
SO4.2		4.3.path connectedness	Apply path
Solve and apply path	-	4.4. Path components	connectedness and
connectedness and		4.5 Tutorial-1	path components.
path components		4.6. tychnoff product topology in	SL.3
SO4.3		terms of topological spaces.	Analyze tychnoff
Identify tychnoff		4.7. its characterization projection	product topology in
product topology.		map.	terms of topological
SO4.4		4.8.theorem on product space.	space.
Identify		4.9.theorem on connected space	
The characterization		4.10. theorem on path	
map.		connectedness	
SO4.5		4.11theorem on path components.	
Recognize the		4.12 Tutorial-2	
theorem on product			
topology in compact			
and connectned			
space.			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

I. Explain the product space in a compact space and connectedness .

b. Other Activities (Specify): Quiz, Class Test.

CO5-78MS103.5

Understand and state the embedding and metrization .embedding lemma and tychnoff embedding . the uryshonsmetrizationtheorem . nets and filters . topology convergence of nets ,hausdroffness and nets . compactness and nets filters and their convergence. Canonoical way of converting nets and filters and vice versa. Ultrafilter and compactness.

Approximate Hours

ltem	AppXHrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO4.1		Unit-5.0	SL.1
Understand the			Apply embedding and
embedding and		5.1.Embedding and	metrization theorem
metrization.		metrization	and prove.
SO4.2		5.2. embedding lemma	SL.2
Find embedding	-	5.3. tychnoff embedding	Use tychnoff
lemma and		5.4 the uryshonsmetrization	embedding and the
tychnoff		theorem	uryshonsmetrization
embedding		5.5. nets and filters	theorem
SO4.3		5.6 topology and	SL.3
Understand the		convergence of nets	Apply nets and filters
uryshonsmetrizati		5.7. hausdroffness and nets	and convergence of
on theorem		5.8 compactness and nets	nets and canonical way
SO4.4		filtersand their convergence	of converting nets ato
Interpret nets and		5.9. canonical way of	filters and vice versa.
filters		converting nets to filters	
SO4.5		and vice versa	

Understand	5.10. ultrafilters	
convergence of	5.11compactness	
nets and filters	5.12 Tutorial-1	
and vice versa.		

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the short note on embedding and metrization .
- ii. Write about nets and filter with their convergene and converting nets to filters and vice versa.

b. Mini Project:

Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional Work	Self Learning	Total hour
	Lecture	(SW)	(SI)	(CI+SW+SI)
	(CI)			
CO1-78MS103.1	12	1	1	14
Define and understand the concept of				
sets, theorems based on countable and				
uncountable sets, algebraicallyhypotheiss				
of continum ,topolocal space .Apply to				
know the interior , exterior and boundary				
point, limit points. Continuous functions				
and homeomorphism				
CO2-78MS103.2 Define and understand	12	1	1	14
the basic concepts of countable spaces I				
and II ,lindelofftheorem,seperable space				
compactness and finite intersection				
property sequentially and countably				
compact set , logical				

compactness.connectness on real line component and locally connectness spaces				
CO3-78MS103.3 Define and computeseperations	12	1	1	14
axiomsT0,T1,T2,T3,T4and their				
characteristics and basic properties				
extension				
CO4-78MS103.4	12	1	1	14
Understand the definition of product				
compact space ,connected space, and				
path connectedness , path				
component . tychnoff product space				
in terma of subspace and its				
characterization projection map.				
CO5-78MS103.5	12	1	1	14
and matrization ambadding lomma				
and tychnoff embedding the				
uryshonsmetrizationtheorem . nets				
and filters . topology convergence of				
nets ,hausdroffness and nets .				
compactness and nets filters and				
their convergence. Canonoical way of				
converting nets and filters and vice				
versa. Ultratilter and compactness.	60	-		70
I OTAL HOURS	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution	Total
			Marks

		R	U	Α	
CO-1		02	04	05	07
	Countable and topological				
	space				
CO-2		03	07	04	14
	Compactness and connectedness				
CO-3		02	06	02	10
	Seperations axioms				
CO-4		03	03	02	11
	Product topology				
CO-5		03	02	02	08
	Embedding and metrizations.				
Total		13	22	15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6 .Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S.	Title	Author	Publisher	Edition & Year
Ν				
о.				

1	Тороlоду	J. R. munkers	Prentice-hall of india	A first edition
2	Introduction to topology	G.F simmons	Tata McGraw Hill	Second editions
3	topology	James R munkers	Pearson education	2 nd Edition 2006
4	general topology	J.L kelly	Springer verlag	New York 1966

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS103 Course Title: Topology

	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO1	PSO 1	PSO	PSO 3	PSO
Course	۸dv	2 Dr	Rec	000	Teachi	Tho	Comm	Opera	Applic	Engino	1	2 Con	Understand	2 Han	Develop	4 Cro
Outcome	anc	ob	earc	ntita	ng and	oreti	unicati	tions	ation	ering	ern	sulti	the	dle	necessar	ates
	ed	le	h	tive	Acade	cal	on	Resear	in	and	men	ng	mathematical	the	y skills	Mat
	Mat	m-	Abili	Anal	mia	Und	Skills	ch	Indust	Techn	t		concepts and	adv	and	hem
	he	sol	ties	ysis		erst			ry	ology	and		applications	anc	expertis	atic
	ical	ng				ng					ic		algebra	tec	field of	Mo
	Kno	Ski									Sect			hni	research	dels
	wle	lls									or			que		
	dge													S		
CO1-	2	3	1	2	1	2	2	2	1	1	1	1	<u>2</u>	<u>1</u>	<u>1</u>	<u>3</u>
78MS103.1																
Defineand																
understand																
the concept of																
sets, theorems																
based on																
countable and																
uncountable																
sets,																
algebraically																
hypotheiss																
of continum																
,topolocal																
space .Apply to																
know the																
interior ,																
exterior and																
boundary point,																
limit points.																
Continuous																
functions and																
homeomorphis																
m																
CO2-	1	3	2	1	1	1	1	1	1	2	3	1	<u>3</u>	<u>1</u>	<u>1</u>	<u>2</u>

78MS103.2																
Define and																
understand the																
basic concepts																
of countable																
spaces I and II																
,lindelofftheore																
m.seperable																
space																
compactness																
and finite																
intersection																
property																
sequentially																
and countably																
compact set																
logical																
compactness co																
nnectness on																
real line																
component and																
locally																
connectness																
snaces																
<u> </u>	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	2
78MS103.3													—	_	_	
Define and																
computesenera																
tions																
axiomsT0 T1 T2																
T3 T4and their																
characterstics																
and basic																
properties																
lemma of																
uryshons and																
tietz extension																
CO4-	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	2
78MS103.4													-	_	_	
Understand the																
definition of																
product																
compact space																
connected																
snace and nath																
connectedness																

path																
component .																
tychnoff																
product space																
in terma of																
subspace and																
its																
characterization																
projection map.																
CO5-	2	3	2	2	1	1	3	2	1	1	3	1	<u>2</u>	<u>1</u>	<u>2</u>	3
78MS103.5																
Understand and																
state the																
embedding and																
metrization																
embedding																
lemma and																
tychnoff																
embedding .																
the																
uryshonsmetriz																
ationtheorem.																
nets and filters.																
topology																
convergence of																
nets ,																
hausdroffness																
and nets.																
compactness																
and nets filters																
and their																
convergence.																
Canonoical way																
of converting																
nets and filters																
and vice versa.																
Ultrafilter and																
compactness																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laborator	Classroom Instruction (CI)	Self Learning (SL)
			y Instructio		
			n(LI)		
PO 1,2,3,4,5,6	CO1-78MS103.1	SO1.1		Unit-1.0 Group	SL1.1
7,8,9,10,11,12	Defineand understand the	SO1.2		1.1,1.2,1.3,1.4,1.5,1.6,1.7,	SL1.2
PSO 1,2, 3, 4	concept of sets, theorems	SO1.5		1.8,1.9,1.10	
	based on countable and	SO1.5			
	algebraically hypotheiss				
	of continum ,topolocal space				
	Apply to know the interior ,				
	exterior and boundary point,				
	limit points. Continuous				
	functions and				
	nomeomorphism	\$01.1		Linit 2 Ding	SI 2 1
PU 1,2,3,4,5,6	understand the basic	SO1.2		Unit-2 King	SL2.2
7,0,9,10,11,12	concepts of countable spaces	SO1.3		2.1, 2.2, 2.5, 2.4, 2.5, 2.0,	
F30 1,2, 3, 4	I and II	SO1.4		2.7, 2.8,2.9,2.10	
	,lindelofftheorem,seperable	501.5			
	space compactness and finite				
	intersection property				
	sequentially and countably				
	compact set , logical				
	real line component and				
	locally connectness spaces				
PO 1,2,3,4,5,6	CO3-78MS103.3	SO1.1		Unit-3	SL3.1
7,8,9,10,11,12	Define and	SO1.2		2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	SL3.2
PSO 1,2, 3, 4	computeseperations	SO1.3 SO1.4		2.7, 2.8,2.9,2.10	
	axiomsT0,T1,T2,T3,T4and	SO1.5			
	their characteristics and basic				
	urvshons and tietz extension				
PO 1.2.3.4.5.6	CO4-78MS103.4	SO1.1		Unit-4	SL4.1
7.8.9.10.11.12	Understand the definition of	SO1.2		2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	SL4.2
PSO 1.2. 3. 4	product compact space	SO1.3		2.7. 2.8.2.9.2.10	
	,connected space, and path	SO1.4 SO1.5		, -, -, -	
	connectedness , path	501.5			
	component . tychnott product				
	and its characterization				
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	properties .lemma of uryshons and tietz extension CO4-78MS103.4 Understand the definition of product compact space ,connected space, and path connectedness , path component . tychnoff product space in terma of subspace and its characterization	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-4 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	SL4.1 SL4.2

	projection map.			
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5-78MS103.5 Understand and state the embedding and metrization .embedding lemma and tychnoff embedding . the uryshonsmetrizationtheorem . nets and filters . topology convergence of nets , hausdroffness and nets. compactness and nets filters and their convergence. Canonoical way of converting nets and filters and vice versa. Ultrafilter and compactness.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	Unit-5 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	SL5.1 SL5.2 SL5.3

.....

Semester-I

Course Code:	78MS104				
Course Title :	Complex Analysis-I				
perquisite:	Students should have basic knowledge of complex numbers				
Rationale:	The program aims to develop advanced problem- solving and analytical skills and prepares students				
	for careers in academia, research, industry, or				
other sectors that require adv					
	mathematical expertise.				

Course Outcomes :

- **CO1-78MS104.1** Understand the importance of algebra of complex numbers with regard to working within various number systems.
- **CO2-78MS104.2**. Students will determine a given function which is on the closed contour 'c' and the value of integration of this function .
- **CO3-78MS104.3**. Students will Calculate Residues in some special cases by using Residue theorem.
- **CO4-78MS104.4** Students will compute the Expansion of Analytic function as power series by using Taylor and Laurent theorem.

CO5-78MS104.5 .Students will create the concept of a Mapping or Transformation and their representation

Scheme of Studies:

Board of Study	Course Code	Course Title	Scheme of st	Scheme of studies (Hours/Week)							
			CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	s (C)			
Program Core (PCC)	78MS104	Complex analysis-l	4[3+1]	0	1	1	6	4			

Legend:

Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

	Theory									
Board	Couse Code	Course Title	So	cheme of Ass	essment (Mark	s)				
of Study			Progressiv	ve Assessmer	nt (PRA)				End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendanc e (AT)	Total Marks (CA+CT+SA +CAT+AT)		
РСС	78MS104	Complex analysis-I	15	20	5	5	5	50	50	100

· · · ·

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS104.1

Understand the importance of algebra of complex numbers with regard to working within various number systems.

Approximate HoursItemAppX HrsCl12Ll0SW1SL1Total14

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning (SL)
Session Outcomes (SOs) SO1.1 Understand the Algebra of complex numbers. SO1.2 Understand the relationships between complex numbers structures with familiar numbers systems such as the integers and real numbers SO1.3 Understand the concept of contur integration So1.4 Understand the hypothesis of Cauchy's Theorem So1.5 Understand the concept of	Laboratory Instruction (LI) -	Class room Instruction (CI) Unit-1.0 The Complex Number systems, Analytic functions. 1.1 Introduction of complex numbers 1.2 Geometric representation of complex numbers 1.3 limit, continuity and differentiability of complex function 1.4 Analytic function. 1.5 Tutorial-I 1.6 complex integration 1.7 Cauchy's Theorem. 1.8 Cauchy Gaursat theorem 1.9 Cauchy integral formula	Self Learning (SL) SL.1 Understand the complex numbers. SL.2 knowledge of the difference and division between two complex numbers. SL.3 Properties of Modulus and Argument of complex numbers.
function.		1.10 Cauchy integral formula for derivative of the function 1.11	
		Higher order derivatives.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Relationships between complex numbers structures with familiar numbers systems such as the Set of natural numbers, Set of rational numbers, Set of integers, Set of real numbers, Set of complex numbers. ii. Geometric representation of complex numbers.

iii. State and proof cauchy Gaursat theorem.

iv. Cauchy integral formula for Higher order derivative.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

Quiz, Class Test

CO2-78MS104.2

Students will determine a given function which is on the closed contour c and the value of integration of this function.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		

SO2.1	Unit-2.0 Complex	SL.1
Understand the concept	Integration:	Evaluation Elementary
of Moderate 's theorem	integration.	function of a complex
	2.1 Marara's theorem	variables
		Variables
502.2	2.2 Cauchy's inequality	SI 2
	2.3 Liousville's theorem	
Learn about structure	2.4 Certain theorem on power	Knowledge of the
preserving maps	series	Analyticity of the sum
between groups and	2.5 Tutorial-I	function of a series
their consequences.	2.6 Fundamental theorem of	
SO2.3	algebraic function	SL.3
Understand the concept	2.7the concept of Taylor's series	Knowledge of some
of	2.8 the concept of Taylor's	Elementary properties
Composition series	theorem	of complex numbers.
SO2.4		
Understand the Uses of	2.9 Theorems on inequality	
Composition series in		
Jordan-Holder theorem	2.10 Expansion of analytic	
SO2.5	function as power series	
Understand the Relation	2.11 the concept of Laurent	
of Ring and Various	theorem	
polynomials	2.12 Tutorial-I	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. State and prove Morera's theorem.
- ii. State and prove cauchy inequality.
- iii. State and prove Liousville's theorem.
- iv. State and prove Fundamental theorem of algebra.
- V. Taylor's series.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO3-78MS104.3

Students will Calculate Residues in some special cases by using Residue theorem .

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session	Laboratory	Class room Instruction	Self Learning
Outcomes	Instruction	(CI)	(SL)
(SOs)	(LI)		
SO3.1		Unit-3.0 principal of Argument and	SL.1
Understand the		Rouche's theorem	Knowledge of
principal of		3.1 Maximum Modulus principle.	the poles and
Argument		3.2 Minimum Modulus principle.	zeros of a
SO3.2		3.3 the concept of Schwartz lemma.	function.
Rouche's		3.4 Laurent's series.	
theorem		3.5 Tutorial –I	SL.2
SO3.3 the concept of Maximum Modulus principal		 3.6 Meromorphic function. 3.7 The poles and zeros of a Meromorphic function . 3.8 singular and classification of singularity . 3.9 some Theorems on poles . 3.10 Inverse function theorem 3.11 The concept of Argument principle. 3.12 Tutorial – II 	Understand an application of Rouche's theorem.

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. The concept of Argument principle.
- ii. Application of Rouche's theorem .
- iii. Definition of Meromorphic function.
- iv. State and prove Maximum Modulus theorem.
- V. Schwarz lemma.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO4-78MS104.4

Students will compute the Expansion of Analytic function as power series by using Taylor and Laurent theorem.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory	Class room Instruction	Self Learning (SL)
(SOs)	(LI)		
SO4.1 Understand the concept of Residues at a singularity SO4.2 Residues at infinity SO4.3 Understand the importance of Residues theorem		Unit -4 Residue Theory and Calculus of Residue. 4.1 Understand the Residue. 4.2 Cauchy Residue theorem. 4.3 Evaluation of Integrals. 4.3 Branches of many valued function 4.4 Residue at infinity 4.5 Tutorial –I 4.6 The residue at a singularity. 4.7 Special reference to arg z, log z 4.8 Evaluation of definite Integrals by contour integration 4.9 some residue theorem 4.10 Residue at a simple poles 4.11 Integration round the unit circle 4.12 Tutorial –I	 SL.1 Calculation of Residues in some special cases. Evaluation of definite integral by contour integration.

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Evaluation of definite integral by contour integration.
- ii. Application of Residues theorem.
- iii. State and prove cauchy residue theorem .
- iv. Calculation of residues in some special cases.
- V. Evaluation of integrals.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO5-78MS104.5

Students will create the concept of a Mapping or Transformation and their representation.

Approximate Hours			
Item	AppX Hrs		
Cl	12		
LI	0		
SW	1		
SL	1		
Total	14		

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction (LI)	(CI)	(SL)

SO5.1 Understand the	Unit-5.0 Understand the	SL.1
concept of Mapping or	Bilinear Transformations &	knowledge of the
Transformation.	Conformal Mappings.	linear
SO5.2 Product of two Bilinear Transformation.	5.1 Tthe concept of Mappings or Transformation.5.2 Bilinear Transformation.	Transformation.
SO5.3 Conformal mapping.	 5.3 their properties and Classification. 5.4 Definition and Example of conformal mapping. 5.5 Tutorial -I 5.6 Space of analytic function. 5.7 Hurwitz theorem. 5.8 Montel's. theorem. 5.9 Riemann mapping. 5.10jacobian of a Transformation. 5.11 Some Elementary Transformation. 	The Representation of a conformal mapping.
	5.12 Tutorial -II	

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture	Sessional	Self Learning	Total hour
	(CI)	Work	(SI)	(Cl+SW+Sl)
		(SW)		
CO1-78MS104.1 Understand the				12
importance of algebra of complex	12	1	1	
numbers with regard to working				
within various number systems.				

CO1-78MS104.2				12
Students will determine a	12	1	1	
given function which is				
on the closed contur c '				
and also find the value of				
integration of this				
function .				
CO3-78MS101.3				12
Students will Calculate	12	1	1	
Residues in some special				
cases by using Residue				
theorem .				
CO4-78MS101.4	12	1	1	12
Students will compute				
the Expansion of Analytic				
function as power series by				
using Taylor and Laurent				
theorem.				
CO1-78MS104.5 Students will	12	1	1	12
create the concept of a Mapping				
or Transformation and their				
representation.				
Total Hours	60	5	5	70

• Suggestion for End Semester Assessment

• Suggested Specification Table For(ESA)

со	Unit Titles	Marks Distril	Total Marks		
		R	U	Α	

CO-1	Understand the importance of algebra of complex numbers with regard to working within various number systems.	03	01	01	05
CO-2	Students will determine a given function which is on the closed contur c' and also find the value of integration of this function.	02	05	03	10
CO-3	Students will Calculate Residues in some special cases by using Residue theorem.	03	06	06	15
CO-4	Students will compute the Expansion of Analytic function as power series by using Taylor and Laurent theorem.	-	10	05	15
CO-5	Students will create the concept of a Mapping or Transformation and their representation.	03	02	-	05
Total		11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6 .Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

- /				
S.	Title	Author	Publisher	Edition & Year
N				
IN				
о.				
1	Complex variables and applications	R.V.Churchill,J.W. Brown	McGraw-Hill,New York,	2nd edition, 1989
2.	Fundamentals of complex analysis	S.Ponnuswamy,	Narosa Publishing house	4th edition, 1985
3.	Theory and Problems of complex variables	Lars.V.Ahlfors,	McGraw-Hill,New York McGraw Hill book company International	Edition, Singapore,1979

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS104 Course Title: Complex Analysis-I

Course	PO1	РО 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	P O 12	PSO 1	PSO 2	PSO 3	PSO 4
Outcome	Adva nced Mat hem atica I Kno wled ge	Pr ob le m- sol vin g Ski Ils	Research Abilities	Qua ntita tive Anal ysis	Teachi ng and Acade mia	Theo retic al Und ersta ndin g	Comm unicati on Skills	Ope ratio ns Rese arch	Applica tion in Industr Y	Engine ering and Techno logy	Gover nment and Public Sector	Co ns ul ti ng	Underst and the mathem atical concepts and applicati ons in the field of algebra	Han dle the adva nced tech niqu es	Develop necessar y skills and expertis e in the field of research	Creat es Math emati cal Mode ls
CO1- 78MS101.1 Understand the importance of algebraic properties with regard to working within various number systems.	2	1	2	3	2	2	2	3	1	2	2	1	2	<u>3</u>	1	<u>2</u>
CO2- 78MS101.2. Students will determine whether a given binary operation on the given set gives a group structure by applying the axioms.	3	2	2	2	2	3	2	3	1	2	3	1	2	<u>3</u>	<u>1</u>	2
CO3- 78MS101.3. Students will be able to describe all elements in a cyclic subgroup by using generators.	2	3	2	2	3	2	2	1	3	1	2	2	<u>3</u>	2	2	<u>2</u>

CO4-	2	3	3	2	2	3	2	1	2	3	3	3	<u>2</u>	<u>1</u>	<u>1</u>	<u>2</u>
78MS101.4																
Students will																
compute the																
expression of																
permutation																
groups by using																
permutation																
multiplication.																
CO5-	2	3	3	3	2	2	2	1	2	1	2	2	<u>3</u>	<u>3</u>	<u>2</u>	<u>2</u>
78MS101.5																
Students will																
create the																
concept of a																
group action to																
real life																
problems such																
as Counting.																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction	, (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1- 78MS101.1 Understand the importance of algebraic properties with regard to working within various number systems.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unii 1.1, 1.9,	t-1.0 Group 1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.10	SL1.1 SL1.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2-78MS101.2. Students will determine whether a given binary operation on the given set gives a group structure by applying the axioms.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit 2.1, 2.8,	t-2 Ring 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9,2.10	SL2.1 SL2.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3-78MS101.3. Students will be able to describe all elements in a cyclic subgroup by using generators.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit 2.1, 2.8,	t-3 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9,2.10	SL3.1 SL3.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4- 78MS101.4 Students will compute the expression of permutation groups by using permutation multiplication.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit 2.1, 2.8,	t-4 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9,2.10	SL4.1 SL4.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5-78MS101.5 Students will create the concept of a group action to real life problems such as Counting.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit 2.1, 2.8,	t-5 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9,2.10	SL5.1 SL5.2

M.Sc. Semester-I

Course Code:	78MS105
Course Title :	[Research Methodology]
Pre- requisite:	Among then of great importance are first, the actuality of
	the theme of the research; second-the choice of
	adequate research instruments and taxonomy to the
	chosen object field.
Rationale:	Think of a research rationale as a set of reasons that
	explain why a study is necessary and important based on
	its background.

Course Outcome :

CO1-78MS105.1 Students will understand research approaches.

- **CO2-78MS105.2** With the help of this course, students will be able to take up and implement a research project/ study.
- CO3-78MS105.3. Define a research problem.
- **CO4-78MS105.4** The Students will develop skills in qualitative and quantitative data analysis and presentation.
- **CO5-78MS105.5** To teach students different techniques of research modelling, data collection, designing and planning of experiments.

Scheme of Studies:

Board of	Course	Course Title	Scheme of studies (Hours/Week)					
Study	Coue		Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	ts (C)
Program Core (PCC)	78MS105	Research Methodolog Y	4[3+1]	0	1	1	6	4

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning, C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Воа	Couse Code	Course Title		Schem	e of Assess	ment (M	arks)			
rd			Prog	ressive As	sessment (PRA)			End	Total
of	78MS105	Research							Semester	Marks
Stu		Methodology							Assessm	(PRA+
dy									ent	ESA)
									(ESA)	
			Class/Ho	Class	Seminar	Class	Class	Total		
			me	Test 2	one	Activit	Attend	Marks		
			Assignme	(2 best	(SA)	y any	ance	(CA+CT+		
			nt 5	out of		one	(AT)	SA		
			number	3)		(CAT)		+CAT+A		
			3 marks	10				T)		
			each	marks						
			(CA)	each						
				(CT)						
PCC	78MS105	Research	15	20	5	5	5	50	50	100
		Methodology								

Scheme of Assessment: Theory

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS105.1 Students will understand research approaches.

Approximate Hours

Item	AppX Hrs
Cl	14
LI	0
SW	1
SL	1
Total	16

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1		Unit-1.0	SL.1
Understand the		1.1 Introduction of	Understand the
concept of research		Research	concept. Research
meaning,		1.2 : Meaning,	Methodology
SO1.2		1.3 Objectives,	SL.2
Understand the	-	1.4 Motivation	Understand
research approaches		1.5 Types of Research	significance of research
SO1.3		1.6 Research	SL.3
Recognize the		Approaches,	Understand the
mathematical objects		1.4 Significance of	concept of research
of methodology.		Research,	process
		1.5 Research Methods	
SO1.4 Learn about		1.6 tutorial-1	
research process		1.7 versus of Research	
SO1.5		Methodology,	
Understand the criteria		1.8 Research	
of good research		1.9 Scientific Method,	
		1.10 Importance of	
		knowing	
		1.11 how research is	
		done,	
		1.12 Research Process,	
		1.13 Criteria of good	
		research,	
		1.14 Problems	
		encountered by	
		researchers in India.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. explain the significance of research,
- ii. write the Criteria of good research, ;
- iii. write Problems encountered by researchers in India

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

- **c.** Other Activities (Specify):
 - Quiz, Class Test.

78MS105.2: With the help of this course, students will be able to take up and implement a research project/ study.

 Approximate Hours

ltem	AppXHrs
Cl	11
SW	1
SL	1
Total	13

SessionOutcomes	LaboratoryInstruction	ClassroomInstruction	SelfLearning
SO2 1 What is a			
research problem		21 What is a	Learn about
		research problem	research
SO2 2 discuss Selecting the		2.2 Selecting the	nrohlem
problem		problem	problem
1		2.3 Necessity of	
SO2.3		defining the	SL.2
To learn about		problem	Understand the
Necessity of defining		2.4 find the	concept.
the problem		research problem	Selecting the
		2.5 research	problem
SO2.4		problem	
Explain defining a problem		2.6types of	
		research problem	
		2.7 Technique	
		involved in	
		problem	
		2.8 Explain	
		Technique	
		2.9 involved in	
		problem	
		2.10 defining a	
		problem	
		2.11 tutorial	

SW-2 Suggested SessionalWork(SW):

a. Assignments:-

(1) Difine the research problem

- (2) Understand the basics of Selecting the problem
- b. MiniProject:

Power Point Presentation

c. Other Activities (Specify): Class Test.CO3-78MS105.3. Define a research problem.

Approximate Hours

Item	AppXHrs
Cl	13
LI	0
SW	1
SL	1
Total	15

SessionOutcomes	LaboratoryInstr	ClassroomInstruction	SelfLearning
(SOs)	uction	(CI)	(SL)
	(LI)		
SO3.1To Understand the	•	Unit-3	SL.1
Meaning of Research		3.1.1 Meaning of Research	To learn Research
Design		Design	Design
SO3.2To learn Research		3.2 Define Research Design	
Design.		3.3 Need for Research Design.	SL.2
		3.4 Need for Research Design	
SO3.3Explain Features of a		area	To learn Important
good design		3.5 Features of a good design	concepts of
		3.6 Important concepts of	Research Design
SO3.4 To Understand		research design	_
different type of		3.7 relating to research design	
Research Design		3.8 Tutorial	
		3.9 Different research designs.	
		3.10 Basic Principles of	
		Experimental Designs.	
		3.11 Types of Experimental	
		Designs.	
		3.12 good design	
		3.13 problem of good research	
		design	

SW-3 SuggestedSessionalWork(SW):

a. Assignments:-

- (1) Basic Features of a good design
- (2) Different research designs

b. MiniProject:

Oral presentation, Poster presentation,

c.Other Activities (Specify): Class Test.

CO4-78MS105.4 The Students will develop skills in qualitative and quantitative data analysis and presentation.

Ар	proximate Hours
Item	AppXHrs
Cl	12
LI	0
SW	1
SL	1
Total	14

SessionOutcomes (SOs)	LaboratoryInstr uction	ClassroomInstruction (CI)	SelfLearning (SL)
	(LI)		
SO4.1To Understand concept		Unit-4	1. Statistics in
Central Tendency		4.1Statistics in Research	Research
		4.2 Measures of Central	
		Tendency	2. Measures of
SO4.2To learn Measures of		4.3 Central Tendency	Relationship
Relationship		4.4 Measures of Dispersion	
		4.5 Measures of Asymmetry	
SO4.3 To understand Multiple		(Skewness)	
Correlation and Regression		4.6 Measures of Relationship	
		4.7 Simple Regression Analysis	
		4.8 Regression Analysis	
SO4.4ExplainSimple Regression		4.9 Multiple Correlation and	
Analysis		Regression	
		4.10 Regression	
		4.11 Partial Correlation.	
		4.12 Tutorial	

SW-4 SuggestedSessionalWork(SW): Assignments:

(1) Partial Correlation.

(2) Simple Regression Analysis.

a. MiniProject:

Oral presentation, Power Point Presentation.

c.Other Activities (Specify): No

CO5-78MS105.5 To teach students different techniques of research modelling, data collection, designing and planning of experiments.

Approximate H	lours
Item	AppXHrs
Cl	10
LI	0
SW	1
SL	1
Total	12

SessionOutcomes	LaboratoryInstruction	ClassroomInstruction	SelfLearning
(SOs)	(LI)	(CI)	(SL)
 (SOS) SO5.1To understand Report Writing SO5.2To learn about Different steps in writing report SO5.3 Explain Types of report . 		 Unit 5 5.1 Significance of Report Writing 5.2 Example of Report Writing 5.3 Problem define of Report Writing 5.4 Different steps in writing report. 5.5 Layout of a research report 5.6 Oral Presentation 5.6 Mechanics of writing a research report 5.7 tutorial -1 5.8 research report 5.9 Precautions for writing research reports. 5.10 writing research reports. 	 To learn about Types of report Definition and examples of Report Writing

SW-5 SuggestedSessionalWork(SW):

a. Assignments:-

(1) Binary operation, group and sub types of group.

- (2) Definition and examples of rings and field.
- (3) homeomorphism and isomorphism of group.
- b. MiniProject:
 - Oral presentation, Power Point Presentation,
- c. OtherActivities(Specify): Report writing

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-78MS105.1 Students will Understand research approaches.	14	1	1	13
CO2-78MS105.2 With the help of this course, students will be able to take up and implement a research project/ study.	11	1	1	10
CO3-78MS105.3. Define a research problem.	13	1	1	12
CO4-78MS105.4 The Students will develop skills in qualitative and quantitative data analysis and presentation.	12	1	1	13
CO5-78MS105.5 To teach students different techniques of research modelling, data collection, designing and planning of experiments.	10	1	1	11
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution	Total
			Marks

		R	U	Α		
CO-1	Research meaning	03	01	01		05
CO-2	Research problem	02	06	02		10
CO-3	Research Design	03	07	05		15
CO-4	Central Tendency	-	10	05		15
CO-5	Research report	03	02		-	05
Total		11	26		13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment. **Suggested Instructional/Implementation Strategies**

1. Improved Lecture 2. Tutorial 3. Presentation 4 . Group Discussion 5. Online sources 6 .Seminar 7. Workshop

Suggested Learning Resources:

a) Books :

S.	Title	Author	Publisher	Edition & Year
Ν				
о.				
1	Research Methodology Methods and Techniques	C.R.Kothari	Wishwa Prakashan	Publishers Second Edition.
2	Research Methodology for Biological Sciences Abstract Algebra,	N. Gurumani	MJP Publishers	
3	Introduction to educational technology.	Sampath.K., Panneerselvam. Aand Santhanam.	New Delhi: Sterling Publishers	(2nd revised). (1984),

Curriculum Development Team:

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics

.....

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS105 Course Title: Research Methodology

Course	PO1	PO 2	РО 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
Outcome	Advan ced Math emati cal Knowl edge	Pro ble m- sol vin g Skil Is	Res ear ch Abi liti es	Quant itative Analy sis	Teac hing and Aca dem ia	The oreti cal Und erst andi ng	Comm unicati on Skills	Ope rati ons Res earc h	Applic ation in Indust ry	Engine ering and Techno logy	Gover nmen t and Public Secto r	Co nsu Itin g	Understand the mathematica I concepts and applications in the field of algebra	Handl e the advan ced techni ques	Develop necessa ry skills and expertis e in the field of research	Cre ates Mat hem atic al Mo dels
CO1-78MS105.1 Students will understand research approaches.	2	3	1	2	1	2	2	2	1	1	1	1	2	1	<u>1</u>	<u>3</u>
CO2-78MS105.2 With the help of this course, students will be able to take up and implement a research project/ study.	1	3	2	1	1	1	1	1	1	2	3	1	<u>3</u>	1	1	2
CO3-78MS105.3. Define a research problem.	2	3	2	2	1	1	3	2	1	1	3	1	2	1	<u>2</u>	2
CO4-78MS105.4 The Students will develop skills in qualitative and quantitative data analysis and presentation.	2	3	2	2	1	1	3	2	1	1	3	1	2	<u>1</u>	2	2
CO5-78MS105.5 To teach students different techniques of research modelling, data collection, designin g and planning of experiments.	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction	/ h(LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1-78MS105.1 Students will understand research approaches.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1.0 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8 1.9,1.10		SL1.1 SL1.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2-78MS105.2 With the help of this course, students will be able to take up and implement a research project/ study.	SO1.1 SO1.2 SO1.3 SO1.4		Uni [†] 2.1, 2.8,	t-2 . 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9,2.10	SL2.1 SL2.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3-78MS105.3. Define a research problem.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Uni [†] 2.1, 2.8,	t-3 . 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9,2.10	SL3.1 SL3.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4-78MS105.4 The Students will develop skills in qualitative and quantitative data analysis and presentation.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Uni 2.1, 2.8,	t-4 . 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9,2.10	SL4.1 SL4.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5-78MS105.5 To teach students different techniques of research modelling, data collection, designing and planning of experiments.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit 2.1, 2.8,	t-5 . 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.9,2.10	SL5.1 SL5.2 SL5.3

Semester-II

Course Code:

78MS201

Course Title : Advanced Abstract Algebra-II Pre- requisite: Students should have basic knowledge of group theory and Mapping Rationale: The objective of Advanced Abstract Algebra is to deepen the understanding and explore more advanced topics in the field of abstract algebra. Abstract algebra is a branch of mathematics that studies algebraic structures such as groups, rings, fields, and modules, focusing on their properties and relationships.

Course Outcome :

78MS201.1 Determine whether a particular subset of a ring R is a subring, ideal, or radical.

78MS201.2. Prove elementary facts about subrings and ideals from the relevant definitions and other elementary facts;

78MS201.3. Prove basic relationships between subrings and ideals (e.g., all ideals are subrings but not all subrings are ideals)

78MS201.4 Learn about the concept of linear independence of vectors over a field, and the dimension of a vector space.

78MS201.5 Basic concepts of linear transformations, dimension theorem, matrix representation of a linear transformation, and the change of coordinate matrix.

Board of	Course Code	Course	Scheme of studies (Hours/Week)					
Study		CI		L	SW	SL	Total Study Hours (CI+LI+SW+SL)	ts (C)
Program Core (PCC)	78MS201	Advanced Abstract Algebra-II	4[3+1]	0	1	1	6	4

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

```
SW: Sessional Work (includes assignment, seminar, mini project etc.)
```

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Board	Couse Code	Course Title	So	Scheme of Assessment (Marks)							
Study			Progressi	Progressive Assessment (PRA)							
			Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendanc e (AT)	Total Marks (CA+CT+SA + CAT+AT)			
PCC	78MS201	Advanced Abstract Algebra-II	15	20	5	5	5	50	50	100	

Theory

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS201.1 Determine whether a particular subset of a ring R is a subring, ideal, or radical.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 Understand the concept of Finite Group. SO1.2 Understand the relationships between subgroups SO1.3 Understand the construction of composition series So1.4 Understand the hypothesis of Cauchy's Theorem So1.5 Understand the hypothesis of Sylow's Theorem	-	 Unit-1 Finite Groups Composition series Solvable group Theorems on Solvable group P-Subgroup P-Subgroup Nilpotent group Tutorial-I Commutator subgroup of a group Theorems on Commutator subgroup Cauchy's theorem for finite abelian group Cauchy's theorem for finite abelian group Sylow's theorem Tutorial-II 	SL.1 Understand the properties of group, ring, subgroup SL.2 learn to formation of Quotient group SL.3 Understand the concept of Improper and proper subgroups

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Solvable group, Nilpotent group, commutator sub-group of a group, Cauchy's theorem, Sylow's theorem.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO2-78MS201.2

Prove elementary facts about subrings and ideals from the relevant definitions and other elementary facts

			Approxi	mate Hours	
			ltem	AppX Hrs	
			Cl	12	
			LI	0	
			SW	1	
			SL	1	
			Total	14	
Session Outcomes	Labora	Class room Instruction	n	Self Learning	
(SOs)	tory	(CI)		(SL)	
	Instruc				
	tion				
	(LI)				
SO2.1		Unit-2.0 Module -I		SL.1	
Understand the relationships		2.1 Introduction		learn the no. of	
between Ring and modules		2.2 Definition		properties of	
SO2.2		2.3 Submodules		Module	
Learn about properties associated		2.4 Properties of	Modules		
with modules		2.5 Tutorial-I		SL.2	
SO2.3		2.6 Theorems on	Modules	Understand the	
Understand the concept of		2.7 Theorems on		proof of elemetary	
Submodule		SubModules		properties of	
SO2.4		2.8 Semisimple m	nodules	mouule	
Understand the concept of		29 Algebra of m	ndules		
Quotient module		2.10 Theorems on	Algobra		
JU2.3		of modulos	rigeni a		
Fundamental Theorem on		3 11 Quetient m	adulac		
Modules		2.11 Quotient mo	Juules		
wouldes		2.12 Fundamental			
		Theorem on Mo	odules		

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Module and Submodule
- ii. Algebra of Module
- iii. Quotient Module
- iv. Mapping defined on Rings
- V. Kernel of mapping
- **b.** Other Activities (Specify): Quiz, Class Test.

CO3-78MS201.3

Prove basic relationships between subrings and ideals (e.g., all ideals are subrings but not all subrings are ideals)

Approximate Hours		
ltem	AppX Hrs	
Cl	12	
LI	0	
SW	1	
SL	1	
Total	14	

Session Outcomes (SOs)	Laborator y Instructio n (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO3.1 Understand the concept Domain, Codomain and Range of mapping SO3.2 Understand the concept of Range of module. SO3.3 Understand the kernel of 		 Unit-3.0 Module –II 3.1 Primary Modules 3.2 Theorem on Primary Modules 3.3 Uniform modules 3.4 Theorem on Uniform modules 3.5 Domain and Codomain of 	SL.1 Understan d the concept of mapping on Module. SL.2 Understan
Homomorphism of module. S03.4 Understand the Notherian and Artinian modules S03.5 Understand the relation of Ring		modules 3.6 Mapping defined on modules 3.7 Homomorphism of modules 3.8 Isomorphism of modules	d the structure of kernel of Mapping

with Notherian and Artinian	3 9 Kernel of Homomorphism	
	J.J Kerner of Homomorphism	
modules.	of modules	
	3.10 Finitely generated	
	modules	
	3.11 Notherian and Artinian	
	modules	
	3.12 Theorem on Notherian	
	and Artinian modules	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

b. Other Activities (Specify):

Quiz, Class Test.

CO4-78MS201.4

Learn about the concept of linear independence of vectors over a field, and the dimension of a vector space.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laborator y Instructio n (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1		Unit-4.0 Canonical Forms	SL.1
Understand the		4.1 Vector Space	Vector Space
relation between		4.2 Canonical Forms	
Transformation		4.3 Similarity of linear	SL.2
ITAIISIOIIIIALIOII		transformations	Concept of
SO4.2		4.4 Invariant subspace Reduction	manning
Understand the index		to triangular form	шарріне
of		4.5 Theorems on Invariant	
Nilpotent		subspace	
transformations		4.6 Nilpotent transformations	
		4.7 Index of Nilpotency	
SO4.3		4.8 Theorems on Nilpotent	

Understand The	transformations
concept of Jordan	4.9 Invariants of Nilpotent
blocks and Jordan	transformation
forms	4.10 Jordan blocks
	4.11 Jordan forms
	4.12 Theorems on Jordan forms

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Relationships between algebraic structures of ring with familiar numbers systems.
- ii. Application of Ring group theory in real life.
- iii. Permutation group.
- iv. Mapping defined on Rings.
- V. Polynomial Ring

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO5-78MS201.5

Basic concepts of linear transformations, dimension theorem, matrix representation of a linear transformation, and the change of coordinate matrix.

Approximate Hours		
Item	AppX Hrs	
Cl	12	
LI	0	
SW	1	
SL	1	
Total	14	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1 Understand the concept Field theory SO5.2 Understand the		Unit-5.0 Field theory 5.1 Field theory 5.2 Extension field 5.3 Algebraic Extension	SL.1 Verify relationships between vector space and its

relationships between	5.4 Theorems on Algebraic	subspace
Algebraic Extension	Extension	
Transcendental	5.5 Transcendental extensions	SL.2
Extension	5.6 Theorems on	understand the
SO5.3	Transcendental Extension	degree of
Understand the	5.7 Seperable extension	extension
relationships between	5.8 Inseperable extension	
seperable and	5.9 finite field	
Insepearable	5.10 Perfect field	
Extension	5.11 Normal extension of a	
	Field	
	5.12 Tutorial	

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
- i. Field theory
- ii. Extension field theory
- iii. Application of Field theory
- **b.** Other Activities (Specify):

Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
78MS201.1 Determine whether a particular subset of a ring R is a subring, ideal, or radical.	12	1	1	14
78MS201.2 . Prove elementary facts about subrings and ideals from the relevant definitions and other elementary facts.	12	1	1	14
78MS201.3 . Prove basic relationships between subrings and ideals (e.g., all ideals are subrings but not all subrings are	12	1	1	14

ideals)				
78MS201.4 Learn about the concept of linear independence of vectors over a field, and the dimension of a vector space.	12	1	1	14
78MS201.5 Basic concepts of linear transformations, dimension theorem, matrix representation of a linear transformation, and the change of coordinate matrix.	12	1	1	14
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks D	oistributio	n	Total Marks
		R	U	Α	
CO-1	Finite Group	05	03	02	10
CO-2	Module-I	05	03	02	10
CO-3	Module-II	05	03	02	10
CO-4	Canonical form	05	04	01	10
CO-5	Field Theory	05	04	01	10
	Total	25	17	08	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6. Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books:

S.	Title	Author	Publisher	Edition & Year		
Ν						
0.	Advanced	Dr. H. K. Dathak	Shroo Sahitua Sikeha			
T	Abstract Algebra		Prakashan, Meerut.			
2	Contemporary Abstract Algebra	J. A. Gallian	Narosa Publishing house, New Delhi	4th edition, 2009		
3	Abstract Algebra,	D. S. Dummit & R. M.,Foote	John Wiley & Sons, Indian reprint, New Delhi	3rd edition, 2011		
4	Basic Abstract Algebra	P.B. Bhattacharya , S.K.Jain &S.R. Nagpaul	Cambridge University press			
5	 Topics in Algebra, 	Herstein, I. N.,	John Wiley & Sons, Indian reprint, New Delhi	2nd edition, 2006.		

b) Reference Books:

S. No.	Title	Author	Publisher	Edition & Year
1	Abstract Algebra	I.N. Herstein	Macmillan, 3rd Edition,	1996, ISBN-10:

2.	Topics in Algebra,	I.N. Herstein	John Wiley and Sons, 2nd Edition	1976, N-10: 0471010901
3.	First Course in Abstract Algebra	Fraleigh, J. B. A	7th edition (Pearson Education India, New Delhi	2008

c) Suggetsed Digital Platform Web links :

Suggested	https://epgp.inflibnet.ac.in
Digital	https://www.highereducation.mp.gov.in/?page=xhzlOmpZwkylOo2b%2Fy5G7w
Platform	% 3D% 3D
s Web	http://www.haivirtualunivarsity.com
links:	http://www.onojviituarumversity.com
Suggested	https://nptel.ac.in/courses/111/106/111106137/
Equivale	https://nptel.ac.in/courses/111/105/111105112/
nt online	https://ugemoocs.inflibnet.ac.in/index.nbn/courses/view.ug/32
courses:	<u>mtps://dgemooes.mmonet.de.m/mdex.php/courses/view/dg/52</u>

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.

8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS201 Course Title: Advanced Abstract Algebra-II

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	P O	PSO 1	PSO 2	PSO 3	PSO 4
Course	Advana	Drahl	Dec	0.00	Taashi	Thee	Comm	Onerat	Annlia	Facino	Cav	12	Unders	Handl	Davalan	Creater
Outcome	ed	em-	earc	Qua	ng and	retic	unicati	ions	ation	ering	ern	on	tand	e the	necessar	Mathe
	Mathe	solvin	h	tive	Acade	al	on	Resear	in	and	men	su	the	advan	y skills	matical
	matical	g	Abili	Anal	mia	Und	Skills	ch	Industr	Techn	t	lti	mathe	ced	and	Models
	Knowle	Skills	ties	ysis		ersta			У	ology	and	ng	matical	techni	expertis	
	dge					ndin					Publi		concep	ques	e in the	
						g					C Soct		ts and		field of	
											or		tions in		research	
											0.		the			
													field of			
													algebra			
78MS201	2	3	1	2	1	2	2	2	1	1	1	1	2	1	1	3
1																_
– Determine																
whether a																
particular																
subset of																
a ring R is																
a subring																
ideal. or																
radical.																
. autour.	L	I	I		I		I	I					I	I		

78MS20 1.2Prove element ary facts about subrings and ideals from the relevant definitio ns and other element ary facts	1	3	2	1	1	1	1	1	1	2	3	1	3	1	1	2
78MS201.		3	2	2	1	1	3	2	1	1	3	1	<u>2</u>	<u>1</u>	<u>2</u>	2
3 . Prove basic relationsh ips between subrings and ideals (e.g., all ideals are subrings but not all subrings are ideals)																
78MS201. 4 Learn about the concept of linear independe nce of vectors over a field, and	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	2

the																
dimension																
of a vector																
space																
78MS201.5	2	3	2	2	1	1	3	2	1	1	3	1	<u>2</u>	<u>1</u>	<u>2</u>	3
Basic																
concepts of																
linear																
transformati																
ons,																
dimension																
theorem,																
matrix																
representatio																
n of a linear																
transformati																
on, and the																
change of																
coordinate																
matrix.																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laborato ry Instructi on(LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	78MS201.1 Determine whether a particular subset of a ring R is a subring, ideal, or radical.	S01.1 S01.2 S01.3 S01.4 S01.5		Unit-1.0 Group 1.1,1.2,1.3,1.4,1.5,1.6,1. 7,1.8,1.9,1.10,1.11,1.12	SL1.1 SL1.2 SL1.3
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	78MS201.2 . Prove elementary facts about subrings and ideals from the relevant definitions and other elementary facts.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-2 Ring 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12	SL2.1 SL2.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	78MS201.3 . Prove basic relationships between subrings and ideals (e.g., all ideals are subrings but not all subrings are ideals)	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-3 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,3.9,3.10,3.11,3.12	SL3.1 SL3.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	78MS201.4 Learn about the concept of linear independence of vectors over a field, and the dimension of a vector space.	SO1.1 SO1.2 SO1.3		Unit-4 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7,4.8,4.9,4.10,4.11,4.1 2	SL4.1 SL4.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	78MS201.5 Basic concepts of linear transformations, dimension theorem, matrix representation of a linear transformation, and the change of coordinate matrix.	S01.1 S01.2 S01.3		Unit-5 5.1, 5.2, 5.3, 5.4, 5.5, 5.6,5.7,5.8,8.9,5.10,5.11, 5.12,	SL5.1 SL5.2

Course Code:	78MS202					
Course Title :	Real Analysis-II					
	(Lebesgue Measure & Integration)					
Pre- requisite:	Students should have basic knowledge of and deep understanding of the theory of the Lebesgue measure & Integration.					
Rationale:	The program aims to develop advanced problem- solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced mathematical expertise.					

CO1-78MS202.1 Understand the importance of properties of Lebesgue outer measure and Borel measurability of sets

CO2-78MS202.2 Determine the Measurable function and Lebesgue Integral

CO3-78MS202.3 Demonstrate an understanding of the theory of Four derivatives and Lebesgue Differentiation theorem

CO4-78MS202.4 Define and recognize the series and Students will compute the expression of L^p Space and convex function .

CO5-78MS202.5 Students will create the concept of a Riesz theorem and uniform convergence.

Board of Study	Course Code	Course Title	Scheme of studies (Hours/Week)					Total Crodi
			CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	ts (C)
Program Core (PCC)	78MS202	Real Analysis- II	4[3+1]	0	1	1	6	4

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Board of	Couse	Course Title	Scheme of	Assessme	nt (Marks)				
Study	Code		Progressive Assessment (PRA)					End Semester Assessm ent (ESA)	Total Marks (PRA+ ESA)	
			Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+ SA +CAT+A T)		
PCC	78MS202	Real Analysis-II	15	20	5	5	5	50	50	100

Theory

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS202.1 Understand the importance of properties of Lebesgue outer measure and Borel measurability of sets

Approximate nours					
Item	AppXHrs				
Cl	13				
LI	0				
SW	1				
SL	1				
Total	15				

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
、			、 ,
Session Outcomes (SOs) SO1.1 Understand the concept of Lebesgueouter measure SO1.2 Understand the Properties of Measurable set SO1.3 Understand the Regularity of a measure. SO1.4 Understand the Lebesgue Measurability of Sets, SO1.5 Understand the Non- measurable of Sets.	Laboratory Instruction (LI)	Class room Instruction (CI) Unit-1.0 1.1Introduction 1.2 Lebesgueouter measure 1.3 Lebesgue Measurable set. 1.4 Regularity of a measure. 1.5Borel measurability of Sets. 1.6 Borel Set – Examples 1.7 Translational Invariant 1.8Lebesgue Measurability of Sets, 1.9Non- measurable of Sets. 1.10 F σ and F_{δ} sets	Self Learning (SL) SL.1 A set A is measurable iff its complement A' is measurable.
		Algebra of sets 1.11 First fundamental theorem	

Approximate Hours

	1.12 Second fundamental theorem	
	1.13 Tutorial 1	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Let E be a measurable set then any translate E+y is measurable where y is a real number

furthermore m(E+y) = m(E)

ii State and prove Second fundamental form of measurable set.

iii If E_1 and E_2 are any measurable set then show that

 $m(E_1 \cup E_2) + m(E_1 \cap E_2) = m(E_1) + m(E_2)$

iv Prove that the Intersection and Difference of two measurable sets are measurable.

V A Borel measurable set is Lebesgue measurable.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO2-78MS202.2 Determine the Measurable function and Lebesgue Integral

		Approximate Hours			
			Item	АррХН	Irs
			Cl	15	
			LI	0	
			SW	1	
			SL	1	
			Total	16	
Session Outcomes	Laboratory Instruction	Class room Instr	uction	Self Learni	ng
(SOs)	(LI)	(CI)		(SL)	
SO2.1		Unit2.0		SL1 Some	Properties of
Understand the				Lebesgue I	Measurable

		1
concept of	2.1Measurable	function
LebesgueMeasurable	function,	
function,	2.2Properties of	
SO2.2 Understand the	Lebesgue measurable	
Properties of Lebesgue	functions.	
measurable functions.	2.3 Integral of Non	
SO2.3 Understand the	negative Measurable	
Integral of Non	function.	
negative Measurable	2.4 Step function	
function.	2.5 Operations on	
SO2.4Understand the	Measurable functions	
Properties of	2.6 Characteristic	
Measurable se.	Function of set	
	2.7 Integration of series	
	2.8 Borel measurable	
	function	
	2.9 Littlewood's three	
	principles,	
	2.10Fatou's lemma	
	2.11 Reimann	
	andLebesgue integral.	
	2.12The general	
	integral	
	2.13 Properties of the	
	Lebesgue integral for	
	bounded measurable	
	function	
	2.14 Lebesgue bounded	
	convergence theorem	
	2.15 Lebesgue	
	dominated	
	convergence theorem	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Operations on Measurable functions.
- ii. Show that a step function is a measurable function
- iii. Theorems on Measurable function
- iv Show that every function defined on a set of measure zero is measurable .
- v The limit of convergence sequence of measurable function is measurable
- b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO3-78MS202.3 Demonstrate an understanding of the theory of Four derivatives and Lebesgue Differentiation theorem

Approximate Hours

Item	AppXHrs
Cl	10
LI	0
SW	1
SL	1
Total	12

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(505)	(LI)		(3L)
SO3.1		Unit-3.0	SL.1
Understand the the four		3.1 The four derivatives	Examples of
derivatives. Lebesgue		Introduction	function of
			bounded variation
		3.2 Tutorial 1	
SO3.2 Understand the		2.2 Laboration Differentiation	
Differentiation of an		3.3 Lebesgue Differentiation	
Integral		Theorem	
		3.4 Differentiation of an Integral-	
SO3.3 Understand the		lemma	
Eunctions of Bounded			
Variation		3.5 Fundamental theorem of	
Variation		Integral Calculus	
		3.6 Functions of Bounded	
SO3.4Understand the		Variation	
Jordan Decomposition			
theorem		3.7 Tutorial 2	
		3.8 Jordan Decomposition	
		theorem	

	3.9 Absolute continuous function	
	3.10Integral of the derivatives	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. state and prove Jordan Decomposition theorem

- ii. State and prove Lebesgue Differentiation Theorem
- iii. State and prove Fundamental theorem of Integral Calculus.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO4-78MS101.4

CO4-78MS202.4 Define and recognize the series and Students will compute the expression of L^p Space and convex function .

Approximate Hours

ltem	AppXHrs	
Cl	11	
LI	0	
SW	1	
SL	1	
Total	13	

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)

SO4.1	Unit-4.0	SL.1
UnderstandTheL ^p -	4.1Introduction The L ^p -	Some theorems of L ^p -
Space	Space	Space
SO4.2 Understand	4.2 Theorems of L ^p -	
theConvex function	Space	
SO4.3Understand the	4.3 Convex function	
Holder and	4.4 Theorems on	
Minkowski's	Convex function	
Inequalities for L ^p	4.5 Jensen's Inequality.	
SO4.4 Completeness of	4.6 Holder Inequalities	
L ^p -Space.	for L ^p -Space.	
	4.7 Minkowski's	
	Inequalities for L ^p -	
	Space	
	4.8 Completeness of	
	L ^p -Space	
	4.9 L ^p -Space is normed	
	linear space	
	4.10 Riesz-Fischer	
	theorem	
	4.11 Tutorial 1	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- (i) Jensen's Inequality.
- (ii) Holder Inequalities for L^p-Space.
- (iii) Minkowski's Inequalities for L^p-Space

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO5-78MS202.5 Students will create the concept of a Riesz theorem and uniform convergence

1	Approximate Hours								
	ltem	Appx Hrs							
	Cl	11							
	LI	0							
	SW	1							
	SL	1							

Total

13

Session Outcomes La	Laboratory Instruction	Class room Instruction	Self Learning
(SOs) (I	(LI)	(CI)	(SL)
SO5.1 Understand the concept Convergence in measure SO5.2 Understand the Riesz theorem SO5.3 Understand Uniform Convergence SO5.4Understand Egoroff's theorem		Unit-5.0 5.1 Convergence in measure, 5.2 Riesz theorem 5.3 Uniform Convergence - L^p is complete 5.4 Uniform Convergence - L^∞ is complete 5.5 Almost Uniform Convergence-Example 1 5.6 Almost Uniform Convergence-Example 2 5.7 Theorems on Convergence in measure, 5.8 Test of consistency 5.9 Lebesgue integrable function on [0,1] 5.10 Egoroff's theorem 5.11 Tutorial 1	SL.1 If <fn> is a Cauchy sequence then it has limit</fn>

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-78MS202.1 Understand the importance of properties of Lebesgue outer measure and Borel measurability of sets	13	1	1	15
CO2-78MS202.2 Determine the Measurable function and Lebesgue Integral	15	1	1	17
CO3-78MS202.3 Demonstrate an understanding of the theory of Four derivatives and Lebesgue Differentiation theorem	10	1	1	12
CO4-78MS202.4 Define and recognize the series and Students will compute the expression of L ^p Space and convex function .	11	1	1	13
CO5-78MS202.5 Students will create the concept of a Riesz theorem and uniform convergence.	11	1	1	13
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

со	Unit Titles	Mark	s Distribu	Total Marks		
		R	U	Α		
CO-1	Understand the importance of properties of Lebesgue outer measure and Borel measurability of sets	03	01	01		05
CO-2	Determine the Measurable function and Lebesgue Integral	02	06	02		10

CO-3	Demonstrate an understanding of the theory of Four derivatives and Lebesgue Differentiation theorem	03	07	05		15
CO-4	Define and recognize the series and Students will compute the expression of L ^p Space and convex function.	-	10	05		15
CO-5	Students will create the concept of a Riesz theorem and uniform convergence.	03	02		-	05
Total	•	11	26		13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6 .Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S. N	Title	Author	Publisher	Edition & Year
0.	Roal Analysis	Dr H K Dathak	Shroo Sabitya Sikeba	
Ţ			Prakashan, Meerut.	2018
2	Real Analysis	S. C. Malik	Willey Eastern Ltd.,ew Delhi, 1985.	
3	Real Analysis,.	N. L. Carothers,	Cambridge University Press, UK, 2000	
4	Elementary Analysis:	Kenneth A. Ross	The theory of Calculus, Springer, New York, 2004.	
5	Principles of Mathematical Analysis	Walter Rudin	3 rd Edition, McGraw – Hill International Book Company, Singapore, 1982.	

Curriculum Development Team:

- 1. 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code :78MS202 Course Title: Real Analysis-II

	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1	PO1	PO	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcome	Adva nced Mat hem atica I Kno wled ge	Pr ob le m- sol vin g Ski Ils	Research Abilities	Qua ntita tive Anal ysis	Teachi ng and Acade mia	Theo retic al Und ersta ndin g	Co mm unic atio n Skill s	Oper ation s Resea rch	Appli catio n in Indu stry	U Engi neer ing and Tech nolo gy	1 Gove rnm ent and Publi c Sect or	12 Co ns ulti ng	Understan d the mathemat ical concepts and applicatio ns in the field of algebra	Handle the advanc ed techniq ues	Develop necessary skills and expertise in the field of research	Creates Mathe matical Models
CO1- 78MS202.1 Understan d the importance of properties of Lebesgue outer measure and Borel measurabili ty of sets.	2	3	1	2	1	2	1	2	1	1	2	1	2	2	1	
CO1- 78MS202. 2 Determine the Measurabl e function and Lebesgue Integral	2	3	1	1	1	1	1	1	1	1	1	1	1	2	2	
CO1- 78MS202.3	3	3	1	2	1	1	3	2	2	1	2	2	1	2	3	

Demonstra te an understand ing of the theory of Four derivatives and Lebesgue Differentiat ion theorem																
CO1- 78MS202.4 Define and recognize the series and Students will compute the expression of L ^p Space and convex function.	2	3	1	2	3	2	3	1	1	1	1	2	2	<u>1</u>	1	
CO1- 78MS202.5 Students will create the concept of a Riesz theorem and uniform convergenc e	3	2	3	1	2	1	2	3	1	1	1	1	1	1	1	

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laborato Instructi LI)	ory ion(Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1-78MS202.1 Understand the Lebesgue outer measure and measurable set	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Uni me set: 1.8,	t-1.0 Lebesgue outer asure and measurable 1.1,1.2,1.3,1.4,1.5,1.6,1.7, 1.9,1.10,1.11,1.12,1.13	SL1.1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2-78MS202.2 Measurable function and Lebesgue Integral	SO2.1 SO2.2 SO2.3 So2.4		Uni anc 2.2, 2.3, 0,2	SL2.1	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3-78MS202.3 Students will be able to describe all elements in Differentiation and Integration	SO3.1 SO3.2 SO3.3 SO3.4		Uni Inte 3.1, 3.7,	t-3 Differentiation and egration . 3.2, 3.3, 3.4, 3.5, 3.6, 3.8,3.9,3.10	SL3.1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4-78MS202.4 Students will compute the expression The L ^p - space	SO4.1 SO4.2 SO4.3 SO4.4		Uni 4.1, 4.8,	t-4 The L ^p -space . 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.9,4.10,4.11	SL4.1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5-78MS202.5 Students will create the concept of a Convergence in Measure:	SO5.1 SO5.2 SO5.3 SO5.4		Uni Me 5.1, 5.6,	t-5Convergence in asure: . 5.2, 5.3, 5.4, 5.5, .5.7,5.8,5.9,5.10,5.11	SL5.1

Semester-II

Course Code: 78MS203									
Course Title :	Complex Analysis-II								
quisite:	Students should have basic knowledge of complex numbers								
Rationale:	The program aims to develop advanced problem- solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced								
	mathematical expertise.								

Course Outcome :

- **CO1-78MS203.1** This course gives more Understanding about Analysis in mathematics.
- **CO2-78MS203.2**. Students will be equipped with the understanding of the fundamental concepts of complex variable theory and skill of contour integration.
- **CO3-78MS203.3**. This course involved complex number properties of them, analytic function, residues fundamental theorem.

CO4-78MS203.4 With this Course students are prepared to learn about advance complex analysis.

CO5-78MS203.5 Students will Constructing mobius transformations mapping given circle to given Circle.

Scheme of Studies:

Board of	Course Code	Course Title	Scheme of studies (Hours/Week)							
Study C			CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	ts (C)		
Program Core (PCC)	78MS203	Complex Analysis- II	4[3+1]	0	1	1	6	4		

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Board of	Couse	Course Title		Scheme of Assessment (Marks)						
Study	Code		Progressive Assessment (PRA)			End Semester Assessm ent (ESA)	Total Marks (PRA+ ESA)			
			Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+ SA +CAT+A T)		
PCC	78MS203	Complex Analysis-ll	15	20	5	5	5	50	50	100

Theory

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including

Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes .

CO1-78MS203.1 This course gives more Understanding about Analysis in mathematics.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laborat ory Instructi	Class room Instruction (CI)	Self Learning (SL)
	on		
	(LI)		

SO1.1	Unit-1.0 The spaces of Analytic	SL.1
Understand the concept	functions	Understand the
of analytic function		complex numbers.
,	1.1 Introduction of analytic	
SO1.2	function	SL.2 knowledge of the
Understand the	1.2 spaces of analytic functions.	difference of Analytic
relationships between two	1.3 limit, continuity and	and Entire functions.
functions, analytic and	differentiability of complex	SL.3
entire functions.	function	Properties of Analytic
SO1.3	1.4 introduction of entire function.	function.
Understand the concept of	1.5 Tutorial –I	
contur integration	1.6 complex integration.	
So1.4	1.7 The Weierstress factorization	
Understand the	theorem.	
hypothesis of Cauchy's	1.8 The Concept of Gamma	
Theorem	function.	
So1.5	1.9 The Riemann zeta function.	
Understand the concept of	1.10 Extension of zeta function.	
function.	1.11 Riemann s functional	
	equations.	
	1.12Tutorial –II	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Relationships between complex numbers structures with familiar numbers systems such as the Set of natural numbers, Set of rational numbers, Set of integers, Set of real numbers, Set of complex numbers. ii. State and prove Weierstress factorization theorem

iii. State and prove Gamma functions

iv Riemann s zeta function.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO2-78MS203.2. Students will be equipped with the understanding of the fundamental concepts of complex variable theory and skill of contour integration.

Approximate Hours

Item	AppX Hrs	
Cl	12	
LI	0	
SW	1	
SL	1	
Total	14	

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO2.1		Unit-2.0 Analytic Continuation.	SL.1
Understand the			Analytic function of a
concept of Runge's		2.1 Introduction	complex variables.
theorem.		2.2 Analytic Continuation	
		2.3 Runge's theorem.	SL.2
		2.4 Uniqueness of Analytic	Knowledge of the
SO2.2		Continuation.	Analyticity of the sum
Learn about Analytic		2.5 Tutorial –I	function of a series
Continuation.		2.6 power series method of	
SO2.3		Analytic Continuation.	SL.3
Understand the		2.7 Application of Riemann	Knowledge of Analytic
concept of		hypothesis in number theory.	Continuation.
Power series.		2.8 tutorial	
SO2.4		2.9 Theorems on Analytic	
Understand the Uses of		function.	
Analytic function.		2.10 Expansion of Riemann 's	
		functional equations.	
SO2.5		2.11 the concept of Mittag-	
Understand the		Leffler's theorem	
concept of mitteg-		2.12 Tutorial –II	
Leffer's theorem			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. State and prove Runge's theorem.

ii. State and prove Mittag - Leffler's theorem.

iii. The Uniqueness of direct Analytic Continuation along a curves

iv. Analytic Continuation.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO3-78MS203.3. This course involved complex number properties of them, analytic function, residues fundamental theorem.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(503)	(LI)		(51)

SO3.1 Understand the	Unit-3.0 Harmonic Functions.	SL.1
principal of	3.1 Introduction	Knowledge of the
SO3.2 Rouche's theorem	3.2 harmonic functions.3.3 the concept of Schwartz lemma.	poles and zeros of a Meromorphic function.
SO3.3 the concept of	3.4 basic properties of harmonic	
Maximum Modulus	functions.	SL.2
principal	 3.5 Tutorial –I 3.6 Schwarz's reflection principle 3.7 Monodromy theorem. 3.8 Monodromy theorem and its consequences. 3.9 some Theorems on harmonic functions 3.10 Subharmonic functions 3.11 Harmonic Functions on a disc. 3.12 Tutorial –II 	Understand an application of Rouche's theorem.

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. The concept of harmonic functions
- ii. Application of harmonic functions
- iii. Schwarz's reflection principle.
- iv. State and prove Monodromy theorem.
- V. Schwarz lemma.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

- **c.** Other Activities (Specify):
 - Quiz, Class Test.

CO4-78MS203.4 With this Course students are prepared to learn about advance complex analysis.

Approximate Hours			
Item	AppX Hrs		
Cl	12		
LI	0		
SW	1		
SL	1		
Total	14		

Session Outcomes Laboratory Instructi	ion Class room Instruc	ction Self Learning
(SOs) (LI)	(CI)	(SL)

source of Greens function. SO4.2 understand the Canonical product SO4.3 Understand the importance of Dirichlet problem.	Unit -4.0 Canonical products, Convergence of Entire functions. 4.1 Introduction 4.2 Harnax's Inequality and theorem . 4.3 The Dirichlet problem 4.4 The concept of Greens functions. 4.5 Tutorial-I 4.6 Canonical products. 4.7 Jensen formula. 4.8 The Poisson -Jensen formula 4.9 Exponents of Convergence. 4.10 Convex functions. 4.11 The convergent function of Entire functions 4.12 Tutorial-II	The concept of Greens functions. SL.2 Evaluation of Poisson - Jensen formulae
---	--	--

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Evaluation of Poisson -Jensen formulas.
- ii. Application of the Dirichlet problem.
- iii. State and prove Harnax's Inequality and theorem .
- iv. Canonical products.
- V. Greens functions

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO5-78MS203.5

Students will Constructing mobius transformations mapping given circle to given

Circle.

Approximate Hours									
Item AppX Hrs									
Cl	12								
LI	0								
SW	1								
SL	1								
Total	14								

SO5.1 Understand the	Unit-5.0 The Range of	SL.1
concept of Bloch's	an Analytic functions.	knowledge of the
theorem		Analytic function
SO5.2 theorems on the	E 1 Introduction	
Analytic function		SL.2
	5.2 Analytic function	The Concept Bloch's
SO5.3 the concept of	5.3 Bloch's theorem.	theorem.
range of Analytic	5.4 Application of	
	Bloch's theorem.	
	5.5 Definition and	
	Example Of Bloch's	
	Constant	
	constant.	
	5.6 Tutorial-I	
	5.7 The Little Picard	
	theorem.	
	5.8 the definition of	
	branch of the logarithm	
	5.9 Schottky 's	
	, theorem	
	5.10 the Great Picard	
	theorem	
	5 11 Application of	
	Picard theorem.	
	5.12 Tutorial-II	

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-78MS203.1 This course gives more Understanding about Analysis in mathematics	12	1	1	14
CO2-78MS104.2 . Students will be equipped with the understanding of the fundamental concepts of complex variable theory and skill of contour integration.	12	1	1	14
CO3-78MS104.3 . This course involved complex number properties of them, analytic function, residues fundamental theorem.	12	1	1	14
CO4-78MS203.4 With this Course students are prepared to learn about advance complex analysis.	12	1	1	14
CO5-78MS203.5 Students will Constructing Mobius transformations mapping given circle to given Circle	12	1	1	14
Total Hours	60	5	5	70

• Suggestion for End Semester Assessment

Suggested Specification Table For(ESA)

со	Unit Titles	Marks Distri	ibution		Total Marks
		R	U	А	
CO1-	Unit-1.0 The spaces of Analytic functions, Entire functions.	03	01	01	05
CO2-	Unit-2.0 Analytic Continuation.	02	05	03	10
CO3-	Unit-3.0 Harmonic Functions.	03	06	06	15
CO4-	Unit -4 Canonical products, Convergence of Entire functions	-	10	05	15
CO5-	Unit-5.0 The Range of an Analytic functions.	03	02	-	05
Total		11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written **Note**. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6.Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S.	Title	Author	Publisher	Edition & Year
Ν				
о.				
1	Fundamental Theorem	S.Punnuswamy	narosa publishing	
	of Complex Analysis		house	2nd edition, New
				Demi 2005
2	Fundamentals of complex analysis	S.Ponnuswamy,	Narosa Publishing house	
				4th edition, 1985

			McGraw-Hill,New York	Edition,
3.	Theory and Problems of	M.R.spiegel		Singapore,1979
	complex variables		McGraw Hill book	
			company International	

Curriculum Development Team:

- 1. 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS203 Course Title: Complex Analysis-II

PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO 1	PSO	PSO 3	PSO
	2									1			2		4

Course Outcome	Adv anc ed Ma the ma tica I Kn owl edg e	Pr o bl e m - so lvi n g Sk ill s	Resear ch Abiliti es	Qu ant itat ive An alys is	Teac hing and Acad emia	The ore tica I Un der sta ndi ng	Com muni catio n Skills	Oper ation s Rese arch	Appli catio n in Indu stry	Engi neeri ng and Tech nolo gy	Go ver nm ent and Pub lic Sec tor	Cons ultin g	Under stand the mathe matica I conce pts and applic ations in the field of algebr	Ha ndl e the adv anc ed tec hni que s	Develo p necess ary skills and expert ise in the field of resear ch	Cre ate s Ma the ma tic al Mo del s
.CO1- 78MS203. 1 This course gives more Understan ding about Analysis in mathemat ics.	2	1	2	2	1	2	3	2	1	1	1	1	1	2	1	2

.CO2- 78MS203. 2. Students will be equipped with the understan ding of the fundament al concepts of complex variable theory and skill of contour integration	2	1	1	2	1	2	1	1	1	2	1	1	<u>3</u>	2	1	1
.CO3- 78MS203.3 This course involved complex number properties of them,analy tic function,re sidues fundament al theorem.	2	1	2	2	1	3	2	1	2	2	1	1	2	2	1	1

				1										1		1
	2	1	2	2	2	1	2	2	3	2	2	2	<u>2</u>	<u>1</u>	<u>1</u>	<u>1</u>
CO4-																
78MS203.4																
With this																
Course																
students																
are																
prepared																
to learn																
about																
advance																
complex																
analysis																
CO5-	2	2	2	2	2	2	2	2	2	1	1	3	<u>1</u>	<u>1</u>	<u>2</u>	<u>1</u>
78MS20																
3.5																
Students																
will																
Constructin																
g mobius																
transforma																
tions																
mapping																
given circle																
to given																
Circle																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laborato ry Inst ru ction(LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO178MS203.1ThiscoursegivesmoreUnderstandingaboutAnalysis in mathematics.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1.0 1.1,1.2,1.3,1.4,1.5,1.6,1. 7,1.8,1.9,1.10	SL1.1 SL1.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO278MS203.2 . Students will be equipped with the understanding of the fundamental concepts of complex variable theory and skill of contour Integration.	S01.1 S01.2 S01.3 S01.4 S01.5		Unit-2 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	SL2.1 SL2.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO378MS203.3 . This course involved complex number properties of them,analytic function,residues fundamental theorem.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-3 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,3.9,3.10	SL3.1 SL3.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4-78MS203.4 With this Course students are prepared to learn about advance complex analysis	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-4 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8,4.9,4.10.	SL4.1 SL4.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5-78MS203.5 Students will Constructing mobius transformations mapping given circle to given Circle	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-5 5.1, 5.2, 5.3, 5.4, 5 .5, 5.6, 5.7, 5.8,5.9,5.10	SL5.1 SL5.2

Semester-II

Course Code:	78MS204				
Course Title :	Ordinary and Partial Differential Equations				
Pre- requisite:	Students should have basic knowledge of				
	calculus, linear algebra, and ODE theory.				
Rationale:	The program aims to develop advanced problem-				
	solving and analytical skills and prepares students				
	for careers in academia, research, industry, or				
	other sectors that require advanced				
	mathematical expertise.				

Course Outcome :

- **CO1- 78MS204.1** Solve first-order non-linear differential equations and linear differential equations.
- **CO2- 78MS204.2** Formulate mathematical models using ODEs to represent real-world problems.
- **CO3-78MS204.3**. Formulate differential equations for various mathematical models.
- **CO4- 78MS204.4** Study techniques for handling linear PDEs and understand their behavior and applies partial derivative equation techniques to predict the behavior of certain phenomena.
- **CO3- 78MS204.5** Apply numerical methods (e.g., Euler's method, Runge-Kutta methods) to approximate solutions of ODEs.

Scheme of Studies:

Board of Study	Course Course		Scheme of studies (Hours/Week)					Total Crodi
		The	CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	ts (C)

Program	78MS204	Ordinary	4[3+1]	0	1	1	6	4
Core		and						
(PCC)		Partial						
		Differenti						
		al						
		Equation						
		S						

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theo	ory									
Board of	Couse	Course		Scheme of Assessment (Marks)						
Study	Code	Title	Progressive Assessment (PRA) Se A ei (E					End Semester Assessm ent (ESA)	Total Marks (PRA+ ESA)	
			Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+ SA +CAT+A T)		

PCC	78MS204	Ordinary	15	20	5	5	5	50	50	100
		and								
		Partial								
		Differenti								
		al								
		Equation								
		S								

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS204.1

Solve first-order non-linear differential equations and linear differential equations.

Approximate nours				
Item	AppX Hrs			
Cl	12			
LI	0			
SW	1			
SL	1			
Total	14			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1		Unit-1.0	SL.1
Students should		Ordinary Differential	Student get knowadge
be able to identify		equation of first order and	to solve Homogeneous
ordinary		First Degree:	Differential equation
differential		1.1 concept of differential	SL.2

Approximate Hours

equations that can	-	equation	Student understand
be solved using			how to solve different
the various		1.2 Classifies the	differential equation
methods.		differential equations with	
		respect to their order and	
SO1.2		degree	
Develop skills in		1.3 explination of variable	
solving initial		separable method	
value problems		1.4 questions based on	
using the variable		variable separable method	
separable method		1.5 Explination of	
SO1.3		Homogeneous Differential	
Develop the ability		equation method	
to solve linear		1.6 Questions of	
differential		Homogeneous Differential	
equations using		equation method	
integrating		1.7 Concept of Linear	
factors.		Differential equation in y	
		and x	
So1.4		1.8 Questions of Linear	
Recognize exact		Differential equation in y	
differential		and x	
equations and		1.9 Questions of Bernoulli's	
understand the		equation	
conditions for		1.10 Tutorial-1	
exactness		1.11 Exact Differential	
So1.5		equation	
Student		1.12 Integrating factor	
understand the			
concept of			
Bernoulli's			
equation and its			
application in			
modeling various			
physical			
phenomena			

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Write all the formula of exat equation.

- ii. Write a short note on application of Differential equation.
- **b.** Other Activities (Specify):

Quiz, Class Test.

CO2-78MS204.2

Formulate mathematical models using ODEs to represent real-world problems.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO2.1 Understand the concept of Linear Differential equation with Constant coefficients SO2.2 Evaluate complimentary function by different rules SO2.3 Evaluate particular integral by different rules SO2.4 Understand the concept of		Unit-2.0 Ordinary simultaneous Differential equation 2.1 Introduction of Linear Differential equation with Constant coefficients 2.2 Rules of CF 2.3 Questions of CF 2.4 Rules for solving PI 2.5 Questions of PI 2.6 Introduction of simultaneous Differential equation in Different form 2.7 Tutorial -1 2.8 Methods of solving	SL.1 Apply rules of CF & PI to evaluate Differential equation SL.2 Students apply methods for solving Simultaneous linear Differential equation

Simultaneous linear	Simultaneous linear	
Differential equation	Differential equation with	
SO2.5	Constant coefficients	
Evaluate Different		
problems of	2.9 Rules of solving	
Simultaneous linear	Simultaneous linear	
Differential equation	Differential equation with	
with Constant	Constant coefficients	
coefficients		
	2.10 Questions of	
	Simultaneous linear	
	Differential equation with	
	Constant coefficients	
	constant coemcients	
	2.11 Some different	
	questions of Simultaneous	
	linear Differential equation	
	with Constant coefficients	
	with constant coefficients	
	2 12 Tutorial -2	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Make a list of all formula of Complimentary function.

ii. Make a list of all formula of particular integral.

b. Other Activities (Specify):

Class Test.

CO3-78MS204.3

Formulate differential equations for various mathematical models.

Approximate HoursItemAppX HrsCl12Ll0SW1SL1Total14

Session Outcomes (SOs)	Laborator y Instructio n (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1 Understand the concept of PDE SO3.2 Understand the methods of formation of PDE SO3.3 Apply Charpit formula for solving Differential equation SO3.4 Apply Lagrange method for solving Differential equation SO3.5 Understand the concept of Linear partial Differential equation with constant coefficie		Unit-3.0 Partial Differential equation 3.1 Introduction of PDE 3.2 Difference between PDE and ODE with examples 3.3 Formation of PDE by eliminating arbitrary constant 3.4 Formation of PDE by eliminating arbitrary function 3.5 Explination of Lagrange method by formula 3.6 Questions of Lagrange method 3.7 Explination of Charpit methods by formula 3.8 Questions of Charpit methods 3.9 Linear partial Differential equation with constant coefficients(CF & PI FOR PDE) 3.10 Questions for CF 3.11 Questions of Pl 3.12 Tutorial -1	SL.1 Define and understand partial differential equation SL.2 Define and understand Charpit and Lagrange method

SW-3 Suggested Sessional Work (SW):a. Assignments:i. write the difference between pde and ode.ii. Application of PDE .

iii. Write all formula of unit.

b. Mini Project:

Oral presentation

c. Other Activities (Specify): Class Test.

CO4-78MS204.4

Study techniques for handling linear PDEs and understand their behavior and applies partial derivative equation techniques to predict the behavior of certain phenomena.

Approximate Hours

••	
Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO 4.1		Unit-4.0 Linear	SL.1
Understand the		Differential equation	Verify relationships
fundamental concepts		of second order with	between operations
of Linear Differential		variable coefficient	satisfying various
equation of second		4.1 Explination of	properties.
order with variable		Linear Differential	
coefficient		equation of second	
SO 4.2		order with variable	
Student apply different		coefficient	
method of inspection		4.2 explanation of	

method	meth	nods of solution of	
SO 4.3	Linea	ar Differential	
Student apply change	equa	ation of second	
the independent	orde	r with variable	
variable method	coef	ficient	
SO 4.4	4.3 F	ormula of	
Student apply Removal	inspe	ection method	
of first derivative	4.4 c	ase 1 of inspection	
method	meth	nod	
SO 4.5	4.5 0	Case 2 of inspection	
Understand the	meth	nod	
fundamental concepts	4.6 0	Case 3 of inspection	
of variation of	meth	nod	
parameter	4.7 ii	nspection method,	
	whe	n one integral	
	knov	vn	
	4.8 c	hange the	
	inde	pendent variable	
	4.9 0	Questions of	
	chan	ige the	
	inde	pendent variable	
	4.10	Removal of first	
	deriv	vative	
	4.11	formula for	
	varia	tion of parameter	
		•	
	4.12	Questions of	
	varia	ation of parameter	
		•	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Write all the methods of methods of solution of Linear Differential equation of second order with variable coefficient

b. Other Activities (Specify): Class Test.

CO5-78MS101.5

Apply numerical methods (e.g., Euler's method, Runge-Kutta methods) to approximate solutions of ODEs.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1		Unit-5.0 Application of	SL.1
Understand the		ODE and PDE'S	Learn application of
application of ODE		5.1 Give explanation of	ODE
SO 5.2		Application of ODE	SL.2
Understand the		5.2Explination of different	Learn application of
application of PDE		Numerical methods for	PDE
SO 5.3		Solution of Ordinary	
Apply Picard's method		Differential equation.	
to solve ODE		5.3 Formula and simple	
SO 5.4		Questions of Picard's	
Apply Euler's method		method	
to solve ODE		5.4 Some more questions	
SO 5.5		of Picard's method	
Understand concept of		5.5 Formula and simple	
one Dimensional Heat		Questions of Taylor's	
and wave equation		method	
		5.6 Some more questions	
		of Picard's method	
		5.7 Formula and simple	
		Questions of Euler's	
		method	
		5.8 Formula and Questions	
		modified	
		5.9 Formula and simple	
		Questions of Runge-kutta	
		method	
		5.10 Method of separation	
		of variables	

	5.11 one Dimensional Heatequation5.12 one Dimensionalwave equation	

- SW-5 Suggested Sessional Work (SW): a. Assignments:
- i. Write the application of ODE.

ii Write the application of PDE.

b. Other Activities (Specify):

Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-78MS204.1 Solve first-order non-linear differential equations and linear differential equations.	12	1	1	14
CO1- 78MS204.2 Formulate mathematical models using ODEs to represent real-world problems.	12	1	1	14
CO1- 78MS204.3 Formulate differential equations for various mathematical models.	12	1	1	14
CO1- 78MS204.4 Study techniques for handling linear PDEs and understand their behavior andapplies partial derivative equation techniques to predict the behavior of certain phenomena.	12	1	1	14

CO1- 78MS204.5 Apply numerical methods (e.g., Euler's method, Runge-Kutta methods) to approximate solutions of ODEs.	12	1	1	14
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks	Distribut	Total Marks		
		RU		Α		
CO1-	Solve first-order non-linear differential equations and linear differential equations.	05	04	01		10
CO2-	Formulate mathematical models using ODEs to represent real-world problems.	02	06	02		10
CO3-	Formulate differential equations for various mathematical models.	03	05	02		10
CO4-	Study techniques for handling linear PDEs and understand their behavior and applies partial derivative equation techniques to predict the behavior of certain phenomena.	05	03	02		10
CO5-	Apply numerical methods (e.g., Euler's method, Runge-Kutta methods) to approximate solutions of ODEs.	02	04	04	-	10
Total		17	22	11		50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6.Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S.	Title	Author	Publisher	Edition & Year		
Ν						
0.						
1	Partial Differential equation	Dr.H.K.Pathak	Shree Sahitya Siksha Prakashan, Meerut.	Edition 2023-24		
2	ODE & PDE	M.D.Rai Singhania	S. Chand Publications	20th Edition		
3	Mathematics 1	D.K.Jain	Shree ram publication			

	Ordinary	Differential	G.F.Simmons	Tata McGraw Hill	
4	Equations	with			
	Аррисацог	15			

b) Reference Book:

S. No	Title	Author	Publisher	Edition & Year
1	Ordinary Differential Equations	M.L. Jain and Satbir Mehla	Jeevansons Publications	Thirteenth Edition
2	Calculus and Ordinary Differential Equations	S.K Mishra and K.K Pradhan	VK Global Publications	2023-24 edition
3	Partial Differential Equation-With Boundary Value Problems	Dr. H.K. Pathak and J.P. Chauhan	Shree Shiksha Sahitya Prakashan;	Fourth Revised Edition Reprint 2021-2022
4	Partial Differential Equations	S. G. Venkatachalapathy	Margham Publications	

c) Online books:

Suggested Digital Platforms Web	https://old.mu.ac.in/wp-content/uploads/2020/12/Paper-IV-Ordinary- Diffrential-Equation.pdf
links:	
Suggested	https://onlinecourses.nptel.ac.in/noc24_ma37/preview
Equivalent online	
courses:	

Curriculum Development Team:

- 1. 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.

- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS204 Course Title: Ordinary and Partial Differential Equations

	PO	Р	PO3	PO	PO5	PO	PO7	PO8	PO9	PO10	PO	PO12	PSO 1	PS	PSO 3	PS
Course	1	0		4		6					11			02		04
Outcome		2														
	Adv	Pr	Resear	Qu	Teac	The	Com	Oper	Appli	Engi	Go	Cons	Under	На	Develo	Cre
	anc	о	ch	ant	hing	ore	muni	ation	catio	neeri	ver	ultin	stand	ndl	р	ate
	ed	bl	Abiliti	itat	and	tica	catio	S	n in	ng	nm	g	the	е	necess	s

601	Ma the ma tica I Kn owl edg e	e m - so lvi n g Sk ill s	es 1	ive An alys is	Acad emia	l Un sta ndi ng	n Skills	Rese arch	Indu stry	and Tech nolo gy	ent and Pub lic Sec tor	1	mathe matica l conce pts and applic ations in the field of algebr a 2	the adv anc ed tec hni que s	ary skills and expert ise in the field of resear ch	Ma the ma tic al Mo del s
CO1- 78MS204. 1 Solve first- order non- linear differential equations and linear differential equations.	2	3		2		2	2	2					∠	1	1	2
CO2- 78MS204. 2. Formulate mathemat ical models using ODEs to represent real-world problems.	1	3	2	1	1	1	1	1	1	2	3	1	<u>3</u>	1	1	1
CO3- 78MS204.3 . Formulate	1	3	2	2	1	1	3	2	1	1	3	1	2	1	2	

differential equations for various mathemati cal models.																
CO4- 78MS204.4 Study techniques	2	3	2	2	1	1	3	2	1	1	3	1	2	<u>1</u>	2	2
for handling linear PDEs and understand their behavior and applies partial derivative equation techniques to predict the behavior of certain phenomen a.																
CO5- 78MS204.5 Apply numerical methods (e.g., Euler's method, Runge- Kutta	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	2

methods)								
to								
approximat								
e solutions								
of ODEs.								

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs	COs No.& Titles	SOs No.	Laborat	Classroom Instruction	Self Learning (SL)
No.			ory	(CI)	
			Instructi		
			on(LI)		
РО	CO1- 78MS204.1	SO1.1		Unit-1.0 Group	SL1.1
1,2,3,4,5,6	Solve first-order non-linear	SO1.2		1.1,1.2,1.3,1.4,1.5,1.6,1.	SL1.2
7,8,9,10,11,	differential equations and	SO1.3		7,1.8,1.9,1.10,1.11,1.12	
12	linear differential equations.	SO1.4			
PSO 1,2, 3, 4		SO1.5			
PO	CO2- 78MS204.2.	SO1.1		Unit-2 Ring	SL2.1
1,2,3,4,5,6	Formulate mathematical	SO1.2		2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	SL2.2
7,8,9,10,11,	models using ODEs to	SO1.3		2.7, 2.8,2.9,2.10	

12	represent real-world	SO1.4	2.11,2.12	
PSO 1,2, 3, 4	problems.	SO1.5		
PO	CO3- 78MS204.3. Formulate	SO1.1	Unit-3	SL3.1
1,2,3,4,5,6	differential equations for	SO1.2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	SL3.2
7,8,9,10,11,	various mathematical	SO1.3	2.7,	
12	models.	SO1.4	2.8,2.9,2.10,3.11,3.12	
PSO 1,2, 3, 4		SO1.5		
PO	CO4-	SO1.1	Unit-4	SL4.1
1,2,3,4,5,6	78MS204.4 Study	SO1.2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	
7,8,9,10,11,	techniques for handling	SO1.3	2.7,	
12	linear PDEs and understands	SO1.4	2.8,2.9,2.10,4.11,4.12	
PSO 1,2, 3, 4	their behavior and applies	SO1.5		
	partial derivative equation			
	techniques to predict the			
	behavior of certain			
	phenomena.			
PO	CO5- 78MS204.5 Apply	SO1.1	Unit-5	SL5.1
1,2,3,4,5,6	numerical methods (e.g.,	SO1.2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	SL5.2
7,8,9,10,11,	Euler's method, Runge-Kutta	SO1.3	2.7, 2.8,2.9,2.10,	
12	methods) to approximate	SO1.4	5.11,5.12	
PSO 1,2, 3, 4	solutions of ODEs.	SO1.5		

Semester-I

Course Code:	78MS205
Course Title :	[Advanced Discrete Mathematics]
Pre- requisite:	Among then of great importance are first, the actuality
	of the theme of the research; second-the choice of
	adequate research instruments and taxonomy to the
	chosen object field.
Rationale:	Think of a research rationale as a set of reasons that
	explain why a study is necessary and important based
	on its background.

Course Outcome :

- **CO1-** 78MS205.1 Learn the structure of graphs and familiarize the basic concepts used to analyses different problems in different branches such as chemistry, computer science etc.
- **CO2-** 78MS205.2. Analyze characterization of special graphs.
- **CO3-** 78MS205.3. Understand the importance of algebraic properties with regard to working within various number systems.
- **CO4-** 78MS205.4 Acquire knowledge of Boolean algebras and Boolean function and understand how these concepts arise in certain real life problems.

CO5- 78MS205.5 Learn the equivalence of deterministic and non deterministic finite accepters.

Scheme of Studies:

Board	Course	Course Title	Scheme of studies (Hours/Week)						
Study	Code		CI	LI	sw	SL	Total Study Hours (Cl+Ll+SW+SL)	ts (C)	

Progra	78MS205	Advanced	4[3+1]	0	1	1	6	4
m Core		Discrete						
(PCC)		Mathematic						
		S						

Legend:

Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory										
Board	Couse	Course Title		Schem	e of Assess	ment (M	arks)			
of Study	Code		Progressive Assessment (PRA)						End Semester Assessm ent (ESA)	Total Marks (PRA+ ESA)
			Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+ SA +CAT+A T)		
PCC	78MS205	Advanced Discrete Mathematics	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1- 78MS205.1 Learn the structure of graphs and familarize the basic concepts used to analyses different problems in different branches such as chemistry, computer science etc.

ltem	AppX Hrs
Cl	13
LI	0
SW	1
SL	1
Total	15

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1		Unit-1.0	SL.1
Understand the		1.1 Formal Logic statements	Understand the
concept of Group.		1.2 Symbolic representation	concept of Symbolic
		1.3 Tautologies	representation
SO1.2		1.4 Quantifiers	
Understand the		1.5 Proposition logic	SL.2
Proposition logic		1.6 . Graph Theory	Decide whether a
SO1.3		1.7 Definition of	Connectivity
Understand the		(undirected)graph,	SL.3
relation between		1.8 Sub graph, Paths,	Express a given simple
Circuits & cycles		1.9 Circuits & cycles.	graph ,Weight Graph ,

1.10 simple graph	
,Weight Graph ,	
1.11 Degree of vertices,	
1.12 Connectivity.	
1.13 Planer graph their	
properties.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. simple graph ,Weight Graph ,

ii Explain the Symbolic representation

CO2- 78MS205.2. Analyze characterization of special graphs.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)	
SO2.1		Unit-2.0	SL.1	
Understand the		2.1Euler's formula	Verify complete	
Kuratowski's Theorem		2.2connected planar	Bipartite graphs	
		graphs.		
SO2.2		2.3 Complete graph 2.4	SL.2	
Learn about Matrix		complete Bipartite	Present concepts of the	
representation of		graphs.	incidence matrices of a	
Graphs.		2.5 Kuratowski's	Graph	
SO2.3		Theorem (statement	SL.3	
Understand the		only) and its use.	Knowledge of	

concept of connected	2.6 Matrix	Homomorphism Graph
planar graphs.	representation of	
	Graphs.	
	2.7Tutorial-1	
	2.8Adjacency matrices	
	of a Graph	
	2.9 incidence matrices	
	of a Graph. 2.10	
	Isomorphic Graph	
	2.11 Homomorphism	
	Graph	
	2.12 Tutorial-2	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Write the Adjacency matrices of a Graph.

ii.Write the Kuratowski's Theorem

CO3- 78MS205.3. Understand the importance of algebraic properties with regard to working within various number systems.

Item	AppX Hrs
Cl	11
LI	0
SW	1
SL	1
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1		Unit-3.0	SL.1 Direct
Understand the partially		3.1 introduction of Lattices	products.

ordered set	3.2 partially ordered set	SL.2 Complemented
SO3.2 Explain Some		Lattices
Special Lattices	3.3partially ordered set and their properties.3.4 Tutorial-1	SL.3 Distributive Lattices
SO3.3 Distributive	3.5 Sublattices	
Lattices	3. 6Tutorial-2	
	3.7 Direct products.	
	3.8Explain Some Special Lattices	
	3.9 Complete Lattices	
	3.10 Complemented Lattices	
	3.11 Distributive Lattices	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Relationships between partially ordered set and their properties
- ii. Explain the Distributive Lattices
- iii Lattices as algebraic systems .

CO4- 78MS205.4 Acquire knowledge of Boolean algebras and Boolean function and understand how these concepts arise in certain real life problems.

Item	AppX Hrs
Cl	13
LI	0
SW	1
SL	1
Total	15

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO4.1 understand the Switching Algebra SO4.2Using AND,OR & NOT gates.		Unit-4.0 4.1 Boolean Algebras as Lattices. 4.2 Various Boolean identities, 4.3 Sub Algebra. 4.4Booleanforms 4.5equivalence, 4.6Minterms Boolean forms, 4.7Sum of products 4.8 canonical forms. 4.9Switching Algebra 4.10examples. 4.11Apllication of BooleanAlgebra 4.12Boolean Algebra to Switching Theory 4.13 Using AND,OR & NOT gates.	SL.1 Verify the Various Boolean identities, SL.2 Equivalence, SL.3 canonical forms.

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
- i. Boolean Algebras as Lattices.
- ii. Boolean forms
- iii. Switching Theory
- **b.** Other Activities (Specify): Quiz, Class Test.

CO5- 78MS205.5 Learn the equivalence of deterministic and non deterministic finite accepters.

Item	AppX Hrs
Cl	11
LI	0
SW	1
SL	1
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1 Understand Minimal Spanning tree SO5.2 Understand Finite state machines		Unit-5.0 5.1Definition of tree 5.2 types of tree 5.3networks, 5.4 Spanning Tree, cut- sets.	SL.1Verify the types of Finite state machines SL.2 Equivalence of finite state machines
		 5.5Minimal Spanning tree 5.6Kruskal'sAlgorithm 5.7 Finite state machines 5.8 types of Finite state machines 5.8 transition table diagrams. 5.9Equivalence of finite state machines. 5.10 Reduced Machines 5.11 Tutorial 	

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
- i. Equivalence of finite state machines
- ii. Spanning Tree
- iii. Finite state machines

b. Other Activities (Specify):

Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1- 78MS205.1 Learn the structure of graphs and familarize the basic concepts used to analyses different problems in different branches such as chemistry, computer science etc.	13	1	1	12
CO2- 78MS205.2. Analyze characterization of special graphs.	12	1	1	14
CO3- 78MS205.3. Understand the importance of algebraic properties with regard to working within various number systems.	11	1	1	13
CO4- 78MS205.4 Acquire knowledge of Boolean algebras and Boolean function and understand how these concepts arise in certain real life problems.	13	1	1	12

CO5- 78MS205.5 Learn the	11	1	1	11
equivalence of				
deterministic and non				
deterministic finite				
accepters.				
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO Unit Titles		Marks Distribution			Total Marks	
		R	U	Α		
CO-1	Learn the structure of graphs and familarize the basic concepts used to analyses different problems indifferent branches such as chemistry, computer science etc.	03	01	01		05
CO-2	Analyze characterization of special graphs.	02	06	02		10
CO-3	Understand the importance of algebraic properties with regard to working within various number systems.	03	07	05		15
CO-4	Acquire knowledge of Boolean algebras and Boolean function and understand how these	-	10	05		15

	concepts arise in certain real life problems.				
CO-5	Learn the equivalence of deterministic and non deterministic finite accepters.	03	02	-	05
Total		11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6.Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S.	Title	Author	Publisher	Edition & Year
No.				
1	Discrete	J.P.Tremblay & R.		
	Mathematical	Manohar		
	Structure with			
	Applications to			
	computer science			
2	Finite mathematics	Seymour Lepschutz		
		C.L.Liu		
3	Elements of Discrete			
	Mathematics			
		Kenneth H. Rosen		
	Discrete mathematics			
4	and its applications			
	Discrete and	R.P. Grimaldi		
	combinatorial			
	mathematics An			
5	applied introduction			

Curriculum Development Team:

- 1. 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code: 78MS205 Course Title: Advanced Discrete Mathematics

	РО	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO 1	PSO 2	PSO 3	PSO
	1	Droblo	Boc	0.02	Toochi	Thee	Comm	Operat	Applic	Engino	1	Concul	Undorsta	Handl	Dovelop	4 Croo
Course	Au Van	m-	earc	Qua	ng and	retic	unicati	ions	ation	ering	ern	ting	nd the	e the	necessar	tes
Outrouve	ced	solvin	h	tive	Acade	al	on	Resear	in	and	men	ting	mathem	advan	v skills	Mat
Outcome	Ma	g	Abili	Anal	mia	Und	Skills	ch	Industr	Techn	t		atical	ced	and	hem
	the	Skills	ties	ysis		ersta			у	ology	and		concepts	techni	expertise	atica
	ma					ndin					Publi		and	ques	in the	I
	tica					g					С		applicati		field of	Mod
	l Kn										Sect		ons in the field		research	eis
	owl										01		of			
	edg												algebra			
	е															
CO1-	2	3	1	2	1	2	2	2	1	1	1	1	<u>2</u>	<u>1</u>	<u>1</u>	<u>3</u>
78MS205.1																
Learn the																
structure of																
graphs and																
familiarize																
the basic																
concepts																
used to																
analyses																
different																
problems in																
different																
branches																
such as																
chemistry,																

computer																
CO2- 78MS205.2. Analyze characterizat ion of special graphs.	1	3	2	1	1	1	1	1	1	2	3	1	<u>3</u>	<u>1</u>	1	<u>2</u>
CO3- 78MS205.3. Understand the importance of algebraic properties with regard to working within various number systems.		3	2	2	1	1	3	2	1	1	3	1	2	1	2	2
CO4- 78MS205.4 Acquire knowledge of Boolean algebras and Boolean function and understand how these concepts arise in certain real life problems.	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	2

CO5-	2	3	2	2	1	1	3	2	1	1	3	1	<u>2</u>	<u>1</u>	<u>2</u>	3
78MS205.5																
Learn the																
equivalence																
of																
deterministi																
c and non																
deterministi																
c finite																
accepters.																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,1 2 PSO 1,2, 3, 4	CO1- 78MS205.1 Learn the structure of graphs and familiarize the basic concepts used to analyses different problems in different branches such as chemistry, computer science etc.	S01.1 S01.2 S01.3 S01.4 S01.5		Unit-1.0 Group 1.1,1.2,1.3,1.4,1.5,1.6,1. 7,1.8,1.9,1.10	SL1.1 SL1.2 SL1.3
PO 1,2,3,4,5,6 7,8,9,10,11,1 2	CO2- 78MS205.2. Analyze characterization of special graphs.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-2 Ring 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	SL2.1 SL2.2

PSO 1,2, 3, 4				
PO 1,2,3,4,5,6 7,8,9,10,11,1 2 PSO 1,2, 3, 4	CO3- 78MS205.3. Understand the importance of algebraic properties with regard to working within various number systems.	S01.1 S01.2 S01.3 S01.4 S01.5	Unit-3 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	SL3.1 SL3.2
PO 1,2,3,4,5,6 7,8,9,10,11,1 2 PSO 1,2, 3, 4	CO4- 78MS205.4 Acquire knowledge of Boolean algebras and Boolean function and understand how these concepts arise in certain real life problems.	S01.1 S01.2 S01.3	Unit-4 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	SL4.1 SL4.2
PO 1,2,3,4,5,6 7,8,9,10,11,1 2 PSO 1,2, 3, 4	CO5- 78MS205.5 Learn the equivalence of deterministic and non deterministic finite accepters.	S01.1 S01.2 S01.3	Unit-5 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	SL5.1 SL5.2 SL5.3

Semester-III

Course Code:	78MS301						
Course Title :	Operational Research						
Pre -requisite:	Students should have basic knowledge of Operational Research						
Rationale:	The program aims to develop advanced problem- solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced mathematical expertise.						

Course Outcome :

CO1-78MS301.1

To learn graphical method and the simplex algorithm for solving a linear programming problem.

CO2-78MS301.2.

To learn more optimization techniques for solving linear programming models transportation problem and integer programming problem.

CO3-78MS301.3.

Understand optimization techniques for solving some network related problems.

CO4-78MS301.4

To learn sensitivity analysis and parametric programming, which describes how various changes in the problem affect its solution

CO5-78MS301.5

Ability to think innovatively to do research in high level in mathematics and interdisciplinary fields.

Board of	Course Code	Course Title	Scheme of studies (Hours/Week)							
Study			CI	U	sw	SL	Total Study Hours (CI+LI+SW+SL)	ts (C)		
Progra m Core (PCC)	78MS301	Operational Research	4[3+1]	0	1	1	6	4		

Legend:

Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Board	Couse	Course Title	Scheme of Assessment (Marks)		
of	Code				
Study			Progressive Assessment (PRA)	End	Total
orady					Marks
			S	Semester	
			A	Assessm	(PRA+
			e	ent	
					ESA)
				(ESA)	

			Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+ SA +CAT+A T)		
PCC	78MS3 01	Operational Research.	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS301.1 To learn graphical method and the simplex algorithm for solving a linear programming problem.

Approximate	liouis
ltem	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 Understand the concept of Linear programming. SO1.2 Understand the relationships between basics feasible solution. SO1.3 Understand the concept of graphical method. So1.4 Understand the multiplication formula So1.5 Understand the concept of programming.	-	Unit-1.0 Linear programming problem. 1.1 Introduction 1.2 The definition of general Linear programming problem. 1.3 Formulation of the Linear programming problem. 1.4 Solution by graphical method. 1.5 tutorial 1 1.6 graphical solution of Linear programming. 1.7 Relation between basics feasible solution. 1.8 tutorial 2 1.9 Simplex method. 1.10 understand the Simplex method 1.11 question based on linear programming 1.12 tutorial 3	SL.1 Understand the definition of general Linear programming. SL.2 knowledge of the general Linear programming. SL.3 Properties of general Linear programming

SW-1 Suggested Sessional Work (SW):

a. Assignment:

i. Formulation of the Linear programming problem.

ii. graphical solution of Linear programmingiii. Application of Linear programming.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO2-78MS301.2. . To learn more optimization techniques for solving linear programming models transportation problem and integer programming problem.

Approximate Hours			
Item	AppX Hrs		
Cl	12		
LI	0		
SW	1		
SL	1		
Total	14		

Session Outcomes	Laborator	Class room Instruction	Self Learning
(SOs)	y	(CI)	(SL)
	Instructio		
	n		
	(LI)		
SO2.1 Understand the		Unit-2.0 Solution of linear	SL.1
concept of linear		programming problem	To understand linear
programming.		2.1 Introduction.	programming problem.
SO2.2 Learn about the		2.2 Understand the Concept linear	
concept oflinear		programming	
programming problem		2.3 linear programming problem by	SL.2
by Big –M method.		Big –M method.	Knowledge of the
SO2.3 Understand the		2.4 To phase method. 2.5 Alternative	Alternative forms of
concept of Duality.		forms of generating functions.	generating functions.
SO2.4		2.6 The concept of duality	
Understand the Uses of		2.7 properties of duality	SL.3
Linear programming.		2.8 tutorial 1	Knowledge of some
SO2.5		2.9 fundamental theorem of duality.	properties of linear
Understand the		2.10 tutorial 2	programming.
concept of duality.		2.11 Dual Simplex methods.	
		2.12 Application of duality.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Definition and Example of linear programming problem.
- ii. Define Alternative forms of generating functions.
- iii. The concept of duality

iv fundamental theorem of duality.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO3-78MS301.3. Understand optimization techniques for solving some network related problems.

Approximate Hours			
Item AppX Hrs			
Cl	12		
LI	0		
SW	1		
SL	1		
Total	14		

			Total	1
Session Outcomes	Laboratory	Class room Instruction (CI)		Self Learning
(SOs)	Instruction			(SL)
	(LI)			
SO3.1 Understand the		Unit-3.0 Assignment problem.:		SL.1
principle of Traveling		3.1 Introduction.		Knowledge of
salesman problem.		3.2 solution of assignment problem	l l	the.unbalanced
SO3.2 Understand the		3.3 unbalanced assignment problem	n.	assignment
assignment problem		3.4 Crew assignment problem.		problem.
SO3.3 the concept of		3.5 tutorial 1		SL.2
sequencing problem.		3.6 Traveling salesman problem		Understand an
		3.7 sequencing problem.		application of
		3.8 Processing n jobs on two machi	ines.	colution of
		3.9 n Jobs on three machines.		assignment
		3.10 n Jobs on m machines.		nrohlom
		3.11 Processing two jobs through m	า	problem
		machines.		
		3.12 tutorial 2		

SW-3 Suggested Sessional Work (SW):

a. Assignment:

- i. solution of assignment problem
- ii. Describe Traveling salesman problem.
- iii. Processing two jobs through m machines.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO4-78MS301.4 To learn sensitivity analysis and parametric programming, which describes how various changes in the problem affect its solution.

Approximate Hours			
Item	AppX Hrs		
Cl	12		
LI	0		
SW	1		
SL	1		
Total	14		

Session Outcomes	Laboratory	Class room Instruction	Self Learning	
(SOs)	Instruction	(CI)	(SL)	
	(LI)			
SO4.1 Understand the		Unit -4 Transportation problem.	SL.1	
concept of		4.1 Introduction	knowledge of the	
transportation		4.2 Initial basics feasible solution.	transportation	
problem.		4.3 North- west corner method.	problem	
SO4.2 understand		4.3 least- cost method.		
the.North- west corner		4.4 Vogels Approximation method.	SL.2	
method.		4.5 tutorial 1	Expansion of	
		4.6 Optimally test by MODI method .	Stepping stone	
SO4.3 Understand the		4.7 Stepping stone method.	method.	
importance of		4.8 some properties of transportation.		
transportation		4.9 Expansion of stepping stone methods		
problem.		4.10 Application of transportation problem.		
		4.11 Degeneracy in transportation problem		
		4.12 tutorial 2		
	1			

SW-4 Suggested Sessional Work

- i. To solve Initial basics feasible solution.
- ii. Application of transportation problem.
- iii. The Expansion of Stepping stone method.
- iv. Calculation of Vogel's Approximation method.
- V. Degeneracy in transportation problem.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO5-78MS301.5 Ability to think innovatively to do research in high level in mathematics and interdisciplinary fields.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
05.1 Understand the		Unit-5.0 Network Analysis:	SL.1
concept of network		5.1 Introduction .	knowledge of
Techniques.		5.2 Constraints in network.	the network
SO5.2 Construction of		5.3 Construction of network	Techniques.
network		5.4 Definition and Example of networks.	SL.2
		5.5 tutorial 1	knowledge of
SO5.3 Constraints in		5.6 Critical path methods PERT	the
network.		5.7. PERT Calculations Resources.	Construction
		5.8 tutorial 2	of network.
		5.9 Leveling by network Techniques.	
		5.10 Advances of network (PERT/CPM).	
		5.11 Application of network Techniques.	
		5.12 tutorial 3	

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-78MS301.1 To learn graphical method and the simplex algorithm for solving a linear programming problem.	12	1	1	14
CO2-78MS301.2 To learn more optimization techniques for solving linear programming models transportation problem and integer programming problem.	12	1	1	14
CO3-78MS301.3 . Understand optimization techniques for solving some network related problems.	12	1	1	14
CO4-78MS301.4 .To learn sensitivity analysis and parametric programming , which describes how various changes in the problem affect its solution.	12	1	1	14
CO5-78MS301.5 Ability to think innovatively to do research in high level in mathematics and interdisciplinary fields.	12	1	1	14
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table For(ESA)

со	Unit Titles	Marks Distribution		Total Marks	
		R	U	А	
CO1-	UNIT-1 linear programming problem.	03	01	01	05
CO2-	UNIT -2 Solution of linear programming problem.	02	05	03	10
CO3-	Unit-3 Assignment problem.	03	06	06	15
CO4-	Unit-4 . Transportation problem	-	10	05	15
CO5-	Unit 5 Network Analysis	03	02	-	05
Total		11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6.Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S.No.	Title	Author	Publisher	Edition
1	Operations Research	Dr. H.K. Pathak, Dr. Pradeep k.joshi	Shiksha Sahitya prakashan new delhi	2nd edition, 2000
2	Operations Research with applications.	S.D.sharma	Shiksha Sahitya prakashan	CO 2002
3	Operations Research - An introduction,	Prem Kumar Gupta and D.S. Hira	S. Chand & Company Ltd. New Delhi	
4	Operations Research - An introduction,	H.A. Tha	Macmillan Publishing co. Inc. New York.	
5	Operations Research	PK Gupta and Manmohan	Pragti prakashan New Delhi	2003

b) Reference Book:

S.	Title	Author	Publisher	Edition & Year
No.				
1	Industrial Engineering	F.S, Hiller and G.J.	(This book comes	1995
	Series,	Lieberman	with a CD containing	
			software)	

2	Linear Programming	G. Hadley	Narosa Publishing House. 1995	
3	Linear and Dynamic programming	G. Hadley	Wesley Reading Mass	

c) Suggetsed Digital Platform Web links :

Suggested Digital Platforms Web links:	https://www.bbau.ac.in/dept/UIET/EME-601%20Operation%20Research.pdf
Suggested Equivalent online courses:	https://www.amirajcollege.in/wp-content/uploads/2020/10/3151910- operations-research-theory-and-applications-by-jksharma-z-lib.org .pdf

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr. Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS301 Course Title: Operational Research

	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	PSO	P	PSO 3	PS
Course		2										12	1	0		04
Outcome														2		
outcome	A alt to	Dr	Dees	0	Tasahina	Thees	Com	0.00	Analia	Facility	Causar	6	Undowe		Daviala	Cue
	nced	Pr obl	Rese arch	Qua ntita	and	etical	Com mun	Ope ratio	Applic ation	eering	Gover	0	tand	Han dle	Develo	cre ate
	Mat	em	Abili	tive	Academi	Under	icati	ns	in	and	t and	n	the	the	necess	s
	hem atical	-	ties	Anal	а	standi	on	Rese	Indust	Techn	Public	s	mathe	adva	ary	Ma
	Kno	sol		ysis		ng	Skills	arch	ry	ology	Secto	ul	matical	nced	skills	the
	wled ge	g									I	n n	ts and	niqu	experti	tic
	80	Ski										g	applica	es	se in	al
		lls											tions in		the	Mo
													the field of		field of	del
													algebra		h	5
			-	-			-	2								-
CO1-	2	1	3	2	1	2	3	3	1	1	2	1	<u>1</u>	2	<u>1</u>	2
78MS301.1																
to learn																
graphical																
method and																
the simplex																
algorithm																
for solving a																
linear																
programmin																
g problem.																

CO2-	2	1	3	2	1	2	3	3	1	2	2	1	<u>3</u>	<u>2</u>	<u>1</u>	<u>1</u>
.78MS301.2.																
To learn																
more																
optimization																
techniques																
for solving																
linear																
programmin																
g models																
transportati																
on problem																
and integer																
programmin																
g problem.																
CO3-	2	1	2	2	1	3	3	2	2	2	1	1	2	2	1	<u>1</u>
.78MS301.3																
Understand																
optimization																
techniques																
for solving																
some																
network																
related																
problems.																

CO4-	2	1	2	2	2	2	3	2	3	2	2	2	<u>2</u>	<u>1</u>	<u>1</u>	1
78MS301.4																
To learn																
sensitivity																
analysis and																
parametric																
programming																
, which																
describes																
how various																
changes in																
the problem																
affect its																
solution.																
CO5-	2	2	2	2	3	3	2	2	2	1	1	3	<u>1</u>	<u>1</u>	<u>2</u>	<u>1</u>
78MS301.5																
Ability to																
think																
innovatively																
to do																
research in																
high level in																
mathematics																
and																
interdisciplin																
ary fields.																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laborator	Classroom Instruction (CI)	Self Learning (SL)
			y Instructio		
			n(11)		
PO 1,2,3,4,5,6	CO1- 78MS301.1 to learn graphical	SO1.1		Unit-1.0 linear	SL1.1
7,8,9,10,11,12	method and the simplex algorithm for	SO1.2		programming problem.	SL1.2
PSO 1,2, 3, 4	solving a linear programming problem.	SO1.3		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1	
		SO1.4		.8,1.9,1.10 1.11 1.12	
		SO1.5			
PO 1,2,3,4,5,6	CO2 78MS301.2 . To learn more	SO1.1		Unit-2 solution of linear	SL2.1
7,8,9,10,11,12	optimization techniques for solving	SO1.2		programming problem.	SL2.2
PSO 1,2, 3, 4	linear programming models	SO1.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	
	transportation problem and integer	SO1.4		2.7, 2.8,2.9,2.10 2.11 2.12	
	programming problem.	SO1.5			
PO 1,2,3,4,5,6	CO3- 78MS301.3 Understand	SO1.1		Unit-3 . Assignment	SL3.1
7,8,9,10,11,12	optimization techniques for solving	SO1.2		problem:	SL3.2
PSO 1,2, 3, 4	some network related problems.	SO1.3			
		SO1.4		3.1, 3.2, 3.3, 3.4, 3.5, 3.6,	
		SO1.5		3.7, 3.8,3.9,3.10,3.11 3.12	
PO 1,2,3,4,5,6	CO4-78MS301.4 To learn sensitivity	SO1.1		Unit-4 Transportation	SL4.1
7,8,9,10,11,12	analysis and parametric programming ,	SO1.2		problem:	SL4.2
PSO 1,2, 3, 4	which describes how various changes in	SO1.3		4.1, 4.2, 4.3, 4.4, 4.5, 4.6,	
	the problem affect its solution.	SO1.4		4.7, 4.8,4.9,4.10. 4.11 4.12	
		SO1.5			
PO 1,2,3,4,5,6	CO5-78MS301.5 Ability to think	SO1.1		Unit-5 Network Analysis:	SL5.1
7,8,9,10,11,12	innovatively to do research in high level	SO1.2			SL5.2
PSO 1,2, 3, 4	in mathematics and interdisciplinary	SO1.3		5.1, 5.2, 5.3, 5.4, 5	
	fields.	SO1.4		.5, 5.6, 5.7, 5.8,5.9 5.10	
		SO1.5		5.11 5.12	

Semester-III

Course Title:	Integral Equation
Course Code: -	78MS302
Prerequisite:	Students should review the fundamentals of
	Laplace transform and differential equation.
Rationale:	The program aims to develop advanced problem-
	solving in initial value problem and boundary
	value problem and analytical skills and prepares
	students for careers in academia, research,
	industry, or other sectors that require advanced
	mathematical expertise.

Course Outcomes (CO):

CO1-- 78MS302.1

Define and understand the concept of laplace transform and differential equation and their classification, definition of integral transform .fredholm and Volterra integral equation.

CO2-- 78MS302.2

Define and understand the basic concepts of integral transform method, laplacetransform , convolution integral. Application of Volterra with convolution type kernels.solution of the Cauchy type singular integral equation. And the hilbert kernel.

CO3-- 78MS302.3

Define and compute, symmetric kernels, orthonormal system of functions. Fundamental properties of eigenvalues and eigen functions for symmetric kernels. Solution of integral equations with symmetric kernels.

CO4-- 78MS302.4

Understand and definition of a boundary value problem for an ordinary equation of a second order and reduction to a fredholm integral equation of the second kind. Dirac delta function. Green function approach to reduce the boundary value problem of a self adjoint differential equation with homogenous boundary condition to integral equation form.

CO5- - 78MS302.5

Understand the integral representation formulae for the solution of the laplace and Poisson equations. Newtonian single layer and double layer potentials. Integral equation formulation of boundary value problem for laplace equations.

Scheme of Studies:

Board of Study	Course Code	Course Title	Scheme of studies (Hours/Week)							
			Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	s (C)		
PCC	78MS302	Integral equation	4[3+1]	0	1	1	6	4		

Legend:

Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.)

SL: Self Learning,

C:Credits

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory													
Board of	Couse	Course Title	Scheme of	Assessme	nt (Marks)							
Study	Code		Progr	Progressive Assessment (PRA) End Semester Assessm ent (ESA)									
			Class/Ho me Assignme nt 5 number 3 marks each	Class/HoClassSeminarClassClassTotalmeTest 2oneActivitAttendMarksAssignme(2 best(SA)y anyance(CA+CT+nt 5out ofone(AT)SAnumber3)(CAT)+CAT+A3 marks10T)T)									

				(CT)						
PCC	78MS302	Integral	15	20	5	5	5	50	50	100
		equation								

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-- 78MS302.1

Define and understand the concept of laplace transform and differential equation and their classification, definition of integral transform .fredholm and Volterra integral equation.

Approximate Hours		
Item	AppXHrs	
Cl	12	
LI	0	
SW	1	
SI	1	

14

Total

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO1.1		Unit-1.0	SL.1
Understand the			Define the integral
basic concept of		1.1.define of integral	equation and their
integral equation		equation and her	types with their
and their types.		classification.	examples.
SO1.2	-	1.2. eigenvalues and eigen	
Understand the		functions.	SL.2
how to find		1.3. fredholm integral	Apply fredholm and
eigenvalues and		equation of kind with	Volterra integral

eigen functions in	seperable kernels.	equation to find the
integral equation.	1.4. reduction to a system of	eigen values and
SO1.3	algebraic equation.	eigenfunctions.
Apply reduction to	1.5.an approximation	SL.3
a system of	method.	Apply fredholm and
algebraic equation	1.6 Tutorial-1	Volterra integral
in integral	1.7. method of successive	equation to solve
equation of	approximation.	method of successive
Volterra and	1.8. iterative scheme for	approximation and
fredholm	fredholm integral equation	iterative scheme for all
equation.	of second kind	kinds.
	1.9 condition of uniform	
So1.4	convergence and	
Understand the	uniqueness series solution	
Condition of	1.10resolvent kernel and its	
uniform	results.	
convergence and	1.11application of iterative	
uniqueness series	scheme to Volterra integral	
solution.	equation of the second kind.	
So1.5	1.12 Tutorial- 2	
Understand		
theapplication of		
iterative scheme		
of Volterra		
integral equation		
of the second		
kind.		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Analyze and define the concept of integral equation with their types and cases with example.
- ii. Volterra integral equation to find the eigen values and eigenfunctions
- iii. Find the application of iterative scheme to Volterra integral equation of the second kind

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO2-78MS302.2

Define and understand the basic concepts of integral transform method, laplacetransform , convolution integral. Application of Volterra with convolution type kernels.solution of the Cauchy type singular integral equation. And the hilbert kernel.

Approximate Hours

Item	AppXHrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO2.1		Unit-2.0	SL.1
Define and		2.1.integral transform	Explore laplace
understand		method	transform and fourier
integral transform.		2.2. fourier transform	transform with their
SO2.2		2.3.laplace transform	relation .
Perform basic	-	2.4-convolution integral	SL.2
Convolution tofind		2.5. application of Volterra	Understand the concept
the application of		integral equation with	of Volterra integral
Volterra integral		convolution type kernels.	equation with
equation with		2.6.solution of the Cauchy	convolution type
kernels.		type singular integral	kernels.
SO2.3		equation.	SL.3
Understand the		2.7.the Hilbert kernel.	Apply Hilbert type and

concept of	2.8.	convolution	type	Cauchy type to find the
singular integral	kernels	5.		solution of singular
equation	2.9. so	lution of the	e Hilbert	integral equations.
SO2.4	type	singular	integral	
Define and	equatio	on.		
compute the	2.10.	singular	integral	
Cauchy type and	equatio	on.		
Hilbert type	2.11 so	lution of Cau	chy type	
kernels.	and H	ilbert type	singular	
	integra	l equation.		
SO2.5	2.12 Tu	itorial-1		
Understand the				
solution of Cauchy				
type and Hilbert				
type singular				
integral equation.				

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the integral transform with their types.
- ii. Write the Volterra integral equation with convolution type kernels.
- iii. Write a short note on Hilbert type and Cauchy type to find the solution of singular integral equations.
- iv. Describe the method singular integral equation and use in caychy type and hibert type kernels.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO3-78MS302.3

Define and compute, symmetric kernels, orthonormal system of functions. Fundamental properties of eigenvalues and eigen functions for symmetric kernels. Solution of integral equations with symmetric kernels.

Approximate Hours		
Item	AppXHrs	
Cl	12	
LI	0	
SW	1	
SL	1	
Total	14	

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOS)	(LI)	(CI)	(SL)
SO3.1		Unit-3.0	SL.1
Define and			Apply symmetric
compute		3.1. symmetric kernels	kernels and
Symmetric kernels		3.2. orthonormal system of	orthonormal system of
SO3.2		functions	functions.
Understand the	-	3.3. fundamental properties	SL.2
eigen values and		of eigenvalues	Apply the fundamental
eigen functions for		3.4. and eigen functions for	properties to find the
symmetric		symmetric kernels	eigen values and eigen
kernels. SO3.3		3.5. solution of integral	functions of integral
Apply and		equations with symmetric	equations
computesolution		kernels.	SL.3
of integral		3.6.eigenvalues and eigen	Solve the integral
equations with		functions	equation with
symmetric		3.7. system of functions	symmetric kernels.
kernels.		3.8properties of eigen	
SO3.4		values	
Understand		3.9. properties of eigen	
The properties of		functions	
eigen values and		3.10. integral equations with	
eigen functions		symmetric kernels	

179

SO3.5	3.11 Questions of symmetric	
Identify the	kernels	
integral equation	3.12 Tutorial-1	
with symmetric		
kernels.		

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the symmetric kernels and orthonormal system of functions.
- ii. Explain the fundamental properties of eigen values and eigen functions.
- iii. Write the solution of integral equation with symmetric kernels.

b. Mini Project:

Oral presentation, c. Other Activities (Specify): Quiz, Class Test.

CO4-78MS302.4

Understand and definition of a boundary value problem for an ordinary equation of a second order and reduction to a fredholm integral equation of the second kind. Dirac delta function. Green function approach to reduce the boundary value problem of a self adjoint differential equation with homogenous boundary condition to integral equation form.

Approximate Hours		
Item	AppXHrs	
Cl	12	
LI	0	
SW	1	
SL	1	
Total	14	

180

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO4.1		Unit-4.0	SL.1
Understand the			Apply boundary value
definition of		4.1.definition of boundary	problem for an ordinary
boundary value		value problem for an	equation of the second
problem.		ordinary equation of the	kind.
SO4.2	-	second order .	SL.2
Analyze		4.2 and its reduction to a	Apply
theboundary value		fredholm integral equations	Boundary value
problem for an		of the second kind.	problem to reduce in a
ordinary equation		4.3.dirac delta function	fredholm integral
of the second		4.4. green functions	equation of the second
order .		4.5 Tutorial-1	kind.
		4.6.green function approach	SL.3
SO4.3		to reduce boundary value	Analyze and interpret
Identify the dirac		problem of a self adjoint	green functions to
delta function		differential equations.	reduce boundary value
with their		. 4.7. with homogenous	problem of a self
properties.		boundary condition to	adjoint differential
SO4.4		integral equations.	equations with
Identify green		4.8.construction of green	homogenous boundary
function approach		functions.	conditions to integral
to reduce		4.9.reduction of boundary	equations.
boundary value		value problem into integral	
problem of a self		equations.	
adjoint differential		4.10. properties of dirac	
equations.		delta functions.	
		4.11problem based on	
SO4.5		boundary value problem .	
Recognize with		4.12 Tutorial-2	
homogenous			
boundary			
condition to			
integral equations.			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

I. Explain green functions to reduce boundary value problem of a self adjoint differential equations with homogenous boundary conditions to integral equations.

b. Other Activities (Specify): Quiz, Class Test.

CO5-78MS302.5

Understand the integral representation formulae for the solution of the laplace and Poisson equations. Newtonian single layer and double layer potentials. Integral equation formulation of boundary value problem for laplace equations.

Approximate Hours

Item	AppXHrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO4.1		Unit-5.0	SL.1
Understand			Apply integral
laplace equation		5.1.integral representation	representation formulas
and poisons		formulas for the laplace	for the laplace
equations.		equation.	equation. And poisons
SO4.2	-	5.2. integral representation	equations.
Understand single		formulas for the poisons	SL.2
and double layer		equation.	Use Newtonian single
of Newtonian		5.3. Newtonian single layer	and double layer
potential in		potential	potential in integral

integral equations.	5.4 Newtonian double layer	equations.
SO4.3	potential	SL.3
Understand the	5.5. integral equation	Apply integral equation
concept of	formulation of boundary	formulation of
formulation of	value problem for laplace	boundary value
boundary value	equation.	problem for laplace
problem for	5.6 laplace equation	equation.
laplace equation.	5.7. poisons equations	
SO4.4	5.8 problems on laplace	
Interpret poisons	equations	
equations.	5.9. problems on poisons	
	equations	
SO4.5	5.10. boundary value	
Understand	problem forlaplace	
boundary value	equation	
problem for	5.11boundary value	
laplace and	problem for poisons	
poisson equations.	equation.	
	5.12 Tutorial-1	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Write the integral representation formulas for the laplace equation. And poisons equations.
- ii. Write integral equation formulation of boundary value problem for laplace equation

b. Mini Project:

Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture	Sessional	Self Learning	Total hour
	(CI)	Work	(SI)	(CI+SW+SI)
		(SW)		
CO1-78MS302.1	12	1	1	14
Define and understand the concept of				
laplace transform and differential				
equation and their classification,				
definition of integral transform				
.fredholm and Volterra integral				
equation.				
CO2-78MS302.2	12	1	1	14
Define and understand the basic				
concepts of integral transform				
method, laplacetransform ,				
convolution integral. Application of				
Volterra with convolution type				
kernels.solution of the Cauchy type				
singular integral equation. And the				
hilbert kernel				
CO3-78MS302.3	12	1	1	14
Define and compute, symmetric				
kernels, orthonormal system of				
functions. Fundamental properties of				
eigenvalues and eigen functions for				
symmetric kernels. Solution of				
integral equations with symmetric				
kernels				
CO4-78MS302.4	12	1	1	14
Understand and definition of a				
boundary value problem for an				
ordinary equation of a second order				
and reduction to a fredholm integral				
equation of the second kind. Dirac				
delta function. Green function				
approach to reduce the boundary				
value problem of a self adjoint				
differential equation with				
homogenous boundary condition to				
integral equation form.				

CO5-78MS302.5 Understand the integral representation formulae for the solution of the laplace and Poisson equations. Newtonian single layer and double layer potentials. Integral equation formulation of boundary value problem for laplace equations.	12	1	1	14
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

<u> </u>		Mari			Total
CO	Unit lities	ware	s Distrib	ution	Iotai
					Marks
		R	U	Α	
CO-1		02	04	05	07
	Integral equation				
CO-2		03	07	04	14
	Integral transform				
CO-3		02	06	02	10
	Symmetric kernels				
CO-4		03	03	02	11
	Boundary value problem and				
	green functions				
CO-5		03	02	02	08
	Integral representation				
Total		13	22	15	50

• •• T.I.I. /C

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6 .Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S.	Title	Author	Publisher	Edition & Year
Ν				
о.				
1	Linear integral equation	R.P. kanwal	Academic press	New York , 1971
2	Integral equation and calculus of variation	Dr. jagbirsingh	Maharshi Dayanand university	2021

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS302 Course Title: Integral Equation

	PO1	PO	Р	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PS	PSO	PSO 4
Course		2	3											2	3	
Outcome	Adv ance d Mat hem atica I Kno wled ge	Pro ble m- sol vin g Skil Is	Re se ar ch A bil iti es	Qua ntita tive Anal ysis	Teachi ng and Acade mia	Theo retic al Und ersta ndin g	Comm unicati on Skills	Operat ions Resear ch	Appl icati on in Indu stry	Engine ering and Techno logy	Gove rnme and Publi c Sect or	Cons ultin g	Understa nd the mathema tical concepts and applicati ons in the field of algebra	Ha ndl e th e ad va nc ed tec hni qu es	Dev elop nece ssar y skills a nd expe rtise in the field of rese arch	Creates Mathem atical Models
CO1- 78MS302 Define and understand the concept of laplace transform and differential equation and their classification, definition of integral transform .fredholm and Volterra integral equation.	2	3	1	2	1	2	1	1	1	1	1	1	2	2	1	
CO1-78MS302.2 Define and understand the basic concepts	2	3	1	1	1	1	1	1	1	1	1	1	<u>1</u>	<u>2</u>	<u>2</u>	

of integral transform method, laplacetransfor m , convolution integral. Application of Volterra with convolution type kernels.solution of the Cauchy type singular integral equation. And the hilbert kernel							2			1			1			
CO1-78MS302.3 Define and compute, symmetric kernels, orthonormal system of functions. Fundamental properties of eigenvalues and eigen functions for symmetric kernels. Solution of integral equations with symmetric kernels.	3	3		2			3	2	2		2	2	1	∠	<u>3</u>	
CO1- 78MS302.4 Understand and definition of a	2	3	1	2	3	2	3	1	1	1	1	2	<u>2</u>	<u>1</u>	<u>1</u>	

boundary value																
problem for an																
ordinary																
equation of a																
second order																
and reduction to																
a fredholm																
integral																
equation of the																
second kind																
Dirac delta																
function Groop																
function. Green																
approach to																
roduco tho																
houndary value																
problem of a																
colf adjoint																
differential																
aguation with																
equation with																
houndary																
condition to																
intogral																
integral																
	2	n	2	1	r	1	2	2	1	1	1	1	1	1	1	
COI-/olvissu2.5	Э	Z	З	Ŧ	Z	T	Z	Э	T	T	T	T	<u>+</u>	Ŧ	Ŧ	
intogral																
roprocontation																
formulao for the																
solution of the																
Janlace and																
Poisson																
equations																
Newtonian																
single layer and																
double lover																
notentials																
Integral																
integrai																

	1	1	1						
equation									
formulation of									
boundary value									
problem for									
laplace									
equations.									

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs	COs No.& Titles	SOs No.	Laboratory	Classroom Instruction (CI)	Self Learning
No.			Instruction(L		(SL)
			1)		
PO 1,2,3,4,5,6	CO1-78MS302.1 78MS302	SO1.1		Unit-1.0	SL1.1
7,8,9,10,11,12	Define and understand the	SO1.2		Approximation1.1,1.2,1.3,1.4,	SL1.2
PSO 1,2, 3, 4	concept of laplace transform	SO1.3		1.5,1.6,1.7,1.8,1.9,1.10,1.11,1.	
	and differential equation and	SO1.4		12,1.13,1.14,	
	their classification, definition				
	of integral transform				
	tredholm and Volterra				
	integral equation.				
PO 1,2,3,4,5,6	CO1-78MS302.2 Define and	SO2.1		Unit-2 System of linear	SL2.1
7,8,9,10,11,12	understand the basic	SO2.2		equations :2.1, 2.2, 2.3,	
PSO 1,2, 3, 4	concepts of integral	SO2.3		2.4,2.5,2.6,2.7,2.8,2.9,2.10,2.1	
	transform method,	502.4		1,2.12,2.13,2.14,2.15.	
	laplacetransform ,				
	convolution Integral.				
	Application of volterra with				
	kornals solution of the				
	Cauchy type singular integral				
	caucity type singular integral				
	kernel				
PO123456	CO3-78MS302 3 Define and	SO3 1		Unit 2 Itoratives method	SI 3 1
7 8 9 10 11 12	compute symmetric kernels	503.1		Onit-Siteratives method	515.1
PSO 1.2.3.4	orthonormal system of	503.3		21272224252627	
	functions. Fundamental			3.1, 3.2, 3.3, 3.4, 3.3,3.0,3.7	
	properties of eigenvalues				
	and eigen functions for				
	symmetric kernels. Solution				
	of integral equations with				
	symmetric kernels.				
PO 1,2,3,4,5,6	CO4-78MS302.4 Understand	SO4.1		Unit-4 Eigen value problem	SL4.1
7,8,9,10,11,12	and definition of a boundary	SO4.2			
PSO 1,2, 3, 4	value problem for an	SO4.3		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7,	
	ordinary equation of a	SO4.4		4.8,4.9,4.10,4.11,4.12	
	second order and reduction				

	to a fredholm integral equation of the second kind. Dirac delta function. Green function approach to reduce the boundary value problem of a self adjoint differential equation with homogenous boundary condition to integral equation form.			
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	Understand the integral representation formulae for the solution of the laplace and Poisson equations. Newtonian single layer and double layer potentials. Integral equation	SO5.1 SO5.2 SO5.3 SO5.4	5.1, 5.2, 5.3, 5.4, 5.5, 5.6 ,5.7,5.8,5.9,5.10,5.11,5.12	5L.3.1
	formulation of boundary value problem for laplace equations.			

Semester-III

Course Code: Course Title :	78MS303 Advanced Numerical Techniques
Pre- requisite:	Students should have basic knowledge of and deep understanding of the theory of the advanced numerical techniques.
Rationale:	The program aims to develop advanced problem- solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced mathematical expertise

CO1-78MS303.1 Understand the importance of Uniform approximation by polynomials, Errors and their computations.

CO2-78MS303.2 Determine the Systems of Linear Equations

CO3-78MS303.3 Demonstrate an understanding of the theory of Iteratives method

CO4-78MS303.4 Define and recognize the Eigen value problem

CO5-78MS303.5 Students will create the concept of a Numerical Integrationand methodbased on Interpolation

Scheme of Studies:

Board of Cours Study Code	Course	Course Scher Title Cl	Scheme of studies (Hours/Week)					Total
	Code		Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	ts (C)
Program Core (PCC)	78MS303	Advance d Numeric al Techniqu es	4[3+1]	0	1	1	6	4

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

L1: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Т	heory									
Board of	Couse	Course Title	Scheme of	Assessme	nt (Marks)				
Study	Code		Progressive Assessment (PRA)					End Semester Assessm ent (ESA)	Total Marks (PRA+ ESA)	
			Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+ SA +CAT+A T)		
PCC	78MS303	Advanced Numerical Techniques	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS303.1 Understand the importance of Uniform approximation by polynomials, Errors and their computations.

Approximate Hours

ltem	AppXHrs
Cl	14
LI	0
SW	1
SL	1
Total	16

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
\$01.1		Unit-1 0	SI 1 1
JUnderstand the		1.1 Uniform approximation	Orthogonal polynomial
concept of		by polynomials	Orthogonal polynomial
Uniform		1.2 least squares	
annroximation		annroximation	
SO1.2		1.3 Bational approximation	
Understand the		1.4 Weighted least square	
Principles of		approximation	
floating point.		1.5 Approximation of	
		function-chebyshev	
SO1.3		polynomials	
Understand the		1.6 Tutorial 1	
Errors and their		1.7 Principles of floating	
computations.		point	
SO1.4		1.8 Errors and their	
Understand the		computations.	
data fitting		1.9 Error in series	
		approximation	
		1.10Tutorial 2	
		1.11 Multiple linear least	
		square	
		1.12Curve fitting by a polynomial	
		1.13 data fitting	
		1.14 Fitting a straight line	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

(i) Obtain a linear polynomial approximation to the function $f(x) = x^3$ on the interval [0,1] using the

least square approximation with W(x)=1

(ii) Certain experimental values of x and given below (0,-1) (2,5) (5,12) (7,20) in the straight lines $y=a_0+a_1x$ is fitted to the above data find the approximate value of a_0 and a_1 .

(iii) find the approximate value of a_0 and a_0 and a_1 so that the function $z=a_0+a_1x + a_2y$ is fitted to the

data given below (0,0,2) (1,1,4) (2,3,3) (4,2,16) (6,8,6)

(iv)Define Errors and their computations

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO2-78MS303.2 Determine the Systems of Linear Equations

Approximat	Approximate Hours				
Item	AppXHrs				
Cl	15				
LI	0				
SW	1				
SL	1				
Total	17				

		TULAI	1/
Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO2.1		Unit2.0	SL.1 computational
Understand the		2.1 Introduction of	procedure for LU
concept Systems of		Systems of Linear	Decomposition method
Linear Equations		Equations	
SO2.2 Understand the		2.2 Bisection method	
Partial Pivoting		2.3 Newton Raphson	
And Complete Pivoting		method	
SO2.3 Understand the		2.4 Regula falsi	

Factorization method,	method
	2.5 Secant method
SO2.4 Understand the 3	2.6 Tutorial 1
Gauss-elimination	2.7 Factorization
	method
	2.8 Gauss-elimination
	method
	2.9 Gauss -Jordan
	method
	2.10 Tutorial 2
	2.11 Partial Pivoting
	2.12 Necessity for
	pivoting
	2.13 Complete
	Pivoting
	2.14 Tutorial 3
	2.15 Residual error
	correction method

SW-2 Suggested Sessional Work (SW): a. Assignments:

(I) Solve the System of Equation by Factorization Method

3x + 2y + 7z = 4 2x + 3y + z = 53x + 4y + z = 7

(ii) Solve the system of Equation by Gauss Elimination method with partial pivoting

10x - y + 2z = 4x + 10y - z = 32x + 3y + 20z = 7

(iii) Solve the System of Equation by Triangularization Method

$$x + 5y + z = 14$$

 $2x + y + 3z = 13$
 $3x + y + 4z = 17$

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

O3-78MS303.3 Demonstrate an understanding of the theory of Iteratives method

Approximate Hours				
Item	AppXHrs			
Cl	7			
LI	0			
SW	1			
SL	1			
Total	9			

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO3.1 Understand the		Unit-3.0	SL.1
theJacobi method			Solve the
		3.1 Introduction of Iterative	many
SO3.2 Understand the		methods	problems
conjugate gradient			system of
methods		3.2 Tutorial 1	Equation
			by Gauss
		3.3 Jacobi method	Seidel
SO3.3 Understand the			method in
Gauss-Seidel methods		3.4 Gauss-Seidel methods	third
with convergence			iterations
analysis		3.5 Gauss-Seidel methods with	
anarysis		convergence analysis	
		, , , , , , , , , , , , , , , , , , ,	
		3.6 Tutorial 2	
		3.7 conjugate gradient methods.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

1. Solve the Equation by Jacobi Method

6x + 3y + 12z = 358x - 3y + 2z = 204x + 11y - z = 33

2.Solve the Equation by Jacobi Method

20x + y - 2z = 173x + 20y - z = -182x - 3y + 20z = 25

3. Solve the system of Equation by Gauss Seidel method

x + 2y + z = 3 2x + 3y + 3z = 103x - y + 2z = 13

4.Solve the system of Equation by Gauss Seidel method

10x + y + z = 122x + 10y + z = 13x + y + 5z = 7

5.Solve the system of Equation by Gauss Seidel method 8x - 3y + 2z = 20 4x + 11y - z = 336x + 3y + 12z = 35

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO4-78MS303.4 Define and recognize the Eigen value problem

Approximate Hours				
Item	AppXHrs			
Cl	12			
LI	0			
SW	1			
SL	1			
Total	14			

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)

Eigen value and Eigen Some problems of vectors 4.1 Eigen value vectors vectors	n igen
vectors 4.1 Eigen value Eigen value and e vectors	eigen
vectors	
SO4.2 Understand the 4.2 Eigen vectors of	
Householder's method matrix .	
SO4.3Understand Eigen 4.3 Tutorial 1	
values of a symmetric	
tridiagonal matrix. 4.4 Householder's	
method	
SO4.4 understand and	
problems solving on 4.5 Figen values of a	
Interpolation	
matrix	
4.6 Tutorial 2	
4.7 Singular value	
decomposition	
decomposition	
4.8 Internelation	
Introduction	
4.9 review of Lagrange	
interpolation	
techniques	
techniques.	
4 10 Tutorial 3	
A 11 Error in Lagrange	
's interpolation	
techniques	
4 12 Tutorial 4	

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - (i) Determine the Eigen values and Eigen vectors of the following matrix:

5	0	1]
0	-2	0
.1	0	5]

(ii) Evaluate $\log_{10} 301$ by using Lagrange's interpolation formula given

log ₁₀ 300	log ₁₀ 304	log ₁₀ 305	log ₁₀ 307
2.4771	2.4829	2.4843	2.4871

(iii) Obtain the singular value decomposition of the following matrix:

 $\begin{bmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 3 \end{bmatrix}$

(iv) Evaluate $\log_{10}656\,$ by using Lagrange's interpolation formula given

log ₁₀ 654	log ₁₀ 658	log ₁₀ 659	log ₁₀ 661
2.8156	2.8182	2.8189	2.8202

b. Mini Project:

.

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO5-78MS303.5 Students will create the concept of a Numerical Integrationand method based on Interpolation.

Approximate Hours			
Item	Appx Hrs		
Cl	12		
LI	0		
SW	1		
SL	1		
Total	14		

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO5.1 Understand the concept Method based on Interpolation SO5.2 Understand the Gauss quadrature method SO5.3 Understand Initial Value Problems for Ordinary Differential Equations SO5.4 Understand Predictor and Corrector scheme		Unit-5.0 5.1Method based on Integration 5.2 Simpson's rule 5.3 Trapezoidal rule 5.4 Tutorial 1 5.5 Newton's- Cotes method 5.6 Gauss quadrature method. 5.7 Tutorial 2 5.8 Initial Value Problems for Ordinary Differential Equations 5.9Runge-Kutta method, 5.10 Predictor 5.11 Corrector scheme 5.12 Stability and Convergence analysis.	SL.1 Problems on Euler method

SW-3 Suggested Sessional Work (SW): a. Assignments

(i) Use Runge - Kutta method to obtain

y when
$$x = 1.1$$
 given that 1.2 when $x = 1$ and y satisfies the equations $\frac{dy}{dx} = 3x + y^2$

(ii) Use Runge - Kutta method to find

y when x = 1.2 in step of 0.1 given that satisfies the equations

$$\frac{dy}{dx} = x^2 + y^2$$
, y(1) = 1.5

- (iii) Show that the sum of cotes number is unity
- (iv) Find $\int_0^1 \frac{1}{1+x^2} dx$ by using Trapezoidal rule where the interval is divided into 6 equal parts.
- (v) Apply Milne' Simpson method to find a solution of the differential equation $\frac{dy}{dx} = 1+x y^2$ with initial condition y(0)=1 for x=0.4, 0.5 given that

		•	
Х	0.1	0.2	0.3
Υ	1.101	1.223	1.355

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

- c. Other Activities (Specify):
 - Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-78MS303.1 Understand the importance of Uniform approximation by polynomials, Errors and their computations.	14	1	1	16
CO2-78MS303.2 Determine the Systems of Linear Equations	15	1	1	17
CO3-78MS303.3 Demonstrate an understanding of the theory of Iteratives method	7	1	1	10
CO4-78MS303.4 Define and recognize the Eigen value problem	12	1	1	14

CO5-78MS303.5 Students will create the concept of a Numerical Integrationand method based on Interpolation	12	1	1	14
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks	s Distribu	ition	Total Marks	
		R	U	Α		
CO-1	Understand the importance of Uniform approximation by polynomials, Errors and their computations.	03	01	01		05
CO-2	Determine the Systems of Linear Equations	02	06	02		10
CO-3	Demonstrate an understanding of the theory of Iteratives method	03	07	05		15
CO-4	Define and recognize the Eigen value problem	-	10	05		15
CO-5	Students will create the concept of a Numerical Integrationand method based on Integration	03	02		-	05
Total	•	11	26		13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6.Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S. N o.	Title	Author	Publisher	Edition & Year
1	Numerical Analysis	S.S.Sastry	Prentice hall India.	2015
2	Numerical methods fore scientific and engineering computations	M.K.Jain,S.R.K. Iyenger.		
3	Numerical Analysis	G.Shankar Rao	New age international publishers ,new- Hydrabad.	2006

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs. Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS303 Course Title: Advanced Numerical Techniques

Course	PO1	PO 2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PS O 2	PSO 3	PSO 4
Outcome	Adva nced Mat hem atica I Kno wled ge	Pr ob le m- sol vin g Ski Ils	Research Abilities	Qua ntita tive Anal ysis	Teachi ng and Acade mia	Theo retic al Und ersta ndin g	Comm unicati on Skills	Operat ions Resear ch	Appl icati on Indu stry	Engine ering and Techno logy	Gove rnme nt and Publi c Sect or	Cons ultin g	Understa nd the mathema tical concepts and applicati ons in the field of algebra	Ha ndl e th e ad va nc ed tec hni qu es	Dev elop nece ssar y skills a nd expe rtise in the field of rese arch	Creates Mathem atical Models
CO1- 78MS303U nderstand the importance of Uniform approximat ion by polynomial s, Errors and their computatio ns.	2	3	1	2	1	2	1	1	1	1	1	1	2	2	1	
CO1- 78MS303. 2 Determine the Systems of Linear Equations	2	3	1	1	1	1	1	1	1	1	1	1	1	<u>2</u>	2	
CO1- 78MS30	3	3	1	2	1	1	3	2	2	1	2	2	<u>1</u>	<u>2</u>	<u>3</u>	

3.3 Demons trate an underst anding of the theory of Iterative s method																
CO1- 78MS30 3.4 Define and recogniz e the Eigen value problem	2	3	1	2	3	2	3	1	1	1	1	2	2	1	1	
CO1- 78MS30 3.5Stud ents will create the concept of a Numeric al Integrati onand method based on Interpol ation	3	2	3	1	2	1	2	3	1	1	1	1	1	1	1	

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laborato Instructi LI)	ory ion(Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1-78MS303.1 Understand the importance of Uniform approximation by polynomials, Errors and their computations.	SO1.1 SO1.2 SO1.3 SO1.4		Uni Apr 1.5, .12,	it-1.0 proximation1.1,1.2,1.3,1.4, ,1.6,1.7,1.8,1.9,1.10,1.11,1 ,1.13,1.14,	SL1.1 SL1.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2-78MS303.2 Determine the Systems of Linear Equations	SO2.1 SO2.2 SO2.3 So2.4		Uni equ 2.4, 11,7	it-2 System of linear Jations :2.1, 2.2, 2.3, ,2.5,2.6,2.7,2.8,2.9,2.10,2. 2.12,2.13,2.14,2.15.	SL2.1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3-78MS303.3 Demonstrate an understanding of the theory of Iteratives method	SO3.1 SO3.2 SO3.3		Uni 3.1,	it-3 Iteratives method , 3.2, 3.3, 3.4, 3.5,3.6,3.7	SL3.1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4-78MS303.4 Define and recognize the Eigen value problem	SO4.1 SO4.2 SO4.3 SO4.4		Uni pro 4.1, 4.8,	it-4 Eigen value blem , 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, ,4.9,4.10,4.11,4.12	SL4.1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5-78MS303.5 Students will create the concept of a Numerical Integration	SO5.1 SO5.2 SO5.3 SO5.4		Uni 5.1, ,5.7	it-5Numerical Integration , 5.2, 5.3, 5.4, 5.5, 5.6 7,5.8,5.9,5.10,5.11,5.12	SL.5.1

Semester-III

Course Code:	78MS304
Course Title :	Special function
Perquisite:	Students should have basic knowledge of complex numbers
Rationale:	The program aims to develop advanced problem- solving and analytical skills and prepares students
	for careers in academia, research, industry, or
	other sectors that require advanced mathematical expertise.

Course Outcome :

- **CO1-78MS304.1** understand the property of special function like Gaus hypergeometric legendra function with their integral representations.
- **CO2-78MS304.2**. Understand the concept of bessel's function hermit function etc with its properties like recurrence relation orthogonal properties generating function etc.
- **CO3-78MS304.3**. Understand how special function is useful in differential equation.

CO4-78MS304.4 explain the application and the usefulness of these special function

CO5-78MS304.5 classify and explain the function different types of differential equation.

Curriculum & Syllabus of M.Sc. Mathematics program

Scheme of Studies:

Board of	Course Code	Course	Scheme of s	Scheme of studies (Hours/Week)						
Study		The	CI	LI	sw	SL	Total Study Hours (Cl+Ll+SW+SL)	s (C)		
Program Core (PCC)	78MS304	Special function	4[3+1]	0	1	1	6	4		

Legend:

Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Board of	Couse Code	Course Title	S	Scheme of Assessment (Marks) Progressive Assessment (PRA) End Semester Assessment (ESA)						
Study			Progressi							
			Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendanc e (AT)	Total Marks (CA+CT+SA +CAT+AT)		
PCC	78MS304	Special function	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS304.1 understand the properties of special function like Gauss hyper geometrc legendra function with their integral representations.

Approximate Hours

Item	AppX Hrs
Cl	10
LI	0

SW	1
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 Understand the		Unit-1.0 Gamma function and Beta function:	SL.1 Understand the
concept of Gamma functions.		1.1 Introduction of Gamma	complex numbers. SL.2 knowledge of the
SO1.2 Understand the relationships between beta and	-	1.2 The definition of Gamma functions.	gamma function and beta function. SL.3 Properties of Gamma
gamma functions. SO1.3 Understand the		1.4 Euler's Products.	functions
concept of Beta function. So1.4 Understand the		1.5 Evaluation of Gamma functions.	
multiplication formula So1.5		1.7 Introduction 1.8 definition of Beta function.	
Understand the concept of function.		 1.9 Multiplication formulas. 1.10 Related functions. 	

SW-1 Suggested Sessional Work (SW):

a. Assignment:

i.Evaluation of Gamma and beta terms..

ii. Gauss 's multiplication formula.

iii. State and prove Beta function.

iv. Application of Gamma functions.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO2-78MS304.2. Understand the concept of bessel's function hermit function etc with its properties like recurrence relation orthogonal properties generating function etc.

Approximate Hours		
Item	AppX Hrs	
Cl	10	
LI	0	
SW	1	
SL	1	
Total	12	

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SUS)	(LI)		(SL)
SO2.1		Unit-2.0 Bessel	SL.1
Understand the		Functions. :	Evaluation Bessel's
concept of bessel's			differential equations.
functions.		2.1 Introduction.	
		2.2 Definition of Bessel	SL.2
		functions.	Knowledge of the
SO2.2		2.3 Definition of Jn(x)	Bessel's functions.
Learn about the		2.4 Generating	
concept of Recurrence		function of Jn(x).	SL.3
relation.		2.5 Alternative forms of	Knowledge of some
SO2.3		generating functions.	properties of bessel's
Understand the		2.6 Bessel's differential	functions.
concept of		equations.	
Jn(x)		2.7 Recurrence relation	
SO2.4		for Jn(x).	
Understand the Uses of			
Bessel's functions.		2.8 Bessel 's Integral.	
SO2.5			
Understand the		2.9 tutorial 1	
concept of recurrence		2.10 Application of	
relation with example.		bessel's functions.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Definition and Example of Bessel's functions.

ii. Define Alternative forms of generating functions.

iii. The Recurrence relation for Jn(x).

iv. Bessel's differential equations.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO3-78MS304.3. Understand how special function is useful in differential equations.

			Approximat	e Hours	
			Item	AppX Hrs	s
			Cl	11	
			LI	0	
			SW	1	
			SL	1	
	-		Total	13	-
Session Outcomes	Laboratory	Class room Instruction	Self Learni	ng	
(SOs)	Instruction	(CI)	(SL)		
	(LI)				-
SO3.1 Understand the		Unit-3.0 Legendre	SL.1		
principle of legendre		Polynomials.	Know	ledge of	
polynomials.		3.1 Introduction.	the ge	enerating	
SO2 2 Understand the		3.2 Recurrence relation.	functi	ons for	
Japlaces first integral		3.3 the concept of legendre	legen	dre	
form.		polynomials	polyn	omials.	
		3.4 Generating function for			
SO3.3 the concept of		legendre polynomials	Understa	nd an	
orthogonal properties.		3 5 tutorial 1	application	of	
		3.6 Rodriguez formula	legendre		
		2.7 Hypergeometric forms of	polynomials	.	
		Pn(x)			
		2.8 some other concrating			
		5.8 Some other generating			
		functions			
		3.9 Laplaces first integral			
		form,			
		3.10 Legendre 's differential			
		equations			
		2 11 Orthogonal properties			
		5 .11 Orthogonal properties.			

SW-3 Suggested Sessional Work (SW):

a. Assignment:

- ii. Application of legendre polynomials.
- iii. Evaluation of legendre differential equations.
- iv. State and prove Rodrigues formula.

V. Orthogonal properties.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO4-78MS304.4 explain the application and the usefulness of these special function.

Approximate Hours						
	Item AppX Hrs					
	Cl	10				
	LI	0				
	SW	1				
	SL	1				
	Total	12				

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 Understand the concept of harmite 's polynomials. SO4.2 understand the generating functions. SO4.3 Understand the importance of harmite 's polynomials.		Unit -4 Hermite'sPolynomials:4.1 Introduction4.2 Recurrence relation.4.3 Evaluation ofRodrigues Formula.4.3 Generating function.4.4 Bat'sman generatingfunctions.4.5 tutorial 14.6 Hermite'sdifferential equations.4.7 Evaluation oforthogonal properties.4.8 some properties ofharmite 's function.4.9 Expansion ofpolynomials.4.10 more generatingfunctions .	SL.1 knowledge of the harmite 's polynomials. SL.2 Expansion of polynomials, Recurrence relation.

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Evaluation of Rodrigues formula for generating functions.
- ii. Application of Hermite 's polynomials.
- iii. The Expansion of polynomials.
- iv. Calculation of Hermite 's differential equations.
- V. More generating functions.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO5-78MS304.5 The classify and explain the function different types of differential equations.

Approximate Hours			
Item	AppX Hrs		
Cl	9		
LI	0		
SW	1		
SL	1		
Total	11		

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)

SO5.1 Understand the concept of Rodrigues formula. SO5.2 Generaliged Laguerre polynomials. SO5.3 Orthogonal properties.	Unit-5.0 Laguerre polynomials.: 5.1 Introduction . 5.2 simple Laguerre polynomials: 5.3 Introduction the Laguerre polynomials Ln(x)	 SL.1 knowledge of the Recurrence relation and generating functions. knowledge of the expansion of polynomials.
	 5.4 Definition and Example of Laguerre polynomials. 5.5 Generating function. 5.6 Recurrence relation. 5.7. Laguerre difficult equations. 5.8 Rodrigues Formula.,Orthogonal properties. 	
	5.9 Generaliged Laguerre polynomials: Rodrigues formula,Orthogonal properties, expansion of polynomials.	

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-78MS304.1 understand the properties of special function like Gauss hyper geometrc legendra function with their integral representations.	10	1	1	12
CO2-78MS304.2 . Understand the concept of bessel's function hermit function etc with its properties like recurrence relation orthogonal properties generating function etc.	10	1	1	12
CO3-78MS304.3 . Understand how special function is useful in differential equations.	11	1	1	13
CO4-78MS304.4 Explain the application and the usefulness of these special function.	10	1	1	12
CO5-78MS304.5 The classify and explain the function different types of differential equations.	9	1	1	11
Total Hours	50	5	5	60

• Suggestion for End Semester Assessment

Suggested Specification Table For(ESA

со	Unit Titles		Marks Distribution		Total Marks
		R	U	А	
CO-1	UNIT-1 : Gamma function and beta function.	03	01	01	05
CO-2.	UNIT 2: Bessel's functions & Bessel's differential equations.	02	05	03	10

CO-3	Unit-3: Legendre Polynomials.	03	06	06	15
CO-4	Unit- 4: Harmite's polynomials. & harmite differential equations.	-	10	05	15
CO-5	Unit 5: Laguerre polynomials.& Generaliged Laguerr polynomials.	03	02	-	05
Total		11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6.Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S. No.	Title	Author	Publisher	Edition
1	Special Functions & Their Applications	N. N. Lebedev	New Edition	1972
2.	Differential	J.N. Sharma & R.K.	Krishna Prakashan	-
	Equation with	Gupta	Mandir	
	Special function			
	Integral Calculus	Shanti Narayan and	S. Chand & Company	-
3.		Dr. P.K. Mittal	Pvt.Ltd. Ram Nagar	
			New Delhi	
4.	Differential	Shepley L.Ross	Second Edition , john	Second Edition 1974
	Equations		Willy & sons, New	
			York	

b) Reference Books :

S.	Title	Author	Publisher	Edition
Ν				
ο.				
1	Special function	Rainville E.D	The Macmillan ,New	
			York,	2nd edition, 1971
2	Special function and their applications	Lebdev	Prentice hall Englewood cliffs	New Jersey USA 1995
3	Special function with applications	Saran N. Sharma and trivedi	Pragti prakashan	Edition, 1986

Curriculum Development Team:

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS304 Course Title: Special Function

Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	Р О 7	PO8	PO9	PO1 0	PO11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
	Adv ance d Mat hem atica I Kno wled ge	Prob lem- solvi ng Skills	Rese arch Abilit ies	Quant itative Analy sis	Teachin g and Academi a	Theor etical Under standi ng	C o m u ni c at io n S ki Ils	Opera tions Resea rch	Appl icati on in Indu stry	Engi neer ing and Tech nolo gy	Gover nmen t and Public Sector	Co nsu Itin g	Unders tand the mathe matical concep ts and applica tions in the field of algebra	Handl e the advan ced techni ques	Develo p necess ary skills and experti se in the field of researc h	Creat es Math emati cal Mod els
CO1-78MS304.1 understand the properties of special function like Gauss hyper geometrc legendra function with their integral representations	2	1	2	2	1	2	3	2	1	1	1	1	1	2	1	2
CO2-78MS304.2. Understand the concept of bessel's function hermit function etc with its properties like recurrence relation orthogonal properties generating function etc	2	1	3	2	1	2	1	1	1	2	1	1	<u>3</u>	2	1	1

CO378MS304.3. Understand how special function is useful in differential equations.	2	1	2	2	1	3	2	1	2	2	1	1	2	2	1	1
CO4-78MS304.4 explain the application and the usefulness of these special function	2	1	2	2	2	1	2	2	3	2	2	2	<u>2</u>	1	<u>1</u>	<u>1</u>
CO5-78MS304.5 The classify and explain the function different types of differential equations.	2	2	3	2	2	2	2	2	2	1	1	3	1	1	2	1

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1-78MS304.1 understand the properties of special function like Gauss hyper geometrc legendra function with their integral representations	S01.1 S01.2 S01.3 S01.4 S01.5		Unit-1.0 Gamma function and beta function. 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9, 1.10	SL1.1 SL1.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO278MS304.2. Understand the concept of Bessel's function hermit function etc with its properties like recurrence relation orthogonal properties generating function etc	S01.1 S01.2 S01.3 S01.4 S01.5		Unit-2 Bessel's functions & Bessel's Differential equations. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10	SL2.1 SL2.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3-78MS304.3 Understand how special function is useful in differential equations.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-3 Legendre Polynomials. 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,3.9,3.10,3.11	SL3.1 SL3.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4-78MS304.4 explain the application and the usefulness of these special function	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-4 Harmite 's polynomials. &harmite differential equations 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8,4.9,4.10.	SL4.1 SL4.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5-78MS304.5 The classify and explain the function different types of differential equations.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-5 Laguerre polynomials.& Generaliged Laguerre polynomials. 5.1, 5.2, 5.3, 5.4, 5 .5, 5.6, 5.7, 5.8,5.9,	SL5.1 SL5.2

Semester-III

Course Code:	78MS305
Course Title:	Fundamentals of Computers & Programming
Pre-requisite:	Student should have basic knowledge of elementary
	mathematics.
Rationale:	The rationale behind discrete mathematics is grounded in
	its practical applications to computer science and related
	fields.

Course Outcome:

78MS305.1: Understand and apply the programming concepts of C++ which is important for mathematical investigation and problem solving.

78MS305.2: Use mathematical libraries for computational objectives.

78MS305.3: Represent the outputs of programs visually in terms of well formatted text and plots. **78MS305.4:** Apply the knowledgeto solve complex problems and contribute meaningfully to the development of various software and systems.

78MS305.5:UnderstandMicrosoft Office is favored in professional settings due to its extensive features, compatibility, and support, while OpenOffice might be more suitable for personal use or organizations looking for a free and basic office suite.

SchemeofStudies:

Board	Course				Schem	ies(Hours/Week)	TotalCredits	
ofStud y	Code	CourseTitle	Cl	LI	SW	SL	Total StudyHours(Cl+Ll +SW+SL)	(C)
OEC	78MS305	Fundamentals of Computers & Programming	3	1	2	1	7	4

Legend:

Cl:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)andTutorial (T)andothers),

LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies)

SW: Sessional Work(includesassignment, seminar, miniprojectetc.),

SL:SelfLearning, **C:**Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteachertoensureoutcomeofLearning.

Scheme of Assessment Theory

					:	Scheme	of Assessm	ent (Marks)		
				Pr	ogressiv	e Asses	sment (PRA	A)	End Semester Assessme nt	Total
Board of Study	Board Use Cour of Co Titl Study de	Co use Course Co Title de	Class/ Home Assig nmen t 5 numb er 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Class Activ ity any one (CAT)	Class Attendan ce (AT)	Total Marks (CA+CT+SA+CAT +AT)	(ESA)	Marks (PRA+ ESA)
OEC	78 MS 30 5	Fundament als of Computers & Programmi ng	15	20	5	5	5	50	50	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

78MS305.1: Understand and apply the programming concepts of C++ which is important for mathematical investigation and problem solving.

Approximate Hours							
Item	AppX Hrs						
Cl	10						
LI	02						
SW	2						
SL	1						
Total	15						

AKS University

Faculty of Basic Science

Department of Mathematics

Curriculum & Syllabus of M.Sc. Mathematics program

SessionOutco	LaboratoryInstruc	ClassroomInstruction	SelfLearni
mes	tion	(CI)	ng
(SOs)	(LI)		(SL)
SO1.1	1.1 Working with	Unit-1.Computer Fundamental:	1. Learn about
Understandin	DOS commands	1.1 Characteristics of Computer	Computer
g	1.2 Introduction of	Fundamental,	Software,
Types and	programming	1.2 Types and components of	Operating
components	language	Computer Fundamental	System.
for computer		1.3 Input Devices, Output	2. Google
fundamental		Devices,3D Printing	Bard,
SO1.2 Explain		1.4 Storage Devices. Smart Devices,	Microsoft
computer		DOS Commands. Introduction to	Bing, ML.
Software		Programming Languages & Software	
SO1.3 discuss		1.5 Computer Software,	
Email, chat		1.6 Operating System	
boat and wed		1.7 Mobile App Software,	
Blogs.		1.8 Social Media Software: Instant	
SO1.4 define Virtual		Messaging, Email, Chat Boat, and	
Reality (VR), and		Web Blogs.	
Augmented Reality		Introduction to cutting-edge	
(AR).		technologies:	
		1.9 Digital Trust, Blockchain,	
		Internet of Things (IoT), 5G,	
		Cyber Security,	
		1.10 Cloud Computing, Quantum	
		Computing. Introduction to AI,	
		Chat GPT, Google Bard,	
		Microsoft Bing, ML, Virtual	
		Reality (VR), and Augmented	
		Reality (AR)	

SW-1 SuggestedSessionalWork(SW):

a. Assignments:-

- (1) Characteristics, types and componentsComputer Fundamental.
- (2) Digital Trust, Blockchain, Internet of Things (IoT), 5G, Cyber Security, Cloud Computing, Quantum Computing. Introduction to AI, ChatGPT.
- (3) Computer Software, Operating System, Mobile App Software, Social Media Software.

b. MiniProject:

Oral presentation, Poster presentation, Power Point Presentation.

c.Other Activities (Specify):

Quiz, Class Test.

78MS305.2: Use mathematical libraries for computational objectives.

Ap	proximate Hours
Item	AppXHrs
Cl	10
LI	02
SW	2
SL	2
Total	16

SessionOutcomes (SOs)	Laboratory Instruction (LI)	ClassroomInstruction (CI)	SelfLearni ng
			(SL)
SO2.1 define Programming	2.1 Programming in C.	Unit-2 :Getting	1. Types of
Language.	2.2 Operators in C.	Started with C:	C, Constants
		2.1 Programming	and Types of C
SO2.2 discuss History of C		Language, Types,	Variables.
and Types of C		Translators, Flowcharts,	2. Basic
Variables.		what is C,	input &
		2.2 History of C, The C	output
SO2.3 To learn		Character set	function.
about Data types.		2.3 Types of C, Constants	
		2.4 Types of C Variables, C	
SO2.4 Explainarithmetic		keywords	
operators and relational		2.5 Identifiers, and literals,	
operators.		Data types	
		2.6 Basic input & output	
		function – printf and	
		scanf, Math library	
		2.7 arithmetic operators	
		2.8 Relational operators	
		2.9 Assignment operators,	
		logical operators,	
		increment and	
		decrement operators	
		2.10 conditional operator.	

SW-2 SuggestedSessionalWork(SW):

a. Assignments:-

- (1) Programming Language, Types, Translators, Flowcharts.
- (2) All topics of c.
- (3) What is operator and types of operator.

b. MiniProject:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

78MS305.3: Represent the outputs of programs visually in terms of well formatted text and plots.

Ар	proximate Hours		
Item	n AppXHrs		
Cl	10		
LI	02		
SW	2		
SL	2		
Total	16		

SessionOutcomes	LaboratoryInstruction	ClassroomInstruction	SelfLearnin
(SOs)	(LI)	(CI)	g
			(SL)
SO3.1 To	3.1 Proramming in c for	Unit-3 Control Structure:	1. Control
UnderstandControl	control statements.	3.1 Control instructions, if,	instructio
instructions.	3.2 Programming Array in	if-else, if-else if, nested	ns and
SO3.2To learn Loops	С.	if	Loops
control structure.		3.2 Loops control structure:	control
SO3.3 Explain array and		while loop, for loop	structure.
character array.		3.3 Loops control structure:	2. What is
		do–while loop, odd loop,	Array.
		nested loop	
		3.4 Break, continue,	
		case-control structure	
		3.5 goto, exit statement	
		switch statement.	
		Array:	
		3.6 Array	
		3.7 Array initialization	
		3.8 2D array	
		3.9 Initialization of 1D and	
		2D array	

	3.10	Character Array.	

SW-3 SuggestedSessionalWork(SW):

a. Assignments:-

- (1) Control instructions and Loops control structure.
- (2) Break, continue, case-control structure.
- (3) What is array and types of array.

b. MiniProject:

Oral presentation, Poster presentation, Power Point Presentation.

c.Other Activities (Specify):

Quiz, Class Test.

78MS305.4: Apply the knowledgeto solve complex problems and contribute meaningfully to the development of various software and systems.

Approximate HoursItemAppXHrsCl10Ll02SW2SL2Total16

SessionOutcomes	LaboratoryInstructi	ClassroomInstruction	SelfLearning
(SOs)	on (u)	(CI)	(SL)
SO4.1 To UnderstandNeed	4.1. Programming function in C.	Unit-4 Function: 4.1 Need of function	1. What is function
of function.	4.2 Passing parameter in the function.	4.2 Declaring a function 4.3 Defining	and types of function.
SO4.2 To learn types of function.		4.4 Calling function 4.5 Types of function	2. Pointers and Array
SO4.3 To understand Advance C Concepts.		 4.6 Passing parameter in the function. Advance C Concepts: 4.7 Pointers 	of Pointers. 3. String and String Functions

SO4.4 Explain Array of	4.8 Array of Pointers
Pointers.	4.9 Call by value
	4.10 all by reference, Structure
	and union,String,String
	Functions

SW-4 SuggestedSessionalWork(SW):

- a. Assignments:
- (1) declaring a function, defining, calling function, types of function, passing parameter in the function.
- (2) Pointers, Array of Pointers, Call by value,Call by reference, structure and union, String, String Functions.
- b. MiniProject:

Oral presentation, Poster presentation, Power Point Presentation.

c.Other Activities (Specify):

NA

78MS305.5:Understand Microsoft Office is favored in professional settings due to its extensive features, compatibility, and support, while OpenOffice might be more suitable for personal use or organizations looking for a free and basic office suite.

Ар	Approximate Hours			
Item	Item AppXHrs			
Cl	Cl 10			
LI	02			
SW	2			
SL	2			
Total	16			

SessionOutcomes	LaboratoryInstruction	ClassroomInstruction	SelfLearning
(SOs)	(LI)	(CI)	(SL)

AKS University

Faculty of Basic Science

Department of Mathematics

Curriculum & Syllabus of M.Sc. Mathematics program

SO5.1 To	5.1. Documents		1. Introduction
understandIntroductio	editing in MS-word.	Unit 5 (1)	and FeaturesMS
n and FeaturesMS	5.2 Creating table in	MS Office Vs Open	Office.
Office.	MS-EXCEL.	Office:	2. Computer
SO5.2 To learn about		5.1 Introduction and	Networks and
Open Office.		Features	Google
SO5.3 Explain Google		(Comparison).	Workspace.
Workspace.		5.2MS Word:	
SO5.4 define Computer		Introduction,	
Networks.		Features, and	
		Applications	
		Applications,	
		5.3Menus &	
		Commands,	
		5.4 Toolbars & Buttons	
		5.5MS Excel:-	
		Introduction, working	
		with MS Excel, Use of	
		Formulas and	
		Functions.	
		5 .6 MS PowerPoint:-	
		Introduction, working	
		with MS PowerPoint,	
		Creating a	
		Presentation.	
		5.7 Computer	
		Networks:-LAN and	
		WAN and Internet,	
		Bluetooth, Wi-Fi, Li-Fi,	
		Client-Server	
		architecture.	
		5.8Cloud-Based Services:	
		5.9Google Workspace:	
		DOCS, Sheets, Slides,	
		Forms, Calendar,	
		5.10 Chat, Meet,	
		Contacts, Maps,Jam	
		board; YouTube	

SW-5 SuggestedSessionalWork(SW):

a. Assignments:-

- (1) Introduction and Features MS Office.
- (2) LAN and WAN and Internet, Bluetooth, Wi-Fi, Li-Fi, Client-Server architecture.
- (3) Explain Google Workspace.

- b. MiniProject:NA
- c. OtherActivities(Specify):NA

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laborato ryInstruc tion (LI)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+S l)
78MS305.1: Understand and apply the programming concepts of C++ which is important for mathematical investigation and problem solving.	10	2	2	2	16
78MS305.2: Use mathematical libraries for computational objectives.	10	2	2	2	16
78MS305.3: Represent the outputs of programs visually in terms of well formatted text and plots.	10	2	2	2	16
78MS305.4:Apply the knowledgeto solve complex problems and contribute meaningfully to the development of various software and systems.	10	2	2	2	16
78MS305.5:Understand Microsoft Office is favored in professional settings due to its extensive features, compatibility, and support, while OpenOffice might be more suitable for personal use or organizations looking for a free and basic office suite.	10	2	2	2	16
Total Hours	50	10	10	10	80

Suggestion for End Semester Assessment

Suggested Specification Table(ForESA)

СО	UnitTitles	Ma	MarksDistribution		Total Marks	
		R	U	A		
CO-1	Computer Fundamental	03	01	01	05	
CO-2	Getting Started withC,Operator	02	02	01	05	
CO-3	Control Structure , Array	03	07	05	15	
CO-4	Function and Advance C Concepts	04	06	05	15	
CO-5	MS Office Vs Open Office	03	04	03	10	
Total 15 20 15 50					50	
L	Legend: R:Remember, U:Understand, A:Apply					

TheendofsemesterassessmentforIntroduction to Portland cement willbeheld with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visittocementplant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstra tion/TutorialsCBT,Blog,Facebook, Twitter, WhatsApp, Mobile, Onlinesources)
- 9. Brainstorming

Suggested Learning Resources:

A. Books:

S. No.	Title	Author	Publisher	Edition &Year
1	"Computer Fundamentals"	Pradeep K. Sinha and Priti Sinha	BPB Publications	Fourth Edition
2	"Let Us C" BPB Publications, 2007	YashvantKanetkar	BPB Publications,	Seventh Edition 2007
3	Learning Computer Fundamentals, MS Office and Internet & Web Tech.	Maidasani, D.	Laxmi Publications	2005

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.NeelkanthNapit, Assistant Professor, Department of Mathematics.
- 4. Mrs.VandanaSoni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. ArpanaTripathi, Assistant Professor, Department of Mathematics.

CO, PO and PSO Mapping

Course: M.Sc. Mathematics CourseCode: 78MS305 Course Title: Fundamentals of Computers & Programming

	ProgramOutco mes								ProgramSpecific Outcome							
Course	P01	PO 2	PO 3	РО 4	PO 5	PO 6	РО 7	PO8	РО 9	PO1 0	PO 11	P O 1 2	PSO1	PSO2	PSO3	PSO4
es	Advanced Mathematical Knowledge	Proble m- solving Skills	Researc h Abilities	Quantit ative Analysis	Teachin g and Academ ia	Theore tical Unders tandin g	Commun ication Skills	Operati ons Researc h	Applicat ion in Industry	Enginee ring and Technol ogy	Governm ent and Public Sector	Consulti ng	Understand the mathematic al concepts and applications in the field of algebra	Handle the advanc ed techniq ues	Develop necessar y skills and expertise in the field of research	Creates hematica Models
CO.1: 78MS305.1 Computer Fundamen tal	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO.2 : 78MS305 .2 Getting Started withC, Operator	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO.3 : 78MS305 .3 Control Structure , Array	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO.4:78MS305 .4 Function and Advance C Concepts	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2

CO.5 : 78MS305	3	3	2	1	1	1	3	3	3	1	1	2	2	3	3	1	3
.5 MS Office Vs Open Office																	

Legend:1–Low,2–Medium,3–High

Course Curriculum Map:

POs&PSOsNo.	Cos No.&Titles	SOsN o.	Labora toryIn structi on (11)	Classroom Instruction(CI)	SelfLearnin g(SL)
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO.1 : 78MS305.1 Computer Fundamental	SO1.1, SO1, SO1.3,SO1.4		Unit-1. 1.1.1,1.1.2,1.1.3,1.1.4, 1.2.1,1.2.2,1.2.3,1.1.4, 1.3.1, 1.3.2,1.3.3 1.1.4	
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO.2 : 78MS305 .2 Getting Started withC, Operator	SO2.1, SO2.2, SO2.3,SO2.4		Unit-2 2.1.1,2.1.2,2.1.3,2.1.4 ,2.1.5,2.1.6,2.1.7 2.2.1,2.2.2,2.2.3,2.2. 4,2.2.5	
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO.3 : 78MS305.3 Control Structure , Array	SO3 .1S O3. 2 SO3.3		Unit-3 : 3.1.1,3.1.2,3.1.3,3.1.4, 3.1.5,3.1.6,3.1.7	

			3.2.1,3.2.2,3.2.3,3.2.4 ,3.2.5
PO1,2,3,4,5,6 7,8,9,10,11,12	CO.4 : 78MS305 .4 Function and Advance C Concepts	SO4.1 SO4.2	Unit-4: 4.1.1,4.1.2,4.1.3,4.1.4,
PSO1,2,3,4,5		SO4.3 SO4.4	4.1.5
			4.2.1,4.2.2,4.2.3,4.2.4, 4.2.5,4.2.6,4.2.7
PO1,2,3,4,5,6	CO.5 : 78MS305 .5	SO5.1	Unit5:
7,8,9,10,11,12	MS Office Vs Open Office	SO5.2	5.1,5.2,5.3,5.4,5.5,5.
PSO1,2,3,4,5		SO5.3 SO5.4	6,5.7,5.8,5.9,5.10,5.1 1,5.12
i			

Semester-III

Course Code:	78MS306-A
Course Title :	Scientific writing
Pre -requisite:	Graduate Student Standing

Rationale: This course will guide graduate students through the process of scientific writing. Students will select a project of interest for which there is existing data. With this data, we will cover developing sound objectives, writing a scientific manuscript including basic analyses, developing figures, and then presenting scientific results at a conference

Course Outcome : CO1-78MS306-A .1 Do review of literature

CO2-78MS306-A .2 Write review paper thesis write and Generate report

CO3-78MS306-A .3 Aware to format of publications

CO4-78MS306-A .4 Understand concept of impact factor, H index

CO5-78MS306-A.5

Understand implementation of Softwares to writing research papers and plotting the graphs.

Board of	Course Code Course Title	Scheme of studies (Hours/Week)					Total Credi	
of Study		The	CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	ts (C)
RC	78MS306-A	Scientific Writing	2	1	1	1	(2+1+1+1)	3

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Board of	Couse	Course	Scheme of Assessment (Marks)		
Study	Code	Title			
			Progressive Assessment (PRA)	End	Total
				Semester	Marks
				Assessm	(PRA+
				ent	ESA)
				(ESA)	

			Class/H ome Assign ment 5 numbe r 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+ SA +CAT+A T)		
RC	78MS30 6-A	Scientific Writing	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1- 78MS306-A .1 Do review of literature.

Approximate Hours

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction (LI)	(CI)	(SL)
SO1.1		Unit-1.	SL.1
Understanding the Structure and Purpose of		1.1 Basic Concept of	Practice by reviewing examples of well-written
Research Writing		research journal	research papers or theses
SO 1.2 Developing Skills for	-	1.2 concept of Thesis	available in digital libraries or academic databases to see
Effective Research		Writing and Report	how experienced researchers
Writing SO 1.3		Generation	organize and present their work.
Mastering the Concepts		1.3 Writing Research	
of Bibliography and References		Abstract	SL.2 Write a brief introduction that
		1.4 Introduction, Review of	sets the context for a chosen
		Literature	research topic, clearly stating the research problem and
		1.5 discuss Result and	objectives.
		Conclusion	
		1.6 discuss how to read a	
		paper	
		1.7 concept of writing	
		1.8 Concepts of Bibliography	
		1.9 References	

SW-1 Suggested Sessional Work (SW):

a. Assignment:

i. Read a research papers and make a summary.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

CO2-78MS306-A .2

Write review paper thesis write and Generate report.

Approximate Hours

Item	AppX Hrs
Cl	9

LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laborator Y Instructio n	Class room Instruction (CI)	Self Learning (SL)
	(LI)		
SO 2.1		Unit:-2	SL 1
Understanding the Significance and		2.1 Significance of Report Writing	Gain a solid understanding of the different types of
Structure of Report		2.2 Steps of Report Writing	reports and publication
Writing SO 2.2		2.3 Types of Research Reports	formats, enabling you to choose the appropriate
Mastering Presentation		2.4 Types of Research Reports	format for your work.
and Publication Formats		2.5 Formats of Publication in	SL2 Research and study
SO 2.3 Developing		Research Journal/ Book/ Conference	various types of research
Skills for Effective Oral and Poster		Etc	reports, such as technical reports, case studies, and
Presentations:		2.6 Concept of Impact Factor, H-	white papers.
		Index	
		2.7 Seminar Presentation: Power Poin	
		For Oral And Poster Presentations	
		Reference.	
		2.8 Oral Presentations	
		2.9 Poster Presentations	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. study various types of research and make a report.

b. Mini Project:

Oral presentation, Power Point Presentation.

CO3-78MS306-A .3

Aware to format of publications

			Approxir	nate H	lours	
			Item		AppX Hrs	
			Cl		9	
			LI		0	
			SW		1	
			SL		1	
	1		Total		11	
Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)		Self (SL)	Learning	
SO3.1		Unit 3		SI 1	Exploration	
Understanding the Significance and Steps of	the 3.1 Typesetting Mathematical Tex		d With	and Practice with		
Report Writing		LATEX				
SO3.2 Familiarity with		3.2 Sample Document, Type Style		SL Z		
Reports and		3.3 understand Environments, Lis	ts,	Prac LaTe	ex documents	
SO3.3 Mastering		Centering, Tables,		by w	riting and	
Advanced Tools and		3.4 study Vertical And Horizontal	spacing	matl	hematical	
Communication:		3.5 learn Equation Environments	, Fonts,	expr	ressions, tables,	
		3.6 Hats And Underlining, Braces		com	mands	
		3.7 Arrays And Matrices				
		3.8 learn Customized Commands				
		3.9 Theorem–Like Environments				
		Math Styles				

SW-3 Suggested Sessional Work (SW):

a Assignment:

1 Access online tutorials and documentation for LaTeX to learn the basics of typesetting mathematical text.

b. Mini Project:

Oral presentation, Power Point Presentation.

CO4-78MS306-A .4

Understand concept of impact factor, H index

Approximate Hours

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

SW-4 Suggested Sessional Work (SW):

a Assignment:

1 Practice creating simple documents.

b. Mini Project:

Oral presentation, Power Point Presentation.

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning (SL)
	(LI)		
SO 4.1 Comprehension		UNIT 4	SL 1 Study the
of Document Structure		4.1 understand Document Classes and the	official documentation
and Tools.		Overall Structure	and online
SO4.2 Skill		4.2 learn how to give Titles for Documents	tutorials for LaTeX or other
Development in		4.3 learn Sectioning Commands	document
Document Creation		4.4 Inputting Files, Inputting Pictures,	preparation SL2
SO4.3 Proficiency in		Making a Bibliography	Create sample
Data Analysis Tools		4.5 Making an Index	documents with various structures
		4.6 Packages.	(articles, reports,
		4.7 Slides	books) using LaTeX or another
		4.8Computer usage for collecting/analyzing	system,
		data-simulation	
		using Fortran/C/Mathematica/Matlab/	
		MathCAD/IBM-SPSS.	
		4.9under247nd how to insert Pictures and	
		graph in paper	

CO5-78MS306-A.5

Understand implementation of Softwares to writing research papers and plotting the graphs.

Approximate Hours

Item	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		

SO 5.1 Introduction to	Unit-5	SL 1 Explore
MATLAB Environment	5 1 learn Basics of MATLAB Window	MATLAB
and Basic Operations	5.1 Icam Basics of WATEAB, Window	Documentation and
SO 5.2 Participants will	5.2 understand Input-Output, File	Tutorials
develop skills in	types. Working with arrays of	SL2
creating, saving, and	types, working with analys of	Write and execute
executing script and	numbers.	simple script and
function files, as well as	5.3 Creating and Printing Simple Plots,	function files to
handling data		automate
operations	5.4 Creating, Saving and Executing a	calculations and
SO5.3 Working with	Script file	tasks, starting with
Arrays and Plotting	F F Creating and Eventting a function	basic examples
Data	5.5 Creating and Executing a function	
	file.	
	5.6 Indexing, Matrix manipulation,	
	Creating Vectors, Matrix and Array	
	operations	
	5.7 Saving and Loading Data, Plotting	
	Simple Graphs.	
	5.8, Plotting Simple Graphs.	
	5.9 presentation	

SW-3 Suggested Sessional Work (SW):

a Assignment:

1 Create and customize simple plots using sample data, and practice saving and exporting these plots for use in reports and presentations.

b. Mini Project:

Oral presentation, Power Point Presentation

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-78MS306-A .1 Do review of literature.	9	1	1	11
CO2-78MS306-A .2 Write review paper thesis write and Generate report.	9	1	1	11
CO3-78MS306-A .3 Aware to format of publications	9	1	1	11
CO4-78MS306-A .4 Understand concept of impact factor, H index	9	1	1	11
CO5-78MS306-A.5 Understand implementation of Softwares to writing research papers and plotting the graphs.	9	1	1	11
Total Hours	45	5	5	65

Suggestion for End Semester Assessment Suggested Specification Table For(ESA)

со	Unit Titles	Marks Distribution			Total Marks
		R	U	А	
CO1-78MS306-A .1 Do review of literature.	Review of Literature	2	3	5	10
CO2-78MS306-A .2 Write review paper thesis write and Generate report.	Report Writing	2	3	5	10

CO3-78MS306-A .3 Aware to format of publications	Typesetting Mathematical Text With LATEX	2	3	5	10
CO4-78MS306-A .4 Understand concept of impact factor, H index	Packages	1	1	3	05
CO5-78MS306-A.5 Understand implementation of Softwares to writing research papers and plotting the graphs.	MATLAB	2	3	10	15
Total		9	13	28	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6 .Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S.No.	Title	Author	Publisher	Edition
1	Scientific writing Booklet	Marc E. Tischler		

2	Scientific Writing For Graduate Students	F. Peter Woodford The Rockefeller University, New York	Library of Congress catalogue card number 68-56104,USA	
3	American Medical Association Manual of Style:a Guide for Authors and Editors	Williams & Wilkins	Baltimore	9th , 1998
4	Author's Handbook of Styles for Life Science Journals.; Iverson, Cheryl, Ed.;	Atlas, Michel C	CRC Press: Boca Raton,	1996
5	Byrne, Daniel W. Publishing your Medical Research Paper: What They Don't Teach You in Medical School	Williams & Wilkins:	Baltimore	1998

b) Reference Book:

S.	Title	Author	Publisher	Edition & Year
No.				
1	Interpreting the	Gehlbach, Stephen H.	McGraw Hill Medical	4 th , 2002
	Medical Literature		Publishing Division:	
			New York,	
2	Successful	Matthews, Janice R.;	Cambridge University	2nd ed. & 2000
	Scientific Writing: a	Bowen, John M.;	Press: New York,	
	Step-bystep Guide	Matthews, Robert W.		
	for Biomedical			
	Scientists,;			
3	Writing Papers in	McMillan, Vicky.	Bedford Books: Boston	3rd ed., 2001.
	the Biological			
	Sciences			
4	Short Guide to	Pechenik, Jan A. A	Longman: New York	4th ed.,2001.
	Writing about			
	Biology, ,			

5	Essentials of	entials of Zeiger, Mimi. McGraw-Hill, Health				
	Writing Biomedical		Professions Division:			
	Research Papers		New York			

c) Suggetsed Digital Platform Web links :

Suggested	http://www.organicworldwide.net/writing.html							
Digital	http://www.mang.canterbury.ac.nz/courseinfo/AcademicWriting/Scientific.html							
Platforms	http://mason.gmu.edu/~arichar6/logic.htm							
Web links:	- Logical Fallacies In Scientific Writing; A. Stephen Richardson							
	http://www.stark.kent.edu/writing/outline.html							
	- outlines							
	http://bio.winona.edu/delong/EcoLab/21%20Suggestions.html							
	- Twenty-One Suggestions for Writing Good Scientific Papers:							
	http://www.mco.edu/lib/instr/libinsta.html							
	- Instructions to Authors in the Health Sciences (a plethora of journals) B							

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr. Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS306-A Course Title: Scientific writing

Course Outcome	PO1 Adv ance d Mat hem atica I Kno wled ge	PO 2 Pro ble m- sol vin g Skil Is	P O 3 R es ea rc h A bil iti es	PO 4 Qu anti tati ve Ana lysi s	PO5 Teach ing and Acad emia	PO 6 The ore tica I Un der sta ndi ng	PO7 Com muni catio n Skills	PO8 Oper ation s Rese arch	PO9 Appli catio n in Indus try	PO10 Engin eerin g and Tech nolog y	PO 11 Gov ern men t and Publ ic Sect or	PO 12 Co ns ult in g	PSO 1 Understand the mathemati cal concepts and applications in the field of algebra	PSO 2 Han dle the adva nced tech niqu es	PSO 3 Develop necessary skills and expertise in the field of research	PSO 4 Creates Mathem atical Models
CO1- 78MS306- A .1 Do review of literature.	2	1	3	2	1	2	3	3	1	1	2	1	1	2	1	2

CO2- 78MS306-	2	1	3	2	1	2	3	3	1	2	2	1	<u>3</u>	2	1	<u>1</u>
A.2 Write																
review																
thesis																
write and Generate																
report.																
CO3-	2	1	2	2	1	3	3	2	2	2	1	1	2	2	1	<u>1</u>
.3Aware to																
format of publication																
CO4-	2	1	2	2	2	2	3	2	3	2	2	2	2	1	1	1
78MS306-A																
Understand																
concept of impact																
factor, H index																
CO5-	2	2	2	2	3	3	2	2	2	1	1	3	1	1	2	1
78MS306-																
A.5																
Understand																
implement																
ation of																
Softwares																
to writing																
research																
papers and																
plotting the																
graphs.																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Labora tory Instru ction(L I)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1-78MS306-A .1 literature.	SO1.1 SO1.2 SO1.3		Unit-1.0 linear programming problem. 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9	SL1.1 SL1.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2-78MS306-A .2 Write review paper thesis write and Generate report.	SO1.1 SO1.2 SO1.3		Unit-2 solution of linear programming problem. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9	SL2.1 SL2.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3-78MS306-A .3 Aware to format of publications	SO1.1 SO1.2 SO1.3		Unit-3 . Assignment problem: 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,3.9	SL3.1 SL3.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4-78MS306-A .4 Understand concept of impact factor, H index	SO1.1 SO1.2 SO1.3		Unit-4 Transportation problem: 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8,4.9	SL4.1 SL4.2

PO 1,2,3,4,5,6	CO5-78MS306-A.5	SO1.1	Unit-5 Network Analysis:	SL5.1
7,8,9,10,11,12	Understand	SO1.2		SL5.2
PSO 1,2, 3, 4	onderstand	SO1.3	5.1, 5.2, 5.3, 5.4, 5	
	implementation of		.5, 5.6, 5.7, 5.8,5.9	
	Softwares to writing			
	research papers and			
	plotting the graphs.			

Semester-IV

Course Code:	78MS401
Course Title : Pre- requisite:	 Analytic Number Theory Basic knowledge of complex analysis Familiarity with number theory concepts Understanding of basic calculus
Rationale:	Analytic number theory aims to understand the distribution of prime numbers, study their arithmetic properties, and investigate connections between prime numbers and other mathematical objects.

78MS401.1 Be able to effectively express the concepts and results of number theory.

78MS401.2 Learn basic theory of arithmetical functions and Dirichlet multiplication,

averages of some arithmetical functions.

78MS401.3 Understand distribution of prime numbers and prime number theorem.

78MS401.4 Learn the concept of quadratic residue and Quadratic reciprocity laws.

78MS401.5 Get a basic knowledge in Cryptography.

Scheme of Studies:

Board of	Course	Course	Scheme of studies (Hours/Week)					
Study	Code	The	Cl	U	SW	SL	Total Study Hours (CI+LI+SW+SL)	ts (C)
Program Core (PCC)	78MS401	Analytic Number Theory	4[3+1]	0	1	1	6	4

Legend:

Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

L1: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.)
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

Boar	Couse	Course Title		Scheme o	of Assessmei	nt (Marks)			
a of Stud Y	Code		Progressive Assessment (PRA)					End Semester Assessment (ESA)	Total Marks (PRA+ ESA)	
			Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attendanc e (AT)	Total Marks (CA+CT+ SA + CAT+AT)		
PCC	78MS40 1	Analytic Number Theory	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS401.1 Be able to effectively express the concepts and results of number theory.

Approximate nours					
Item	AppX Hrs				
Cl	12				
LI	0				
SW	1				
SL	1				
Total	14				

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1		Unit-1 Dirichlet Series and	SL.1
Real-world applications of		Euler Products	Basic
Dirichlet series and Euler		1.1 Introduction	knowledge of
products in number theory.		1.2 Briefly review the	complex
		concepts of complex analysis	analysis
SO1.2	-	1.3 Dirichlet characters and	SL.2
Students will understand the		the Dirichlet convolution.	Familiarity with
concepts of Dirichlet Series			number theory
and Euler Products, and		1.4 Definition and	
their applications in number		Convergence of Dirichlet	
theory.		Series	
		1.5 Introduce the need for	
		Dirichlet series in number	
		theory.	
		1.6 Dirichlet Characters	
		1.7 Tutorial-I	
		1.8 Euler Products	
		1.9 Explore applications of	
		Euler products in number	
		theory	
		1.10 Work through examples	
		of Dirichlet series and Euler	
		products.	
		1.11 Motivate the study of	
		Euler products by discussing	
		their role in representing	
		certain arithmetic functions	
		1.12 Tutorial-II	

Approximate Hours

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Exercises and problems related to Dirichlet series and Euler products .

b. Mini Project:

Oral presentation

c. Other Activities (Specify):

Quiz, Class Test.

CO2-78MS401.2 Learn basic theory of arithmetical functions and Dirichlet multiplication, averages of some arithmetical functions.

Approximate Hours					
Item	AppX Hrs				
Cl	12				
LI	0				
SW	1				
SL	1				
Total	14				

	-		
Session Outcomes	Labora	Class room Instruction	Self Learning
(SOs)	tory	(CI)	(SL)
	Instruc		
	tion		
	(LI)		
SO2.1		Unit-2.0 The Function defined	SL.1
Students will understand the		by Series, The half plane of	Basic knowledge
concept of functions defined by		convergence of a Dirichlet	of complex
series and the half plane of		Series.	analysis
convergence of a Dirichlet series.			SL.2
		2.1 Briefly review complex	Understanding
SO2.2		numbers, complex	of series
Convergence and divergence		functions, and series	convergence
criteria		convergence	
		2.2 Introduction to Functions	
		Defined by Series	
		2.3 Power Series	
		2.4 Introduce the notion of the	
		interval of convergence for	
		a power series.	
		2.5 Tutorials-I	
		2.6 Function Representation	
		2.7 The concept of the Taylor	

series and its role in
representing functions.
2.8 Examples and Applications
2.9 Half Plane of Convergence:
Introduction
2.10 Convergence in a Half
Plane
2.11 Conditions for
Convergence
2.12 Tutorials-II

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Assign exercises and problems related to functions defined by series and Dirichlet series convergence for further practice.

b. Other Activities (Specify):

Quiz, Class Test.

CO3-78MS401.3 Understand distribution of prime numbers and prime number theorem.

Approximate Hours

ltem	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1		Unit-3.0	SL.1
Student able to		The Integral formula for the	Definition of
understand the Dirichlet	coefficients of Dirichlet Series		Dirichlet
Series Representation			Series
		3.1 Brief overview of Dirichlet series	
SO3.2		3.2 Importance of coefficients in	
Student able to Identify		analyzing the behaviour of series	SL.2
the poles of the function		3.3 Statement of the integral	Derivation
F(s)/s within the contour.		formula for coefficients	of Euler's
and Student able to use		3.4 Definition of Dirichlet series	Formula for

the residue theorem to	3.5	Convergence and divergence	Dirichlet
evaluate the integral. The		criteria	Series
residues at the poles	3.6	Basic properties and examples.	
contribute to the value of	3.7	Introduction to analytic	
the integral.		continuation	
	3.8	The need for analytic	
		continuation in Dirichlet series	
	3.9	Key theorems and concepts	
		related to analytic continuation	
	3.10	Application of complex	
		integration to Dirichlet series	
	3.11	Application of the integral	
		formula in number theory	
	3.12	2 Tutorial	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

The Integral formula for the coefficients of Dirichlet Series.

b. Other Activities (Specify):

Quiz, Class Test.

CO4-78MS401.4 Understanding of the concept of gravitational waves, their detection, and their significance as a powerful tool to study astrophysical phenomena.

Approximate Hours				
Item	AppX Hrs			
Cl	12			
LI	0			
SW	1			
SL	1			
Total	14			

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO4.1		Unit-4.0 Analytic Properties of	SL.1
Understand the		Dirichlet Series	Ensure you have a solid
Basics of Convergence		4.1 Introduction	understanding of
and Divergence		4.2 Convergence of Dirichlet Series	complex analysis,
		4.3 Pointwise convergence	including topics like
SO4.2		4.4 Uniform convergence	complex numbers,
Student will Learn		4.5 Application of Dirichlet's	power series, and

about the concept of	Theorem to prime distribution	contour integration.
analytic continuation	4.6 Extension to more general	SL.2
for Dirichlet series.	arithmetic functions	Familiarize yourself
	4.7 Tutorial-I	with basic concepts in
	4.8 Introduction to analytic	number theory, such as
	continuation	prime numbers,
	4.9 Connection between Dirichlet	arithmetic functions,
	Series and Analytic Continuation	and Euler's totient
	4.10 Mean value formula for	function.
	Dirichlet Series.	
	4.11 Advanced analytic techniques in	
	the study of Dirichlet Series	
	4.12 Tutorial-II	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

Analytic Properties of Dirichlet Series

b. Other Activities (Specify):

Quiz, Class Test.

CO5-78MS401.5 Understanding of the concepts, principles, and mathematical framework of the General Theory of Relativity.

4	Approximate Hours				
	Item	AppX Hrs			
	Cl	12			
	LI	0			
	SW	1			
	SL	1			
	Total	14			

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning (SL)
	(LI)		
SO5.1		Unit-5.0 zeta function	SL.1
Understand the			Knowledge of
concept of zeta		5.1 Gamma Function	complex number
function		5.2 Properties of Gamma Function	SL.2
		5.3 Examples on Gamma Function	Knowledge of
SO5.2		5.4 The Riemann zeta function and	Gamma Function
Understand the		its analytic continuation	
application of Hurwitz		5.5 Hurwitz zeta function	
zeta function		5.6 Integral representation of	

Hurwitz zeta function
5.7 Tutorial-I
5.8 Analytic Continuation of
Hurwitz zeta function
5.9 Examples on analytic
Continuation of Hurwitz zeta
function.
5.10 Calculation of Hurwitz Zeta
Function
5.11 Examples
5.12 Tutorial-I

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Bending of light rays in a gravitational field. Gravitational redshift ,Spectral lines. nergy-momentum tensor of a perfect fluid. Schwarzschild internal solution. Boundary conditions. Energy-Momentum tensor of an electromagnetic field.

b. Other Activities (Specify):

Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+SI)
78MS401.1 Be able to effectively express the concepts and results of number theory.	12	1	1	14
CO2-78MS401.2 78MS401.2 Learn basic theory of arithmetical functions and Dirichlet multiplication, averages of some arithmetical functions.	12	1	1	14
78MS401.3 Understand distribution of prime numbers and prime number theorem.	12	1	1	14
78MS401.4 Learn the concept of quadratic residue and Quadratic	12	1	1	14

reciprocity laws.				
78MS401.5Get a basic knowledge in Cryptography.	12	1	1	14
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution			Total Marks
		R	U	Α	
CO-1	Dirichlet Series and Euler Products	05	05	05	15
CO-2	Convergence of Dirichlet Series	05	05	05	15
CO-3	coefficients of Dirichlet Series	03	01	02	06
CO-4	Analytic Properties of Dirichlet Series	03	03	02	08
CO-5	Zeta Function	03	01	02	06
Total		25	17	08	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

1. Improved Lecture

- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources

- 6. Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S. N	Title	Author	Publisher	Edition & Year
o. 1	Introduction to Analytic Number Theory	T. M. Apostol	Narosa Pub. House	1989
2	Introduction to Analytic Number Theory	Apostol, T. M.,	Springer International Student Edition,Narosa Publishing House, New Delhi	1993.
3	An Introduction to the Theory of Numbers	Hardy, G.H. and Wright, E. M.	Oxford University Press	4th Edition, 1960
4	An Introduction to the Theory of Numbers	Niven, I. and Zuckerman, H.	Wiley Eastern, New Delhi	5th Edition, 2000
5	A classical introduction to modern number theory	Kenneth Ireland and Michael Rosen	Springer	(2010)

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS401 Course Title: Analytic Number Theory

	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1 1	PO12	PSO 1	PSO 2	PSO 3	PS O 4
Course	Ad	Prob	Res	Qu	Teac	Th	Com	Oper	Appli	Engi	Go	Cons	Under	На	Dev	Cre
Outcome	va	lem-	ear	ant	hing	eor	muni	ation	catio	neeri	ver	ultin	stand	ndl	elo	ate
	nc	solvi	ch	itat	and	etic	catio	S	n in	ng	nm	g	the	e	р	s
	ed	ng	Abil	ive	Acad	al	n	Rese	Indu	and	ent		mathe	the	nec	Ma
	М	Skill	itie	An	emia	Un	Skills	arch	stry	Tech	an		matica	ad	ess	the
	at	S	S	aly		der				nolo	d		I	va	ary	mat
	he			sis		sta				gy	Pu		conce	nc	skill	ical
	m					ndi					blic		pts	ed	S	Мо
	ati					ng					Sec		and	tec	and	del
	са										tor		applic	hni	exp	S
	I												ations	qu	erti	I
	Kn												in the	es	se	I
	0												field		in	1
	wl												of		the	I
	ed												algebr		fiel	I
	ge												а		d of	I
															res	I
															ear eb	I
															cn	I
CO1-	2	3	1	2	1	2	2	2	1	1	1	1	<u>2</u>	1	<u>1</u>	3
78MS401.1																
Be able to																
effectively																
express the																
concepts																
and results																
of number																
theory.																

78MS401.2	1	3	2	1	1	1	1	1	1	2	3	1	3	1	1	2
Learn basic	-			-	-	, ÷	-	-	-	-		-	<u> </u>	∸	-	<u> </u>
theory of																
arithmetical																
functions																
and Dirichlet																
multiplicatio																
n, averages																
of some																
arithmetical																
functions.																
78MS401.3		3	2	2	1	1	3	2	1	1	3	1	2	1	2	2
Understand																
distribution																
of prime																
numbers																
and prime																
number																
theorem.																
78MS401.4	2	3	2	2	1	1	3	2	1	1	3	1	<u>2</u>	<u>1</u>	<u>2</u>	2
Learn the																
concept of																
quadratic																
residue and																
Quadratic																
reciprocity																
laws.																
78MS401.5	2	3	2	2	1	1	3	2	1	1	3	1	<u>2</u>	<u>1</u>	<u>2</u>	3
Get a basic																
knowledge																
in Crypto -																
graphy.																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs	COs No.& Titles	SOs No.	Laboratory	Classroom Instruction	Self Learning (SL)
No.			Instruction((CI)	
			LI)		
PO	CO1-78MS401.1 Be	SO1.1		Unit-1.0 Group	SL1.1
1,2,3,4,5,6	able to effectively	SO1.2		1.1,1.2,1.3,1.4,1.5,1.6,1.	SL1.2
7,8,9,10,11,1	express the concepts			7,1.8,1.9,1.10,1.11.1.12	SL1.3
2	and results of number				
PSO 1,2, 3, 4	theory.				
PO	78MS401.2	SO1.1		Unit-2 Ring	SL2.1
1,2,3,4,5,6	Learn basic theory of	SO1.2		2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	SL2.2
7,8,9,10,11,1	arithmetical functions			2.7, 2.8,2.9,2.10,	
2	and Dirichlet			2.11,1.12	
PSO 1,2, 3, 4	multiplication averages				
	of some arithmetical				
	functions.				
PO	78MS401.3 Understand	SO1.1		Unit-3	SL3.1
1,2,3,4,5,6	distribution of prime	SO1.2		3.1, 3.2, 3.3, 3.4, 3.5, 3.6,	SL3.2
7,8,9,10,11,1	numbers and prime			3.7, 3.8,3.9,3.10,	
2	number theorem.			3.11,3.12	
PSO 1,2, 3, 4					
PO	78MS401.4 Learn the	SO1.1		Unit-4	SL4.1
1,2,3,4,5,6	concept of quadratic	SO1.2		4.1, 4.2, 4.3, 4.4, 4.5, 4.6,	SL4.2
7,8,9,10,11,1	residue and Quadratic			4.7, 4.8,4.9,4.10,	
2	reciprocity laws.			4.11,4.12	
PSO 1,2, 3, 4					
РО	78MS401.5 Get a basic	SO1.1		Unit-5	SL5.1
1,2,3,4,5,6	knowledge in Crypto -	SO1.2		5.1, 5.2, 5.3, 5.4, 5.5, 5.6,	SL5.2
7,8,9,10,11,1	graphy.			5.7, 5.8,5.9,5.10.	
2				5.11,5.12	
PSO 1,2, 3, 4					

Semester-IV

Course Code:	78MS402					
Course Title :	Functional Analysis					
Pre- requisite:	Students should have basic knowledge of and deep understanding of the theory of the advanced numerical techniques.					
Rationale:	The program aims to develop advanced problem- solving and analytical skills and prepares students					
	for careers in academia, research, industry, or					
	other sectors that require advanced					
	mathematical expertise.					

Course Outcomes:

CO1-78MS402.1 Understand the importance of Normed Linear spaces and Banach spaces

CO2-78MS402.2 Determine the Fundamental theorems on Normed linear space

CO3-78MS402.3 Demonstrate an understanding of the Applications of Normed linear space

CO4-78MS402.4 Define and recognize the Hilbert Spaces

CO5-78MS402.5 Students will create the concept of aOperator Theory and Sturm-Liouville System

Scheme of Studies:

Board of	Course	Course Title	Scheme of studies (Hours/Week)					
Study	code		Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	ts (C)
Program Core (PCC)	78MS402	Function al Analysis	4[3+1]	0	1	1	6	4

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

meory										
Board of	Couse	Course Title	Scheme of	Assessme	nt (Marks)				
Study	Code		Progressive Assessment (PRA)						End Semester Assessm ent (ESA)	Total Marks (PRA+ ESA)
			Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+ SA +CAT+A T)		
PCC	78MS402	Functional Analysis	15	20	5	5	5	50	50	100

Theory

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS402.1 Understand the importance of Normed Linear spaces and Banach spaces

Approximate Hours

Item	AppXHrs
Cl	13
LI	0
SW	1
SL	1
Total	15

(505)	ession Outcomes Laboratory Instruction Clas SOs) (LI) (CI)		(SL)
SO1.1 Understand the concept of Normed linear spaces SO1.2 Understand the Banach space		Unit-1.0 1.1 Norm 1.2 Normed linear spaces. 1.3 Tutorial 1 1.4 Quotient space of Normed linear space 1.5 Subspace 1.6 Completeness.	SL1.1 Examples of offinite dimensional Normed spaces
SO1.3 Understand the Basic properties of finite dimensional Normed spaces. SO1.4 Understand Completion of a Normed linear space		 1.7 Banach space 1.8 Equivalent norms. 1.9 Basic properties of finite dimensional Normed spaces 1.10 Tutorial 2 1.11 Projections 1.12 Completion of a Normed linear space, 1.13 Riesz lemma 	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

(i) State and prove Riesz lemma

(ii) Any finite dimensional normed linear space is a Banach space

(iii) Define Norm and Normed Linear Space and Show that \mathbb{R}^n is nls with the following norms

$$(i) \| x \|_{1} = \sum_{i=1}^{n} |x_{i}| (ii) \| x \|_{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2} \right)^{\frac{1}{2}}$$
$$(iii) \| x \|_{\infty} = \max_{1 \le i \le n} |x_{i}|$$

(iv) Show that $l_\infty \ c \ are normed linear space with the norm$

 $\parallel x \parallel = \lim_{n \to \infty} \lvert x_n \rvert \ \text{define a norm on c}$

(v)Show that the real linear space R and the complex linear space are Banach space under the norm

 $\parallel x \parallel = \mid x \mid$, $x \in C$ or R

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO2-78MS402.2 Determine the Fundamental theorems on Normed linear space

			Approxi	mate Hours			
			Item		AppXHrs		
			Cl		10		
			LI		0		
			SW		1		
			SL		1		
			Total		11		
Session Outcomes	Laboratory Instruction	Class room Instruction			Self Learning		
(SOs)	(LI)	(CI)					
SO2.1		Unit2.0		S.L.1 some theorems			
Understand the		2.1 Bounded line	ear	on	weak and str	ong	
concept Bounded linear		transformations		convergence			
transformations		2.2 Dual spaces v	with				

	examples	
SO2.2	2.3 Tutorial 1	
Understand the dual	2.4 Weak Convergence,	
spaces	2.5 Uniform	
	boundedness principle	
SO2.3		
Understand the Open	2.6 Uniform	
mapping and closed	boundedness theorem	
graph theorems		
	2.7 Consequences.	
SO2.4	2.8 Tutorial 2	
Understand the Weak	2.9 Open mapping	
Convergence	theorem	
-	2.10 Closed graph	
	theorems.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- (I) State and prove closed graph theorems
- (ii)State and prove uniform boundedness theorem
- (iii) State and prove open mapping theorem
- (iv) Weak convergence does not necessarily imply strong convergence.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO3-78MS402.3 Demonstrate an understanding of the Applications of Normed linear space.

Approximate Hours						
Item	AppXHrs					
Cl	10					
LI	0					
SW	1					
SL	1					
Total	12					

275

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1 Understand the		Unit-3.0	SL.1
theHahn-Banach			Solve the
theorem for real linear		3.1 Hahn-Banach theorem for real	many
space		linear space	problems reflexive
		3.2 linear spaces,	space
SO3.2 Understand the			
Complex linear spaces		3.3 Banach's theorem	
		3.4 Complex linear spaces.	
SO3.3 Understand the			
Reflexive spaces		3.5 Reflexive spaces.	
		3.6 Tutorial 1	
SO3.4 Understand the			
Solvability of linear		3.7 Weak Sequential	
equations in Banach		Compactness.	
spaces			
		3.8 Solvability of linear equations	
		in Banach spaces	
		3.9 Tutorial 2	
		3.10 application of Hahn-Banach	
		theorem	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

(i) State and prove Hahn Banach theorem for a real normed linear space

- (ii)Show that every finite dimensional nls is reflexive
- (iii) State and prove Banach theorem
- (iv) Define reflexive space with one example

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO4-78MS402.4 Define and recognize the Hilbert Spaces

Approximate HoursItemAppXHrsCl14Ll0SW1SL1Total16

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 Understand the		Unit-4.0	SL.1
Inner-product spaces		4 .1 Inner-product	Some problems on
		spaces	Reflexivity of Hilbert
SO4.2 Understand the		4.2 Cauchy-Schwarz	spaces
Hilbert spaces		Inequality	
		4.3 The Triangle	
		Inequality,	
SO4.3		4.4 Polarization Identity	
		4.5 Hilbert spaces,	
Understand the		4.6 Orthonormal Sets.	
Cauchy-Schwarz		4.7 Bessel's inequality.	
Inequality		4.8 Parseval's identity	
		4.9 Structure of Hilbert	
		spaces.	
		4.10 Projection	
SO4.4		theorem 4.11Riesz -	
Understand and		Fischer theorem	
problems solving on		4.12 Riesz	
Structure of Hilbert		representation	
spaces.		theorem	
		4.13 Tutorial 1	
		4.14 Tutorial 2	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- (i) State and prove Bessel's inequality
- (ii) Prove that every inner product space is a normed space
- (iii) State and prove Riesz -Fischer theorem,
- (iv) State and prove Riesz representation

(v) State and prove Parseval's identity

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO5-78MS402.5 Students will create the concept of aOperator Theory and Sturm-Liouville System.

Approximate Hours							
Item	Appx Hrs						
Cl	13						
LI	0						
SW	1						
SL	1						
Total	15						

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO5.1 Understand the conceptLinear Operators SO5.2 Understand the Self-Adjoint operators SO5.3 Understand Normal and Unitary operators SO5.4 Understand The The Closed Range Theorem. SO5.5 Understand The Sturm-Liouville Problems		Unit-5.0 5.1 Linear Operators, 5.2 Adjoint of an operator on a Hilbert space. 5.3 Tutorial 1 5.4 Self-Adjoint operators 5.5 Positive operators, 5.6 Compact Operators, 5.7 Invertible operators, 5.8 Identity operators 5.9 Projection operators, 5.10 Normal and Unitary operators.	SL.1 Application to Sturm- Liouville Problems.

	5.11 The Closed Range Theorem.	
	5.12Sturm-Liouville Problems.	
	5.13 Tutorial 2	

SW-3 Suggested Sessional Work (SW): a. Assignments

- (i) State and prove The Closed Range Theorem
- (ii) Prove that Every positive operator is self adjoint
- (iii) An operator T on a Hilbert space H is unitary if and only if it is an isometric isomorphism of H onto itself
- (iv) Let T be an operator on H then prove that I*=I where I is the identity operator

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-78MS402.1 Understand the importance of Normed Linear spaces and Banach spaces	13	1	1	15
CO2-78MS402.2 Determine the Fundamental theorems on Normed linear space	10	1	1	12
CO3-78MS402.3 Demonstrate an understanding of the Applications of	10	1	1	12

Normed linear space				
CO4-78MS402.4 Define and recognize the Hilbert Spaces	14	1	1	16
CO5-78MS402.5 Students will create the concept of a Operator Theory and Sturm-Liouville System	13	1	1	15
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

СО	Unit Titles	Mark	s Distrib	ution	Total Marks		
		R	U	Α			
CO-1	Understand the importance of Normed Linear spaces and Banach spaces	03	01	01			05
CO-2	Determine the Fundamental theorems on Normed linear space	02	06	02			10
CO-3	Demonstrate an understanding of the Applications of Normed linear space	03	07	05			15
CO-4	Define and recognize the Hilbert Spaces	-	10	05			15
CO-5	Students will create the concept of an Operator Theory and Sturm-Liouville System	03	02		-		05
Total		11	26		13		50

Suggested Specification Table (For ESA)

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6 .Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S.	Title	Author	Publisher	Edition & Year	
No.					
1	Functional Analysis with Application.	H. K. Pathak		Third Revised Edition :2018- 2019	
2	Functional Analysis	Rudin W.		McGraw Hill,2000	
3	Introduction to Functional Analysis	A.H. Siddique	Real world education publisher New Delhi	2014	

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs. Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS402 Course Title: Functional Analysis

	PO	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO	PSO 1	PSO	PSO 3	PSO 4
Course Outcome	1 Adv anc ed Ma the ma tica I Kno wle dge	2 ob le m- sol vin g Ski Ils	Research Abilities	Qua ntita tive Anal ysis	Teachi ng and Acade mia	Theo retic al Und ersta ndin g	Comm unicati on Skills	Operat ions Resear ch	Appl icati on in Indu stry	Engine ering and Techno logy	Gove rnme nt and Publi c Sect or	12 Co ns ulti ng	Understan d the mathemat ical concepts and applicatio ns in the field of algebra	2 Han dle the adv anc ed tec hni que s	Develo p necess ary skills and expert ise in the field of resear ch	Creates Mathe matical Models
CO1- 78MS402.1 Understand the importance of Normed Linear spaces and Banach spaces	3	2	2	2	1	2	1	1	2	1	1	1	2	2	<u>1</u>	
CO2- 78MS402.2 Determine the Fundamenta I theorems on Normed linear space	2	3	1	1	1	1	2	1	1	1	1	1	1	2	2	
CO3- 78MS402.3 Demonstrat e an understandi	3	3	1	1	1	1	3	2	2	1	2	2	1	<u>2</u>	<u>3</u>	

ng of the Applications of Normed linear space																
CO4- 78MS402 .4 Define and recogniz e the Hilbert Spaces	2	3	1	2	3	2	3	1	1	2	1	2	2	<u>1</u>	1	
CO5- 78MS402 .5 Students will create the concept of aOperato r Theory and Sturm- Liouville System	3	2	3	1	2	1	2	3	1	1	1	1	1	<u>1</u>	<u>1</u>	

Legend: 1 – Low, 2 – Medium, 3 – High

	COc No & Titloc		Laborat	on	Classroom Instruction	Solf Loorning (SL)
No.	CUS NO.& HUES	303 110.	Instruct	ion	(CI)	Seli regi iling (Sr)
			(LI)			
PO 1,2,3,4,5,6	CO1-78MS402.1	SO1.1		Un	it-1.0 Normed Linear	SL1.1
7,8,9,10,11,1	Understand the	SO1.2		spa	aces and Banach	
2	importance of	SO1.3		spa	aces1.1,1.2,1.3,1.4,1.5,1.	
PSO 1,2, 3, 4	Normed Linear	SO1.4		6.1	.7,1.8,1.9,1.10,1.11,1.12,	
	spaces and Banach			1.1	3	
	spaces.					
PO 1,2,3,4,5,6	CO2-78MS402.2	SO2.1		Un	it-2 Fundamental	SL2.1
7,8,9,10,11,1	Determine the	SO2.2		the	orems on Normed linear	
2	Fundamental	SO2.3		spa	ace2.1, 2.2, 2.3,	
PSO 1,2, 3, 4	theorems on	502.4		2.4	,2.5,2.6,2.7,2.8,2.9,2.10	
	Normed linear space					
PO 1 2 3 4 5 6	CO3-78MS/02 3	\$03.1			it 2 Applications of	SI 2 1
7.8.9.10.11.1	Demonstrate an	SO3.2		No	rmed linear space	515.1
2	understanding of the	SO3.3		NU	inieu iniear space	
PSO 1,2, 3, 4	Applications of	SO3.4		3.1	, 3.2, 3.3, 3.4, 3.5	
	Normed linear space			,3.6	5,3.7,3.8,3.9,3.10	
PO 1,2,3,4,5,6	CO4-78MS402.4	SO4.1		Uni	it-4 Hilbert Spaces	SL4.1
7,8,9,10,11,1	Define and	SO4.2		4.1	, 4.2, 4.3, 4.4, 4.5, 4.6,	
	recognize the	SU4.3		4.7	, , , , , , , , , , , , , , , , , , , ,	
F30 1,2, 3, 4	Hilbert Spaces	304.4		4.0	4.14 4.14	
PO 1 2 3 4 5 6	COE 78MS/02 E	SO5 1		Llni	it-50perator Theory and	SI 5 1
7.8.9.10.11.1	Students will	SO5.2		Stu	rm-Liouville System	
2	create the	SO5.3		5.1	, 5.2, 5.3, 5.4, 5.5, 5.6	
PSO 1,2, 3, 4	concept of	SO5.4		,5.7	7,5.8,5.9,5.10,5.11,5.12,5	
	aOperator Theory	SO5.5		.13		
	and Sturm-					
	Liouville System					
				1		

Course Curriculum Map:

Semester-IV

Course Code:	78MS403
Course Title :	General Theory of Relativity
Pre- requisite:	Students should have basic knowledge of group
	theory and Mapping
Rationale:	The objective of the General Theory of Relativity, developed by Albert Einstein, is to provide a comprehensive and mathematically rigorous description of gravity as a fundamental force in the universe. It aims to explain the behavior of massive objects and the curvature of space time in the presence of matter and energy.

Course Outcome:

78MS403.1 Understanding of Einstein's Field Equations.

- **78MS403.2** Understanding of the concept of tensor calculus, which is essential for expressing and manipulating the equations of General Relativity.
- **78MS403.3** Students should gain insights into the properties of black holes, their formation, and their role in the universe.
- **78MS403.4** Understanding of the concept of gravitational waves, their detection, and their significance as a powerful tool to study astrophysical phenomena.
- **78MS403.5** Understanding of the concepts, principles, and mathematical framework of the General Theory of Relativity.

Scheme of Studies:

Board of	Course	Course	Scheme of studies (Hours/Week)					Total
Study	Code	The	CI	U	SW	SL	Total Study Hours (CI+LI+SW+SL)	ts (C)
Program Elective Core (PEC)	78MS403	General Theory of Relativity	4[3+1]	0	1	1	6	4

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.)

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Deeu		Course Title		Calcana						
воаг	Couse	Course litie		Scheme of Assessment (Marks)						
d of	Code		Progr	essive As	sessment	(PRA)			End	Total
Stud									Semest	Mark
У									er	S
									Assess	(PRA
									ment	+
									(ESA)	ESA)
			Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one (SA)	Class Activity any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+ SA + CAT+AT)		
Prog ram Elect	78MS40 3	General Theory of Relativity	15	20	5	5	5	50	50	100
ive										
Core										
(PEC)										

Theory

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

78MS403.1 Understanding of Einstein's Field Equations.

Approximate HoursItemAppX HrsCI15LI0SW1SL1Total17

Session Outcomes (SOs)	Laboratory Instruction	Class ro (Cl)	oom Instruction	Self Learning (SL)
	(LI)			
SO1.1		Unit-	1 Tensor	SL.1
understand the Coordinate		1.1	Transformation of	Transformation of
system and its dimension		соо	rdinates	coordinates
		1.2	Summation Convention	SL.2
SO1.2		1.3	Kronecker Delta	Kronecker delta
understand the difference	-	1.4	Tensor: definition	
between vector and tensor		1.5	Algebra of tensors :	SL.3
		Add	lition, Subtraction and	Outer product and
SO1.3		Mu	ltiplication	contraction
understand the law of		1.6	Types of Tensors	
Transformation		1.7	Rank of tensors	
SO1.4		1.8	Tutorials-I	
understand the properties		1.9	Inner product of two	
of tensor		vec	tors	
SO1.5		1.10	Fundamental tensor	
understand the properties		1.11	Quotient law of tensors	
of Christoffel's Symbols		1.12	Christoffel's Symbols	
		1.13	Properties of Christoffel's	

Symbols	
1.14 Law of transformation	
for Christoffel's Symbols.	
1.15 Tutorial-II	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Kronecker Delta, Tensor, Types of Tensors, Rank of tensors, Inner product of two vectors, Fundamental tensor, Quotient law of tensors, Christoffel's Symbols

b. Mini Project:

Oral presentation

c. Other Activities (Specify): Quiz, Class Test.

78MS403.2 Understanding of the concept of tensor calculus, which is essential for expressing and manipulating the equations of General Relativity.

Approximate Hours				
Item	AppX Hrs			
Cl	14			
LI	0			
SW	1			
SL	1			
Total	16			

Session Outcomes	Labora	Class room Instruction	Self Learning
(SOs)	tory	(CI)	(SL)
	Instruc		
	tion		
	(LI)		
SO2.1		Unit-2.0 Covariant	SL.1
Understand the Covariant		Differentiation	learn to find the
Differentiation		2.1 Covariant Differentiation	covariant derivative
		2.2 Covariant Differentiation	of vectors
SO2.2		of a tensor of rank one	
Understand the rank of tensors		2.3 Covariant Differentiation	SL.2
SO2.3		of a tensor of rank two	Understand the
2.1 Understand the Ricci's		2.4 Gradient of a scalar	application of
Theorem		2.5 Curl of a vector	Divergence, curl and

SO2.4	2.6 Divergence of a vector gradient
Understand the concept of	2.7 Ricci's Theorem
Riemannian Christoffel's curvature	2.8 Riemannian Christoffel's
tensor	curvature tensor
SO2.5	:Introduction
Understand the Bianchi Identities	2.9 Riemannian Christoffel's
	curvature tensor
	:Properties
	2.10 Tutorials-I
	2.11 Covariant curvature tensor
	2.12 Properties of Covariant
	curvature tensor
	2.13 Bianchi Identities
	2.14 Tutorials-II

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Covariant Differentiation, Gradient of a scalar, Curl of a vector, Divergence of a vector, Ricci's Theorem, Riemannian Christoffel's curvature tensor, Covariant curvature tensor, Properties of Covariant curvature tensor, Bianchi Identities.

b. Other Activities (Specify):

Quiz, Class Test.

78MS403.3 Students should gain insights into the properties of black holes, their formation, and their role in the universe.

Approximate Hours

Item	AppX Hrs
Cl	10
LI	0
SW	1
SL	1
Total	12

Session Outcomes (SOs)	Laborat ory Instructi	Class room Instruction (CI)	Self Learning (SL)
	on (LI)		

SO3.1	Unit-3.0 Theory of relativity	SL.1
Understand the hypothesis of the	3.1 Review of the special	Understand
theory of relativity	theory of relativity	the concept
SO3.2	3.2 Review of Newtonian	of Einstein's
Understand the hypothesis of	Theory of gravitation	field
Newtonian Theory of gravitation	3.3 Principle of equivalence	equations
SO3.3 Understand Principle of	3.4 General covariance	
equivalence	3.5 Geodesic principle	SL.2
S03.4	3.6 Differential Equation of	Understand
Understand the hypothesis of	Geodesics	the solution
General covariance	3.7 Newtonian approximation	of
S03.5	of relativistic equations of	differential
Understand the application of	motion	equation
Einstein's field equations	3.8 Einstein's field equations	
	:Introduction	
	3.9 derivation of Einstein's	
	field equations	
	3.10 Newtonian approximation	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Special theory of relativity, General theory of relativity, Difference between special theory of relativity and General theory of relativity, Newtonian Theory of gravitation, Principle of equivalence, General covariance, Geodesic principle.

Newtonian approximation of relativistic equations of motion. Einstein's field equations and its Newtonian approximation

b. b. Mini Project:

Oral presentation, Power point presentation

c. Other Activities (Specify):

Quiz, Class Test.

78MS403.4 Understanding of the concept of gravitational waves, their detection, and their significance as a powerful tool to study astrophysical phenomena

Approximate Hours

ltem	AppX Hrs
Cl	10

LI	0
SW	1
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1		Unit-4.0 General relativity	SL.1
Understand the			learn the properties of
hypothesis of General		4.1 General relativity:Introduction	Christoffel's Symbols
relativity		4.2 Christoffel's Symbols of Second	
		kind	SL.2
SO4.2		4.3 Line element	Learn the properties of
Understand the		4.4 Fundamental Tensor	metric tensor
Schwarzschild		4.5 Schwarzschild external solution-	
external solution		part I	
		4.6 Schwarzschild external solution-	
SO4.3		part II	
Understand The		4.7 Isotropic form	
Kepler's Laws		4.8 Planetary orbits	
		4.9 Anologues of Kepler's Laws in	
		general relativity	
		4.10 Advance of perihelion of a	
		planet.	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

Schwarzschild external solution and its isotropic form. Planetary orbits and anologues of Kepler's Laws in general relativity. Advance of perihelion of a planet.

b. Mini Project:

Oral presentation

c. Other Activities (Specify): Quiz, Class Test.

78MS403.5 Understanding of the concepts, principles, and mathematical framework of the General Theory of Relativity.

Approximate Hours

Item	AppX Hrs
Cl	11

LI	0
SW	1
SL	1
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1		Unit-5.0 Gravitational field	SL.1
Understand the			Knowledge of
concept of		5.1 Bending of light rays in a	gravitational
gravitational field		gravitational field	Force
		5.2 Gravitational redshift	
SO5.2		5.3 Gravitational redshift of	SL.2
Understand the role of		spectral lines	Knowledge of
Energy-momentum		5.4 Radar echo-delay	gravitational red
tensor		5.5 Energy-momentum tensor	shift
		5.6 Energy-momentum tensor of a	
		perfect fluid	
SO5.3		5.7 Schwarzschild internal	
Understand the		solution-Part-I	
calculation of		5.8 Schwarzschild internal	
Schwarzschild internal		solution-Part-II	
solution		5.9 Boundary conditions	
		5.10 Electromagnetic field	
		5.11 Energy-Momentum tensor of	
		an electromagnetic field	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Bending of light rays in a gravitational field. Gravitational redshift ,Spectral lines. nergy-momentum tensor of a perfect fluid. Schwarzschild internal solution. Boundary conditions. Energy-Momentum tensor of an electromagnetic field.

b. Other Activities (Specify): Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
78MS403.1 Understanding of Einstein's Field Equations.	15	1	1	17
78MS403.2 Understanding of the concept of tensor calculus, which is essential for expressing and manipulating the equations of General Relativity.	14	1	1	16
78MS403.3 Students should gain insights into the properties of black holes, their formation, and their role in the universe.	10	1	1	12
78MS403.4 Understanding of the concept of gravitational waves, their detection, and their significance as a powerful tool to study astrophysical phenomena.	10	1	1	12
78MS403.5 Understanding of the concepts, principles and mathematical framework of the General Theory of Relativity.	11	1	1	13
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks D	n	Total Marks	
		R	U	Α	
CO-1	Tensor	05	05	05	15
CO-2	Covariant Differentiation	05	05	05	15
CO-3	Theory of Relativity	03	01	02	06
CO-4	General Relativity	03	03	02	08
CO-5	Gravitational Field	03	01	02	06
	Total	25	17	08	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6. Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S.	Title	Author	Publisher	Edition & Year
Ν				
о.				
1	Theory of Relativity	S.R.Roy and Raj Bali	Jaipur Publishing	1987
			House,Jaipur	
	General Relativity	S. K. Shrivastva	PHI, NewDelhi.	-
2	and Cosmology			
	General Relativity	J.V. Narlikar	The Macmillan Company of	1978
3	and Cosmology		India Limited	
	Introducing	Ray A. d'Inverno	Oxford University Press,	1992
4	Einstein's Relativity		In print, ISBN 0-19-859686-3.	
5	Tensor Calculus	J.K. Goyal	Pragati Prakasan	1972
	and Riemannian	&K.P.Gupta	_	
	Geometry	-		

b) Reference Books :

S.	Title	Author	Publisher	Edition & Year
N 0.				
1	Relativity Thermodynamics and Cosmology,	Tolman Richard C.	The Clarendon Press, Oxford, London	(Hindi)1934
2	Mathematical theory of relativity,	A.S.Edington,	Cambridge At The University Press	1923
3	Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity.	Steven Weinberg,	Wiley	Ist Eition,1972

4	Einstein's general theory of relativity, sigbom Hervik,	Øyvind GrØn	Springer science &Business Media.	2007		
5	An Introduction to cosmology	Jayant,V.Narlik ar	Cambridge University Press	2010		

c) Suggetsed Digital Platform Web links :

Suggested	1.http://www.gutenberg.org/ebooks/5001
Digital	
Platforms	2.https://www.googleadservices.com/pagead/aclk?sa=L&ai=DChcSEwiwofuE7v
Web links:	-EAxVdwUwCHZS-
	B20YABAAGgJ0bQ&ase=2&gclid=EAIaIQobChMIsKH7hO7_hAMVXcFMAh
	2UvgdtEAMYASAAEgJHtfD BwE&ohost=www.google.com&cid=CAASJeRo
	xBtCkX3PcVWlqe9GzlNxcQJNYrgF9vbHAHKw7kFLxnrh7M&sig=AOD64_3
	XX3ZyfwFLiVnLoibj5kLQmz7Bzg&q⋼=4&adurl&ved=2ahUKEwib6fWE7
	v-EAxWMr1YBHdA-AzkQ0Qx6BAgJEAE
	3. https://www.freebookcentre.net/Physics/Relativity-Books-Download.html

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs. Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos, POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code : 78MS403 Course Title: General Theory of Relativity

	PO 1	PO2	PO 3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course	Ad	Probl	Res	Qua	Teachi	Theo	Comm	Operat	Applic	Engine	Gov	Consul	Unde	Handle	Dev	Crea
Course	van	em-	ear	ntita	ng and	retic	unicati	ions	ation	ering	ern	ting	rstan	the	elop	tes
Outcome	ced	solvi	ch	tive	Acade	al	on	Resear	in	and	men		d the	advanced	nece	Mat
	ivia the	ng Skills	ADI liti	Anai	mia	Und ersta	SKIIIS	cn	industr v	lecnn	t and		matn emati	technique	ssar v	nem
	ma	onnio	es	y 0.10		ndin			,	0.087	Publi		cal	5	skills	Mod
	tica					g					с		conc		and	els
	 Kn										Sect		epts and		expe	
	owl										01		appli		in	
	ed												catio		the	
	ge												ns in		field	
													field		rese	
													of		arch	
													algeb			
													Ia			
78MS403.1	2	3	1	2	1	2	2	2	1	1	1	1	<u>2</u>	<u>1</u>	<u>1</u>	<u>3</u>
Understandin																
g of Einstein's																
Field																
Equations.																
78MS403.2	1	3	2	1	1	1	1	1	1	2	3	1	<u>3</u>	<u>1</u>	<u>1</u>	<u>2</u>
Understandi																
ng of the																
concept of																
tensor																
calculus,																
which is																
essential for																
expressing																
and																
manipulating																
the																
equations of																
General																

Relativity.																
78MS403.3 Students should gain insights into the properties of black holes, their formation, and their role in the universe.		3	2	2	1	1	3	2	1	1	3	1	2	1	2	2
78MS403.4 Understandin g of the concept of gravitational waves, their detection, and their significance as a powerful tool to study astrophysical phenomena.	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	2
78MS403.5 Understandin g of the concepts, principles and mathematical framework of the General Theory of Relativity.	2	3	2	2	1	1	3	2	1	1	3	1	<u>2</u>	1	2	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

DOC & DSOC	COs No & Titles		Laboratory	Classroom Instruction	Solf Learning (SL)
	COS NO.& Httes	505 NO.			Sell Learning (SL)
NO.					
			LI)		
PO 1,2,3,4,5,6	78MS403.1	SO1.1		Unit-1.0 Group	SL1.1
7,8,9,10,11,12	Understanding of	SO1.2		1.1,1.2,1.3,1.4,1.5,1.6,1.	SL1.2
PSO 1,2, 3, 4	Einstein S Field	SO1.3		7,1.8,1.9,1.10,	SL1.3
	Equations.	SO1.4		1.11,1.12,1.13,1.14,1.15	
		SO1.5			
PO 1,2,3,4,5,6	78MS403.2	SO1.1		Unit-2 Ring	SL2.1
7,8,9,10,11,12	Understanding of	SO1.2		2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	SL2.2
PSO 1,2, 3, 4	the concept of	SO1.3		2.7, 2.8,2.9,2.10,	
	tensor calculus,	SO1.4		1.11,1.12,1.13,1.14	
	which is essential for	SO1.5			
	expressing and				
	equations of General				
	Relativity				
PO 1,2,3,4,5,6	78MS403.3 Students	SO1.1		Unit-3	SL3.1
7.8.9.10.11.12	should gain insights	SO1.2		2.1. 2.2. 2.3. 2.4. 2.5. 2.6.	SL3.2
PSO 1.2. 3. 4	into the properties of	SO1.3		2.7. 2.8.2.9.2.10	
	black holes, their	SO1.4			
	formation, and their	SO1 5			
	role in the universe.	501.5			
PO 1,2,3,4,5,6	78MS403.4	SO1.1		Unit-4	SL4.1
7,8,9,10,11,12	Understanding of the	SO1.2		2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	SL4.2
PSO 1,2, 3, 4	concept of	SO1.3		2.7, 2.8,2.9,2.10	
	gravitational waves,				
	their detection, and				
	their significance as a				
	powerful tool to study				
	astronhysical				
	nhenomena				
PO 1,2,3,4,5,6	78MS403.5	SO1.1		Unit-5	SL5.1
7,8,9,10,11,12		SO1.2		2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	SL5.2

PSO 1,2, 3, 4	Understanding of the	SO1.3	2.7, 2.8, 2.9, 2.10, 2.11	
	concepts, principles			
	and mathematical			
	framework of the			
	General Theory of			
	Relativity.			

Semester-IV

78MS404
Jacobi Polynomial and H-Function
Higher knowledge of mathematics.
Theaimofthecourseistointroducetothefieldofmathematicswithem phasisonitsusetosolverealworldproblemsforwhichsolutionsarediffi culttoexpressusingthe different methods. Itexplorestheessentialtheorybehindmethodsfordevelopingsystem sthatdemonstrateintelligentbehaviorincludingdealingwithuncertai nty,learning from experience and following problem-solving strategies founding nature

Course Outcomes:

- **CO-78MS404.1:**Understanding of special functions and their importance in various mathematical and physical applications.
- **CO-78MS404.2:**Using Jacobi polynomials as a basis and apply them to various mathematical and physical problems.
- **CO-78MS404.3:**Understand the concept of applied in manipulating and solving problems involving the H-function.
- **CO-78MS404.4:**Understand the concept of integral transforms, specifically the H-transform, and its use in solving integral equations.
- **CO-78MS404.5:**Understanding of fractional calculus and its importance in modeling complex systems with fractional derivatives and integral.

Scheme of Studies

Board of Study Course Course		Course	Scheme of studies(Hours/Week)					Total Credits(C
	Code	Title	CI	LI	SW	SL	Total Study Hours(Cl+Ll+S W+SL))
Program Elective Course (PEC)	78MS404	Jacobi Polynomial and H- Function	4	0	1	1	6	6

Legend:

Cl:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)andTutorial (T)andothers),

LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop,fiel dorotherlocationsusing different instructional strategies)

SW:SessionalWork(includesassignment, seminar, miniprojectetc.),

SL:SelfLearning,

C: Credits.

Note:

SW&SLhastobeplannedandperformedunderthecontinuousguidanceandfeedba ckofteacherto ensure outcome ofLearning.

Scheme of Assessment:

Theory

				Scheme o	f Asses	sment (M	arks)			
					Progr ssm	essiveAss ent(PRA)	е		EndSe	
Board of Study	Cou rse	Cours eTitle	Class/H omeAss ignmen t5numb er 3 mar kse ach (CA)	Class Test2 (2best ot3)10 marks each(CT)	Sem inar one (SA)	Class Activity anyone (CAT)	ClassAt tendan ce (AT)	TotalMarks (CA+CT+SA +CAT+AT)	erAss essm ent (ESA)	Tota IMar ks (PR A+E SA)
Progrm Elective Course (PEC)	78MS 404	Jacobi Polyn omial and H- Functi on	1 5	20	5	5	5	50	5 0	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and sessionlevels, which students are anticipated to accomplish through various modes of instruction includingClassroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). Asthecourseprogresses, students should show case their mastery of Session Outcom es(SOs), culminating in the overall achievement of CourseOutcomes (COs) uponthecourse's conclusion.

CO-78MS404.1:Understanding of special functions and their importance in various mathematical and physical applications.

ApproximateHours				
Item	AppXHrs			
Cl	12			
LI	0			
SW	2			
SL	1			
Total	15			

SessionOutco	LaboratoryInstructi	ClassroomInstruct	Self-	
mes	on	ion	Learning	
(SOs)	(LI)	(CI)	(SL)	
<pre>mes (SOs) SO1.1 Understand the concept of Jacobi polynomial SO1.2Understand the concept of special function</pre>	on (LI)	ion (CI) Unit-1.0 Jacobi polynomial 1.1 Introduction 1.2 Recurrence relation 1.3 Examples of recurrence relation 1.4 Rodrigue's formula 1.5 Examples of Rodrigues formula	Learning (SL) 1. Write s speci al functi ons and their impor tance	
		1.6 Generating functions		
		1.7 Examples of generating function		
		1.8 Orthogonal		

properties
1.9 Expansions of
polynomials.
1.10 Uses of
recurrence
relation.
1.11 Uses of
properties
1.12 Solve
polynomials

SW-1SuggestedSessionalWork(SW):

Assignments:

- i. Numerical based on Jacobi polynomial.
- ii. Numerical based on recurrence relation
- iii. Solve related example generating function

CO-78MS404.2:Using Jacobi polynomials as a basis and apply them to various mathematical and physical problems.

ApproximateHours			
Item	AppXHrs		
Cl	12		
LI	0		
SW	2		
SL	1		
Total	15		

SessionOutc	LaboratoryInstruc	ClassroomInstruc	Self-
omes	tion	tion	Learning
(SOs)	(LI)	(CI)	(SL)

SO2.1 Understand the	. Uni	it-2.0 H	1. Writes
concept variable	Fur	nctionon one	exampl
	var	iable	es of
SO2.2Understand the			one
concept of	2.1	Definition and	variable
Differentiation		notation.	
	2.2	. Related	2. Solve
		examples	derivati
	2.3	. Differentiation	veswith
		formulas	exampl
	2.4	. Related	es.
		examples	
	2.5	. Partial	
		derivatives	
	2.6	. Examples of	
		partial	
		derivatives	
	2.7	'. Parameters	
	2.8	. Parameter	
		related	
		examples	
	2.9	. Expansion	
		formula	
	2.1	0. Solve partial	
		differential	
	2.1	1. Uses of	
		parameters	
	2.1	.2. Solve	
		expansion	
		formula	

SW-1SuggestedSessionalWork(SW):

Assignments:

- iv. Numerical based differentiationFunction.
- v. Numerical based on partial derivatives.
- vi. Examples of expansion formula.

CO-78MS404.3:Understand the concept of applied in manipulating and solving problems involving the H-function.

ApproximateHoursItemAppXHrsCl12Ll0SW2SL1Total15

SessionOutc	LaboratoryInstruc	ClassroomInstru	Self-
omes (so-)	tion		Learn
(308)	(LI)		ing
			S
			L
)
SO3.1 Understand the	•	Unit-3.0 The H Functions	1. Writes
concept of partial		of two variables	example
two variables		3.1. Definition and	s of two
		notation.	variable
SO3.2Usesof properties and		3.2. Related examples	S
functions		3.3. Examples of two	2. Writes
		variables,	example
		3.4. elementary	s of
		properties	special
		3.5. Related examples of	cases.
		elementary	
		properties	
		3.6. Uses of elementary	
		properties	
		3.7. Special cases	
		3.8. Examples of special	
		cases	
		3.9. Uses of special cases	
		3.10. Definitions	
		3.11. Elementary	
		examples	
		3.12. Two variables	
		examples	

SW-1SuggestedSessionalWork(SW):

Assignments:

- vii. Numerical based on two variables.
- viii. Numerical based on elementary properties
- ix. Writes related examples special cases.

CO101.4:Understand the concept of integral transforms, specifically the H-transform, and its use in solving integral equations.

ApproximateHours				
ltem AppXHrs				
Cl	12			
LI	0			
SW	2			
SL	1			
Total	15			

SessionOutc omes (SOs)	LaboratoryIn struction (LI) ClassroomInstruction (CI)			Self- Learn ing (S L)
SO4.1 Understand the		Unit-4.0 Finite Summation	1.	H-
concept of H-		formulas		Function
Functions		4.1. H- Functions of two		s of two
		variables		variables
SO4.2Application of H-		4.2. Examples of H- function		
Functions		4.3. Derivatives		
SO4.3 How to learn one and		4.4. Related examples of		
two variable on H-		derivatives		
Functions		4.5. Examples of H- Functions of two variables		
		4.6. Contiguous relations		
		4.7. Example of contiguous relation		
		4.8. Total Count of		
		recurrences.		
		4.9. Example of Total Count		
		of recurrences.		
		4.10. Basic H function		
		4.11. Derivation examples		
		4.12. Examples of H		
		tunctions		

SW-1SuggestedSessionalWork(SW):

Assignments:

- i. Questions based on H- Functions.
- ii. Questions based on Count of recurrences.
- iii. Questions based on one and two variables.

CO-78MS404.5:Understanding of fractional calculus and its importance in modeling complex systems with fractional derivatives and integrals.**ApproximateHours**

Item	AppXHrs
Cl	12
LI	00
SW	02
SL	01
Total	15

SessionOutc	LaboratoryInstruc	ClassroomInstru	Self-
omes	tion	ction	Learn
(SOs)	(LI)	(CI)	ing
			ĺ
			S
			L
SO5.1 Understand the	•	Unit-5.0 Method and	1. Method
concept of finite and		schemes	for
infinite series		5.1. Writes different	obtainin
		methods	g sum of
SO5.2uses some method		5.2. sum of finite series.	finite or
to solve the		5.3. sum of infinite	infinite
examples.		series.	series.
		5.4. Examples of finite	
		series	
		5.5. Uses of finite and	
		infinite deries	
		5.6. Example of infinite	
		series	
		5.7. Double summation	
		formulas	
		5.8. Uses of summation	
		formula	
		5.9. Example of double	
		summation formula	
		5.10. Uses of finite	

	series 5.11. Uses of infinite series 5.12. Uses of Double summation	

SW-1SuggestedSessionalWork(SW):

Assignments:

- i. Different types of methods
- ii. Writes Examples of finite and infinite series.

Brief of Hours suggested for the Course Outcome:

CourseOutcomes	ClassLecture (Cl)	SessionalWork (SW)	Self- Learning (SI)	Total hour(Cl+SW+Sl)
D1-78MS404.1: nderstanding of special functions and their importance in various mathematical and physical applications.	12	02	01	15
D2-78MS404.2:Using Jacobi polynomials as a basis and apply them to various mathematical and physical problems	12	02	01	15
D3-78MS404.3: nderstand the concept of applied in manipulating and solving problems involving the H-function.	12	02	01	15
04-78MS4044: nderstand the concept of integral transforms, specifically the H- transform, and its use in solving integral equations.	12	02	01	15
D4-78MS404.5: nderstanding of fractional calculus and its importance in modeling complex systems with	12	02	01	15

fractional derivatives and integrals.				
TotalHours	60	10	5	75

SuggestionforEndSemesterAssessment

SuggestedSpecificationTable(ForESA)

СО	UnitTitles	MarksDistribution			TotalMark
		R	U	Α	s
CO-1	Jacobi polynomial	03	02	03	08
CO-2	O-2 The H Functions of one variables		01	05	09
CO-3	The H Functions of two variables	03	07	02	12
CO-4	Finite Summation formulas	03	05	05	13
CO-5	Method and schemes	03	02	03	08
Total		15	17	18	50

Legend: R:Remember, U:Understand, A:Apply

 $The end of semester as sessment for {\it Introduction to Portland cement will be held with written examination of 50 marks}$

 $\label{eq:Note} Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for ends emester assessment.$

SuggestedInstructional/ImplementationStrategies:

1. ImprovedLecture

- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visittocementplant
- 7. Demonstration
- ICTBasedTeachingLearning(VideoDemonstration/T utorialsCBT,Blog,Facebook, Twitter, WhatsApp,Mobile,Onlinesources)
- 9. Brainstorming

Suggested Learning Resources:

A. Books:

S. No.	Title	Author	Publisher	Edition &Year
1	Special Functions	Rainville. E.D.	The Macmillan Co. New. York.	1971
2	The H- Functions of One	Shrivastava. H.M.,	South Asian	-
	and Two Variables with	Gupta K.C. and	Publication New Delhi	
	applications.	Goyal. S.P.		
3	The H-Function: Theory	A.M.	-	-
	and Applications	Mathai and		
		R.K.		
		Saxena.		
4	Special functions and	Lebdev.	Prentice Hall.	1965
	Their Applications.	N.N.	Englewood Hall	
			phase new Jersy USA	

Curriculum Development Team

- 1. Dr. Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr. Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr. Neelkanth Napit , Assistant Professor, Department of Mathematics.
- 4. Mrs. Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr. Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr. Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

CO, PO and PSO Mapping

CourseTitle:M.Sc. Mathematics Course Code: -78MS404 Course Title: Jacobi Polynomial and H-Function

	Program Outcomes									Program Specific Outcomes						
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Advan ced Math emati cal Knowl edge	Probl em- solvin g Skills	Resea rch Abiliti es	Quant itative Analy sis	Teach ing and Acade mia	Theor etical Under standi ng	Com munic ation Skills	Opera tions Resea rch	Applic ation in Indust ry	Enginee ring and Technol ogy	Govern ment and Public Sector	Consult	Underst and the matical concept s and applicat ions in the field of algebra	Handle the advanc ed techniq ues	Develo p necessa ry skills and expertis e in the field of researc h	Creates Mathe matical Models
CO1:Unders tanding of special functions and their importance in various mathematic al and physical applications	3	2	2	2	2	1	1	1	1	1	1	3	2	2	3	3
CO2:Using Jacobi polynomials as a basis and apply them to various mathematic al and physical problems	2	3	3	2	2	2	1	1	1	1	1	3	2	3	2	3

CO3:Unders tand the concept of applied in manipulatin g and solving problems involving the H- function.	3	2	3	3	2	2	1	1	1	1	1	3	2	2	2	3
CO4:Unders tand the concept of integral transforms, specifically the H- transform, and its use in solving integral equations.	3	3	3	2	2	2	1	1	1	1	1	3	2	2	3	2
CO5: Understand ing of fractional calculus and its importance in modeling complex systems with fractional derivatives and integrals.	3	2	3	2	2	2	1	1	1	1	1	3	2	2	3	2

Course Curriculum Map:

POs&PSOsN o.	COsNo.&Titles	SOsNo	Laborato ryInstruc tion(LI)	Classroom Instruction(CI)	SelfLearnin g(SL)
PO: 1,2,3,4,5,6,7, 8,9,10,11,12 PSO: 1,2,3,4	CO1:Understanding of special functions and their importance in various mathematical and physical applications.	SO1.1 SO1.2		Unit-1.0 Jacobi polynomial 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1 .8,1.9,1.10,1.11,1.12	
PO: 1,2,3,4,5,6,7, 8,9,10,11,12 PSO: 1,2,3,4	CO2:Using Jacobi polynomials as a basis and apply them to various mathematical and physical problems	SO2.1		Unit-2The H Functions of one variables	
		SO2.2		2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8,2.9,2.10,2.11,2.12	
PO: 1,2,3,4,5,6,7, 8,9,10,11,12	CO3:Understand the concept of applied in manipulating and solving problems	SO3.1 SO3.2		Unit-3 : The H Functions of two variables	

PSO:	involving the H-		
1,2,3,4	function.		
		SO3.3	3.1,3.2,3.3,3.4,3.5,3.6,3.7,3
			.8,3.9,3.10,3.11,3.12
PO:	CO4:Understand the	SO4.1	Unit-4:
1,2,3,4,5,6,7,	concept of integral		Finite Summation formulas
8,9,10,11,12	transforms,		4.1,4.2,4.3,4.4,4.5,4.6,4.
PSO-	specifically the H-		7,4.8,4.9,4.10,4
1.2.3.4	transform, and its use		.11,4.12
		SO4.2	
	equations.	SO4.3	
	CO5:	SO5.1	Unit5:Method and
50	Understanding of	\$05.2	
PU:	importance in modeling		5 7 5 8 5 9 5 10
1,2,3,4,5,0,7,	complex systems with		5.11.5.12
0,0,10,11,12	fractional derivatives and		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
PSO:	integrals.		
1234			
1,2,3,4			

Semester-IV

Course Code:	78MS405
Course Title :	ADVANCED MATHEMATICAL STATISTIC
Pre- requisite:	Students should have basic knowledge of
	calculus, linear algebra, and ODE theory.
Rationale:	Advanced mathematical statistics
	provides a deeper understanding of
	statistical inference, which involves
	drawing conclusions about populations
	based on sample data. It explores the
	theoretical foundations of estimation and
	hypothesis testing, enabling practitioners
	to make more informed and rigorous
	statistical inferences.

Course Outcome :

- **CO1-.78MS405.1** Learn the statistical methods to describe the central or typical value in a set of data to have clear understanding of the concept of central tendency and its importance in summarizing data.
- **CO2-78MS405.2**. To understand the concepts in probability theory and the probability distributions associated with various random variables foundational knowledge and skills.
- **CO3-78MS405.3**. Theory of Estimators typically covers the mathematical foundations and principles behind statistical estimation to develop a clear understanding of the fundamental concepts of statistical estimation, including point estimation and interval estimation.
- **CO4-78MS405.4 To** understanding and applying exact methods for generating and studying sampling distributions, Learn and apply exact sampling methods, which may include techniques such as Monte Carlo simulation, bootstrapping, permutation tests, or other re-sampling methods.
- **CO5-78MS405.5** Analysis of Variance (ANOVA) typically covers the statistical methods used to analyze differences among group means in a dataset to develop a solid understanding of the

fundamental concepts of Analysis of Variance, including the partitioning of variance and the comparison of group means.

Scheme of Studies:

Board of Study	Course Code	Course Title	Scheme of s	Scheme of studies (Hours/Week)					
,		Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	s (C)		
Program Elective	78MS405	ADVANCED MATHEMA	4[3+1]	0	1	1	6	4	
Course (PEC)		TICAL STATISTIC							

Legend:

Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Board of	Couse	Course Title	Scheme of Assessment (Marks)							
Study	Code		Progressi	Progressive Assessment (PRA)					End Semester Assessm ent (ESA)	Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3)10 marks each (CT)	Semi nar one (SA)	Class Activity any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+SA +CAT+AT)		
Program Elective Course (PEC)	78MS4 05	ADVANCD MATHEMATI CAL STATISTIC	15	20	5	5	5	50	50	100

Theory

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-78MS405.1 Learn the statistical methods to describe the central or typical value in a set of data to have clear understanding of the concept of central tendency and its importance in summarizing data.

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	2
Total	15

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO1.1 concept of central tendency in statistics SO1.2 Differentiate between mean, median, and mode SO1.3 Identify the properties and characteristics of each measure of central tendency	-	 Unit-1.0 Central tendencies 1.1 Definitions of central tendencies, 1.2 Calculation of mean 1.3 Calculation of median 1.4 Calculation of mode 1.5 Calculation of mode 1.6 Measure of dispersions with variance in detail 	SL.1 write all formula used in central tendencies SL.2 learn all formula used in correlation and regeneration

and interpret	1.7 Method of least	
and interpret percentiles and quartiles in various contexts So1.5 Use statistical software	 1.7 Method of least square for curve fitting, 1.8 Correlation concept and formula 1.9 Questions besed on 	
(e.g., Excel, R, Python) to calculate and analyze measures of central tendency.	corelation1.10Regression concept and formula1.11Regression Question based on formula1.12Tutorial	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. write all formula of measure of central tendency.

ii. Write any 3 Application of mean, median and mode in real life.

iii. Write any 3 Application of corelation and Regression in real life.

b.Other Activities (Specify):

Class Test.

CO2-78MS405.2 To understand the concepts in probability theory and the probability distributions associated with various random variables foundational knowledge and skills.

			Appro	JXIII	ale nours	
			Item		AppX Hrs	
			Cl		12	
			LI		0	
			SW		1	
			SL		2	
			Total		15	
Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instr (CI)	uction Sel (SL		f Learning)	

Approvimate Hours

SO2.1 Define and	Unit-2 0 Probability	SL.1
understand random	& Distributions	Write all formula of
variables and their	1 1 Theory of	probability
types	nrobability &	SI 2
types	distributions	Write and learn all
		formula of distribution
SO2 2 Explore the	various	
soncont of probability	definitions,	
distributions associated	1.2 additive &	
distributions associated	multiplicative	
with random variables	law,	
	1.3 Bayes'	
SO2.3 Understand the	theorem.	
probability	1.4 Continuous	
density/mass function	variable,	
and cumulative	1.5 Mathematical	
distribution function	expectation,	
SO2.4 Calculate and	1.6 Binomial	
interpret the expected	distribution	
value (mean) and	1.7. Poisson	
variance of random	distribution	
variables	1.8 Normal	
SO2.5 Explore higher	distribution,	
moments of probability	1.9 Rectangular	
distributions	distribution,	
	1.10 Exponential	
	distribution,	
	1.11Moment	
	generation function.	
	1.12marginal &	
	conditional probability	
	distributions &	
	conditional expectation	
	•	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. write the application of probability.

b. Other Activities (Specify): Presentation

CO3-78MS405.3 Theory of Estimators typically covers the mathematical foundations and principles behind statistical estimation to develop a clear understanding of the fundamental concepts of statistical estimation, including point estimation and interval estimation.

Approximate Hours			
Item	AppX Hrs		
Cl	12		
LI	0		
SW	1		
SL	1		
Total	14		

Approximate	Hours
-------------	-------

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO3.1 Define parameters, estimators, and estimate SO3.2 Study point estimators and their properties. SO3.3 Explore methods for constructing point estimates, such as the method of moments and maximum likelihood estimation 		 Unit-3.0 Estimators 3.1 Theory of estimators: Unbiasedness 3.2 consistency 3.3questions based on consistency 3.4 concept of efficiency and sufficiency, 3.5 questions based on efficiency and sufficiency 3.6 Tutorial 1 3.7 maximum likelihood estimators 3.8 Question based on maximum likelihood estimators 3.9 Cramer-Rao inequality 3.10 formula of Cramer-Rao inequality 	SL.1 To learn about Theory of estimators.
		3.11 questions based on Cramer-	

	Rao inequality	
	3.12 Tutorial 2	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. write application of Cramer-Rao inequality

CO4-78MS405.4 To understanding and applying exact methods for generating and studying sampling distributions, Learn and apply exact sampling methods, which may include techniques such as Monte Carlo simulation, bootstrapping, permutation tests, or other re-sampling methods.

Approximate Hours

ltem	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 Gain a solid understanding of sampling distributions		Unit-4.0 Sampling distributions	SL.1 Learn all testing used in this unit
including the concept of a sampling distribution and its		4.1 explanation of Exact sampling distributions	
importance in statistical inference. SO4.2 Learn and apply		4.2 methods of sampling	
exact sampling methods SO4.3 Develop the ability to make		4.3 t tests formula4.4 Question based on t tests	

statistical inferences	4.5 F tests formula	
based on the observed data, considering the uncertainty inherent in the sampling process SO4.4 Apply the knowledge gained to solve real-world problems SO4.5 Problem solving	 4.5 F tests formula 4.6 Question based on F tests 4.7 Z tests formula 4.8 Question based on Z tests 4.9 Wilcoxon's signed rank sumtest 4.10 Medial test and 	
	4.10 Medial test and Mann Whitney	
	7 11 II test	
	7.11 0-1051	
	4.12 run test for randomness	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. write a short note on different testing .

CO5-78MS405.5. Analysis of Variance (ANOVA) typically covers the statistical methods used to analyze differences among group means in a dataset to develop a solid understanding of the fundamental concepts of Analysis of Variance, including the partitioning of variance and the comparison of group means

Approximate Hours			
Item	AppX Hrs		
Cl	12		
LI	0		
SW	1		
SL	1		
Total	14		

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)

SO5.1 Define terms	Unit-5.0	SL.1
such as treatment,	Analysis of variance	Understand one and
factor, level, and error.	5.1 Analysis of	two-way classifications
	5.1 Analysis of	
SO5.2 Learn and apply	variance: one way	
the one-way ANOVA	classifications	
technique for	5.2 two-way	
comparing means	classifications.	
across more than two	5 0 1100 1 1	
groups	5.3 difference between	
SO5.3 Extend the	one and two-way	
understanding to two-	classifications	
way ANOVA for	5.4 Basic principles of	
studying the effects of	design: Replication,	
variables		
SO5 / Explore post boc	5.5 randomization,	
tests for identifying	5.6 questions based on	
specific group	randomization,	
differences after	·	
detecting a significant	5.7 local control,	
ANOVA result	5.8 lay out and analysis	
SO5.5 Apply ANOVA	of completely	
techniques in the	randomized	
context of	Tundonnizou,	
experimental designs	5.9 randomized block	
	5.10 Latin square	
	design.	
	8,	
	5.11 missing plot	
	techniques in	
	randomized block	
	5.12 Latin square	
	design.	
	0	

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-78MS405.1 Learn the statistical methods to describe the central or typical value in a set of data to have clear understanding of the concept of central tendency and its importance in summarizing data.	12	1	2	15
CO1-78MS405.2 To understand the concepts in probability theory and the probability distributions associated with various random variables foundational knowledge and skills.	12	1	2	15
CO1-78MS405.3 Theory of Estimators typically covers the mathematical foundations and principles behind statistical estimation to develop a clear understanding of the fundamental concepts of statistical estimation, including point estimation and interval estimation.	12	1	1	14
CO1-78MS405.4 To understanding and applying exact methods for generating and studying sampling distributions, Learn and apply exact sampling methods, which may include techniques such as Monte Carlo simulation, bootstrapping, permutation tests, or other re-	12	1	1	14

sampling methods.				
CO1-78MS405.5 Analysis of Variance (ANOVA) typically covers the statistical methods used to analyze differences among group means in a dataset to develop a solid understanding of the fundamental concepts of Analysis of Variance, including the partitioning of variance and the comparison of group means	12	1	1	14
Total Hours	60	5	7	72

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Mark	s Distrib	ution	Total
		R	U	Α	Marks
CO-1	Measure of central tendencies	05	04	01	10
CO-2	Theory of probability & distributions	02	06	02	10
CO-3	Theory of estimators:	03	05	02	10
CO-4	Sampling and testi ng	05	03	02	10
CO-5	Analysis of variance	05	04	01	10
Total		20	22	08	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6.Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books:

S.	Title	Author	Publisher	Edition & Year
Ν				
о.				
1	Fundamental of	Gun, A.M., Gupta,	World Press, Kolkata	Vol I,2013
	Statistics,	M.K. and		
		Dasgupta, B.		
2	Mathematics of Statistics. Part II.	Kenney, J.F. and Keeping, E.S.	Chapman & Hall.	2nd Edition.1951
3	Introduction to the Theory of Statistics,	Mood, A.M. Graybill, F.A. and Boes, D.C.	Tata McGraw-Hill Pub. Co. Ltd.	3rd Edn.2011.

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Cos,POs and PSOs Mapping

Course Title: M.Sc. Mathematics Course Code: 78MS405 Course Title: ADVANCED MATHEMATICAL STATISTICS

	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO	PSO 3	PSO
Course		2												2		4
Outserve	Adva	Pr	Research	Qua	Teachi	Theo	Comm	Operat	Applica	Engine	Gover	Cons	Understa	Hand	Develop	Crea
Outcome	nced	ob	Abilities	ntita	ng and	retic	unicati	ions	tion in	ering	nment	ulting	nd the	le	necessar	tes
	Mat	le		tive	Acade	al	on	Resear	Industr	and	and	U	mathem	the	v skills	Mat
	hem	m-		Anal	mia	Und	Skills	ch	v	Techno	Public		atical	adva	and	hem
	atica	sol		vsis	-	ersta		-	'	logy	Sector		concepts	nced	expertise	atic
	1	vin		,		ndin							and	tech	in the	al
	Kno	σ				ø							applicati	niqu	field of	Mod
	wled	Ski				0							ons in	es	research	els
	ge	lls											the field		researen	0.0
	80												of			
													algebra			
CO1- 78MS405.1 Learn the statistical methods to describe the central or typical value in a set of data to have clear understanding of the concept of central	2	3	1	2	1	2	2	2	1	1	1	1	2	1	1	2
ot central tendency and																

its importance in summarizing data.																
CO2- 78MS405.2. To understand the concepts in probability theory and the probability distributions associated with various random variables foundational knowledge and skills.	1	3	2	1	1	1	1	1	1	2	3	1	<u>3</u>	1	1	1
CO3- 78MS405.3 Theory of Estimators typically covers the mathematical foundations and principles behind statistical estimation to develop a clear understanding of the fundamental concepts of statistical estimation, including point estimation and interval estimation.	1	3	2	2	1	1	3	2	1	1	3	1	2	1	2	
CO4- 78MS405.4 To understanding and applying exact methods for generating and studying sampling distributions, Learn and apply exact sampling methods, which may include	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	2

tachniquas																
techniques																
such as Monte																
Carlo																
simulation,																
bootstrapping,																
permutation																
tests, or other																
re-sampling																
methods.																
CO5-	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	2
78MS405.5													—	-	_	
Analysis of																
Variance																
(ANOVA)																
typically covers																
the statistical																
methods used																
to analyze																
difforences																
among group																
aniong group																
means m a																
develop a solid																
understanding																
of the																
fundamental																
concepts of																
Analysis of																
Variance,																
including the																
partitioning of																
variance and																
the comparison																
of group means																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laborato ry Instructi on(LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1- 78MS405.1 Learn the statistical methods to describe the central or typical value in a set of data to have clear understanding of the concept of central tendency and its importance in summarizing data.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1.0 1.1,1.2,1.3,1.4,1.5,1.6,1. 7,1.8,1.9,1.10,1.11,1.12	SL1.1 SL1.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2- 78MS405 .2.To understand the concepts in probability theory and the probability distributions associated with various random variables foundational knowledge and skills.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-2 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10 2.11,2.12	SL2.1 SL2.2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3- 78MS405 .3. Theory of Estimators typically covers the mathematical foundations and principles behind statistical estimation to develop a clear understanding of the fundamental concepts of statistical estimation, including point estimation and interval estimation.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-3 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7,3.8,3.9,3.10,3.11, 3.12	SL3.1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4- 78MS405.4 To understanding and applying exact methods for generating and studying sampling distributions, Learn and apply exact sampling methods, which may include techniques such as Monte Carlo simulation, bootstrapping, permutation tests, or other re- sampling methods.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-4 4.1,4.2,4.3, 4.4, 4.5, 4.6, 4.7, 4.8,4.9,4.10,4.11,4.12	SL4.1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5- 78MS405 .5 Analysis of Variance (ANOVA) typically covers the statistical methods used to analyze differences among group means in a dataset to develop a solid understanding of the fundamental concepts of Analysis of Variance, including the partitioning of variance and the comparison of group means.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-5 5.1, 5.2, 5.3, 54, 55, 56, 57, 58,5.9,5.10,5.11,5.12	SL5.1
