Curriculum Book

and

Assessment and Evaluation Scheme

based on

Outcome Based Education (OBE)

and Choice-Based Credit System (CBCS)

> in Master of Technology

> 2 Year Degree Program

Revised as on 01 August 2023 Applicable w.e.f. Academic Session 2023-24

Satna 485001, Madhya Pradesh, India

Faculty of Engineering and Technology Department of Mechanical Engineering

Faculty of Engineering and Technology

Department of Mechanical Engineering

Curriculum & Syllabus of M.Tech. (Mechanical Engineering) program

(Revised as on 01 August 2023)

CONTENTS

S. No	Item	Page No
1	Forwarding	I
2	Vice Chancellor Massage	II
3	Preface	
4	Introduction	1
5	Vision & Mission of the Mechanical Engineering Department	2
6	Program Educational Objectives (POE)	3-4
7	Program Outcome (POs)	5-8
8	Semester I	9-119
9	Semester-II	120-237
10	Semester-III	238-246
11	Semester-IV	247-254

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program

Forwarding

I am thrilled to observe the updated curriculum of the Mechanical Engineering Department for M.Tech. Mechanical Engineering Program, which seamlessly integrates the most recent technological advancements and adheres to the guidelines set forth by AICTE. The revised curriculum also thoughtfully incorporates the directives of NEP-2020 and the Sustainable Development Goals.

The alignment of course outcomes (COs), Programme Outcome (POs) and Programme specific outcomes (PSOs) has been intricately executed, aligning perfectly with the requisites of NEP-2020 and NAAC standards. I hold the belief that this revised syllabus will significantly enhance the skills and employability of our students.

With immense satisfaction, I hereby present the revised curriculum for the M. Tech. in Mechanical Engineering program for implementation in the upcoming session.

> ER. Anant Soni Pro Chancellor & Chairman AKS University, Satna

01 August 2023

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program

From the Desk of the Vice-Chancellor

AKS University is currently undergoing a process to revamp its curriculum into an outcome-based approach, with the aim of enhancing the teaching and learning process. The foundation of quality of quality education lies in the implementation of a curriculum that aligns with both societal and industrial needs, focusing on relevant outcomes. This entails dedicated and inspired faculty members, as well as impactful industry internships.

Hence, it is of utmost importance to begin this endeavor by crafting an outcome-based curriculum in collaboration with academia and industry experts. This curriculum design should be informed by the latest technological advancements, market demands, the guidelines outlined in the National Education Policy (NEP) of 2020, and sustainable goals.

I'm delighted to learn that the revised curriculum has been meticulously crafted by the Mechanical Engineering Department, in consultation with an array of experts from the cement industry, research institutes, and academia. This curriculum effectively integrates the principles outlined in the NEP-2020 guidelines, as well as sustainable goals.

Our M.Tech. Mechanical Engineering curriculum is meticulously crafted to provide students with a comprehensive understanding of the core principles, latest advancements, and practical applications in the field. We recognize the pivotal role that mechanical engineers play in shaping the future of technology, innovation, and sustainable development.

At the heart of our curriculum lies a commitment to excellence, innovation, and relevance. We continually strive to integrate emerging trends, cutting-edge technologies, and industry best practices into our courses, ensuring that our graduates are well-equipped to tackle the challenges of the modern world.

Furthermore, we place a strong emphasis on fostering critical thinking, problem-solving skills, and ethical leadership among our students. Our curriculum is designed not only to impart knowledge but also to nurture creativity, resilience, and a passion for lifelong learning.

I am confident that the updated curriculum for Mechanical Engineering will not only enhance students' technical skills but also contribute significantly to their employability. During the process of revising the curriculum, I am pleased to observe that the Mechanical Engineering department has diligently adhered to the guidelines provided by the AICTE. Additionally, they have maintained a total credit requirement of 75 for the M. Tech Mechanical Engineering program.

It's worth noting that curriculum revision is an ongoing and dynamic process, designed to address the continuous evolution of technological advancements and both local and global concerns. This ensures that the curriculum remains responsive and attuned to the changing landscape of education and industry AKS University warmly invites input and suggestions from industry experts and technocrats and Alumni students to enhance the curriculum and make it more student-centered. Your valuable insights will greatly contribute to shaping an education that best serves the needs and aspirations of our students.

AKS University, Satna 01 August 2023 Professor B. A. Chopade Vice- Chancellor

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program

Preface

As part of our commitment to ongoing enhancement, the Department of Mechanical Engineering consistently reviews and updates its M.Tech. Mechanical Engineering program curriculum every three years. Through this process, we ensure that the curriculum remains aligned with the latest technological advancements, as well as local and global industrial and social demands.

During this procedure, the existing curriculum for the M.Tech. Mechanical Engineering Program undergoes evaluation by a panel of technocrats, industry specialists, and academics. Following meticulous scrutiny, the revised curriculum has been formulated and is set to be implemented starting from August 01, 2023. This implementation is contingent upon the endorsement of the curriculum by the University's Board of Studies and Governing Body.

This curriculum closely adheres to the AICTE model syllabus distributed in May 2023. It seamlessly integrates the guidelines set forth by the Ministry of Higher Education, Government of India, through NEP- 2020, as well as the principles of Sustainable Development Goals. In order to foster the holistic skill development of students, a range of practical activities, including Hands-On Training, Industrial Visits, Project planning and execution, Report Writing, Seminars, and Industrial On-Job Training, have been incorporated. Furthermore, in alignment with AICTE's directives, the total credit allocation for the M. Tech Mechanical Engineering program is capped a 75 credits.

This curriculum is enriched with course components in alignment with AICTE guidelines, encompassing various disciplines. To ensure a comprehensive learning experience, detailed evaluation schemes and rubrics have also been meticulously provided.

For each course, a thorough mapping of Course Outcomes, Program Outcomes, and Programme Specific Outcomes has been undertaken. As the course syllabus is being meticulously developed, various elements such as session outcomes, laboratory instruction, classroom instruction, self-learning activities, assignments, and mini projects are meticulously outlined.

We hold the belief that this dynamic curriculum will undoubtedly enhance independent thinking, skills, and overall employability of the students.

Mr. Shailendra Singh Parihar Head of Department Mechanical Engineering

AKS University 01 August 2023

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program

Introduction:

AKS University, a trailblazing institution, initiated a comprehensive 2-year M. Tech program in Mechanical Engineering in 2012. The Mechanical Department owes its distinction to the dedicated contributions of its teaching and non-teaching staff, who have played an integral role in enhancing the teaching and learning processes. Recognizing the importance of equipping students with practical knowledge in mechanical engineering to meet industrial demands and establish a strong reputation in the field, the department has diligently provided hands-on training experiences, bridging the gap between conventional and modernized technology systems.

The curriculum has been thoughtfully designed to include cutting-edge technologies such as CNC Machineries, Wire cut EDM, Advanced Thermal Measurement Techniques, 3D Printing, and Advanced Casting Technologies. These elements have been seamlessly integrated to groom students into adept engineers well-prepared for contemporary technological challenges. Additionally, the department is committed to nurturing entrepreneurship in its students by offering industry-oriented training programs that complement their academic pursuits.

Every step in this educational journey has been carefully planned to introduce novelty into the lives of our students within the engineering environment. Our innovative curriculum is meticulously tailored to align with the evolving needs of industries and the latest technological advancements. Presently, a thriving community of aspiring students is actively enrolled in the B. Tech program in Mechanical Engineering within our department.

Vision:

To conduct its key programs and activities in a unique manner that promotes excellence and leadership in education, research, innovation in Mechanical Engineering and fosters an environment that is safe, highly productive, cooperative and collegial, and dedicated to sustainable improvement.

Mission:

- **M 01:** By employing advanced teaching-learning methods and fostering strong collaborations with industries, our aim is to provide comprehensive and high-quality education.
- **M 02:** To nurture the potential of young and dynamic minds, empowering them to become proficient professionals, and ultimately, to attain a prominent national ranking.
- **M 03:** To meet international standards, contributing to the realization of the Government's "Make In India" industrial policy through continuous innovation and research efforts.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program

M 04: To empower students to address the demands of both individuals and industries involved in academic pursuits, applied research, and developmental endeavors associated with Mechanical Engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

- PEO 01: Prepare with strong foundation in mathematical, scientific and engineering fundamentals that will enable them to have successful career in Mechanical and Interdisciplinary Industries. (KNOWLEDGE).
- **PEO 0 2:** Strengthen their knowledge and skills through self-learning abilities throughout their professional career or during higher education. **(SKILL & PROFESSIONALISM).**
- **PEO 03 :** Impart critical thinking skills and to develop innovative ideas for Research & Development (RESEARCH & INNOVATION).
- **PEO 04 :** Ability to understand the impact of professional engineering solutions in societal, economic and environmental contexts and demonstrate knowledge and need for sustainable development.

Program Outcomes (POs)

M.Tech Mechanical Engineering Post Graduate will able to perform:

- **PO 1: Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO 2: Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO 3: Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4: Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO 5**: **Modern tool usage**: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program

- **PO 6: The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO 7: Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8**: **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO 9: Individual and teamwork**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO 10: Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO 11: Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12: Life-long learning**: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

On completion of M. Tech. Mechanical Engineering program, the students will achieve the following program specific outcomes: -

- **PSO 1: Mechanical System Design and Analysis:** Students will be able to apply engineering principles to design, analyze, and optimize mechanical systems and components, considering factors such as functionality, safety, manufacturability, and cost-effectiveness.
- **PSO 2:** Manufacturing Processes and Automation: Students will possess the skills to select, plan, and implement appropriate manufacturing processes, including automation and robotics, to efficiently produce mechanical components and products.
- **PSO 3: Computational Modeling and Simulation:** Students will have expertise in using computational tools and simulations to model and analyze complex mechanical phenomena, aiding in design and decision-making.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program

PSO 4: Product Innovation and Development: Students will possess the skills to innovate and develop new mechanical products or systems, from concept to prototype, considering market needs and user requirements.

PEO	M 1	M 1 M 2		M 4
PEO 1	3	2	3	2
PEO 2	2	2	2	3
PEO 3	2	3	2	1
PEO 4				

Consistency/Mapping of PEOs with Mission of the Department

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) "-": No correlation

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program

GENERAL COURSE STRUCTURE & THEME

1. Definition of Credit

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
2 Hours Practical (P) per week	1 Credit

2. Range of Credits:

In the light of the fact that a typical Model Two-year Post graduate degree program in Engineering has about 75 credits, the total number of credits proposed for the Two-year M.Tech.in Mechanical Engineering is kept as 75 considering NEP-20 and NAAC guidelines.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program

General Course Structure and Credit Distribution

Curriculum of M.Tech. Mechanical Engineering

Semester-I

Course Code	Course Code Course Name				С
MMF104I	Processing of Advanced Materials	03	1		04
MMF102	CNC Technology	03	1		04
MMF104E	Advanced Tool Design	03	1		04
MMF101–MMF104N	Elective-I	03			03
MMF101–MMF104N	Elective-II	03		-	03
MMF104A	Finite Element Method	02		-	02
MPE101 Manufacturing Engineering Laboratory (PGLAB)				03	02
	Total for Semester-I				22

List of Elective Courses

Elective (I&II) Semester I

Sr .No.	Course Code	Course Name			
1.	MMF104B	Machine Tool Design			
2.	MMF104C	Sheet Metal Engineering			
3.	MMF104H	Quality Control and Reliability			

4.

MMF104L Manufacturing Planning and Control

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program

Semester-II

Course Code	Course Name	L	т	Р	С
MMF201	Metal Forming Processes	03	1	-	04
MMF202	Casting and Molding Technology	03	1	-	04
MMF203A–MMF203P	Elective-III	03		-	03
MMF203A–MMF203P	Elective-IV	03	-	-	03
MMF204A–MMF204C	Elective-V-(Open)	03	-	-	03
PE201	Seminar-I		04	-	02
PE202	PE202 Mini-Project		04	-	02
	Total for Semester II	15	10	-	21

List of Elective Courses

Elective (III and IV) Semester II

Sr. No.	Course Code	Course Name
1.	MMF203H	Total Productive Maintenance
2.	MMF2031	Metrology and Computer Aided Inspection
3.	MMF203M	Modeling and Simulation
4.	MMF203K	Processing and Characterization Techniques

Elective-V (Open Elective) Semester-II

Sr. No.	Course Code	Course Name
1.	MMF204A	Research Methodology

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program

Semester-III

Course Code	Course Name	L	Т	Р	С
MMF301	Project Management and Intellectual Property Rights (Self Study)*				02
PE302	Project Stage-I				10
	Total for Semester III				12

Semester-IV

Course Code	Course Name		Т	Р	С
PE401	Project Stage-II		-	-	20
	Total for Semester IV	-	-	-	20

Semester-I			
Course Code:	MMF104E		
Course Title:	Advanced Tool Design		
Pre-requisite:	Understanding of engineering principles, proficiency in CAD software, knowledge of materials science, and experience in manufacturing processes are essential prerequisites.		
Rationale:	Advanced tool design enhances manufacturing efficiency, ensures precision in component production, reduces production costs, and facilitates complex operations, thereby supporting innovation and competitiveness in the industrial sector.		

Course Outcomes:

MMF104E.1: Define tooling's for different types of production systems.
MMF104E.2: Understand jigs and fixture design and their elements.
MMF104E.3: Design fixture for machining, welding and inspection using forces.
MMF104E.4: Study cost analysis, maintenance and CAD of tools.
MMF104E.5: Apply software knowledge for design of tools.
Scheme of Studies:

Board of				Scheme of studies (Hours/Week)			Total Credits	
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	MMF104 E	Advanced Tool Design	4	0	1	1	6	4
							torial	

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)					End Semester Assessment	Total Marks	
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)
РСС	MMF 104E	Advanced Tool Design	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

MMF104E.1: Define tooling's for different types of production systems.

Ap	proximate Hours
Item	AppX Hrs
Cl	7
LI	0
SW	3
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO1.1 Understand the impact of tooling on quality and productivity in manufacturing, especially for flexible, small lot production within tight lead times SO1.2 Evaluate tooling requirements for optimizing quality and productivity in scenarios of flexible manufacturing with constraints on lead time SO1.3 Apply knowledge of tooling's influence to enhance quality, productivity, and adaptability in small lot production, respecting lead time limitations 		 Unit-1.0 Introduction to tooling 1.1 Influence of tooling on 1.2 quality 1.3 productivity 1.4 requirement of tooling 1.5 requirement of tooling for flexible 1.6 small lot production 1.7 constraints on lead time. 	1. Importance of tooling

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
- i. Describe the tool procedure

MMF104E.2: Understand jigs and fixture design and their elements.

Ap	proximate Hours
ltem	AppX Hrs
Cl	13
LI	0
SW	3
SL	1
Total	17

Session Outcomes (Classroom Instruction	Self	
(SOs)		(CI)		Learning (SL)
SO2.1 Grasp fundamental principles of jigs and fixtures for effective part locating and development, integrating clamping and indexing elements seamlessly.		 Unit-2 Jigs and fixtures 2.1 Introduction of Jigs and fixtures 2.2 basic principles 2.3 basic principles of locating 	2.14	Constructional features of Jigs and fixtures
SO2.2 Construct jigs and fixtures using advanced		2.4 Introduction of development of fixture		
techniques in part locating, clamping, and indexing, ensuring precise tool setting and operational efficiency.		 2.5 development of fixture 2.6 fixture using locating 2.7 clamping 2.8 indexing tool 2.9 indexing tool setting 2.10 indexing tool setting elements 2.11 Tutorial -1 2.12 Tutorial -2 2.13 Tutorial -3 		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-2 Suggested Sessional Work(SW):

a. Assignments:

i. Analyze theTypes of Jigs and fixtures

MMF104E.3: Design fixture for machining, welding and inspection using forces.

А	pproximate Hours
Item	AppX Hrs
Cl	16
LI	0
SW	3
SL	1
Total	20

		lotal 20	
Session Outcomes	(LI)	Classroom Instruction	Self
(SOs)		(CI)	Learning
			(SL)
SO3.1 Standardize force analysis for	•	Unit-3: Force analysis	1.Design of
machining, welding, assembly		3.1 standardization of elements	special
fixtures with examples; design		3.1 Standardization of elements	tooling form cutters
special tooling like form cutters, broaches for CNC applications.		3.2 illustrative examples of machining	cutters
SO3.2 Innovate modular fixtures for		3.3 welding	
fragile parts, plastics in tooling; apply force analysis		3.4 assembly	
to develop flexible, efficient		3.5 inspection fixtures.	
tooling solutions		3.6 Design of special tooling	
		3.7 tooling for CNC	
		3.8 development of modular fixtures	
		3.9 development of modular Tool	
		3.10 helical interpolation	
		3.11 High-speed machining (HSM)	
		3.12 flexi tools	
		3.13 innovative concepts	
		3.14 innovative concepts like tooling	
		3.15 fragile parts	
		3.16 plastics for tooling	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Explain the Design of special tooling form cutters, broaches

MMF104E.4: Study cost analysis, maintenance and CAD of tools.

Approximate Hours				
Item	AppX Hrs			
Cl	14			
LI	0			
SW	3			
SL	1			
Total	18			

Session	(LI)	Classroom Instruction	Self Learning
Outcomes (SOs)		(Cl)	(SL)
 SO4.1 Explore tool manufacture and maintenance, tool room technology management, and cost estimation with benefit analysis, integrating CAD customization for tool design SO4.2 Manage tool room technology and costs effectively; apply CAD for customized tool design, emphasizing maintenance, manufacture efficiency, and cost analysis. 		 Unit-4 : Manufacture and maintenance of tools 4.1 Introduction 4.2 Manufacture of tools 4.3 maintenance of tools 4.4 Tool room Settings 4.5 technology of a tool room 4.6 management of a tool room 4.7 cost estimation 4.8 cost benefit analysis 4.9 automotive parts 4.10 CAD of tools 4.11 customization of CADD 4.12 Tutorial -1 4.13 Tutorial -2 4.14 Tutorial-3 	1.Importance of maintenance of tools

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-4 Suggested Sessional Work (SW):

a. Assignments:

Application of 4.10CAD of tools

MMF104E.5: Apply software knowledge for design of tools.

Approximate Hours					
ltem	Appx Hrs				
Cl	10				
LI	0				
SW	3				
SL	1				
Total	14				

Session Outcomes (SOs)	(LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO5.1 Utilize tool design software for parametric programming of tool libraries, mechanistic analysis, and integrate finite element methods for effective part modeling and manufacture SO5.2 Implement parametric programming in tool design software, conduct mechanistic analysis, and utilize finite element methods to integrate part modeling with efficient tool manufacture. 		 Unit5: Tool design software 5.1 introduction 5.2 Tool design software 5.3 parametric programming of tool libraries 5.4 mechanistic analysis 5.5 use of finite element methods 5.6 techniques for integration 5.7 techniques for integration of part modeling 5.8 tool design 5.9 tool manufacture. 5.10 Tutorial-1 	1 Application of Tool design software

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Application of mechanistic analysis

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Cossional	Colf	Tatalhaum
Course Outcomes	Class	Sessional	Self	Total hour
	Lecture	Work	Learning	(Cl+SW+Sl)
	(CL)	(SW)	(SI)	
MMF104E.1: Define tooling's for				
different types of production	7	3	1	11
systems.	,	5	Т	
systems.				
MMF104E.2: Understand jigs and fixture design and				
their elements.		_	_	
	13	3	1	17
MMF104E.3: Design fixture for machining, welding				
and inspection using forces.	16	2	1	20
		3	T	
MMF104E.4: Study cost analysis, maintenance and				
CAD of tools.	1.4	3	1	
	14	5	1	18
MMF104E.5: Apply software knowledge for design of				
tools.		3	1	
	10	3	T	14
Total Hours	60	15	5	80

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	CO Unit Titles		Marks Distribution			
		R	U	А	Marks	
CO-1	Introduction to tooling	01	02	03	06	
CO-2	Jigs and fixtures	01	03	07	11	
CO-3	Force analysis	01	07	04	12	
CO-4	Manufacture and maintenance of tools	01	06	04	11	
CO-5	Tool design software	01	06	03	10	
	Total	5	24	21	50	

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Advanced Tool Design** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggested Learning Resources:

(a)	Books:		
S. No.	Title	Author	Publisher
1	Tool Design	Donaldson, Lecain&Gold	<i>TataMcGraw</i> -Hill, NewDelhi, 1978
2	Tool Engineers Handbook,	F.W.Wilson,	Tata McGraw-Hill, New Delhi, 1980.
3	Jigs and Fixtures	P.H.Joshi	Tata McGraw-Hill, New Delhi, 1988.
4	Fundamentals of Tool Design.	E.G.Hoffman	S.M.E. Michigan, 1984
5	Fundamentals of Fixtures Design,	V.Korskov	Mir Publishers, Moscow, 1989.

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: M. Tech. Mechanical Engineering Course Code: PCC- MMF104E

Course Title: Advanced Tool Design

							gram omes						Program Specific Outcome			
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	РО 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics	-	Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO1: Define tooling's for different types of production systems.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO 2 Understand jigs and fixture design and their elements	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO3: Design fixture for machining, welding and inspection using forces.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO 4: Study cost analysis, maintenance and CAD of tools.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO5: Apply software knowledge for design of tools.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend: 1–Low, 2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO1: Define tooling's for different types of production systems.	SO1.1 SO1.2 SO1.3		Unit -1 Introduction to tooling 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 2:Understand jigs and fixture design and their elements	SO2.1 SO2.2		Unit-2 Jigs and fixtures 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13	As mentioned in
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	5	SO3.1 SO3.2		Unit-3 Force analysis 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16	Page number 2 to 6
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 4: Study cost analysis, maintenance and CAD of tools.	SO4.1 SO4.2		Unit-4: Manufacture and maintenance of tools 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14	-
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO5: Apply software knowledge for design of tools.	SO5.1 SO5.2		Unit-5: Tool design software 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10	

Semester-I							
Course Code:	MMF102						
Course Title:	CNC Technology						
Pre-requisite:	For CNC Technology include basic understanding of engineering principles, proficiency in technical drawing interpretation and geometric dimensions, familiarity with computer systems and programming concepts, and hands-on experience with machine tools and workshop practices. These fundamentals prepare individuals to effectively operate, program, and optimize CNC machines in modern manufacturing environments.						
Rationale:	CNC technology revolutionizes manufacturing by providing precise control, enhancing efficiency, and enabling versatile production capabilities. It integrates automation with advanced CAD/CAM systems, ensuring high-quality outputs, reducing operational costs, and fostering innovation in product design and manufacturing processes, thereby driving competitiveness and meeting diverse industry demands effectively.						

Course Outcomes:

- MMF102.1: Understand how the Cartesian coordinate system relates to CNC Routing, Turning and Milling operations
- MMF102.2: Write simple part programs for the two axis CNC lathe and router and milling machines
- MMF102.3: Be introduced to master cam's machining of tw are program
- MMF102.4: Calculate speeds and feeds for CNC machining operations and Debug a CNC part programming.

MMF102.5: Simulate part program son CNC machining simulation software Scheme of Studies:

Board of					Scher	Scheme of studies (Hours/Week)			
Study	Course		Cl	LI	SW	SL	Total Study	(C)	
	Code	Course Title					Hours		
	Coue						(CI+LI+SW+SL)		
Program	MMF10	CNC	4	0	1	1	6	4	
Core	2	Technology							
(PCC)	-								
Lege	Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial								

Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Scheme of Assessment (Marks)						
					Progressive	e Assessmen	t (PRA)		End Semester Assessment	Total Marks
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)
РСС	MMF 102	CNC Technolog Y	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

MMF102.1: Understand how the Cartesian coordinate system relates to CNC Routing, Turning and Milling operations

Approximate Hours

· · r	
ltem	AppX Hrs
Cl	7
LI	0
SW	3
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO1.1 Understand NC, CAM: their role in modern manufacturing practices SO1.2 Trace historical development and evolution of CNC technology. SO1.3 Identify CNC system components, types of machines, and operational advantages. 		Unit-1.0 Introduction to CNC Technology 1.1 Introduction to Numerical Control (NC) 1.2 Computer-Aided Manufacturing (CAM) 1.3 Historical development and evolution of CNC technology 1.4 Components of CNC systems 1.5 Types of CNC machines 1.6 Comparison of CNC with conventional machining processes 1.7 controllers, drives, motors	1. feedback devices
	Deer		1

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Describe the evolution of CNC machines

MMF102.2: Write simple part programs for the two axis CNC lathe and router and milling machines

Ap	proximate Hours
ltem	AppX Hrs
Cl	13
LI	0
SW	3
SL	1
Total	17

	Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)		Self Learning (SL)
SO2.1	Understand constructional features and kinematics of CNC machines.		Unit-2 CNC Machine Construction and Features 2.1 Constructional features of CNC		Constructional features of CNC machines
SO2.2	Explore tooling systems, ATC, cooling, and safety features in CNC.		machines 2.2 bed, column, saddle 2.3 spindle, tool turret/changer 2.4 Types of tool holders 2.5 Automatic tool changers 2.6 tool management systems 2.7 CNC machine kinematics 2.8 linear axes 2.9 rotary axes 2.10 multi-axis configurations 2.11 Role of cooling systems 2.12 chip management 2.13 safety features in CNC machines		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-2 Suggested Sessional Work(SW):

a. Assignments:

i. Analyze theTypes of tool holders

MMF102.3: Be introduced to master cam's machining of tw are program

А	pproximate Hours
ltem	AppX Hrs
Cl	16
LI	0
SW	3
SL	1
Total	20

		lotai 20	
Session Outcomes	(LI)	Classroom Instruction	Self
(SOs)		(CI)	Learning
			(SL)
SO3.1 Master basics of CNC	•	Unit-3: CNC Programming and Interpolation	i. Explain the
programming, G-codes, and M-		2.1 Desires of CNC programming	application of G-codes
codes application. SO3.2 Utilize CAD/CAM integration		3.1 Basics of CNC programming	of G-codes
for toolpath generation and		3.2 G-codes	
program verification.		3.3 M-codes	
		3.4 CAD/CAM integration	
		3.5 generating tool paths	
		3.6 post-processing	
		3.7 Interpolators	
		3.8 linear interpolation	
		3.9 circular interpolation	
		3.10 helical interpolation	
		3.11 High-speed machining (HSM)	
		3.12 techniques	
		3.13 strategies	
		3.14 Simulation	
		3.15 verification of CNC programs	
		3.16 Tutorial-1	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Explain the application of M-codes

MMF102.4: Calculate speeds and feeds for CNC machining operations and Debug a CNC part programming.

Approximate Hours										
ltem	AppX Hrs									
Cl	14									
LI	0									
SW	3									
SL	1									
Total	18									

Session	(LI)	Classroom Instruction	Self Learning
Outcomes (SOs)		(Cl)	(SL)
 SO4.1 Explore advanced machining operations and complex geometry machining techniques. SO4.2 Examine adaptive control systems and CNC applications in diverse industries. 		 Unit-4 : Advanced CNC Operations and Applications 4.1 Advanced machining operations 4.2 contour milling 4.3 thread milling 4.4 pocket milling 4.5 Machining complex geometries 4.6 Machining complex surfaces 4.7 Adaptive control system in CNC 4.8 CNC in manufacturing of aerospace components 4.9 automotive parts 4.10 medical devices 4.11 Trends in CNC technology 4.12 additive manufacturing (AM) 4.13 hybrid machining 4.14 Tutorial-1 	1.Importance and Types . additive manufacturing (AM)

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-4 Suggested Sessional Work (SW):

a. Assignments:

Application of Adaptive control system in CNC

MMF102.5: Simulate part program son CNC machining simulation software Scheme of Studies:

Approximate	Hours
ltem	Appx Hrs
Cl	10
LI	0
SW	3
SL	1
Total	14

troubleshooting, and optimization practices for CNC systems.Management of CNC Systems 5.1 Maintenance practices for CNC systems machiningSO5.2 Explore CNC's role in lean manufacturing and economic/environmental considerations.Management of CNC Systems cNC systems machining5.2 preventive maintenance, economic/senvironmental considerations.5.2 preventive maintenance, calibration, alignment5.3 Troubleshooting5.4 diagnostics of CNC machines5.5 Optimization of CNC operations5.6 Utilization of CNC in lean manufacturing	Self earning (SL)
5.7 agile production systems 5.8 economic consideration of CNC 5.9 tool life management, cutting parameters 5.10Tutorial-1	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering)

Program

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Application of Plasma Machining

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self	Total hour
	Lecture	Work	Learning	(Cl+SW+SI)
	(CL)	(SW)	(SI)	
MMF102.1: Understand how the				
Cartesian coordinate system relates	7	3	1	11
to CNC Routing, Turning and				
Milling operations				
MMF102.2: Write simple part programs for the two				
axis CNC lathe and router and milling machines	13	3	1	
	10	C	-	17
MMF102.3: Be introduced to master cam's machining				
of tw are program	16			20
	10	3	1	20
MMF102.4: Calculate speeds and feeds for CNC				
machining operations and Debug a CNC part	1.4	2	1	
programming.	14	3	1	18
MMF102.5: Simulate part program son CNC				
machining simulation software		3	1	
	10	5	Т	14
Total Hours	60	15	5	80

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	А	Marks
CO-1	Introduction to CNC Technology	01	02	03	06
CO-2	CNC Machine Construction and Features	01	03	07	11
CO-3	CNC Programming and Interpolation	01	07	04	12
CO-4	Advanced CNC Operations and Applications	01	06	04	11
CO-5	Maintenance, Optimization, and Management of CNC Systems	01	06	03	10
	Total	5	24	21	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for CNC Technology will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggested Learning Resources:

(a)]	Books:					
S.	Title	Author	Publisher			
No.						
1	CNC Technology	S.Krar, A.Gill	McGraw-Hill			
	and Programming		Publishing			
			Co.,1990.			
2	Computer Numerical	P.J.Amic	Prentice Hall, 1996			
	Control Programming					
3	Adaptive Control	K.J.Astrom,	Addison-			
	(2nd Ed.) <i>,</i>	B.Wittenmar	Wesley,1994.			
		k				
4	CNC: An	D.Gibbs,	Industrial Press,			
	Introduction to	T.Crandell	1991			
	Machining and Part					
5	Computer	M.Lynch	McGraw-Hill, 1992.			
	Numerical Control					
	for Machining					

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: M. Tech. Mechanical

Engineering Course Code: PCC- MMF102

Course Title: CNC Technology

		Program Outcomes												Program Specific Outcome			
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
Course Outcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics	Indivi dual and team work:	Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t	
CO1: Understand how the Cartesian coordinate system relates to CNC Routing, Turning and Milling operations	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1	
CO 2 Write simple part programs for the two axis CNC lathe and router and milling machines	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1	
CO3: Be introduced to master cam's machining of tw are program.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	
CO 4: Calculate speeds and feeds for CNC machining operations and Debug a CNC part programming.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	
CO5: Simulate part program son CNC machining simulation software.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3	

Legend: 1–Low, 2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO1: Understand how the Cartesian coordinate system relates to CNC Routing, Turning and Milling operations	SO1.1 SO1.2 SO1.3		Unit -1 Introduction to CNC Technology 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 2 Write simple part programs for the two axis CNC lathe and router and milling machines	SO2.1 SO2.2		Unit-2 CNC Machine Construction and Features 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13	As mentioned in
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5		SO3.1 SO3.2		Unit-3 : CNC Programming and Interpolation 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16	Page number 2 to 6
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 4: Calculate speeds and feeds for CNC machining operations and Debug a CNC part programming.	SO4.1 SO4.2		Unit-4: Advanced CNC Operations and Applications 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO5: Simulate part program son CNC machining simulation software.	SO5.1 SO5.2		Unit-5: Maintenance, Optimization, and Management of CNC Systems 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10	

AKS University Faculty of Engineering & Technology Department of Mechanical Engineering Curriculum & Syllabus of M.Tech. Mechanical Engineering program

Semester-I				
Course Code:	MMF104A			
Course Title :	Finite Element Method			
Pre-requisite:	Student should have basic knowledge of Mathematics such as matrix algebra, differential equation etc. and knowledge of core engineering subjects such as SOM, Mechanical vibrations and HMT etc.			
Rationale:	Familiarize with the fundamental concepts of finite element method. Inculcate the formulation of finite element models by selecting a suitable element, developing element matrices & vectors, and incorporating boundary conditions. Familiarize with finite element procedures to solve structural, thermal, and fluid flow problems using commercial finite element packages			

Course Outcomes:

PEC- MMF104A.1:Understand the fundamental concepts of finite element method to solve engineering problems.

PEC- MMF104A.2:Formulate finite element models using appropriate element selection, development of stiffness & force matrices, and application of boundary conditions

PEC- MMF104A.3:Solve structural, thermal, and fluid flow problems in one dimension using the developed finite element formulations

PEC- MMF104A.4: Formulate Two-Dimensional Finite Element models and shape function derivation for triangular and rectangular elements.

PEC- MMF104A.5:Solve two dimensional problems for plane stresses-strains and for dynamic systems using the developed finite element formulations.

Scheme of Studies:

Board of				Scheme of studies(Hours/Week)			Total Credits	
Study			Cl	CI LI SW SL Total Study		(C)		
	Course	Course					Hours(CI+LI+SW+	
	Code	Title					SL)	
Professional	PEC-	Finite	3	0	1	1	5	3
Elective	MMF104A	Element						
courses(PCC)		Method						

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial

(T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

					S	cheme c	of Assessme	nt (Marks)		
				Pro	gressive	Assessn	nent (PRA)		End	Total
Board of Study	Couse Code	Course Title	Class/Ho me Assignm ent 5 number 3 marks	Class Test 2 (2 best out of 3) 10	Semi nar one	Class Activi ty any one	Class Attendan ce	Total Marks	Semester Assessme nt	Marks
			each (CA)	marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CA T+AT)	(ESA)	(PRA+ ESA)
PEC	PEC- MMF10 4A	Finite Eleme nt Metho d	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PEC- MMF104A.1: Explain Introductory Concepts, general FEM procedure and approximate methods to solve differential equations.

Approximate Hours				
Item	AppX Hrs			
Cl	5			
LI	0			
SW	2			
SL	1			
Total	8			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO1.1Ability to understand theFEM procedure. SO1.2Ability to Understand various weighted integral methods used to get approximate solutions. SO1.3The students will be able to Analyze and solve field problems in engineering practices. 		Unit-1: Introductory Concepts: 1.1 General FEM procedure, Applications of FEM invarious fields Advantages and disadvantages of FEM 1.2 Mathematical Modelling of field problems in engineering practices. 1.3 Governing equations, Differential equations in different fields. 1.4 Approximate solution of differential equations using Least square method.	Numerical problems based on Galerikin method.
		1.5 Approximate solution of differential equations using Galerikin method. 1.6 Tutorial one. 1.7 Tutorial two.	

SW-1 Suggested Sessional Work (SW):

- a. Assignments: Numerical problem solving on least square method.
- b. Mini Project: Prepare a chart listing down various approximate methods used in FEM.
- PEC- MMF104A.2: Analyzing and solving problems using Weighted Residual Methods Ritz Technique.

Approximate Hours

Item	Approx. Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO2.1 The students will be able to understand the FEA Procedure. SO2.2 The students will be able to understand Global & local boundary conditions. SO2.3 The students will be able to apply the Rayleigh-Ritz method in design offins. 		Unit-2:FEA Procedure: 2.1 Weighted Residual Methods - Ritz Technique. 2.2 Definitions of various terms used in FEM like element, order of the element, internal and external node/s, degree of freedom, primary and secondary variables 2.3 Global & local boundary conditions. 2.4 Minimization of a functional. 2.5 Principle of minimum total potential. 2.6 Piecewise Rayleigh-Ritz method 2.7 Design of fins for maximum heat transfer. 2.8 Formulation of 'stiffness matrix'. 2.9 Transformation and assembly concepts	Numerical problem on heat conduction using Piecewise Rayleigh-Ritz method.

SW-2 Suggested Sessional Work (SW):

a. Assignments: Numerical problem on a cantilever beam using Piecewise Rayleigh-Ritz method. MiniProject: Prepare a mind map explaining the Formulation of 'stiffness matrix'.

PEC-ME 04.3: Analyzing and solving one Dimensional Problems using FEA. Approximate Hours

Item	AppX Hrs
Cl	8
LI	0
SW	2
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO3.1 The students will be able to understand discretizationelement types - linear and higher, order elements. SO3.2 The students will be able to solve problems in one dimensional for structural beams. SO3.3 The students will be able to solve problems in one dimensional for spring cart. 		 Unit-3 :One Dimensional Problems: 3.1 One dimensional second order equations- discretizationelement types - linear and higher, order elements 3.2 stiffness matrices and force vectors, Assembly of Matrices 3.3 solution of problems in one dimensional for structural beams. 3.4 solution of problems in one dimensional for taper bars. 3.5 solution of problems in one dimensional for Fluid flow network. 3.6 solution of problems in one dimensional for planer truss. 3.7 solution of problems in one dimensional for heat conduction. 3.8 solution of problems in one dimensional for spring cart system. 3.9 Tutorial one. 3.10 Tutorial Two. 	Revise the discretization and assembly procedure.

SW-3 Suggested Sessional Work(SW):

a. Assignments:

Problem on one dimensional for Fluid flow network.

b. MiniProject:

•

Problems of designing a taper bar subjected to axial loading.

PEC- MMF104A.4: Two-Dimensional Finite Element Formulations.

Appr	Approximate Hours					
ltem	Appx. Hrs					
Cl	10					
LI	0					
SW	2					
SL	2					
Total	14					

SessionOutcomes	LaboratoryInstruction	ClassroomInstruction	SelfLearning
(SOs)	(LI)	(CI)	(SL)
 SO4.1 To understand serendipity and Lagrange's methods for deriving shape functions SO4.2 To derive the shape function of three noded triangular element. SO4.3. To analyse and solve the problems on shape function of three and fournoded elements. 		Unit-4:Two-Dimensional Finite Element Formulations: 4.1 serendipity and Lagrange's methods for deriving shape functions. 4.2Derivation of shape function for three noded triangular element. 4.3Derivation of shape function for four nodedrectangular element. 4.4Derivation of shape function for four node quadrilateral elements. 4.5Derivationof shape function for the eight-node quadrilateral element 4.6Natural coordinates and coordinates transformations 4.7Numerical problems on boiling. 4.8Sub parametric, Isoparametric, super parametric elements. 4.9Compatibility and Patch test. 4.10Convergence criterion, sources of errors.	 Numerical Problem on three noded triangular element. NumericalProblem on three noded triangular element.

SW-4 Suggested SessionalWork(SW):

a. Assignments:

- i. Explain Natural coordinates and coordinates transformations?
- ii. Write a short note on sources of errors?
- b. MiniProject:

Prepare a mind map for Two-Dimensional Finite Element Formulation method.

PEC- MMF104A.5: Two Dimensional Vector Variable Problems and Finite ElementFormulation of Dynamic systems.

Appro	oximate Hours
Item	AppX Hrs
Cl	9
LI	0
SW	2
SL	2
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO5.1To Undress and stress analysis in a plane using FEA. SO5.2To Analyses stress of CST element. SO5.3To determines transverse deflections of a beam. 		 Unit 5: 2-D Vector Variable Problems and Finite Element Formulation of Dynamic systems. 5.1Equations of elasticity - Plane stress, plane strain and ax symmetric problems 5.2 stress analysis of CST element. 5.3 stress analysis of four node Quadratic element. 5.4 free vibration problems of a beam. 5.5 Lumped and consistent mass matrices Solutions techniques to Dynamic problems. 5.6 longitudinal vibration frequencies and mode shapes. 5.7 Fourth order beam equation. 5.8 Numerical problems on radiation shields. 5.9 transverse deflections and natural frequencies of beams. 	 Free vibration problem of a beam. Longitudinal vibration problem of a beam.

SW-5 SuggestedSessionalWork(SW):

a. Assignments:

- i. Numerical problems on radiation shields.
- ii. Numerical problem on transverse deflections and natural frequencies of beams

MiniProject:

Explain how the frequencies and mode shapes of longitudinal vibration can be determined using FEA?

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+SI)
PEC- MMF104A.1: Explain Introductory Concepts, general FEM procedure and approximate methods to solve differential equations.	7	2	1	10
PEC- MMF104A.2: Analysing and solving problems using Weighted Residual Methods - Ritz Technique	9	2	1	12
PEC- MMF104A.3: Analyzing and solving one Dimensional Problems using FEA.	10	2	2	14
PEC- MMF104A.4: Explain Two-Dimensional Finite Element Formulation method and shape functions.	10	2	2	14
PEC- MMF104A.5: Analyze and solve Two- Dimensional Vector Variable Problems and Finite Element Formulation of Dynamic systems	9	2	2	13
Total Hours	45	10	8	63

Suggestion for End Semester Assessment

СО	Unit Titles	Ma	Marks Distribution					
		R	U	Α	Marks			
CO-1	Introductory Concepts, general FEM procedure and approximate methods.	02	05	05	12			
CO-2	Analysing and solving problems using Weighted Residual Methods - Ritz Technique.	02	03	03	8			
CO-3	Analyzing and solving one Dimensional Problems using FEA.	02	05	05	12			
CO-4	Two-Dimensional Finite Element Formulation method and shape functions.	02	04	04	10			
CO-5	Two-Dimensional Vector Variable Problems and Finite Element Formulation of Dynamic systems	01	04	03	08			
	Total	9	21	20	50			

Suggested Specification Table (For ESA)

Legend: R:Remember, U:Understand, A:Apply

TheendofsemesterassessmentforProcess calculation willbeheldwith written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Faceb ook,Twitter,Whatsapp,Mobile,Onlinesources)
- 9. Brainstorming

SuggestedLearningResources:

(a)	Books:			
S.	Title	Author	Publisher	Edition&Year
No.				
1	Finite Element	JNReddy,	McGraw Hill	9th Edition, 2004
	Method			
2	'Introduction to Finite	Chandrupatla and	Pearson Education	1998
	Elements in	Belegundu		
	Engineering			
3	A first course in Finite	Logan D L,	Asia PvtLtd	5th Edition, 2002
	Element Method	Thomson.		
4	The Finite Element	SS, Rao, Butter	Wiley Sons	4th Edition, 2018
	Method in Engineering	WorthHeinemann		
5	Lecture notes provided	by Dept. of Mechar	nical engineering, AK	S University, Satna.

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: M. Tech. Mechanical Engineering

Course Code: MMF104A

Course Title: Finite Element Method

		Program Outcomes									Р	rogram Spec	cific Outcom	ne		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Enginee ringkno wledge	Prob lema naly sis	Desig n/dev elop ment ofsolu tions	Conduct investig ations ofcompl ex proble ms	rntool usage	The engi neer ands ocie ty	Environ mentan dsustai nability :	Ethics	Indivi duala ndtea mwor k:	Com munic ation:	Project manage mentan dfinanc e:	Life- longlear ning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Development
CO-1 :Introductory Concepts, general FEM procedure and approximate methods.	2	1	2	2	3	2	2	2	2	1	3	2	2	2	1	2
CO-2: Analyzing and solving problems using Weighted Residual Methods - Ritz Technique.	1	1	1	1	3	2	2	2	2	1	2	2	1	2	1	2
CO-3: Analyzing and solving one Dimensional Problems using FEA.	2	2	1	1	3	1	2	2	2	1	1	2	1	2	1	1
CO-4: 2-D Finite Element Formulation method and shape functions.	2	2	2	1	3	2	2	2	2	1	2	2	1	2	1	2
CO-5: Two-Dimensional Vector Variable Problems and Finite Element Formulation of Dynamic systems	2	1	1	1	1	3	2	2	2	1	2	2	1	2	1	1

Pos & PSOs No.	Cos No.& Titles	SOs No.	Class room Instruction(CI)	Self Learning(SL)
PO1,2,3,4,5,6	CO-1:Introductory	SO1.1	Unit-1: Introductory Concepts:	
7,8,9,10,11,12	Concepts, general FEM procedure and approximate methods.	SO1.2 SO1.3	1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7.	
PSO1,2,3,4				
PO1,2,3,4,5,6	CO-2:Analyzing and solving problems	SO2.1	Unit-2:FEA	-
7,8,9,10,11,12	using Weighted Residual Methods - Ritz Technique.	SO2.2	2.1,2.2,2.3,2.4,2.5,2.6,2.7,	
PSO1,2,3,4	niz recinique.	SO2.3	2.8, 2.9.	
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4	CO-3:Analyzing and solving one Dimensional Problems using FEA.	SO3.1 SO3.2 SO3.3	Unit-3 : One Dimensional Problems. 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8	
1 30 1,2,3,4			3.9, 3.10,.	
PO1,2,3,4,5,6 7,8,9,10,11,12	CO-4: 2-D Finite Element Formulation method and	SO4.1 SO4.2	Unit-4:Two-Dimensional Finite Element.	
	shape functions.	SO4.3	4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10	
PSO1,2,3,4				
PO1,2,3,4,5,6	CO-5:Two-Dimensional Vector Variable Problems and Finite	SO5.1	Unit 5: 2-D Vector Variable Problems and Finite Element Formulation of Dynamic	-
7,8,9,10,11,12	Element Formulation of Dynamic systems	SO5.2 SO5.3	systems 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9.	
PSO1,2,3,4				
	Element Formulation of Dynamic		systems	

Semester-I

Course Code:	PE105
Course Title:	Manufacturing Engineering Laboratory
Pre-requisite:	Manufacturing engineering laboratory typically include coursework in engineering fundamentals, materials science, and machining processes, ensuring foundational knowledge in mechanical principles, manufacturing techniques, and safety protocols
Rationale:	A manufacturing engineering laboratory serves to provide hands-on experience in applying theoretical knowledge to practical scenarios. It fosters skills in process optimization, quality control, and problem-solving, preparing students for careers in industrial manufacturing and engineering innovation.

Course Outcomes: At the end of the course, the student will be able to:

PE105.1: Measure cutting forces in turning, milling and drilling operations.

PE105.2: Modeling of machine components using software like ANSYS, LSDYNA.

PE105.3: Experiment on EDM, PCM, Wire EDM.

PE105.4: Design a Pneumatic circuit for a given application.

PE105.5: Optimize the machining processes. Experiment on CMM, Robotics and PROCAST.

Scheme of Studies:

Board of					Sche	eme of stud	ies (Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
PCC	PE105	Manufacturin g Engineering Laboratory	0	4	1	1	6	2
Lege	(CI: Classroom Instruction (T) and others), LI: Laboratory Instruction or other locations using d SW: Sessional Work (inclu SL: Self Learning, C: Credits.	(Includes F lifferent ins	Practical p	erformand strategies	ces in labora s)	atory workshop, field	torial

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Progressive Assessment (PRA)						Total Marks
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)
Elec tive	PE105	Manufa cturing Enginee ring Laborat ory	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PE105.1 Measure cutting forces in turning, milling and drilling operations.

Ap	proximate Hours
ltem	AppX Hrs
Cl	0
LI	6
SW	1
SL	1
Total	8

Session Outcomes	Laboratory	Classroom	Self
(SOs)	Instruction	Instruction	Learning
	(LI)	(CI)	(SL)
SO1.1 Determine cutting forces in	1.1 Study of Cutting		1. How does the
CNC milling using force	force determination		cutting speed
dynamometers.	using force		affect the
SO1.2 Measure cutting forces in	dynamometer in CNC		magnitude of
CNC turning operations using force	Milling operation		cutting forces
dynamometers.	1.2 Experiment of		measured by a
SO1.3 Perform practical	Study of Cutting force		force
experiments on cutting force	determination using		dynamometer
determination in CNC operations.	force dynamometer in		during CNC milling
	CNC Milling operation		operations?
	1.3 Study of Cutting		
	force determination		
	using force		
	dynamometer in CNC		
	Turning operation		
	1.4 Experiment of		
	Cutting force		
	determination using		
	force dynamometer in		
	CNC Turning		
	operation		
	1.5 Tutorial 1		
	1.6 Tutorial 2		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. What are the factors influencing the accuracy of cutting force measurements using a force dynamometer in CNC milling, and how can these influences be minimized or controlled?

PE105.2: Modeling of machine components using software like ANSYS, LSDYNA.

Approximate Hours

Item	AppX Hrs
Cl	0
LI	6
SW	1
SL	1
Total	8

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO2.1 Create solid models of structural components using modeling software. SO3.2 Develop solid models of machine components using modeling software. SO3.3 Conduct practical experiments in solid modeling of structural and machine components. 	 2.1 Study of Solid modeling of structural components using modeling software 2.2 Experiment of Solid modeling of structural components using modeling software. 2.3 Study of Solid modeling of machine components using modeling software 2.4 Experiment of Solid modeling of machine components using modeling software 2.5 Tutorial 1 2.6 Tutorial 2 		i. Compare and contrast the advantages of using parametric modeling versus direct modeling software for creating structural components. Justify your preferred choice based on specific design criteria and industry applications.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Given a specific engineering problem requiring the design of a structural component, demonstrate how you would utilize solid modeling software to create a detailed 3D model. Discuss the steps you would take to ensure the model meets design specifications and functional requirements.

PE105.3: Experiment on EDM, PCM, Wire EDM.

А	pproximate Hours
Item	AppX Hrs
Cl	0
LI	6
SW	1
SL	1
Total	8

Session Outcome	(LI)	Classroo m	Self Learning (SL)
S (COR)		Instructi	
(SOs)		on	
		(CI)	
SO3.1 Analyze machine	3.1 Study of Analysis of		i. Analyze the factors that
components using ANSYS	machine components using		influence the selection of EDM
and LSDyna software.	ANSYS, LSDyna etc.		or Wire EDM as a machining
SO3.2 Optimize processes	software.		process for specific metal
using statistical quality	3.2 Experiment on Analysis		components. How does the
control software.	of machine components		choice of parameters such as
Conduct experiments with	using ANSYS, LSDyna etc.		discharge current, pulse
analysis and quality control	software.		duration, and electrode
software tools	3.3 Study of Use of statistical		material impact machining
	quality control software for		efficiency and accuracy?
	process optimization		
	3.4 Experiment on Use of		
	statistical quality control		
	software for process		
	optimization.		
	3.5 Tutorial 1		
	3.6 Tutorial 2		

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Using PROCAST simulation software, design a simulation model for a complex metal casting process. Describe the steps involved in setting up the simulation, including defining material properties, mold geometry, and cooling conditions. Discuss how simulation results can guide optimization of casting parameters.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

PE105.4: Design a Pneumatic circuit for a given application

Approximate Hours							
Item	AppXHrs						
Cl	0						
LI	6						
SW	1						
SL	1						
Total	8						

Session Outcomes (SOs)	(LI)	Classroo m Instructi on	Self Learning (SL)
		(CI)	
SO4.1 Understand EDM/Wire	4.1 Study of EDM /Wire		
EDM processes for	EDM for metal machining.		1. Using a
precision metal machining.	4.2 Experiment on EDM/		pneumatic
SO4.2 Simulate metal casting	Wire EDM for metal		trainer kit,
processes using PROCAST	machining.		design and
software.	4.3 Study of Metal casting		sequence a
SO4.3 Apply practical skills in EDM	simulation using PROCAST.		control system
and metal casting	4.4 Experiment on Metal		to operate
simulations through	casting simulation using		multiple
experiments.	PROCAST.		cylinders in a
	4.5 Tutorial 1		specified
	4.6 Tutorial 2		sequence.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
- i. Compare and contrast the sequencing techniques used in pneumatic systems with those in hydraulic systems. Discuss the advantages and disadvantages of each approach, considering factors such as speed control, response time, and system complexity.

PE105.5: Optimize the machining processes. Experiment on CMM, Robotics and PROCAST..

proximate Hours
Appx Hrs
0
6
1
1
8

Session Outcomes (SOs)	(LI)	Classro om Instruct ion (Cl)	Self Learning (SL)
 SO5.1 Understand and sequence cylinders using pneumatic trainer kits. SO5.2 Model components and determine their mass properties accurately. SO5.3 Inspect engineering components using Coordinate Measuring Machines (CMM). 	 5.1 Study on Sequencing of cylinders using pneumatic trainer kit. 5.2 Experiment on Sequencing of cylinders using pneumatic trainer kit. 5.3 Study on Modeling of component and determination of mass properties. 5.4 Experiment on Modeling of component and determination of mass properties. 5.5 Study on Inspection of an engineering component using CMM. 5.6 Experiment on Inspection of an engineering component using CMM. 		1. Compare the methods of modeling a component (e.g., solid modeling, surface modeling) and their implications on determining mass properties such as center of gravity and moment of inertia. Evaluate how different modeling techniques affect accuracy and computational efficiency.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Perform an inspection task using a CMM on a precision-engineered component. Outline the procedure

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

for setting up the CMM, programming the measurement path, and interpreting measurement data. Propose strategies to ensure measurement reliability and address any encountered challenges during the inspection process.

ii. Using modeling software of your choice, create a 3D model of a complex engineering component and determine its mass properties. Describe the steps involved in setting up the model, specifying material properties, and analyzing the results. Discuss how these mass properties could influence the component's performance in real-world applications.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Laboratory	Session	Self	Total hour
	Lecture	Instruction	al	Learni	(Cl+SW+Sl)
	(CL)	(LI)	Work (SW)	ng (SI)	
PE105.1: Measure cutting forces in turning, milling and drilling operations.	0	6	1	1	8
PE105.2 : Modelling of machine components using software like ANSYS, LSDYNA.	0	6	1	1	8
PE105.3 : Experiment on EDM, PCM, Wire EDM.	0	6	1	1	8
PE105.4 : Design a Pneumatic circuit for a given application.	0	6	1	1	8
PE105.5 : Optimize the machining processes.Experiment on CMM, Robotics and PROCAST	0	6	1	1	8
Total Hours	0	30	5	5	40

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Total			
		R	U	Α	Marks
CO-1	Measure cutting forces in turning, milling and drilling operations	01	04	05	10
CO-2	Modelling of machine components using software like ANSYS, LSDYNA	02	04	04	10
CO-3	Experiment on EDM, PCM, Wire EDM	02	04	04	10
CO-4	Design a Pneumatic circuit for a given application	02	03	05	10
CO-5	Optimize the machining processes.Experiment on CMM, Robotics and PROCAST.	02	02	06	10
	Total	09	17	24	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Manufacturing Engineering Laboratory** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggested Learning Resources:

(a)	Books:					
S. No.	Title	Author	Publisher	Edition &Year		
1	Manufacturing Science	Amitabha Ghosh and A.K. Mallick	Affiliated East- West Press Pvt Ltd.	Revised edition 2010		
2	-	Kalpakjian and Schmid	Pearson India	2014		
3	Manufacturing process	H.N. Gupta R.C.Gupta Arun Mittal	New Age International Publisher	Second edition 2009		
4	Manufacturing Technology	R.K. Rajput	Laxmi Publisher Ltd.	2007		
5	Lecture notes provided Dept. of Mechanical Er	-	ersity, Satna			

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- **12.** Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: M. Tech. Mechanical

Engineering Course Code: PE105

Course Title: Manufacturing Engineering Laboratory

							gram omes						Р	rogram Spec	cific Outcon	ne
	PO 1	PO2	PO3	PO4	PO5	PO6	P07	РО 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics		Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO1: Measure cutting forces in turning, milling and drilling operations.	3	2	2	2	1	2	3	2	2	1	2	2	1	1	2	1
CO 2 : Modelling of machine components using software like ANSYS, LSDYNA.	3	2	2	2	1	2	3	2	2	1	2	2	1	1	2	2
CO3: Experiment on EDM, PCM, Wire EDM.	2	2	3	1	1	1	2	2	1	2	1	2	1	1	1	2
CO 4: Design a Pneumatic circuit for a given application.	2	3	3	2	2	2	3	2	2	1	2	3	1	2	3	2
CO5: Optimize the machining processes.Experiment on CMM, Robotics and PROCAST	2	3	2	1	2	1	3	3	1	1	2	2	2	2	2	3

Legend: 1–Low, 2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO-1: Measure cutting forces in turning, milling and drilling operations.	SO1.1 SO1.2 SO1.3	Unit-1 1.1, 1.2, 1.3, 1.4, 1.5, 1.6		
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 2: Modeling of machine components using software like ANSYS, LSDYNA.	SO2.1 SO2.2 SO2.3	Unit-2 2.1,2.2,2.3,2.4,2.5,2. 6		 As mentioned in
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO3 : Experiment on EDM, PCM, Wire EDM.	SO3.1 SO3.2	Unit-3 : 3.1, 3.2, 3.3, 3.4, 3.5, 3.6		Page number 2 to 6
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 4: Design a Pneumatic circuit for a given application.	SO4.1 SO4.2 SO4.3	Unit-4: 4.1, 4.2, 4.3, 4.4, 4.5, 4.6		
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 5: Optimize the machining processes. Experiment on CMM, Robotics and PROCAST.	SO5.1 SO5.2 SO5.3	Unit-5: 5.1, 5.2, 5.3, 5.4, 5.5,5.6		

	Semester-I
Course Code:	MMF104H
Course Title:	Quality Control and Reliability
Pre-requisite:	Understanding of quality concepts, statistical methods, engineering processes, problem-solving skills, standards compliance, and effective communication.
Rationale:	The rationale of quality control and reliability lies in ensuring products consistently meet customer expectations. It minimizes defects, enhances customer satisfaction, and reduces costs associated with rework and recalls. Reliability ensures products perform as intended over their lifecycle, fostering trust and loyalty while meeting regulatory requirements and maintaining competitive advantage in the market.

Course Outcomes: At the end of the course, the student will be able to:

MMF104H.1: Study various approaches of quality.

MMF104H.2: Understand kaizen, Deming and Juran's quality control policies.

- **MMF104H.3:** Study design of experiments using factorial approach and analyze the experiments.
- **MMF104H.4:** Discuss various quality improvement processes using charts, block diagram, distribution and QFD.

Scheme of Studies:

Board of					Scher	ne of studi	es (Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Elective	MMF104	Quality	3	0	1	1	5	3
	Н	Control and						
		Reliability						
Leg	end: C	Cl: Classroom Instruction	(Includes di	ifferent ir	structional	strategies	i.e. Lecture (L) and Tu	torial
	(T) and others),						
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field								
or other locations using different instructional strategies)								
SW: Sessional Work (includes assignment, seminar, mini project etc.),								
					,			

MMF104H.5: Understand statistical processes controlling quality and reliability assessment of product. Apply Taguchi's experimental design for quality control

SL: Self Learning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Scheme o	of Assessment (N	1arks)		
					Progressive	e Assessmen	t (PRA)		End Semester Assessment	Total Marks
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)
Elec tive	MMF10 4H	Quality Control and Reliabili ty	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

MMF104H.1 Study various approaches of quality.

Approximate	Hours
-------------	-------

ltem	AppX Hrs
Cl	09
LI	0
SW	1
SL	1
Total	11

Unit-1.0 Introduction 1.1 New culture of TOM TOM	1. Compare and contrast Deming's 14 Points for
 TQM, TQM axioms. 1.2 consequences of total quality managing. 1.3 cost of total quality, valuable tools for quality, the Japanese factor. 1.4 The Deming Approach to management : Historical background shearing processes 1.5 Deming's fourteen points for management, deadly sins & diseases. 1.6 implementing the Deming's philosophy, Deming on management. 1.7 Juran on Quality: Developing a habit of quality. 1.8 Juran's quality trilogy, the universal 	Management with Juran's Quality Trilogy. How do these frameworks address organizational effectiveness and quality improvement differently?.
	 1.2 consequences of total quality managing. 1.3 cost of total quality, valuable tools for quality, the Japanese factor. 1.4 The Deming Approach to management : Historical background shearing processes 1.5 Deming's fourteen points for management, deadly sins & diseases. 1.6 implementing the Deming's philosophy, Deming on management. 1.7 Juran on Quality: Developing a habit of quality. 1.8 Juran's quality trilogy,

	sequence.	
	1.9 Juran Vs Deming	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. How did the introduction of TQM revolutionize traditional management practices? Discuss its core principles and the impact of the Japanese influence on its development.

MMF104H.2: Understand kaizen, Deming and Juran's quality control policies.

Approximate Hours

	•
ltem	AppX Hrs
Cl	09
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	(LI)	Classroom Instruction (Cl)	Self Learning
(000)			(SL)
 SO2.1 Analyze Crosby's diagnosis of organizational issues, implement his quality principles, and apply his structured approach for continuous improvement SO2.2 Explore Kaizen's philosophy of continuous improvement and its impact on innovation, management practices, and its alignment with Deming's principles. SO2.3 Understand practical applications of Kaizen in enhancing efficiency, quality, and employee involvement, comparing its methodology with other quality management approaches. 	·	 Unit-2 Crosby & the Quality Treatment 2.1 Crosby diagnosis of a troubled company . 2.2 Crosby's quality vaccine . 2.3 Crosby's absolutes for quality management . 2.4 Crosby's fourteen steps for quality improvement . 2.5 The concept ,Kaizen . 2.6 Kaizen & innovation . 2.7 the Kaizen management practices . 2.8 Kaizen & Deming. 2.9 Application of Kaizen 	i. Discuss Crosby's "Quality Vaccine" and its application in real-world scenarios.
	F	age 60	

Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain the concept of Kaizen as proposed by Imai. How does Kaizen foster innovation within organizations, and what are the key management practices associated with its successful implementation?
- ii. Compare and contrast Crosby's Fourteen Steps for Quality Improvement with Imai's Kaizen philosophy. How do these approaches differ in their focus and methodologies, and what are their respective impacts on organizational culture and performance?

MMF104H.3: Study design of experiments using factorial approach and analyze the experiments.

A	pproximate Hours
Item	AppX Hrs
Cl	09
LI	0
SW	1
SL	1
Total	11

...

			lotal		11	
Session Outcomes (SOs)	(LI)	Classroo	om Instruction (CI)		Self Learni (SL)	ing
 SO3.1 Cover central tendency, dispersion measures, hypothesis testing, probability distributions, and linear associations, essential for foundational statistical proficiency. SO3.2 Explore factorial designs, aliasing effects, constructing fractional designs, and conducting analysis of variance for efficient experimental design and interpretation. 		Unit-3: Basic Technique Analysis 3.1 Basic Technique Introduction 3.2 measures of cer dispersion 3.3 confidence inte 3.4 frequency distri 3.5 probability distri linear associat 3.6 Design & Analys Introductions 3.7 factorial experir 3.8 aliasing, constru 3.9 analysis of varia	es for Statistical An ntral tendency & rvals, hypothesis tr ibutions & histogra ributions, measurir ions sis of Experiments: ments ucting fractional de	esting ams ng	i. What arkey measu of central tendency dispersion used in statistical analysis? Explain th significand understan data varia and decisi making.	and and eir ce in ading bility

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

• How do factorial experiments contribute to efficient experimental design? Discuss the concept of aliasing and its implications in constructing fractional designs for optimizing resources and analyzing experimental outcomes.

MMF104H.4: Discuss various quality improvement processes using charts, block diagram, distribution and QFD

Approximate Hours							
AppXHrs							
09							
0							
1							
1							
11							

Session Outcomes	(LI)	Classroom Instruction	Self Learning
(SOs)		(CI)	(SL)
 SO4.1 Utilize tools like Pareto analysis, control charts, and cause- effect diagrams for structured problem- solving and continuous improvement initiatives. SO4.2 Implement QFD to align customer requirements with product/service features, ensuring enhanced quality and customer satisfaction. SO4.3 Apply tools like decision analysis, risk analysis, and Weibull analysis to mitigate uncertainties and make informed quality improvement decisions. 	· · · · · · · · · · · · · · · · · · ·	 Unit-4 : Supporting of Quality Improvement Processes 4.1 Supporting of Quality Improvement Processes: Affinity diagram 4.2 bar chart, block diagram brain storming . 4.3 cause and effect analysis, control charts 4.4 cost benefit analysis, customer- supplier relationship check list 4.5 decision analysis, flow charts 4.6 force field analysis, line graph/run charts . 4.7 pareto analysis, quality costing . 4.8 quality function development (QFD),quality project approach & problem solving process 4.9 risk analysis scatter diagrams, Weibull analysis, 6 Sigma. 	 i. Discuss the role of risk analysis, decision analysis, and Weibull analysis in the context of quality improvement initiatives. ii. How can organizations effectively utilize Pareto analysis, control charts, and cause-and- effect diagrams to prioritize and address quality issues in their operations?

Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Explain the concept of Quality Function Deployment (QFD) and its significance in enhancing product or service quality. How does QFD facilitate the alignment of customer requirements with design and production processes?

MMF104H.5: Understand statistical processes controlling quality and reliability assessment of product. Apply Taguchi's experimental design for quality control.

Ар	proximate Hours
ltem	Appx Hrs
Cl	09
LI	0
SW	1
SL	1
Total	11

	item	лррхтпз	
	Cl	09	
	LI	0	
	SW	1	
	SL	1	
	Total	11	
Classroom	Instruction	Self	
(CI)	Learning	
		1 1	

 O5.1 Master data collection planning, interpret variables and attributes charts to maintain process stability and enhance quality control effectiveness. O5.2 Explore Taguchi's design techniques for robust 	Unit5: Statistical Process Control 5.1 Statistical Process Control: Introduction.	 Explain the concept of reliability in
 products, linking his methods with Deming's principles for comprehensive quality improvement. O5.3 Study life cycle curves, probability distributions, and reliability testing plans to ensure product/system reliability and optimize performance through effective data-driven decisions. 	 5.2 data collection plan, variable charts, attributes, interpreting the control charts 5.3 Taguchi's Approach to Experimental Design & Offling Quality Control: Introduction 5.4 background to the method, Taguchi's recommended design techniques 5.5 from Deming to Taguchi & vice-versa. 5.6 Reliability: Introduction 5.7 life cycle curves & probability distribution in modeling reliability 5.8 system reliability, operating characteristic curves 5.9 reliability and life testing plans. 	ng quality management. How do life cycle curves, probability distributions, and reliability testing plans contribute to assessing and improving system reliability?

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. How does Statistical Process Control (SPC) enhance quality management? Discuss the importance of data collection plans and the interpretation of control charts in maintaining process stability.
- ii. What are the key principles of Taguchi's Approach to Experimental Design? Compare Taguchi's recommended design techniques with traditional methods and their impact on product quality and cost efficiency.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CL)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
MMF104H.1: Study various approaches of quality.	9	1	1	11
MMF104H.2 : Understand kaizen, Deming and Juran's quality control policies.	9	1	1	11
MMF104H.3: Study design of experiments using factorial approach and analyze the experiments.	9	1	1	11
MMF104H.4 : Discuss various quality improvement processes using charts, block diagram, distribution and QFD.	9	1	1	11
MMF104H.5 : Understand statistical processes controlling quality and reliability assessment of product. Apply Taguchi's experimental design for quality control.	9	1	1	11
Total Hours	45	5	5	55

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Study various approaches of quality	04	04	02	10
CO-2	Understand kaizen, Deming and Juran's quality control policies	03	04	03	10
CO-3	Study design of experiments using factorial approach and analyze the experiments	02	04	04	10
CO-4	Discuss various quality improvement processes using charts, block diagram, distribution and QFD	02	04	04	10
CO-5	Understand statistical processes controlling quality and reliability assessment of product. Apply Taguchi's experimental design for quality control	04	02	04	10
	Total	15	18	17	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Quality Control and Reliability** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

Suggested Learning Resources:

(a)]	Books:										
S. No.	Title	Publisher	Edition &Year								
1	Managing forTotal Quality From Demingto Taguchi and SPC	N.Logothetis	Prentice Hall of India, New Delhi	2005							
2	Designing for Quality	R.F.Lochner & J.E.Matar	Chapman & Hall	2001							
3	Fundamental of Quality Control & Improvement	A.Mitra	Prentice Hall of India, New Delhi, 2 nd edition	2003							
4	SPC:Concepts, Methodologies and Tools	A.Zaidi	Prentice Hall of India, New Delhi	1995							
5	Lecture notes provided by Dept. of Mechanical Engineering, AKS University, Satna										

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Page 66

Cos, Pos and PSOs Mapping

Course Title: M. Tech. Mechanical

Engineering Course Code: MMF104H

Course Title: Quality Control and Reliability

		Program Outcomes											Program Specific Outcome			
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics	Indivi dual and team work:	Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO1: Study various approaches of quality.	3	1	1	1	1	2	3	2	2	1	2	2	1	1	2	1
CO 2 : Understand kaizen, Deming and Juran's quality control policies.	3	2	1	2	1	2	3	2	2	1	2	2	1	1	2	2
CO3: Study design of experiments using factorial approach and analyze the experiments.	2	2	3	1	1	2	2	2	1	2	1	2	1	1	1	2
CO 4: Discuss various quality improvement processes using charts, block diagram, distribution and QFD.	2	2	3	2	2	2	3	2	2	1	2	3	1	2	3	2
CO5: Understand statistical processes controlling quality and reliability assessment of product. Apply Taguchi's experimental design for quality control.	2	2	2	1	2	2	3	3	1	1	2	2	2	2	2	3

Legend: 1–Low, 2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6	CO-1: Study various approaches of quality.	SO1.1		Unit-1 Study various approaches of quality	
7, 8, 9, 10, 11, 12		SO1.2 SO1.3		1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,1.8,1.9	
PSO 1, 2, 3, 4, 5		501.5			
PO 1, 2, 3, 4, 5, 6	CO 2: Understand kaizen, Deming and Juran's quality control	SO2.1		Unit-2 Understand kaizen, Deming and Juran's quality control policies	
7, 8, 9, 10, 11, 12	policies.	SO2.2 SO2.3		2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9	
PSO 1, 2, 3, 4, 5					As mentioned in
	CO 2 - CL - L - L - L - L - L - L - L - L -	602.1			Page number
7, 8, 9, 10, 11, 12	CO3 : Study design of experiments using factorial approach and analyze the experiments.	SO3.1 SO3.2		Unit-3 : Study design of experiments using factorial approach and analyze the experiments	2 to 6
PSO 1, 2, 3, 4, 5				3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 3.9	
PO 1, 2, 3, 4, 5, 6	CO 4: Discuss various quality	SO4.1		Unit-4: Discuss various quality	
7, 8, 9, 10, 11, 12	improvement processes using charts, block diagram, distribution	SO4.2 SO4.3		improvement processes using	
PSO 1, 2, 3, 4, 5	and QFD.	304.3		charts, block diagram, distribution and QFD	
				4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	
PO 1, 2, 3, 4, 5, 6	CO 5: Understand statistical	SO5.1		Unit-5: Understand statistical	
7, 8, 9, 10, 11, 12	processes controlling quality and	SO5.2		processes controlling quality and	
	reliability assessment of product.	SO5.3		reliability assessment of product.	
PSO 1, 2, 3, 4, 5	Apply Taguchi's experimental design for quality control.			Apply Taguchi's experimental	
				design for quality control 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,	
			Page 68		

Semester-I

Course Code: MMF104C

Course Title: Sheet Metal Engineering

Pre-requisite:Basic understanding of materials science, manufacturing processes, CAD
software proficiency and mechanical engineering principles.

Rationale: The rationale of sheet metal engineering lies in its efficiency and versatility in manufacturing lightweight, durable components for various industries. It enables cost-effective production through processes like forming, cutting, and joining, meeting demands for complex geometries while ensuring structural integrity and adherence to stringent performance and aesthetic requirements.

Course Outcomes: At the end of the course, the student will be able to:

MMF104C.1: Understand the applications of sheet metal processes.

MMF104C.2: Predict the spring back in metal forming products.

MMF104C.3: Understand the presses used in metal forming.

MMF104C.4: Describe the computer aided metal forming.

MMF104C.5: Draw the forming limiting diagrams

Scheme of Studies:

Board of				Scheme of studies (Hours/Week)					
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
Elective	MMF104	Sheet Metal	3	0	1	1	5	3	
	С	Engineering							
Lege	Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial								
	(T) and others),							
		LI: Laboratory Instruction	(Includes F	Practical p	erformance	es in labora	tory workshop, field		
		or other locations using d	lifferent ins	tructiona	I strategies))			
SW: Sessional Work (includes assignment, seminar, mini project etc.),									
		SL: Self Learning,							
		C: Credits.							

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
					Progressive	e Assessmen	t (PRA)		End Semester Assessment	Total Marks
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)
Elec tive	MMF10 4C	Sheet Metal Enginee ring	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

MMF104C.1 Understand the applications of sheet metal processes.

1	
ltem	AppX Hrs
Cl	09
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO1.1 Understand processes ensuring high-quality sheet metal. SO1.2 Evaluate techniques for controlling sheet metal properties during processing for optimal performance SO1.3 Identify and differentiate shearing processes (blanking, piercing, punching). 		 Unit-1.0 1.1 Introduction of sheet metal 1.2 Production of high quality sheet metal. 1.3 Properties of sheet metal processes. 1.4 control of its properties during processing. 1.5 Application of sheet metal processes 1.6 shearing processes 1.7 blanking. 1.8 piercing. 1.9 punching. 	 Discuss their applications and parameters influencing quality in sheet metal manufacturing.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Describe the factors influencing the production of high-quality sheet metal. Discuss how these factors can be controlled during processing to ensure consistent material properties and performance.
- ii. Compare and contrast the shearing processes of blanking, piercing, and punching in sheet metal manufacturing. Explain the specific applications of each process and the key parameters that affect the quality of the final product.

MMF104C.2: Predict the spring back in metal forming products.

Approximate Hours

AppX Hrs
09
0
1
1
11

Session Outcomes	(LI)	Classroom Instruction	Self
(SOs)		(CI)	Learning (SL)
 SO2.1 Explain shallow and deep drawing techniques for cylindrical and rectangular bodies. SO2.2 Analyze methods for estimating and controlling springback to achieve accurate part dimensions. 		 Unit-2 2.1 Drawing processes. 2.2 Shallow drawing processes. 2.3 Shallow drawing of rectangular bodies. 2.4 Shallow drawing of cylindrical bodies. 2.5 Deep drawing of rectangular bodies. 2.6 Deep drawing of cylindrical bodies. 2.7 forming and bending 2.8 estimation of spring back. 2.9 control of spring back. 	 i. Compare and contrast the techniques used in forming and bending operations in sheet metal manufacturing. Provide examples of applications where each technique is preferred, and discuss the challenges associated with achieving precise dimensional control.

SW-2 Suggested Sessional Work(SW):

a. Assignments:

i. Explain the concept of spring back in sheet metal forming. How does springback occur during drawing processes, and what are the factors that contribute to it? Discuss strategies to minimize or control springback effects..

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

MMF104C.3: Understand the presses used in metal forming.

•

Approximate Hours

ltem	AppX Hrs
Cl	09
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO3.1 Identify mechanical and hydraulic press types and their design features. SO3.2 Analyze force diagrams to understand the mechanical principles governing sheet metal forming processes. 		 Unit-3: 3.1 Equipment for sheet metal working 3.2 mechanical and hydraulic presses 3.3 mechanical press design 3.4 mechanical press features 3.5 mechanical press force diagram 3.6 hydraulic press design 3.7 hydraulic press features 3.8 hydraulic press force diagram 3.9 compare mechanical and hydraulic presses 	i. Compare and contrast mechanical and hydraulic presses used in sheet metal working. Discuss their design features, operational advantages.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

• Explain the importance of force diagrams in understanding sheet metal forming processes using presses. Illustrate how force distribution affects material deformation and part quality, providing examples from practical applications.

MMF104C.4: Describe the computer aided metal forming

Approximate Hours					
Item	AppXHrs				
Cl	09				
LI	0				
SW	1				
SL	1				
Total	11				

Session	(LI)	Classroom Instruction	Self Learning
Outcomes (SOs)		(Cl)	(SL)
 SO4.1 Utilize software for nesting to optimize material usage and reduce waste in sheet metal manufacturing. SO4.2 Apply computer-aided tools for efficient tool selection and process planning in sheet metal operations. SO4.3 Design compound and progressive dies using CAD software for enhanced efficiency and precision. 		 Unit-4 : 4.1 Computer applications in sheet metal. 4.2 Computer applications in sheet metal with particular reference. 4.3 tool selection 4.4 process planning 4.5 die design 4.6 die design with special reference to compound dies. 4.7 die design with special reference to progressive dies. 4.8 Types of press 4.9 Die and punch assembly 	i. How does computer- aided nesting software optimize material utilization in sheet metal manufacturing ?

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
- i. Explain the role of computer-aided tools in tool selection and process planning for sheet metal operations. How do these tools contribute to improving productivity, quality, and cost-effectiveness in manufacturing processes?

MMF104C.5: Draw the forming limiting diagrams.

Ар	proximate Hours
Item	Appx Hrs
Cl	09
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	(LI)	Classroom Instruction (Cl)	Self Learning (SL)
 505.1 Explain the creation and utilization of forming limit diagrams (FLDs) to assess material behavior and predict failure in sheet metal forming. 505.2 Discuss case studies and examples demonstrating the application of hydro-forming for complex shapes and lightweight components. 		 Unit5: 5.1 Introduction to Formability. 5.2 forming limit diagrams 5.3 forming limit diagrams creation 5.4 forming limit diagram use 5.5 soft tool processes 5.6 hydro-forming 5.7 hydro-forming analysis 5.8 hydro-forming application 5.9 advantages of hydro forming. 	1. How are forming limit diagrams (FLDs) created and utilized in sheet metal forming? Discuss their significance in predicting material behavior and optimizing process parameters.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Explain the principles and advantages of hydro-forming as a soft tool process in sheet metal manufacturing. Provide examples of applications where hydro-forming is preferred over conventional forming techniques, and discuss the key factors influencing its success.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self	Total hour
	Lecture	Work	Learning	(Cl+SW+SI)
	(CL)	(SW)	(SI)	
MMF104C.1: Understand the applications of sheet metal processes.	9	1	1	11
MMF104C.2 : Predict the spring back in metal forming products.	9	1	1	11
MMF104C.3: Understand the presses used in metal forming.	9	1	1	11
MMF104C.4 : Describe the computer aided metal forming.	9	1	1	11
MMF104C.5 : Draw the forming limiting diagrams.	9	1	1	11
Total Hours	45	5	5	55

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	Total	
		R	U	Α	Marks
CO-1	Understand the applications of sheet metal processes	03	05	04	12
CO-2	Predict the spring back in metal forming products	03	03	04	10
CO-3	Understand the presses used in metal forming	02	04	04	10
CO-4	Describe the computer aided metal forming	02	04	04	10
CO-5	Draw the forming limiting diagrams	02	02	04	08
	Total	12	18	20	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Sheet Metal Engineering** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

Suggested Learning Resources:

(a)]	Books:									
S. No.	Title	Author	Publisher	Edition &Year						
1	Techniques of Press Working,	D.Eary and E.Reed	Prentice Hall	1989						
2	Die Design Hand book		ASTME	1989						
3	Sheet Metal Engineering	A. S. Desh pande		1999						
4	Lecture notes provided by Dept. of Mechanical Engineering, AKS University, Satna									

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- **12.** Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: M. Tech. Mechanical

Engineering Course Code: MMF104C

Course Title: Sheet Metal Engineering

	Program Outcomes							Program Specific Outcome								
	PO 1	PO2	PO3	PO4	PO5	PO6	P07	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics		Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO1: Understand the applications of sheet metal processes.	3	2	1	1	2	2	3	2	2	1	3	2	2	3	3	1
CO 2 : Predict the spring back in metal forming products.	3	2	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO3: Understand the presses used in metal forming.	2	2	1	1	3	2	2	2	1	2	1	2	1	1	2	2
CO 4: Describe the computer aided metal forming.	2	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO5: Draw the forming limiting diagrams.	2	2	2	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend: 1–Low, 2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO-1: Understand the applications of sheet metal processes.	SO1.1 SO1.2 SO1.3		Unit-1 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,1.8,1.9	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 2: Predict the spring back in metal forming products.	SO2.1 SO2.2		Unit-2 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9	As mentioned in
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO3 : Understand the presses used in metal forming.	SO3.1 SO3.2		Unit-3 : 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 3.9	Page number 2 to 6
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 4: Describe the computer aided metal forming.	SO4.1 SO4.2 SO4.3		Unit-4: 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 5: Draw the forming limiting diagrams.	SO5.1 SO5.2		Unit-5: 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,	

Semester-I

Course Code:	MMF104B
Course Title:	Machine tool design
Pre- requisite:	Student should have basic knowledge engineering mechanics, material science and engineering and manufacturing process.

Rationale: The rationale for machine tool design is to create equipment that not only meets technical specifications but also addresses economic, safety, environmental, and societal considerations while supporting efficient manufacturing processes. **Course Outcomes:**

MMF104B.1 Study kinematics o f various machine tools.

MMF104B.2: Understand principles of various machine tool feed and speed drives..
MMF104B.3 Design power screws, slide ways and machine tool spindle with bearings
MMF104B.4: Design structure and other auxiliary mechanism of machine tool.
MMF104B 5: Apply modular design aesthetics and ergonomics for machine tool.
MMF104B 6: Study acceptance test of machine tools and methods of machine tool condition

Scheme of Studies:

Board of				Scheme of		ne of studi	ne of studies(Hours/Week)		
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
Program Core (PCC)	MMF104 B	Machine tool design	3	0	1	1	5	3	

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial
(T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Scheme of Assessment (Marks)							
				End Semester Assessment	Total Marks						
Board of Study	Course Title		Class/Home Assignment 5 number 3 marks each	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activity any one	Class Attendance	Total Marks			
			(CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)	
ESC	MMF104 B	Machine tool design	15	20	5	5	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

MMF104B.1: Study kinematics o f various machine tools.

proximate Hours
AppX Hrs
8
0
1
1
10

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO1.1 Recall the basic principles of kinematics in machine tools, such as types of motion (rotational, linear) and the components involved (spindle, tool slide, worktable) SO1.2 Apply kinematic principles to analyze and predict the movement and positioning capabilities of specific machine tools in different machining scenarios. SO1.3 Critique the design of machine tools based on their kinematic capabilities and propose improvements or modifications to enhance performance.		 1.1 Introduction to metal cutting machine tools 1.2 criteria for the selection of operating capacity 1.3 design parameters 1.4 Types of motion 1.5 Degree of freedom 1.6 numericals 1.7 Kinematics of machine tools. 1.8 numericals 	 Design or modify a machine tool conceptually based on a given set of machining requirements, incorporating appropriate kinematic principles.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

1. Develop a simulation or virtual model that demonstrates the kinematic behavior of a customdesigned machine tool for specific machining tasks.

MMF104B-2 Understand principles of various machine tool feed and speed drives.

		Item					
			Cl	07			
			LI	00			
			SW	01			
			SL	01			
			Total	09			
Session Outcomes	LaboratoryInstruction		Class room	Sel	f		
(SOs)	(LI)		Instruction	Learn	ing		
			(CI)	(SL			
SO2.1 Explain the		•		1. Evaluate	the		
relationship between feed		.2.1 Basi	c principles of	effecti	veness		
rate and spindle speed in		machine	tool design	of chos	sen		
determining the material		2.2 estin	nation of drive	feed a	nd		
removal rate (MRR) and		power		speed settings			
surface finish in machining		2.3 mac	hine tool drives	in achieving			
operations.		2.4 elect	rical drive	machir	ning		
SO2.2 Describe how		2.5 Mecl	nanical drive	goals, such as			
different types of feed		2.6 fluid	drives	dimensional			
mechanisms (e.g., lead		2.7 ste	pped and	accuracy,			
screws, racks and pinions)		step le	ess speed	surface	surface finish,		
and speed drives (e.g.,		arranger	ments and	and	and		
variable speed drives,		systems.		produc	production		
gearboxes) influence the				rate.			
performance of machine							
tools.							
SO2.3 Develop a plan to							
integrate advanced feed and							
speed control systems (e.g.,							
CNC adaptive control) into							
existing machine tools to							
enhance productivity and							
precision.							

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

1. Design a set of optimal feed and speed parameters for a specific machining scenario, considering factors such as tool material, workpiece material, and machining strategy.

MMF104B-3 Design power screws, slide ways and machine tool spindle with bearings.

Ар	proximate Hours
Item	AppX Hrs
Cl	08
LI	00
SW	01
SL	01
Total	10

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO3.1 Explain the principles of spindle design, including considerations for rotational speed, stiffness, and thermal management. SO3.2 Describe the role of bearings in supporting radial and axial loads, ensuring precision, and minimizing vibration in machine tool spindles. SO3.3 Apply knowledge of spindle design principles to select appropriate bearing types, sizes, and arrangements for specific machine tool applications.		 3.1 Design of machine tool spindles and bearings 3.2 design of power screws 3.3 Numericals 3.3 design of slideways 3.5 numericals 3.6selective mechanisms. 3.7pre-selective mechanisms. 3.8 numericals 	1.Evaluate the impact of spindle design parameters (e.g., bearing clearance, shaft material) on spindle performance and reliability.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

I. . Develop innovative solutions for enhancing spindle performance, such as designing modular spindle units for quick changeovers or implementing predictive maintenance technologies

MMF104B-4. Design structure and other auxiliary mechanism of machine tool.

			Α	pproximate Hours	
			Item	AppX Hrs]
			Cl	08	
			LI	00	
			SW	01	
			SL	01	
			Total	10	-
Session Outcomes	LaboratoryInstruction	Cla	iss room	Self Learn	ning
(SOs)	(LI)	Ins	truction	(SL)	
			(CI)		
So4.1 Analyze the structural integrity of machine tool components under various operating conditions (e.g., static loads, dynamic forces, thermal gradients). So4.2 • Critique existing machine tool structures based on their ability to withstand machining forces, minimize deflections, and maintain geometric tolerances over time. So4.3 Design a comprehensive auxiliary system configuration for a specific machine tool setup, considering factors such as production volume, material type, and machining complexity.		 4.1 Machir structures-b 4.2 columns 4.3 tables supports 4.4 stock mechanism, 4.5 Measu and contrimachine too 4.6 protectis safety device 4.7design precision in tools. 4.8 Numerice 	eds and feed rement rol of ols, ive and es, of nachine	1. Develop innova solutions for integ smart technologie enabled sensors, j maintenance syste auxiliary mechanic enhance automat efficiency.	grating es (e.g., IoT- predictive ems) into sms to

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

1. Design or modify auxiliary mechanisms to optimize their performance in terms of fluid management, material handling, or tool management.

MMF104B-5. Apply modular design aesthetics and ergonomics for machine tool.

Ар	proximate Hours
ltem	AppX Hrs
Cl	07
LI	00
SW	1
SL	1
Total	9

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO5.1Explain how modular design principles contribute to simplifying manufacturing processes and reducing lead times in machine tool production. SO5.2Describe the concept of standardization and its role in modular design for ensuring compatibility and flexibility in machine tool configurations. SO5.3Apply knowledge of ergonomic principles to evaluate and redesign machine tool interfaces (e.g., control panels, tool access points) for improved operator comfort and efficiency.		 5.1 Micro-feeding mechanisms 5.2 concept of modular design 5.3 integration of SPM's 5.4 numericalas 5.5 Concepts of aesthetic 5.6 ergonomics applied to machine tools. 5.7 numericals 	1.Describe the role of anthropometric data and task analysis in optimizing machine tool ergonomics.,

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

1. Explain how ergonomic design principles improve operator productivity, reduce fatigue, and minimize the risk of injury in machine tool environments.

MMF104B-6 Study acceptance test of machine tools and methods of machine tool condition

Ар	proximate Hours
Item	AppX Hrs
Cl	07
LI	00
SW	1
SL	1
Total	9

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO6.1 The learner recalls facts and basic concepts related to acceptance testing of machine tools and methods of machine tool condition. SO6.2 The learner designs new approaches or procedures for machine tool acceptance testing or condition assessment based on their understanding and analysis.		 6.1 Acceptance tests 6.2standardization Of machine tools 6.3 machine tool conditioning , 6.4 numericals 6.5 latest trends in machine tool design 6.6introduction to CAD techniques. 6.7 numericals 	1. evaluates the effectiveness of different methods of machine tool condition assessment and acceptance testing in various contexts.

SW-6 Suggested Sessional Work (SW):

Assignments:

1. designs new approaches or procedures for machine tool acceptance testing or condition assessment based on their understanding and analysis.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Lab	Sessio	Self	Total hour
	Lecture	Lecture	nal	Learni	(CI+LI+SW+SI)
	(CI)	(LI)	Work	ng	
			(SW)	(SI)	
MMF104B.1 Study kinematics o f various					
machine tools.					10
	8	0	1	1	10
MMF104B.2 Understand principles of various					
machine tool feed and speed drives					9
	7	0	1	1	
MMF104B.3 Design power screws, slide ways					
and machine tool spindle with	_	_			10
bearings.	8	0	1	1	
MMF104B.4 Design structure and other					
auxiliary mechanism of machine tool.	8	0	1	1	10
MMF104B.5 Apply modular design aesthetics					
and ergonomics for machine tool.					
	7	0	1	1	9
MMF104B.6 Study acceptance test of machine					
tools and methods of machine tool condition.					
					9
	7	0	1	1	
				±.	
					F7
Total Hours	45	00	6	6	57
	45	00	U	U	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	M	arks Dis	Total	
		R	U	Α	Marks
CO-1	Study kinematics o f various machine tools.	03	01	01	05
CO-2	Understand principles of various machine tool feed and speed drives.	02	06	02	10
CO-3	Design power screws, slide ways and machine tool spindle with bearings.	03	07	05	15
CO-4	Design structure and other auxiliary mechanism of machine tool.	-	10	05	15
CO-5	Apply modular design aesthetics and ergonomics for machine tool.				
CO-6	-6 Study acceptance test of machine tools and methods of machine tool condition		02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Machine tool design will be held with writtenexamination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 2. Improved Lecture
- 3. Tutorial
- 4. Case Method
- 5. Group Discussion
- 6. Role Play
- 7. Visit to cement plant
- 8. Demonstration
- 9. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 10. Brainstorming

Page 91

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books :			
S. No.	Title	Author	Publisher	Edition & Year
1	Machine tool design	N.K.Mehta	TataMcgra w- hill,NewDe Ihi	1989
2	Machine tool design,Vol.3and4	N.Acherkan	Mirpublisher, Mosc ow	1968
3	Design principles of metal cutting machine tools	A.Koenigsburger	Pergamonpress,	1964
6	Training Manual			
7	Lecture note provided by Dept. of Mechanical Eng		sity, Satna .	

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos,POs and PSOs Mapping

Course Title: M. Tech Mechanical Engineering

Course Code : PEC MMF104B

Course Title: Machine tool design

	Program Outcomes											Program Specific Outcome				
Course Outcomes	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	P012	PSO 1	PSO 2	PSO 3	PSO 4
	Engine ering knowle dge	Prob lem anal ysis	Design/d evelop ment of solutions	Cond uct invest igatio ns of compl ex probl ems	Moden tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	They should have a comprehensive understanding of different power generation systems, including fossil fuel-based, renewable energy, nuclear, and combined cycle power plants.	Ability to design, analyze, and optimize power plant systems considering factors like efficiency, environmental impact, and cost- effectiveness.	Proficiency in thermodynamic principles and heat transfer mechanisms, which are fundamental to power generation processes.	Capability to identify, troubleshoot, and resolve operational issues in power plants, along with knowledge of maintenance strategies.
CO1 : Study kinematics o f various machine tools	1	1	2	2	2	2	3	1	2	2	1	2	2	2	1	-
CO 2 Understand principles of various machine tool feed and speed drives.	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1
CO3 Design power screws, slide ways and machine tool spindle with bearings.	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2
CO 4: : Design structure and other auxiliary mechanism of machine tool.	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
CO5 Apply modular design aesthetics and ergonomics for machine tool.																
CO 6: . Study acceptance test of machine tools and methods of machine tool condition	1	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	CO1 : . Study kinematics o f various machine tools	SO1.1		Unit-1. Study kinematics of various machine tools.	
7,8,9,10,11,12		SO1.2			
		SO1.3			
PSO 1,2, 3, 4, 5		SO1.4		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,	
PO 1,2,3,4,5,6	CO 2 Understand principles of various	SO2.1		Unit-2 Understand principles of various	-
	machine tool feed and speed drives			machine tool feed and speed drives.	
7,8,9,10,11,12		SO2.2			
		SO2.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4, 5		SO2.4			
					As mentionedin
					page number
PO 1,2,3,4,5,6	CO3 : . Design power screws, slide	SO3.1		Unit-3 Design power screws, slide ways and	2 to 6
7,8,9,10,11,12	ways and machine tool spindle with bearings	SO3.2		machine tool spindle with bearings.	
	, , , , , , , , , , , , , , , , , , ,			3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8	
PSO 1,2, 3, 4, 5	CO4 : . Design structure and other auxiliary mechanism of machine tool.	SO3.3 SO3.4		Unit4 Design structure and other auxiliary mechanism of machine tool.	
PSO 1,2, 3, 4, 5		SO3.5		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8	
		SO3.5			
PO 1,2,3,4,5,6	CO 5: . Apply modular design aesthetics	SO4.1		Unit5 Apply modular design aesthetics and	1
7,8,9,10,11,12	and ergonomics for machine tool.	SO4.2		ergonomics for machine tool.	
		SO4.3		5.1,5.2,5.3,5.4,5.5,5.6,5.7	
PSO 1,2, 3, 4, 5					
PO 1,2,3,4,5,6	CO6: Study acceptance test of machine	SO5.1		Unit 6. Study acceptance test of machine tools	-
7,8,9,10,11,12	tools and methods of machine tool	SO5.2		and methods of machine tool condition	
	condition selection of plant	SO5.3			
PSO 1,2, 3, 4, 5		SO5.4		6.1,6.2,6.3,6.4,6.5,6.6,6.7	
		_			
		Pa	ge 94		<u> </u>

Semester-I

Course Code:	MMF104L
Course Title:	Manufacturing Planning and Control
Pre- requisite:	Student should have basic knowledge of basic mechanical
	engineering and engineering graphics

Rationale: The rationale of Manufacturing Planning and Control lies in its ability to optimize resources, meet customer demands efficiently, ensure product quality, control costs, and enhance operational agility. By achieving these objectives, MPC contributes significantly to the overall success and profitability of an organization's manufacturing operations. **Course Outcomes:**

MMF104L.1: Apply the systems concept for the design of production and

service systems.

MMF104L.2 Make forecasts in the manufacturing and service sectors using selected quantitative and qualitative techniques.

MMF104L.3: Apply the principles and techniques for planning and control of the production and service systems to optimize/make best use of resources.

MMF104L 4: Explain Understand the importance and function of inventory and to be able to apply selected techniques for its control and management under dependent and independent demand Circumstances.

MMF104L.5 Understand the lot sizing and production scheduling and Study about quality planning, cost planning and control.

Scheme of Studies:

Board of					Schei	me of studi	es(Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)		Manufacturing Planning and Control	3	0	1	1	5	3

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial
(T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Schem	e of Assessment	(Marks)		
					Progressiv	e Assessme	ent (PRA)		End Semester Assessment	Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3)	Semina r one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
ESC	MMF1 04L	Manufact uring Planning and Control	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

MMF104L.1: Apply the systems concept for the design of production and service systems.

Approximate Hours				
ltem	AppX Hrs			
Cl	6			
LI	0			
SW	1			
SL	1			
Total	8			

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO1.1 Apply knowledge of manufacturing systems to analyze a given production scenario. SO1.2 Design a simple assembly line layout for a specific manufacturing process. SO1.3 Compare and contrast different manufacturing systems in terms of efficiency and cost-effectiveness.		 Unit1 introduction of manufacturing systems 1.1 introduction to manufacturing systems 1.2 overview on manufacturing systems 1.3 assembly line 1.4 various issues of interest assembly line 1.5 batch manufacturing 1.6 Repetitive batch manufacturing. 	 Develop a comprehensive manufacturing plan incorporating lean principles.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

1. Design an innovative assembly line layout to optimize production efficiency.

MMF104L.2 Make forecasts in the manufacturing and service sectors using selected quantitative and qualitative techniques Approximate Hours

quantitative techniquesinventory planningdifferentused for forecasting in2.1 Cellular manufacturingforecastingmanufacturing and service2.2FMStechniques	qualitative techniques		Approximate Hours			
Ll 00 SW 1 SL 01 Total 15 Session Outcomes (SOs) LaboratoryInstruction (LI) Class room (CI) Self Soc.1 Recall key quantitative techniques used for forecasting in manufacturing and service sectors (e.g., time series analysis, regression analysis, exponential smoothing). Unit-2 forecasting and 2.2 FMS 1 Describe how different 2.1 Cellular manufacturing 2.2 FMS techniques work and 2.4 CIM SO2.1 mplement forecasting models using software tools or spreadsheet applications. 2.5 pre planning 2.7 fore casting 2.8 delpi method 2.9 other statistical techniques strengths and limitations. SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation. 2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.13 inventory				Item	AppX Hrs	
SW 1 SL 01 Total 15 Session Outcomes (SOs) LaboratoryInstruction (LI) Class room Instruction Self SO2.1 Recall key quantitative techniques used for forecasting in manufacturing and service sectors (e.g., time series analysis, regression analysis, exponential smoothing). Unit-2 forecasting and inventory planning 1 Describe how different 2.1 Cellular manufacturing analysis, regression analysis, exponential smoothing). 2.4 CIM techniques SO2.1 Implement forecasting models using software tools or spreadsheet applications. 2.7 fore casting 2.8delpi method strengths and limitations. SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation. 2.11 aggregate planning 2.12 capacity planning, 2.13 inventory 1.1 aggregate planning 2.13 inventory				Cl	13	
Session Outcomes (SOs)LaboratoryInstruction (LI)Class room Instruction (C)Self Learning (S)SO2.1 Recall key quantitative techniques used for forecasting in manufacturing and service sectors (e.g., time series analysis, regression analysis, exponential smoothing).Unit-2 forecasting and inventory planning 2.1 Cellular manufacturing 2.3 JIT 2.5 pre planning 2.6 ERP 2.6 ERP 2.8 delpi method 2.7 fore casting 2.8 delpi method 2.9 other statistical techniques 2.9 other statistical techniques 2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.13 inventory1 Describe how different different different 2.6 ERP 2.8 delpi method 2.9 other statistical techniques				LI	00	
Total15Session Outcomes (SOs)LaboratoryInstruction (LI)Class room Instruction (CI)Self Learning (SL)SO2.1 Recall key quantitative techniques used for forecasting in manufacturing and service sectors (e.g., time series analysis, regression analysis, exponential smoothing).Unit-2 forecasting and inventory planning1 Describe how different 2.1 Cellular manufacturing 2.2FMS 2.3 JIT1 Describe how different work and techniques 2.2FMSSO2.2 Implement forecasting models using software tools or spreadsheet applications. SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.1 Describe how different 2.1 Cellular manufacturing 2.2 FMS 2.3 JIT 2.5 pre planning 2.6 ERP 2.6 ERP 2.8 delpi method 2.9 other statistical techniques 2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.12 capacity planning, 2.13 inventory				SW	1	
Session Outcomes (SOs)Laboratory Instruction (LI)Class room Instruction (Ci)Self Learning (SL)SO2.1 Recall key quantitative techniques used for forecasting in manufacturing and service sectors (e.g., time series analysis, regression analysis, exponential smoothing).Unit-2 forecasting and inventory planning 2.1 Cellular manufacturing 2.2FMS1 Describe how different forecasting techniques 2.3 JITSO2.1 Implement forecasting models using software tools or spreadsheet applications. SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.Laboratory Instruction (LI)1 Describe how different good 2.3 JITSO3.3 UP analysis, regression analysis, exponential smoothing).2.4 CIM 2.5 pre planning 2.5 pre planning 2.7 fore casting 2.8delpi method 2.9 other statistical techniques 2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.13 inventory				SL	01	
(SOS)(LI)Instruction (CI)Learning (SL)SO2.1 Recall key quantitative techniques used for forecasting in manufacturing and service sectors (e.g., time series analysis, regression analysis, exponential smoothing).Unit-2 forecasting and inventory planning1 Describe how different 2.1 Cellular manufacturing 2.2FMSSO2.1 Implement forecasting models using software tools or spreadsheet applications.2.4 CIM 2.5 pre planning 2.6 ERPtheir respective 3.8delpi method 2.9 other statistical techniquesSO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.13 inventory				Total	15	
(CI)(SI)SO2.1 Recall key quantitative techniques used for forecasting in manufacturing and service sectors (e.g., time series analysis, regression analysis, exponential smoothing).1 Describe how different g.2FMS 2.3 JIT 2.4 CIM 2.5 pre planning 2.6 ERP 2.6 ERP 2.6 ERP 2.8delpi method 2.7 fore casting 2.9 other statistical techniques software tools or spreadsheet applications. SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.1 Describe how different different 2.6 ERP 2.8delpi method 2.9 other statistical techniques 2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.13 inventory1 Describe how different different movements	Session Outcomes	LaboratoryInstruction		Class room	Self	p
SO2.1 Recall key quantitative techniques used for forecasting in manufacturing and service sectors (e.g., time series analysis, regression analysis, exponential smoothing).1 Describe how different forecasting 2.2 FMS 2.3 JIT 2.4 CIM 2.5 pre planning 2.5 pre planning 2.6 ERP 2.8 delpi method 2.9 other statistical techniques 2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.1 Describe how different forecasting and strengths and limitations.SO2.1 Recall key quantitative techniques sectors (e.g., time series analysis, regression analysis, exponential smoothing).1 Describe how different forecasting work and their respective strengths and limitations.SO2.2 Implement forecasting models using software tools or spreadsheet applications.1 Describe how different forecasting method 2.5 pre planning 2.6 ERP 2.8 delpi method 2.9 other statistical techniques 2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.13 inventory	(SOs)	(LI)		Instruction	Learn	ing
quantitative techniques used for forecasting in manufacturing and service sectors (e.g., time series analysis, regression analysis, exponential smoothing).inventory planning 2.2FMS 2.3 JIT 2.4 CIM 2.5 pre planning 2.6 ERP 2.6 ERP 2.8 delpi method 2.7 fore casting 2.8 delpi method 2.9 other statistical techniques spreadsheet applications. SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.different forecasting techniques 2.3 JIT 2.4 CIM 2.5 pre planning 2.6 ERP 2.6 ERP 2.8 delpi method 2.9 other statistical techniquesdifferent forecasting their their their their their their spreadsheet applications. SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.different forecasting techniques 2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.13 inventorydifferent forecasting techniques				(CI)	(SL)	
quantative commuted2.1 Cellular manufacturingforecastingused for forecasting in manufacturing and service sectors (e.g., time series analysis, regression analysis, exponential smoothing).2.1 Cellular manufacturing 2.2FMSforecasting techniques work and theirSO2.2 Implement forecasting models using software tools or spreadsheet applications. SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.2.1 Cellular manufacturing 2.2FMSforecasting techniques work and their2.3 JITwork and their2.5 pre planning 2.5 pre planning 2.7 fore casting 2.8delpi method 2.9 other statistical techniquesimitations.SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.13 inventory	SO2.1 Recall key		Unit-2 f	precasting and		
manufacturing and service sectors (e.g., time series analysis, regression analysis, exponential smoothing).2.2FMStechniques work and their2.3 JITwork and their2.4 CIMtheir2.5 pre planning SO2.2 Implement forecasting models using software tools or spreadsheet applications.2.6 ERPSO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.13 inventory	quantitative techniques				differe	nt
sectors (e.g., time series analysis, regression analysis, exponential smoothing). SO2.2 Implement forecasting models using software tools or spreadsheet applications. SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.	used for forecasting in		2.1 Cellu	lar manufacturing		-
analysis, regression analysis, exponential smoothing).2.4 CIMtheir respectiveSO2.2 Implement forecasting models using software tools or spreadsheet applications.2.6 ERPstrengths and limitations.SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.13 inventory1000000000000000000000000000000000000	manufacturing and service					•
exponential smoothing).2.5 pre planningrespectiveSO2.2 Implement2.6 ERPstrengths andforecasting models using2.7 fore castinglimitations.software tools or2.8delpi method2.9 other statisticalspreadsheet applications.2.9 other statisticalimitations.SO2.3 Proposetechniques2.10 economic analysisimprovements to existing2.11 aggregate planning2.12 capacityplanning,2.13 inventory2.13 inventory	sectors (e.g., time series		2.3 JIT			ind
SO2.2 Implement2.6 ERPstrengths andforecasting models using software tools or spreadsheet applications.2.7 fore casting 2.8delpi methodlimitations.SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.13 inventory2.10 economic analysis 2.13 inventory			2.4 CIM			
forecasting models using software tools or spreadsheet applications.2.7 fore casting 2.8delpi methodlimitations.SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.2.9 other statistical 2.10 economic analysis1.10 economic analysis2.11 aggregate planning planning, 2.13 inventory2.13 inventory1.10 economic analysis				lanning		
software tools or spreadsheet applications. SO2.3 Propose improvements to existing forecasting processes based on analysis and evaluation.	-		2.6 ERP		-	
spreadsheet applications.2.9 other statisticalSO2.3 Proposetechniquesimprovements to existing2.10 economic analysisforecasting processes based2.11 aggregate planningon analysis and evaluation.2.12 capacityplanning,2.13 inventory				•	limitat	ions.
SO2.3 Proposetechniquesimprovements to existing2.10 economic analysisforecasting processes based2.11 aggregate planningon analysis and evaluation.2.12 capacityplanning,2.13 inventory						
improvements to existing forecasting processes based on analysis and evaluation.2.10 economic analysis 2.11 aggregate planning 2.12 capacity planning, 2.13 inventory						
forecasting processes based on analysis and evaluation.2.11 aggregate planning 2.12 capacity planning, 2.13 inventory	•		•			
on analysis and evaluation. 2.12 capacity planning, 2.13 inventory				•		
planning, 2.13 inventory						
2.13 inventory	on analysis and evaluation.		•	•		
			-			
planning.				•		
			planning			

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

1. Explain the importance of accurate forecasting in manufacturing and service sectors..

MMF104L.3: Apply the principles and techniques for planning and control of the production and service systems to optimize/make best use of resources

А	pproximate Hours
ltem	AppX Hrs
Cl	09
LI	00
SW	01
SL	01
Total	11

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO3.1 Recall the key principles and techniques of production planning and control relevant to resource optimization. SO3.2 Explain how production planning and control practices contribute to efficient resource utilization in manufacturing and service sectors. SO3.3 Analyze production data to identify inefficiencies in resource allocation and propose solutions for improvement.		Unit-3.0 group technology and line balancing 3.1 Decision making 3.2 Decision making in design of manufacturing systems 3.3 problem 3.4 Decision making in group technology 3.5 part family formation techniques 3.6 classification and coding techniques 3.7 problem 3.8 line balancing 3.9 problem	 Propose improvemen ts to existing production and service systems to enhance resource efficiency and operational effectiveness .

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

I. Design a customized production scheduling system tailored to specific manufacturing or service sector requirements.

MMF104L 4: Explain Understand the importance and function of inventory and to be able to apply selected techniques for its control and management under dependent and independent demand Circumstances.

Approximate Hour				
Item	AppX Hrs			
Cl	09			
LI	00			
SW	01			
SL	01			
Total	11			

			Total	11	
Session Outcomes	LaboratoryInstruction	Cla	ass room	Self Learn	ing
(SOs)	(LI)	Instruction		(SL)	
			(CI)		
SO4.1 Students can recall			eration planning	1. Students can des	
and list key concepts,			ons planning	improved operation	
principles, and		4.2 MRP		planning framewor	
components of		4.3 MRPII		to a specific manuf	•
operational planning,		4.4 Distribut	tions	or service industry	•
MRP, and JIT.		requirement	ts planning		
SO4.2 Students can		4.5 hierarch	ical planning		
explain the purpose and		systems			
objectives of operational		4.6 JITsyster	ns		
planning, MRP, and JIT		4.7 capacity	planning and		
and they can interpret		utilization			
how these methods		4.8 producti	on activity		
contribute to efficient		control			
production and inventory		4.9 advance	d concept in		
management.		scheduling.			
SO4.3 They can judge the					
effectiveness of JIT					
approaches in minimizing					
waste and optimizing					
supply chain					
management.					

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

Assignments: 1. Explain strengths and weaknesses of MRP systems in managing inventory and production schedules.

MMF104L.5 Understand the lot sizing and production scheduling and Study about quality planning, cost planning and control

proximate Hours
AppX Hrs
08
00
1
1
10

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO5.1 They remember definitions and basic principles of quality planning and control, cost planning and control, and simulation analysis in manufacturing systems. SO5.2 They can utilize simulation software to model and simulate various manufacturing scenarios and analyze the results. SO5.3 Students can analyze the impact of different lot sizing decisions on inventory levels, production efficiency, and costs in FMS.		Unit-5. FMS operation and control 5.1 FMS Operation and control 5.2 lot sizing decisions 5.3 production scheduling 5.4 line of balance 5.5 Quality planning and control 5.6 cost planning and control 5.7 Simulation analysis of manufacturing systems 5.8 case studies	1. Evaluate the effectiveness of lot sizing strategies in terms of cost savings and production efficiency.

- SW-5 Suggested Sessional Work (SW):
 - **a.** Assignments: Design a comprehensive lot sizing strategy tailored to a specific FMS environment, considering various factors like demand variability and machine capacities.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

.

Course Outcomes	Class	Lab	Sessio	Self	Total hour
	Lecture	Lecture	nal	Learni	(Cl+Ll+SW+SI)
	(CI)	(LI)	Work	ng	
			(SW)	(SI)	
MMF104L.1: Apply the systems concept for					
the design of production and service systems					8
	6	0	1	1	
MMF104L.2 Make forecasts in the					
manufacturing and service sectors using					
selected quantitative and qualitative	13	0	1		15
techniques.	15	0	1	1	
MMF104L.3: Apply the principles and					
techniques for planning and control					
of the production and service	_	_			11
systems to optimize/make best use	9	0	1	1	
of resources					
MMF104L 4: Explain Understand the					
importance and function of inventory and to					
be able to apply selected techniques for its	0	0			11
control and management under dependent	9	0	1	1	
and independent demand Circumstances					
MMF104L.5 Understand the lot					
sizing and production scheduling					
and Study about quality planning					10
,cost planning and control .	8	0	1		10
	0	0	-	1	
Total Hours					55
	45	00	05	5	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution			Total
		R	U	Α	Marks
CO-1	introduction of manufacturing systems	03	01	01	05
CO-2	forecasting and inventory planning	02	06	02	10
CO-3	group technology and line balancing	03	07	05	15
CO-4	operation planning	-	10	05	15
CO-5	FMS operation and control	03	02	-	05
Total		11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment .for power plant engineering will be held with writtenexamination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Page 103

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books :						
S. No.	Title	Author	Publisher	Edition & Year			
1	,IntegratedProduction Control,System- management, Analysis and Design,,	D.D.Bedworthand J.EBailey	John Wiley,	1983			
2	AnalysisandControlofP roductionSystems	,	Prentice Hall,	1985			
3	,ProductionPlanninga ndControl,PergamonP ress	J.R.King	,Oxford,	1975			
4	Quantitative Production Management,	P.F.Bestwick and K.Lockyer	Pitman Publications	1982			
5	Training Manual						
6	Training Manual						
7	Lecture note provided by Dept. of Mechanical Engi		ity, Satna .				

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos,POs and PSOs Mapping

Course Title: M. Tech Mechanical Engineering

Course Code : MMF104L

Course Title: manufacturing planning and control

		Program Outcomes										Program Specific Outcome				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Design/ develop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Moden tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	They should have a comprehensi ve understandin g of different power generation systems, including fossil fuel- based, renewable energy, nuclear, and combined cycle power plants.	Ability to design, analyze, and optimize power plant systems considering factors like efficiency, environment al impact, and cost- effectiveness	Proficiency in thermodynami c principles and heat transfer mechanisms, which are fundamental to power generation processes.	Capability to identify, troubleshoot, and resolve operational issues in power plants, along with knowledge of maintenance strategies.
co1Applythesystems concept forthedesignofproductionandservice systems.	1	1	2	2	2	2	3	1	2	2	1	2	2	2	1	-
CO 2 Make forecasts in the manufacturing and service sectors using selected quantitative and qualitative techniques.	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1
co3 Apply the principles and techniques for planning and control of the production and service systems to optimize/make best use of resources.		2	1	1	2	2	2	1 Page	1 105	2	1	2	2	1	2	2

CO 4: Explain Understandthe importance andfunction of inventoryand to be able to applyselected techniques forits control andmanagement underdependent andindependent demandCircumstances	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
co 5: . 5 Understand the lot sizing and production scheduling and Study about quality planning,cost planning and control.	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(L I)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	CO1 : . : Apply the systems concept for the design of	SO1.1		Unit-1.0 . introduction of manufacturing systems	
7,8,9,10,11,12	production and service systems	SO1.2 SO1.3			
PSO 1,2, 3, 4, 5				1.1,1.2,1.3,1.4,1.5,1.6	
PO 1,2,3,4,5,6	CO 2 : Make forecasts in the manufacturing and service sectors	SO2.1		Unit-2 forecasting and inventory planning	
7,8,9,10,11,12	using selected quantitative and	SO2.2 SO2.3			
PSO 1,2, 3, 4, 5	qualitative techniques.	302.5		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12,2.13	
					As mentionedin
PO 1,2,3,4,5,6	CO3 : . : Apply the principles and	SO3.1		Unit-3 : group technology and line	page number
7,8,9,10,11,12	techniques for planning and control of the production and	SO3.2		balancing	2 to 6
PSO 1,2, 3, 4, 5	service systems to optimize/make best use of resources	SO3.3		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO 4: . Explain Understand the importance and function of	SO4.1 SO4.2		Unit-4 : . operation planning	
PSO 1,2, 3, 4, 5	inventory and to be able to apply selected techniques for its control and management under dependent and independent demand Circumstances.	SO4.3		4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	
PO 1,2,3,4,5,6	CO 5: 5 Understand the lot sizing	SO5.1		Unit 5 FMS operation and control	-
7,8,9,10,11,12	and production scheduling and	SO5.2		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8	
PSO 1,2, 3, 4, 5	Study about quality planning,cost planning and control.	SO5.3		۵.1, <i>3.2,2.3,3.4,3.3,3.0,3.1,</i> 3.8	

Semester-I

Course Code:	MMF104I
Course Title:	Processing of Advanced Materials
Pre-requisite:	Processing advanced materials requires specialized knowledge of their properties and behaviors, along with access to advanced equipment and strict adherence to safety, quality, and regulatory standards.

Rationale:Enhanced Performance: Processing refines material properties to
achieve superior mechanical, electrical, or chemical performance.Innovative Applications:Enables development of cutting-edge
technologies in industries like aerospace, electronics, and
healthcare.

Sustainability: Facilitates the creation of lightweight, durable, and eco-friendly solutions to meet evolving societal and environmental demands.

Course Outcomes:

MMF104I.1: Understand the advanced materials and their applications
 MMF104I.2: Describe the manufacturing methods for GFRP composites
 MMF104I.3: Explain the manufacturing methods for MMC and CMC composites
 MMF104I.4: Identify the difficulties in machining of advanced materials
 MMF104I.5: UnderstandtheapplicationofHighspeedmachiningforadvancedmaterials

Scheme of Studies:

Board of					Sche	me of studi	ies (Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	MMF10 4I	Processing of Advanced Materials	4	0	1	1	6	4
Leg	(CI: Classroom Instruction T) and others), LI: Laboratory Instruction or other locations using d SW: Sessional Work (inclu SL: Self Learning, C: Credits.	(Includes F lifferent ins	Practical p structiona	erformanc I strategies	es in labora	itory workshop, field	torial

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)								
Board of Study				End Semester Assessment	Total Marks						
	Course Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks			
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)	
РСС	MMF10 41	Processing of Advanced Materials	15	20	5	5	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

MMF104I.1: Understand the advanced materials and their applications Approximate Hours

	•					
ltem	AppX Hrs					
Cl	7					
LI	0					
SW	3					
SL	1					
Total	11					

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO1.1 Comprehensive Understanding of Advanced Materials: Participants will gain in-depth knowledge of various advanced materials such as ceramics, glasses, polymers, composites, non- ferrous alloys, special alloys, and shape memory alloys, including their properties, synthesis methods, and characterization techniques. SO1.2 Practical Application Knowledge: Participants will be able to identify and analyze the applications of advanced materials in diverse industries, such as aerospace, automotive, electronics, biomedical, and construction, and understand the factors influencing material selection for specific applications. 		 Unit-1.0 Introduction 1.1 • Advanced materials such as ceramics 1.2 glasses, polymers 1.3 composites 1.4 their properties and applications 1.5 non-ferrous alloys 1.6 their properties and applications 1.7 special alloys, 	1. shape memory alloys.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Analyze The properties of Composite materials

MMF104I.2: Describe the manufacturing methods for GFRP composites.

Approximate Hours

	•
Item	AppX Hrs
Cl	13
LI	0
SW	3
SL	1
Total	17

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO2.1 Participants will acquire comprehensive knowledge of polymerization processes, the structure, properties, and classifications of thermoplastics and thermosets, and the design principles underlying composites with polymer matrices. SO2.2 Participants will explore the engineering applications of polymers and composites in various industries, such as automotive, aerospace, biomedical, and consumer products, and evaluate their mechanical, thermal, and chemical behaviors to optimize material selection & performance. 		 Unit-2 Polymers 2.1 Introduction of Polymers 2.2 polymerization 2.3 structure 2.4 study properties of thermoplastics 2.5 thermosets 2.6 engineering applications 2.7 property modifications 2.8 mechanical thermal behaviors 2.9 composites 2.10 polymer matrix 2.11 ceramics 2.12 Tutorial-1 2.13 Tutorial-2 	i. Properties of Glasses
	F	Page 111	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

SW-2 Suggested Sessional Work(SW):

a. Assignments:

i. Analyze the properties of Ceramics

MMF104I.3: Explain the manufacturing methods for MMC and CMC composites

A	pproximate Hours
ltem	AppX Hrs
Cl	16
LI	0
SW	3
SL	1
Total	20

			.0	
Session Outcomes	(LI)	Classroom Instruction		Self
(SOs)		(CI)		Learning (SL)
 SO3.1 Participants will acquire knowledge of fabrication methods for glass ceramics and metal/ceramic matrix composites, understanding their properties and industrial applications. SO3.2 They will develop proficiency in machining techniques for advanced materials like MMCs, GFRP, nickel alloys, refractory metals, and powder metallurgy materials, enabling effective material processing and application in engineering contexts. 		 Unit-3: Glass ceramics 3.1 Introduction of Glass ceramics 3.2 fabrication methods 3.3 metal matrix 3.4 ceramic matrix composites 3.5 Machining 3.6 traditional 3.7 non-traditional 3.8 composite materials such as MMC 3.9 GFRP 3.10 nickel alloys 3.11 refractory metals 3.12 Introduction of powder metallurgy materials 3.13 Properties ofpowder metallurgy materials 3.14 Application of powder metallurgy materials 3.15 Tutorial-1 3.16 Tutorial-1 	i	Explain the application of metal matrix

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

SW-3 Suggested Sessional Work (SW):

- a. Assignments:
- i. Analyze fabrication methods

MMF104I.4: Identify the difficulties in machining of advanced materials

Approximate Hours							
Item	AppXHrs						
Cl	14						
LI	0						
SW	3						
SL	1						
Total	18						

Session	(LI)	Classroom Instruction	Self Learning
Outcomes (SOs)		(CI)	(SL)
Outcomes (SOs) Participants will gain proficiency in processing polymers, fabricating composites, and processing ceramics, understanding their respective techniques, properties, and industrial applications. They will explore and apply non-traditional machining processes like EDM, USM, AJM, AFM, LBM, and EBM, enhancing their ability to manufacture and refine advanced materials effectively in diverse engineering contexts.		(CI) Unit-4 : Processing of polymers 4.1 Introduction to Processing of polymers 4.2 fabrication of composites 4.3 processing of ceramics 4.4 super plastic forming 4.5 Application of non-traditional machining processes 4.6 Introduction of EDM 4.7 Application of EDM 4.8 USM processes 4.9 AJM 4.10 AFM 4.10 AFM 4.11 Introduction of LBM 4.12 Application of LBM 4.13 EBM. 4.14 Tutorial-1	(SL) 1.Importance and Types . super plastic forming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i.

Application of AFM

MMF104I.5: Understand the application of High speed machining for advanced materials

Approximate Hours							
ltem	Appx Hrs						
Cl	10						
LI	0						
SW	3						
SL	1						
Total	14						

Session Outcomes (SOs)	(LI)	Classroom Instruction (Cl)	Self Learning (SL)
(SOs) SO5.1 Participants will gain comprehensive knowledge of plasma machining, high- speed machining, and other advanced machining techniques applied to materials like polymers, composites, ceramics, and alloys, focusing on mechanisms of material removal, unique features, and specific applications. SO5.2 They will explore recent trends and future prospects in these machining		 (CI) Unit5: Plasma machining 5.1 Introduction to Plasma machining 5.2 high speed machining 5.3 advanced materials 5.4 special emphasis on mechanism of material removal 5.5 characteristic features 5.6 applications in each case 	0
technologies, understanding how advancements contribute to enhanced		5.7 Recent trends5.8 future prospects.5.9 Tutorial-15.10Tutorial-2	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Application of Plasma Machining

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CL)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
MMF104I.1:Understand the advanced materials and their applications	7	3	1	11
MMF104I.2: Describe the manufacturing methods for GFRP composites	13	3	1	17
MMF104I.3: Explain the manufacturing methods for MMC and CMC composites	16	3	1	20
MMF104I.4: Identify the difficulties in machining of advanced materials	14	3	1	18
MMF104I.5: UnderstandtheapplicationofHighspeedmachiningfora dvancedmaterials	10	3	1	14
Total Hours	60	15	5	80

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Introduction	01	02	03	06
CO-2	Polymers	01	03	07	11
CO-3	Glass ceramics	01	07	04	12
CO-4	Processing of polymers	01	06	04	11
CO-5	Plasma machining	01	06	03	10
	Total	5	24	21	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Processing of Advanced Materials** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

Suggested Learning Resources:

(a)	Books:		
S. No.	Title	Publisher	
1	Principles of Manufacturing Materials and Processes	J.S.Campbell	McGraw-Hill, New York.
2	Materials and processes in manufacturing	E.P. De Garmo	Collier Mac Millan, New York.
3	Principles of Polymer Processing	Zehev Tadmor	Wiley-Inter science Publications
4	Manufacturing Engineering and Technology	Serope Kalpakjian and Steven R. Schmid	Addison Wesley Longman (Singapur) Pvt. Ltd., India Branch
5	Manufacturing Science	Ghosh,A. and Mallik,A.K	East-West Press Private Ltd

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: M. Tech. Mechanical

Engineering Course Code: PCC- MMF104I

Course Title: Processing of Advanced Materials

		Program Outcomes										Program Specific Outcome				
	PO 1	PO2	PO3	PO4	PO5	PO6	P07	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics		Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO1: Understand the advanced materials and their applications	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO 2 Describe the manufacturing methods for GFRP composites	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO3: Explain the manufacturing methods for MMC and CMC composites	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO 4: Identify the difficulties in machining of advanced materials	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO5: UnderstandtheapplicationofHighs peedmachiningforadvancedmater als		-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend: 1–Low, 2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO1: Understand the advanced materials and their applications	SO1.1 SO1.2		Introduction 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 2 Describe the manufacturing methods for GFRP composites	SO2.1 SO2.2		Unit-2 Polymers 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13	As mentioned in
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5		SO3.1 SO3.2		Unit-3 : Glass ceramics 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16	Page number 2 to 6
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 4: Identify the difficulties in machining of advanced materials	SO4.1 SO4.2		Unit-4: Processing of polymers 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO5:Understandtheapplicationo fHighspeedmachiningforadvance dmaterials	SO5.1 SO5.2		Unit-5: Plasma machining 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10	

	Semester-II
Course Code:	PCC-MMF202
Course Title:	Casting and Moulding Technology
Pre-requisite:	Knowledge of materials properties such as strength, hardness, elasticity, and thermal conductivity is essential. Understanding how different materials behave under various conditions (e.g., temperature, pressure) is crucial for selecting the right materials for casting and molding processes.
Rationale:	Casting and moulding technology is fundamental to manufacturing, offering versatility in materials, cost efficiency, design flexibility, and sustainability. It supports innovation, integrates with modern technologies, and provides diverse career opportunities across industries worldwide. Understanding these techniques is essential for efficient production and product development in today's manufacturing landscape.

Course Outcomes: At the end of the course, the student will be able to:

PCC-MMF202.1: Identify suitable casting processes and their working principles to manufacture products

PCC-MMF202.2: Design and analyze the melt flow in mould gating and rising system

- **PCC-MMF202.3:** Understanding casting solidification phenomenon and identify various casting defects and their remedies.
- **PCC-MMF202.4:** Classify different mould types for plastics product and understood polymerization and synthesis techniques
- PCC-MMF202.5: Understand different plastics processing methods and their working principles

Scheme of Studies:

Board of				Total Credits				
Study Course Code		Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	PCC- MMF202	Casting and Moulding Technology	4	0	1	1	6	4
Image: Note of the structure Technology Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), Li: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), Page 120								

SL: Self Learning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)					End Semester Assessment	Total Marks	
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)
PCC	PCC- MMF20 2	Casting and Mouldi ng Technol ogy	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-MMF202.1 Understand the theory of plasticity and yield criteria.

Ap	proximate Hours
ltem	AppX Hrs
Cl	12
LI	0
SW	2
SL	2
Total	16

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO1.1 Understand the fundamental principles and techniques of metal casting processes SO1.2 Identify suitable materials for casting parts and tools based on their properties and applications. SO1.3 Design efficient foundry layouts and select appropriate equipment for various casting operations. SO1.4 Apply principles of pattern and core design to optimize casting production and quality. 		 Unit-1.0 Introduction to Metal Casting Historical development and modern applications of metal casting 1.2 Basic terminology and principles in metal casting. Selection criteria costing materials: metals, alloys, and molds 1.4 Examples of commonly used materials and their applications in different casting processes. 	1 Comparative analysis of different molding methods and their advantages in various applications. Ii Importance of quality control in metal casting processes.
		1.5 Principles of foundry layout	

design and optimization.	
1.6 Essential equipment	
in metal casting: furnaces,	
molds, ladles, crucibles,	
and gating systems	
1.7 Types of patterns: solid,	
split, matchplate, and shell	
patterns.	
1.8 Design considerations for	
pattern making and material selection	
Selection	
1.9 Introduction to cores:	
types, materials, and core-	
making processes.	
1.10 Applications of cores	
in creating internal	
features and complex	
geometries.	
homogeneous materials	
1.11 Techniques for core	
assembly and integration	
into casting molds	
1.12 Molding Techniques	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Analysis of case studies highlighting successful metal casting projects
- ii. Other Activities(Role play):

Design and present a comprehensive metal casting process optimization plan..

PCC-MMF202.2: Design and analyze the melt flow in mould gating and rising system

Approximate Hours					
ltem	AppX Hrs				
Cl	12				
LI	0				
SW	1				
SL	1				
Total	14				

Unit-2 Melt Flow Analysis and Gating Systems 2.1 Introduction to Melt Flow	i. Experimental Methods for
 2.2 Factors influencing melt flow behavior 2.3 Types of gating systems (e.g., sprue, runner, gates) 2.4 Design considerations for effective gating 2.5 Fluidity of Molten Materials 2.6 Factors affecting fluidity (e.g., temperature, composition) 2.7 Techniques for simulating and analyzing melt flow 2.8 Strategies to minimize defects (e.g., shrinkage, porosity) 2.9 Balancing flow and pressure distribution in the mould cavity 2.10 Mold flow analysis experiments) 2.11 Tutorial-1 2.12 Tutorial-11 	Flow Analysis.
	distribution in the mould cavity 2.10 Mold flow analysis experiments) 2.11. Tutorial-1

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. injection molding processes

PCC-MMF202.3: Understanding casting solidification phenomenon and identify various casting defects and their remedies

Approximate Hours

ltem	AppX Hrs
Cl	13
LI	0
SW	2
SL	1
Total	16

Session Outcomes	(LI)	Classroom Instruction	Self
(SOs)		(CI)	Learning (SL)
 SO3. 1 Analyze heat transfer mechanisms during solidification in different casting processes SO3.2 Identify types of solidification defects (e.g., shrinkage, porosity, hot tearing) and their attributes. SO3.3 Apply simulation techniques to predict solidification patterns and optimize casting processes SO3.4 Evaluate inspection techniques used to detect casting defects and assess part quality. SO3.5 Utilize expert systems for diagnosing casting defects and recommending process improvements. 	·	 Unit-3: Introduction to Solidification in Casting 3.1 Overview of solidification processes in casting 3.2 Heat transfer mechanisms during solidification 3.3 Shrinkage defects: causes, attributes, and prevention 3.4 Porosity and gas defects in castings 3.5 Design and optimization of feeding systems 3.6 Hot tearing and other structural defects 3.7 Formation of dendritic and equiaxed grain structures 3.8 Influence of alloy composition on microstructure 3.9 Simulation Techniques for Solidification Analysis 3.10 Principles of solidification simulation 3.11 Case studies using casting simulation software 3.12 . Tutorial-1 3.13 Tutorial-1I 	(SL) i. Optimizatio n of casting processes based on simulation results

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- b. Case studies of expert system applications in casting industries
- c. Corrective measures for common casting defects

PCC-MMF202.4: Classify different mould types for plastics product and understood polymerization and synthesis techniques

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	2
SL	1
Total	15

Session		(LI)	Classroom Instruction		Self Learning	
Outcomes (SOs)				(CI)	(SL)	
comp of diff	erstand the chemical osition and structures ferent types of cs used in molding.		4.1	: Introduction to Plastics Overview of plastics materials Chemical composition and	i. Applications and case studies of	
and sy	nerization processes ynthesis techniques		4.3 4.4	molecular structures of polymers Types of polymerization: addition, condensation Synthesis methods: bulk,	injection moulding	
SO4.3 Explo metho their a	astics ore various molding ods and understand applications, ntages, and		4.5	solution, suspension, emulsion polymerization Principles and process steps of Injection Molding Design considerations and tooling		
SO4. Gain proce proce equip	itions ractical knowledge of essing parameters, ement, and material		4.7 4.8	of Injection Molding Basics of extrusion Types of extrusion processes: hot and cold extrusion		
moldi SO4.5 Analy real-w	tion for different ing processes yze case studies and vorld applications of		4.10	Principles and variations (extrusion blow molding, injection blow molding) Transfer molding process and		
proce	cs molding and essing.		4.11 4.12	applications Casting and Reaction Injection Molding (RIM) Advantages and limitations of casting and RIM		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- I Environmental considerations in plastics molding
- ii Common defects and troubleshooting techniques.

PCC-MMF202.5: Understand different plastics processing methods and their working principles.

Ар	proximate Hours
ltem	Appx Hrs
Cl	11
LI	0
SW	1
SL	1
Total	13

Session Outcomes (SOs)	(LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO5.1 To understand the fundamentals of plastic flow behavior in mold design. SO5.2 To analyze pressure and shear stress distribution in injection molding processes. SO5.3 To develop effective gating layout strategies for optimizing mold design SO5.4 To conduct cooling analysis to enhance efficiency and quality in molding processes SO5.5 To review existing CAD/CAM packages tailored for casting and molding applications. 		 Unit5: Introduction to Plastic Flow in Mold Design 5.1 Definition and importance of plastic flow in molding processes. 5.2 Types of molds and their applications. 5.3 Principles of pressure distribution during injection molding. 5.4 Shear stress effects on material flow and mold design considerations. 5.5 Types of gates: sprue, runner, and gate design principles. 5.6 Factors influencing gate location and size. 5.7 Importance of cooling in mold 	I mold design simulations and analysis.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering)

Program

design.	
5.8 Techniques for analyzing and optimizing cooling channels.	
5.9 CAM software capabilities for machining and manufacturing molds.	
5.10 . Tutorial-1	
5.11 Tutorial-11	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Advantages, challenges, and industrial applications of plastics moulding

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self	Total hour
	Lecture	Work	Learning	(CI+SW+SI)
	(CL)	(SW)	(SI)	
PCC-MMF202.1: Identify suitable casting processes and their				
working principles to manufacture products.	12	2	2	16
PCC-MMF202.1: Design and analyze the melt				
flow in mould gating and rising system	12	1	1	14
PCC-MMF202.3: Understanding casting solidification phenomenon				
and identify various casting defects and their remedies	13	2	1	16
PCC-MMF202.4: Classify different mould types for plastics product				
and understood polymerization and synthesis techniques	12	2	1	15
PCC-MMF202.5 Understand different plastics processing methods and their working principles.	11	1	1	13
	11			15
Total Hours	60	8	6	74
Page	178			

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Introduction to metal casting process	01	02	03	06
CO-2	Metal flow process	01	03	07	11
CO-3	Solidifications and heat transfer	01	07	04	12
CO-4	Plastic mouldings	01	06	04	11
CO-5	Plastic flow and gating system	01	06	03	10
	Total	5	24	21	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Casting and Moulding Technology** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggested Learning Resources:

(a)]	Books:			
S. No.	Title	Author	Publisher	Edition &Year
1	PrinciplesofMetalC asting	R.W.Heine,C.R.Lo perandP.C.Rosent hal	McGraw Hill	1976
2	Fundamentals of Metal Casting Technology	P. C.Mukherjee	Oxford and IBH Publ. Co.	1979
3	Plastics Mold Engineering	J.H.Dubois And W.bble	NostrandReihnhol d, New York	1987
4	TheDieCastingBook ,	A.C.Street	PortcullisPressLtd	1986

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor , Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Page 130

Cos, Pos and PSOs Mapping

Course Title: M. Tech. Mechanical

Engineering Course Code: PCC-MMF202

Course Title: Casting and Moulding Technology

		Program Outcomes						Р	rogram Spee	cific Outcom	ne					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	РО 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics		Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
co1 : Understand the theory of plasticity and yield criteria.	2	2	2	2	3	2	3	2	2	1	3	1	2	3	3	1
co 2 : Understanding Casting and Moulding Technology and Applications	2	2	1	2	2	2	3	2	1	1	2	1	2	2	2	1
co3 : Analyze Casting and Moulding Technology.	2	2	2	1	2	2	2	2	1	2	1	1	1	1	2	2
co 4 Design rolls for rolling, forging and extrusion.	2	3	3	2	3	2	3	2	2	1	2	1	1	3	3	2
cos : Describe the latest trends in metal forming	2	1	1	1	2	3	3	2	1	1	2	2	1	3	1	3

Legend: 1–Low, 2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO-1: Understand the theory of plasticity and yield criteria.	SO1.1 SO1.2 SO1.3 SO1.4		Introduction to metal casting process 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,1.8, 1.9, 1.10, 1.11, 1.12	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 2: Understanding Casting and Moulding Technology and Applications.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 Metal flow process 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9, 2.10, 2.11, 2.12,	As mentioned in
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO3 : Analyze Casting and Moulding Technology.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3 : Solidifications and heat transfer 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 3.9, 3.10, 3.11, 3.12, 3.13	Page number 2 to 6
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 4: Design rolls for rolling, forging and extrusion	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Plastic mouldings 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 5: Describe the latest trends in metal forming	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit-5: Plastic flow and gating system 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10 , 5.11,	

	Semester-II
Course Code:	PCC-MMF201
Course Title:	Metal Forming Processes
Pre-requisite:	Understanding the properties of metals, such as mechanical properties (strength, hardness, ductility), thermal properties, and microstructure.Basic knowledge of various manufacturing processes like casting, machining, and welding
Rationale:	Metal forming processes constitute a significant portion of manufacturing techniques employed across various industries. Studying these processes provides insights into how raw materials (metals) are shaped into finished products through controlled deformation. Metal forming techniques find applications across diverse industries such as automotive, aerospace, electronics, and construction. Understanding these processes prepares engineers for various career opportunities and allows them to contribute effectively to industry-specific challenge

Course Outcomes: At the end of the course, the student will be able to:

PCC-MMF201.1: Understand the theory of plasticity and yield criteria.

PCC-MMF201.2: Understanding Metal Forming Processes and Applications.

PCC-MMF201.3: Analyze metal forming processes.

PCC-MMF201.4: Design rolls for rolling, forging and extrusion.

PCC-MMF201.5: Describe the latest trends in metal forming

Scheme of Studies:

Board of					Scher	me of studi	es (Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program	PCC-	Metal	4	0	1	1	6	4
Core	MMF201	Forming						
(PCC)		Processes						
Lege	end: O	CI: Classroom Instruction	(Includes di	ifferent in	structional	strategies i	i.e. Lecture (L) and Tu	torial
	(T) and others),						
		LI: Laboratory Instruction	(Includes F	Practical p	erformance	es in labora	tory workshop, field	
		or other locations using d	lifferent ins	tructiona	l strategies)		
		SW: Sessional Work (inclu	udes assign	ment, ser	ninar, mini	project etc.	.),	
	SL: Self Learning,							
	C: Credits.							

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)								
					Progressive	e Assessmen	t (PRA)		End Semester Assessment	Total Marks	
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks			
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)	
РСС	PCC- MMF20 1	Metal Formin g Process es	15	20	5	5	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-MMF201.1 Understand the theory of plasticity and yield criteria.

Αρ	proximate Hours
ltem	AppX Hrs
Cl	12
LI	0
SW	2
SL	1
Total	15
	Item Cl LI SW SL

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO1.1 Understand Fundamental Concepts SO1.2 Explain the theory of plasticity and its significance in material behavior during deformation SO1.3 Explore different yield criteria theories, focusing on isotropic materials. SO1.4 Application examples and practical implications in engineering design and analysis. SO1.5 Focus on isotropic yield criteria and their application to homogeneous materials 	Page	 Unit-1.0 Introduction 1.1 Introduction of the subject 1.2 Define plasticity and distinguish between elastic and plastic deformation 1.3 Introduce key terms such as yield stress, flow stress, and strain hardening. 1.4 Theory of plasticity and its significance in material behavior during deformation. 1.5 different yield criteria theories, focusing on isotropic material 1.6 stress and strain curves for plastic materials 	 fundamental concepts in plasticity theory and yield criteria.

1.7 Explanation of yield
point, ultimate tensile strength, and plastic deformation
mechanisms.
1.8 Overview of key
theories (e.g., Von Mises,
Tresca) and their
assumptions.
1.9 Derivation of stress
criteria for plastic deformation.
1.10 Introduction to yield
criteria and their role in
predicting material failure
1.11 isotropic yield
criteria and their
application to
homogeneous materials
1.12 Application examples
and practical implications
in engineering design and
analysis

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Problem-solving exercises to assess understanding of stress-strain relationships and yield criteria.
- ii. Other Activities(Role play):

engagement in discussions on the application of plasticity theory in engineering practice.

PCC-MMF201.2: Understanding Metal Forming Processes and Applications.

Approximate Hours	
ltem	AppX Hrs
Cl	14
LI	0
SW	2
SL	2
Total	18

Session Outcomes	; (LI)		Classroom Instruction	Self
(SOs)			(CI)	Learning (SL)
SO2.1 To introduce the ba metal forming proce and their significance manufacturing	sses		t-2 Hot, cold and warm king Introduction to metal forming processes	 i. Equipment used in rolling processe. ii. Analysis of case
SO2.2 Understanding the Principles of Hot Wo in Metal Forming	rking	2.2 2.3	Importance of metal forming in industry Classification of metal forming processes (bulk forming, sheet	studies illustrating successful implementation
SO2.3 Acquire practical knowledge and skills cold working technic and understand their in manufacturing.	ues	2.4	forming, etc.) Definition and characteristics of hot working processes. Recrystallization temperature and its importance	of rolling processes
SO2.4 To introduce the warking processes, benefits, and practic applications.		2.5 2.6 2.7	Types of hot working processes (e.g., forging, extrusion, rolling) Definition and characteristics of cold working, Types of cold working	
SO2.5 To explore the princiand applications of b forming techniques, focus on rolling proc	with a	2.8 2.9	processes (e.g., cold rolling, cold forging) Material properties and effects of cold working Quality control in cold working	

	 2.10 Definition and characteristics of warm working . Types of warm working processes (e.g., warm rolling, warm forging) 2.11 Industry examples and case studies of warm working applications 2.12 Principles of rolling and its variants (hot rolling, cold rolling) 2.13 Material considerations and selection for rolling
--	---

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-2 Suggested Sessional Work(SW):

a. Assignments:

- i. challenges and strategies for optimizing cold working processes.
- ii. Case studies and examples of industries using hot working processes.

PCC-MMF201.3: Analyze metal forming processes.

Approximate Hours

	••
ltem	AppX Hrs
Cl	11
LI	0
SW	2
SL	2
Total	15

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
SO3.1 understand the fundamental		Unit-3: Introduction to Advanced	i. Simulation exercises for upper-
principles of forging processes.		Manufacturing Processes	
SO3.2 Exploring Extrusion		3.1 Overview of advanced manufacturing	bound
Techniques		processes: forging, extrusion, and wire	equilibriu m analysis
SO3.3 understand the concepts and	-	drawing.	ii. Applicatio
applications of wire drawing.		3.2 Importance of advanced manufacturing	ns and case
SO3.4 Applying Upper Bound		techniques in various industries.	studies of
Equilibrium Techniques in Manufacturing.		3.3 Historical evolution and current trends	forging process
		in advanced manufacturing.	
SO3.5 Analyze Techniques for Process Optimization		3.4 Fundamentals of forging: deformation,	
		metal flow, and heat treatment	
		3.5 Basics of wire drawing Wire drawing	
		process and equipment	
		3.6 Factors influencing wire drawing	
		operations	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering)

Program

 3.7 Introduction to upper-bound methods in materials processing 3.8 Application of upper-bound equilibrium to slab processes 3.9 Case studies and practical examples of upper bounded equillibrium 3.10 . Tutorial-1 	
3.11 Tutorial-1I	
5.11 Tutonai-11	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Applications and case studies of wire drawing processes
- b. Case studies and practical examples of Upper-Bound Equilibrium
- c. Project:

PCC-MMF201.4: Design rolls for rolling, forging and extrusion

Approximate Hours					
Item	AppXHrs				
Cl	12				
LI	0				
SW	2				
SL	1				
Total	15				

Session	(LI)	Classroom Instruction	Self Learning
Outcomes (SOs)		(CI)	(SL)
SO4.1 Understand the assumptions and principles underlying slip-line field theory		 Unit-4: Introduction to Metal Forming and Slip-Line Field Analysis 4.1 Introduction to slip-line field theory and its applications in metal forming 	 i. Principles and assumptions of slip-line field theory
SO4.2 Identify different types of forming tools used in metal forging processes.		4.2 Derivation and application of slip- line field equations for various forming processes	
SO4.3 Analyze the factors influencing die wear and maintenance in forging operations.		 4.3 Types and functions of forming tools in metal forging processes 4.4 Design considerations: materials selection, geometry, and heat 	
SO4.4 Apply advanced principles of die design to optimize forging processes.		treatment of forming tools4.5 Design principles for forging dies: cavity design, draft angles, and	
SO4.5 Evaluate real-world examples of forging tool and die design challenges and solutions		 parting lines 4.6 Advanced Techniques in Die Design for Forging 4.7 Optimization techniques for die design in forging operations 4.8 Simulation tools for predicting metal flow and optimizing die 	
		geometry	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering)

Program

4.9 Innovations in die materials and
coatings to enhance die life and
performance
4.10 Advanced roles in metal forming
industries Overall equipment
effectiveness
4.11 Tutorial-1
4.12 Tutorial-2

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Real-world examples of successful tool and die designs in forging industries.
- ii Case studies on overcoming challenges in forging operations through innovative tool and die solutions

PCC-MMF201.5: Describe the latest trends in metal forming.

Ар	proximate Hours
ltem	Appx Hrs
Cl	12
LI	0
SW	2
SL	1
Total	15

Session Outcomes (LI) (SOs)		Classroom Instruction (Cl)	Self Learning (SL)
 SO5.1 Identify key parameters and materials for forging rolls SO5.2 Evaluate design principles for rolling mill rolls SO5.3 Apply algorithms to solve LP problems and optimize solutions. SO5.4 Discuss emerging techniques like forming from the mashy stage, isothermal forging, and near-net-shape manufacturing. SO5.5 Apply theoretical knowledge to practical design and manufacturing scenarios 		 Unit5: 5.1 Principles of roll design for various forging techniques (open die, closed die, etc.) Constraints 5.2 Material selection, heat treatment, and surface coating considerations for forging rolls Simplex method 5.3 Case studies and examples of effective roll designs in forging operations Transportation 5.4 Functions and types of rolls used in rolling mills (flat, profile, universal) 5.5 Design parameters and 	I Simulation techniques for predicting roll performance and optimizing design

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering)

Program

	considerations for rolling							
	mill rolls							
	5.6 Types of extrusion processes (hot, warm, cold) and their die requirements 5.7 Die design principles: cavity geometry, land length, and exit angle optimization							
	5.8 Die design principles: cavity geometry, land length, and exit angle optimization							
	5.9 Optimization methods for die and roll design in metal forming processes							
	 5.10 Simulation software tools for analyzing metal flow and optimizing tooling design 5.11 Innovations in die materials and coatings to enhance performance and durability 5.12 Emerging techniques: forming from the mushy stage, isothermal forging, and near-net-shape manufacturing 							

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Advantages, challenges, and industrial applications of advanced forming methods

b. Project: Design projects focusing on the optimization of roll and die designs using simulation tools.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering)

Program

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CL)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
PCC-MMF201.1 : Understand the theory of plasticity and yield criteria	12	2	1	15
PCC-MMF201.1: Understanding Metal Forming Processes and Applications.	13	2	2	17
PCC-MMF201.3: Analyze metal forming processes	11	2	2	15
PCC-MMF201.4: Design rolls for rolling, forging and extrusion	12	2	1	15
. PCC-MMF201.5 Describe the latest trends in metal forming	12	2	1	15
Total Hours	60	10	7	77

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Unit Titles Marks Distribution							
		R	U	А	Marks				
CO-1	Introduction	01	02	03	06				
CO-2	Hot cold and warm processes	01	03	07	11				
CO-3	Forging extrusion and wire drawing	01	07	04	12				
CO-4	Forming tools	01	06	04	11				
CO-5	Design of forming rolls	01	06	03	10				
	Total	5	24	21	50				

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Metal Forming Processes** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggested Learning Resources:

(a)]	Books:						
S. No.	Title	tle Author Publisher					
1	Metal forming	K.Lange	McGraw Hill	1985			
2	Foreign materials and practices	A.M.Sabaroff	ReinholdPublishers,	1982			
3	Extrusion metals	Wiley	Pearson	1980			
4	Manufacturing Technology Vol.I&Vol.II	G.W.Rowe.	EllisHorwood	1987			

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos,Pos and PSOs Mapping

Course Title: M. Tech. Mechanical

Engineering Course Code: PCC-MMF201

Course Title: Metal Forming Processes

		Program Outcomes								Program Specific Outcome						
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics		Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
co1: Understand the theory of plasticity and yield criteria.	3	3	3	2	3	2	3	2	2	1	3	1	2	3	3	1
co 2 : Understanding Metal Forming Processes and Applications	3	2	1	2	1	2	3	2	1	1	2	1	2	2	2	1
co3: Analyze metal forming processes.	3	2	2	1	1	2	2	2	1	2	1	1	1	1	2	2
co 4 Design rolls for rolling, forging and extrusion.	1	3	3	2	3	2	3	2	2	1	2	1	1	3	3	2
cos : Describe the latest trends in metal forming	3	1	1	1	1	3	3	3	1	1	2	2	1	3	1	3

Legend: 1–Low, 2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO-1: Understand the theory of plasticity and yield criteria.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Introduction 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,1.8, 1.9, 1.10, 1.11, 1.12	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 2: Understanding Metal Forming Processes and Applications.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 Hot cold and warm processes 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13	As mentioned in
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5		SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3 : Forging extrusion and wire drawing 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 3.9, 3.10, 3.11	Page number 2 to 6
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 4: Design rolls for rolling, forging and extrusion	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Forming tools 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 5: Describe the latest trends in metal forming	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit-5: Design of forming rolls 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10 , 5.11, 5.12	

Semester-II

Course Code:	MMF203I
Course Title:	Metrology and computer aided inspection
Pre-requisite:	Students should have knowledge about Calculus, Physics, Programming, CAD, Statistics, Material Science, NDT Methods, Quality Control, Analytical Skills, Technical Skills, Problem-Solving Skills.
Rationale:	Ensures precise measurements, enhances inspection accuracy, and supports quality control by integrating advanced technologies like CAD and NDT methods. Critical for improving manufacturing processes and maintaining high standards in engineering applications.

Course Outcomes:

- **MMF203I.1:** Understanding metrology standards, GD&T procedures, surface metrology, and tolerance analysis for precision measurement and quality assurance.
- **MMF203I.2:** Application of laser-based metrology for dimensional, roundness, and surface roughness measurements in manufacturing and inspection processes.
- **MMF203I.3:** Use of optoelectronic devices, machine vision, and advanced techniques for online monitoring, tool wear measurement, and surface characterization.
- **MMF203I.4:** Types and applications of Coordinate Measuring Machines (CMMs), integration with computer systems for dimensional and surface finish metrology.
- **MMF203I.5:** Utilization of various sensors including optical, inductive, capacitive, and advanced technologies like laser and ultrasonic for inspection in manufacturing environments.

Scheme of Studies:

Board of					Sche	me of studi	ies (Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	MMF203 I	Metrology and Computer aided inspection.	3	0	1	1	5	3
Legend: CI: Classroom Instruction (T) and others), LI: Laboratory Instruction or other locations using dir SW: Sessional Work (incl SL: Self Learning, C: Credits,		n (Includes ifferent inst	Practical ructional	performan strategies)	ces in labor	atory workshop, field		

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Scheme o	f Assessment (N	larks)		
	Course		Progressive Assessment (PRA)						End Semester Assessment	Total Mark s
Board of Study	Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CA T+AT)	(ESA)	(PRA +ES A)
PC C	MMF2 03I	Metrology and Computer aided Inspection	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

MMF203I.1: Understanding metrology standards, GD&T procedures, surface metrology, and tolerance analysis for precision measurement and quality assurance.

Ap	Approximate Hours		
Item	AppX		
	Hrs		
Cl	9		
LI	0		
SW	1		
SL	1		
Total	11		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)		Self Learning (SL)
 SO1.1 Define metrology standards and traceability principles. SO1.2 Review standard instruments for dimension and form tolerance. SO1.3 Apply tolerance analysis in surface metrology methods. 		Unit-1.0 Metrology and Techniques: 1.1 Standands in metrology- definition, 1.2 Traceability, 1.3 Characteristics Length & Angular measurements- 1.4 Review of standard instruments, 1.5 GD and tolerance procedure- 1.6 Review of dimension & form tolerance and methods of measurement, 1.7 Tolerance analysis, 1.8 Surface metrology and instruments, 1.9 Methods and new approaches	1.	Precision engineering techniques Advancements in metrology technology

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Discuss the evolution of measurement accuracy in engineering, focusing on the role of standards, tolerance analysis, and modern surface metrology techniques.

MMF203I.2: Application of laser-based metrology for dimensional, roundness, and surface roughness measurements in manufacturing and inspection processes.

Ар	proximate Hours
Item	AppX Hrs
	Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO2.1 Describe LASER light sources and interferometers in metrology. SO2.2 Perform in-process measurements using LASER micrometers. SO2.3 Apply LASER techniques for roundness and surface roughness measurement. 		 Unit-2 Laser Applications in Metrology: 2.1 LASER light source, 2.2 LASER interferometer, 2.3 LASER alignment telescope, 2.4 LASER micrometer. 2.5 On-line and in-process measurements of diameter, 2.6 Roundness and surface roughness using LASER, 2.7 Micro holes and topography measurements 2.8 Straightness measurement 2.9 Flatness measurement 	 Applications of photonics in metrology Advanced techniques in laser metrology

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-2 Suggested Sessional Work(SW):

a. Assignments:

i. Examine the role of laser technology in advancing metrology, focusing on its applications in dimensional measurement, surface characterization, and precision alignment..

MMF203I.3: Use of optoelectronic devices, machine vision, and advanced techniques for on-line monitoring, tool wear measurement, and surface characterization.

A	oproximate Hours
Item	АррХ
	Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO3.1 Compare optoelectronic devices for contact and non-contact measurements. SO3.2 Apply machine vision for shape identification and edge detection. SO3.3Integrate robot interfacing with image processing for surface roughness measurement. 		 Unit -3.0 Special Measuring Instruments and Techniques: 3.1 Optoelectronic devices 3.2 Contact and non-contact types 3.3 Applications in on-line and In-process monitoring systems 3.4 Tool wear measurement, 3.5 Surface measurement, Machine vision, shape Identification, 3.6 Edge detection techniques, Normalisation, 3.7 gray scale correlation, Template Techniques, 3.8 Surface roughness using vision system, 3.9 Interfacing robot and image processing system. 	 Emerging trends in automated inspection systems Integration of robotics in metrology applications

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Explore the integration of advanced optoelectronic devices and machine vision systems in industrial metrology, emphasizing their roles in real-time monitoring, tool wear analysis, and automated quality control.

MMF203I.4: Types and applications of Coordinate Measuring Machines (CMMs), integration with computer systems for dimensional and surface finish metrology.

Approximate Hours				
Item	AppXHrs			
Cl	9			
LI	0			
SW	1			
SL	1			
Total	11			

Session	(LI)	Classroom Instruction	Self Learning
Outcomes (SOs)		(CI)	(SL)
 SO4.1 Identify types of CMM and their respective probes for dimensional metrology. SO4.2 Utilize non-contact electro-optical sensors for surface finish measurements. SO4.3 Integrate CMM data with computer systems for statistical evaluation and logging. 		Unit -4 Co-ordinate Measuring Machine: 4.1 Types of CMM. 4.2 Probes used 4.3 Applications, 4.4 Non-contact CMM using electro optical sensors for dimensional metrology, 4.5 Non-contact sensors for surface finish measurements, 4.6 Statistical evaluation of data using computer, 4.7 Data integration of CMM and data logging in computers. 4.8 Tutorial 1 4.9 Tutorial 2	 Innovations Innovations coordinate measuring technology Advantages of non-contact metrology techniques

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Discuss the evolution of Coordinate Measuring Machines (CMMs), detailing various types, probe technologies, and their applications in dimensional metrology and surface finish analysis. Explain the role of statistical data evaluation and computerized data integration in enhancing measurement accuracy.

MMF203I.5: Utilization of various sensors including optical, inductive, capacitive, and advanced technologies like laser and ultrasonic for inspection in manufacturing environments.

Approximate Hou					
Item	Appx Hrs				
Cl	9				
LI	0				
SW	1				
SL	1				
Total	11				

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO5.1 Apply photo detectors and deflection methods in manufacturing. SO5.2 Evaluate applications of inductive, capacitive, and microwave sensors. SO5.3 Analyze advanced sensor technologies like bar code systems and tactile sensors. 		 Unit 5.0: Sensors in Inspection: 5.1 Manufacturing applications of photo detectors, 5.2 Deflection methods-beam detection, 5.3 Reflex detection, & Proximity detection. 5.4 Applications of Indutive and Capacitive proximity sensors 5.5 Understanding microwave sensing applications laser sensors and limit switches. 5.6 Advanced sensor technology - Bar code systems 5.7 Principles and application of color sensors 5.8 electro-magnetic identifier, Tactile sensors 5.9 Ultrasonic sensors, Odour sensors 	 Innovative applications of sensor technology in manufacturing. Emerging trends in sensor integration for industrial automation

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Explore the diverse applications of sensor technologies in modern manufacturing, focusing on their roles in automated detection systems and quality control processes. Discuss advancements in sensor types, including proximity, optical, and tactile sensors, and their contributions to enhancing industrial productivity and product quality.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CL)	Sessiona 1 Work (SW)	Self Learnin g (Sl)	Total hour (Cl+SW+S l)
MMF203I.1: Understanding metrology standards, GD&T procedures, surface metrology, and tolerance analysis for precision measurement and quality assurance.	9	1	1	11
MMF2031.2 : Application of laser-based metrology for dimensional, roundness, and surface roughness measurements in manufacturing and inspection processes.	9	1	1	11
MMF203I.3: Use of optoelectronic devices, machine vision, and advanced techniques for on-line monitoring, tool wear measurement, and surface characterization.	9	1	1	11
MMF203I.4: Types and applications of Coordinate Measuring Machines (CMMs), integration with computer systems for dimensional and surface finish metrology.	9	1	1	11
MMF203I.5: Utilization of various sensors including optical, inductive, capacitive, and advanced technologies like laser and ultrasonic for inspection in manufacturing environments.	9	1	1	11
Total Hours	45	5	5	55

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	Α	Marks
CO-1	Metrology and Techniques	01	02	03	06
CO-2	Laser Applications in Metrology	01	03	07	11
CO-3	Special Measuring Instruments and Techniques	01	07	04	12
CO-4	Co-ordinate Measuring Machine	01	06	04	11
CO-5	Sensors in Inspection	01	06	03	10
	Total	5	24	21	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Metrology and computer aided inspection** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggested Learning Resources:

(a)]	(a)Books:								
S. No.	Title	Author	Publisher						
1	Fundamentals of dimensional Metrology	T.Busch and R. Harlow	Delmar,3e						
2	Enginneering metrology	G.Thomas and G.Butter worth	PUB						
3	Sensors and control systems in manufacturing	Sabne Soloman	McGraw Hill Book						
4	Measurment systems : Application and design	Doebelin	International Student edition						
5	Optoelectronics for technology and engineering	Robert G. Seippel	Prentice Hall India						
6	Lecture notes provided by Dept. of Mechanical Engineering, AKS University, Satna								

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari, Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Page 159

Cos,Pos and PSOs Mapping

Course Title: M.Tech Mechanical

Engineering Course Code: MMF203I

Course Title: Metrology and Computer aided inspection

		Program H Outcomes						P	rogram Spe	cific Outco	me					
	PO 1	PO2	PO3	PO4	PO 5	PO6	P07	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engi neer ing know ledge	Pro ble m anal ysis	Desig n/deve lopme nt of soluti ons	Conduct investiga tions of complex problems	Mo der n Tool usag e	The engine er and society	Enviro nment and sustain ability	Et hic s		Com munic ation	Project manage ment And finance	Life- long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO:1 : Understanding metrology standards, GD&T procedures, surface metrology, and tolerance analysis for precision measurement and quality assurance.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO: 2 : Application of laser- based metrology for dimensional, roundness, and surface roughness measurements in manufacturing and inspection processes.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO: 3: Use of optoelectronic devices, machine vision, and advanced techniques for on-line monitoring, tool wear measurement, and surface characterization.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO: 4: Types and applications of Coordinate Measuring Machines (CMMs), integration with computer systems for dimensional and surface finish metrology.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO: 5: Utilization of various sensors including optical, inductive, capacitive, and advanced technologies like laser and ultrasonic for inspection in manufacturing environments.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	MMF203I.1: Understanding metrology standards, GD&T procedures, surface metrology, and tolerance analysis for precision measurement and quality assurance.	SO1.1 SO1.2 SO1.3		Unit :1 Metrology and Techniques 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,1.8,1.9	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	MMF203I.2 : Application of laser- based metrology for dimensional, roundness, and surface roughness measurements in manufacturing and inspection processes.	SO2.1 SO2.2 SO2.3		Unit :2 Laser Applications in Metrology 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	MMF203I.3: Use of optoelectronic devices, machine vision, and advanced techniques for on-line monitoring, tool wear measurement, and surface characterization.	SO3.1 SO3.2 SO3.3		Unit :3 Special Measuring Instruments and Techniques 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,3.9	As mentioned in Page number 2 to 6
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	MMF203I.4: Types and applications of Coordinate Measuring Machines (CMMs), integration with computer systems for dimensional and surface finish metrology.	SO4.1 SO4.2 SO4.3		Unit :4 Co-ordinate Measuring Machine 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	MMF203I.5: Utilization of various sensors including optical, inductive, capacitive, and advanced technologies like laser and ultrasonic for inspection in manufacturing environments.	SO5.3	Page 161	Unit :5 Sensors in Inspection 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,	

Semester-II

Course Code:	MMF203M
Course Title:	Modeling and simulation
Pre-requisite:	Basic knowledge of statistics, probability, and computer programming, along with an understanding of system analysis and mathematical modeling.
Rationale:	Modeling and simulation are essential for analyzing complex systems, making informed decisions, and optimizing performance in various engineering and management applications.

Course Outcomes:

MMF203M.1: Analyze different system models and simulations, understanding their steps, advantages, and hypothesis testing.

MMF203M.2: Develop and validate credible simulation models using statistical procedures and stochastic input elements.

- **MMF203M.3:** Generate random variates and variables using various methods and understand simulation languages and their features..
- **MMF203M.4:** Perform output data analysis, applying methods for steady-state analysis and comparing simulation techniques.
- MMF203M.5: Apply simulation techniques to flow shop, job shop systems, and inventory management problems

Scheme of Studies:

Board of					Scher	me of studi	ies (Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	MMF203 M	Modeling and Simulation	3	0	1	1	5	3
Leg		CI: Classroom Instruction T) and others), LI: Laboratory Instructio or other locations using d SW: Sessional Work (inc SL: Self Learning, C: Credits.	n (Includes ifferent inst	Practical ructional	performanc strategies)	ces in labor	atory workshop, field	

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Board of	Course				Progressive	e Assessmen	t (PRA)		End Semester Assessment	Total Mark s
Study	Code	Course Title	Class/Home Assignment 5 number	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks		
			3 marks each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CA T+AT)	(ESA)	(PRA +ES A)
PC C	MMF2 03M	Modeling and Simulation	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

MMF203M.1: Analyze different system models and simulations, understanding their steps, advantages, and hypothesis testing.

Approximate Hours				
Item	AppX			
	Hrs			
Cl	9			
LI	0			
SW	1			
SL	1			
Total	11			

for analyzing systems and applying appropriate models.BasicsAnalysis TechniquesSO1.2 Define simulation and categorize types of simulation models, evaluating their pros and cons.1.1 System – ways to analyze the system modelsAnalysis Techniques System ModelingSO1.3 Explore parameter estimation techniques, including point estimates, confidence intervals, and hypothesis testing principles.1.4 Steps involved in simulation – Advantages & Disadvantages.2. Critical Evaluation Statistical Estimation – estimater – confidence interval estimates1.6 Point estimate 1.7 Independent – dependent – hypothesis 1.8 Types 1 & 2 errors – Framing , Strong law of3.	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
large numbers	 for analyzing systems and applying appropriate models. SO1.2 Define simulation and categorize types of simulation models, evaluating their pros and cons. SO1.3 Explore parameter estimation techniques, including point estimates, confidence intervals, and hypothesis 		Modeling, Simulation Basics 1.1 System – ways to analyze the system 1.2 Model - types of models 1.3 Simulation – Definition – Types of simulation models 1.4 Steps involved in simulation – Advantages & Disadvantages. 1. 5Parameter estimation – estimator – properties – estimate 1.6 Point estimate – confidence interval estimates 1.7 Independent – dependent – hypothesis 1.8 Types of hypothesis – steps 1.9 Types 1 & 2 errors –	Analysis Techniques in System Modeling 2. Critical Evaluation of Statistical

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. How do different types of models aid in understanding complex systems? Discuss their application in simulation and parameter estimation

MMF203M.2: Develop and validate credible simulation models using statistical procedures and stochastic input elements.

Approximate Hours					
Item	AppX				
	Hrs				
Cl	9				
LI	0				
SW	1				
SL	1				
Total	11				

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO2.1 Develop simulation models with validation, verification, and timing credibility. SO2.2 Apply principles for valid simulation modeling and statistical verification techniques. SO2.3 Assess stochastic input modeling using suitable theoretical distributions effectively. 		Unit-2.0 Building, Validating Simulation Models 2.1 Building of Simulation model – 2.2 validation – verification 2.3 credibility – their timing 2.4 Principles of valid simulation Modeling 2.5 Techniques for verification 2.6 Statistical procedures for developing credible model. 2.7 Modeling of stochastic input elements – importance 2.8 various procedures 2.9 theoretical distribution – continuous – discrete – their suitability in modeling.	 1.Effective Strategies for Simulation Model Validation 2. Optimizing Input Modeling Techniques in Simulation

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. How can the principles of valid simulation modeling be applied to ensure credibility and accuracy in simulation models? Discuss techniques for validation and verification..

MMF203M.3: Generate random variates and variables using various methods and understand simulation languages and their features..

A	pproximate Hours
Item	AppX
	Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO3.1 Master techniques for generating and validating random variates and variables. SO3.2 Compare simulation languages and simulators, analyzing their software and statistical capabilities. SO3.3 Simulate and evaluate M/M/1 queue models using different simulation languages. 		Unit -3.0 Random Variate Generation, Simulation 3.1 Generation of random variates – factors for selection 3.2 methods – inverse transform – composition 3.3 convolution – acceptance – rejection 3.4 generation of random variables – exponential – uniform – weibull – normal 3.5 Bernoullie – Binomial – uniform – poison. 3.6 Simulation languages – comparison of simulation languages with general purpose languages – 3.7 Simulation languages vs Simulators – software features 3.8 statistical capabilities – G P S S – SIMAN- SIMSCRIPT 3.9 Simulation of M/M/1 queue – comparison of simulation languages.	1.Advanced Techniques in Random Variate Generation 2.Evaluation of Simulation Language Capabilities

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-3 Suggested Sessional Work (SW):

a. Assignments:

How does the selection of random variate generation methods impact simulation accuracy? Compare simulation languages and their capabilities in modeling stochastic processes like M/M/1 queues.

MMF203M.4: Perform output data analysis, applying methods for steady-state analysis and comparing simulation techniques. Approximate Hours

Approximate mours							
Item	AppXHrs						
Cl	9						
LI	0						
SW	1						
SL	1						
Total	11						

Session	(LI)	Classroom Instruction	Self Learning
Outcomes (SOs)		(CI)	(SL)
SO4.1 Analyze output data and apply techniques for effective interpretation. SO4.2 Differentiate types of simulations based on output data analysis methods. SO4.3 Implement warm-up periods and Welch algorithm for accurate simulation results.		Unit -4 Output Data Analysis, Simulation Types 4.1 Output data analysis – 4.2 Types of Simulation with respect to output data analysis 4.3 warm up period 4.4 Welch algorithm 4.5 Approaches for Steady 4.6 State Analysis 4.7 replication 4.8 Batch means methods 4.9 comparisons	1.Modern Approaches to Output Data Analysis 2. Comparative Methods in Simulation Performance Evaluation

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-4 Suggested Sessional Work (SW):

a. Assignments:

iHow do different types of simulation approaches, such as batch means methods and the Welch algorithm, contribute to output data analysis and steady-state assessment?

MMF203M.5: Apply simulation techniques to flow shop, job shop systems, and inventory management problems

Ар	proximate Hours
Item	Appx Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO5.1 Apply simulation techniques to analyze and optimize flow shop and job shop systems. SO5.2 Evaluate M/M/1 queues with infinite and finite capacities using simulation. SO5.3 Implement simulation for fixed period inventory systems and operational scenarios like the Newsvendor problem. 		Unit 5.0: Simulation Applications in Operations 5.1 Applications of Simulation 5.2 flow shop system 5.3 job shop system 5.4 M/M/1 queues with infinite 5.5 M/M/1 queues with finite capacities 5.6 Simple fixed period inventory system 5.7 New boy paper problem. 5.8 Numerical 1 5.9 Numerical 2	 Optimizing Flow Shop and Job Shop Systems Analyzing Inventory Systems with Simulation

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. How can simulation techniques be applied to optimize operations in flow shop and job shop systems? Discuss specific applications in inventory management and queueing theory.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Brief of Hours suggested for the Course Outcome

	01	a .	0.10	T 11
Course Outcomes	Class	Sessiona	Self	Total hour
	Lecture	l Work	Learnin	(Cl+SW+S
	(CL)	(SW)	g	1)
			(Sl)	
MMF203M.1: Analyze different system models and	9	1	1	11
simulations, understanding their steps, advantages, and				
hypothesis testing.				
MME202M 2. Develop and validate anadible	9	1	1	11
MMF203M.2: Develop and validate credible	9	1	1	11
simulation models using statistical procedures and				
stochastic input elements.				
MMF203M.3: Generate random variates and variables	9	1	1	11
using various methods and understand simulation				
languages and their features.				
MMF203M.4: Perform output data analysis, applying	9	1	1	11
methods for steady-state analysis and comparing	-			
simulation techniques				
MMF203M.5: Apply simulation techniques to flow	9	1	1	11
shop, job shop systems, and inventory management	-	1	1	11
problems				
problems				
	45	5	5	55
Total Hours				

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	Α	Marks
CO-1	System Analysis, Modeling, Simulation Basics	01	02	03	06
CO-2	Building, Validating Simulation Models	01	03	07	11
CO-3	Random Variate Generation, Simulation	01	07	04	12
CO-4	Output Data Analysis, Simulation Types	01	06	04	11
CO-5	Simulation Applications in Operations	01	06	03	10
	Total	5	24	21	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Modeling and Simulation** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggested Learning Resources:

(a)	Books:							
S. No.	Title	Author	Publisher					
1	Simulation Modelling and Analysis	Law, A.M. & Kelton	McGraw Hill					
2	Discrete Event System Simulation	Banks J. & Carson J.S	PH, Englewood Cliffs					
3	Simulation of Manufacturing Systems	Carrie A.	Wiley					
4	A Course in Simulation	Ross, S.M.	McMillan					
5	Simulation Modelling and SIMNET		PH, Englewood Cliffs					
6	Lecture notes provided by Dept. of Mechanical Engineering, AKS University, Satna							

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor , Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

<u>Cos,Pos and PSOs</u> <u>Mapping</u>

Course Title: M.Tech in Mechanical Engineering

Engineering Course Code: MMF203M

Course Title: Modeling and Simulation

						-	gram comes						Program Specific Outcome			
	PO 1	PO2	PO3	PO4	PO 5	PO6	P07	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engi neer ing know ledge	Pro ble m anal ysis	Desig n/deve lopme nt of soluti ons	Conduct investiga tions of complex problems	Mo der n Tool usag e	The engine er and society	Enviro nment and sustain ability	Et hic s	Indiv idual and team work :	Com munic ation	Project manage ment And finance	Life- long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO-1 Analyze different system models and simulations, understanding their steps, advantages, and hypothesis testing.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO-2 Develop and validate credible simulation models using statistical procedures and stochastic input elements.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO-3 Generate random variates and variables using various methods and understand simulation languages and their features	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO-4 Perform output data analysis, applying methods for steady-state analysis and comparing simulation techniques	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO-5 Apply simulation techniques to flow shop, job shop systems, and inventory management problems	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend: 1–Low, 2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12	MMF203M.1: Analyze different system models and simulations, understanding their steps, advantages, and hypothesis testing.	SO1.2		Unit:1 System Analysis, Modeling, Simulation Basics 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
PSO 1, 2, 3, 4, 5		SO1.3			
PO 1, 2, 3, 4, 5, 6	MMF203M.2: Develop and validate credible simulation models using	SO2.1		Unit :2 Building, Validating Simulation Models	
7, 8, 9, 10, 11, 12	statistical procedures and stochastic input elements.	SO2.2 SO2.3		2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9	
PSO 1, 2, 3, 4, 5					As mentioned in
PO 1, 2, 3, 4, 5,	MMF203M.3: Generate random	SO3.1		Unit :3 Random Variate	Page number
6 7, 8, 9, 10, 11, 12	variates and variables using various methods and understand simulation languages and their features	SO3.2		Generation, Simulation	2 to 6
PSO 1, 2, 3, 4, 5		SO3.3		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,3.9	
PO 1, 2, 3, 4, 5, 6	MMF203M.4: Perform output data analysis, applying methods for	SO4.1		Unit :4 Output Data Analysis, Simulation Types	
7, 8, 9, 10, 11, 12	steady-state analysis and comparing simulation techniques	SO4.2			
PSO 1, 2, 3, 4, 5	sinulation techniques	SO4.3		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	
PO 1, 2, 3, 4, 5, 6	MMF203M.5: Apply simulation techniques to flow shop, job shop	SO5.1		Unit :5 Simulation Applications in Operations	
7, 8, 9, 10, 11, 12	systems, and inventory management	SO5.2			
PSO 1, 2, 3, 4, 5	problems	SO5.3		5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,	

Semester-II							
Course Code:	MMF203K						
Course Title:	Processing and Characterization Techniques						
Pre-requisite:	Prerequisites include understanding fundamental principles of materials science, familiarity with basic laboratory techniques, and knowledge of data analysis methods essential for processing and characterizing materials effectively in various applications.						
Rationale:	Processing and characterization techniques are crucial for understanding material properties, optimizing manufacturing processes, ensuring quality control, and advancing research in fields like materials science, engineering, and technology development.						

Course Outcomes:

MMF203K.1: Enhance knowledge on processing for different material.. MMF203K.2: To know the characteristic and properties after processing of material. MMF203K.3: To know about latest characterization technique MMF203K.4: Enhance knowledge of thermal analysis technique MMF203K.5: To examine fine detail using microscope. Scheme of Studies:

Board of					Scher	Scheme of studies (Hours/Week)			
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
Program Core (PCC)	MMF203 K	Processing and Characterizati on Techniques	3	0	1	1	5	3	
Lege	(Cl: Classroom Instruction T) and others),				-		torial	

L1: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)						End Semester Assessment	Total Marks
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)
PCC	MMF 203K	Processing and Characteri zation Technique S	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

MMF203K.1: Enhance knowledge on processing for different material.

Approximate Hou			
Item	em AppX Hrs		
Cl	7		
LI	0		
SW	3		
SL	1		
Total	11		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO1.1 Understand fundamental principles of melting, casting, heat treatment, thermomechanical processing, sheet metal forming, and welding in industrial applications SO1.2 Apply theoretical knowledge to analyze and optimize processes like melting, casting, heat treatment, thermo-mechanical processing, sheet metal forming, and welding SO1.3 Demonstrate proficiency in selecting appropriate processing techniques for specific materials and applications, ensuring quality and efficiency in production 		 Unit-1.0 Processing 1.1 Introduction of Processing 1.2 melting 1.3 casting 1.4 heat treatment 1.5 thermo-mechanical processing 1.6 sheet metal forming 1.7 welding 	1. Importance of Sheet metal forming

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Describe the welding processes

MMF203K.2: To know the characteristic and properties after processing of material..

Ap	proximate Hours		
ltem	AppX Hrs		
Cl	9		
LI O			
SW 3			
SL	1		
Total	13		

Session Outcomes (SOs)	(LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO2.1 Utilize advanced techniques such as electron microscopy and crystallography to analyze phase transformations and structural characteristics in materials. SO2.2 Evaluate mechanical properties including fatigue, fracture toughness, and integrity assessment in relation to material structure and processing methods. 		 Unit-2 Structural characterization 2.1 Introduction of Structural characterization 2.2 basic principles of phase transformation 2.3 basic principles of electron microscopy 2.4 crystallography by using modern techniques 2.5 Properties: mechanical 2.6 properties like fatigue, fracture toughness, integrity assessment 2.7 relating to structure 2.8 processing 2.9 corrosion evaluation 	1 Constructional features of electron microscopy

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Analyze the Types of corrosion

MMF203K.3: To know about latest characterization technique

	Approximate Hours
ltem	AppX Hrs
Cl	11
LI	0
SW	3
SL	1
Total	15

		10tal 15	
Session Outcomes	(LI)	Classroom Instruction	Self
(SOs)		(CI)	Learning (SL)
SO3.1 Master X-ray diffraction for crystal structure analysis and phase identification, and apply residual stress measurement techniques in practical applications.		 Unit-3: Characterization Techniques 3.1 X-ray diffraction 3.2 crystal structure 3.3 phase identification 	1.Design of crystal structure
SO3.2 Develop skills in IR- and Raman spectroscopy for materials analysis, enabling identification and characterization of molecular structures and chemical compositions.		 3.3 phase identification 3.4 residual stress measurement 3.5 other applications 3.6 Transmission Electron Microscopy 3.7 Construction of a TEM 3.8 operation of a TEM 3.9 development of modular Tool 3.10 helical interpolation 3.11 Electron diffraction 	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-3 Suggested Sessional Work (SW):

a. Assignments:

Explain the Design of TEM

MMF203K.4: Enhance knowledge of thermal analysis technique

Approximate Hours			
Item AppX Hrs			
Cl	6		
LI	0		
SW	3		
SL	1		
Total	10		

. .

Session Outcomes (SOs)	(LI)	Classroom Instruction (Cl)	Self Learning
 SO4.1 Gain a comprehensive understanding of Differential Thermal Analysis (DTA), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA) techniques, including their instrumentation and operational principles. SO4.2 Explore diverse applications of DTA, DSC, and TGA in materials science and engineering through case studies, demonstrating their utility in studying phase transitions, thermal stability, and decomposition kinetics. 		Unit-4 : thermal analysis 4.1 Outline of thermal analysis 4.2 thermal analysis technique 4.3 description of DTA/DSC/TGA 4.4 techniques and instrumentation 4.5 applications 4.6 case studies.	(SL) 1.Importance of maintenance of DTA/DSC/TGA

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-4 Suggested Sessional Work (SW):

a. Assignments: i.

Application of thermal analysis technique

MMF203K.5: To examine fine detail using microscope.

Approximate Hours			
ltem	Appx Hrs		
Cl	12		
LI	0		
SW	3		
SL	1		
Total	16		

Session Outcomes (SOs)	(LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO5.1 Understand the principles of optical microscopy, including light optics, microscope components, and the capabilities and limitations of optical imaging techniques. SO5.2 Gain proficiency in operating a Scanning Electron Microscope (SEM), interpreting SEM images, and extracting crystallographic information through techniques such as electron diffraction and analytical microscopy. 		 Unit5: Optical microscopy 5.1 introduction 5.2 light optics 5.3 microscope components 5.4 possibilities 5.5 limitations 5.6 Scanning Electron Microscopy 5.7 Optics 5.8 performance of a SEM 5.9 image interpretation 5.10 Crystallographic 5.11crystallographic information in a SEM 5.12 analytical microscopy 	1 Application of light optics

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Application of Scanning Electron Microscopy

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CL)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
MMF203K.1:Enhance knowledge on processing for different material	7	3	1	11
MMF203K.2: To know the characteristic and properties after processing of material.	9	3	1	13
MMF203K.3: To know about latest characterization technique	11	3	1	15
MMF203K.4: Enhance knowledge of thermal analysis technique	6	3	1	10
MMF203K.5: To examine fine detail using microscope.	12	3	1	16
Total Hours	45	15	5	65

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	O Unit Titles		Marks Distribution		
		R	U	Α	Marks
CO-1	Processing	01	02	03	06
CO-2	Structural characterization	01	03	07	11
CO-3	Characterization Techniques	01	07	04	12
CO-4	thermal analysis	01	06	04	11
CO-5	Optical microscopy	01	06	03	10
	Total	5	24	21	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Processing and Characterization Techniques** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggested Learning Resources:

(a)	Books:		
S. No.	Title	Author	Publisher
1	Metallurgical Treatises,Metall.	K.Tienand J.F.Elliott (eds)	Soc.AIME,1981
2	Mechanical Metallurgy,	G.E. Dieter	McGraw-Hill Book Co.(Third edition),1988.
3	Physical Metallurgy Techniques and Applications, Vol. 1 and2	K.W.Andrews	George Allen & Unwin, London, 1973
4	Characterization of Materials, Vol 1. and 2	E.N. Kaufmann (Ed.inchief)	John Wiley and Sons Publication, New Jersey, 2003
5	Characterization of Materials,10 th Ed.	Metals handbook Vol.9	American Society of Metals, Metals Park, OH, USA, 1986.

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: M. Tech. Mechanical

Engineering Course Code: PCC- MMF203K

Course Title: Processing and Characterization Techniques

		Program Outcomes								Program Specific Outcome						
	PO 1	PO2	РОЗ	PO4	PO5	PO6	PO7	РО 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics	Indivi dual and team work:	Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO1: Enhance knowledge on processing for different material	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO 2 To know the characteristic and properties after processing of material.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO3: To know about latest characterization technique	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO 4: Enhance knowledge of thermal analysis technique	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO5: To examine fine detail using microscope.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend: 1–Low, 2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO1: Enhance knowledge on processing for different material	SO1.1 SO1.2 SO1.3		Unit -1 Processing 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 2 To know the characteristic and properties after processing of material.	SO2.1 SO2.2		Unit-2 Structural characterization 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO3: To know about latest characterization technique	SO3.1 SO3.2		Unit-3 Characterization Techniques 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 3.9, 3.10, 3.11	As mentioned in Page number 2 to 6
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 4: Enhance knowledge of thermal analysis technique.	SO4.1 SO4.2		Unit-4: thermal analysis 4.1, 4.2, 4.3, 4.4, 4.5, 4.6	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO5: To examine fine detail using microscope.	SO5.1 SO5.2		Unit-5: Optical microscopy 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10,5.11,5.12	

Semester-II

Course Code:	MMF204A

Course Title: Research Methodology

Pre-requisite:Understanding of basics engineering principles, production planning
and control and fundamentals of mechanical vibrations.

Rationale: Total Preventative Maintenance (TPM) is essential in the M. Tech. Mechanical Engineering curriculum to equip students with the knowledge and skills required for effective planning and implementing the suitable maintenance techniques. TPM is a critical strategy for maintaining equipment and machines. By learning the principles of TPM, the students will be able to apply it in the organizations which will certainly result in reduce machinery/facility downtime, increase efficiency, productivity and improve safety.

Course Outcomes:

PEC-MMF204A.1: Students will be able to Understand and Describe importance of research.

PEC-MMF204A.2:Students will be able to Classify and select appropriate resources for Research.

PEC-MMF204A.3:Students will be able toAnalyze the contents of literature and identify further scope.

PEC-MMF204A.4: Students will be able to Formulate a Research Problem.

PEC-MMF204A.5:Students will be able to apply effective written and oral Presentation skills.

Total Credits **Board of** Scheme of studies (Hours/Week) **(C)** Study SL **Total Study** Cl LI SW Course Hours(CI+LI+S **Course Title** Code W+SL) 3 Program PEC-0 1 1 5 3 Research Elective MMF204A Methodology (PEC)

Scheme of Studies:

 Legend:
 CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)andTutorial (T)andothers),

 LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop,fieldorothe rlocationsusingdifferentinstructionalstrategies)

 SW:SessionalWork(includesassignment,seminar,miniprojectetc.),

 SL:SelfLearning,

 C:Credits.

Note: SW&SLhastobeplannedandperformedunderthecontinuousguidanceandfeedbackofteacherto ensure outcome ofLearning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)								
					Progressiv	eAssessmen	t(PRA)		End Semester Assessment	Total Marks	
Board ofStud Y	Course Code	CourseTitle	Class/Home Assignment 5number 3	Class Test2 (2bestout Of3)	Seminar one	ClassActi vityanyo ne	ClassAtten dance	TotalMarks			
			marks each (CA)	10 marksea ch(CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)	
PEC	PEC- MMF20 4A	Research Methodolo gy	15	20	5	5	5	50	50	100	

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and sessionlevels, which students are anticipated to accomplish through various modes of instruction includingClassroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL).

As the course progresses, students should show case their mastery of Session Outcomes (SOs), culminating int he overall achievement of Course Outcomes (COs) upon the course's conclusion.

PEC-MMF204A.1:Students will be able to Understand and Describe importance of research.

Α	pproximateHours
ltem	AppXHrs
Cl	8
LI	0
SW	2
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (Cl)	Self Learning
(303)	(LI)		(SL)
 SO1.1 Define research and classify it's types. SO1.2Understand the concepts and objectives of research. SO1.3Differentiate between descriptive, theoretical, applied and experimental researches. 		 Unit-1.0 Introduction 1.1 Introduction of the subject 1.2 Research Concepts. 1.3 Research objectives 1.4 Research motivation 1.5 Types of research – descriptive research 1.6 Theoretical research. 1.7 Applied research. 1.8 Experimental research. 	 Historical development and evolution of Research methodology.

SW-1Suggested Sessional Work(SW):

a. Assignments:

i. Prepare a chart comparing various types of researches.

PEC-MMF204A.2: Students will be able to Classify and select appropriate resources for Research.

Арр	proximate Hours
ltem	AppXHrs
Cl	10
LI	0
SW	1
SL	2
Total	13

Session Outcomes (SOs)	(LI)		Classroom Instruction (Cl)	Self Learning (SL)
SO2.1 Understand the criteria for good research.		Uni 2.1	t-2 Researchprocess Criteria for good research.	 Study various hypothesis testing methods.
SO2.2 Formulate the Research Task.		2.2	Problems encountered by Indian researchers.	testing methods.
SO2.3 Understand how to review the Literature.		2.3 2.4 2.5	Formulation of Research Task. Literature Review. Importance & Methods of	
SO2.4 Understandhow to prepare the hypotheticalproposalsforfuturedevel		2.6	research. Quantification of Cause Effect Relations	
opment.		2.7 2.8	Discussions on Field Study Critical Analysis of Facts Generated.	
		2.9	Tutorial-1	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering)Program (Revised as on 01August 2023)

SW-2 SuggestedSessional Work(SW):

a. Assignments:

i. Prepare a literature review for a particular research topic.

PEC-MMF204A.3:Students will be able toAnalyze the contents of literature and identify further scope.

ApproximateHours

ltem	AppXHrs
Cl	9
LI	0
SW	2
SL	2
Total	13

SessionOutcomes	(LI)	ClassroomInstruction	SelfLearni
(SOs)		(CI)	ng
			(SL)
		Unit-3:Hypothetical proposals	Numerical
SO3.1 Understand the Concepts of			problems
hypothetical proposals.		3.1 Hypothetical proposals concept,	on
		examples.	hypothesis
SO3.2 Ability to use the Methods of		3.2 Methods of writing hypothetical proposals	testing.
writing hypothetical proposals.		3.3 Hypothetical proposals for future	
		development.	
SO3.3 Understand the process of		3.4 Proposal testing- Need.	
proposal testing.		3.5 Proposal testing- Procedure.	
		3.6 Proposal testing- methods.	
		3.7 Selection of Research task.	
		3.8 Case studies.	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering)Program (Revised as on 01August 2023)

SW-3SuggestedSessionalWork(SW):

a. Assignments:

i. Prepare a chart highlighting different hypothetical research proposal methods.

PEC-MMF204A.4:Students will be able to Formulate a Research Problem.

ApproximateHours

Item	AppXHrs
Cl	9
LI	0
SW	1
SL	1
Total	11

SessionOutcome	(LI)	ClassroomInstruction	Self Learning
s(SOs)		(Cl)	(SL)
SO4.1Understand the Concepts of modelling. SO4.2 Ability model a real-life problem using suitable method. SO4.3 Understand the process of simulation.		 Unit-4: Mathematical modelling and simulation. 4.1 Concepts of modelling. 4.2 Classification of mathematical models. 4.3 Modelling with – Ordinary differential equations 4.4 Modelling with Difference equations 4.5 Modelling with Partial differential equations. 4.6 Modelling using Graphs. 4.7 Process of formulation of model based on simulation. 4.8 Tutorial-1 4.9 Tutorial-2 	 i. Numerical problems on modelling. ii. Numerical problems on simulation.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering)Program (Revised as on 01August 2023)

SW-4SuggestedSessionalWork(SW):

a. Assignments:

Prepare a chart highlighting different modeling methods.

b. Project:

Consider a rea life problem, model it using suitable modelling method.

PEC-MMF204A.5:Students will be able to apply effective written and oral Presentation skills.

Ар	proximate Hours
ltem	Appx Hrs
Cl	9
LI	0
SW	01
SL	01
Total	11

SessionOutcomes (SOs)	(LI)	ClassroomInstruction (Cl)	SelfLear ning (SL)
 SO5.1Understand the technique of interpretation. SO5.2Understand the mechanics of writing research report. 		 Techniquesofinterpretation. 5.2 Precautionsininterpretation. 5.3 Significanceofreportwriting. 5.4 Differentstepsinreportwriting. 5.5 Layout of research report. 5.6 Mechanics of writing research report. 	1.Different steps in report writing.
		 5.7 Layout and format: Style of writing, Typing, References, Tables, Figures, Conclusion and Appendices. 5.8 Tutorial-1 5.9 Tutorial-2 	

SW-5SuggestedSessionalWork(SW):

a. Assignments:

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering)Program (Revised as on 01August 2023)

i. Prepare a chart classifying various techniques of interpretation..

${\it Briefof Hours suggested for the Course Outcome}$

ClassLe	Sessional	SelfLe	Total
cture	Work	arning	hour(Cl+S
(CL)	(SW)	(SI)	W+SI)
k			
8	2	1	11
10	1	2	13
9	2	2	13
9	1	1	11
/			
9	1	1	11
45	7	7	59
	cture (CL) 8 10 9 9 9 9 9 9 9 9 9 9	cture (CL)Work (SW)8210192919191	cture (CL)Work (SW)arning (SI)8211012922911911

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering)Program (Revised as on 01August 2023)

SuggestionforEndSemesterAssessment

CO	UnitTitles	Mar	MarksDistribution					
		R	U	Α	Marks			
CO-1	Introduction	01	02	03	06			
CO-2	Researchprocess	01	03	07	11			
CO-3	Hypothetical proposals	01	07	04	12			
CO-4	Mathematical modelling and simulation.	01	06	04	11			
CO-5	Interpretation and report writing	01	06	03	10			
	Total	5	24	21	50			

SuggestedSpecificationTable(ForESA)

Legend: R:Remember, U:Understand, A:Apply

TheendofsemesterassessmentforTotal Productive

Maintenance will be held with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for ends emester assessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visitto industry
- 7. Demonstration
- 8. ICTBased TeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook, Twitter,Whatsapp,Mobile,Onlinesources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering)Program (Revised as on 01August 2023)

SuggestedLearningResources:

(a)	Books:			
S.	Title	Author	Publisher	Edition
No.				&Year
1		J.WBames	McGrawHill,N.Y	1990.
	Statistical Analysis for En		ork p	
	gineersandScientists			
2	TheoriesofEngineering	SchankFr.	McGrawHill,N.Yo	1986
	Experiments		rk	
3	Lecturenotes provided	ру		
	Dept.of Mechanical En	gineering,AKSUniversity	<i>r,</i> Satna	

CurriculumDevelopmentTeam

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKSUniversity
- 2. Mr. Alok Ranjan Tiwari, AssistantProfessor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey ,AssistantProfessor,Dept.ofMechanical Engg
- 4. Mr.Keshav Pratap Singh, AssistantProfessor,Dept. ofMechanical Engg
- 5. Mr.Amar Soni, AssistantProfessor, Deptof Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , AssistantProfessor,Dept.ofMechanical Engg
- 7. Mr. Ketan Agrawal, AssistantProfessor, Dept.of Mechanical Engg
- 8. Mr. K.C. Kori, AssistantProfessor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, AssistantProfessor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, AssistantProfessor, Dept. of Mechanical Engg

Cos,PosandPSOsMapping

CourseTitle:B.Tech. Mechanical Engineering

CourseCode:PCC-ME307

CourseTitle: Production and Operation Management

		ProgramOutcome s									ProgramSpecificOutcome					
	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	РО 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics		Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO1:Students will be able to Understand and Describe importance of research.	2		3				1		3			2	2	1	2	1
CO 2: Students will be able to Classify and select appropriate resources for Research.	2		2	1			1		1			2	2	2	2	2
CO3: Students will be able to Analyze the contents of literature and identify further scope.	2		3	3			1		1	2		2	1	1	2	2
CO 4: Students will be able to Formulate a Research Problem.	2	3	3	2					2	2		2	3	3	3	2
CO5: Students will be able to apply effective written and oral Presentation skills.	2		1	3			3					3	3	3	1	3

Legend:1–Low,2–Medium,3–High

CourseCurriculumMap:

POs&PSOsNo.	CosNo.&Titles	SOsNo.	LaboratoryInstruction (LI)	Classroom Instruction(CI)	SelfLearning(SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4,	CO-1: Students will be able to Understand and Describe importance of research.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1 Introduction 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.9	
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO 2: Students will be able to Classify and select appropriate resources for Research.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2Research process 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9, 2.10	Asmentionedin
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5		SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3 Hypothetical proposals 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8 3.9.	Pagenumber 2to6
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 4: Students will be able to Formulate a Research Problem.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4Mathematical modelling and simulation 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 5: Students will be able to apply effective written and oral Presentation skills.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit-5:Interpretation and report writing. 5.1,5.2,5.3,5.4,5.5, 5.6, 5.7, 5.8, 5.9	
				J.1,J.2,J.J,J.4,J.J, J.0, J.7, J.0, J.7	

Semester-II								
CourseCode:	MMF203H							
CourseTitle:	Total Productive Maintenance							
Pre-requisite:	Understanding of basics engineering principles, production planning and control and fundamentals of mechanical vibrations.							
Rationale:	Total Preventative Maintenance (TPM) is essential in the M. Tech. Mechanical Engineering curriculum to equip students with the knowledge and skills required for effective planning and implementing the suitable maintenance techniques. TPM is a critical strategy for maintaining equipment and machines. By learning the principles of TPM, the students will be able to apply it in the organizations whichwill certainly result in reduce machinery/facility downtime, increase efficiency, productivity and improve safety.							

CourseOutcomes:

- **PEC-MMF203H.1:**Students will be able to understandand apply the different types of maintenance principles/practices toincrease the productivity of plant and equipment with a modest investment in maintenance.
- **PEC-MMF203H.2:**Students will be able to understand as to how the equipment effectiveness can be maximized, they will also learn about fivepillars of TPM.
- **PEC-MMF203H.3:**Students will be able toprepare the maintenance master plan and implement the TPM.
- **PEC-MMF203H.4:**Students will be able to understand about human factors in maintenance, maintenance logistics and Spare parts management..
- **PEC-MMF203H.5**:Students will be able to apply various condition monitoring techniques to identify the instantaneous condition of the machine and take the corrective action for any potential defect.

Scheme of Studies:

Board of					Scher	Scheme of studies (Hours/Week)			
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+S W+SL)	Credits(C)	
Program Elective (PEC)	PEC- MMF203H	Total Productive Maintenance	3	0	1	1	5	3	

Legend: Cl:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)andTutorial (T)andothers), Ll:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop,fieldorothe rlocationsusingdifferentinstructionalstrategies) SW:SessionalWork(includesassignment,seminar,miniprojectetc.), SL:SelfLearning, C:Credits. Page 198

Note: SW&SLhastobeplannedandperformedunderthecontinuousguidanceandfeedbackofteacherto ensure outcome ofLearning.

SchemeofAssessment:

Theory

				SchemeofAssessment(Marks)							
				EndSemest erAssessme nt	Total Marks						
Board ofStud Y	Course Code	CourseTitle	Class/Home Assignment 5number 3	Class Test2 (2bestout Of3)	Seminar one	ClassActi vityanyo ne	ClassAtten dance	TotalMarks			
			marks each (CA)	10 marksea ch(CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)	
PEC	PEC- MMF20 3H	Total Productive Maintenan ce	15	20	5	5	5	50	50	100	

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and sessionlevels, which students are anticipated to accomplish through various modes of instruction includingClassroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL).

As the course progresses, students should show case their mastery of Session Outcomes (SOs), culminating int he overall achievement of Course Outcomes (COs) upon the course's conclusion.

PEC-MMF203H.1:Students will be able to understand and apply the different types of maintenance principles/practices to increase the productivity of plant and equipment with a modest investment in maintenance.

ApproximateHou			
Item AppXHrs			
Cl	7		
LI	0		
SW	2		
SL	2		
Total	11		

SessionOutcomes (SOs)	Laboratory Instruction (LI)	ClassroomInstruction (CI)	SelfLear ning (SL)
 SO1.1 Define and classify maintenance types. SO1.2Understand the Objectives and functionsof maintenance. SO1.3Differentiate between preventive, predictive and reliability centered maintenance (RCM). SO1.4Describing the terotechnology in the context of maintenance. SO1.5 Analyzing the RCM method. SO1.6 Analyzing the Maintainability, availability and effectiveness of the system. 		 Unit-1.0 Introduction 1.1 Introduction of the subject 2 Classification of Maintenancepractic es. 3 Concepts, Objectives and functionsof maintenance. 4 Understanding of Terotechnology. 5 Reliability Centered Maintenance(RCM) 6 Maintainability prediction, availability and system, effectiveness. 	 Historical development and evolution of TPM.

SW-1Suggested Sessional Work(SW):

- a. Assignments:
- i. Analyze real-world examples of successful maintenance strategies.

PEC-MMF203H.2: Students will be able to understand as to how the equipment effectiveness can be maximized they will also learn about five pillars of TPM.

Approximate Hours			
Item	AppX Hrs		
Cl	12		
LI	0		
SW	2		
SL	2		
Total	16		

mai 2.1 2.2 2.3	t-2 TPM pillars and ntenance models. TPM- Maximizing equipment effectiveness. Preventive maintenance, and breakdownmaintenance. Preventive maintenance schedules: Deviations on target	 i. Study various maintenance models. ii. Analyze case studies related to TPM.
2.3	Preventive maintenance, and breakdownmaintenance. Preventive maintenance	studies related to
	schedules: Deviations on target	
2.4	values. Preventive maintenance schedules: functional	
2.5	characteristics, replacement models. OrganizingforTPMimplementat	
2.6	PMConcepts,ImportanceofTPM	
2.7 2.8	Zero Defects and TPM. Maximizing equipment	
2.9	Autonomous maintenance program.	
2.11	group activities. Tutorial-1	
	2.6 2.7 2.8 2.9 2.10 2.11 2.12	 2.5 OrganizingforTPMimplementat ion. 2.6 PMConcepts,ImportanceofTPM . 2.7 Zero breakdown concepts, Zero Defects and TPM. 2.8 Maximizing equipment effectiveness. 2.9 Autonomous maintenance program. 2.10 Fivepillars of TPM, TPM Small

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering)Program (Revised as on 01 August 2023)

SW-2 SuggestedSessional Work(SW):

a. Assignments:

- i. Analyze real-world case studies highlighting the implementation of different maintenance models.
- ii. TPM Small group activities.

PEC-MMF203H.3:Students will be able toprepare the maintenance master plan and implement the TPM.

ApproximateHours				
Item	AppXHrs			
Cl	9			
LI	0			
SW	2			
SL	2			
Total	13			

SessionOutcomes (SOs)	(LI)	ClassroomInstruction (Cl)	SelfLearni ng (SL)
 SO3.1Understand the procedure of TPM Planning and Implementation. SO3.2Ability to prepare the master plan. SO3.3Understand the ongoing global trends in TPM process planning. 		 Unit-3:TPM Planning and Implementation. 3.1 TPM implementation and stabilization. 3.2 TPM Planning and Implementation. 3.3 Organizationfor TPM, management decision. 3.4 Awareness and training for TPM. 3.5 Formation of master plan. 3.6 TPM implementation. 3.7 Ongoing global trendsin TPM Process planning. 3.8 Tutorial-1 3.9 Tutorial-1 	i. Establishm ent of basic policies and goals.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering)Program (Revised as on 01 August 2023)

SW-3SuggestedSessionalWork(SW):

a. Assignments:

- i. Analyze real-world cases of successful implementation of TPM.
- ii. Evaluate challenges faced and solutions implemented.

b. Project:

I. Develop a comprehensive maintenance plan for a hypothetical manufacturing unit.

PEC-MMF203H.4: Students will be able to understand about human factors in maintenance, maintenance logistics and Spare parts management.

ApproximateHours			
Item	AppXHrs		
Cl	10		
LI	0		
SW	1		
SL	1		
Total	12		

SessionOutcome s(SOs)	(LI)	ClassroomInstruction (Cl)	Self Learning (SL)
SO4.1 Understand the key principles of maintenance logistics.		 Unit-4: Maintenance spare parts management and logistics. 4.1 Maintenance Logistics. 4.2 Human factors in maintenance. 	i. Study the Maintenance manuals.
 SO4.2 Understand the principles of human factors in maintenance. SO4.3 Analyze the maintenance staffing methods. SO4.4 Analyze different queuing methods in maintenance. SO4.5 Analyze maintenance planning and scheduling. 		 4.3 Maintenance manuals. 4.4 Maintenance staffing methods. 4.5 Queuing applications 4.6 Spare parts management, simulation. 4.7 Maintenance planning and scheduling. 4.8 TPM small group activities. 4.9 Tutorial-1 4.10 Tutorial-2 	ii. Analyze the Humanfactorsi nmaintenance

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering)Program (Revised as on 01 August 2023)

SW-4SuggestedSessionalWork(SW):

a. Assignments:

- i. Analyze the maintenance spare part management of a local manufacturing facility and suggest improvements.
- ii. Study the maintenance staffing methods of a local manufacturing facility.

PEC-MMF203H.5:Students will be able to apply various condition monitoring techniques to identify the instantaneous condition of the machine and take the corrective action for any potential defect.

Approximate Hours				
Item	Appx Hrs			
Cl	9			
LI	0			
SW	01			
SL	01			
Total	11			

Session Outcomes (SOs)	(LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO5.1Understand the online condition monitoring technique. SO5.2Identify suitable condition monitoring technique for a particular application. SO5.3Understand and Apply the method of Corrosion Monitoring and Control. 		 Unit5: Condition monitoring techniques. 5.1 The PM prize for outstanding TPM plants. 5.2 Online Condition Monitoring Techniques. 5.3 Vibration Monitoring. 5.4 Signature Analysis. 5.5 Wear Debris Monitoring technique. 5.6 Maintenance Management Information system. 5.7 Corrosion Monitoring and Control. 	1.Application of different monitoring techniques.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Make a chart comparing various condition monitoring methods.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering)Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Out comes	Class	Sessional	Self	Total hour
	Lecture	Work	Learning	(Cl+SW+SI)
	(CL)	(SW)	(SI)	
PEC-MMF203H.1: Students will be able to understand and apply the different types of maintenance principles/practices to increase the productivity of plant and equipment with a modest investment in maintenance.	7	2	2	11
PEC-MMF203H.2: Students will be able to understand as to how the equipment effectiveness can be maximized they will also learn about five pillars of TPM.	12	2	2	16
PEC-MMF203H.3: Students will be able to prepare the maintenance master plan and implement the TPM.	9	2	2	13
PEC-MMF203H.4: Students will be able to understand about human factors in maintenance, maintenance logistics and Spare parts management.	10	1	1	12
PEC-MMF203H.5 :Students will be able to apply various condition monitoring techniques to identify the instantaneous condition of the machine and take the corrective action for any potential defect.		1	1	9
TotalHours	45	8	8	61

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering)Program (Revised as on 01 August 2023)

SuggestionforEndSemesterAssessment

SuggestedSpecificationTable(ForESA)

СО	UnitTitles	Mark	bution	Total	
		R	U	A	Marks
CO-1	Introduction	01	02	03	06
CO-2	TPM pillars and maintenance models.	01	03	07	11
CO-3	TPM Planning and Implementation.	01	07	04	12
CO-4	Maintenance spare parts management and logistics.	01	06	04	11
CO-5	Condition monitoring techniques.	01	06	03	10
	Total	5	24	21	50

Legend: R:Remember, U:Understand, A:Apply

TheendofsemesterassessmentforTotal Productive

Maintenance will be held with written examination of 50 marks.

 $\label{eq:Note} Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for ends emester assessment.$

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visitto industry
- 7. Demonstration
- 8. ICTBased TeachingLearning(V
 - TeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook, Twitter,Whatsapp,Mobile,Onlinesources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mechanical Engineering)Program (Revised as on 01 August 2023)

SuggestedLearningResources:

(a)I	Books:			
S. No.	Title	Author	Publisher	Edition &Year
1	TrainingForTPM	Nahchi-Fujikoshi	Japan Institute of Plant Maintenance	1990.
2	IntroductionToTPM,Th ePurtorFactory	,,,	JapanInstituteof PlantMaintenanc e	1986
3	TPMNyumon	S. Nakajjima	Japan Institute of Plant Maintenance	1989
4	Lecturenotes provided Dept.of Mechanical Eng	•	r,Satna	

CurriculumDevelopmentTeam

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKSUniversity
- 2. Mr. Alok Ranjan Tiwari, AssistantProfessor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey ,AssistantProfessor,Dept.ofMechanical Engg
- 4. Mr.Keshav Pratap Singh, AssistantProfessor,Dept. ofMechanical Engg
- 5. Mr.Amar Soni, AssistantProfessor, Deptof Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , AssistantProfessor,Dept.ofMechanical Engg
- 7. Mr. Ketan Agrawal, AssistantProfessor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, AssistantProfessor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, AssistantProfessor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, AssistantProfessor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, AssistantProfessor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: M.Tech. Mechanical Course

Code: PCC- MMF203H

Course Title: Total Productive Maintenance

						-	gram omes						Р	Program Specific Outcome			
	PO 1	PO2	PO3	PO4	PO5	PO6	P07	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
Course Outcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics	Indivi dual and team work:	Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t	
CO1:Students will be able to understand and apply the different types of maintenance principles/practices to increase the productivity of plant and equipment with a modest investment in maintenance.	1	1	2	2	3	2	3	2	2	1	3	2	2	1	2	1	
CO 2: Students will be able to understand as to how the equipment effectiveness can be maximized, they will also learn about five pillars of TPM.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	2	
CO3: Students will be able to prepare the maintenance master plan and implement the TPM.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2	
CO 4: Students will be able to understand about human factors in maintenance, maintenance logistics and Spare parts management.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2	
CO5: Students will be able to apply various condition monitoring techniques to identify the instantaneous condition of the machine and take the corrective action for any potential defect.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3	

Legend:1–Low,2–Medium,3–High

Course Curriculum Map:

Pos &PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self Learning(SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, PO1,2,3,4,5,6	CO-1: Understanding of the intricacies of production systems and resources, the classification of production types and the pivotal roles played by line supervisors and production managers. CO 2: students will be able to	S01.1 S01.2 S01.3 S01.4 S01.5 S02.1		Unit-1 Introduction 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 Unit-2TPM pillars and maintenance	
PO1,2,3,4,3,0 7,8,9,10,11,12 PSO1,2,3,4,5	effectively manage the entire project life cycle, from concept phase to execution and completion, while ensuring quality, handling risks, and achieving project objectives.	SO2.2 SO2.3 SO2.4 SO2.5		models 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9, 2.10,2.11,2.12	As mentioned in
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5		SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3 TPM Planning and Implementation 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8 3.9.	Page number 2to6
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 4: Understand the principles of factory management and their application in modern manufacturing systems. Apply the concepts of factory management to improve productivity, quality, and sustainability.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4Maintenance spare parts management and logistics. 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 5: students will be able to apply mathematical and problem-solving techniques to optimize resource allocation and decision-making in various operational and logistical systems.	SO5.2 SO5.3 SO5.4 SO5.5	Page 209	Unit-5:Condition monitoring techniques. 5.1,5.2,5.3,5.4,5.5, 5.6, 5.7, 5.8, 5.9	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Semester-II

Course Code:	PE202
Course Title :	Mini-Project
Pre-requisite:	Students should have basic knowledge for design, development and analysis of project.
Rationale:	Students should be well-versed in the Mechanical manufacturing process and concrete production. Keeping abreast of the latest technological trends is crucial for identifying contemporary R&D topics. A fundamental understanding of the physical and chemical properties of Material is essential. Additionally, students must be proficient in statistical methods for effective data analysis and interpretation. Competence in Microsoft Word and Excel is necessary for report writing and documentation. By combining technical knowledge with analytical and software skills, students will be well-prepared to tackle challenges in the field and contribute meaningfully to research and development efforts.

Course Outcomes:

.

PE202.1:Methodology for projectdesign and project schedulingPE202.2: Methods of Data collection and data compiliationPE202.3:Product developmentPE202.4: Data analysis and data interpretationPE202.5: Concluding remark and future work

_ _ _ _

SchemeofStudies:

Course	Course	Course	Course Scheme of studies(Hours/Week)						
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)	
PROJ	PE202	Mini-Project	2	6	1	1	10	5	

Legend:

CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)an dTutorial (T)andothers),

LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies)

SW: Sessional Work(includesassignment, seminar, miniprojectetc.),

SL:SelfLearning,

C: Credits.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacherto ensureoutcomeofLearning.

Scheme of Assessment:

							Schem	e of As	sessment				
			Progressive Assessment (PRA)							End Semester Assessment			
Course Category	Course Code	Course Title	Project Scheduling	Data collection and sampling	Product design	Product analysis and data interporetaion	Report writing and concluding remark	Total Mark	Seminar	Project Viva	Total Marks	Total Marks (PRA+ESA)	
PROJ	PROJ- CT- 301	Engineerin g Project-II (Design& Analysis)	05	05	05	25	10	50	15	35	50	100	

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Lab Work Assignment (LA) Best of 5 of the total, Viva-Voice on Lab Work (VV), and Lab Attendance (LA). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Course Outcome	Course Outcome Activities				
		ho	urs)		
		Class	Self		
		Activity	Learning		
		Per week	/Home		
		(5	activity		
		Credit)	Per week		
PE202: CO.1:	1. Literature review and identification of Cement				
Methodology for	and concrete related projects and project				
design and project	scheduling	5	10		
		-	_		
scheduling	Examining recent literature on Materials projects				

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

	unveils advancements, methodologies, and applications. This review identifies emerging trends, innovative materials, and sustainable practices, significantly impacting construction, durability, and environmental outcomes. Noteworthy projects illustrate novel approaches, enriching insights and guiding future developments in Material technology. Project scheduling : Project scheduling involves planning and organizing tasks to ensure timely completion. It includes defining activities, setting deadlines, and allocating resources efficiently. Effective scheduling helps manage time, costs, and personnel, enhancing productivity and project success. It's crucial for meeting goals, coordinating efforts, and maintaining project momentum		
PE202: CO.2: Methods of Data collection and data compiliation	2. Design and formulation projects i. Methods of data collection and data compiletion ii. Design and formulation projects concentrate on innovating products through meticulous recipe development and methodological refinement. These initiatives prioritize material optimization, functional enhancement, and quality assurance. By blending creativity with technical prowess, they propel advancements across industries, fostering the creation of distinctive, efficient, and commercially viable solutions.	8	15
PE202: CO.3: Product development	3. Sample analysis and product development Testing samples determines their suitability by assessing quality, performance, and compliance with standards. It involves rigorous analysis and evaluation to ensure materials meet project requirements. This process identifies strengths and weaknesses, guiding decision-making and ensuring the reliability and effectiveness of the chosen samples for intended applications. Product design and analysis in R&D involve creating	10	25
	and refining products to meet market needs. This		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

	process includes conceptualizing, prototyping, and		
	testing to optimize functionality and performance. Analyzing results helps improve designs, ensuring products are innovative, efficient, and ready for successful market introduction.		
PE202. CO.4: Data analysis and data interpretation	 i. Product Dataanalysis &compilation Project data compilation involves collecting and organizing all relevant information for analysis and reporting. This process ensures data accuracy and completeness, facilitating informed decision-making and efficient project management. It helps track progress, identify trends, and generate insights, supporting successful project outcomes and future planning. ii. Statistical data analysis and data interpretation 	40	15
	Statistical data analysis involves examining and processing data to uncover patterns and trends. Data interpretation translates these findings into meaningful insights, aiding decision-making and strategy development. This process enhances understanding, supports evidence-based conclusions,		
PE202. CO.5: Concluding remark and future work	 5. Report Writing, Conclusion, Recommendations and Future work in Research work Report Writing : Comprehensive project report writing Conclusion: The study successfully demonstrated key findings. It underscores implications, validating hypothesis/objectives. This contributes field significance, laying groundwork for applications. Recommendation: Future research should explore expansion areas, emphasizing methodological improvements. Collaboration partners/stakeholders would enrich knowledge transfer. Future Work: Innovations in technology/techniques could advance potential benefits. Addressing challenges would refine outcomes, fostering industry/government support. 	12	25

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Total	75	90

Suggestion for End Semester Assessment

Course Outcome	UnitTitles	Ma	nrks Distribut	ion	Total
		R	U	Α	Marks
PE202: CO.1: Methodology for design and project scheduling	1. Literature review and identification of Material related projects and project scheduling	02	03	-	5
PE202: CO.2: Methods of Data collection and data compiliation	2. Design and formulation projects	-	05	03	8
PE202: CO.3: Product development	3. Sample analysis and product development	-	08	04	12
PE202. CO.4: Data analysis and data interpretation	 Product Data analysis, data interpretation and findings 	-	08	12	20
PE202. CO.5: Concluding remark and future work	5. Report writing, concluding remark and future work		03	02	5
Total		02	27	21	50

SuggestedSpecificationTable(ForESA)

Legend: R:Remember, U:Understand, A:Apply

TheendofsemesterassessmentforEngineering Project-1 (Literature Review) willbeheld with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp, Mobile,Onlinesources)
- 9. Brainstorming

SuggestedLearningResources:

(a) Books:

S.No.	Title	Author	Publisher	Edition
				&Year
1	The literature review : six	Lawrence A.	Corwin	2022
	steps to success	Machi, Brenda T.	Press, Inc	
		McEvoy.		
2	Lee			
3	Tylor			
4	Manufacturing Processes			
5				

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

COs, POsandPSOs Mapping

ProgramTitle:M.Tech Mechanical Engineering

Course Code:PE202; CourseTitle: Mini-Project

						Progra	am Out	comes]	ProgramSpe	cificOutcon	ne
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation.	Product Innovation and Development
PE202: CO.1: Methodology for design and project scheduling	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PE202: CO.2: Methods of Data collection and data compiliation	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3
PE202: CO.3: Product development	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PE202. CO.4: Data analysis and data interpretation	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3
PE202. CO.5: Concluding remark and future work	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3

Legend:1–Low,2–Medium,3–High

CourseCurriculumMap:Engineering Project-1 (Literature Review)

POs&PSOsNo.	COsNo.&Titles	SOsNo.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning(SL)
	PE202: CO.1: Methodology for design and project scheduling				
	PE202: CO.2: Methods of Data collection and data compiliation				
	PE202: CO.3: Product development				
	PE202. CO.4: Data analysis and data interpretation				
	PE202. CO.5: Concluding remark and future work				

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Semester-II

Course Code:	PE201
Course Title :	Seminar-I
Pre-requisite:	Students should have basic knowledge on design and presentation of technical seminar.
Rationale:	The student possesses knowledge of the processes involved in the manufacture of Machines. Additionally, the student should be familiar with the latest trends in Mechaniacal manufacturing and the challenges faced by the Mechaniacal industry. Presenting the latest technological advanMechanicals in Mechanical manufacturing is essential for the seminar.

Course Outcomes:

a 1

- **CO.1:** Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.
- **CO.2:** In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples.
- **CO.3:** Preparation and delivery of the seminar presentation, including a question and answer session.

SchemeofStudies:

Course	Course	Course		Scheme of	of studie	s(Hours	/Week)	Total	
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)	
PROJ	PE201	Seminar-I		2		3	3	1	

Legend:

CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)an dTutorial (T)andothers),
 LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies)
 SW: Sessional Work(includesassignment, seminar, miniprojectetc.),
 SL:SelfLearning,
 C: Credits.
 Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacherto ensureoutcomeofLearning.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Scheme of Assessment:

						Sch	eme of A	Assessmei	nt (Ma	rks)	
			Progressive Assessment (PRA)					End Semester Assessment			3
Course Category	Course Code	Course Title	Identification of seminar topic	Data collection	Prepartionpresenation	Seminar presentation	Total Mark	Seminarcontent	Presentation and Questionanswer	Total Marks	Total Marks (PRA+ESA)
PROJ	PE201	Seminar-I	05	05	25	15	50	10	40	50	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Lab Work Assignment (LA) Best of 5 of the total, Viva-Voice on Lab Work (VV), and Lab Attendance (LA). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Course Outcome	Activities	Time Schedule (in hours)		
		Class Activity Per week (1 Credit)	Self Learning /Home activity	
			Per week	
CO.1: Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.	 Introduction and fundamentals Seminar Objectives of the Seminar Identification and Overview of Topics to be Covered Importance and Relevance of the Seminar 	3	5	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

	in Current Industry Trends - Introduction to the Technical Field - Basic Concepts and Terminology - Historical Development and Milestones - Current State of the Technology		
CO.2: In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples	 2.0 In-depth Technical Sessions and preparation of presentation Module 1: Advanced Theoretical Concepts Key Theories and Principles Mathematical Foundations Models and Algorithms Module 2: Practical Applications Industry Applications Case Studies Real-world Scenarios Module 3: Practical Implementation Step-by-step Guide to Solving a Problem Coding and Development Debugging and Optimization 	7	15
CO.3: Preparation and delivery of the seminar presentation, including a question and answer session.	Prepartion of seminar content in proper presentation format and seminar presentationPrsentationPrsentaion andQuartion answer sessionSeminar feed back and over view	5	10
1	otal	15	30

Suggestion for End Semester Assessment

Course Outcome	UnitTitles	Ma	Total		
		R	U	Α	Marks
CO.1: Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.	Introduction and fundamentals Seminar	05	05		10
CO.2: In-depth analysis and	In-depth Technical Sessions		10	05	15
interpretation of technical	and preparation of				

SuggestedSpecificationTable(ForESA)

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

data related to the seminar presentation topic, including case studies and practical implementation examples CO.3: Preparation and Prepartion of seminar content in delivery of the seminar proper presentation format and 10 15 20 presentation, including a seminar presentation question and answer session 05 25 20 Total 50

Legend: R:Remember, U:Understand, A:Appl	Legend:	R:Remember,	U:Understand,	A:Apply
--	---------	-------------	---------------	---------

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visit to Mechanical plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp, Mobile,Onlinesources)
- 9. Brainstorming

SuggestedLearningResources:

(a) Books:

S.No.	Title	Author	Publisher	Edition &Year
1				
2				

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

3			
4	Manufacturing process		
5			

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- **11.** Mr. Rishi Kumar Sharma, Assistant Professor , Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg
- 13. Mr. Umesh Bagri , Assistant Professor , Dept. of Mechanichal Engg

COs, POsandPSOs Mapping

ProgramTitle:M.Tech Mechanical Engineering

Course Code:PE201; CourseTitle: Seminar-I

						Progra	am Out	comes]	ProgramSpe	cificOutcon	ne
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation.	Product Innovation and Development
CO.1: Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
CO.2: In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3
CO.3: Preparation and delivery of the seminar presentation, including a question and answer session.	3	3	3	3	3	3	3	2	3	1	3	3	3	2	3	1

Legend:1-Low,2-Medium,3-High

CourseCurriculumMap: Seminar-I

POs&PSOsNo.	COsNo.&Titles	SOsNo.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning(SL)
	CO.1: Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.				
	CO.2: In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples				
	CO.3: Preparation and delivery of the seminar presentation, including a question and answer session.				

Semester-III

Course Code:	MMF301
Course Title:	Project Management and Intellectual Property Rights
Pre-requisite:	Project Management: Business understanding, organization, communication, risk management, leadership.
	Intellectual Property Rights: Understanding laws, types, protection strategies, enforcement, innovation impact.

Rationale: Project Management ensures efficient project execution and stakeholder satisfaction. Intellectual Property Rights safeguard innovations, promote creativity, and secure competitive advantage through legal protection and strategic management of intellectual assets.

Course Outcomes:

MMF301.1: Enumerate and demonstrate fundamental terms such as copy-rights, Patents, Trademarks etc., MMF301.2: Interpret and follow Laws of copy-rights, Patents, Trademarks and various IP registration Processes to register own project research.

MMF301.3: Exhibit the enhance capability to do economic analysis of IP rights, technology and innovation related policy issues and firms' commercial strategies.

- MMF301.4: Develop awareness at all levels (research and innovation) of society to develop patentable technologies.
- MMF3015: Apply trade mark law, copy right law, patent law and also carry out intellectual property audits

Scheme of Studies:

Board of		Scheme of studies (Hours/Week) Total Credits									
Study	Course	Cl LI SW SL Total Study ^(C)									
	Course Code	Course Title Hours									
	(CI+LI+SW+SL)										
Program	MMF301	Project 2 0 1 1 4 2									
(PCC)	Core Management										
(ICC)		and									
	Intellectual										
	Property										
Rights											
Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial											
(T) and others),											
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field											
or other locations using different instructional strategies)											
	SW: Sessional Work (includes assignment, seminar, mini project etc.),										
	SL: Self Learning,										
Page 226											

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Scheme of Assessment (Marks)							
					Progressive	e Assessmen	it (PRA)		End Semester Assessment	Total Marks	
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks			
		3 marks each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)		
PCC	MMF 301	Processing Project Managem ent and Intellectual Property Rights	15	20	5	5	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

MMF301.1: Enumerate and demonstrate fundamental terms such as copy-rights, Patents, Trademarks etc.,

Approximate Hours

Hrs
)

characteristics, managementProject managementLRC, Ganttobjectives, and project management1.1 Definition andchartsstages.objectives of Projectobjectives of ProjectSO1.2 Learn project planning, workManagement1.2 Stages of Project	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
	Work Breakdown Structure,		 Project management 1.1 Definition and objectives of Project Management 1.2 Stages of Project Management 1.3 Project Planning Process, Establishing Project 1.4 Work definition: Defining work content, Time Estimation Method 1.5 Project Cost Estimation and budgeting, Project Risk Management 1.6 Project scheduling and Planning Tools: Work Breakdown 	LRC, Gantt

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Describe the CPM/PERT Networks

MMF301.2: Interpret and follow Laws of copy-rights, Patents, Trademarks and various IP registration Processes to register own project research

Ap	proximate Hours
ltem	AppX Hrs
Cl	6
LI	0
SW	3
SL	1
Total	10

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
SO2.1 Create project plans, analyze cash flow, schedule with constraints.	 Unit-2 Developing Project Plan 2.1 Project cash flow analysis 2.2 Project scheduling with 		1 Describe Project cash flow analysis
SO2.2 Implement resource leveling, allocation, and time-cost trade-offs.		resource constraints 2.3 Resource Leveling 2.4 Resource Allocation. 2.5 Time Cost Trade off 2.6 Crashing Heuristic	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-2 Suggested Sessional Work(SW):

a. Assignments:

i. Analyze Crashing Heuristic

MMF301.3: Exhibit the enhance capability to do economic analysis of IP rights, technology and innovation related policy issues and firms' commercial strategies.

	Approximate Hours
ltem	AppX Hrs
Cl	6
LI	0
SW	3
SL	1
Total	10

		10181 10	
Session Outcomes (SOs)	(LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO3.1 Implement and monitor projects using PERT/Cost and computer applications. SO3.2 Conduct comprehensive post-project analysis to evaluate outcomes. 		 Unit-3: Project Implementation 3.1 Project Monitoring and Control with PERT/Cost 3.2 Computers applications in Project Management 3.3 Contract Management 3.4 Project Procurement Management. 3.5 Post-Project Analysis 3.6 Tutorial 1 	(SL) 1.Design of Project Monitoring

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-3 Suggested Sessional Work (SW):

- a. Assignments: Explain the Post-Project Analysis
- MMF301.4: Develop awareness at all levels (research and innovation) of society to develop patentable technologies Approximate Hours

	p
ltem	AppX Hrs
Cl	6
LI	0
SW	3
SL	1
Total	10

	(CI)	(SL)
and importance of Intellectual Property Rights (IPR). SO4.2 Explore IPR practices in India and abroad; patents	Unit-4 : Introduction to IPR 4.1 Overview & Importance 4.2 IPR in India 4.3 IPR abroad 4.4 Patents 4.5 Their definition; granting 4.6 infringement	1.Importance of searching & filing

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

SW-4 Suggested Sessional Work (SW):

i.

a. Assignments:

Application of Utility Models

MMF3015: Apply trade mark law, copy right law, patent law and also carry out intellectual property audits

Approximate Hours					
ltem	Appx Hrs				
Cl	6				
LI	0				
SW	3				
SL	1				
Total	10				

Session Outcomes (SOs)	(LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO5.1 Define copyrights, their granting, infringement, searching, and filing. SO5.2 Learn trademark protection, registration, and the significance of domain names. 		 Unit5: Copyrights 5.1 introduction 5.2 their definition 5.3 granting; infringement 5.4 searching & filing 5.5 distinction between related and copy rights 5.6 Trademarks ,role in commerce ,importance 	1Application protection, registration

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Application of Scanning domain names

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (CL)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+SI)
MMF301.1: Enumerate and demonstrate fundamental terms such as copy-rights, Patents, Trademarks etc.,	6	3	1	10
MMF301.2: Interpret and follow Laws of copy-rights, Patents, Trademarks and various IP registration Processes to register own project research.	6	3	1	10
MMF301.3: Exhibit the enhance capability to do economic analysis of IP rights, technology and innovation related policy issues and firms' commercial strategies.	6	3	1	10
MMF301.4: Develop awareness at all levels (research and innovation) of society to develop patentable technologies.	6	3	1	10
MMF3015: Apply trade mark law, copy right law, patent law and also carry out intellectual property audits	6	3	1	10
Total Hours	30	15	5	50

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	FitlesMarks Distribution						
		R	U	А	Marks			
CO-1	Introduction to Project management	01	02	03	06			
CO-2	Developing Project Plan	01	03	07	11			
CO-3	Project Implementation	01	07	04	12			
CO-4	Introduction to IPR	01	06	04	11			
CO-5	Copyrights	01	06	03	10			
	Total	5	24	21	50			

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Project Management and Intellectual Property Rights** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M. Tech. (Mechanical Engineering) Program

Suggested Learning Resources:

(a)	Books:		
S.	Title	Author	Publisher
No.			
1	Project	Shtub,BardandGl	Prentice Hall,
	Management:	oberson	India
	Engineering,		
	Technology, and		
	Implementation		
2	Project Management	Lock,Gower,	McGraw-Hill Book
	Handbook,		Co.(Third
			edition),1988.

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey , Assistant Professor , Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: M. Tech. Mechanical

Engineering Course Code: MMF301

Course Title: Project Management and Intellectual Property Rights

			<u> </u>			-	gram omes						Program Specific Outcome			
	PO 1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics		Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO1: Enumerate and demonstrate fundamental terms such as copy- rights, Patents, Trademarks etc.,	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO 2 Interpret and follow Laws of copy-rights, Patents, Trademarks and various IP registration Processes to register own project research.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO3: Exhibit the enhance capability to do economic analysis of IP rights, technology and innovation related policy issues and firms' commercial strategies.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO 4: Develop awareness at all levels (research and innovation) of society to develop patentable technologies.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO5: Apply trade mark law, copy right law, patent law and also carry out intellectual property audits	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend: 1–Low, 2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6	CO1: Enumerate and demonstrate	SO1.1		Unit -1 Introduction to Project management	
7, 8, 9, 10, 11, 12	fundamental terms such as copy-rights, Patents,	SO1.2 SO1.3		1.1, 1.2, 1.3, 1.4, 1.5, 1.6	
PSO 1, 2, 3, 4, 5	Trademarks etc.,				
PO 1, 2, 3, 4, 5, 6	CO 2 Interpret and follow Laws	SO2.1		Unit-2 Developing Project Plan	
7, 8, 9, 10, 11, 12	of copy-rights, Patents, Trademarks and various IP registration Processes to	SO2.2		2.1,2.2,2.3,2.4,2.5,2.6	
PSO 1, 2, 3, 4, 5	register own project research.				As mentioned in
PO 1, 2, 3, 4, 5, 6	CO3: Exhibit the enhance	SO3.1		Unit-3 Project Implementation	Page number
7, 8, 9, 10, 11, 12		SO3.2			2 to 6
PSO 1, 2, 3, 4, 5	analysis of IP rights, technology and innovation related policy issues and firms' commercial			3.1, 3.2, 3.3, 3.4, 3.5, 3.6	
PO 1, 2, 3, 4, 5, 6	strategies. CO 4: Develop awareness at all	SO4.1			
7, 8, 9, 10, 11, 12	levels (research and innovation)	SO4.1 SO4.2		Unit-4: Introduction to IPR	
	of society to develop patentable			4.1, 4.2, 4.3, 4.4, 4.5, 4.6	
PSO 1, 2, 3, 4, 5	technologies.				
PO 1, 2, 3, 4, 5, 6	CO5: Apply trade mark law, copy	SO5.1		Unit-5: Copyrights	
7, 8, 9, 10, 11, 12	right law, patent law and also	SO5.2		5.1, 5.2, 5.3, 5.4, 5.5, 5.6	
PSO 1, 2, 3, 4, 5	carry out intellectual property audits				

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Semester-III

Course Code:	PE302
Course Title :	Project Stage-I
Pre-requisite:	Students should have basic knowledge for design, development and analysis of project.
Rationale:	Students should be well-versed in the Mechanical manufacturing process and concrete production. Keeping abreast of the latest technological trends is crucial for identifying contemporary R&D topics. A fundamental understanding of the physical and chemical properties of Material is essential. Additionally, students must be proficient in statistical methods for effective data analysis and interpretation. Competence in Microsoft Word and Excel is necessary for report writing and documentation. By combining technical knowledge with analytical and software skills, students will be well-prepared to tackle challenges in the field and contribute meaningfully to research and development efforts.

Course Outcomes:

PE302.1:Methodology for projectdesign and project schedulingPE302.2: Methods of Data collection and data compiliationPE302.3:Product developmentPE302.4: Data analysis and data interpretationPE302.5: Concluding remark and future work

SchemeofStudies:

Course	Course	Course		/Week)	Total				
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)	
PROJ	PE302	Project Stage-I	2	6	1	1	10	5	

Legend:

CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)an dTutorial (T)andothers),

LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies)

SW: Sessional Work(includesassignment, seminar, miniprojectetc.),

SL:SelfLearning,

C: Credits.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacherto ensureoutcomeofLearning.

Scheme of Assessment:

							Schem	e of As	sessment	(Mar	ks)	
			F	Progressi	ve As	sessmen	t (PRA	Eı A	3			
Course Category	Course Code	Course Title	Project Scheduling	Data collection and sampling	Product design	Product analysis and data interporetaion	Report writing and concluding remark	Total Mark	Seminar	Project Viva	Total Marks	Total Marks (PRA+ESA)
PROJ	PE302	Project Stage-I	05	05	05	25	10	50	15	35	50	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Lab Work Assignment (LA) Best of 5 of the total, Viva-Voice on Lab Work (VV), and Lab Attendance (LA). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Course Outcome	Activities	Time Schedule (in			
		ho	urs)		
		Class	Self		
		Activity	Learning		
		Per week	/Home		
		(5	activity		
		Credit)	Per week		
PE302: CO.1:	1. Literature review and identification of				
Methodology for	Mechanical and Material related projects and				
design and project	project scheduling	5	10		
scheduling	Examining recent literature on Materials projects				

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

	unveils advanMechanicals, methodologies, and applications. This review identifies emerging trends, innovative materials, and sustainable practices, significantly impacting construction, durability, and environmental outcomes. Noteworthy projects illustrate novel approaches, enriching insights and guiding future developments in Material technology.		
	Project scheduling : Project scheduling involves planning and organizing tasks to ensure timely completion. It includes defining activities, setting deadlines, and allocating resources efficiently. Effective scheduling helps manage time, costs, and personnel, enhancing productivity and project success. It's crucial for meeting goals, coordinating efforts, and maintaining project momentum		
PE302: CO.2: Methods of Data collection and data compiliation	2. Design and formulation projects i. Methods of data collection and data compiletion ii. Design and formulation projects concentrate on innovating products through meticulous recipe development and methodological refinement. These initiatives prioritize material optimization, functional enhanMechanical, and quality assurance. By blending creativity with technical prowess, they propel advanMechanicals across industries, fostering the creation of distinctive, efficient, and commercially viable solutions.	8	15
PE302: CO.3: Product development	3. Sample analysis and product development Testing samples determines their suitability by assessing quality, performance, and compliance with standards. It involves rigorous analysis and evaluation to ensure materials meet project requirements. This process identifies strengths and weaknesses, guiding decision-making and ensuring the reliability and effectiveness of the chosen samples for intended applications.	10	25
	Product design and analysis in R&D involve creating		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

	and refining products to meet market needs. This process includes conceptualizing, prototyping, and testing to optimize functionality and performance. Analyzing results helps improve designs, ensuring products are innovative, efficient, and ready for successful market introduction.		
PE302. CO.4: Data analysis and data interpretation	 i. Product Dataanalysis &compilation Project data compilation involves collecting and organizing all relevant information for analysis and reporting. This process ensures data accuracy and completeness, facilitating informed decision-making and efficient project management. It helps track progress, identify trends, and generate insights, supporting successful project outcomes and future planning. ii. Statistical data analysis and data interpretation Statistical data analysis involves examining and processing data to uncover patterns and trends. Data interpretation translates these findings into meaningful insights, aiding decision-making and strategy development. This process enhances understanding, supports evidence-based conclusions, 	40	15
PE302. CO.5: Concluding remark and future work	 5. Report Writing, Conclusion, Recommendations and Future work in Research work Report Writing : Comprehensive project report writing Conclusion: The study successfully demonstrated key findings. It underscores implications, validating hypothesis/objectives. This contributes field significance, laying groundwork for applications. Recommendation: Future research should explore expansion areas, emphasizing methodological improvements. Collaboration partners/stakeholders would enrich knowledge transfer. Future Work: Innovations in technology/techniques could advance potential benefits. Addressing 	12	25

Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

	challenges industry/gov				fostering		
Total						75	90

Suggestion for End Semester Assessment

	SuggestedSpecificationTa		n (SA) Na ks Distribut		•
Course Outcome	UnitTitles	Ma	ion	Total	
		R	U	Α	Marks
PE302: CO.1: Methodology for design and project scheduling	1. Literature review and identification of Material related projects and project scheduling	02	03	-	5
PE302: CO.2: Methods of Data collection and data compiliation	2. Design and formulation projects	-	05	03	8
PE302: CO.3: Product development	3. Sample analysis and product development	-	08	04	12
PE302. CO.4: Data analysis and data interpretation	 Product Data analysis, data interpretation and findings 	-	08	12	20
PE302. CO.5: Concluding remark and future work	5. Report writing, concluding remark and future work		03	02	5
Total		02	27	21	50

TCA 10 .T-LL (F • •• ...

U:Understand, Legend: **R:Remember**, A:Apply

TheendofsemesterassessmentforEngineering Project-1 (Literature Review) willbeheld with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visit to Mechanical plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp, Mobile,Onlinesources)
- 9. Brainstorming

SuggestedLearningResources:

(a) Books:

S.No.	Title	Author	Publisher	Edition &Year
1	The literature review : six	Lawrence A.	Corwin	2022
	steps to success	Machi, Brenda T.	Press, Inc	
		McEvoy.		
2	Lee			
3	Tylor			
4	Manufacturing Processes			
5				

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- **11.** Mr. Rishi Kumar Sharma, Assistant Professor , Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

.....

COs, POsandPSOs Mapping

ProgramTitle:M.Tech Mechanical Engineering

Course Code:PE302; CourseTitle: Project Stage-I

						Progra	am Out	comes					ProgramSpecificOutcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation.	Product Innovation and Development
PE302: CO.1: Methodology for design and project scheduling	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PE302: CO.2: Methods of Data collection and data compiliation	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3
PE302: CO.3: Product development	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PE302. CO.4: Data analysis and data interpretation	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3
PE302. CO.5: Concluding remark and future work	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3

Legend:1–Low,2–Medium,3–High

CourseCurriculumMap: Mini-Project

POs&PSOsNo.	COsNo.&Titles	SOsNo.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning(SL)
	PE302: CO.1: Methodology for design and project scheduling				
	PE302: CO.2: Methods of Data collection and data compiliation				
	PE302: CO.3: Product development				
	PE302. CO.4: Data analysis and data interpretation				
	PE302. CO.5: Concluding remark and future work				

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Semester IV

Course Code:	PE401
Course Title:	Project Stage-II
Pre- requisite:	Basic Knowledge of Mechanical Industries
Rationale:	The objectives of the Industrial Training include: To give students the opportunity to apply the knowledge and skills they have acquired on campus in a real-life work situation. To provide students with opportunities for practical, hands-on learning from practitioners in the student's areas of specialization. To expose students to a work environment, common practices, employment opportunities and work ethics in their relevant field. To enhance the employability skills of the students. To provide opportunities for students to be offered jobs in the organizations in which they undergo their Industrial Training.

Course Outcomes:

PE401.1: Understand the organizational environment and recognize the requirement of the organization and cope with the organizational scenario.

PE401.2: Identify career paths taking into account their individual strengths and aptitude and prepare a report about the work experience in the organization.

PE401.3: Develop the employability skills and Start-Up skills to increase his/her ability to engage in life-long learning

PE401.4: Develop individual confidence to handle various engineering assignments and acquire life skills to meet societal challenges.

Course	Course	Course Title	S	Total				
Category	Code		CI	LI	SW	SL	Total Hours	Credits
							(CI+LI+SW+SL)	(C)
PROJ	PE401	Engineering Project 3 (Prototype & testing)/ On job Plant Training	í	0	1	1	3	12

Scheme of Studies:

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

(Revised as on 01 August 2023)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Engineering Project

			So	cheme of As	sessment (Marks)	-	
			Progres	sive Assess	sment (PI	RA)		
Course Category	Course Code	Course Title	5 Internal Progress Report Monthly 7 marks each (IPR)	Seminar one (TSN)	Class Attendance (TA)	Total Marks (IPR+TSN+TA)	End Semester Assessment Final Project Report + Seminar + Viva (ESA)	Total Marks (PRA+ESA)
PROJ	PROJ 404	Engineering Project-3 (Prototype & Testing)/ On job Plant Training	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

On Job Industrial Training & Time Schedule									
Activity	Broad Area of Training	Time Schedule							
Plant Data	Product information, Capacity of the plant, is the company quoted on the stock exchange, locally, international, if so how has their share price varied during your time with the company? (Type of industry - Public Limited, Private Limited, Co- operative sector etc.) Site Plan, /Plant Layout, Flow Diagram / Process Diagram	48 Hours (1Week)							
Process Technology	Manufacturing processes, Drawings (if available), specification of the machinery in use, The type of fuel, process control parameters, CCR operation	48 Hours (1Week)							
Raw Materials	Quality and source of the various raw materials used by the Mechanical plant.	96 Hours (2Weeks)							
Limestone Mining	Limestone Mining practices, quarry scale of operation, Pit head Quality control	96 Hours (2Week)							
Homogenization and Raw meal preparation	Crushing of limestone pre homogenization stock pile, grinding and homogenisation of raw meal	96 Hours (2Weeks)							
Fuel	Quality, source and preparation of fuel for firing including Alternate Fuel (if used by the plant)	96 Hours (2Weeks)							
Pyro-processing and Clinker manufacture	Rotary kiln operation, pre heater, pre calciner technique, process control	96 Hours (2Weeks)							
Clinker cooling	Clinker cooling practices	96 Hours (2Weeks)							
Energy Management	The energy requirements of the company (machinery, lighting, heating and or air conditioning): Source, connected load, Sur- plus electricity, Correlate items that can reveal major outcomes, e.g. how power factor in electricity bill reveals production rate. Waste heat recovery system and cogeneration of power.	48 Hours (1Week)							
Material Handling Systems	Material handling system of Mechanical plant	48 Hours (1Week)							

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program

(Revised as on 01 August 2023)

Maintenance Practices of the plant	Maintenance schedule / Programmers: Preventive Maintenance, Stoppages, Breakdown Maintenance, Calibration Systems	48 Hours (1Week)				
Instrumentation and control	Process automation, Type of Instrumentation and Control, Fully / Partially automated, Office Automation, Value and system analysis	48 Hours (1Week)				
Plant Utilities:	Own source of water or else , Water reservoir, Boiler, DM Plant, Electricity, Power, Compressor, Air Conditioning, Effluent Treatment Plant Production of Mechanical and Despatch Systems	48 Hours (1Week)				
Quality Control & Quality Assurance	I assurance practices in Mechanical manufacturing process of L					
Human Resource Planning and Management	Technical, Non-Technical, Administrative, Direct employment, Indirect employment, Turnover-capital employed	48 Hours (1Week)				
Materials Management	Purchasing, Write-off policy, Inventory Control, Competitors, Export achievements, Building and Construction, Budgetary provisions, control and cost analysis, Budgets/Project planning/scheduling	48 Hours (1Week)				
Safety and Hygiene	Environmental norms, Fire Safety norms, Industrial Safety norms.	48 Hours (1Week)				
Marketing Strategy and Consumer Satisfaction measure	Marketing practices and consumer satisfaction measure taken by the Mechanical plant	48 Hours (1Week)				
Total Hours		1152 Hours (24 Weeks)				

(Revised as on 01 August 2023)

OR (In campus Training)

Prototype & Testing & Time Schedule										
Activity	Broad Area of Training	Time Schedule								
Project Planning/ Problem Designing /Gap Identification	This involves clearly defining the problem or research question that needs to be addressed in the laboratory. It includes understanding the context, scope, and significance of the problem.	144 Hours (3 Weeks)								
Literature Review	This helps in identifying gaps in knowledge and determining the best approach to address the problem.	144 Hours (3 Weeks)								
Experimental Methodology Development & Interpretation	Analysis and interpretation in lab research involve processing data for patterns, using statistical methods for insights, and contextualizing findings to draw conclusions that advance scientific understanding and guide further research.	384 Hours (8 Weeks)								
Result & Discussion	Results and discussion in laboratory research entail presenting findings, interpreting their significance, and contextualizing them within existing knowledge to address research objectives and implications effectively.	192 Hours (4 Weeks)								
Report Writing	Research writing involves synthesizing literature, presenting methods and findings, interpreting results, and discussing implications succinctly to contribute knowledge, validate findings, and propose further exploration in the field.	288 Hours (6 Weeks)								
Total Hours		1152 Hours (24 Weeks)								

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg

11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg

12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

13. Mr. Umesh Bagri , Assistant Professor , Dept. of Mechanichal Engg

Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Course Title: M. Tech Mechanical Engineering

Course Code: PE401

Course Title: Project Stage-II

					I	Program Specific Outcome										
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation.	Product Innovation and Development
PE401.1: Understand the organizational environment and recognize the requirement of the organization and cope with the organizational scenario.	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PE401.2: Identify career paths taking into account their individual strengths and aptitude and prepare a	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of M.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

(Revised as on 01 August 2023)

report about the work experience in the organization.																
PE401.3: Develop the employability skills and Start-Up skills to increase his/her ability to engage in life-long learning	3	3	3	3	3	3	3	2	3	1	3	3	3	2	3	1
PE401.4: Develop individual confidence to handle various engineering assignments and acquire life skills to meet societal challenges.	3	3	3	3	3	3	3	2	3	2	3	2	3	3	3	1

Legend: 1 – Low, 2 – Medium, 3 – High