Curriculum Book

and Assessment and Evaluation Scheme

Based on

Outcome Based Education (OBE)

and Choice-Based Credit System (CBCS)

Master of Technology
Mining Engineering

2 Years Degree Program

Revised as on 01 August2023Applicablew.e.f.AcademicSession2023-24

AKS University

Satna-485001, Madhya Pradesh, India

Faculty of Engineering and Technology

Department of Mining Engineerin

Department of Mining Engineering, Faculty of Engineering and Technology, AKS University, Satna, M.P. Curriculum of M. Tech. Mining Engineering (Revised at on 01" August 2023)

CONTENTS

SN.	Irem	Page No
1	Forwarding	3
2	Vice-chancellor Message	4
3	Preface	
4	Introduction	7.
5	Vision & Musion of the Moving Engineering Department	7
6	Program Educational Objectives(PEO)	8 8
7	Frogram Ontcosne(POs)	8
3	General Course Structure and themse	9
9	Component of Curriculum	9
10	General Course Springue and Credit Distribution	10
11	Course code and defaution	11/
12	Casegosy-wase Courses	12
13	Semester-wise Course Structure	13
13	Semester-wise Course details	15
13.1	Semester -I	17-109
13.2		110-186
	Semester-III	187-196
	Semester-IV	197-206

Professor B. K. Michael

Head

Department of Minning Engineering

H.O.D. Department of Mining Engineering AKS University, Satna IM P.

Faculty of Engineering and Technology

Dean

Faculty of Engineering & Tachnology AKS University, Satna (M.P.) Pin, 465001

Vice-chancellor

Professor B.A. Chopade

Vice-Chancellor AKS University Setne, 485001 (M.P.)

Department of Mining Engineering, Faculty of Engineering and Technology, AKS University, Satna, M.P. Curriculum of M. Tech. Mining Engineering

(Revised as on 01st August 2023)

Forwarding

I am thrilled to observe the updated curriculum of the Mining Engineering Department for M. Tech. Mining Engineering Program, which seamlessly integrates the most recent technological advancements and adheres to the guidelines set forth by AICTE. The revised curriculum also thoughtfully incorporates the directives of NEP-2020 and the Sustainable Development Goals.

The alignment of course outcomes (COs), Programme Outcome (POs) and Programme specific outcomes (PSOs) has been intricately executed, aligning perfectly with the requisites of NEP-2020 and NAAC standards. I hold the belief that this revised syllabus will significantly enhance the skills and employability of our students.

With immense satisfaction, I hereby present the revised curriculum for the M. Tech. in Mining Engineering program for implementation in the upcoming session.

> ER. Anant Soni Pro Chancellor & Chairman AKS University, Satna 01 August 2023

Department of Mining Engineering, Faculty of Engineering and Technology,

AKS University, Satna, M.P.

Curriculum of M. Tech. Mining Engineering (Revised as on 01st August 2023)

From the Desk of the Vice-chancellor

AKS University is currently undergoing a process to revamp its curriculum into an outcome-based approach, with the aim of enhancing the teaching and learning process. The foundation of quality of quality education lies in the implementation of a curriculum that aligns with both societal and industrial needs, focusing on relevant outcomes. This entails dedicated and inspired Faculty members, as well as impactful industry internships.

Hence, it is of utmost importance to begin this endeavor by crafting an outcome-based curriculum in the guidelines outlined in the National Education Policy (NEP) of 2020, and sustainable goals. Collaboration with academia and industry experts. This curriculum design should be informed by the latest technological advancements, market demands.

I'm delighted to learn that the revised curriculum has been meticulously crafted by the Mining Department, in consultation with an array of experts from the mining industry, research institutes, and academia. This curriculum effectively integrates the principles outlined in the NEP-2020 guidelines, as well as sustainable goals. It also adeptly incorporates the latest advancements in mining engineering.

The curriculum goes beyond theoretical learning and embraces practical applications by incorporating the utilization of industrial and domestic waste in cement production. To enhance students' skills, the curriculum integrates Hands-On Training, industrial visits, and On-Job Training experiences, research and progress. This well-rounded approach ensures that students receive a comprehensive education, fostering their skill development and preparing them for success in the cement and Mining industry.

I am confident that the updated curriculum for Mining engineering will not only enhance students' technical skills but also contribute significantly to their employability. During the process of revising the curriculum, I am pleased to observe that the Mining engineering department has diligently adhered to the guidelines provided by the AICTE. Additionally, they have maintained a total credit requirement of 62 for the M. Tech. Mining engineering program. It's worth noting that curriculum revision is an ongoing and dynamic process, designed to address the continuous evolution of technological advancements and both local and global concerns. This ensures that the curriculum remains responsive and attuned to the changing landscape of education and industry.

AKS University warmly invites input and suggestions from industry experts and technocrats and Alumni students to enhance the curriculum and make it more student-centered. Your valuable insights will greatly contribute to shaping an education that best serves the needs and aspirations of our students.

Professor B.A. Chopade Vice-Chancellor AKS University, Satna 01August2023

Department of Mining Engineering, Faculty of Engineering and Technology,

AKS University, Satna, M.P.

Curriculum of M. Tech. Mining Engineering (Revised as on 01st August 2023)

Preface

AKS University, Satna, has been imparting M. Tech. in Mining Engineering since 2012. With over 20 qualified and experienced faculty members the department of Mining Engineering draws inspiration from Vice Chancellor of AKSU, Prof. B. A. Chopade. The Department also enjoys full support from the management and Pro Chancellor Er. Anant K. Soni and Prof. G. K. Pradhan, Dean, Faculty of Engineering & Technology.

As part of our commitment to ongoing enhancement, the Department of Mining Engineering consistently reviews and updates its M. Tech. Mining Engineering program curriculum every three years. Through this process, we ensure that the curriculum remains aligned with the latest technological advancements, as well as local and global industrial and social demands.

During this procedure, the existing curriculum for the M. Tech. Mining Engineering Program undergoes evaluation by a panel of technocrats, industry specialists, and academics. Following meticulous scrutiny, the revised curriculum has been formulated and is set to be implemented starting from August 01, 2023. This implementation is contingent upon the endorsement of the curriculum by the University's Board of Studies and Governing Body.

This curriculum closely adheres to the AICTE model syllabus distributed in May 2023. It seamlessly integrates the guidelines set forth by the Ministry of Higher Education, Government of India, through NEP- 2020, as well as the principles of Sustainable Development Goals. In order to foster the holistic skill development of students, a range of practical activities, including Hands-On Training, Industrial Visits, Project planning and execution, Report Writing, Seminars, and Industrial On-Job Training, have been incorporated. Furthermore, in alignment with AICTE's directives, the total credit allocation for the M. Tech. Mining Engineering program is capped at 62 credits. This curriculum is enriched with course components in alignment with AICTE guidelines, encompassing various disciplines such as Engineering Science core: 22 credits, Engineering Science core elective: 09 credits, Open elective 03 credits, Research Projects& Seminar34, Indian Knowledge System: 2 credits, Sustainable Development Goals: 2 credits.

To ensure a comprehensive learning experience, detailed evaluation schemes and rubrics have also been meticulously provided.

For each course, a thorough mapping of Course Outcomes, Program Outcomes, and Programme Specific Outcomes has been undertaken. As the course syllabus is being meticulously developed, various elements such as session outcomes, laboratory instruction, classroom instruction, self-learning activities, assignments, and mini projects are meticulously outlined.

Department of Mining Engineering, Faculty of Engineering and Technology,

AKS University, Satna, M.P.

Curriculum of M. Tech. Mining Engineering (Revised as on 01st August 2023)

We hold the belief that this dynamic curriculum will undoubtedly enhance independent thinking, skills, and overall employability of the students.

We are pleased to present the revised and updated edition of the approved Syllabus of the M. Tech. (Mining Engineering). This will be implemented wef 2023-24 batch. Since 2012, we have constantly updated the syllabus.

Attempts have been made to incorporate the new Syllabus circulated by DGMS(*) which extends exemption Certificate of Second Class Mine Managers' Certificate of Competency to M. Tech. Mining students after having one year experience and other necessary certificates (like Gas Testing to work in UG mines, First Aid, Experience & Medical certificate).

We acknowledge the efforts of our colleagues. Our thanks are due to the approving authorities of the University and for their guidance.

(*)Ref: The Gazette of India Part II, Section-3 sub-section (i) No. 672 dated 14 Sept 2018 under Regulation 12(1) & 12(4) of CMR 2017 & relevant Notification as under MMR 1961.

Professor B. K. Mishra Associate Professor and HOD AKS University 01August2023

Introduction:

AKS University proudly stands as a pioneer for preparing the Mining Engineers to serve the Industry with their Best academic knowledge and great field training during the vacation period while studying. Mining engineering in M. Tech. in Mining engineering started in 2012.

This innovative curriculum has been meticulously crafted to align with the dynamic needs of the present Mining industry and the most current technological advancements. Currently about 200 students are actively engaged in pursuing their M. Tech in Mining Engineering in this department. We have very good laboratories that serve as hubs for immersive hands-on training, enabling students to delve into practical applications of their learning. Every year during summer vacation we are sending our students to mine to have vocational training. To have better experience on field we have planned to send students in different type of mines such as open cast Mines, Underground Coal Mines, and Underground Metal Mines. We prepare our students that after completion of their course they can accept any challenge. We also provide first aid Training followed by first aid certificates to our students which is the integral part of Mining Engineering.

Vision:

To provide best quality education in Mining Engineering at par with National Level Institutions through pertaining need based theoretical and practical learning with specific focus on world acclaimed mining technologies, sustainability framework for mining industry and advancing research orientation.

Mission:

M01: Accomplish academic excellence in Mining Engineering through an innovative teaching-learning process.

M 02: Carry out research and create human resource for developing and adopting appropriate technology towards sustainable development of mineral resources.

M 03: Designing and continual review of the mining engineering programme curriculum in commensuration with the articulated needs of the mining industry, academic institutions and research organizations.

M 04: More focus on individual assignments and project works based on analysis of the learning ability of the students to make all the students employable.

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

- **PEO -01:** Possess a successful career and conduct new research in Mining Engineering and related fields.
- **PEO-**02: With ethical values and social responsibility, provide optimal solutions to complex problems in the mining and energy sectors.
- **PEO-03:** Inculcate in students a mindset for adopting modern state of the art technologies and to implement them into practice.
- **PEO 04:** In their job, demonstrate project management skills and the capacity to operate in collaborative, diverse assignments.

Program Outcome (PO)

The program outcomes are of generic nature that describe what the graduates of any engineering program should perform.

- **PO 1:** Develop the skilled knowledge of communication in verbal and written forms.
- **PO 2:** Apply the complex systems as a part of Research Project.
- **PO 3:** Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools.
- **PO 4:** Understand the impact of the professional engineering solutions in societal and environmental contexts.
- **PO 5:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO 6:** The ability to engage in self-directed, reflective, and lifelong learning for the benefit of society.

Consistency/Mapping of PEOs with Mission of the Department

PEO	M1	M2	M3	M4
PEO1	2	2	3	3
PEO2	3	2	2	2
PEO3	2	3	2	1
PEO4	3	2	3	3
PEO5	2	2	1	3

1:Slight(Low)2:Moderate(Medium)3:Substantial(High)"-":Nocorrelation

GENERAL COURSE STRUCTURE & THEME

1. Definition of Credit

1Hr.Lecture(L) per week	1 Credit
1Hr.Tutorial(T) per week	1 Credit
2HoursPractical(P) per week	1 Credit

2. Range of Credits:

In the light of the fact that a typical Model Two-year Post Graduate degree program in Engineering has about 62 credits, the total number of credits proposed for the two-year M. Tech. in Mining Engineering is kept as 62 considering NEP-2020 and NAAC guidelines.

3. Structure of PG Program in Mining Engineering:

The structure of PG program in Mining Engineering shall have essentially the following categories of courses with the breakup of credits as given:

Components of the Curriculum

(Program curriculum grouping based on course components)

Sl. No	Course Component	% of total	Total number
		number of credits	of Credits
		of the Program	
1	Program Core (PCC)	17.74	11
2	Program Electives (PEC)	38.71	24
3	Research Project (PROJ)	40.32	25
5	Others	3.23	02
	Total	100.0	62

General Course Structure and Credit Distribution

Curriculum of M. Tech. Mining Engineering

Semester -I			
Course Title	Credit	Course Title	Credit
1-Operation Research	3:0:2= 5	1- Underground Space Technology	3:0:0 = 3
2-Applied Rock Mechanics	3:0:0 = 3	2- Rock Fragmentation Engineering	3:0:0 = 3
3-Project management	3:0:0 = 3	3- Subsidence Engineering	3:0:0 = 3
4-Eco friendly Mining & Processing / Safety and Risk Management in Mines Elective – I	3:0:0 = 3	4- Engineering Geology	3:0:0 = 3
5-Geo informatics / Surface Mining operations & equipment Elective -` II	3:0:0 = 3	5- Drilling Technology	3:0:0 = 3
6 Comprehensive Viva Voce covering Proposed Thesis (Partial Fulfillment**)	0:0:2 = 2	6- Applied Rock Mechanics- Lab	0:0:4 = 2
		7- Seminar	0:0:2=1
Total Credit	19	Total Credit	18
Semester-III		Semester-IV	
Course Title	Credit	Course Title	Credit
1- Seminar on Dissertation Evaluation	0:0:10 = 5	1- Dissertation (Open Defense)	0:0:10 = 5
2- Dissertation – Interim Evaluation	0:0:10 = 5	2- Dissertation (Evaluation)	0:0:20 = 10
Total Credit	10	Total Credit	15

Course code and definition:

 $\begin{array}{cccc} \mathbf{L} & = & \text{Lecture} \\ \mathbf{T} & = & \text{Tutorial} \\ \mathbf{P} & = & \text{Practical} \\ \mathbf{C} & & \text{Credit} \end{array}$

BSC = Basic Science Courses

ESC = Engineering Science Courses

HSMC = Humanities and Social Sciences including Management courses

PCC = Professional core courses
PEC = Professional Elective courses

OEC = Open Elective courses
LC = Laboratory course
MC = Mandatory courses

IKS = Indian Knowledge SystemSDGs = Sustainable Development Goals

Course level coding scheme:

Three-digit number (odd numbers are for the odd semester courses and even numbers are for even semester courses) used as suffix with the Course Code for identifying the level of the course. Digit at hundred' place signifies the year in which course is offered. e.g.

101, 102 ... etc. for first year.201, 202....Etc. for second

Category-wise Courses

PROFESSIONAL CORE COURSES [PCC] (Total 11)

Sl.	Code No.	Subject	Semester	Credits
1	19MI101/19MI151-L	Operations Research	I	3:0:4= 5
2	19MI102	Applied Rock Mechanics	I	3:0:0=3
3	19MI103	Project Management	I	3:0:0 = 3
Total Credits:				

PROFESSIONAL ELECTIVE [PEC]

Sl.	Code No.	Subject Seme						
		Elective – I		•				
1	1 19MI104-A Eco-friendly Mining & Processing I							
2	19MI104-B	MI104-B Safety and Risk Management in Mines I						
	Total Credits:							
		Elective – II						
1	19MI105-A	Geo-Informatics	I	3:0:0=3				
2	19MI105-B	Surface Mining Operations & Equipment	I	3:0:0=3				
	Total Credits:							
	Total Credits:							

RESEARCH PROJECT

Sl.	Code No.	Subject	Semester	Credits	
1	19MI351	Seminar on Dissertation Evaluation	III	0:0:10= 5	
2	19MI352	Dissertation – Interim Evaluation	III	0:0:10= 5	
3	19MI451	Dissertation (Open Defense)	IV	0:0:10= 5	
4	19MI452	Dissertation (Evaluation)	IV	0:0:20=10	
Total Credit					

OTHER COURSES

Sl.	Code No.	Subject	Semester	Credits		
1	19MI152	Comprehensive Viva Voce covering Proposed Thesis (Partial Fulfillment**)	I	0:0:4=2		
	Total Credit					

Induction Program

Induction program for students to be offered right at the start of the first year. It is mandatory. AKS University has designed an induction program for 1st year student, details are below:

- i. Physical activity
- ii. Creative Arts
- iii. Universal Human Values
- iv. Literary
- v. Proficiency Modules
- vi. Lectures by Eminent People
- vii. Visits to local Areas
- Viii. Familiarization to Dept./Branch & Innovations

Mandatory Visits/Workshop/Expert Lectures:

- i. It is mandatory to arrange one industrial visit every semester for the students.
- ii. It is mandatory to conduct a One-week workshop during the winter break after fifth semester on professional/industry/entrepreneurial orientation.
- iii. It is mandatory to organize at least one expert lecture per semester for each branch by inviting resource persons from industry.

Evaluation Scheme:

1. For Theory Courses:

- i. The weightage of Internal assessment is 50% and
- ii. End Semester Exam is 50%

The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

2. For Practical Courses:

- i. The weightage of Internal assessment is 50% and
- ii. End Semester Exam is 50%

The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

3. For Summer Internship/Projects/Seminar etc.

Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc.

Semester wise Course Structure

Semester wise Brief of total Credits and Teaching Hours

Semester	L	Т	Р	Total Hour	Total Credit
Semester-I	15	0	08	23	19
Semester-II	15	0	06	21	18
Semester-III	0	0	20	20	10
Semester-IV	0	0	30	30	15
Total	30	0	64	94	62

Details of Semester Wise Course Structure Semester–I

SN	Category	Code	Course Title	L	T	P	Total	
							Hour	Credit
1	PCC	19MI101/19MI151		3	0	4	7	5
		-L	Operations Research					
2	PCC				0	0	3	4
		19MI102	Applied Rock Mechanics	3				
3	PCC			3	0	0	3	3
		19MI103	Project Management					
4	PEC-I	19MI104-	Eco-friendly Mining & Processing					
4	PEC-I	19MI104-B	Safety and Risk Management in Mines	3	0	0	3	3
	DEC II	19MI105-A	Geo-Informatics					
5	PEC-II	19MI105-B	Surface Mining Operations & Equipment	3	0	0	3	3
6	PROJ	10157150	Comprehensive Viva Voce covering	0	0	4	4	2
		19MI152	Proposed Thesis (Partial Fulfillment**)					
			Total	15	0	08	23	19

Semester-II

SN	Category	Code	Course Title	L	T	P	Total Hour	Credit
1	PEC	19MI201	Underground Space Technology	3	0	0	3	3
2	PEC	19MI202	Rock Fragmentation Engineering	3	0	0	3	3
3	PEC	19MI203	Subsidence Engineering	3	0	0	3	3
4	PEC	19MI204	Engineering Geology	3	0	0	3	3
5	PEC	19MI205	Drilling Technology	3	0	0	3	3
6	PEC	19MI251	Applied Rock Mechanics- Lab	0	0	4	4	2
7	PEC	19MI252	Seminar	0	0	2	2	1
	Total					6	21	18

Semester-III

SN	Category	Code	Course Title	L	T	P	Total	
							Hour	Credit
1	PROJ	19MI351	Seminar on Dissertation Evaluation	0	0	10	10	5
2	PROJ	19MI352	Dissertation – Interim Evaluation	0	0	10	10	5
		Total		0	0	20	20	10

Semester-IV

SN	Category	Code	Course Title	L	T	P	Total Hour	Credit
1	PROJ	19MI451	Dissertation (Open Defense)	0	0	10	10	5
2	PROJ	19MI452	Dissertation (Evaluation)	0	0	20	20	10
	Total			0	0	30	30	15

Semester-I

Course Code: 19MI101/19MI151-L

Course Title: Operations Research

Pre-requisite: Student should have the knowledge of computer application, numerical

solving and apply in mining industries to solve the problems.

Rationale: The students studying the knowledge of computer application, numerical

solving and apply in mining industries to solve the problems. Also students study the various mining solutions which are beneficial for mining

industries as per requirement.

Course Outcomes:

19MI101/19MI151-L.1: Describe about the basic concept of operation research.

19MI101/19MI151-L.2: Explain about the importance of linear programming like simplex methods.

19MI101/19MI151-L.3: Discuss about the importance of network analysis like CPM and PERT which is benefitted for mining solutions.

19MI101/19MI151-L.4: Illustrate the study about queue theory and problems solving.

19MI101/19MI151-L.5: Understand the non-linear programming problems.

Scheme of Studies:

CODE	Course			Scheme of studies (Hours/Week)				Total Credits(C)
	Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+S W+SL)	
PCC	19MI101/ 19MI151- L	1	3	4	1	1	9	5

Legend: CI: Class room Instruction (Includes different instructional strategies i.e.Lecture (L)and Tutorial (T) and others),

LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop,fieldorotherlocation susingdifferentinstructionalstrategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

	licory			~ -		_				
				Sche	eme of Asso	essment (N	Aarks)			
			Progressive Assessment(PRA)							Total Marks
CODE	CODE Course Course Title		Class/Hom eAssignme nt5number 3 marks each (CA)	Class Test2 (2bestout of3) 10 markse ach(CT)	Semina r one (SA)	Class Activit yanyo ne (CAT)	Class Attendance (AT)	Total Marks (CA+CT+S A+CAT+AT)	Semester Assessme nt ESA	(PRA+E SA)
PCC	19MI101/1 9MI151-L	Operation Research	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). Asthecourseprogresses, students should show case their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI101/19MI151-L.1: Describe about the basic concept of operation research.

Approximate Hours

**				
Item	Appx. Hrs			
Cl	09			
LI	4			
SW	1			
SL	2			
Total	16			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO1.1 Importance of operation research. SO1.2 Discuss about the Scope of Operation Research SO1.3Learn about the Advantages of OR SO1.4 Discuss about the Characteristics of Operation Research SO1.5 Describe about the Limitation of Operation Research	research	Unit-1.0 Introduction to Operation Research 1.1 Definition of OR. 1.2 Various authors suggested by definitions of OR 1.3 History of OR Part 1 1.4 History of OR Part 2 1.5 Characteristics of OR 1.6 Advantages of OR 1.7 Scope of OR 1.8 Advantages of OR 1.9 Limitation of OR	Operation Research Importance of Operation Research

SW-1Suggested Sessional Work(SW):

a. Assignments:

i. Importance of OR

19MI101/19MI151-L.2: Explain about the importance of linear programming like simplex methods.

Approximate Hours

Item	AppXHrs
Cl	09
LI	4
SW	1
SL	2
Total	16

Session	Laboratory	Classroom Instruction	Self
Outcomes	Instruction	(CI)	Learning
(SOs)	(LI)		(SL)
SO2.1 Knowledge a	2.1 Linear	Unit-2 Linear Programming and	i.Learning about the
brief on linear	programming	Dynamic Programming	linear programming
programming	2.2 Dual		ii. Dynamic
SO2.2 Understand the	problems.	2.1 Linear Programming	programming
simplex methods		2.2. Simplex methods	
SO2.3 Understand the		2.3 Steps of simplex methods	
problems of dual theory		2.4 Problems of Simplex methods	
SO2.4Toknow the dynamic		2.5 Dual Problems analysis	
programming		2.6 Dynamic problems	
SO2.5 Learn about the		2.7 post optimality analysis	
problems		2.8 recursive equation approach,	
		2.9 computational procedure, forward	
		and backward computations and	
		problems of dimensionality.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Dynamic programming

19MI101/19MI151-L.3: Discuss about the importance of network analysis like CPM and PERT which is benefitted for mining solutions.

Approximate Hours

Item	AppXHrs
Cl	09
LI	4
SW	1
SL	2
Total	16

Session Outcomes	Laboratory Instruction	Classroom Instruction (CI)	Self Learning (SL)
(SOs)	(LI)	(CI)	(SL)
SO3.1 Describe network analysis SO3.2Able to select numerical SO3.3 Explain the inventory models SO3.4Explain the project evaluation SO3.5 Analyze the problems	3.1 Network analysis3.2 Inventory models.	2.1 June de dieu ef Nyamada en decie	

SW-3Suggested Sessional Work (SW):

- a. Assignments:
- i) Importance of CPM and PERT

19MI101/19MI151-L.4: Illustrate the study about queue theory and problems solving.

Approximate Hours

Item	AppXHrs
C1	09
LI	4
SW	1
SL	2
Total	16

Session	Laboratory	Classroom Instruction	Self Learning
Outcomes	Instruction	(CI)	(SL)
(SOs)	(LI)		
SO4.1Explain Queuing	4.1 Queuing	Unit-4: Queuing Theory:	
Theory	Theory		i. Importance of
Theory	4.2 Problems .	4.1 Basic concepts,	Queuing Theory
SO4.2 Application of		4.2 axiomatic derivation of the arrivals and	ii. Numerical
Queuing Theory		departures,	
		4.3 distribution for Poisson queues,	
SO4.3 Benefits in Mining		4.4Poisson queuing models,	
ndustry		4.5 non-Poisson queuing models	
		4.6 queuing models with priorities for	
SO4.4 Analyze Numerical		service.	
SO4.5 Explain queuing		4.7 Problems	
theory Problems		4.8 Numerical	
		4.9 Numerical	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Discuss about queuing theory

19MI101/19MI151-L.5: Understand the non-linear programming problems.

Approximate Hours

Item	AppXHrs
Cl	09
LI	4
SW	1
SL	2
Total	16

Session Outcomes	Laboratory	Classroom Instruction(CI)	Self
(SOs)	Instruction(LI)		Learning
			(SL)
SO5.1Explain the non- linear programming SO5.2Preparation of Numerical SO5.3Impotance of non- linear programming SO5.4Describe the programming – separable, quadratic, stochastic SO5.5Discuss problems	5.1 Non-`linear programming 5.2 Problems of NLP	Unit5: Non-linear Programming: 5.1 Basic concept 5.2 Problems 5.3 Unconstrained external problems, 5.4constrained external problems, 5.5 programming – separable, 5.6 quadratic, stochastic and 5.7 geometric. 5.8 Problem 5.9 Numerical	1. Non-linear problem 2. Numerical

SW-5Suggested Sessional Work (SW):

- a. Assignments:
 - 1. Importance of non-linear programming

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	SessionalWork (SW)	Self Learning (Sl)	Total hour(Cl+SW+Sl)
19MI101/19MI151-L.1: Describe about the basic concept of operation research.	9	4	1	2	16
19MI101/19MI151-L.2: Explain about the importance of linear programming like simplex	9	4	1	2	16
19MI101/19MI151-L.3: Discuss about the importance of network analysis like CPM and PERT which is benefitted for mining solutions.	9	4	1	2	16
19MI101/19MI151-L.4: Illustrate the study about queue theory and problems solving.	9	4	1	2	16
19MI101/19MI151-L.5: Understand the non-linear programming problems.	9	4	1	2	16
Total Hours	45	20	5	10	80

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	arks Dist	Total	
		R	U	A	Marks
CO-1	Describe about the basic concept of operation research.	03	02	-	05
CO-2	Explain about the importance of linear programming like simplex methods.	02	06	02	10
CO-3	Discuss about the importance of network analysis like CPM and PERT which is benefitted for mining solutions.	03	07	05	15
CO-4	Illustrate the study about queue theory and problems solving.	03	07	05	15
CO-5	Understand the non-linear programming problems.	02	02	01	05
	Total	14	23	13	50

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment for operation research will be held with writtenexamination of 50 marks.

Note. Detailed Assessmentrubricneedtobepreparedbythecoursewiseteachersforabovetasks.

Teacherscanalsodesigndifferenttasksasperrequirement, for endsemesterassessment.

Suggested Learning Resources:

(a)Books:

S. No.	Title	Author	Publisher	Edition &Year
1	Operation Research	H. A Eiselt & Carl – Louis Sandblom	Springer	3 rd and 2010
2	Operation Research – Theory and Application	J. K. Sharma	Trinity Press	6 th and 2006

Link

https://www.stonybrook.edu/commcms/ams/graduate/or/

https://www.bbau.ac.in/dept/UIET/EME-601%20Operation%20Research.pdf

Curriculum Development Team

- 1. Dr. Sandeep Prasad, Assistant Professor, Department of Mining Engineering, AKS University, Satna.
- 2. Dr. B. K. Mishra, Head, Department of Mining Engineering, AKS University, Satna.
- 3. Prof G. K. Pradhan, Dean, Faculty of Engineering Technology, AKS University, Satna.
- **4.** Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna.

Cos, Pos and PSOs Mapping

Program Title: M. Tech. Mining Engineering

Course Code: 19MI101/19MI151-L Course Title: Operation Research

				Program Specific Outcome						
Course Outcomes	PO1	PO2	РО3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
	Develop the skilled knowledge of communi- cation in verbal and written forms	Apply the complex systems as part of research projects	Create, select & apply appropriate techniques, resources & modern engineering & IT tools	Understand the impact of professional engineering solutions in societal & environmental practices	Apply ethical principles & commit to professional ethics & responsibilities and norms of the engineering practice	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	Dev. Analy tical skill for complex mining problems	Specialized in depth knowledge in specific areas of mining	Capability to comprehend articulated needs for mining industry	Research orientation based on articulated needs
CO1: Describe about the basic concept of operation research.	2	2-	1	1	-2	-1	2	1	1	1
CO 2: Explain about the importance of linear programming like simplex methods.	1	-1	-2	-3	2	1	1	1	2	2
CO3: Discuss about the importance of network analysis like CPM and PERT which is benefitted for mining solutions.		3	1	1	3	2	2	1	3	1
CO 4: Illustrate the study about queue theory and problems solving.		3	2	3	1	2	2	1	3	1
CO5: Understand the non-linear programming problems.	1	1	2	1	3	2	2	2	3	2

Legend:1-Low,2-Medium,3-High

Course Curriculum Map:

POs& PSOs No.	Cos No. & Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self Learning(SL)
PO1,2,3,4,5,6	CO1: Describe about the basic concept of operation research.	SO1.1 SO1.2	1.1 1.2	Unit-1.0 Introduction to Operation Research 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	SL 1.1
PSO1,2,3,4		SO1.3 SO1.4 SO1.5			
PO1,2,3,4,5,6	CO 2 Explain about the importance of linear programming like simplex methods.	SO2.1 SO2.2	2.1 2.2	Unit-2 Linear programming and dynamic programming	SL 2.1
PSO1,2,3,4		SO2.3 SO2.4 SO2.5		2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9	
PO1,2,3,4,5,6 PSO1,2,3,4	CO3 Discuss about the importance of network analysis like CPM and PERT which is	SO3.1 SO3.2 SO3.3	3.1 3.2	Unit-3: Network Analysis 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8, 3.9	SL 3.1
1501,2,3,4	benefitted for mining solutions.	SO3.4 SO3.5			
PO1,2,3,4,5,6	CO 4: Illustrate the study about queue theory and problems solving.	SO4.1 SO4.2 SO4.3	4.1 4.2	Unit-4:Queuing Theory 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	SL4.1
PSO1,2,3,4		SO4.4 SO4.5			
PO1,2,3,4,5,6 PSO1,2,3,4	CO 5: Understand the non- linear programming problems.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	5.1 5.2	Unit5:Non-linear programming 5.1,5.2,5.3,5.4,5.5, 5.6, 5.7, 5.8, 5.9	SL 5.1

Semester I

Course Code: 19MI102

Course Title: Applied Rock Mechanics

Pre-requisite: Student should have basic knowledge of stress and stress field, and

properties of rock mass.

Rationale: The students studying advance rock mechanics will acquire stress and

deformation related instrumentation like load cell, convergence recorder, bore hole extensometer. Students will acquire knowledge of measuring in situ and induced stresses. Students will acquire knowledge of Numerical

modeling of rock masses and applications of numerical analysis.

Course Outcomes: The students will be able to

19MI102.1: Interpret Stress State and design of Local and Mass Support System (Rock Enforcement).

19MI102.2: Apply stress and deformation related instrumentation to measure rock movement and interpretation of data

19MI102.3: Predict surface subsidence and assess rock bursts and bump. Apply measures to control subsidence and bursts.

19MI102.4: Analyse mechanism of caving and slope failure. Apply FLAC 3D and FLAC 2D to assess slope failure.

19MI102.5: Apply numerical analysis in geo mechanics by using different methods of numerical modeling of rock masses and computational methods too.

Scheme of Studies

Code					Scher	Scheme of studies(Hours/Week)			
	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+SW+SL)	(C)	
PCC	19MI102	Applied Rock Mechanics	3	0	1	1	5	3	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW&SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

	Code Course Course Title	Scheme of Assessment (Marks)								
			I	End Semester Assessment						
Code		Course Title	Class/H ome Assign ment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+C AT+AT)	(ESA)	Total Marks (PRA+ ESA)
PCC	19MI102	Applied Rock Mechanics	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI102.1: Interpret Stress State and design of Local And Mass Support System (Rock Enforcement).

Approximate Hours

1.1	
Item	AppXHrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
(SOs) SO1.1 T o study about various types of stress fields SO1.2 To find stresses around narrow and circular openings SO1.3 Design of support system in bord and pillar SO1.4 Evaluate various supports in longwall workings So1.5 Assess pressure on supports by instrumentation	Instruction (LI)	1.1 Unit-1.0 Stress field and stress equation 1.2 In situ and induced stress 1.3 Stress distribution around narrow and circular openings. 1.4 Introduction to local and mass support system 1.5 Design of support system in shafts. 1.6 Support system in headings. 1.7 Supports system in junctions and depillaring areas. 1.8 Support system in gates 1.9longwall faces and stopes.	Learning (SL) 1. Various methods of designing support system in underground

SW-1 Suggested Sessional Work (SW):

a. Assignments:

1. Design of support system in development district of bord and pillar from given data

b. Mini Project:

1. Strata monitoring devices and its applicability study

19MI102.2: Apply stress and deformation related instrumentation to measure rock movement and interpretation of data

Approximate Hours

Item	AppXHrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (CI)	Self Learning (SL)
	(LI)		
SO2. Read the rock		Unit -2.0 Apply stress and	i. Different types of
movement and interpret it.		deformation related	ISRM in situ stress
		instrumentation to measure rock	measurements ex USBM, CSIRO.
SO2.2 Identify location of		movement and interpretation of data.	CSIRO.
installing instrument to		2.1. Measurement of rock movements	
measure convergence.		2.2 interpretations of data.	
SO2.3To understands the		2.3 Load cells1	
out-come reading of		2.4 Load cells-2	
recorder and suggests		2.5 Convergence recorders.	
measures for safety of		2.6 Borehole extensometers-1	
persons.			
		2.7 Borehole extensometers-2	
SO2.4To calculate in situ		2.8 Borehole cameras	
stresses from the data.		2.9. Measurement of in-situ stresses.	
SO2.5 To lean use of instruments of measuring induced stresses.			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Collect data and details of different types of load cells.
- ii. Study different types of bore hole extensometers and compare their efficacy.

b.Mini Project:

Plan a plan for installation of strata monitoring instrument in depillaring district of bord and pillar working.

19MI102.3: Predict surface subsidence and assess rock bursts and bump. Apply measures to control subsidence and bursts.

Approximate Hours

= =		
Item	AppXHrs	
Cl	9	
LI	0	
SW	2	
SL	1	
Total	12	

Session Outcomes	Laboratory	Classroom Instruction	Self Learning
(SOs)	Instruction (LI)	(CI)	(SL)
SO3.1 Predict surface		Unit -3.0 Predict surface subsidence	1 study of subsidence
subsidence and		and assess rock bursts and bump.	and its types and
bump.		Apply measures to control subsidence	monitoring of
•		and bursts.	subsidence
SO3.2 Measurement of		3.1 Factors controlling	
subsidence and		magnitude	
showing in graph.		3.2 extent of surface	
		subsidence-prevention	
SO3.3 Preventive measures		3.3 Prevention and control of	
of subsidence at		damage to surface.	
surface and taking		3.4 Method of prediction of	
safety measures.		mining subsidence	
•		3.5 control of subsidence.	
SO3.4 Rock burst and		3.6 Subsidence measurement	
bump prediction.		technique	
1 1		3.7 Rock burst and bump	
SO3. 5 Preventive measures		3.8 Mechanism of occurrence	
of rock burst and		of bump	
bumps		3.9 prediction	
-		•	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1 Problem on subsidence
- 2 Rock bumps and bursts.

b. Mini Project:

Study of rock burst and bumps in chinakuri mine and KGF

19MI102.4 Analyse mechanism of caving and slope failure. Apply FLAC 3D and FLAC 2D to assess slope failure.

Approximate Hours

Item	AppXHrs	
Cl	9	
LI	0	
SW	2	
SL	2	
Total	13	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO4.1 knowledge on mechanics of caving and caving cavability index SO4.2 understanding the parameters of slope design SO4.3; Analysis of slope failure SO4.4 Study of drainage and reinforcement of slopes SO4.5 Using SSR for interpreting of slopes stability		4.1 Mechanics of caving 4.2 Cavability of rocks and caving height 4.3 Types of slope failure 4.4 Analysis of slope failure 4.5 Types of slope failure Continue 4.6 Types of slope failure Continue 2 4.7 Problems 4.8 Problems 1 4.9 Problems 2	 Different types of slope failure and their cause Different Methods of analysis of slope failure

SW-4 Suggested Sessional Work (SW):

a. Assignments

- 1. Design of opencast slopes
- 2. Calculations of FOS of slopes of dumps

b. Mini Project:

1. Case study on slope failure of RAJ MAHAL Opencast

19MI102.5: Apply numerical analysis in geo mechanics by using different methods of numerical modeling of rock masses and computational methods too.

Approximate Hrs

Item	AppXHrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1 Knowledge on		5.1 Introduction to numerical	1. Analysis of
computational methods for		techniques	slope stability
numerical techniques		5.2 Computational methods	using flac 2d and
SO5.2 Various applications of		5.3 Numerical methods of modeling	flac 3d using
numerical methods		rock masses	acquired data
SO5.3 Studying FEM and FDM		5.4 Application of numerical	
methods of numerical modeling		analysis	
SO5.4 Studying of DEM and		5.5 Case study	
MFM methods of numerical		5.6 Case study	
modeling		5.7 Case study 3	
SO5. Analysis of slope stability		5.8 Case study 4	
using FLAC 2D and FLAC 3D		5.9 Case study 5	

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
 - 1. Principles of working of various NUMERICAL MODELLING methods
- b. Mini Project:
 - 1. Analysis of slope stability using FLAC 2D and FLAC 3D

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture	Laboratory Instruction	Sessional Work	Self Learning	Total hour (Cl+SW+Sl)
	(Cl)	(LI)	(SW)	(SL)	(CITB WTSI)
19MI102.1: Interpret Stress State and design of Local and Mass Support System (Rock Enforcement).	9	0	2	1	12
19MI102.2: Apply stress and deformation related instrumentation to measure rock movement and interpretation of data	9	0	2	1	12
19MI102.3: Predict surface subsidence and assess rock bursts and bump. Apply measures to control subsidence and bursts.	9	0	2	1	12
19MI102.4: Analyse mechanism of caving and slope failure. Apply FLAC 3D and FLAC 2D to assess slope failure.	9	0	2	2	13
19MI102.5: Apply numerical analysis in geo mechanics by using different methods of numerical modeling of rock masses and computational methods too.	9	0	2	1	12
Total Hours	45	0	10	6	61

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	arks Dist	ribution	Total
		R	U	A	Marks
CO-1	Interpret Stress State and design of Local and Mass Support System (Rock Enforcement).	03	01	01	05
CO-2	Apply stress and deformation related instrumentation to measure rock movement and interpretation of data	02	06	02	10
CO-3	Predict surface subsidence and assess rock bursts and bump. Apply measures to control subsidence and bursts.	03	07	05	15
CO-4	Analyse mechanism of caving and slope failure. Apply FLAC 3D and FLAC 2D to assess slope failure.	-	10	05	15
CO-5	Apply numerical analysis in geo mechanics by using different methods of numerical modeling of rock masses and computational methods too.	03	02	-	05
	Total	11	26	13	50

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment for advance rock mechanics will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to mining plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook ,Twitter,Whatsapp,Mobile,Onlinesources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Edition &Year
No.				
1	Fundamentals and	Deb Debasis	PHI	2016
	applications of Rock		Learning	
	Mechanics		Pvt. Ltd.	
2	Introduction to rock	IBM	IBM	
	mechanics by IBM			

Link

https://nptel.ac.in/

Curriculum Development Team

- 1. Dr. Sandeep Prasad, Assistant Professor, Department of Mining Engineering, AKS University, Satna.
- 2. Dr. B. K. Mishra, Head, Department of Mining Engineering, AKS University, Satna.
- 3. Prof G. K. Pradhan, Dean, Faculty of Engineering Technology, AKS University, Satna.
- 4. Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna.

Cos, Pos and PSOs Mapping

Program Title: M.Tech in Mining Engineering

Course Code: 19MI102

Course Title: Applied Rock Mechanics

•				gram Outcomes			Program Sp	ecific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
Course Outcome	Develop the skilled knowledge of communication in verbal and written forms	Apply the complex systems as part of research projects	Create, select & apply appropriate techniques, resources & modern engineering & IT tools	Understand the impact of professional engineering solutions in societal & environmental practices	Apply ethical principles & commit to professional ethics & responsibilities and norms of the engineering practice	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	Develop Analy tical skill for complex mining problems	Specialized in depth knowledge in specific areas of mining	Capability to comprehend articulated needs for mining industry	Research orientation based on articulated needs
CO1- Garnering the fundamental concept of In-situ Stresses	2	2-	1	1	-2	-1	2	1	1	1
CO2- Describe the various types of Stress Around Mine Opnings	1	-1	-2	-3	2	1	1	1	2	2
CO 3- Analyse the Design of Mine Openings and Pillars	2	3	1	1	3	2	2	1	3	1
CO 4- Explain the Design of Support and Goaf Support	2	3	2	3	1	2	2	1	3	1
CO 5- Elaborates the concepts of Rock Bursts, Bumps and Mine Subsidence	1	1	2	1	3	2	2	2	3	2

Legend: 1: Low 2: Medium 3: High

Course Curriculum Map

POs & PSOs	COs number & Title	SOs	Laboratory Instruction	Class Room Instructions (CI)	Self Learning
Number PO:	CO 1-Garnering the fundamental concept of In-situ Stresses	Number SO 1.1	(LI)	Unit 1:In-situ Stresses	(SL) SL 1.1
1,2,3,4,5,6		SO 1.2		1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1,7, 1.8,1.9	
PSO: 1,2,3,4		SO 1.3			
		SO 1.4			
		SO 1.5			
DO.		502.1		H :: 0.0:	GL 2.1
PO:	CO 2: Describe the various types of Stress Around Mine Openings.	SO2.1		Unit 2:Stress Around Mine Openings	SL 2.1
1,2,3,4,5,6		SO 2.2		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	
PSO: 1,2,3,4		SO 2.3			
		SO 2.4			
		SO 2.5			
PO:	CO 3- Analyse the Design of Mine Openings and Pillars	SO 3.1`		Unit 3: Design of Mine Openings and Pillars	SL 3.1
1,2,3,4,5,6		SO 3.2		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,3.9,	
PSO: 1,2,3,4		SO 3.3		3.1, 3.2, 3.3, 3.4, 3.3, 3.0, 3.7, 3.8,3.9,	
		SO 3.4			
		SO 3.5			
PO:	CO 4- Explain the Design of Support and Goaf Support.	SO 4.1		Unit 4: Design of Support and Goaf Support	SL 4.1
1,2,3,4,5,6		SO 4.2		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7.,4.8,4.9,	
PSO: 1,2,3,4		SO 4.3			

	SO 4.4		
	SO 4.5		
CO 5- Elaborates the concepts of Rock Bursts, Bumps and Mine Subsidence.	SO 5.1	Unit 5:Rock Bursts, Bumps and Mine Subsidence	SL 5.1
and wine Subsidence.	SO 5.2	5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,	
	SO 5.3		
	SO 5.4		
	SO 5.5		

Semester I

Course Code: 19MI103

Course Title: Project Management

Pre-Requisite: The student should have adequate knowledge about basics of mine management, project infrastructure and project evaluation techniques.

Rationale: The student pursuing M. TECH. in Mining Engineering must develop adequate concept of management principles and their applications in mining industry, unique conditions and features at project development phase and skills to plan and execute projects in ground reality.

Course Outcome:

The student

19MI103 .1- Garnering concept of fundamental management theories and their evolution

19MI103 .2- Comprehension and application of management theories in mining projects

19MI103 .3- Developing skills for human resource and conflict management and build up of proper organization structure

19MI103 .4-Development of skills for resource allocation and utilization and inventory control

19MI103 .5- Comprehension of capital budgeting, financial resources and project evaluation

techniques

Scheme of studies:

Code	Course	Course Title		Scheme of studies (Hours/Week)				
	code		CI	LI	SW	SL	Totaql study Hours	Credits
							(CI+LI+SW+SL)	(C)
PCC	19MI103	Project Management	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW&SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

				Progressive Assessment (PRA)						
Code	Course Code	Course Title	Class/H ome Assign ment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+C AT+AT)	(ESA)	Total Marks (PRA+ ESA)
PCC	19MI103	Project Management	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI103.1:-. Garnering concept of fundamental management theories.

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	1
Self Learning	1
Total	11

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO 1.1- Defining		Unit1- Management theories and	
Management and its basic		their evolution	
characteristics		1.1-Definitions of management	(i)Classical concepts
SO 1.2- Basic functions of		and its characteristics	of management &
management in		1.2-Basic functions of	development of
organizations		management	various schools of
SO 1.3- Classical theories		1.3-Evolution of management	management
of management and its		theories, particularly in post	theories
features		industrialization era	
SO 1.4- Neo-classical		1.4-Classical theories of	
theories of management		management in organization	
and its contributions		1.5-Advantages and limitations	
SO 1.5- Modern theories of		of classical theories	
management and its		1.6-Neo-classical theories of	
different approaches		management.	
		1.7-Contributions of neo-	
		classical theories of	
		management 1.8-Modern theories of	
		management and its classification	
		1.9- Numerical 1	
		1.9- Numerical I	

Suggested Sessional works: a. Assignments:

(i) The scope and domain of management practices in the arena of globalization of organizations and information technology

19MI103.2:- Comprehension and application of management theories in mining projects

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	1
Self Learning	1
Total	11

Session Outcomes (SOs)	Laboratory Instructions	Class Room Instructions (CI)	Self Learning (SL)
	(LI)		
SO 2.1- Understanding unique features of mining industry SO 2.2- Forecasting and planning for mining projects SO 2.3- Organization in mining industry-implications in project formation stage SO 2.4- Management by objectives in mining projects SO 2.4- Performance appraisal system for mining projects SO 2.5- Different phases of a mining project		Unit 2- Application of Management theories on mining projects 2.1- Unique features of mining industry 2.2- Forecasting and planning for mining projects and the risks involved 2.3- Organizing the mining projects- functional and general managerial aspects 2.4- Three universals of organization 2.5- Management by objectives- the concept 2.6- Three stages of management by objectives and problems of introducing MBO in mining projects 2.7- Production systems-Elements of its design and operation 2.8- Plant location and layout 2.9- Production development and analysis	(i) Specific aspects of mining industry and their impact on planning process for mining projects

Suggested Sessional works: a. Assignments:

(i) An analysis into the different factors affecting on the forecasting and planning of mining projects in consideration of high risks associated with project implementation

 $19MI103.3\hbox{--} Developing skills for human resource and conflict management and build up of proper organization structure$

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	1
Self Learning	1
Total	11

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instruction		
	s (LI)		
SO 3.1- Characteristics of human resources during project formation SO 3.2- Arising of conflicts and their resolution SO 3.3- Styles of conflict management SO 3.4- Developing conflict management skills SO 3.4- Provisions in Industrial Disputes Act for resolution of industrial disputes in Mining projects	o (LI)	Unit 3- Project organization and conflict management 3.1- Typical features of project organization- human resources for projects 3.2- Forming, storming, norming and completion of projects- the four stages of project project implementation 3.3- Design of job and wage system 3.4- Method study and work measurement 3.5- Job evaluation, wage and incentive plans 3.6- Conflicts- an unavoidable characteristics in project organization 3.7- Types of conflict management 3.8- Development of conflict management skills 3.9- ID Act, 1947- Certain important definitions	(i)Different phases in a project's life

Suggested Sessional works: a. Assignments:

- (i) Blake & Mouton's Grid to explain the modalities of conflict management in projects.
- (ii)Case studies on conflict resolution- application of different types of conflict management

19MI103.4:- Development of skills for resource allocation and utilization and inventory control

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	1
Self Learning	1
Total	11

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
SO 4.1- Resource management in Projectan important parameter for project success SO 4.2- Establishment of system for material management and inventory control for projects SO 4.3- Layout and location plan for project	Instructions (LI)	Unit 4- Inventory control for project implementation 4.1- Specific features for development of inventory at project stage 4.2- Resource mobilization and its optimization 4.3- Importance of access, layout and design for material handling facilities 4.4- Some important documents of	(i) Inventory control management as a part of project budgeting
and project stores SO 4.4- Analysis of stores and inventory for optimization of procurement, purchase and issuance SO4.5- Management Information system for inventory control		material procurement and issuance process for projects 4.5- Procedures for regular and emergent purchases in projects 4.6- ABC analysis- value of inventory consumed 4.7- XYZ analysis- Value of inventory stored 4.8- VED indicators. Purchasing process. 4.9- Store keeping and control for projects	

Suggested Sessional works: a. Assignments:

(i) An analytical approach towards identification of vital, essential and desirable spares and consumables for a large complex project

 $19MI103.5\hbox{:-} \quad Comprehension \ of \ capital \ budgeting, \ financial \ resources \ and \ project \ evaluation \ techniques$

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	1
Self Learning	1
Total	11

Session Outcomes (SOs)	Laboratory Instructions	Class Room Instructions (CI)	Self Learning (SL)
	(LI)		
SO5.1-Conept development of fixed and current assets and liabilities SO 5.2- Process of capital budgeting SO 5.3- Cost analysis and their classification SO 5.4- Principles of financial management SO 5.5- Project evaluation techniques		Unit 5- Comprehension of capital budgeting, financial resources and project evaluation techniques 5.1- Important financial terminologies- Equity Shares, Preference shares, Debentures, Bonds, Capital & Working capital 5.2- Assets and liabilities and their classification 5.3- Capital budgeting- its categories and contents 5.4- Process of capital budgeting 5.5-Cost-benefit analysis for investment proposals 5.6- Different principles of computation of costs 5.7- Appraisal criteria for investment proposals 5.8-Non-DCF systems for project evaluation 5.9- DCF system for project evaluation	Study area: (i)Capital budgeting of projects and control methods

Suggested Sessional works: a. Assignments:

- (i) Classification of assets and liabilities and determination of working capital for a project
- (ii) Calculation of Internal Rate of Return (IRR) for a project and its interpretation as a tool of project evaluation.

Brief of Hours suggested for the course outcome:

Course outcomes	Class Lectures (CL)	Laboratory Instructions (LI)	Sessional work (SW)	Self Learning (SL)	Total Hour (CL+LI+SW +SL)
19MI103.1- Garnering concept of fundamental management theories and their	9	0	1	1	11
19MI103.2- Comprehension and application of management theories in mining projects	9	0	1	1	11
19MI103.3- Developing skills for human resource and conflict management and build up of proper organization structure	9	0	1	1	11
19MI103.4- Development of skills for resource allocation and utilization and inventory control	9	0	1	1	11
19MI103.5- Comprehension of capital budgeting, financial resources and project evaluation techniques	9	0	1	1	11
Total Hours	45	0	5	5	55

Suggestions for End semester Assessment:

Suggested Specification Table

COs	Unit Titles	Marks Distri		Total; Marks	
		R	U	A	
CO 1	Management theories and their evolution	3	3	1	7
CO 2	Application of Management theories on mining projects	3	4	3	10
CO 3	Project organization and conflict management	3	5	5	13
CO 4	Inventory control for project implementation	3	5	5	13
CO 5	Comprehension of capital budgeting, financial resources and project evaluation techniques	2	3	2	7
	Total	14	20	16	50

Legend: R-Remember U-Understand A-Apply

The end of semester assessment for project management will be held with written examination of 50 marks

Suggested Instructional/ Implementation Strategies:

- 1. Improved lectures
- 2. Tutorial
- 3. Case studies
- 4. Group discussion
- 5. Role play
- 6. Visit to mines and mineral processing industries
- 7. Demonstration
- 8. Digital media application in teaching learning process and mass media
- 9. Brainstorming

Suggested Learning Resources

Sl.No	Title	Author	Publisher	Edition & Year
1.	Organization & Management	C R Basu	Oxford & IBH Pub.	
2.	Industrial Engineering &	Martand Tesand	S.Chand & Co. Ltd.	
	Production Management			
3.	Industrial Engineering &	O P Khanna	Dhanpat Rai, Delhi	
	Management			
4.	Practice of Management	S G Britton	Willy Eastern Ltd.	

Curriculum Development Team

- 1. Dr. Sandeep Prasad, Assistant Professor, Department of Mining Engineering, AKS University, Satna.
- 2. Dr. B. K. Mishra, Head, Department of Mining Engineering, AKS University, Satna.
- 3. Prof G. K. Pradhan, Dean, Faculty of Engineering Technology, AKS University, Satna.
- **4.** Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna.

COs, POs & PSO Mapping:-

Program Title: M. Tech (Mining Engineering) Course Code: 19MI103

Course Title: Project Management

Course Title.			Program (Program Specific Outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
Course outcome	Develop the skilled knowledge of communi- cation in verbal and written forms	Apply the complex systems as part of research projects	Create, select & apply appropriate techniques, resources & modern engineering & IT tools	Understand the impact of professional engineering solutions in societal & environmental practices	Apply ethical principles & commit to professional ethics & responsibilities and norms of the engineering practice	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	Dev. Analy tical skill for complex mining problems	Specialized in depth knowledge in specific areas of mining	Capability to comprehend articulated needs for mining industry	Research orientation based on articulated needs
19MI103.1- Garnering concept of fundamental management theories and their	2	2-	1	1	-2	-1	2	1	1	1
19MI103.2- Comprehension and application of management theories in mining projects	1	-1	-2	-3	2	1	1	1	2	2
19MI103.3- Developing skills for human resource and conflict management and build up of proper organization structure	2	3	1	1	3	2	2	1	3	1

19MI103.4-	2	3	2	3	1	2	2	1	3	1
Development of										
skills for										
resource										
allocation and										
utilization and										
inventory										
control										
19MI103.5-	1	1	2	1	3	2	2	2	3	2
Comprehension										
of capital										
budgeting,										
financial										
resources and										
project										
evaluation										
techniques										

Legend: 1: Low 2: Medium 3: High

Course Curriculum Map:

POs & PSOs Number	COs number & Title	SOs Number	Laboratory	Class Room Instructions	Self Learning
			Instruction (LI)	(CI)	(SL)
PO:	19MI103.1- Garnering concept of fundamental	SO 1.1		Unit 1- Management	SL 1.1
1,2,3,4,5,6	management theories and their	SO 1.2		theories and their evolution	
		SO 1.3		1.1, 1.2, 1.3, 1.4, 1.5, 1.6,	
		SO 1.4		1.7, 1.8,1.9	
PSO: 1,2,3,4		SO 1.5			
PO:	19MI103.2- Comprehension and application of	SO2.1		Unit 2- Application of	SL 2.1
1,2,3,4,5,6	management theories in mining projects	SO 2.2		Management theories on	
	81 J	SO 2.3		mining projects	
		SO 2.4		2.1, 2.2, 2.3, 2.4, 2.5, 2.6,	
PSO: 1,2,3,4		SO 2.5		2.7, 2.8, 2.9,	
PO:	19MI103.3- Developing skills for human resource and	SO 3.1`		Unit 3 Project	SL 3.1
1,2,3,4,5,6	conflict management and build up of proper organization	SO 3.2		organization and conflict	
	structure	SO 3.3		management	
		SO 3.4		3.1, 3.2, 3.3, 3.4, 3.5, 3.6,	
PSO: 1,2,3,4		SO 3.5		3.7, 3.8, 3.9,	
PO:	19MI103.4- Development of skills for resource	SO 4.1		Unit 4- Inventory control	SL 4.1
1,2,3,4,5,6	allocation and utilization and inventory control	SO 4.2		for project implementation	
	· ·	SO 4.3		4.1, 4.2, 4.3, 4.4, 4.5, 4.6,	
		SO 4.4		4.7, 4.8, 4.9	
PSO: 1,2,3,4		SO 4.5			
PO:	19MI103.5- Comprehension of capital budgeting,	SO 5.1		Unit 5- Comprehension of	SL 5.1
1,2,3,4,5,6	financial resources and project evaluation techniques	SO 5.2		capital budgeting, financial	
		SO 5.3		resources and project	
		SO 5.4		evaluation techniques	
PSO: 1,2,3,4		SO 5.5		5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,	

Semester I

Course Code: 19MI104-A

Course Title: Eco-friendly Mining & Processing

Pre-Requisite: The student should have adequate knowledge about the mining processes and the mining technologies so as to comprehend the general impacts of such mining processes and technologies on environment, society and economy.

Rationale: The student pursuing Master's degree(M.Tech) in Mining Engineering must develop adequate concept of different mining technologies and their impacts, both positive and adverse on economy and society along with environmental implications to comprehend in broader perspective its scopes & challenges and develop ability to formulate mitigation plans.

Course Outcome:

The student

19MI104-A.1- Garnering concept of Eco-friendly mining based on sustainable development principles. Formulation of SD framework for mining.

19MI104-A2- Enactment of sustainability development principles in Acts, Laws & Regulations related to mining projects and activities

19MI104-A.3- Environmental impacts of mining and mitigation plans

19MI104-A.4-Energy security of India and need for sustainable coal mining. Short term and Long term perspective of energy mix in India and its impact on mining industry.

19MI104-A.5- Innovative mining technologies and their application for sustainable development.

Scheme of studies:

Code	Course	Course Title	Scheme	Scheme of studies (Hours/Week)			Total	
	code		CI	CI LI SW SL Totaql study			Credits	
							Hours	(C)
							(CI+LI+SW+SL)	
PEC-`I	19MI104-A	Eco-friendly	3	0	1	1	5	3
		Mining &						
		Processing						

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW&SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment(Marks)							
			Progr	Progressive Assessment(PRA)					End Semester	Total Marks
Code	Course Code	Course Title	Class/Home Assignment5 number 3 marks each (CA)	Class Test2 (2besto ut of3) 10 mark s each(CT)	Semina r one (SA)	Class Activ ity any one (CAT)	Class Attendanc e (AT)	Total Marks (CA+CT+SA +CAT+AT)	Assessm ent (ES A)	(PRA+ESA)
P E C	19MI104- A	Eco- friendly Mining & Processing	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI104-A.1:- Garnering concept of Eco-friendly mining based on sustainable development principles. Formulation of SD framework for mining

Item	Approximate Hours
Class room Instructions (CI)	6
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	9

Session Outcomes (SOs)	Laboratory Instructions (LI)	Class Room Instructions (CI)	Self Learning (SL)
SO 1.1- Eco-friendly mining based on the concept of sustainable development SO 1.2- Chronology of events leading to SD concept SO 1.3- Unique features of mining Industry SO1.4-Understanding sustainable development framework for mining SO1.5-Comprehension of the implementation of SD principles in mining industry for eco-friendly mining		Unit1- Eco-friendly mining on the Concept of Sustainable Development 1.1- Domain of eco-friendly mining & its importance 1.2-Defining sustainable development and its concept 1.3-Chronology of the phases for development of the concept of Sustainable Development (SD) 1.4- Unique features of mining industry 1.5- Why it is challenging to apply SD principles in mining industry 1.6-Application of SD principles in Mining Industry- SD framework for mining	Study area: (i)Contribution of mining industry in national development and its impact on environment

Suggested Sessional works:

- (i) Importance of Mining Industry and need for eco-friendly mining based on principles of sustainable development
- (ii) Unique features of Mining Industry- The challenges pertaining to the implementation of sustainability principles

Topic of Mini Project- Impact of implementation of SD principles in mining on Technology improvement and innovative mining.

19MI104-A.2:- Enactment of sustainability development principles in Acts, Laws & Regulations related to mining projects and activities

Item	Approximate Hours
Class room Instructions (CI)	10
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	13

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO 2.1-Dynamics in		Unit 2- Changes in mining laws for	(i)Changes in
mining legislations for		inclusion of SD principles	mining legislative
actualization of SD		2.1-Legislative measures to	framework in India
principles		implement SD principles in Indian	in the context of
SO 2.2- Notification for		mining industry	SD
EIA under		2.2 –EIA under Environmental	
Environmental Protection		Protection Act, 1968 for all new &	
Act		expansion projects	
SO2.3- Formulation of		2.3-EIA procedures	
Environmental		2.4- Different methods of EIA	
Management Plan (EMP)		study	
SO 2.4- Mine Closure		2.5- Formulation of EMP	
Plan (MCP) in phases &		2.6- Mine Closure Plan and its	
in final stage of a mine's		implementation	
life		2.7- Progressive and final mine	
SO 2.5- Star Rating		closure plan	
system in Indian mining		2.8Star Rating System-the	
leaseholds		method to implement SD principles	
		in Indian mining industry	
		2.9-Star rating system	
		implementation in Indian coal	
		mining sector	
		2.10- Basic features of the template	
		for evaluation of mine	
		performances based on star rating	
		system	

Suggested Sessional works:

- (i) An analysis into the changes in mining legislations in the context of sustainable development in mining industry
- (ii) Effects of amendments in mining laws on techno-economic parameters of mining industry in India

Topic of Mini Project- An analysis into the feasibility of new and expansion mining projects in the context of eco-friendly mining

19MI104-A.3- Environmental impacts of mining and mitigation plans

Approximate hours:

Item	Approximate Hours
Class room Instructions (CI)	11
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	14

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO3.1-Developing ability to		Unit 3- Mining activities &	(i) Theoretical in
assess the impact of mining		environmental impacts	depth studies of
activities on environment		3.1-Macro & micro level impacts of	the impacts of
SO3.2-Comprehend the		mining on environment	different mining
sources, dimension &		3.2-Water pollution and water	activities on
mitigation plans to deal with		quality parameters	environment and
water pollution due to		3.3-Physical water quality	methods to deal
mining activities		parameters	with them
SO3.3-Comprehend the		3.4-Chemical water quality	
impact of mining on air		parameters	
quality in mining complex		3.5-Air pollution management due	
and mitigation measures		to mining activities	
SO3.4- Impact of mining on		3.6-Air quality standards	
Land environment and		3.7-Sources and prevention of air	
mitigation measures		pollution in mines	
SO3.5-Understanding the		3.8-Principles of operation for air	
need for preparing proper		pollution control equipment	
land use plan and its		3.9-Land environment and mining	
implementation.		activities	
		3.10-Reclamation of mined out	
		areas	
		3.11-Subsidence management	

Suggested Sessional works:

- (i) Comparison between the impacts of opencast and underground mining on environment in mining complexes
- (ii) Importance of land use plan for sustainability of mining industry in Indian context **Topic of Mini Project** Total impact of mining industry on national economy in consideration of sustainability principles and making mining industry socially and environmentally acceptable.

19MI104-A.4:- Energy security of India and need for sustainable coal mining. Short term and Long term perspective of energy mix in India and its impact on mining industry.

Item	Approximate Hours
Class room Instructions (CI)	8
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	11

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		_
SO4.1-Comprehending		Unit 4-Energy security with	Study area-
the criteria for energy		specific reference to	(i)Impact of fossil fuel
security of any nation		sustainability in Indian	based energy and its
SO4.2-Acquiring		context	impact on global
knowledge about the		4.1-Objective of energy	warming and climate
present energy mix in		security	change
India and its future		4.2-Criteria for any resource	
perspective		as the mainstay of energy	
SO4.3-Analyzing the		security for any nation	
advantages and		4.3-Present energy mix in	
limitations of present		Indian context	
day energy mix in India		4.4-Short term and long term	
SO4.4-Garnaring		perspective of Indian energy	
knowledge and aspects		mix	
of alternate sources of		4.5-Sustainability of energy	
green energy to		mix- the challenges	
overcome the limitations		4.6-Sustainability concept and	
of present energy mix		economic rules for non-	
SO4.5-Comprehension		renewable sources of energy	
of the need for		4.7-Alternative sources of	
transformation in the		renewable energy	
energy mix in India to		4.8-Present status of	
meet the challenges of		renewable energy sources in	
sustainability in energy		India and their future	
sector in India		perspective	

Suggested Sessional works:

- (i) Role of fossil fuel based energy in Indian context and measures to overcome the limitations
- (ii) Strategies in India to balance the energy security of nation and fulfilling the global commitment for reduction of carbon footprint

Topic of Mini Project- Can India outright change the form of national energy security from fossil fuel based energy dominance to non-fossil fuel based energy sources?

$19MI104-A.5\hbox{:-} \ \ Innovative \ \ mining \ technologies \ \ and \ \ their \ \ application \ \ for \ \ sustainable \ development.$

Approximate hours:

Item	Approximate Hours
Class room Instructions (CI)	10
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	13

Session Outcomes (SOs) Laboratory Instructions (LI) Class Room Instructions (CI) Self Learni Class Room Instructions (CI) Self Learni Class Room Instructions (CI) Self Learni Social Technologies (CCT) and Innovative Mining Technologies 5.1- Innovative mining technologies- need for Sustainable mining 5.2-Concept of clean coal technologies. Carbon neutral and carbon negative fuels 5.3-Coal gasification as a method of CCT 5.4-Mission Coal Gasification in India and its perspective 5.5-Coal Bed Methane (CBM) as an important source of CCT based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining industry. Class Room Instructions (CI) Study area: (i) Gol initi for coal gas and CBM procedure for Call gas and CBM procedure for Call gas and CBM procedure for CBM as a CCT Study area: (i) Gol initi for coal gas and CBM procedure for Call gas and CBM procedure for Call gas and CBM procedure for CBM in Indian context seam S.7-Technological procedure for CBM in Indian context for mining industry.	(CI)
SO5.1-Understanding the term "Clean Coal Technologies (CCT) and Innovative Mining Technologies (i) GoI inition Technology" and its implication in Indian context SO5.2-Aquiring knowledge about different forms of CCT in national as well as in global context SO5.3-Comprehension by analysis the role of CCT to based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining to the note of the reduction in Indian context space and Innovative Mining Technologies (i) GoI inition and Innovative Mining Technologies (ii) GoI inition and Innovative Mining Technologies (ii) GoI inition and Innovative Mining Technologies (ii) GoI inition for coal gas and CBM properties of CBM pand the for coal gas and CBM properties of CCT (Carbon neutral and carbon negative fuels pand to S.2-Concept of clean coal technologies. Carbon neutral and carbon negative fuels pand to S.3-Coal gasification as a method of CCT pand to S.3	ng (SL)
term "Clean Coal Technology" and its implication in Indian context SO5.2-Aquiring knowledge about different forms of CCT in national as well as in global context SO5.3-Comprehension by analysis the role of CCT to balance the need for coal based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining and Innovative Mining Technologies (i) GoI initi for coal gas and CBM p 5.1- Innovative mining technologies- need for Sustainable mining 5.1- Innovative Mining Technologies (i) GoI initi for coal gas and CBM p 5.2-Concept of clean coal technologies. Carbon neutral and carbon negative fuels 5.3-Coal gasification in India and its perspective 5.5-Coal Bed Methane (CBM) as an important source of CCT 5.6- Reservoir properties of CBM. Estimation of CBM resources in a coal seam 5.7-Technological procedure for CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
Technology" and its implication in Indian context SO5.2-Aquiring knowledge about different forms of CCT in national as well as in global context SO5.3-Comprehension by analysis the role of CCT to balance the need for coal based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining for coal gas for Sustainable mining 5.2-Concept of clean coal technologies. Carbon neutral and carbon negative fuels 5.3-Coal gasification as a method of CCT 5.4-Mission Coal Gasification in India and its perspective 5.5-Coal Bed Methane (CBM) as an important source of CCT 5.6- Reservoir properties of CBM. Estimation of CBM resources in a coal seam 5.7-Technological procedure for CBM 5.8-Present status and perspective of CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
implication in Indian context SO5.2-Aquiring knowledge about different forms of CCT in national as well as in global context SO5.3-Comprehension by analysis the role of CCT to balance the need for coal based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining for Sustainable mining 5.2-Concept of clean coal technologies. Carbon neutral and carbon negative fuels 5.3-Coal gasification as a method of CCT 5.4-Mission Coal Gasification in India and its perspective 5.5-Coal Bed Methane (CBM) as an important source of CCT 5.6- Reservoir properties of CBM. Estimation of CBM resources in a coal seam 5.7-Technological procedure for CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	atives
SO5.2-Aquiring knowledge about different forms of CCT in national as well as in global context SO5.3-Coal gasification as a method of CCT 5.4-Mission Coal Gasification in India and its perspective 5.5-Coal Bed Methane (CBM) as an important source of CCT based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining 5.2-Concept of clean coal technologies. Carbon neutral and carbon negative fuels 5.3-Coal gasification as a method of CCT 5.4-Mission Coal Gasification in India and its perspective 5.5-Coal Bed Methane (CBM) as an important source of CCT 5.6- Reservoir properties of CBM. Estimation of CBM resources in a coal seam 5.7-Technological procedure for CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	ification
about different forms of CCT in national as well as in global context SO5.3-Comprehension by analysis the role of CCT to balance the need for coal based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining Carbon neutral and carbon negative fuels 5.3-Coal gasification as a method of CCT 5.4-Mission Coal Gasification in India and its perspective 5.5-Coal Bed Methane (CBM) as an important source of CCT 5.6- Reservoir properties of CBM. Estimation of CBM resources in a coal seam 5.7-Technological procedure for CBM 5.8-Present status and perspective of CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	rojects
CCT in national as well as in global context SO5.3-Comprehension by analysis the role of CCT to balance the need for coal based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining SO5.4- Importance of IGCC technology SO5.5- AI, Undersea for mining SO5.6- Reservoir properties of CBM in Indian context SO5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
global context SO5.3-Comprehension by analysis the role of CCT to balance the need for coal based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining 5.4-Mission Coal Gasification in India and its perspective 5.5-Coal Bed Methane (CBM) as an important source of CCT 5.6- Reservoir properties of CBM. Estimation of CBM resources in a coal seam 5.7-Technological procedure for CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
SO5.3-Comprehension by analysis the role of CCT to balance the need for coal based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining its perspective 5.5-Coal Bed Methane (CBM) as an important source of CCT 5.6- Reservoir properties of CBM. Estimation of CBM resources in a coal seam 5.7-Technological procedure for CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
analysis the role of CCT to balance the need for coal based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining \$5.5-Coal Bed Methane (CBM) as an important source of CCT 5.6- Reservoir properties of CBM. Estimation of CBM resources in a coal seam 5.7-Technological procedure for CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
balance the need for coal based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining important source of CCT 5.6- Reservoir properties of CBM. Estimation of CBM resources in a coal seam 5.7-Technological procedure for CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
based power generation and reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining \$5.6- Reservoir properties of CBM. Estimation of CBM resources in a coal seam 5.7-Technological procedure for CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
reduction in carbon footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining Estimation of CBM resources in a coal seam 5.7-Technological procedure for CBM 5.8-Present status and perspective of CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
footprint. SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining seam 5.7-Technological procedure for CBM 5.8-Present status and perspective of CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
SO5.4- Importance of IGCC technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining 5.7-Technological procedure for CBM 5.8-Present status and perspective of CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
technology SO5.5- AI, Undersea mining & Space mining- the future prospects for mining 5.8-Present status and perspective of CBM in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
SO5.5- AI, Undersea mining & Space mining- the future prospects for mining cleaner fuel source in Indian context 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
& Space mining- the future prospects for mining 5.9-Compressed Natural Gas (CNG) as a cleaner fuel source	
prospects for mining cleaner fuel source	
industry 5 10-Liquefied Natural Gas (LNG) as a	
industry.	
cleaner fuel source and with ability with	
overseas transport	

Suggested Sessional works:

- (i) Review of the coal gasification mission in India
- (ii) A study of the behavior of a CBM well from the point of view of gas production and technological measures to improve upon it.

Topic of Mini Project- How far you foresee the potentiality of CCT as a greener energy source in India?

Brief of Hours suggested for the course outcome:

Course outcomes	Class Lectures	Laboratory Instructions	Sessional work (SW)	Self Learning	Total Hour (CL+LI+S
	(CL)	(LI)		(SL)	W+SL)
19MI104-A.1- Garnering concept of Eco-friendly mining based on sustainable development principles. Formulation of SD framework for mining	6	0	2	1	9
19MI104-A.2- Enactment of sustainability development principles in Acts, Laws & Regulations related to mining projects and activities	10	0	2	1	13
19MI104-A.3- Environmental impacts of mining and mitigation plans	11	0	2	1	14
19MI104-A.4- Energy security of India and need for sustainable coal mining. Short term and Long term perspective of energy mix in India and its impact on mining industry	8	0	2	1	11
19MI104-A.5- Innovative mining technologies and their application for sustainable development. Approximate hours:	10	0	2	1	13
Total Hours	45	0	10	5	60

Suggestions for End semester Assessment:

Suggested Specification Table

Cos	Unit Titles	Marks D	istribution	Total; Marks	
		R	U	A	
CO 1	- Garnering concept of Eco-friendly mining based on sustainable development principles. Formulation of SD framework for mining	3	3	1	7
CO 2	- Enactment of sustainability development principles in Acts, Laws & Regulations related to mining projects and activities	3	4	3	10
CO 3	Environmental impacts of mining and mitigation plans	3	5	5	13
CO 4	Energy security of India and need for sustainable coal mining. Short term and Long term perspective of energy mix in India and its impact on mining industry	3	5	5	13
CO 5	Innovative mining technologies and their application for sustainable development. Approximate hours:	2	3	2	7
	Total	14	20	16	50

Legend: R-Remember U-Understand A-Apply

The end of semester assessment for Eco-Friendly Mining will be held with written examination of 50 marks

Suggested Instructional/ Implementation Strategies:

- 1. Improved lectures
- 2. Tutorial
- 3. Case studies
- 4. Group discussion
- 5. Role play
- 6. Visit to mines and mineral processing industries
- 7. Demonstration
- 8. Digital media application in teaching learning process and mass media
- 9. Brainstorming

Suggested Learning Resources

Sl.No	Title	Author	Publisher	Edition &
				Year
1.		NareshChandra	Scientific Publisher	2004
	Mining Environment Management Manual	Saxena		
2.	Mining and Environmental Sustainability	Prof. G. S.	Daya publishing	2014
		Roonwal	house	

(b) Link

https://nptel.ac.in

Curriculum Development Team

- 1. Dr. Sandeep Prasad, Assistant Professor, Department of Mining Engineering, AKS University, Satna.
- 2. Dr. B. K. Mishra, Head, Department of Mining Engineering, AKS University, Satna.
- 3. Prof G. K. Pradhan, Dean, Faculty of Engineering Technology, AKS University, Satna.
- 4. Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna.

COs, POs & PSO Mapping:-

Program Title: M.Tech (Mining Engineering)

Course Code: 19MI104-A

Course Title: Eco-friendly Mining & Processing

	Program Outcom	mes					Program S	Specific Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
Course Outcome	Develop the skilled knowledge of communication in verbal and written forms	Apply the complex systems as part of research projects	Create, select & apply appropri ate techniqu es, resource s & modern engineer ing & IT tools	Understand the impact of professiona l engineering solutions in societal & environme ntal practices	Apply ethical principles & commit to professiona l ethics & responsibili ties and norms of the engineering practice	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	Dev. Analy tical skill for complex mining problem s	Specialized in depth knowledge in specific areas of mining	Capability to comprehen d articulated needs for mining industry	Research orientation based on articulated needs
CO1 Garnering concept of Eco- friendly mining based on sustainable development principles. Formulation of SD framework for mining	2	2-	1	1	-2	-1	2	1	1	1
CO2 Enactment of sustainability development principles in	1	-1	-2	-3	2	1	1	1	2	2

Acts, Laws & Regulations related to mining projects and activities										
CO 3- Environmental impacts of mining and mitigation plans	2	3	1	1	3	2	2	1	3	1
CO 4- Energy security of India and need for sustainable coal mining. Short term and Long term perspective of energy mix in India and its impact on mining industry	2	3	2	3	1	2	2	1	3	1
CO 5- Innovative mining technologies and their application for sustainable development.	1	1	2	1	3	2	2	2	3	2

Legend: 1: Low 2: Medium 3: High

Course Curriculum Map:

Garnering concept of endly mining based on able development les. Formulation of SD	Number SO 1.1 SO 1.2 SO 1.3	Instruction (LI)	Unit 1- Eco-friendly mining on	SL 1.1
endly mining based on able development les. Formulation of SD	SO 1.2 SO 1.3		•	SL 1.1
able development les. Formulation of SD	SO 1.3			1
les. Formulation of SD			the concept of sustainable	
			development	
orly for mining	SO 1.4		1.1, 1.2, 1.3, 1.4, 1.5, 1.6	
ork for mining	SO 1.5			
Enactment of	SO2.1		Unit 2- Changes in mining laws	SL 2.1
J 1	SO 2.2		for inclusion of SD principles	
les in Acts, Laws &	SO 2.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
tions related to mining	SO 2.4		2.8, 2.9, 2.10	
s and activities	SO 2.5			
Environmental	SO 3.1`		Unit 3- Mining activities and	SL 3.1
s of mining and	SO 3.2		environmental impacts	
ion plans	SO 3.3		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7,	
	SO 3.4		3.8, 3.9, 3.10. 3.11	
	SO 3.5			
25	SO 4.1		Unit 4- Energy security with	SL 4.1
nd need for sustainable	SO 4.2		specific reference to	
\mathcal{E}	SO 4.3		sustainability in Indian context	
1 1	SO 4.4		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7,	
	SO 4.5		4.8	
on mining industry				
\mathcal{E}	SO 5.1		Unit 5- Clean coal technologies	SL 5`.1
C	SO 5.2		and innovative mining	
	SO 5.3		technologies	
	SO 5.4		5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7,	
	SO 5.5		5.8, 5.9, 5.10,	
t	mix in India and its on mining industry nnovative mining ogies and their ion for sustainable	mix in India and its on mining industry mnovative mining ogies and their so 5.2 so 5.3 ment. SO 5.4	mix in India and its on mining industry movative mining SO 5.1 sogies and their SO 5.2 ion for sustainable ment. SO 5.4	mix in India and its on mining industry nnovative mining or sustainable ment. SO 4.5 4.8 Unit 5- Clean coal technologies and innovative mining technologies so 5.2 SO 5.2 SO 5.3 SO 5.4 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7,

Semester-I

Course Code: 19MI104-B

Course Title: Safety and Risk Management in Mines

Pre-requisite: Student should have basic knowledge of scope and purpose of geology, Rocks,

Minerals, various methods of age determination of rock and minerals.

Rationale: The students studying Mining field should possess foundational understanding

about historical binding of rock and minerals. Helps us identify and mitigate natural hazards such as earthquakes, coastal erosion, flooding, and landslides.

Course Outcomes:

19MI104-B.1: Explain the various aspects various management principles and branches of management

19MI104-B.2: Describe the Acts and Rules for Health and Safety

19MI104-B.3: Describe the Acts and Rules for Health and Safety

19MI104-B.4: Describe the Acts and Rules for Mineral Conservation and Environmental protection

19MI104-B.5: Comprehend the MMDR Act 1957 and Rules.

Scheme of Studies:

Code					Schen	Scheme of studies(Hours/Week)			
			Cl	LI	SW	SL	Total Study	Credits	
	Course	Course Title					Hours(CI+LI+SW+	(C)	
	Code						SL)		
PEC-`I	19MI104-B	Safety and Risk	3	0	1	1	5	3	
		Management in							
		Mines							

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. .Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW&SLhastobeplannedandperformedunderthecontinuousguidanceandfeedbackofteacherto ensure outcome of Learning.

Scheme of Assessment:

Theory

Code	Course	Course Title	Scheme of Assessment(Marks)														
Code	Code	Course Title	Pro	Progressive Assessment(PRA)			Progressive Assessment(PRA)			Progressive Assessment(PRA)			Progressive Assessment(PRA)			End Semester	Total
			Class/Home Assignment 5number 3 marks each (CA) Class Tes (2bestout of3) 10 marks each(CT)		Seminar one (SA)		Attenda nce	Total Marks (CA+CT+SA+CAT+AT)	Assessme nt (ESA)	Marks (PRA+E SA)							
PEC- `I	19MI1 04-B	Safety and Risk Management in Mines	15	20	5	5	5	50	50	100							

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI104-B.1: Explain the various aspects various management principles and branches of management.

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO1.1 Describe		Unit-1.0Management	
Principles of Scientific		1.1 Principles of Scientific	1. Planning
Management.		Management	and control.
		1.2 Organization	
SO1.2Explain the		1.3 Planning and control	
Organization.		1.4 Forms of Business	
		Organization	
SO1.3 Determination of		1.5 Private enterprises with	
Planning and control.		special reference to mining	
SO1.4 Explain Forms of		of minerals.	
Business Organization		1.6 Public enterprises with	
		special reference to mining	
SO1.5 Analyze Private and		of minerals.	
public enterprises with		1.7 Numerical	
special reference to mining		1.8 Problems 1	
of minerals.		1.9 Problems 2	

SW-1SuggestedSessionalWork (SW):

a. Assignments:

i. Explain Forms of Business Organization

19MI104-B.2: Describe the Acts and Rules for Health and Safety.

Approximate Hours

Item	Approx. Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learn
	(LI)		ing
			(SL)
SO2.1 Describe the Dispute		Unit-2 Basic Principles	i.Systems of
resolving.		2.1 Dispute resolving.	inventory
		2.2 Behavioral Sciences for Management	control.
SO2.2 Evaluate the Behavioral		2.3 Conflict management	
Sciences for Management.		2.4 Inventory: Systems of inventory control	
		2.5 Purchase procedures.	
SO2.3 Analyze the Systems of		2.6 Monitoring techniques.	
inventory control.		2.7 Management Information Systems (MIS)	
		2.8 Socio-Economic Impact of Mining	
SO2.4 Comprehend the		2.9 Economics of mining	
Management Information			
Systems (MIS)			
SO2.5 Describe Socio-Economic			
Impact of Mining.			

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Comprehend the Management Information Systems (MIS).

19MI104-B.3: Describe the technical circulars and gazette notifications related to Mines Safety.

Appro	Jamaic Hours
Item	Approx. Hrs
C1	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO3.1 Infer Mine	. ,	Unit-3 : Overview of	i. The Mines
Legislation.		Mines Safety in India	Act, 1952;
SO3.2 Explain Health and		3.1 Overview	Mines Rules,
Safety Laws.		3.2 Mine Legislation 3.3 Health	1955.
SO3.3 Explain The		and Safety Laws	
Mines Act, 1952;		3.4 The Mines Act, 1952	
Mines Rules, 1955.		3.5 Mines Rules, 1955.	
SO3.4 Interpret CMR 2017,		3.6 CMR 2017	
Metalliferous Mine		3.7 Metalliferous Mine	
Regulation, 1961.		Regulation, 1961.	
SO3.5 Relate the Mines		3.8 Mines Rescue Rules, 1985	
Rescue Rules, 1985.		3.9 Provisions of Indian	
		Electricity Rules, 1956	
		applicable to mines.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Explain Health and Safety Laws.

19MI104-B.4: Describe the Acts and Rules for Mineral Conservation and Environmental protection.

Approximate Hours

Item	Approx. Hrs
C1	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes	Laborator	Classroom Instruction	Self Learning
(SOs)	y	(CI)	(SL)
	Instructio		
	n		
	(LI)		
SO4.1 Distinguish various Accident		Unit-4:Accidents and their classification	
statistics; frequency rate and		4.1 Accident statistics	i.
severity.		4.2 frequency rate and severity rates.	basic causes of
		4.3 Basic causes of accident occurrence	accident
SO4.2 Evaluate Basic causes of		4.4 Investigations into accidents	
accident occurrence.		4.5 Accident reports	
		4.6 In-depth study into various causes of accidents	
SO4.3Demonstrate Investigations		4.7 Measures for improving safety in mines	
into accidents.		4.8 TRAP (take responsibility in accident prevention)	
		4.9 Contribution of human elements in mine safety	
SO4.4 Classify Contribution of human		·	
elements in mine safety.			
SO4.5 Describe Risk Management:			
Theory and application.			

SW-4 Suggested Sessional Work (SW):

a. Assignments:

ii. Classify Contribution of human elements in mine safety.

19MI104-B.5: Comprehend the geological formations in India.

Item	Approx. Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO5.1Explain MMDR Act 1957. SO5.2 Demonstrate Mining		Unit 5: MMDR Act 5.1 MMDR Act 1957 and Rules made	i.Mining Plan
Plan Approval procedure.		there under.	
SO5.3 Indian Bureau of Mines		5.2 Mining Plan Approval procedure	
and various duties.		5.3 Indian Bureau of Mines and various duties	
SO5.4 Evaluate Indian Bureau of		5.4 Indian Bureau of Mines and	
Mines and various responsibilities.		various responsibilities. 5.5 IBM for Mineral Administration	
SO5.5 Describe IBM for Mineral Administration.		5.6 Risk Management	
Administration.		5.7 Theory and application5.8 risk management techniques	
		5.9 means of managing	

SW-5 Suggested Sessional Work(SW):

a. Assignments:

i. Demonstrate Mining Plan Approval procedure.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture	Sessional Work (SW)	Self Learning	Total hour (Cl+SW+Sl)
19MI104-B .1: Explain the various aspects various management principles and branches of management	(Cl) 9	1	(SL) 1	11
19MI104-B .2: Describe the Acts and Rules for Health and Safety	9	1	1	11
19MI104-B .3: Describe the technical circulars and gazette notifications related to Mines Safety.	9	1	1	11
19MI104-B 4: Describe the Acts and Rules for Mineral Conservation and Environmental protection	9	1	1	11
19MI104-B .5: Comprehend the MMDR Act 1957 and Rules.	9	1	1	11
Total Hours	45	5	5	55

CO	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	A	Marks
CO-1	Management	03	01	01	05
CO-2	Basic Principles of Trade unionism	02	06	02	10
CO-3	Overview of Mines Safety in India	03	07	05	15
CO-4	Accidents and their classification	-	10	05	15
CO-5	MMDR Act	03	02	-	05
	Total	11	26	13	50

Suggestion for End Semester Assessment Suggested Specification Table (For ESA)

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment for safety and risk management in mines will be held with written examination of 50 marks. **Note**. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to mining industry
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,What sapp,Mobile,Onlinesources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Edition
No.				&Year
1	Engineering	Banga & Sharma	Khana Publishers, New-	2006, p-1364.
	Economics and		Delhi,	
	Industrial			
	Organisation			
2	Industrial &Labour	Jain, S.P	M/s Dhanpatrai& Sons,	
	laws		Delhi	
3	Legislation in Indian	Rakesh & Prasad	Asha Lata, Classified	
	Mines, Vol. I &II.,		Mine Circulars issued by	
			DGMS. Varanasi.	

(b) Web link:

https://archive.nptel.ac.in/Harddisk/Direct_Download.html

https://epathshala.nic.in/

https://swayam.gov.in/

Curriculum Development Team

- 1. Dr. Sandeep Prasad, Assistant Professor, Department of Mining Engineering, AKS University, Satna.
- 2. Dr. B. K. Mishra, Head, Department of Mining Engineering, AKS University, Satna.
- 3. Prof G. K. Pradhan, Dean, Faculty of Engineering Technology, AKS University, Satna.
- **4.** Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna.

Cos, Pos and PSOs Mapping

Program Title: M. Tech. Mining Engineering

Course Code: 19MI104-B

Course Title: Safety and Risk Management in Mines

	Program Outcome						Program Specific Outcome			
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
	Engin eering Knowl edge	Proble man alys is	Design/ develop mentof solutio ns	Conducti nvestigat ions ofcomple xproblem s	Modern Toolusa ge	Thee ngine erand socie ty	Develop analytical skills in identifying and accordingl y take actions for solution of mining problems.	Should develop sufficient knowledge about the economic, environmental and societal impacts of mining and basic concepts of mitigation measures.	Develop sufficient skill in project evaluation techniques, mine management, conflict resolution management and general management and safety in mines.	Development of the base for innovation & research in the field of mining engineering.
CO-1 Explain the various aspects various management principles and branches of management life.	1	2	1	1	1	2	2	3	2	1
CO-2 Describe the Acts and Rules for Health and Safety.	1	1	2	2	1	2	2	1	2	1
CO- 3 Describe the technical circulars and gazette notifications related to Mines Safety.	1	1	1	1	1	2	1	1	2	2
CO-4 Describe the Acts and Rules for Mineral Conservation and Environmental protection	2	2	3	2	3	2	3	3	3	2
CO-5 Comprehend the MMDR Act 1957 and Rules.	1	2	1	1	1	3	3	3	1	3

Legend:1-Low,2-Medium,3-High

Course Curriculum Map:

Pos & PSOs No.	Cos No. & Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self Learning(SL)
PO1,2,3,4,5,6	CO-1 Explain the various aspects various management	SO1.1 SO1.2 SO1.3		Unit-1.0 Management 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	SL 1.1
PSO1,2,3,4		SO1.4 SO1.5			
PO1,2,3,4,5,6	CO- 2 Describe the Acts and Rules for Health and Safety	SO2.1 SO2.2		Unit-2 Basic Principles of Trade unionism	SL 2.1
PSO1,2,3,4		SO2.3 SO2.4 SO2.5		2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9	
PO1,2,3,4,5,6	CO-3 Describe the technical circulars and gazette notifications related to	SO3.1 SO3.2		Unit-3 : Overview of Mines Safety in India	SL 3.1
PSO1,2,3,4	Mines Safety.	SO3.3 SO3.4 SO3.5		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	
PO1,2,3,4,5,6	CO-4 Describe the Acts and Rules for Mineral	SO4.1 SO4.2		Unit-4: Accidents and their classification	SL 4.1
PSO1,2,3,4	Conservation and Environmental protection	SO4.3 SO4.4 SO4.5		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	
PO1,2,3,4,5,6	CO -5 Comprehend the MMDR Act 1957 and Rules.	SO5.1 SO5.2 SO5.3		Unit5: MMDR Act 5.1,5.2,5.3,5.4,5.5, 5.6,5.7,5.8,5.9	SL 5`.1
PSO1,2,3,4		SO5.3 SO5.4 SO5.5			

Semester I

Course Code: 19MI105-A

Course Title: Geo-informatics

Pre-Requisite:

Geoinformatics are crucial to developing the technology, policies, standards, human resources and related activities necessary to maintain and preserve spatial data. Using an interdisciplinary teaching model, Mines' GIS and Geoinformatics graduate program gives graduate students hands-on experience in geospatial training and advanced application and quantitative analysis of GIS and remote sensing. Graduates in this program will enhance their skills, stay ahead of the technology curve and advance their careers to become top-notch professionals and leaders in their field.

Rationale:

Geoinformatics course facilitates mineral exploration via gathering, storing, and providing access to large spatial datasets. GIS collects information on the spatial location of various minerals and uses it to guide mining experts on where best to focus their efforts.

Course Outcome:

19MI105-A.1 Acquiring the ability to interpret the distribution and processes of management.

19MI105-A.2 Understanding the dynamic interrelationship between mining and geology.

19MI105-A.3 Accurate topographic data and aerial imagery guide engineers in designing efficient and safe infrastructure.

19MI105-A.4 Improving decision-making, saving costs, and ensuring adherence to rules.

19MI105-A.5Identify the most efficient paths, avoid congested areas, and optimize the utilization of their fleet.

Scheme of studies:

Code	Course	Course Title	Scheme	Scheme of studies (Hours/Week)				
	code		CI	CI LI SW SL Total study Hours (CI+LI+SW+SL)				
PEC-`II	19MI105-A	Geo- informatics	3	0	1	1	5	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture(L) and Tutorial (T)and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory, workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)							
Code	Course Code	Course Title	Class/H ome Assignm ent 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Sem inar one	Class Activit y any one (CAT)	Class Attendance	Total Marks (CA+CT+S A+CAT+ AT)	End Semeste r Assessm ent (ESA)	Total Marks (PRA+ ESA)
PEC- `II	19MI10 5-A	Geo- informa tics	15	20	5	5	5	50	50	100

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI105-A.1 Acquiring the ability to interpret the distribution and processes of management.

Approximate hours:

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	12

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning	
	Instructions (LI)		(SL)	
SO 1.1-Geoinformatics		Unit1- Principles of		
based on the concept of		geoinformatics	(i) Role an	nd
sustainable development		1.1- Basic concept of	importance	of
SO 1.2- Understand the		geoinformatics.	remote sensing	
MIS		1.2-Application of		
SO 1.3- Role of		geoinformatics.		
geoinformatics in minor		1.3- Principles of geoinformatics.		
level		1.4- Introduction to MIS		
SO1.4-Fractal analysis and		1.5- Types of Information &		
damage analysis		Sub Systems		
SO1.5- Micro		1.6 Organization Need for MIS		
instrumentation in		1.7 Stages and development of		
geoinformatics		MIS		
		1.8- Decision Support System		
		1.9-Micro level planning		

Suggested Sessional works:

a. Assignments;

(i) Importance of geoinformatics and need in prospecting and exploration.

b. Topic of mini project:

1. Unique features of management system in Mining Industry.

19MI105-A.2 Understanding the dynamic interrelationship between mining and geology.

Approximate hours

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	12

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO 2.1-Understand the		Unit 2- Geological	(i)Importance and
importance of geological		Discontinuities	effect of geological
structure		2.1-Introduction	discontinuities in
SO 2.2- Identifying the		2.2- Fault	mining area.
geological structure		2.3- Fold	
SO 2.3- Analysis the Block		2.4- Joint	
size analysis through		2.5- Unconformities	
structural data		2.6- Intact rock strength and	
SO 2.4- Identifying		deformation	
External influence in		2.7- Shear stress along a	
mining		discontinuity	
SO 2.5 Understand the		2.8- Set of discontinuity	
Stress around excavation		2.9- External influence	

Suggested sessional works: a. Assignments:

(i) An analysis into the changes in mining industry due to geological structure.

b.Topic of Mini Project- An analysis into the feasibility of new and expansion mining projects in the context of geological structure.

19MI105-A.3 Accurate topographic data and aerial imagery guide engineers in designing efficient and safe infrastructure.

Approximate hours

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	12

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions		
	(LI)		
SO3.1-Contributes to scientific		Unit 3- Remote Sensing	(i) Practice with ArcGIS
knowledge by providing valuable			software and microDEM.
information about the Earth's		3.1-Introduction to remote sensing	
surface.		3.2- Platform& Sensor	
SO3.2- Detect the various form of		3.3- Areial photography	
radiation, enabling applications		3.4- Hyperspectral Remote Sensing	
like weather monitoring,		3.5- Mineral Mapping	
agriculture etc.		3.6- Case studies	
SO3.3-		3.7- Microwave remote sensing	
Provide information concerning		3.8- Remote Sensing for Mineral	
the physical characteristics of the		Exploration	
land which influence the		3.9- Case studies	
management of individual land			
parcels or the allocation of lands to			
various uses.			
SO3.4- Enable to understand the			
3D remote sensing in mining.			
SO3.5- Understand the uses of			
remote sensing for mineral			
exploration.			

Suggested Sessional works: a. Assignments:

(i) Comparison between the impacts of opencast and underground mining on mineral exploration.

b.Topic of Mini Project- Mapping the any mine exploration through remote sensing data.

19MI105-A.4:-Improving decision-making, saving costs, and ensuring adherence to rules.

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	12

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO4.1-Comprehend		Unit 4-Geographic Information	
fundamental concepts and		System	(i)Apllications of
practices of Geographic			GIS in different
Information Systems		4.1-Introduction	fields
SO4.2-advances in		4.2- Data structure, map and	
Geospatial Information		map elements	
Science and Technology		4.3- Geospatial analysis	
SO4.3-Apply basic graphic		4.4- Case studies	
and data visualization		4.5- Triangulated irregular	
concepts such as color		network	
theory, symbolization, and		4.6- Digital elevation model	
use of white space.		4.7-Raster image analysis	
SO4.4- Get knowledge to		4.8- Raster image analysis	
the advanced Satellite of		4.9- Case studies	
Remote Sensing,			
Hyperspectral Remote			
Sensing, LIDAR Remote			
Sensing			
SO4.5- Acquire skills in			
handling instruments,			
tools, techniques and			
modelling while using			
Remote Sensing			
Technology.			

Suggested Sessional works: a. Assignments:

(i) Role and limitation of GIS in mining industry

b.Topic of Mini Project- Mapping the Indian coal mines with the help of GIS technologies.

19MI105-A.5:-Identify the most efficient paths, avoid congested areas, and optimize the utilization of their fleet.

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	12

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO5.1- Provides users with		Unit 5- Global Positioning	Watch GPS working
positioning, navigation, and		System	process in field.
timing.		5.1 Introduction	
SO5.2-This system consists		5.2 GPS Satellites	
of three segments: the		5.3 Triangulation	
space segment, the control		5.4 Application	
segment, and the user		5.5 Application in Mining	
segment.		5.6 Advantage and	
SO5.3-Calculate GPS		disadvantage	
satellite orbit positions and		5.7 Map data interpretation	
velocities.		5.8 Data plot on map	
SO5.4- Calculate user		5.9 Case study	
position using GPS			
pseudorange data			
SO5.5-			

Suggested Sessional works: a. Assignments:

(i) Plot GPS data on map.b.Topic of Mini Project- Field visit record the GPS data and plot and interpretate.

Brief of Hours suggested for the course outcome:

Course outcomes	Class Lectures (CL)	Laboratory Instructions (LI)	Sessional work (SW)	Self Learning (SL)	Total Hour (CL+LI+SW +SL)
19MI105-A.1 Acquiring the ability to interpret the distribution and processes of management.	9	0	2	1	12
19MI105-A.2 Understanding the dynamic interrelationship between mining and geology.	9	0	2	1	12
19MI105-A.3 Accurate topographic data and aerial imagery guide engineers in designing efficient and safe infrastructure.	9	0	2	1	12
19MI105-A.4 Improving decision-making, saving costs, and ensuring adherence to rules.	9	0	2	1	12
19MI105-A.5Identify the most efficient paths, avoid congested areas, and optimize the utilization of their fleet.	9	0	2	1	12
Total Hours	45	0	10	5	60

Suggestions for End semester Assessment:

Suggested Specification Table

COs	Unit Titles	Marks Distri	Marks Distribution					
		R	U	A				
CO 1	Acquiring the ability to interpret the distribution and processes of management.	3	3	1	7			
CO 2	Understanding the dynamic interrelationship between mining and geology.	3	4	3	10			
CO 3	Accurate topographic data and aerial imagery guide engineers in designing efficient and safe infrastructure.	3	5	5	13			
CO 4	Improving decision-making, saving costs, and ensuring adherence to rules.	3	5	5	13			
CO 5	Identify the most efficient paths, avoid congested areas, and optimize the utilization of their fleet.	2	3	2	7			
	Total	14	20	16	50			

Legend: R-Remember U-Understand A-Apply

The end of semester assessment for Geoinformatics will be held with written examination of 50 marks **Suggested Instructional/ Implementation Strategies:**

1. Improved lectures

- 2. Tutorial
- 3. Case studies
- 4. Group discussion
- 5. Role play
- 6. Visit to mining industries
- 7. Demonstration
- 8. Digital media application in teaching learning process and mass media
- 9. Brainstorming

Suggested Learning Resources

	<u> </u>			
Sl.No	Title	Author	Publisher	Edition & Year
1.				
1.				
2.				
3.				

Curriculum Development Team

- 1. Dr. Sandeep Prasad, Assistant Professor, Department of Mining Engineering, AKS University, Satna.
- 2. Dr. B. K. Mishra, Head, Department of Mining Engineering, AKS University, Satna.
- 3. Prof G. K. Pradhan, Dean, Faculty of Engineering Technology, AKS University, Satna.
- 4. Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna.

COs, POs & PSO Mapping

Program Title: M. Tech (Mining Engineering) Course Code: 19MI105-A

Course Code: 19MI105-A
Course Title: Geo-informatics

	Program Outcomes						Program Specific Outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
Course Outcome	Develop the skilled knowledg e of communi- cation in verbal and written forms	Apply the comple x system s as part of researc h project s	Create, select & apply appropri ate techniq ues, resource s & modern enginee ring & IT tools	Understa nd the impact of professio nal engineeri ng solutions in societal & environm ental practices	Apply ethical princi ples & comm it to profes sional ethics & respon sibiliti es and norms of the engine ering practic e	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	DevAnaly tical skill for complex mining problems	Specialized in depth knowledge in specific areas of mining	Capability to comprehend articulated needs for mining industry	Research orientation based on articulated needs
CO1 Acquiring the ability to interpret the distribution and processes of management.	2	2-	1	1	-2	-1	2	1	1	1
CO2 Understanding the dynamic interrelationship	1	-1	-2	-3	2	1	1	1	2	2

between mining and										
CO 3- Accurate topographic data and aerial imagery guide engineers in designing efficient and safe infrastructure.	2	3	1	1	3	2	2	1	3	1
CO 4- Improving decision-making, saving costs, and ensuring adherence to rules.	2	3	2	3	1	2	2	1	3	1
CO 5-Identify the most efficient paths, avoid congested areas, and optimize the utilization of their fleet.	1	1	2	1	3	2	2	2	3	2

Legend: 1: Low 2: Medium 3: High

Course Curriculum Map:

POs & PSOs	COs number & Title	SOs Number	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
Number			Instruction (LI)		
PO: 1,2,3,4,5,6	CO 1: Acquiring the ability to interpret the distribution and processes of management.	SO 1.1 SO 1.2 SO 1.3 SO 1.4		1.1, 1.2, 1.3, 1.4, 1.5, 1.6,1.7,1.8,1.9	SL 1.1
PSO: 1,2,3,4		SO 1.5			
PO: 1,2,3,4,5,6	CO2:Understanding the dynamic interrelationship between mining and geology.	SO2.1 SO 2.2 SO 2.3 SO 2.4		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	SL 2.1
PSO: 1,2,3,4		SO 2.4 SO 2.5			
PO: 1,2,3,4,5,6	CO3: Accurate topographic data and aerial imagery guide engineers in designing efficient and safe infrastructure.	SO 3.1` SO 3.2 SO 3.3 SO 3.4		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9	SL 3.1
PSO: 1,2,3,4		SO 3.5			
PO: 1,2,3,4,5,6	CO:4 Improving decision- making, saving costs, and ensuring adherence to rules.	SO 4.1 SO 4.2 SO 4.3 SO 4.4		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8,4.9	SL 4.1
PSO: 1,2,3,4		SO 4.5			
PO: 1,2,3,4,5,6	CO5: Identify the most efficient paths, avoid congested areas, and optimize the utilization of their fleet.	SO 5.1 SO 5.2 SO 5.3 SO 5.4		5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9	SL 5`.1
PSO: 1,2,3,4		SO 5.5			

Semester-I

Course Code: 19MI105-B

Course Title: Surface Mining Operations & Equipment

Pre-requisite: Student should have basic knowledge of shaft sinking, methods of

shaft sinking, drilling and blasting parameters of mining and methods

of tunnels making.

Rationale: The students studying should possess foundational understanding

about Student should have basic knowledge of shaft sinking, methods of shaft sinking, drilling and blasting parameters of mining and methods of tunnels making. Additionally, students ought to acquire fundamental insights into various drilling machines technology, blast

design parameters of open cast mining.

Course Outcomes:

19MI105-B.1: Understand the knowledge of prospecting, methods of exploration.

19MI105-B.2: Acquired the knowledge of different shaft sinking methods, working cycle of shaft sinking.

19MI105-B.3: Understanding of the special types of shafts sinking methods, safety in shaft sinking and statutory provisions as laid down under CMR, MMR issued by DGMS.

19MI105-B.4: Understanding of the knowledge of explosive properties, blast design parameters in open cast mining and types of different drilling machines.

19MI105-B.5: Understanding of the preparation of tunnels, Drivage techniques with blasting.

Scheme of Studies:

Code	Course	Course Title	2	Sche	me of	ies (Hours/Week)	Total	
	Code		Cl	тт	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits(C)
				LI	D 11	OL.	(CITEITSWISE)	
PEC- II	19MI105-B	Surface Mining Operations & Equipment	3	0	1	1	5	3

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies),

SW: Sessional Work (includes assignment, seminar, mini project etc.)

,SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

	Denem	C OI TIBBEBB	ment. The	<i>,</i> ,						
			Scheme of Assessment (Marks)							
				Prog		End				
Code	Course Code	Course Title	Class/H ome Assignm ent 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Sem inar one	Class Activit y any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+S A+CAT+ AT)	Semeste r Total Assessm ent (ESA) (PRA+ ESA)	
PEC- `II	19MI10 5-B	Surface Mining Operati ons & Equipm ent	15	20	5	5	5	50	50	100

Course-Curriculum Detailing

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should show case their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI105-B.1: Understand the knowledge of prospecting, methods of exploration.

Approximate Hours

Item	Appx Hrs
Cl	9
LI	0
SW	1
SL	2
Total	12

Session Outcomes (SOs)	Laboratory Instruction(LI)	Classroom Instruction (CI)	Self-Learning(SL)
SO1.1Definitions, prospecting, shaft, bore holes		Unit-1.0General Introduction 1.1 Definitions reconnaissance principles. 1.2 methods of prospecting.	1.Borehole logging; Maintenance of records; Deflection of boreholes.
SO1.2 Methods of exploration		1.3 Pit, shaft, trench and boreholes.1.4 Methods of Exploration.	2.Difficulties in boring; Fishing
SO1.3Borehole logging, deflection of boreholes SO1.4 Fishing tools and exploratory drilling SO1.5 Surface layout		 1.5 Selection of sites for boreholes.1.6 Surface layout of boring. 1.7 Details of equipment. 1.8 Borehole logging. 1.9 Maintenance of records. data. 	tools and their uses.

SW-1Suggested Sessional Work(SW):

a. Assignments:

i. Exploration methods

19MI105-B.2: Acquired the knowledge of different shaft sinking methods, working cycle of shaft sinking.

Item	AppXHrs				
C1	9				
LI	0				
SW	1				
SL	2				
Total	12				

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning(SL)
so2.1ToUnderstand the mine entries, location so2.2 To learn about preparatory work required of shaft sinking so2.3Tounderstand theshaft sinking methods so2.4To understand the sinking cycle so2.5 To learn about the support system of shaft sinking		Unit 2 Shaft Sinking I 2.1 Shaft Sinking. 2.2 Mine Entries - Choice, location. 2.3 Size of mine entries. 2.4 Access to seated deposits by Adit/Drifts/Incline. 2.5 Selection - Location - Preparatory work required. 2.6 Sinking appliances, equipment and services. 2.7 Sinking methods and procedure. 2.8 Reaching up tothe rock head - Pre-sink. 2.9 Sinking through the rock.	i. Mine entries, location of mine ii. Methods of shaft sinking

SW-2Suggested Sessional Work(SW):

a. Assignments:

i. Shaft sinking methods

19MI105-B.3: Understanding of the special types of shafts sinking methods, safety in shaft sinking and statutory provisions as laid down under CMR, MMR issued by DGMS.

Item	AppXHrs
Cl	9
LI	0
SW	1
SL	2
Total	12

Session	Laboratory	Classroom Instruction	Self-Learning
Outcomes	Instruction	(CI)	(SL)
(SOs)	(LI)		
SO3.1 Specia	ા	Unit-3: Shaft Sinking II	i. Shaft sinking
methods of sha	ft	3.1 Shaft Sinking – II.	methods
sinking		3.2 Station construction and initial development.3.3 Special methods of shaft sinking.	
SO3.2 Cementation		3.4 Piling System-Caisson Method.	and Safety
so3.3 Drilling and boring so3.4 Safety features as per requirement of CMR		 3.5Sinking drumprocess-Forced drop. 3.6Shaft method -Pneumatic caisson method. 3.7 Special methods by temporaryor permanent isolation of water -Cementation. 3.8 Boring/Drilling-Cementation -Sinking and Walling. 3.9 The freezing process - Drilling and lining of boreholes-Formation and maintenance. 	
SO3.5Freezing methods			

SW-3Suggested Sessional Work (SW):

a. Assignments:

1. Special Shaft sinking methods

19MI105-B.4: Understanding of the knowledge of explosive properties, blast design parameters in open cast mining and types of different drilling machines.

Item	AppXHrs
Cl	9
LI	0
SW	1
SL	2
Total	12

Session Laboratory		Classroom Instruction(CI)	Self-			
Outcomes	Instruction		Learning(SL)			
(SOs)	(LI)					
SO4.1		Unit-4 Drilling and Blasting				
Understand		4.1 Drilling – Introduction selection-application-	i. Blast design			
the drilling		classification.	parameters in			
machine		4.2 construction of few drill machines.	mining			
SO4.2 Explosive		4.3 Drill bits – operation & maintenance etc.	ii. Types of			
properties		4.4 Explosives & Accessories used in Mines.	explosives			
PP		4.5 Selection-Classification-Properties-Testing.				
SO4.3 Blast		4.6 Underground Coal Mines. Permitted & non-				
design		permitted.				
parameters		4.7 Explosives-Explosives used in Quarries.				
~~		4.8 Opencast Mines (details of selection, blast design.				
SO4.4		will be taught in Surface Mining).				
Fragmentati		4.9 Storage-Transport of explosives & accessories.				
on		7.7 Storage-Transport of explosives & accessories.				
SO4.5 Advances						
in Blasting						

SW-4Suggested Sessional Work(SW):

a. Assignments:

i. Blast design parameters

19MI105-B.5: Understanding of the preparation of tunnels, Drivage techniques with blasting.

Item	AppX Hrs
C1	9
LI	0
SW	1
SL	2
Total	12

			Total	12
Session	Laboratory	Classroom Instruction(CI)		Self-
Outcomes	Instruction			Learning(SL)
(SOs)	(LI)			g (-)
SO5.1		Unit 5:Drifts/Drivage's & Tu	nnels	1.Methods of tunnels
Conventional		5.1 Conventional Methods.		
methods of		5.2 Introduction, Preparations f	or driving	
tunnels		drivage's/tunnels.	_	2.Blasting
		5.3 Site investigations, Locatio	n of - Rocks and	techniques
SO5.2 Over view		ground.		•
of site		5.4 characterization-Size, shape.	, length.	
investigation		5.5 Orientation (route) - function	on of drives.	
		5.6 Tunnels - Drivage techniqu	es (fordrives and	
SO5.3 Role of the		tunnels).		
techniques in		5.7 Drivage techniques with bla	asting (Pattern of	
blasting		holes - Blasting off the solid.		
-		5.8 UG Gassy seams- Pat	tern of Holes-	
SO5.4 Post		Charging and blasting the round	ds - Placement of	
blasting		primer.		
handling		5.9 Stemming - Depth of roun	nd/hole - Charge	
_		density in cut-holes and rest o	f the face area –	
SO5.5 Support		Smooth blasting).		
system				
-				

SW-5Suggested Sessional Work(SW):

a. Assignments: Support system

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	SessionalWork (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
19MI105-B.1:Understand the knowledge of prospecting, methods of exploration.	9	0	1	2	12
19MI105-B.2:Acquired the knowledge of different shaft sinking methods, working cycle of shaft sinking.	9	0	1	2	12
19MI105-B.3: Understanding of the special types of shaft sinking methods, safety in shaft sinking and statutory provisions as laid down under CMR, MMR issued	9	0	1	2	12
19MI105-B.4: Understanding of the knowledge of explosive properties, blast design parameters in open cast mining and types of different drilling machines.	9	0	1	2	12
19MI105-B.5: Understanding of the preparation of tunnels and Drivage techniques with blasting.	9	0	1	2	12
Total Hours	45	0	5	10	60

Suggestion for End Semester Assessment

Suggested Specification Table (ForESA)

CO	Unit Titles	Ma	arks Dis	tribution	Total	
		R	U	A	Marks	
CO-1	Understand the knowledge of prospecting, methods of exploration.	03	01	01	05	
CO-2	Acquired the knowledge of different shaft sinking methods, working cycle of shaft sinking.	02	06	02	10	
CO-3	Understanding of the special types of shafts sinking methods, safety in shaft sinking and statutory provisions as laid down under CMR, MMR issued by DGMS.	07	05	03	15	
CO-4	Understanding of the knowledge of explosive properties, blast design parameters in open cast mining and types of different drilling machines.	03	03	04	10	
CO-5	Understanding of the preparation of tunnels and Drivage techniques with blasting.	03	02	05	10	
	Total	14	23	13	50	

Legend: R:Remember, U: Understand, A:Apply

The end of semester assessment for surface mining operations will be held with written examination of 50 marks.

Note. Detailed assessmentrubric needs to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog, Facebook,Twitter,WhatsApp, Mobile,On-line sources)
- 9. Brainstorming

Suggested Learning Resources:

(a)Books:

S.	Title	Author	Publisher	Edition
No.				&Year
1	Elements Of Mining Technology	D.J. Deshmukh	Denett & Co. Nagpur, N e w Delhi, Chennai P u n e	2016
2	Mining Competition Handbook (For GATE, Overman, Mining Sirdar and others competitive exams)	Dr. Sandeep Prasad	Orange Books Publication	1 st and 2023
3	Das, S.K., Surface Min	ing Technology, Lov	vely Prakashan, Dhar	nbad
4.	Kennedy, B.A.(Editor).	, 1990, Surface Mini	ng, SME, USA, 2nd	Edition.

Web Link:

https://en.wikipedia.org/wiki/Drilling_and_blasting

https://core.ac.uk/download/pdf/53188886.pdf

https://nptel.ac.in/

Curriculum Development Team

Dr. Sandeep Prasad, Assistant Professor, Department of Mining Engineering, AKS University, Satna.

Dr. B. K. Mishra, Head, Department of Mining Engineering, AKS University, Satna.

Prof G. K. Pradhan, Dean, Faculty of Engineering Technology, AKS University, Satna.

Prof A K Mittal, Director, Department of Mining Engineering, AKS University, Satna.

Cos, Pos and PSos Mapping

Program Title: M. Tech. Mining Engineering

Course Code: 19MI105-B

Course Title: Surface Mining Operations & Equipment

Se Titte Surface Himming Operation		Program outcome						Program Specific Outcome				
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4		
Course Outcomes	Engineeri ng knowledg e	Proble man alysis	Desig n/deve lopme nt of soluti ons	Conduc t investig ations of comple x probl ems	Moder n Tool usage	The engi neer ing soci ety	Develop analytical skills in identifying and accordingly take actions for solution of mining problems.	Should develop sufficient knowledge about the economic, environmental and societal impacts of mining and basic concepts of mitigation measures.	Develop sufficient skill in project evaluation techniques, mine management, conflict resolution management and general management and safety in mines.	Developme nt of the base for innovation & research in the field of mining engineering		
CO1: Understand the knowledge of prospecting, methods of exploration.	1	2	1	1	1	2	2	3	2	1		
CO 2: Acquired the knowledge of different shaft sinking methods, working cycle of shaft sinking.	1	1	2	2	1	2	2	2	2	1		
CO3: Understanding of the special types of shaft sinking methods, safety in shaft sinking and statutory provisions as laid down under CMR, MMR issued by DGMS.	2	2	1	1	1	2	1	1	2	2		
CO4:Understanding of the knowledge of explosive properties, blast design parameters in open cast mining and types of different drilling machines.	2	2	3	2	3	2	3	3	3	2		
CO5:Understanding of the preparation of tunnels and Drivage techniques with blasting.	1	2	1	1	1	3	3	3	1	3		

Legend:1-Low,2-Medium,3-High

Course Curriculum Map

Pos& PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO1,2, 4, 5,6	CO1: Understand the knowledge of	SO1.1		Unit-1.0 General Introduction	
	prospecting, methods of exploration.	SO1.2		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
	exploration.	SO1.3			
PSO1,2,3,4		SO1.4			SL 1.1
		SO1.5			
PO1,2,3,4,5,6	CO 2 Acquired the knowledge of	SO2.1		Unit-2Shaft Sinking I	
	different shaft sinking methods, working cycle of shaft sinking.	SO2.2		2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,	
		SO2.3			SL 2.1
PSO1,2,3,4		SO2.4			
		SO2.5			
	002 Helender Franck de mei il	502.1		Unit-3:Shaft Sinking II	
PO1,2,3,4,5,6	CO3 Understanding of the special types of shaft sinking methods, safety in shaft sinking and statutory provisions as laid down under CMR, MMR issued by DGMS.	SO3.1 SO3.2		Č	
DCC1 2 2		SO3.3		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,	SL 3.1
PSO1,2,3		SO3.4			
		SO3.5			
PO1,2,3,4,5,6	CO 4: Understanding of the	SO4.1			
	knowledge of explosive properties, blast design	SO4.2		Unit-4: Drilling and Blasting 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,	
	parameters in open cast mining	SO4.3		T.1,T.2,T.3,T.T,T.3,T.0,T.7,T.0,T.7,	SL 4.1
PSO1,2,3,4	and types of different drilling	SO4.4			
	machines.	SO4.5			
PO1,2,3, 5,6	CO 5: Understanding of the	SO5.1		Unit5: Drifts / Drivage's and Tunnels	
	preparation of tunnels and Drivage	SO5.2			
PSO1,2,3,4	techniques with blasting.	SO5.3		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,	SL 5.1
1 501,2,3,4		SO5.4			
		SO5.5			

Semester I

Course Code: 19MI152

Course Title: Comprehensive Viva Voce covering Proposed Thesis

Pre- requisite: Conduct research to resolving the problem of mining operations like blasting, vibration,

safety etc. by applying advanced technology adopted in field of mining industries.

Rationale: The basic purpose of M. Tech Comprehensive Viva Voce covering Proposed Thesis is

to understand the application of research methodology tools to do research on particular topic related to mining and follow technical writing skill to design the synopsis, thesis,

research paper, abstract, articles, etc as per results obtained during research studies.

Course Outcomes:

PROJ-MIN05 Propose Comprehensive Viva Voce covering Proposed Thesis tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis

Scheme of Studies:

	Course			S	Total			
CODE	Course Code	Course Title	CI	LI	SW	SL	Total Study Hours CI+LI+SW+SL	Credits (C)
MLC	19MI152	Comprehensive Viva Voce covering Proposed Thesis	0	4	0	0	4	2

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) **SW:** Sessional Work (includes assignment, seminar, mini project etc.), **SL:** Self Learning, **C:**Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

			Scheme of Assessment (Marks)							
				Progressive Assessment (PRA)						
CODE	Course Code	Course Title	Class/Home Assignment 5 number3 markseach(CA	of3)10	Seminar one	Class Activity anyone(CAT)	Class Attendanc e(AT)	Total Marks _{(CA+C} T+SA+ CAT+AT)		Total Marks(PR A + ESA)
MLC	19MI152	Comprehensive Viva Voce covering Proposed Thesis	0	0	0	0	0	0	100	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI152 Comprehensive Viva Voce covering Proposed Thesis tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis.

Item	Approximate Hours	
CI	0	
LI	4	
SW	0	
SL	30	
Total	34	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1. Choose the topic and objectives for the research. SO2. Select the suitable data during the research.	2. Types of		1. Finding of reviews related with the topic of research.
			2. Preparation of manuscripts related to concerned topic.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Instruction (LI)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
19MI152 Propose Comprehensive Viva Voce covering Proposed Thesis tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis .		4	30	34
Total	0	4	30	34

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Group Discussion
- 3. Demonstration
- 4. Brainstorming

Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Edition
No.				& Year

1	Research publications		
2	Science direct		
3	Research gate		
5	Academia		
6	Multi authored books		
7	Book chapters		

Course Curriculum Team:

- 1. Dr. Sandeep Prasad, Department of Mining Engineering, AKS University, Satna
- 2. Prof G. K. Pradhan, Department of Mining Engineering, AKS University, Satna
- 3. Dr. B. K. Mishra, Department of Mining Engineering, AKS University, Satna
- 4. Er. Akash Gupta, Department of Mining Engineering, AKS University, Satna
- 5. Prof S. Dasgupta, Department of Mining Engineering, AKS University, Satna
- 6. Prof P K Palit, Department of Mining Engineering, AKS University, Satna
- 7. Prof A K Mittal, Department of Mining Engineering, AKS University, Satna
- 8. Er. P. S. Tiwari, Department of Mining Engineering, AKS University, Satna
- 9. Er. P. C. Tiwari, Department of Mining Engineering, AKS University, Satna
- 10. Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna

Cos, POs and PSOs Mapping

Course Code: 19MI152

Course Title: - Comprehensive Viva Voce covering Proposed Thesis

	Program Outcomes						Program Specific Outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
Course Outcome	Develop the skilled knowledge of communicatio n in verbal and written forms	Apply the complex systems as part of research projects	Create, select & apply appropriate techniques, resources & modern engineering & IT tools	Understand the impact of professional engineering solutions in societal & environment al practices	Apply ethical principles & commit to professional ethics & responsibilit ies and norms of the engineering practice	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	Dev. Analy tical skill for complex mining problem s	Specialize d in depth knowledg e in specific areas of mining	Capability to comprehen d articulated needs for mining industry	Research orientation based on articulated needs
CO1- Propose Comprehensive Viva Voce tools for conducting research on selected topic of mining field and prepare Final manuscript	2	2-	1	1	1	1	2	1	1	1

Legend: 1- Low,2 - Medium, 3- High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs	Laboratory Instruction	Classroom Instruction	Self-Learning
		No.	(LI)	(CI)	(SL)
PO 1,2,3,4,5,6, PSO 1,2, 3, 4,	19MI152 Propose Comprehensive Viva Voce covering Proposed Thesis tools for conducting research on selected topic of mining field and prepare Final manuscript		1.1. 1.2		SL 1.1

Semester II

Course Code: 19MI201

Course Title: Underground Space Technology

Pre-Requisite: The student should have adequate knowledge about Rock Mechanics and basic concept of soil mechanics along with sufficient concept of rock excavation engineering processes.

Rationale: The student pursuing Master's degree(M.Tech) in Mining Engineering must develop adequate concept of rock excavation engineering in underground conditions, comprehend the complexities of large underground excavations predominantly in urban areas covering both consolidated and unconsolidated strata conditions.

Course Outcome:

The student

19MI201.1- Garnering concept of underground space technology (UST) based on rock excavation engineering and its importance in urban development.

19MI201.2- Comprehension and application of rock mechanics and soil mechanics principles for underground structure construction

19MI201.3- Developing engineering skills in tunnel constructions in variable geo-mechanical rock conditions

PEC-MIN 109.4-Understanding the reorientation of stresses during single and multiple excavations and determination of their influence zones

19MI201.5- Development of knowledge and skill for in-situ stress and strain determination of rocks as structural material

Scheme of studies:

Code	Course	Course Title	Scheme	Scheme of studies (Hours/Week)				
	code		CI	LI	SW	SL	Totaql study	Credits
							Hours	(C)
							(CI+LI+SW+SL)	
PCC	19MI201	Underground	3	0	1	1	5	3
		Space						
		Technology						

Legend:

CI: Class room Instruction (Includes different instructional strategies i.e. Lecture

(L) and Tutorial (T) and others),

LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop,fi eldorotherlocationsusingdifferentinstructionalstrategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

		111001		Scheme of	Assessm	nent (Marks)				
Code		Course Title	Progressive Assessment(PRA) Class/Home Assignment Snumber 3						End Semeste r Assess ment (ESA)	Total Marks (PRA+ESA)
PCC	19MI201	Underground space technology	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). Asthecourseprogresses, studnts should show case their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI201.1:- Garnering concept of underground space technology (UST) based on rock excavation engineering and its importance in urban development.

Approximate hours:

Item	Approximate Hours
Class room Instructions (CI)	6
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	9

Session Outcomes (SOs)	Laboratory Instructions (LI)	Class Room Instructions (CI)	Self Learning (SL)
SO 1.1- Concept and domain of UST SO1.2- Importance of UST in urban planning SO1.3- Application of the principles of rock mechanics in underground space construction SO1.4- Importance of soil mechanics in understanding UST problems SO1.5- Unique Scope of UST-combining rock mechanics & soil mechanics approaches for construction of underground spaces.		Unit1- Underground Space Technology- Its objectives 1.1-Objectives of Underground Space Technology (UST) 1.2-Challenges of continually growing urbanization 1.3 – Domain, challenges and attributes to UST 1.4- Differentiation between strata control engineering and UG space mining engineering 1.5- Rocks and soils-two important domains of UST 1.6-Geo-mechanics- Rock mechanics & Soil Mechanics	Study area: (i)Different facets of urbanization and role of UST

Suggested Sessional works:

- (i) The scope and domain of Underground space technology in modern urban development- an analysis.
- (ii) Distinction between rock excavation engineering and underground space technology engineering

Topic of Mini Project- The global trend of urbanization and expanding domain of Underground Space Technology

19MI201.2:- Comprehension and application of rock mechanics and soil mechanics principles for underground structure construction

Approximate hours:

Item	Approximate Hours
Class room Instructions (CI)	10
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	13

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions		
	(LI)		
SO 2.1-Classification of		Unit 2- Classification of rocks & ground	(i)In-depth study
rocks as a structural		deformation on structures	of rock mechanics
material		2.1-Important definitions related to rocks	and soil mechanics
SO2.2- Dual domain of		and classification of rocks	
UST- Rock mechanics and		2.2- Important terms related to Underground	
soil mechanics		Space Technology (UST)	
SO2.3- Impact of ground		2.3- Impact of ground deformations on	
movement on structures		structures	
with UG foundations and		2.4- Impact of ground movement on	
UG excavations		structures with less rigidity	
SO2.4- Differentiation		2.5- Effects of ground movement and	
between rock mechanics		ground deformation within zone of	
and soil mechanics and		influence of UG space excavations	
distinction of their impacts		2.6-Basics of soil mechanics	
on UG excavations		2.7-Convex bending- Earth pressure in	
SO2.5- Formation of tensile		tensile zone	
and compression zones due		2.8- Concave bending- Earth pressure in	
to earth pressures and		compression zone	
ground movement		2.9-Inherent complexities in rock mechanics	
		influencing UG structures	
		2.10-Factors influencing UG structures	

Suggested Sessional works:

- (i) An analysis into the different factors affecting on rock as a structural material
- (ii) Effect of ground deformations on the foundations of structures at shallow depth of cover

Topic of Mini Project- Stability factor of UG caverns of large dimensions in consideration of dual effects of rock and soil mechanics

$19MI201.3\hbox{--} Developing \ engineering \ skills \ in \ tunnel \ constructions \ in \ variable \ geo-mechanical \ rock \ conditions$

Approximate hours:

Item	Approximate Hours
Class room Instructions (CI)	11
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	14

Session Outcomes (SOs)	Laboratory Instructions (LI)	Class Room Instructions (CI)	Self Learning (SL)
SO3.1- Importance of tunneling in multivariate conditions SO3.2- Different tunneling techniques and their application SO3.3- Tunneling in hard ground by D&B mrthod. SO3.4- Mechanized tunneling with Tunnel Boring Machines (TBM) SO3.5- Tunneling in soft ground- challenges faced and their dealing		Unit 3- Tunneling & UG excavations 3.1-Tunneling- its features and importance 3.2- Tunneling technique- Ground arch effect during tunneling 3.3- Cut & cover tunneling 3.4- Basics of construction of bored or mined tunnels 3.5- Soft ground tunnels 3.6- Jacked box tunnels 3.7- Sequential Excavation Method (SEM) of tunneling 3.8- Pipe jacking method of tunneling 3.9- Utility tunneling method 3.10- Vehicular tunnels. Supporting of transport tunnels 3.11- Spoil removal system from face.	(i) Tunneling experience in high stress ground conditions

Suggested Sessional works:

- (i) Tunneling in Hydro-power projects in highly susceptible to ground movement conditions
 - (iii) Specific considerations for tunneling in soft ground or conditions of high flow rate of ground water

Topic of Mini Project- Specific features of under river bed large tunnel construction projects.

19MI201.4:- Understanding the reorientation of stresses during single and multiple excavations and determination of their influence zones

Approximate hours:

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	12

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO4.1- Generation of		Unit 4- Stresses around Underground	(i)In-depth study of
stress field around UG		openings	rock mechanics
excavations		4.1- Stress analysis around underground	principles in
SO4.2- Stress equations		openings	understanding
to determine radial,		4.2-Stresses and displacements in	development of stress
tangential and shear		circular excavations- Kirsch solution	field and its influence
stresses at any point in		4.3- Stress equations. Inferences from	on UG structures
the stress field		the stress equations	
SO4.3- Kirsch solution.		4.4- Calculation of radial, tangential and	
Drawing inferences from		shear stresses of a point in a stress field	
the Kirsch solution		4.5- verification by calculation and	
SO4.4- Prediction of the		graphical representation. Inferences from	
extent of boundary		Kirsch solution	
failure		4.6- Prediction of the extent of boundary	
SO4.5- Determination of		failure	
the influence zone in		4.7- Induced stress measurement in	
case of two or multiple		multiple openings	
Excavations or		4.8- Drivage of 2 nd tunnel and influence	
tunneling		zone of induced stresses	
		4.9- Calculation of induced stresses due	
		to excavation of 2 nd tunnel	

Suggested Sessional works:

- (i) An analytical approach towards identification of stresses and their influence zones affecting underground constructions
- (ii) Inferences from Kirsch Solution

Topic of Mini Project- Determination of influence zone of stresses in tunneling and designing multi-tunnel systems

19MI201.5:- Development of knowledge and skill for in-situ stress and strain determination of rocks as structural material

Approximate hours:

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	12

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO5.1-Comprehending the		Unit 5- In-situ testing of rocks-	Study area:
basic properties of rock in-		Field determination of of strength	(i)Instrumentation for
situ		properties	in-situ determination
SO5.2- Acquaintance with		5.1- Basic properties of in-situ	of stress and strain in
the different machines and		rocks for rock engineering	rock mass
equipment for rock testing		5.2-Plate loading test	
in in-situ condition		5.3- Interpretation of the stress-	
SO5.3- Capability to		strain graph for strain hardened	
interpret the data based on		materials	
test results for different		5.4- Deformability of rock mass-	
parameters of rock		Jacking test	
characteristics		5.5- Calculation of Young's	
SO5.4- Determination of		modulus of elasticity by using	
induced stress and strain in		diametrical deformation	
rock mass		5.6- In-situ shear strength test for	
SO\$.5- Application of		determination of shear strength of	
various methods for in-situ		rock	
stress and strain		5.7- Internal stresses of rock mass-	
measurement		Methods of measuring strains	
		5.8- Flat jack testing method	
		5.9- Process of strain measurement	
		by over-coring method.	

Suggested Sessional works:

- (i) Establishing relationship between test results obtained in in-situ rock conditions and results obtained from rock samples through laboratory tests
- (ii) A chronology of advent in instrumentation for measuring and monitoring of stress and strin in rock mass in an induced stress field due to UG space openings.

Topic of Mini Project- How far you foresee the potentiality of the role of instrumentation in designing underground spaces with an futuristic approach?

Brief of Hours suggested for the course outcome:

Course outcomes 19MI201.1- Garnering concept of underground space technology (UST) based on rock excavation engineering	Class Lectures (CL)	Laboratory Instructions (LI)	Sessional work (SW)	Self Learning (SL)	Total Hour (CL+LI+SW +SL)
and its importance in urban development					
19MI201.2- Comprehension and application of rock mechanics and soil mechanics principles for underground structure construction	10	0	2	1	13
19MI201.3- Developing engineering skills in tunnel constructions in variable geo-mechanical rock conditions	11	0	2	1	14
19MI201.4- Understanding the reorientation of stresses during single and multiple excavations and determination of their influence zones	9	0	2	1	12
19MI201.5- Development of knowledge and skill for in-situ stress and strain determination of rocks as structural material	9	0	2	1	12
Total Hours	45	0	10	5	60

Suggestions for End semester Assessment:

Suggested Specification Table

COs	Unit Titles	Marks Distri		Total; Marks	
		R	U	A	
CO 1	19MI201.1- Garnering concept of underground space technology (UST) based on rock excavation engineering and its importance in urban development	3	3	1	7
CO 2	19MI201.2- Comprehension and application of rock mechanics and soil mechanics principles for underground structure construction	3	4	3	10
CO 3	19MI201.3- Developing engineering skills in tunnel constructions in variable geo-mechanical rock conditions	3	5	5	13
CO 4	19MI201.4- Understanding the reorientation of stresses during single and multiple excavations and determination of their influence zones	3	5	5	13
CO 5	19MI201.5- Development of knowledge and skill for in-situ stress and strain determination of rocks as structural material	2	3	2	7
	Total	14	20	16	50

Legend:

R-Remember

U-Understand

A-Apply

The end of semester assessment for Underground Space Technology will be held with written examination of 50 marks

Suggested Instructional/ Implementation Strategies:

- 1. Improved lectures
- 2. Tutorial
- 3. Case studies
- 4. Group discussion
- 5. Role play
- 6. Visit to mines and mineral processing industries
- 7. Demonstration
- 8. Digital media application in teaching learning process and mass media
- 9. Brainstorming

Suggested Learning Resources

Sl.No	Title	Author	Publisher	Edition & Year
1.				
2.				

COs, POs & PSO Mapping:-

Program Title: M.Tech (Mining Engineering) Course Code: 19MI201

Course Title: Underground Space Technology

	Program Ou	tcomes					Program Specific Outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
Course Outcome	Develop the skilled knowledge of communi- cation in verbal and written forms	Apply the complex systems as part of research projects	Create, select & apply appropriate techniques, resources & modern engineering & IT tools	Understand the impact of professional engineering solutions in societal & environmental practices	Apply ethical principles & commit to professional ethics & responsibilities and norms of the engineering practice	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	Dev. Analy tical skill for complex mining problems	Specialized in depth knowledge in specific areas of mining	Capability to comprehend articulated needs for mining industry	Research orientation based on articulated needs
CO 1- Garnering concept of underground space technology (UST) based on rock excavation engineering and its importance in urban development	2	2-	1	1	-2	-1	2	1	1	1
CO 2- Comprehension and application of rock mechanics and soil mechanics principles for	1	-1	-2	-3	2	1	1	1	2	2

underground structure construction										
CO 3- Developing engineering skills in tunnel constructions in variable geo- mechanical rock conditions	2	3	1	1	3	2	2	1	3	1
CO 4- Understanding the reorientation of stresses during single and multiple excavations and determination of their influence zones	2	3	2	3	1	2	2	1	3	1
CO 5- Development of knowledge and skill for in-situ stress and strain determination of rocks as structural material	1	1	2	1	3	2	2	2	3	2

Legend: 1: Low 2: Medium 3: High

Course Curriculum Map:

POs & PSOs Number	COs number & Title	SOs Number	Laboratory Instruction (LI)	Class Room Instructions (CI)	Self Learning (SL)
PO: 1,2,3,4,5,6 PSO: 1,2,3,4	CO 1- Garnering concept of underground space technology (UST) based on rock excavation engineering and its importance in urban development	SO 1.1 SO 1.2 SO 1.3 SO 1.4 SO 1.5		Unit 1- Underground Space Technology- Its objectives 1.1, 1.2, 1.3, 1.4, 1.5, 1.6	SL 1.1
PO: 1,2,3,4,5,6 PSO: 1,2,3,4	CO 2-Comprehension and application of rock mechanics and soil mechanics principles for underground structure construction	SO2.1 SO 2.2 SO 2.3 SO 2.4 SO 2.5		Unit 2- Classification of rocks & ground deformation on structures 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10	SL 2.1
PO: 1,2,3,4,5,6 PSO: 1,2,3,4	CO 3- Developing engineering skills in tunnel constructions in variable geo-mechanical rock conditions	SO 3.1` SO 3.2 SO 3.3 SO 3.4 SO 3.5		Unit 3- Tunneling & UG excavations 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10. 3.11	SL 3.1
PO: 1,2,3,4,5,6 PSO: 1,2,3,4	CO 4- Understanding the reorientation of stresses during single and multiple excavations and determination of their influence zones	SO 4.1 SO 4.2 SO 4.3 SO 4.4 SO 4.5		Unit 4- Stresses around Underground openings 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	SL 4.1
PO: 1,2,3,4,5,6 PSO: 1,2,3,4	CO 5- Development of knowledge and skill for in-situ stress and strain determination of rocks as structural material	SO 5.1 SO 5.2 SO 5.3 SO 5.4 SO 5.5		Unit 5- In-situ testing of rocks-Field determination of strength properties 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9.	SL 5`.1

Semester II

Course Code: 19MI202

Course Title: Rock Fragmentation Engineering

Pre-Requisite: Pre-Requisite: The student opting for this course at master's degree level in mining engineering must have obtained his bachelors degree with rock mechanics as one of the subjects. He must possess a sound knowledge of geological aspects, various mining processes and mechanics of solids. **Rationale:** Rationale: The student studying this course for their master's degree in mining engineering must develop a sound concept of various mining activities and methods, rock breakage methods including blast free methods.

Course Outcome

19MI202. 1: Elaborate Rock Fragmentation by Blasting

19MI202. 2: Describe the Fragmentation Measurement Methods

19MI202. 3: Evaluate the Blasting Nuisances

19MI202. 4: Explain the Mechanical Methods of Fragmentation

19MI202. 5Analyse the Special Blasting Techniques and Alternative Rock Breakage Methods

Scheme of studies

Code	Course	Course Title	Scheme	Scheme of studies (Hours/Week)				Total
	code		CI	CI LI SW SL Totagl study				Credits
				Hours				
				(CI+LI+SW+SL)				
Professio	19MI202	Rock	3	0	1	1	5	3
nal Core		Fragmentation						
Course		Engineering						
(PCC)								

Legend: CI: Class room Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Scheme of A	Assessm	ent (Marks)				
Code	Course Code		C1 /I I	Class Test2 (2bestout of3) 10 marks each(CT)	Sem inar one	Class Activityan yone (CAT)	Class Attendan ce (AT)	Total Marks (CA+CT+S A+CAT+AT	End Semeste r Assess ment (ESA)	Total Marks (PRA+ESA)
PCC	19MI20 2	Rock Fragmentation Engineering	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). Asthecourseprogresses, studnts should show case their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI202. 1: Elaborate Rock Fragmentation by Blasting

Approximate hours:

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	12

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO 1.1- Describing the		Unit 1Fragmentation by	
selection of Explosives for		Blasting	(i) Concept of rock
Blasting.		1.1 Evolution and classification	fragmentation by
SO 1.2- Analysing the		of explosives	blasting.
mechanism of rock		1.2 Trends and selection of	
fragmentation by blasting.		explosives	
SO 1.3- Explaining the		1.3 Mechanism of rock	
design of multi row blasting		fragmentation by blasting	
in surface mines.		1.4 Meaning and concept of	
SO1.4- Describing the blast		rock fragmentation	
casting in surface mines.		1.5 Designing multi row	
SO1.5- Analysing the design		blasting	
of blasting rounds in tunnels.		1.6 Designing blasting rounds in	
		tunnels and drifts	
		1.7 Controlled blasting	
		techniques	
		1.8 Casting of rocks	
		1.9 Rock types	

Suggested Sessional works: a. Assignments:

- 1. Discuss the various methods of controlled blasting with suitable diagrams.
- 2. Describe the evolution and classification of explosives.

b. Topic of Mini Project: PPTs Presentation on controlled blasting techniques.

19MI202.2: Describe the Fragmentation Measurement Methods

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	12

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO 2.1- Pre blast and post		UNIT 2: Fragmentation	(i) Pre blast and post
blast measurements.		Measurement Methods	blast surveys.
SO 2.2- Developments in		2.1 Blast surveying	
blast performance		2.2 Blast monitoring and	
monitoring.		instrumentation	
SO2.3- Fragmentation		2.3 Methods of fragmentation	
Assessment Techniques.		assessment and monitoring	
SO 2.4- Documentation in		2.4 Recent developments in	
blast monitoring.		blast performance monitoring	
SO 2.5- Audit and		Documentation	
Documentation in blast		2.5 Audit and documentation	
monitoring.		in blast monitoring	
		2.6 Computational methods	
		2.7 Computational methods in	
		blast monitoring.	
		2.8 Computational methods in	
		blast monitoring continue	
		2.9 Computational methods in	
		blast monitoring etc	

Suggested sessional works: a. Assignments:

- 1) Fragmentation assessment and Monitoring.
- 2) Recent developments in blast monitoring.

b. Topic of Mini Project-

PPTs Presentation on computational methods in blast monitoring.

19MI202.3: Evaluate the Blasting Nuisances

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	12

Session Outcomes (SOs)	Laboratory Instructions (LI)	Class Room Instructions (CI)	Self Learning (SL)
SO3.1-Developing the concept of air overpressure or air blast. SO3.2-Comprehending the micro and macro level damages due to blasting. SO3.3-Comprehending the fly rocks due to blasting. SO3.4- Analysing the control of blasting damages. SO3.5-Understanding ground vibrations due to blasting.		UNIT 3:Blasting Nuisances 3.1 Micro and macro level damages due to blasting 3.2 Ground vibrations due to blasting – An overview 3.3 Air over pressure or air blast 3.4 Fly rocks due to blasting 3.5 Noise pollution 3.6 Control of blasting damages continue 3.7 Control of blasting damages 3.8 ground vibrations due to blasting continue 3.9 ground vibrations due to blasting.	(i) Noise pollution due to blasting

Suggested sessional works

- 1) Control of blasting damages
- 2) Fly rocks due to blasting

Topic of Mini Project

PPTs Presentation on micro and macro level damages due to blasting

19MI202.4:Explain the Mechanical Methods of Fragmentation

Approximate hours:

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	12

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO4.1-Comprehending the		UNIT 4: Mechanical Methods	
fundamentals of		of Fragmentation	(i) Other
mechanical methods of		4.1 mechanical methods of	mechanical
fragmentation		fragmentation – some aspects	methods of rock
SO4.2-Acquiring		4.2 Fragmentation by water jets	fragmentation.
knowledge of rock		4.3 Fragmentation by rollers and	
fragmentation by rollers		disc cutters	
and disc cutters.		4.4 Fragmentation by ploughs	
SO4.3-Analyzing the		4.5 Rock fragmentation by	
fragmentation by		shearers	
ploughs.		4.6 Other mechanical methods –	
SO4.4-Garnaring		4.7 TBM	
knowledge on		4.8 TBM diagram	
fragmentation by shearers.		4.9 Shearer diagram	
SO4.5-Comprehending			
rock fragmentation by			
TBMs.			

Suggested sessional works: a. Assignments

- 1) Rock fragmentation by Water jets.
- 2) Rock fragmentation by Rollers and Disc Cutters.

b. Topic of Mini Project

PPTs Presentation on Rock fragmentation by mechanical methods.

19MI202.5: Analyse the Special Blasting Techniques and Alternative Rock Breakage Methods.

Approximate hours:

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	1
Total	12

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)		
	Instructions				
	(LI)				
SO5.1-Understanding the		UNIT 5:Special Blasting	(i) Alternative		
special blasting techniques.		Techniques and Alternative	methods of rock		
SO5.2-Aquiring knowledge		Rock Breakage Methods	breakage.		
on alternative methods of		5.1 De stress Blasting			
rock breakage.		5.2 Under water blasting			
SO5.3-Comprehending		5.3 Demolition blasting			
blasting in hot strata.		5.4 Smooth blasting			
SO5.4-Describing Nuclear		5.5 Blasting in hot strata			
Explosives.		5.6 Alternative methods of rock			
SO5.5- Understanding De		fragmentation - An overview			
stress blasting.		5.7 Physical methods of rock			
		breakage			
		5.8 Chemical methods of rock			
		breakage			
		5.9 Nuclear methods			

Suggested sessional works

- 1) Chemical methods of rock breakage.
- 2) Demolition Blasting.

Topic of Mini Project

PPTs Presentation on Special blasting techniques

Brief of Hours suggested for the course outcome:

Course outcomes	Class	Laboratory	Sessional	Self	Total Hour
	Lectures	Instructions	work (SW)	Learning	(CL+LI+SW
	(CL)	(LI)		(SL)	+SL)
19MI202 . 1 Elaborate	9	0	2	1	12
Rock Fragmentation by					
Blasting					
19MI202. 2: Describe the	9	0	2	1	12
Fragmentation					
Measurement Methods.					
10177000 0 7 1					10
19MI202. 3: Evaluate the	9	0	2	1	12
Blasting Nuisances					
19MI202. 4: Explain the	9	0	2	1	12
Mechanical Methods of			_	_	
Fragmentation					
19MI202. 5Analyse the	9	0	2	1	12
Special Blasting					
Techniques and					
Alternative Rock					
Breakage Methods					
Total Hours	45	0	10	5	6

Suggestions for End semester Assessment:

Suggested Specification Table

COs	Ûnit Titles	Marks Distri	Marks Distribution		
		R	U	A	
CO 1	Rock Fragmentation by Blasting	3	3	1	7
CO 2	Fragmentation Measurement Methods	3	4	3	10
CO 3	Blasting Nuisances	3	5	5	13
CO 4	Mechanical Methods of Fragmentation	3	5	5	13
CO 5	Special Blasting Techniques and Alternative Rock Breakage Methods Approximate hours:	2	3	2	7
	Total	14	20	16	50

Legend: R-Remember U-Understand A-Apply
The end of semester assessment for Rock Fragmentation Engineering will be held with written examination of 50 marks

Suggested Instructional/ Implementation Strategies: Improved lectures

Tutorial

Case studies

Group discussion

Role play

Visit to mines and mineral processing industries

Demonstration

Digital media application in teaching learning process and mass media

Brainstorming

Suggested Learning Resources

Sl.No	Title	Author	Publisher	Edition & Year
1.	Engineering Rock Blasting	Bhandari, S.	A.A. Balkema, Rotterdam,	First Edition,
	Operations		Netherlands	1997.
2	Explosives and Blasting	Pradhan, G.K.	Minetech Publishers,	Third Edition,
	Techniques		Bhubaneshwar	2018.
3	Rock Mechanics for	Brady, B.H.G. and	Chapman and Hall	Third Edition,
	Underground Mining	Brown, E.T.		1993
4	Rock Blasting Effects and	Roy, P.P.	Oxford and IBH Publishing Co	First Edition,
	Operations		Private Limited, New Delhi.	2005
5	Explosives and Rock Blasting	Anon	Atlas Powder Company, USA	First Edition,
				1989
6	The Modern Technology of	Langfores, U. and	John Wiley and Sons Inc, NY.	First Edition,
	Rock Blasting	Khilstorm, B.		1976.
7	Surface Blast Design	Konya, C.J. and	Prentice Hall International inc.	First Edition,
		Walter, E.J.	USA.	1990.
8	Rock Fragmentation by Blasting	Singh, P.K.	CRC Press, NY - A Balkema	First Edition,
	- Fragblast 10.		Book.	2013
9	Rock Excavation	Compiled by Dr.	Arizona University Lecture	First Edition,
		Sean Dessureault	Series, USA	2006
10	Engineering in Rocks for	Ramamurthy, T.	Prentice Hall of India Private	First Edition,
	Slopes, Foundations and		Limited, New Delhi.	2007.
	Tunnels.			

Curriculum Development Team

- 1. Dr. Sandeep Prasad, Assistant Professor, Department of Mining Engineering, AKS University, Satna.
- 2. Dr. B. K. Mishra, Head, Department of Mining Engineering, AKS University, Satna.
- 3. Prof G. K. Pradhan, Dean, Faculty of Engineering Technology, AKS University, Satna.
- **4.** Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna.

COs, POs & PSO Mapping

Program Title: M. Tech in Mining Engineering Course Code: 19MI202

Course Title: Rock Fragmentation Engineering

	Program Outcomes							Program Specific Outcomes			
						PSO1	PSO2	PSO3	PSO4		
Course Outcome	Develop the skilled knowledge of communi- cation in verbal and written forms	Apply the complex systems as part of research projects	Create, select & apply appropriate techniques, resources & modern engineering & IT tools	Understand the impact of professional engineering solutions in societal & environmental practices	Apply ethical principles & commit to professional ethics & responsibilities and norms of the engineering practice	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	Dev. Analy tical skill for complex mining problems	Specialized in depth knowledge in specific areas of mining	Capability to comprehend articulated needs for mining industry	Research orientation based on articulated needs	
CO1- Elaborate Rock Fragmentation by Blasting	2	2-	1	1	-2	-1	2	1	1	1	
CO2- Describe the Fragmentation Measurement Methods	1	-1	-2	-3	2	1	1	1	2	2	
CO-3- Evaluate the Blasting Nuisances	2	3	1	1	3	2	2	1	3	1	
CO -4- Explain the Mechanical Methods of Fragmentation	2	3	2	3	1	2	2	1	3	1	
CO-5 Analyse the Special Blasting Techniques and Alternative Rock Breakage Methods	1	1	2	1	3	2	2	2	3	2	

Legend: 1: Low 2; Medium 3: High

Course Curriculum Map:

POs & PSOs Number	COs number & Title	SOs Number	Laboratory Instruction (LI)	Class Room Instructions (CI)	Self Learning (SL)
PO: 1,2,3,4,5,6 PSO: 1,2,3,4	CO-1: Elaborate Rock Fragmentation by Blasting.	SO 1.1 SO 1.2 SO 1.3 SO 1.4 SO 1.5		Unit 1- Fragmentation by Blasting 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8,1.9,	SL 1.1
PO: 1,2,3,4,5,6 PSO: 1,2,3,4	CO-2: Describe the Fragmentation Measurement Methods.	SO2.1 SO 2.2 SO 2.3 SO 2.4 SO 2.5		Unit 2- Fragmentation Measurement Methods. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6,2.7,2.8,2.9,	SL 2.1
PO: 1,2,3,4,5,6 PSO: 1,2,3,4	CO- 3: Evaluate the Blasting Nuisances	SO 3.1` SO 3.2 SO 3.3 SO 3.4 SO 3.5		Unit 3- Blasting Nuisances 3.1, 3.2, 3.3, 3.4, 3.5, 3.6,3.7,3.8,3.9	SL 3.1
PO: 1,2,3,4,5,6 PSO: 1,2,3,4	CO- 4: Explain the Mechanical Methods of Fragmentation	SO 4.1 SO 4.2 SO 4.3 SO 4.4 SO 4.5		Unit-4: Mechanical Methods of Fragmentation 4.1, 4.2, 4.3, 4.4, 4.5, 4.6,4.7,4.8,4.9,	SL 4.1
PO: 1,2,3,4,5,6 PSO: 1,2,3,4	CO -5: Analyse the Special Blasting Techniques and Alternative Rock Breakage Methods	SO 5.1 SO 5.2 SO 5.3 SO 5.4 SO 5.5		Unit 5: Special Blasting Techniques and Alternative Rock Breakage Methods 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,	SL 5.1

Semester II

Course Code: 19MI203

Course Title: SUBSIDENCE ENGINEERING

Pre-Requisite: The student should have adequate knowledge about the Mine Subsidence is the movement of the ground that can occur after underground coal mining. After coal is extracted from beneath the ground, the land above can sink and fill the hollow mine workings. This can cause tilts and strains on the ground surface.

Rationale: The student pursuing Master's degree (M.Tech) in Mining Engineering must develop adequate concept of different mining technologies and their impacts. The mine subsidence is the movement of ground, block, or slope. It is caused by readjustment of overburden due to collapse and failure of underground

Course Outcome:

The student

19MI203.1- Theories of surface and sub-surface subsidence due to mining

19MI203.2- What are the types of subsidence. What are the factors affecting subsidence.

19MI203.3-. Prediction of subsurface. How to plot Subsidence and subsidence graphs and models.

19MI203.4- Special mining methods technology layouts to minimize subsidence.

19MI203.5 Impact of subsidence on structures. How to measure it. How to control it

Scheme of studies:

Code	Course	Course Title	Scheme	Scheme of studies (Hours/Week)				
	code		CI	LI	SW	SL	Total study Hours	Credits
							(CI+LI+SW+SL)	(C)
Professio	19MI203	Subsidence	3	0	1	1	5	3
nal		Engineering						
Elective								
Course								
(PEC)								

Legend: CI: Class room Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

		·		Scheme of A	Assessm	ent (Marks)				
Code	Course Code	Course Title	Cl /II	Class Test2 (2bestout of3) 10 marks each(CT)	Sem inar one	Class Activityan yone (CAT)	Class Attendan ce (AT)	Total Marks (CA+CT+S A+CAT+AT	End Semeste r Assess ment (ESA)	Total Marks (PRA+ESA)
PCC	19MI20 3	Subsidence Engineering	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). Asthecourseprogresses, studnts should show case their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI203.1:- Gathering concept of Subsidence Engineering mining based on different Mining Conditions.

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	2
Total	13

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO 1.1- Theories of		Unit1- Subsidence due to	Study area:
surface subsidence		underground mining	(i)Contribution of
SO 1.2- Theories of sub		1.1- Reasons and concept of	mining industry in
surface subsidence		surface subsidence	national development
SO 1.3- Subsidence due to		1.2-Defining subsidence	and its impact due to
mining activities		development and its concept	subsidence
SO1.4- Subsidence due to		1.3-Chronology of the phases	
non-mining activities		for subsidence	(ii) A realistic
SO1.5- Zones of		1.4- Unique features of	approach for
movement in the overlying		Subsidence in mining industry	assessment of
beds.		1.5- Why it is challenging to	impacts of
		protect surface structure in	subsidence in mining
		mining industry	
		1.6-Application of principles in	
		Mining Industry	
		1.7 Precaution before	
		subsidence in under ground	
		1.8 Precaution before	
		subsidence on the surface	
		1.9 Detail and in depth study	
		before subsidence	

Suggested sessional works:

- (i) Importance of Mining Industry and need to know about subsidence mining based on principles of sustainable development
- (ii) Unique features of Mining Industry- The challenges pertaining to the implementation of sustainability principles

Topic of Mini Project - Impact of subsidence on surface due to underground mining.

19MI203.2:- Subsidence in different conditions and different types of minerals and rocks

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	2
Total	13

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO 2.1- Rock kinematics in		Unit 2- Changes in mining	(i)Changes in
mining for principles		laws for subsidence	mining legislative
SO 2.2- Types of		2.1-Legislative measures to	framework in India
subsidence		implement subsidence Indian	in the context of
SO2.3- Factors affecting		mining industry	subsidence
subsidence Management		2.2 –factors Affecting	
Plan		subsidence and there	(ii)Impact of the
SO 2.4- Methods of		precautions	subsidence on
prediction of subsidence		2.3- Types of subsidence and	mineral economy in
SO 2.5- Empirical,		detail study	Indian context
analogue, numerical and		2.4 Subsidence in coal or metal	
physical models		2.5 Precautions to be taken	
		during subsidence	
		2.6- How to get advance	
		information the type and	
		amount of subsidence	
		2.7- Calculation of amplitude	
		of subsidence by applying	
		empirical formulas	
		2.8 numerical and Physical	
		Modeling of Subsidence	
		2.9 Numericals	

Suggested sessional works:

- (i) An analysis into the changes in mining legislations in the context of subsidence in mining industry
- (ii) Effects of amendments in mining laws on techno-economic parameters of mining industry in India

Topic of Mini Project- An analysis into the feasibility of new and expansion mining projects in subsidence of any depillaring areas

19MI203.3- Prediction of subsurface subsidence

Item	Approximate Hours
Class room Instructions (CI)	10
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	2
Total	14

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions		
	(LI)		
SO3.1- Prediction of		Unit 3- Mining activities & impact	(i) Theoretical in
subsidence subsurface		of Subsidence	depth studies of the
		3.1-Macro & micro level damages	impacts of different
SO3.2- Subsidence and		due to subsidence	mining activities due
subsidence models		3.2- Nature and shape of	to subsidence
		subsidence	(ii)Acquiring
SO3.3- Measurement of		3.3- Cracks and widen cracks due	practical knowledge
subsidence.		to subsidence	from different case
		3.4- Pot holing due to subsidence	studies of subsidence
SO3.4- Impact of mining		3.5-Action of management due to	impacts of mining
on Land and Damages		mining activities	and their analysis.
due to subsidence		3.6- Measurement of subsidence	
SO3.5 Damages due to pot		3.7-Sources and prevention of	
holing, cracks due to		damages in the mines	
subsidence		3.8-Measurement of amplitude with	
subsidence		the help of equipment	
		3.9-Land environment and mining	
		activities	
		3.10-Reclamation of mined out	
		areas	

Suggested sessional works:

- (i) Comparison between damages due to subsidence and underground mining on different types of Rocks
- (ii) Importance of land use plan for sustainability of mining industry in Indian context **Topic of Mini Project** Total impact of mining industry on national economy in consideration of sustainability principles and making mining industry socially and environmentally acceptable.

19MI203.4:- Short term and Long term perspective of Mining without affecting and damaging the surface features

Item

Approximate hours: Approximate Hours Class room Instructions (CI) 8 Laboratory Instructions (LI) 0

2 Sessional work (SW) Self Learning 2 Total 12

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions (LI)		
SO4.1- Time dependent		Unit 4-Subsidence effects with	Study area-
component of subsidence		increase of time in Indian	(i)Impact of
SO4.2-Acquiring		context	subsidence where
knowledge about		4.1-Objective of stud7	over burden is soft
subsidence with increase		4.2-Subsidence in coal	(ii)In depth study
of time		4.3-subsidence in other minerals	where over burden
SO4.3-Analyzing the		4.4-Short term and long term	is very hard in
limitations of subsidence		study	nature
in India		4.5-Sustainability after	
SO4.4- Special mining		subsidence	
layouts to minimize		4.6- Subsidence where over	
subsidence.		burden is soft	
		4.7 Subsidence where over	
SO4.5- Study of		burden is medium	
subsidence of different		4.8 Subsidence where over	
natures		burden is hard	

Suggested sessional works:

- Due to subsidence Indian context and measures to overcome the limitations (i)
- Strategies in India to balance the Production without much damage to the nature (ii)

Topic of Mini Project- How to get permission in forest Area to depillaring without affecting nature

19MI203.5:- Impact of subsidence on structures

Approximate hours:

Item	Approximate Hours
Class room Instructions (CI)	9
Laboratory Instructions (LI)	0
Sessional work (SW)	2
Self Learning	2
Total	13

Session Outcomes (SOs)	Laboratory	Class Room Instructions (CI)	Self Learning (SL)
	Instructions		
	(LI)		
SO5.1-Understanding the		Unit 5- Subsidence and its impact	Study area:
Subsidence depending		5.1- Impact of subsidence on	(i)Nature of
upon nature of overlying		surface	subsidence due to
rocks		5.2-Precautions to be taken in	different workings
		underground for regular fall	methods
SO5.2- Impact of		5.3- In case of coal which method	(ii) How to take
subsidence on structures in		of work is in application	permission in forest
national as well as in global		5.4- In case of Long wall	area for subsidence
context		Subsidence is very smooth	
		5.5-In case of Bord and pillar	
SO5.3-Design of Shaft		subsidence not smooth	
keeping in mind the		5.6- Now a day's Continuous	
subsidence near around		Miner is in working. Subsidence	
		with CM	
SO5.4- Importance of shaft		5.7-monitoring of regular fall in	
pillars during subsidence		underground working	
		5.8-Otherwise Induce Blasting	
SO5.5- Precaution during		method is to be adopted	
subsidence		5.9-Necessary precautions at the	
		surface	

Suggested sessional works:

- (i) Review of the Subsidence with different types of methods used in underground
- (ii) A study of the behavior of a subsidence and measures to improve upon it.

Topic of Mini Project- How far you foresee the potentiality of acquiring surface rights for subsidence in forest area in India?

Brief of Hours suggested for the course outcome:

Course outcomes 19MI203.1- Theories of	Class Lectures (CL)	Laboratory Instructions (LI)	Sessional work (SW)	Self Learning (SL)	Total Hour (CL+LI+SW +SL)
surface and sub-surface subsidence due to mining	9	U	2	2	13
19MI203.2- What are the types of subsidence. What are the factors affecting subsidence.	9	0	2	2	13
19MI203.3 Prediction of subsurface. How to plot Subsidence and subsidence nomograms.	9	0	2	2	13
19MI203.4- Special mining methods technology layouts to minimize subsidence.	10	0	2	2	14
19MI203.5 Impact of subsidence on structures. How to measure it. How to control it	8	0	2	2	12
Total Hours	45	0	10	10	65

Suggestions for End semester Assessment:

Suggested Specification Table

COs	Unit Titles	Marks Distri	Total; Marks		
		R	U	A	
CO 1	Theories of surface and sub-surface subsidence due to mining	3	3	1	7
CO 2	What are the types of subsidence? What are the factors affecting subsidence	3	4	3	10
CO 3	Prediction of subsurface. How to plot Subsidence and subsidence models and graphs.	3	5	5	13
CO 4	Special mining methods technology layouts to minimize subsidence.	3	5	5	13

CO 5	Impact of subsidence on structures. How to measure it. How to control it	2	3	2	7
	Total	14	20	16	50

Legend: R-Remember U-Understand A-Apply

The end of semester assessment for Subsidence Mining will be held with written examination of 50 marks **Suggested Instructional/ Implementation Strategies:**

- 1. Improved lectures
- 2. Tutorial
- 3. Case studies
- 4. Group discussion
- 5. Role play
- 6. Visit to mines and mineral processing industries
- 7. Demonstration
- 8. Digital media application in teaching learning process and mass media
- 9. Brainstorming

Suggested Learning Resources

Sl.No	Title	Author	Publisher	Edition & Year
1.	Theory and Technology of Rock Excavation	Dingxiang Zou	Springer Verlag, Singapore	2016
2.	Autonomous Rock Excavation	Xiaobo Shi	China	1998
3.	Underground Excavations in Rock	Everet Hoek & ET Brown		1980

Curriculum Development Team

- 1. Dr. Sandeep Prasad, Assistant Professor, Department of Mining Engineering, AKS University, Satna.
- 2. Dr. B. K. Mishra, Head, Department of Mining Engineering, AKS University, Satna.
- 3. Prof G. K. Pradhan, Dean, Faculty of Engineering Technology, AKS University, Satna.
- **4.** Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna.

COs, POs & PSO Mapping:-

Program Title: M.Tech (Mining Engineering) Course Code: 19MI203

Course Title: Subsidence Engineering

	Program Outcomes					Program Specific Outcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
Course Outcome	Develop the skilled knowledge of communi- cation in verbal and written forms	Apply the complex systems as part of research projects	Create, select & apply appropriate techniques, resources & modern engineering & IT tools	Understand the impact of professional engineering solutions in societal & environmental practices	Apply ethical principles & commit to professional ethics & responsibilities and norms of the engineering practice	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	Dev. Analy tical skill for complex mining problems	Specialized in depth knowledge in specific areas of mining	Capability to comprehend articulated needs for mining industry	Research orientation based on articulated needs
CO1 Theories of surface and sub-surface subsidence due to mining	2	2-	1	1	-2	-1	2	1	1	1
CO2 What are the types of subsidence? What are the factors affecting subsidence	1	-1	-2	-3	2	1	1	1	2	2
CO 3- Prediction of subsurface. How to plot Subsidence and subsidence models and graphs.	2	3	1	1	3	2	2	1	3	1
CO 4- Special mining methods technology layouts to minimize subsidence.	2	3	2	3	1	2	2	1	3	1

CO 5- Impact of subsidence on structures. How to measure it. How to control it	1	1	2	1	3	2	2	2	3	2

Legend: 1: Low 2: Medium 3: High

Course Curriculum Map:

POs & PSOs Number	COs number & Title	SOs Number	Laboratory Instruction (LI)	Class Room Instructions (CI)	Self Learning (SL)
PO: 1,2,3,4,5,6 PSO: 1,2,3,4,	CO 1- Theories of surface and sub-surface subsidence due to mining	SO 1.1 SO 1.2 SO 1.3 SO 1.4 SO 1.5		Unit 1- Subsidence due to underground mining 1.1, 1.2, 1.3, 1.4,1.5,1.6, 1.7, 1.8, 1.9	SL 1.1
PO: 1,2,3,4,5,6 PSO: 1,2,3,4,	CO 2- What are the types of subsidence? What are the factors affecting subsidence	SO2.1 SO 2.2 SO 2.3 SO 2.4 SO 2.5		Unit 2- Changes in mining laws for subsidence 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	SL 2.1
PO: 1,2,3,4,5,6 PSO: 1,2,3,4,	CO 3- Prediction of subsurface. How to plot Subsidence and subsidence models and graphs.	SO 3.1` SO 3.2 SO 3.3 SO 3.4 SO 3.5		Unit 3- Mining activities & impact of Subsidence 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10.	SL 3.1
PO: 1,2,3,4,5,6 PSO: 1,2,3,4,	CO4- Special mining methods technology layouts to minimize subsidence.	SO 4.1 SO 4.2 SO 4.3 SO 4.4 SO 4.5		Unit 4- Subsidence effects with increase of time in Indian context 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8	SL 4.1
PO: 1,2,3,4,5,6 PSO: 1,2,3,4,	CO5- Innovative mining technologies and their application for sustainable development.	SO 5.1 SO 5.2 SO 5.3 SO 5.4 SO 5.5		Unit5- Impact of subsidence on surface 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	SL 5`.1

Semester-II

Course Code: 19MI204

Course Title: Engineering Geology

Pre-requisite: Student should have basic knowledge of scope and purpose of geology,

Rocks, Minerals, various methods of age determination of rock and

minerals.

Rationale: The students studying Mining Engineering should possess foundational

understanding about principles of Stratigraphy mineral resource distribution. They must have knowledge of economic value of minerals. They should be able to prospect the minerals through various methods.

Course Outcomes:

19MI204.1: Describe physiographic division of India and geological time scale.

19MI204.2: Analyse process of ore formation of economic Mineral deposits.

19MI204.3: Demonstrate metallic and non-metallic deposits, their origin and occurrence.

19MI204.4: Explain physical properties, processes of occurrence of coal, petroleum and fossil fuels.

19MI204.5: Evaluate geophysical prospecting methods, application of remote sensing and GIS.

Scheme of Studies:

Code					Schem	Scheme of studies(Hours/Week)		
	Course	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+S	Credits (C)
	Code						W+SL)	
Progra	19MI204	Engineering	3	0	1	1	5	3
m Core		Geology						
(PCC)								

Legend: and others),

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW&SL has to be planned and performed under the continuous guidance and

feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Code			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)						End Semester	
	Cour se Code	Course Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one	Class Activity any one	Class Attendance (AT)	Total Marks (CA+CT+SA+ CAT+AT)	Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)
PCC	19MI 204	Engineer ing Geology	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI204.1: Describe physiographic division of India and geological time scale.

Approximate Hours					
Item	Approx. Hrs				
Cl	9				
LI	0				
SW	2				
SL	1				
Total	12				

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1. Describe the Geological		Unit1: Genetic rock	1. Mineral
time-scale.		structures	resource
		1.1 Objectives of	distribution.
SO1.2Demonstrate		Stratigraphy	
Physiographic Division of India.		1.2 Geological time-scale	
		1.3 Physiographic Division	
SO1.3Interpret Cuddapah		of India	
System.		1.4 Cuddapah System	
		1.5 Vindhya System	
SO1.4 Explain Vindhya System.		1.6 Gondwana super group	
		1.7 Deccan traps	
SO1.5Describe Gondwana super		1.8 Fossil: Definition	
group.		1.9 Mode of occurrence	

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
- i. Explain principles of Stratigraphy.
- b. Mini Project:
 - i. Flow diagram of geological time scale.

19MI204.2: Analyse process of ore formation of economic mine

Hours

Item	Approx. Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Approximate

Session	Laboratory	Classroom Instruction	Self
Outcomes	Instruction	(CI)	Learning
(SOs)	(LI)		(SL)
SO2.1 Describe		Unit-2:Economic Geology	
Elements of economic			i. Process of ore
geology specific		2.1Elements of economic geology	formation of
gravity.		2.2 Definition of forms of Ore, Gangue	economic
SO2.2 Explain Process		2.3 Process of ore formation of economic	Mineral deposits
of ore		Mineral deposits with examples.	
ation of economic		2.4 Study of Metalliferous deposits of	
Mineral deposits with		India-, Fe, Cu	
examples		2.5 Study of Metalliferous deposits of	
SO2.3AnalyseStudy of		India-Mg, Al, Au	
Metalliferous deposits		2.6 Study of Metalliferous deposits of	
of India-, Fe, Cu, Mg,		India- Pb, & Zn.	
Al, Au, Pb, & Zn.		2.7Metallogentic provinces of India.	
SO2.4 Relate		2.8 Mineralogenetic provinces of India.	
Metallogentic/Mineral		2.9 Petroleum Geology.	
ogenetic provinces of			
India.			
SO2.5Evaluate			
Petroleum Geology.			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- ii. Discuss the process of ore formation of economic minerals.
- iii. Write notes on Mn, Cu, Fe.

b. Mini Project:

Show economic minerals zones in India map.

19MI204.3: Demonstrate metallic and non-metallic deposits, their origin and occurrence.

Item	Approx. Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1Explain Metallic and Non-		Unit-3: Economic Indian Mineral	
metallic deposits.		Deposits	i. Study of iron,
_			manganese,
SO3.2Evaluate about		3.1 Metallic deposits	radioactive
graphite, copper, zinc,		3.2 Non-metallic deposits	minerals,
lead, gold.		3.3 Study of graphite, copper.	asbestos, mica.
		3.4 Study of zinc, lead, gold.	
SO3.3 Discuss about iron,		3.5 Study of iron ,manganese,	
manganese, radioactive		radioactive minerals,	
minerals, asbestos, mica, and		3.6 Study of asbestos, mica, gemstone-	
gemstone-origin.		origin	
SO3.4Analyse Mode of		3.7 Mode of occurrence and distribution	
occurrence and distribution in		in India	
India.		3.8 Origin and occurrence of industrial	
SO3.5 Assess Origin and		minerals- ceramic, refractory	
occurrence of industrial		3.9 Origin and occurrence of industrial	
minerals- ceramic, refractory,		minerals-glass and paint industry	
abrasive, glass and paint			
industry.			

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Discuss about iron, manganese, and radioactive minerals, asbestos.
- ii. Origin and occurrence of industrial minerals- ceramic.

b. Mini Project:

Prepare a report of economic minerals in India.

19MI204.4: Explain physical properties, processes of occurrence of coal, petroleum and fossil fuels.

approximate nours					
Item	Approx. Hrs				
C1	9				
LI	0				
SW	2				
SL	1				
Total	12				

Session Outcomes	Laboratory	Classroom Instruction	Self	
(SOs)	Instruction	(CI)	Learning	
	(LI)		(SL)	
SO4.1 Discuss about Origin.		Unit-4:Coal and Petroleum		
SO4.2 Relate the Physical		Geology	i. Occurr	
properties.		4.1Origin of coal	ence of	
SO4.3 Evaluate the		4.2 Explain In situ Theory	coal	
Processes.		4.3Explain the Drift Theory	and its	
SO4.4 Demonstrate Occurrence		4.4 Physical properties of coal	types	
of coal and its types.		4.5 Processes of coal formation		
SO4.5 Evaluate Fossil fuel		4.4 Occurrence of coal and its		
distribution in sedimentary		types		
basins of India.		4.5Petroleumdeposits		
		4.8 State the distribution of		
		Oil fields in India		
		4.9 Fossil fuel distribution		
		in sedimentary basins of		
		India		

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Discuss about Origin.
- ii. Evaluate Fossil fuel distribution in sedimentary basins of India.

c. Mini Project:

i. Visit a mining industry and prepare a report on coal deposit.

19MI204.5: Evaluate geophysical prospecting methods, application of remote sensing and GIS.

rpproximate from 5						
Item	Approx. Hrs					
Cl	9					
LI	0					
SW	2					
SL	1					
Total	12					

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO5.1Describe Geophysical	, ,	Unit 5: Geophysics, Remote	1. Application of
prospecting methods.		Sensing and GIS	remote sensing in geological
SO5.2 Apply Seismic electrical,		5.1 Objectives: Guide lines for	mapping.
magnetic and gravity methods		location of mineral deposits	
of mineral. Prospecting.		5.2 Prospecting methods principles	
		5.3 Geophysical prospecting	
SO5.3Analyse Introduction to		methods	
aerial and satellite remote		5.4 Seismic electrical	
sensing.		5.5 magnetic and gravity methods	
		of mineral prospecting	
SO5.4Evaluate Application of		5.6 Introduction to aerial and	
remote sensing in		satellite remote sensing	
geological mapping and		5.7 Application of remote sensing	
mineral exploration.		in geological mapping	
		5.8 Application of remote sensing	
SO5.5 Judge Application of		in mineral exploration	
GIS in geological mapping		5.9 Application of GIS in	
and mineral exploration.		geological mapping and mineral	
		exploration	

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
- i. Seismic electrical, magnetic and gravity methods of mineral.
- b. Mini Project:

Prepare power point presentation for application of Remote sensing.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+LI+SW+Sl)
19MI204.1: Describe physiographic division of India and geological time scale.	9	0	2	1	12
19MI204.2: Analyse process of ore formation of economic Mineral deposits.	9	0	2	1	12
19MI204.3: Demonstrate metallic and non-metallic deposits, their origin and occurrence.	9	0	2	1	12
19MI204.4: Explain physical properties, processes of occurrence of coal, petroleum and fossil fuels.	9	0	2	1	12
19MI204.5: Evaluate geophysical prospecting methods, application of remote sensing and GIS.	9	0	2	1	12
Total Hours	45	0	10	5	60

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	Total		
		R	U	A	Marks
CO-1	Stratigraphy	03	01	01	05
CO-2	Economic Geology	02	06	02	10
CO-3	Types of Cement Manufactured in India	03	07	05	15
CO-4	Economic Indian Mineral Deposits	-	10	05	15
CO-5	03	02	-	05	
	Total			13	50

Legend: R: Remember, U: Understand, A:Apply

The end of semester assessment for engineering Geology will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp,Mobile,Onlinesources)
- 8. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition& Year
1	Introduction to Geology	G.B.Mahapatra	CBS Publishers And Distributors Pvt Ltd	2017
2	A Text Book of Geology	P.K.Mukherjee	World press	2013
3	Engineering And General Geology	ParbinSingh	Katson Educational Series	2013

(b) Web link:

https://geology.com/

https://archive.nptel.ac.in/Harddisk/Direct_Download.html

https://epathshala.nic.in/

https://swayam.gov.in/

Curriculum Development Team

- 1. Dr. Sandeep Prasad, Assistant Professor, Department of Mining Engineering, AKS University, Satna.
- 2. Dr. B. K. Mishra, Head, Department of Mining Engineering, AKS University, Satna.
- 3. Prof G. K. Pradhan, Dean, Faculty of Engineering Technology, AKS University, Satna.
- **4.** Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna.

Cos, Pos and PSOs Mapping

Program Title: M. Tech. Mining Engineering

Course Code: 19MI204

Course Title: Engineering Geology

Course True. Eng	Program outcome						Program Specific Outcome			
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
	Engineering Knowledge	Problem analysis	Design/dev elopment of solutions	Conduct investigations of complex problems	Moder n Tool usage	The engineer and society	Develop analytical skills in identifying and accordingly take actions for solution of mining problems.	Should develop sufficient knowledge about the economic, environmental and societal impacts of mining and basic concepts of mitigation measures.	Develop sufficient skill in project evaluation techniques, mine management, conflict resolution management and general management and safety in mines.	Development of the base for innovation & research in the field of mining engineering.
CO-1 Describe physiographic division of India and geological time scale.	1	2	1	1	1	2	2	3	2	1
CO-2 Analyse process of ore formation of economic Mineral deposits.	1	1	2	2	1	2	2	1	2	1
CO-3 Demonstrate metallic and non- metallic deposits, their origin and occurrence. of rocks and minerals	1	1	1	1	1	2	1	1	2	2
CO-4 Explain physical properties, processes of occurrence of coal, petroleum and fossil fuels. of Minerals.	2	2	3	2	3	2	3	3	3	2
CO-5 Evaluate geophysical prospecting methods, application of remote sensing and GIS.	1	2	1	1	1	3	3	3	1	3

Legend:1-Low,2-Medium,3-High

Course Curriculum Map:

Pos & PSOs No.	Cos No. & Titles	SOs No.	Laboratory Instruction	Classroom Instruction(CI)	Self Learning(SL)
PO1,2,3,4,5,6	CO-1 Describe physiographic division of India and geological time scale.	SO1.1 SO1.2 SO1.3	HISH GCHOH	Unit-1.0 Stratigraphy 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	T.Callillig(S)(7)
PSO1,2,3,4		SO1.4			SL 1.1
		SO1.5			
PO1,2,3,4,5,6		SO2.1		Unit-2 Economic Geology	
PSO1,2,3,4	CO- 2 Analyse process of ore formation of economic Mineral deposits.	SO2.2 SO2.3 SO2.4 SO2.5		2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9	SL 2.1
PO1,2,3,4,5,6	CO-3 Demonstrate metallic and non-metallic deposits, their origin and occurrence.	SO3.1 SO3.2		Unit-3: Economic Indian Mineral	SL 3.1
PSO1,2,3,4		SO3.3 SO3.4 SO3.5		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	
PO1,2,3,4,5,6	CO-4 Explain physical properties, processes of occurrence of coal, petroleum and fossil fuels.	SO4.1 SO4.2		Unit-4: Coal and Petroleum Geology	SL 4.1
PSO1,2,3,4	lucis.	SO4.3 SO4.4 SO4.5		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	
PO1,2,3,4,5,6	CO -5 Evaluate geophysical prospecting methods, application of remote sensing and GIS.	SO5.1 SO5.2 SO5.3		Unit5: Geophysics, Remote Sensing and GIS 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	SL 5`.1
PSO1,2,3,4		SO5.3 SO5.4 SO5.5			

Semester-II

Course Code: 19MI205

Course Title: Drilling Technology

Pre-requisite: Student should have basic knowledge of shaft sinking, methods of shaft

sinking, drilling and blasting parameters of mining and methods of tunnels

making.

Rationale: The students studying should possess foundational understanding about

Student should have basic knowledge of shaft sinking, methods of shaft sinking, drilling and blasting parameters of mining and methods of tunnels making. Additionally, students ought to acquire fundamental insights into various drilling machines technology, blast design parameters of open cast

mining.

Course Outcomes:

19MI205.1: Understand the knowledge of prospecting, methods of exploration.

19MI205.2: Acquired the knowledge of different shaft sinking methods, working cycle of shaft sinking.

19MI205.3: Understanding of the special types of shaft sinking methods, safety in shaft sinking and statutory provisions as laid down under CMR, MMR issued by DGMS.

19MI205.4: Understanding of the knowledge of explosive properties, blast design parameters in open cast mining and types of different drilling machines.

19MI205.5: Understanding of the preparation of tunnels, Drivage techniques with blasting.

Scheme of Studies:

Code	Course					me of stud rs/Week)	lies	Total Credits(C)
	Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+S W+SL)	
Program Core(PCC	19MI205	Drilling Technology	3	0	1	1	5	3

Legend: CI: Class room Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial

(T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) **SW:** Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW&SL has to be planned and performed under the continuous guidance and

feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Schem	e of Asse	ssment (Ma	arks)			
				Progressive	Assessm	nent(PRA)			End Semester	Total Marks
Code	Course Code	Course Title	Class/Ho meAssig nment5n umber 3 mark seac h (CA)	Class Test2 (2bestou t of3) 10 marks each(C T)	Semin arone (SA)	Class Activity anyone (CAT)	Class Attendance (AT)	Total Marks CA+CT+S A+CAT+A T)	Assessment (ESA)	(PRA +ES A)
PCC	19MI20 5	Drilling Technology	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should show case their mastery of Session Outcomes(SOs), culminating in the over all achievement of Course Outcomes (COs) upon the course's conclusion.

19MI205.1: Understand the knowledge of prospecting, methods of exploration.

Item	AppXHrs				
Cl	09				
LI	0				
SW	1				
SL	2				
Total	12				

Session Outcomes	Laboratory	Classroom Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO1.1Definitions,		Unit-1.0General Introduction	1.Borehole logging;
prospecting, shaft,		1.1 Definitions –	Maintenance of
bore holes		Reconnaissance; principles	records;
		and	Deflection of
SO1.2 Methods of		1.2 methods of	boreholes;
exploration		prospecting – pit, shaft,	
		trench and	2. Difficulties in
SO1.3 Borehole logging,		boreholes;	boring; Fishing
deflection of		1.3 Methods of Exploration,	tools and their
boreholes		1.4 Selection of sites for	uses;
		boreholes; Surface layout of	
SO1.4 Fishing tools and		boring;	
exploratory		1.5Details of equipment,	
drilling		1.6 Borehole logging;	
SO1.5 Surface layout		Maintenance of records;	
		1.7Deflection of boreholes;	
		1.8Difficulties in boring;	
		Fishing tools and their uses;	
		1.9Methods of exploratory	
		drilling for oil;	
		Interpretation of borehole	
		data.	

SW-1Suggested Sessional Work(SW):

a. Assignments:

i. Exploration methods

19MI205.2: Acquired the knowledge of different shaft sinking methods, working cycle of shaft sinking.

1	1
Item	AppXHrs
C1	09
LI	0
SW	1
SL	2
Total	12

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO2.1ToUnderstand the mine entries, location SO2.2 To learn about preparatory work required of shaft sinking		Unit 2 Shaft Sinking I 2.1 Shaft Sinking - I - Mine Entries - Choice, location and 2.2 size of mine entries, Access to seated deposits by Adit/Drifts/Incline- 2.3 Introduction - Selection - Location - Preparatory work	i. Mine entries, location of mine ii. Methods of shaft sinking
SO2.3Tounderstand the shaft sinking methods		required - 2.4 Sinking appliances, equipment and services – 2.5 Sinking methods and	
so2.4To understand the sinking cycle so2.5 To learn about the support system of shaft sinking		procedure – 2.6 Reaching up to the rock head - Pre-sink - Sinking through the rock- 2.7 Shaft centering-Cycle (Drilling, Blasting, Lashing and 2.8 mucking-Hoisting - Support or shaft lining – 2.9 Auxiliary operations - Dewatering – Ventilation-Illumination)	

SW-2 Suggested Sessional Work(SW):

a. Assignments:

i. Shaft sinking methods

19MI205.3: Understanding of the special types of shaft sinking methods, safety in shaft sinking and statutory provisions as laid down under CMR, MMR issued by DGMS.

1-1	prominate mours
Item	AppX
	Hrs
Cl	09
LI	0
SW	1
SL	2
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL
)
SO3.1 Special methods of			i. Shaft sinking
shaft sinking		3.1 Shaft Sinking – II - Station	
			ii. Freezing
SO3.2 Cementation method		development(Cross-measure drifts and laterals)	methods and Safety
SO3.3 Drilling and boring		3.2 Special methods of shaft	•
		sinking - Piling system-Caisson	_
SO3.4 Safety features as per		method-Sinking drum	
requirement of CMR		process-Forced drop-	
		3.4 shaft method -Pneumatic	
SO3.5Freezing methods		caisson method –	
		3.5 Special methods by temporary	
		or permanent isolation of water -	
		Cementation –	
		3.6 Boring/Drilling-Cementation -	
		Sinking and Walling	
		3.7 The freezing process - Drilling	
		and lining of boreholes-Formation	
		and maintenance of the ice	
		column -Actual sinking operations	
		- Thawing of ice wall –	
		3.8 Freezing – Shafts - Shaft	
		drilling and boring - Shaft drilling	
		Shaft boring-	
		3.9 Safety in sinking shafts &	
		Statutory provisions as laid	
		down under CMR, MMR &	
		Circulars issued by DGMS.	

SW-3 Suggested Sessional Work(SW):

a. Assignments:

1. Special Shaft sinking methods

19MI205.4: Understanding of the knowledge of explosive properties, blast design parameters in open cast mining and types of different drilling machines.

11	
Item	AppXHrs
Cl	09
LI	0
SW	1
SL	2
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
O4.1 Understand the drilling	(21)	Unit-4 Drilling and Blasting	(SE)
machine	·		i. Blast design
		selection-application-	parameters in
SO4.2 Explosive properties		classification-	mining
• • •		4.2 construction of few drill	
SO4.3 Blast design parameters		machines –drill bits – operation	ii. Types of
		& maintenance etc.	explosives
SO4.4 Fragmentation		4.3 Explosives & Accessories used	
		in Mines – Selection-	
SO4. 5 Advances in Blasting		Classification-Properties-	
		Testing-	
		4.4 Underground Coal Mines –	
		Permitted & Non-Permitted	
		4.5 Explosives-Explosives used in	
		Quarries	
		4.6 Opencast Mines (details of	
		selection, blast design, will be	
		taught in Surface Mining) –	
		Storage-Transport of explosives &	
		accessories –	
		4.8 Theories of Blasting	
		4.8 Environmental Impact due to	
		Blasting –	
		4.9 Safety during Blasting –	
		Advances in Blasting	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Blast design parameters

19MI205.5: Understanding of the preparation of tunnels, Drivage techniques with blasting.

Item	AppXHrs
Cl	09
	09
LI	0
SW	1
SL	2
Total	12

Session Outcomes	Laboratory	Classroom Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO5.1 Conventional methods of		Unit 5: Drifts/Drivages & Tunnels	1. Methods of tunnels
tunnels		5.1 (Conventional Methods)	
		5.2 Introduction – Preparations for	
SO5.2 Over view of site		driving	2 Plasting
investigation		drivages/tunnels-	2. Blasting
m resuguion		5.3 Site investigations - Location of -	techniques
SOF 3 Pole of the techniques in		Rocks and ground	
SO5.3 Role of the techniques in		5.4 characterization-Size,	
blasting		shape, length and orientation (route) -	
CO5 4 Deet bleeting handling		function of drives and tunnels -	
SO5.4 Post blasting handling		Drivage techniques (for	
		drives and tunnels) - 5.5 Drivage	
SO5.5 Support system		techniques with blasting (Pattern of	
		holes - Blasting off the solid in	
		5.6 UG Gassy seams- Pattern of Holes-	
		Charging and blasting the rounds -	
		Placement of primer -	
		5.7 Stemming - Depth of round/hole -	
		Charge density in cut-holes and rest of	
		the face area – Smooth blasting).	
		5.8 Post Blast Handling - Muck disposal	
		and handling (mucking and	
		transportation) -	
		5.9 Ventilation during drivage/ tunneling	
		- Working cycle (including auxiliary	
		operations)-Driving	
		large sized drives/tunnels in tough rocks	

SW-5 Suggested Sessional Work(SW):

a. Assignments:

Support system

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	SessionalWork (SW)	Self Learning (Sl)	Total hour(Cl+SW+Sl)
19MI205.1: Understand the knowledge of prospecting, methods of exploration	9	0	1	2	12
19MI205.2: Acquired the knowledge of different shaft sinking methods, working cycle of	9	0	1	2	12
19MI205.3: Understanding of the special types of shaft sinking methods, safety in shaft sinking and statutory provisions as laid down under CMR, MMR issued by DGMS.	9	0	1	2	12
19MI205.4: Understanding of the knowledge of explosive properties, blast design parameters in open cast mining and types of different drilling machines.	9	0	1	2	12
19MI205.5: Understanding of the preparation of tunnels and Drivage techniques with blasting.	9	0	1	2	12
Total Hours	45	0	5	10	60

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	M	arks Dis	tribution	Total
		R	U	A	Marks
CO-1	Understand the knowledge of prospecting, methods of exploration	03	01	01	05
CO-2	Acquired the knowledge of different shaft sinking methods, working cycle of shaft sinking.	02	06	02	10
CO-3	Understanding of the special types of shaft sinking methods, safety in shaft sinking and statutory provisions as laid down under CMR, MMR issued by DGMS.	07	05	03	15
CO-4	Understanding of the knowledge of explosive properties, blast design parameters in open cast mining and types of different drilling machines.	03	03	04	10
CO-5	Understanding of the preparation of tunnels and Drivage techniques with blasting.	03	02	05	10
	Total	14	23	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for drilling technology will be held with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to mining industry
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog, Facebook,Twitter,Whatsapp,Mobile,Onlinesources)
- 9. Brainstorming

Suggested Learning Resources:

(a)Books:

S.	Title	Author	Publisher	Edition				
No.				&Year				
1	Elements Of Mining Technology	D.J. Deshmukh	Denett & Co. Nagpur, N e w Delhi, Chennai P u n e	2016				
2	Mining Competition Handbook (For GATE, Overman, Mining Sirdar and others competitive exams)	Dr. Sandeep Prasad	Orange Books Publication	1 st and 2023				
3	Das, S.K., Surface Mining Technology, Lovely Prakashan, Dhanbad							
4.	Kennedy, B.A.(Editor).	, 1990, Surface Mini	ng, SME, USA, 2nd	Edition.				

Web Link:

https://en.wikipedia.org/wiki/Drilling_and_blasting

https://core.ac.uk/download/pdf/53188886.pdf

Curriculum Development Team

- 1. Dr. Sandeep Prasad, Assistant Professor, Department of Mining Engineering, AKS University, Satna.
- 2. Dr. B. K. Mishra, Head, Department of Mining Engineering, AKS University, Satna.
- 3. Prof G. K. Pradhan, Dean, Faculty of Engineering Technology, AKS University, Satna.
- 4. Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna.

Cos, Pos and PSOs Mapping

Program Title: M. Tech. Mining Engineering

Course Code: 19MI205

Course Title: Drilling Technology

urse rule. Drinning recinio	1055						ı			
		Program o	outcome					P	Program Specific C	Outcome
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
	Engineer ing knowledg e	Problem analysis	Design/ develop ment of solutio ns	Conduct investiga tions of complex probl ems	Modern Tool usage	The engineer and society	Develop analytical skills in identifying and accordingly take actions for solution of mining problems.	Should develop sufficient knowledge about the economic, environmental and societal impacts of mining and basic concepts of mitigation measures.	Develop sufficient skill in project evaluation techniques, mine management, conflict resolution management and general management and safety in mines.	Development of the base for innovation & research in the field of mining engineering.
CO1 : Understand the knowledge of prospecting, methods of exploration	1	2	1	1	1	2	2	3	2	1
CO 2 : Acquired the knowledge of different shaft sinking methods, working cycle of shaft sinking.	1	1	2	2	1	2	2	2	2	1
CO3: Understanding of the special types of shaft sinking methods, safety in shaft sinking and statutory provisions as laid down under CMR, MMR issued by DGMS.	2	2	1	1	1	2	1	1	2	2
CO4: Understanding of the knowledge of explosive properties, blast design parameters in open cast mining and types of different drilling machines.	2	2	3	2	3	2	3	3	3	2
CO5: Understanding of the preparation of tunnels and Drivage techniques with blasting.	1	2	1	1	1	3	3	3	1	3

Legend: 1-Low, 2-Medium, 3-High

Course Curriculum Map:

Pos & PSOs No.	Cos No. & Titles	SOs No.	Laboratory Classroom Instruction(CI) Instruction(L I)		Self Learning(SL)
PO1,2, 4, 5,6	CO1 : Understand the knowledge of prospecting, methods of exploration	SO1.1 SO1.2 SO1.3		Unit-1.0 General Introduction 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	SL 1.1
PSO1,2,3,4		SO1.4 SO1.5			
PO1,2, 4, 5,6	CO 2 Acquired the knowledge of different shaft sinking methods,	SO2.1		Unit-2 Shaft Sinking I	SL 2.1
PSO1,2,3,4	working cycle of shaft sinking.	SO2.2 SO2.3 SO2.4		2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9	
		SO2.5			
PO1,2, 4, 5,6	CO3 Understanding of the special types of shaft sinking methods, safety in shaft sinking and	SO3.1 SO3.2		Unit-3 : Shaft Sinking II	SL 3.1
PSO1,2,3,4	statutory provisions as laid down under CMR, MMR issued by DGMS.	SO3.3 SO3.4 SO3.5		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	
PO1,2, 4, 5,6	CO 4: Understanding of the	SO3.3 SO4.1			SL 4.1
PSO1,2,3,4	knowledge of explosive properties, blast design parameters in open cast	SO4.2 SO4.3		Unit-4: Drilling and Blasting 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	
	mining and types of different drilling machines.	SO4.4 SO4.5			
PO1,2,3,4, 5,6	CO 5: Understanding of the preparation of tunnels and Drivage	SO5.1 SO5.2		Unit5: Drifts / Drivages and	SL 5.1
PSO1,2,3,4	techniques with blasting.	SO5.3 SO5.4		Tunnels	
		SO5.5		5.1,5.2,5.3,5.4,5.5, 5.6,5.7,5.8,5.9	

Semester II

Course Code: 19MI251

Course Title: Applied Rock Mechanics -` Lab

Pre-requisite: Student should have basic knowledge of stress and stress field, and

properties of rock mass.

Rationale: The students studying advance rock mechanics will acquire stress and

deformation related instrumentation like load cell, convergence recorder, bore hole extensometer. Students will acquire knowledge of measuring in situ and induced stresses. Students will acquire knowledge of Numerical

modeling of rock masses and applications of numerical analysis.

Course Outcomes: The students will be able to

19MI251.1: Interpret Stress State and design of Local and Mass Support System (Rock Enforcement).

19MI251.2: Apply stress and deformation related instrumentation to measure rock movement and interpretation of data

19MI251.3: Predict surface subsidence and assess rock bursts and bump. Apply measures to control subsidence and bursts.

19MI251.4: Analyse mechanism of caving and slope failure. Apply FLAC 3D and FLAC 2D to assess slope failure.

19MI251.5: Apply numerical analysis in geo mechanics by using different methods of numerical modeling of rock masses and computational methods too.

Scheme of Studies

Code					Scher	Scheme of studies(Hours/Week)		
	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+SW+SL	(C)
PCC	19MI251	Applied Rock Mechanics -` Lab	0	4	0	0	4	2

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW&SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Practical

	Course Code	Course Title	Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)						End Semester Assessment	
Code			Class/H ome Assign ment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+C AT+AT)	(ESA) Mai	Total Marks (PRA+ ESA)
PCC	19MI2 51	Applied Rock Mechanics - `Lab	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI251.1: Interpret Stress State and design of Local And Mass Support System (Rock Enforcement).

Item	AppXHrs
Cl	0
LI	4
SW	2
SL	1
Total	7

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO1.1 T o study about various types of stress fields	1.1Bore hole Extensometer and measurement of		Various methods of designing
SO1.2 To find stresses around narrow and circular openings	displacement with its help. 1.2 Measurement		support system in underground
SO1.3 Design of support system in bord and pillar	f strain by tape extensometer.		
SO1.4 Evaluate various supports in longwall workings			
So1.5 Assess pressure on supports by instrumentation			
•			

SW-1 Suggested Sessional Work (SW):

a. Assignments:

1. Design of support system in development district of bord and pillar from given data

b. Mini Project:

1. Strata monitoring devices and its applicability study

19MI251.2: Apply stress and deformation related instrumentation to measure rock movement and interpretation of data

Item	AppXHrs
Cl	0
LI	4
SW	2
SL	1
Total	7

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction	Self Learning (SL)
(DOS)	(LI)	(CI)	(SL)
SO2. Read the rock movement and interpret it .	I1.Load cell and measurement of convergence		i. Different types of ISRM in situ stress measurements ex USBM, CSIRO.
SO2.2 Identify location of installing instrument to measure convergence.	I.2.Flat jack method and measurement of in situ stress		
SO2.3To understands the out-come reading of recorder and suggests measures for safety of persons.			
SO2.4 To calculate in situ stresses from the data.			
SO2.5 To lean use of instruments of measuring induced stresses.			

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Collect data and details of different types of load cells.
- ii. Study different types of bore hole extensometers and compare their efficacy.

b.Mini Project:

Plan a plan for installation of strata monitoring instrument in depillaring district of bord and pillar working.

19MI251.3: Predict surface subsidence and assess rock bursts and bump. Apply measures to control subsidence and bursts.

Approximate Hours

I I	
Item	AppXHrs
Cl	0
LI	4
SW	2
SL	1
Total	7

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO3.1 Predict surface subsidence and bump.	1.Determination of ground vibrations with seismograph, and its effect on design of slopes	\-	1 study of subsidence and its types and monitoring of subsidence
SO3.2 Measurement of subsidence and showing in graph.	2.Factors influencing the stability of slope . Design for maintaining slope in adverse conditions		
SO3.3 Preventive measures of subsidence at surface and taking safety measures.			
SO3.4 Rock burst and bump prediction.			
SO3.5 Preventive measures of rock burst and bumps			

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1 Problem on subsidence
- 2 Rock bumps and bursts.

b. Mini Project:

Study of rock burst and bumps in chinakuri mine and KGF

19MI251.4 Analyse mechanism of caving and slope failure. Apply FLAC 3D and FLAC 2D to assess slope failure.

Approximate Hours

Item	AppXHrs
Cl	0
LI	4
SW	2
SL	2
Total	8

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (CI)	Self Learning
(503)	(LI)	(CI)	(SL)
SO4.1 knowledge on mechanics of caving and caving cavability index SO4.2 understanding the parameters of slope design SO4.3; Analysis of slope failure	LI1.Mechanism of rock bursting bumps and factors influencing it . LI2.Shorcreting		 Different types of slope failure and their cause Different
SO4.4 Study of drainage and reinforcement of slopes SO4.5 Using SSR for interpreting of slopes stability	method of support – principle , application etc		Methods of analysis of slope failure

SW-4 Suggested Sessional Work (SW):

a. Assignments

- 1. Design of opencast slopes
- 2. Calculations of FOS of slopes of dumps

b. Mini Project:

1. Case study on slope failure of RAJ MAHAL Opencast

19MI251.**5**: Apply numerical analysis in geo mechanics by using different methods of numerical modeling of rock masses and computational methods too.

Item	AppXHrs
Cl	0
LI	4
SW	2
SL	1
Total	7

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1 Knowledge on	LI 1 design of		1. Analysis of
computational methods for	support system		slope stability
numerical techniques			using flac 2d
SO5.2 Various applications of	LI2.Application		and flac 3d
numerical methods	of numerical		using acquired
SO5.3 Studying FEM and FDM	methods in geo		data
methods of numerical modeling	-mechanics.		
SO5.4 Studying of DEM and			
MFM methods of numerical			
modeling			
SO5. Analysis of slope stability			
using FLAC 2D and FLAC 3D			

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
 - 1. Principles of working of various NUMERICAL MODELLING methods
- b. Mini Project:
 - 1. Analysis of slope stability using FLAC 2D and FLAC 3D

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Laboratory	Sessional	Self	Total hour
	Lecture	Instruction	Work	Learning	(Cl+SW+Sl)
	(Cl)	(LI)	(SW)	(SL)	
19MI251-L.1: Interpret Stress State and design of Local and Mass Support System (Rock Enforcement).	0	4	2	1	7
19MI251-L.2: Apply stress and deformation related instrumentation to measure rock movement and interpretation of data	0	4	2	1	7
19MI251-L.3: Predict surface subsidence and assess rock bursts and bump. Apply measures to control subsidence and bursts.	0	4	2	1	7
19MI251- L.4: Analyse mechanism of caving and slope failure. Apply FLAC 3D and FLAC 2D to assess slope failure.	0	4	2	2	8
19MI251-L.5: Apply numerical analysis in geo mechanics by using different methods of numerical modeling of rock masses and computational methods too.	0	4	2	1	7
Total Hours	60	20	10	6	36

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	Marks Distribution			
		R	U	A	Marks	
CO-1	Interpret Stress State and design of Local and Mass Support System (Rock Enforcement).	03	01	01	05	
CO-2	Apply stress and deformation related instrumentation to measure rock movement and interpretation of data	02	06	02	10	
CO-3	Predict surface subsidence and assess rock bursts and bump. Apply measures to control subsidence and bursts.	03	07	05	15	
CO-4	Analyse mechanism of caving and slope failure. Apply FLAC 3D and FLAC 2D to assess slope failure.	-	10	05	15	
CO-5	Apply numerical analysis in geo mechanics by using different methods of numerical modeling of rock masses and computational methods too.	03	02	-	05	
	Total	11	26	13	50	

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment for advance rock mechanics -`lab will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to mining plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook ,Twitter,Whatsapp,Mobile,Onlinesources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Edition &Year
No.				
1	Fundamentals and	Deb Debasis	PHI	2016
	applications of Rock		Learning	
	Mechanics		Pvt. Ltd.	
2	Introduction to rock	IBM	IBM	
	mechanics by IBM			

Link

https://nptel.ac.in/

Curriculum Development Team

- 1. Dr. Sandeep Prasad, Assistant Professor, Department of Mining Engineering, AKS University, Satna.
- 2. Dr. B. K. Mishra, Head, Department of Mining Engineering, AKS University, Satna.
- 3. Prof G. K. Pradhan, Dean, Faculty of Engineering Technology, AKS University, Satna.
- 4. Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna.

Cos, Pos and PSOs Mapping

Program Title: Master of Technology in Mining Engineering

Course Code: 19MI251

Course Title: Applied Rock Mechanics -` Lab

Proceedings of the control of the co	Program Outcomes						Program Specific Outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
Course Outcome	Develop the skilled knowledge of communi- cation in verbal and written forms	Apply the complex systems as part of research projects	Create, select & apply appropriate techniques, resources & modern engineering & IT tools	Understand the impact of professional engineering solutions in societal & environmental practices	Apply ethical principles & commit to professional ethics & responsibilities and norms of the engineering practice	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	Develop analytical skill for complex mining complex mining problems	Specialized in depth knowledge in specific areas of mining	Capability to comprehen d articulated needs for mining industry	Research orientation based on articulated needs
CO1- Garnering the fundamental concept of In-situ Stresses	2	2-	1	1	-2	-1	2	1	1	1
CO2- Describe the various types of Stress Around Mine Opnings	1	-1	-2	-3	2	1	1	1	2	2
CO 3- Analyse the Design of Mine Openings and Pillars	2	3	1	1	3	2	2	1	3	1
CO 4- Explain the Design of Support and Goaf Support	2	3	2	3	1	2	2	1	3	1
CO 5- Elaborates the concepts of Rock Bursts, Bumps and Mine Subsidence	1	1	2	1	3	2	2	2	3	2

Legend: 1: Low 2: Medium 3: High

Course Curriculum Map

POs & PSOs Number	COs number & Title	SOs Number	Laboratory Instruction (LI)	Class Room Instructions (CI)	Self Learning (SL)
PO:	CO 1-Garnering the fundamental concept of In-situ Stresses	SO 1.1	1.1		SL 1.1
1,2,3,4,5,6		SO 1.2	1.2		
PSO: 1,2,3,4		SO 1.3			
		SO 1.4			
		SO 1.5			
PO:	CO 2: Describe the various types of Stress Around Mine Openings.	SO2.1	2.1		SL 2.1
1,2,3,4,5,6		SO 2.2	2.2		
PSO: 1,2,3,4		SO 2.3			
		SO 2.4			
		SO 2.5			
PO:	CO 3- Analyse the Design of Mine Openings and Pillars	SO 3.1`	3.1		SL 3.1
1,2,3,4,5,6		SO 3.2	3.2		
PSO: 1,2,3,4		SO 3.3			
		SO 3.4			
		SO 3.5			
PO:	CO 4- Explain the Design of Support and Goaf Support.	SO 4.1	4.1		SL 4.1
1,2,3,4,5,6		SO 4.2	4.2		
PSO: 1,2,3,4		SO 4.3			
		SO 4.4			

	SO 4.5		
CO 5- Elaborates the concepts of Rock Bursts, Bumps and Mine Subsidence.	SO 5.1	5.1	SL 5.1
	SO 5.2	5.2	
	SO 5.3		
	SO 5.4		
	SO 5.5		

Semester II

Course Code: 19MI252

Course Title: Seminar

Pre- requisite: Conduct research to resolving the problem of mining operations like blasting, vibration,

safety etc. by applying advanced technology adopted in field of mining industries.

Rationale: The basic purpose of M. Tech research is to understand the application of research

methodology tools to do research on particular topic related to mining and follow technical writing skill to design the synopsis, thesis, research paper, abstract, articles, etc

as per results obtained during research studies.

Course Outcomes:

PROJ-MIN05 Propose research methodology tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis

Scheme of Studies:

	Course			S	Total			
CODE	Course Code	Course Title	CI	LI	SW	SL	Total Study Hours CI+LI+SW+SL	Credits (C)
PROJ	19MI252	Seminar	0	0	0	0	2	1

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) **SW:** Sessional Work (includes assignment, seminar, mini project etc.), **SL:** Self Learning, **C:**Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

			Scheme of Assessment (Marks)							
				Progressive Assessment (PRA)						
CODE	Course Code	Course Title	Class/Home Assignment 5 number3 markseach(CA	of3)10	Seminar one	Class Activity anyone(CAT)	Class Attendanc e(AT)	Total Marks _{(CA+C} T+SA+ CAT+AT)	End Semester Assessmen t (ESA)	Total Marks(PR A + ESA)
PROJ	19MI252	Seminar	0	0	0	0	0	0	100	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI252 propose seminar tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis .

Approximate Hours

	**
Item	Approximate Hours
CI	0
LI	2
SW	0
SL	30
Total	32

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room	Self Learning (SL)
		Instruction (CI)	
SO1. Choose the topic and objectives for the research.	1 Perform research work as per their topic by using various tools and production technology methods in particular season of crop.		1. Finding of reviews related with the topic of research.
			2. Preparation of manuscripts related to concerned topic.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Instruction (LI)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PROJ-MIN05 Propose research methodology tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis.	0	2	30	32
Total	0	2	30	32

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment. Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Group Discussion
- 3. Demonstration
- 4. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	Research publications			
2	Science direct			
3	Research gate			
5	Academia			
6	Multi authored books			
7	Book chapters			

Course Curriculum Team:

- 1. Dr. Sandeep Prasad, Department of Mining Engineering, AKS University, Satna
- 2. Prof G. K. Pradhan, Department of Mining Engineering, AKS University, Satna
- 3. Dr. B. K. Mishra, Department of Mining Engineering, AKS University, Satna
- 4. Er. Akash Gupta, Department of Mining Engineering, AKS University, Satna
- 5. Prof S. Dasgupta, Department of Mining Engineering, AKS University, Satna
- 6. Prof P K Palit, Department of Mining Engineering, AKS University, Satna
- 7. Prof A K Mittal, Department of Mining Engineering, AKS University, Satna
- 8. Er. P. S. Tiwari, Department of Mining Engineering, AKS University, Satna
- 9. Er. P. C. Tiwari, Department of Mining Engineering, AKS University, Satna
- 10. Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna

Cos, POs and PSOs Mapping

Course Code: 19MI252 Course Title: -Seminar

			Program	Outcomes				Program Spo	ecific Outcome	es
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
Course Outcome	Develop the	Apply the	Create,	Understand	Apply	The ability	Dev.	Specialize	Capability	Research
	skilled	complex	select &	the impact	ethical	to engage in	Analy	d in depth	to	orientation
	knowledge of	systems	apply	of	principles &	self-	tical	knowledg	comprehen	based on
	communicatio	as part of	appropriate	professional	commit to	directed,	skill for	e in	d	articulated
	n in verbal and	research	techniques,	engineering	professional	reflective &	complex	specific	articulated	needs
	written forms	projects	resources	solutions in	ethics &	lifelong	mining	areas of	needs for	
			& modern	societal &	responsibilit	learning for	problem	mining	mining	
			engineering	environment	ies and	the benefit	S		industry	
			& IT tools	al practices	norms of the	of the				
					engineering	society				
					practice					
CO1- Propose	2	2-	1	1	1	1	2	1	1	1
seminar tools for										
conducting										
research on										
selected topic of										
mining field and										
prepare Final										
manuscript										

Legend: 1- Low,2 – Medium, 3- High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs	Laboratory Instruction (LI)	Classroom	Self-
		No.		Instruction (CI)	Learning (SL)
PO 1,2,3,4,5,6,	19MI252 Propose seminar tools for	SO1.1	1.1 Submission of research proposal consisting concern programme		SL 1.1
PSO 1,2, 3, 4,	conducting research on selected topic of mining field and prepare Final manuscript		consisting concern programme		

Semester III

Course Code: 19MI352

Course Title: Dissertation – Interim Evaluation

Pre- requisite: Conduct research to resolving the problem of mining operations like blasting, vibration,

safety etc. by applying advanced technology adopted in field of mining industries.

Rationale: The basic purpose of M. Tech Dissertation – Interim Evaluation is to understand the

application of research methodology tools to do research on particular topic related to mining and follow technical writing skill to design the synopsis, thesis, research paper,

abstract, articles, etc as per results obtained during research studies.

Course Outcomes:

PROJ-MIN05 Propose Dissertation – Interim Evaluation tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis

Scheme of Studies:

Ī		Course			S	Scheme	of studi	es(Hours/Week)	Total
	CODE	Course Code	Course Title	CI	LI	SW	SL	Total Study Hours CI+LI+SW+SL	Credits (C)
	RESEARCH PROJ	19MI352	Dissertation – Interim Evaluation	0	10	0	0	10	5

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

				Scheme of Assessment (Marks)								
	Course Code			Progressive Assessment (PRA)								
CODE		Course Title	Class/Home Assignment 5 number3 markseach(CA	of3)10	Seminar one	Class Activity anyone(CAT)	Class Attendanc e(AT)	Total Marks _{(CA+C} T+SA+ CAT+AT)	End Semester Assessmen t (ESA)	Total Marks(PR A + ESA)		
RESEA RCH PROJ	19MI352	Dissertation — Interim Evaluation	0	0	0	0	0	0	100	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI352 Propose research methodology tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis .

Approximate Hours

Item	Approximate Hours
CI	0
LI	10
SW	0
SL	30
Total	40

Session Outcomes (SOs)	Laboratory Instruction (LI)		Self Learning (SL)
		Instruction (CI)	
SO1. Choose the topic and objectives for the research. SO2. Select the suitable data during the research. SO3. Assemble the data taken during the research for interpretation. SO4. Arrange the whole work with the interpretate data.	methods in particular season of crop.		 Finding of reviews related with the topic of research. Preparation of manuscripts related to concerned topic.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Instruction (LI)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
19MI352 Propose Dissertation – Interim Evaluation tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis .	0	10	30	40
Total	0	10	30	40

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment. Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Group Discussion
- 3. Demonstration
- 4. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	Research publications			
2	Science direct			
3	Research gate			
5	Academia			
6	Multi authored books			
7	Book chapters			

Course Curriculum Team:

- 1. Dr. Sandeep Prasad, Department of Mining Engineering, AKS University, Satna
- 2. Prof G. K. Pradhan, Department of Mining Engineering, AKS University, Satna
- 3. Dr. B. K. Mishra, Department of Mining Engineering, AKS University, Satna
- 4. Er. Akash Gupta, Department of Mining Engineering, AKS University, Satna
- 5. Prof S. Dasgupta, Department of Mining Engineering, AKS University, Satna
- 6. Prof P K Palit, Department of Mining Engineering, AKS University, Satna
- 7. Prof A K Mittal, Department of Mining Engineering, AKS University, Satna
- 8. Er. P. S. Tiwari, Department of Mining Engineering, AKS University, Satna
- 9. Er. P. C. Tiwari, Department of Mining Engineering, AKS University, Satna
- 10. Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna

Cos, POs and PSOs Mapping

Course Code: 19MI352

Course Title: - Dissertation – Interim Evaluation

	Program Outcomes							Program Sp	ecific Outcome	es
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
Course Outcome	Develop the skilled knowledge of communicatio n in verbal and written forms	Apply the complex systems as part of research projects	Create, select & apply appropriate techniques, resources & modern engineering & IT tools	Understand the impact of professional engineering solutions in societal & environment al practices	Apply ethical principles & commit to professional ethics & responsibilities and norms of the engineering practice	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	Dev. Analy tical skill for complex mining problem s	Specialize d in depth knowledg e in specific areas of mining	Capability to comprehen d articulated needs for mining industry	Research orientation based on articulated needs
CO1- Propose Dissertation — Interim Evaluation tools for conducting research on selected topic of mining field and prepare Final manuscript	2	2-	1	1	1	1	2	1	1	1

Legend: 1- Low,2 - Medium, 3- High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction	Classroom Instruction	Self-Learning
PO 1,2,3,4,5,6, PSO 1,2, 3, 4,	19MI352 Propose Dissertation – Interim Evaluation tools for conducting research on selected topic of mining field and prepare Final manuscript	SO1.1 SO1.2	(LI) 1.1 1.2 1.3 1.4 1.5	(CI)	(SL) SL 1.1

Semester III

Course Code: 19MI351

Course Title: Seminar on Dissertation Evaluation

Pre- requisite: Conduct research to resolving the problem of mining operations like blasting, vibration,

safety etc. by applying advanced technology adopted in field of mining industries.

Rationale: The basic purpose of M. Tech Seminar on Research Project Evaluation is to

understand the application of power point presentation tools to do research on particular topic related to mining and follow technical writing skill to design the synopsis, thesis,

research paper, abstract, articles, etc as per results obtained during seminar and viva.

Course Outcomes:

19MI351 Propose power point presentation tools for conducting research on selected topic of mining field and prepare for final viva.

Scheme of Studies:

Course				S	Total				
CODE	Course Code	Course Title		LI	SW	SL	Total Study Hours CI+LI+SW+SL	Credits (C)	
RESEARCH PROJ	19MI351	Seminar on Dissertation Evaluation	0	10	0	0	10	5	

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

			Scheme of Assessment (Marks)							
			Progre	essive Asses	ssment (PF	RA)		Fnd		
CODE	Course Code	ode Title	Class/Home Assignment 5 number3 markseach(CA	of3)10	Seminar one	Class Activity anyone(CAT)	Class Attendanc e(AT)	Total Marks _{(CA+C} T+SA+ CAT+AT)	End Semester Assessmen t (ESA)	Total Marks(PR A + ESA)
REEAR CH PROJ	19MI351	Seminar on Dissertation Evaluation	0	0	0	0	0	0	100	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI351 Propose power point presentation tools for conducting research on selected topic of mining field and prepare for final viva.

Approximate Hours

	**
Item	Approximate Hours
CI	0
LI	10
\mathbf{SW}	0
SL	30
Total	40

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
objectives for the research. SO2. Select the suitable data during the research. SO3. Assemble the data taken	1 Perform research work as per their topic by using various tools and production technology methods in particular season of crop. 2. Collection of data 3. Analysis and interpretation of data 4. Submission of final thesis based on the research topic 5. Conclusion	(CI)	 Finding of reviews related with the topic of research. Preparation of manuscripts related to concerned topic.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Instruction (LI)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
19MI351 Propose power point presentation tools for conducting research on selected topic of mining field and prepare for final viva.		10	30	40
Total	0	10	30	40

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment. Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Group Discussion
- 3. Demonstration
- 4. Brainstorming

Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Edition
No.				& Year
1	Research publications			
2	Science direct			
3	Research gate			
5	Academia			
6	Multi authored books			
7	Book chapters			

Course Curriculum Team:

- 1. Dr. Sandeep Prasad, Department of Mining Engineering, AKS University, Satna
- 2. Prof G. K. Pradhan, Department of Mining Engineering, AKS University, Satna
- 3. Dr. B. K. Mishra, Department of Mining Engineering, AKS University, Satna
- 4. Er. Akash Gupta, Department of Mining Engineering, AKS University, Satna
- 5. Prof S. Dasgupta, Department of Mining Engineering, AKS University, Satna
- 6. Prof P K Palit, Department of Mining Engineering, AKS University, Satna
- 7. Prof A K Mittal, Department of Mining Engineering, AKS University, Satna
- 8. Er. P. S. Tiwari, Department of Mining Engineering, AKS University, Satna
- 9. Er. P. C. Tiwari, Department of Mining Engineering, AKS University, Satna
- 10. Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna

Cos, POs and PSOs Mapping

Course Code: 19MI351

Course Title: - Seminar on Dissertation Evaluation

			Program	Outcomes				Program Spe	ecific Outcome	es
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
Course Outcome	Develop the	Apply the	Create,	Understand	Apply	The ability	Dev.	Specialize	Capability	Research
	skilled	complex	select &	the impact	ethical	to engage in	Analy	d in depth	to	orientation
	knowledge of	systems	apply	of	principles &	self-	tical	knowledg	comprehen	based on
	communicatio	as part of	appropriate	professional	commit to	directed,	skill for	e in	d	articulated
	n in verbal and	research	techniques,	engineering	professional	reflective &	complex	specific	articulated	needs
	written forms	projects	resources	solutions in	ethics &	lifelong	mining	areas of	needs for	
			& modern	societal &	responsibilit	learning for	problem	mining	mining	
			engineering	environment	ies and	the benefit	S		industry	
			& IT tools	al practices	norms of the	of the				
					engineering	society				
					practice					
CO1- Propose	2	2-	1	1	1	1	2	1	1	1
power point										
presentation										
tools for										
conducting										
research on										
selected topic of										
mining field and										
prepare for final										
viva.										

Legend: 1- Low,2 – Medium, 3- High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs	Laboratory Instruction (LI)	Classroom	Self-
		No.		Instruction (CI)	Learning
					(SL)
PO 1,2,3,4,5,6,	19MI351Propose power point	SO1.1	1.1 Submission of research proposal		SL 1.1
PSO 1,2, 3, 4,	presentation tools for conducting research on selected topic of mining field and prepare for final viva.	SO1.2 SO1.3 SO1.4 SO1.5	consisting concern programme 1.2 Explain definition of the problems reference to topic 1.3 Explanation of results 1.4 Arrange the references of past work of 10 years 1.5 Collection of data by focusing their objectives and observations to be taken mentioned in their synopsis		

Semester IV

Course Code: 19MI451

Course Title: Dissertation (Open Defense)

Pre- requisite: Conduct research to resolving the problem of mining operations like blasting, vibration,

safety etc. by applying advanced technology adopted in field of mining industries.

Rationale: The basic purpose of M. Tech Dissertation – Interim Evaluation is to understand the

application of research methodology tools to do research on particular topic related to mining and follow technical writing skill to design the synopsis, thesis, research paper,

abstract, articles, etc as per results obtained during research studies.

Course Outcomes:

PROJ-MIN05 Propose Dissertation (Open Defense) tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis

Scheme of Studies:

Course		Course			S	cheme	of studi	es(Hours/Week)	Total
CODE	E	Course Code	Course Title	CI	LI	SW	SL	Total Study Hours CI+LI+SW+SL	Credits (C)
RESEAR PROJ		19MI451	Dissertation – Interim Evaluation	0	10	0	0	10	5

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) **SW:** Sessional Work (includes assignment, seminar, mini project etc.), **SL:** Self Learning, **C:**Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

				Scheme of Assessment (Marks)								
				Progressive Assessment (PRA)								
CODE	Course Code	Course Title	Class/Home Assignment 5 number3 markseach(CA	of3)10	Seminar one	Class Activity anyone(CAT)	Class Attendanc e(AT)	Total Marks _{(CA+C} T+SA+ CAT+AT)	End Semester Assessmen t (ESA)	Total Marks(PR A + ESA)		
RESEA RCH PROJ	19MI451	Dissertation (Open Defense)	0	0	0	0	0	0	100	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI451 Propose Dissertation (Open Defense)tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis .

Approximate Hours

Item	Approximate Hours
CI	0
LI	10
SW	0
SL	30
Total	40

Session Outcomes (SOs)	Laboratory Instruction (LI)		Self Learning (SL)
		Instruction (CI)	
SO1. Choose the topic and objectives for the research. SO2. Select the suitable data during the research. SO3. Assemble the data taken during the research for interpretation. SO4. Arrange the whole work with the interpretate data.	methods in particular season of crop.		 Finding of reviews related with the topic of research. Preparation of manuscripts related to concerned topic.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Instruction (LI)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
19MI451 Propose Dissertation (Open Defense)tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis .	0	10	30	40
Total	0	10	30	40

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment. Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Group Discussion
- 3. Demonstration
- 4. Brainstorming

Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Edition
No.				& Year
1	Research publications			
2	Science direct			
3	Research gate			
5	Academia			
6	Multi authored books			
7	Book chapters			

Course Curriculum Team:

- 1. Dr. Sandeep Prasad, Department of Mining Engineering, AKS University, Satna
- 2. Prof G. K. Pradhan, Department of Mining Engineering, AKS University, Satna
- 3. Dr. B. K. Mishra, Department of Mining Engineering, AKS University, Satna
- 4. Er. Akash Gupta, Department of Mining Engineering, AKS University, Satna
- 5. Prof S. Dasgupta, Department of Mining Engineering, AKS University, Satna
- 6. Prof P K Palit, Department of Mining Engineering, AKS University, Satna
- 7. Prof A K Mittal, Department of Mining Engineering, AKS University, Satna
- 8. Er. P. S. Tiwari, Department of Mining Engineering, AKS University, Satna
- 9. Er. P. C. Tiwari, Department of Mining Engineering, AKS University, Satna
- 10. Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna

Cos, POs and PSOs Mapping

Course Code: 19MI451

Course Title: - Dissertation (Open Defense)

			Program	Outcomes				Program Sp	ecific Outcome	es
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4
Course Outcome	Develop the skilled knowledge of communicatio n in verbal and written forms	Apply the complex systems as part of research projects	Create, select & apply appropriate techniques, resources & modern engineering & IT tools	Understand the impact of professional engineering solutions in societal & environment al practices	Apply ethical principles & commit to professional ethics & responsibilities and norms of the engineering practice	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	Dev. Analy tical skill for complex mining problem s	Specialize d in depth knowledg e in specific areas of mining	Capability to comprehen d articulated needs for mining industry	Research orientation based on articulated needs
CO1- Propose Dissertation (Open Defense) tools for conducting research on selected topic of mining field and prepare Final manuscript	2	2-	1	1	1	1	2	1	1	1

Legend: 1- Low,2 - Medium, 3- High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6, PSO 1,2, 3, 4,	19MI451 Propose Dissertation (Open Defense) tools for conducting research on selected topic of mining field and prepare Final manuscript		1.1 1.2 1.3 1.4 1.5		SL 1.1

Semester IV

Course Code: 19MI452

Course Title: Dissertation (Evaluation)

Pre- requisite: Conduct research to resolving the problem of mining operations like blasting, vibration,

safety etc. by applying advanced technology adopted in field of mining industries.

Rationale: The basic purpose of M. Tech Dissertation (Evaluation) is to understand the application of

research methodology tools to do research on particular topic related to mining and follow technical writing skill to design the synopsis, thesis, research paper, abstract,

articles, etc as per results obtained during research studies.

Course Outcomes:

PROJ-MIN05 Propose Dissertation (Evaluation)tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis

Scheme of Studies:

	Course			S	Scheme	of studi	es(Hours/Week)	Total
CODE	Course Code	Course Title	CI	LI	SW	SL	Total Study Hours CI+LI+SW+SL	Credits (C)
RESEARCH PROJ	19MI452	Dissertation (Evaluation)	0	20	0	0	20	10

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self Learning, C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

				Scheme of Assessment (Marks)								
				Progressive Assessment (PRA)								
CODE	Course Code	Course Title	Class/Home Assignment 5 number3 markseach(CA	of3)10	Seminar one	Class Activity anyone(CAT)	Class Attendanc e(AT)	Total Marks _{(CA+C} T+SA+ CAT+AT)	End Semester Assessmen t (ESA)	Total Marks(PR A + ESA)		
RESEA RCH PROJ	19MI452	Dissertation (Evaluation)	0	0	0	0	0	0	100	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

19MI452 Propose Dissertation (Evaluation) tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis .

Approximate Hours

Item	Approximate Hours
CI	0
LI	20
SW	0
SL	30
Total	50

		Instruction (CI)	
objectives for the research. SO2. Select the suitable data during the research. SO3. Assemble the data taken during the research for interpretation. SO4. Arrange the whole work with the interpretate data.	1 Perform research work as per their topic by using various tools and production technology methods in particular season of crop. 2. Collection of data 3. Analysis and interpretation of data 4. Submission of final thesis based on the research topic		 Finding of reviews related with the topic of research. Preparation of manuscripts related to concerned topic.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Instruction (LI)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
19MI452 Propose Dissertation (Evaluation) tools for conducting research on selected topic of mining field and prepare Final manuscript i.e. Thesis .	0	20	30	50
Total	0	20	30	50

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment. Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Group Discussion
- 3. Demonstration
- 4. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	Research publications			
2	Science direct			
3	Research gate			
5	Academia			
6	Multi authored books			
7	Book chapters			

Course Curriculum Team:

- 1. Dr. Sandeep Prasad, Department of Mining Engineering, AKS University, Satna
- 2. Prof G. K. Pradhan, Department of Mining Engineering, AKS University, Satna
- 3. Dr. B. K. Mishra, Department of Mining Engineering, AKS University, Satna
- 4. Er. Akash Gupta, Department of Mining Engineering, AKS University, Satna
- 5. Prof S. Dasgupta, Department of Mining Engineering, AKS University, Satna
- 6. Prof P K Palit, Department of Mining Engineering, AKS University, Satna
- 7. Prof A K Mittal, Department of Mining Engineering, AKS University, Satna
- 8. Er. P. S. Tiwari, Department of Mining Engineering, AKS University, Satna
- 9. Er. P. C. Tiwari, Department of Mining Engineering, AKS University, Satna
- 10. Er. Ramesh Kant, Department of Mining Engineering, AKS University, Satna

Cos, POs and PSOs Mapping

Course Code: 19MI452

Course Title: - Dissertation (Evaluation)

	Program Outcomes							Program Specific Outcomes			
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3	PSO4	
Course Outcome	Develop the skilled knowledge of communicatio n in verbal and written forms	Apply the complex systems as part of research projects	Create, select & apply appropriate techniques, resources & modern engineering & IT tools	Understand the impact of professional engineering solutions in societal & environment al practices	Apply ethical principles & commit to professional ethics & responsibilities and norms of the engineering practice	The ability to engage in self-directed, reflective & lifelong learning for the benefit of the society	Dev. Analy tical skill for complex mining problem s	Specialize d in depth knowledg e in specific areas of mining	Capability to comprehen d articulated needs for mining industry	Research orientation based on articulated needs	
CO1- Propose Dissertation (Evaluation) tools for conducting research on selected topic of mining field and prepare Final manuscript	2	2-	1	1	1	1	2	1	1	1	

Legend: 1- Low,2 – Medium, 3- High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6, PSO 1,2, 3, 4,	19MI452 Propose Dissertation (Evaluation) tools for conducting research on selected topic of mining field and prepare Final manuscript		1.1 1.2 1.3 1.4 1.5		SL 1.1