Curriculum Book

and

Assessment and Evaluation Scheme

based on

Outcome Based Education (OBE)

and Choice-Based Credit System (CBCS)

in Bachelor of Technology in Biotechnology B. Tech. (Biotechnology)

4 Year Degree Program

Revised as on 01 August 2023 Applicable w.e.f. Academic Session 2023-24

AKS University

Satna 485001, Madhya Pradesh, India

Faculty of Life Sciences and Technology Department of Biotechnology

Professor & Head Department of Biotechnology AKS University, Satna (MP) 485001

Faculty of Life Sciences AKS University, Satna (M.R. rachopade

Professor B.A. Chopade Vice - Chancellor AKS University Satna, 485001 (M.P.)

Curriculum & Syllabus of B. Tech. Biotechnology Program

(Revised as of 2023)

CONTENTS

Sr.	Item	Page No
1	Foreword	i
2	Vice Chancellor Massage	ii
3	Preface	iii
4	Introduction (Overview of the Department)	4
5	Vision & Mission of Department of Biotechnology	4
6	Programme (PO)	5
7	Programme Educational Objectives (PEOs)	6
8	Program Specific Outcomes	6
9	General Course Structure and Credit Distribution	7
10	Course code and definition	8
11	Category-wise Courses	9
12	Semester-wise Course Structure	10
13	Semester-wise Course details	19
	A. Semester I	19-174
	B. Semester -II	175-299
	C. Semester -III	300-404
	D. Semester -IV	405-485
	E. Semester -V	486-618
	F. Semester -VI	619-745
	G. Semester -VII	746-848
	H. Semester -VIII	849-877

AKS University Faculty of Life Sciences and Technology

Department of Biotechnology Curriculum of B.Tech. Biotechnology Program (Revised as on 2023)

Foreword

I am delighted to see that the Biotechnology Department's redesigned curriculum for the B. Tech. (Biotechnology) Programme smoothly incorporates the newest technological developments while adhering to AICTE criteria. The curriculum has been redesigned with consideration to include the Sustainable Development Goals and NEP-2020 guidelines.

The alignment of course outcomes (COs), Programme Outcomes (POs), and Programme Specific Outcomes (PSOs) has been intricately executed, aligning perfectly with the requisites of NEP-2020 and NAAC standards. I hold the belief that this revised syllabus will significantly enhance the skills and employability of our students.

With immense satisfaction, I hereby present the revised curriculum for the M. Sc. (Biotechnology) program for implementation in the upcoming session.

Er. Anant Soni Pro Chancellor & Chairman AKS University, Satna

01 August 2023

AKS University, Faculty of Life Sciences and Technology

Department of Biotechnology Curriculum of B.Tech. Biotechnology Program (Revised as on 2023)

From the Desk of the Vice-Chancellor

AKS University is currently undergoing a process to revamp its curriculum into an outcome-based approach, to enhance the teaching and learning process. The foundation of quality of quality education lies in the implementation of a curriculum that aligns with both societal and industrial needs, focusing on relevant outcomes. This entails dedicated and inspired faculty members, as well as impactful industry internships. Hence, it is of utmost importance to begin this endeavour by crafting an outcome-based curriculum in collaboration with academia and industry experts.

This curriculum design should be informed by the latest technological advancements, market demands, the guidelines outlined in the National Education Policy (NEP) of 2020, and sustainable goals.

I'm delighted to learn that the revised curriculum has been meticulously crafted by the Biotechnology Department, in consultation with an array of experts from the Biotechnology industry, research institutes, and academia. This curriculum effectively integrates the principles outlined in the NEP-2020 guidelines, as well as sustainable goals. It also adeptly incorporates the latest advancements in Biotechnology manufacturing technology.

The curriculum tailored for the Indian biotechnology industry prioritizes the production of cost-effective, high-quality microbial products while emphasizing energy optimization. It integrates insights on waste heat recovery systems to minimize power consumption in biotechnological plants, fostering independent thinking among students for potential enhancements. This holistic approach not only equips students with essential knowledge but also nurtures a culture of innovation, preparing them to make meaningful contributions to the industry's advancement.

I am confident that the updated curriculum for B.Tech. Biotechnology will not only enhance students' technical skills but also contribute significantly to their employability. During the process of revising the curriculum, I am pleased to observe that the Biotechnology department has diligently adhered to the guidelines provided by the AICTE. Additionally, they have maintained a total credit requirement of 92 for the B.Tech. Biotechnology program.

It's worth noting that curriculum revision is an ongoing and dynamic process, designed to address the continuous evolution of technological advancements and both local and global concerns. This ensures that the curriculum remains responsive and attuned to the changing landscape of education and industry. AKS University warmly invites input and suggestions from industry expert technocrats and Alumni students to enhance the curriculum and make it more student-centered. Your valuable insights will greatly contribute to shaping an education that best serves the needs and aspirations of our students.

AKS University, Satna 01 August 2023 Professor B. A. Chopade Vice-Chancellor

Preface

As part of our commitment to ongoing enhancement, the Department of Biotechnology consistently reviews and updates its B. Tech. Biotechnology curriculum every three years. Through this process, we ensure that the curriculum remains aligned with the latest technological advancements, as well as local and global industrial and social demands.

During this procedure, the existing curriculum for the B.Tech. Biotechnology Program undergoes evaluation by a panel of technocrats, industry specialists, and academics. Following meticulous scrutiny, the revised curriculum has been formulated and is set to be implemented starting from August 01, 2023. This implementation is contingent upon the endorsement of the curriculum by the University's Board of Studies and Governing Body.

This curriculum closely adheres to the AICTE model syllabus distributed in May 2023. It seamlessly integrates the guidelines set forth by the Ministry of Higher Education, Government of India, through NEP- 2020, as well as the principles of Sustainable Development Goals. To foster the holistic skill development of students, a range of practical activities, including Hands-On Training, Industrial Visits, Project planning and execution, Report Writing, Seminars, and Industrial on-the-job training, have been incorporated. Furthermore, in alignment with AICTE's directives, the total credit allocation for the B.Tech. Biotechnology program is capped at 93 credits.

This curriculum is enriched with course components in alignment with AICTE guidelines, encompassing various disciplines such as Fundamental Science Concepts: 24 credits, Engineering Science: 25 credits, Humanities and Social Sciences: 12 credits, Core Program Courses: 66 credits, Elective Program Courses: 9 credits, Open Electives: 9 credits, Project and Practical Training: 17 credits, Seminars: 3 credits, Indian Knowledge System: 2 credits, Sustainable Development Goals: 2 credits.

To ensure a comprehensive learning experience, detailed evaluation schemes and rubrics have also been meticulously provided.

For each course, a thorough mapping of Course Outcomes, Program Outcomes, and Programme Specific Outcomes has been undertaken. As the course syllabus is meticulously developed, various elements such as session outcomes, laboratory instruction, classroom instruction, self-learning activities, assignments, and mini-projects are meticulously outlined.

We hold the belief that this dynamic curriculum will undoubtedly enhance the independent thinking, skills, and overall employability of the students.

INTRODUCTION

OVERVIEW OF THE DEPARTMENT OF BIOTECHNOLOGY

The Department of Biotechnology is established in 2006 with the objective to provide excellent and sensible teaching with maximum practical and research exposure to create skilled and welltrained bio-technocrats and entrepreneurs as per academia and industry needs in the frontier areas of Microbiology and Biotechnology. We, at the Department of Biotechnology, endorse each student by providing them maximum practical approach to understand their subjects in a better way of global standards and making them technologically advanced and ethically of high quality to serve the society.

VISION

The vision of the department is to dedicate research for Human and Environmental welfare. To become a centre of excellence for biotechnology education, research, training, and entrepreneurship under the direction of good scientific principles, excellent instruction, and an ambition for continuous improvisation.

MISSION

At the Biotechnology Department, our mission is to be at the forefront of biotechnological innovation, research, and education. We are committed to advancing the frontiers of biotechnology through cutting-edge research, interdisciplinary collaboration, and the development of skilled and ethical professionals. Our aim is to address global challenges, improve human well-being, and contribute to sustainable development through the application of biotechnological solutions by following aspects:

M1. To develop a strong Biotechnology program based on quality education, research and training.M2. To impart quality education to the students and enhance their skills which will make them globally competitive.

M3. To create trained biotechnology professionals who can contribute to the continuous improvement of biotechnological services and products.

M4. To design scientific and/or technical resources as per biotechnology industry demands.

M5. To develop as a benchmark University in emerging technologies.

M6. To provide state-of-the-art teaching learning process and R&D environment.

M7. To harness human capital for sustainable competitive edge and social relevance.

Program Outcomes (POs) as defined by NBA

B. Tech. Biotechnology Graduates will be able to:

1. Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

12. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Educational Objectives (PEOs)

Program Educational Objectives for B. Tech. Program

Students will:

PEO-1: Understand and inculcate the ability to apply, update, extend and to develop deep knowledge through flexible, research-intensive program designed to meet the current demand of academia and industry.

PEO-2: Acknowledge the basic engineering and applied biological mechanisms used in biopharmaceutical industries

PEO-3: Utilize their profession skills with social awareness and responsibility in the industry

PEO-4: Interact with their peers in biotech industry or organizations and society and contribute to the economic growth of the country

PEO-5: Participate in individual and team oriented, open ended activities promoting productive thinking to provide opportunities for students to manage and work on multidisciplinary projects through interaction with their peers in industry.

Program Specific objectives (PSOs)

Program Specific objectives (PSOs) for B.Tech. Biotechnology program

PSO 1: Acquire knowledge in domain of biotechnology enabling their applications in industry and research.

PSO 2: Empower the students to acquire technological knowhow by connecting disciplinary and interdisciplinary aspects of biotechnology.

PSO 3: Recognize the importance of Bioethics, IPR, entrepreneurship, Communication and management skills so as to usher next generation of Indian industrialists.

General Course Structure and Credit Distribution

A. Definition of Credit:

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
1 Hr. Practical (P) per week	0.5 Credit
2 Hours Practical (P) per week	1 Credit

B. Range of Credits:

As per the AICTE model Curriculum for the UG Degree Course in Biotechnology, the total number of credits proposed for the Four-year B.Tech. (Biotechnology) is kept as 90.

C. Structure of UG Program in Biotechnology:

The structure of the UG program in Biotechnology shall have essentially the following categories of courses with the breakup of credits as given:

S. No.	Category	Breakup of Credits
2.	Basic Science Courses	20
3.	Engineering Science Courses	26
4.	Program Core Courses (Branch specific)	21
5.	Professional Elective Courses (Branch specific)	6
6.	Open Elective Courses (from Humanities, Technical Emerging or other Subjects)	2
7.	Project work, Seminars and Internships in Industry or elsewhere, or research courses	15

	TOTAL	92
--	-------	----

D. Course Code and Definition:

Course code	Definitions
L	Lecture
Т	Tutorial
Р	Practical
С	Credits
HS	Humanities & Social Science Courses
BS	Basic Science Courses
ES	Engineering Science Courses
PC	Program Core Courses
PE	Professional Elective Courses
OE	Open Elective Courses
AU	Audit Courses
EEC	Employment Enhancement Courses (Internship / Seminar) (Project / Summer Training)

• Course level coding scheme: Three-digit number (odd numbers are for the odd semester courses and even numbers are for even semester courses) used as a suffix with the Course Code for identifying the level of the course. The digit at hundred's place signifies the year in which the course is offered. e.g. 101, 102 ... etc. for the first year. 201, 202 etc. for second year. 301, 302 ... for third year.

F. Evaluation Scheme (Suggestive only):

G. Mapping of Marks to Grades

Each course (Theory/Practical) is to be assigned 100 marks, irrespective of the number of credits, and the mapping of marks to grades may be done as per the following table:

Range of Marks	Assigned Grade
91-100	AA/A ⁺
81-90	AB/A
71-80	BB/B^+
61-70	BC/B
51-60	CC/C ⁺
46-50	CD/C
40-45	DD/D
< 40	FF/F (Fail due to less marks)
-	F^{R} (Fail due to shortage of attendance and therefore, to repeat the
	course)

Department of Biotechnology

Scheme and Syllabus

The department provides a four-year **B.Tech. in Biotechnology** using a Choice Based Credit System (CBCS) that consists of four semesters. The regulations for the B.Tech. in Biotechnology provided by AKS University under the Choice Based Credit System (CBCS) are shown here.

S.	Subject	SUDIECT	Subject	Pe	eriods		Credit
No	Code	SUBJECT	ARĔA	L	Т	Р	Credit
1	98BI101	Biology For Engineers	BSC	1	1	-	2
2	98CH102	Engineering Chemistry	BSC	2	-	-	2
3	98BT107	Cell Biology and Genetics	BSC	3	-	-	3
4	98ME104	Basic Mechanical Engineering & Manufacturing Process	ESC	2	1	-	3
5	HSMC01	Communication Skill	HS	2	-	-	2
6	98BT106	Introduction to Biotechnology	PC	3	-	-	3
7	98ME151	Workshop Practice (lab)	ESC	-	-	2	1
8	98CH152	Engineering Chemistry (Lab)	BSC	-	-	2	1
9	98BT155	Cell Biology and Genetics Lab	BSC	-	-	2	1
10	98ME154	Basic Mechanical Engineering (Lab)	ECC	-	-	2	1
11	HSMC08	Sustainable Development Goal	HS	2	-	-	2
12	HSMC09	Sports & Yoga / NSS / NCC / UCC	AU	-	-	-	-
		Total		15	2	8	21

Scheme of B. Tech. Biotech 1st Semester

	Subject		Subject	Pe	eriods		C III
S. No	Code	SUBJECT	AREA	L	Τ	P	Credit
1	98MS201	Mathematics	BSC	1	1	-	2
2	98EE208	Basic Electrical & Electronics Engineering	ESC	2	1	-	3
3	98PH203	Engineering Physics	ESC	2	1	_	3
4	98CA204	Fundamentals of Computer & Programming	ESC	1	1	_	2
5	98EV205	Ecology & Environmental Science	HS	2	-	_	2
6	98ME206	Engineering Drawing	ESC	1	1	-	2
7	98BT207	Biochemistry & Metabolism	BSC	2	1	-	3
8	98EE254	Basic Electrical and Electronic Engineering (Lab 2)	ESC	-	-	2	1
9	98PH252	Engineering Physics (Lab 2)	ESC	-	_	2	1
10	98BT253	Biochemistry & Metabolism (Lab 3)	BSC	-	_	2	1
11	HSMC07	Indian Knowledge System	HS	2	_	-	2
		TOTAL		13	6	6	22

Scheme of B. Tech. Biotech 2nd Semester

	Subject		Subject	Pe	eriod	s	
S. No	Code	SUBJECT	AREA	L	Τ	Р	Credit
1	98BT301	Computational Biology & Bioinformatics	РС	3	-	-	3
2	98BT302	Principles of Microbiology	BSC	3	-	-	3
3	98BT303	Biostatistics	BSC	1	1	-	2
4	98BT304	Biophysical Tools and Techniques	РС	3	-	-	3
5	98EN30 5	Entrepreneurship Development	HS	2	1	-	3
6	98ME30 6	Fluid Mechanics	OS	2	-	-	2
7	98BT351	Computational Biology & Bioinformatics (Lab)	PC	Ι	-	2	1
8	98BT352	Principles of Microbiology (Lab)	BSC	-	-	2	1
9	98BT353	Biostatistics (Lab)	РС	-	-	2	1
10	98BT354	Biophysical Tools and Techniques (Lab)	OS	-	-	2	1
11	98BT355	Entrepreneurship Development (Presentation)	PS	-	-	2	1
12	HMSC 301	Universal Human Values	VAC	3	1	-	4
		TOTAL		17	3	10	30

Scheme of B. Tech. Biotech 3rd Semester

C N	Subject		Subject	Periods			
S. No	Code	SUBJECT	ARĚA	L	Τ	P	Credit
1	98BT401	Molecular Biology	PC	3	-	-	3
2	98BT402	Biochemical Engineering	PC	2	1	-	3
3	98BT403	Genetic Engineering and Molecular Diagnostics	РС	3	-	-	3
4	98BT404	Immunology & Immuno- Technology	РС	3	-	-	3
5	98BT405	Biosafety, Bioethics and IPRs	HS	2	-	-	2
6	98BT406	Industrial Fermentation	PC	1	1	-	2
7	98BT451	Molecular Biology (Lab)	PC	-	-	2	1
8	98BT452	Biochemical Engineering (Lab)	PC	-	-	2	1
9	98BT453	Genetic Engineering and Molecular Diagnostics (Lab)	РС	-	-	2	1
10	98BT454	Immunology & Immuno- Technology (Lab)	РС	-	-	2	1
11	98BT455	Biosafety, Bioethics and IPRs (Lab)	РС	-	-	2	1
12	98BT456	Industrial Fermentation (Lab)	HU	-	-	2	1
		Total		14	2	12	22

Scheme of B. Tech. Biotech 4th Semester

S. No	Subject	SUBJECT	Subject	Р	eriod	8	Credit
5. INU	Code	SUDJECI	AREA	L	Т	Р	Crean
1	98BT501	Plant Biotechnology	РС	3	-	-	3
2	98BT502	Enzyme Engineering and Technology	PC	2	1	-	3
3	98BT503	Animal Biotechnology	РС	3	-	-	3
4	98BT504	Distillates and Fermentation Technology	РС	3	-	-	3
5	98BT506 -A	Nanotechnology and Engineering	PE	3	-	-	3
6	98BT506 -B	Pharmaceutical Biotechnology	PE	3	-	-	3
7	98BT506 -C	Molecular Modeling and Drug Designing	РЕ	3	-	-	3
8	98BT505	Bioseparations	РС	2	1	-	3
9	98BT551	Plant Biotechnology (Lab 1)	PC	-	-	2	1
10	98BT552	Enzyme Engineering and Technology (Lab 2)	РС	-	-	2	1
11	98BT553	Animal Biotechnology (Lab 3)	РС	-	-	2	1
12	98BT554	Distillates and Fermentation Technology (Lab 4)	РС	-	-	2	1
13	98BT556 -A/B/C	Nanotechnology and Engineering /Pharmaceutical Biotechnology /Molecular Modelling and Drug Designing (Lab 5)	РЕ	-	-	2	1
14	98BT555	Bioseparations (Lab 6)	PE	-	-	2	1
		Total		16	2	12	24

Scheme of B. Tech. Biotech 5th Semester

S.	Subject		Subject	Р	eriod	5	- Credit
No.	Code	SUBJECT	AREA	L	Т	Р	
1	98BT607	Advanced Bioanalytical Technique	РС	3	-	-	3
2	98BT602	Metabolic Engineering	PC	2	1	-	3
3	98BT603	Bioreactor Design	РС	2	1	-	3
4	98BT604	Waste Treatment	РС	2	-	-	2
5	98BT606- A	Food Biotechnology	PE	3	-	-	3
6	98BT606- B	Vaccine Biotechnology	РЕ	3	-	-	3
7	98BT606- C	Bioprograming and Soft Computing Techniques	РЕ	3	-	-	3
8	98BT605	Genomics & Proteomics	PE	3	-	-	3
9	98BT657	Advanced Bioanalytical Technique (Lab 1)	РС	-	-	2	1
10	98BT652	Metabolic Engineering (Lab 2)	PC	-	-	2	1
11	98BT653	Bioreactor Design (Lab 3)	PC	-	-	2	1
12	98BT654	Waste Treatment (Lab 4)	PC	-	-	2	1
13	98BT656 A/B/C	Food Biotechnology / Vaccine Biotechnology /Bioprogramming and Soft Computing Techniques (Lab 5)	РЕ	-	-	2	1
14	98BT655	Genomics & Proteomics (Lab 6)	PE	-	-	2	1
		Total		15	2	12	23

Scheme of B. Tech. Biotech 6th Semester

	Subject		Subject]	Period	8	
S. No.	Code	SUBJECT	AREA	L	Т	Р	Credit
1	98BT755	Industrial Training	PS	-	-	10	5
2	98BT701	Stem Cell and Tissue Engineering	PE	3	-	-	3
3	98BT702	Bioprocess Engineering and Unit Operation	РС	2	1	-	3
4	98BT704 -A	Biofuels and Bioenergy	РЕ	2	-	-	2
5	98BT704 -B	Bioremediation	Bioremediation PE		-	-	2
6	98Bt704- C	Metagenomics	РЕ	2	-	-	2
7	98BT703	Proteomics & Protein Engineering	РС	2	1	-	3
8	98BT751	Stem Cell and Tissue Engineering (Lab 1)	PE	-	-	2	1
9	98BT752	Bioprocess Engineering and Unit Operation (Lab 2)	РС	-	-	2	1
10	98BT754 A/B/C	Biofuels and Bioenergy /Bioremediation /Metagenomics LAB	and Bioenergy ion /Metagenomics PE		-	2	1
11	98BT753	Proteomics & Protein Engineering (Lab 4)	PR.		-	2	1
12	98BT705	Research Methodology PC		2	-	-	2
		TOTAL		09	2	18	20

Scheme of B. Tech. Biotech 7th Semester

Scheme of B. Tech. Biotech 8th Semester

S. No	Subject	SUDIECT	Subject	Periods		Credit	
S. No	Subject Code	SUBJECT	AREA	L	Т	Р	Creun
1	98BT851	Project Work/Dissertation/Biotech industrial or Biotech in House Project or Biopreneurship / Bio- Startups	Biotech in House ppreneurship / Bio-		-	18	9
		TOTAL		0	0	18	9

B. Tech. Biotechnology 1st Semester

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology					
Semester	Ι					
Course Code:	98BT107					
Course title:	Cell Biology and Genetics	Curriculum Developer: Dr. Ashwini A. Waoo				
Pre-requisite:	Student should have basic knowledge of cell structure and organelles					
Rationale:	The B.Tech first-semester course in cell biology and genetics serves as a crucial introduction to the fundamental building blocks of life—cells and genetic mechanisms. By delving into cellular structures, processes, and genetic principles, students establish a foundational understanding of life at the molecular level. This course paves the way for comprehending intricate biological phenomena, ranging from cellular functions to inheritance patterns, and sets the stage for future explorations in biotechnology, genetics, and related fields.					
Course Outcomes (COs):	mes evolution.					
CO3-98BT107.3: Evaluate the roles cell division, cell cycle and cell signalling.						
	CO4-98BT107.4: Students will exhibit mas	stery of Genetic Principles and Mendel's laws of inheritance.				
	CO5-98BT107.5: Illustrate molecular orga	nization of chromosome and its alterations.				

Scheme of Studies:

Board of	Course				Total Credits			
Study	Codo Course Litle		C1	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C) (L: T:P=3:0:1)
	98BT107 98BT155	Cell biology and genetics Cell Biology and Genetics lab	3	2	1	5	11	3+1=4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning.

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of Study	Course Code	Course Title	Scheme of Assessment (Marks)							
Study	Coue			Progressi	ve Assessr	nent (PRA)		End Semester	Total	
			Class/Home Class Test 2 Seminar Class Total Marks				Assessment	Marks		
			Assignment	(2 best out	one	Attendance	(CA+CT+SA+AT)	(ESA)	(PRA+ ESA)	
			5 number	of 3)	(SA)	(AT)			LSA)	
			3 marks each	10 marks						
			(CA)	each (CT)						
BSC	98BT107	Cell Biology and Genetics	15	20	10	5	50	50	100	

Scheme of Assessment: Practical

Board of	Course	Course Title			ssessment (Marks)				
Study	Code			Progressive Assessment (PRA)					Total
			Class/Home	Viva	Viva	Class	Total Marks	Assessment	Marks
			Assignment	Voce I	Voce II	Attendance	(CA+VV1+VV2+SA+AT)	(ESA)	(PRA+
			5 number			(AT)			ESA)
			7 marks each						
			(CA)						
BSC	98BT155	Cell Biology and Genetics	35	5	5	5	50	50	50

Course-Curriculum

sroom Instruction (CI), As the course progress	nticipated to accomplish Laboratory Instruction (I ses, students should show chievement of Course Ou	LI), Sessional Work (SW vcase their mastery of Se	<i>I</i>), and Self Learning ssion Outcomes (SOs),		C1 08	<u>LI</u> 4	SW 01	SL 04	<u>Tota</u> 17
Course outcome	Session Outcomes	Laboratory	Classroom	Self-Learning (SL	.)		urse	outco	me
(CO)	(SOs)	Instruction (LI)	Instruction (CI)			(C	,		
CO1-98BT107.1:	SO1.1: Understand	LI1.1: Observation of	CI1.1: Structure and	SL1.1: Describe the)1-98	-	7.1:
Students will	the ultrastructure of	cell membrane under	function of cell	ultrastructure of the	e		idents		
demonstrate a	the cell membrane	the microscope	membrane	cell membrane			monst		
thorough							orough		c
understanding of cell,							dersta		
cell theory, cell types							l theo		• •
and pre cellular evolution.							d pre c		ır
evolution.						eve	olution	1.	
	SO1.2: Learn the	LI1.2: Study of cell	CI1.2: Structure and	SL1.2: Explain the					
	structure and function	organelles in various	function of cell	function of key cel	1				
	of cell organelles	cell types	organelles	organelles					
	SO1.3: Understand		CI1.3: Golgi bodies	SL1.3: Describe the					
	the structure and			role of Golgi bodie	es				
	function of Golgi			in a cell					
	bodies								
	SO1.4: Understand		CI1.4: Cytosol						
	the structure and								
	function of cytosol								
	SO1.5: Learn the		CI1.5: Endoplasmic	SL1.4: Compare th	ne				
	structure and function		reticulum	rough and smooth					
	of the endoplasmic			endoplasmic					
	reticulum			reticulum					

SO1.6: Understand	CI1.6: Ribosomes	
the structure and		
function of ribosomes		
SO1.7: Learn the	CI1.7: Mitochondria	
structure and function		
of mitochondria		

Suggested Sessional Work (SW):	SW1.1 Assignments	Differentiate between prokaryotic and eukaryotic cell		
anyone	SW1.2 Mini Project	Prepare list of microorganisms of prokaryotic and		
		eukaryotic type		
	SW1.3 Other Activities	Prepare chart on tools and techniques of cell biology		
	(Specify)			

Item	Cl	LI	SW	SL	Total
Approx. Hrs	10	04	01	04	19

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO2-98BT107.2: Students will exhibit proficiency in drawing and explaining ultrastructure of cell membrane and cell organelles.	SO2.1: Understand the ultrastructure of the cell membrane	LI2.1: Observation of cell membrane under the microscope	CI2.1: Structure and function of cell membrane	SL2.1: Describe the ultrastructure of the cell membrane
	SO2.2: Learn the structure and function of cell organelles	LI2.2: Study of cell organelles in various cell types	CI2.2: Structure and function of cell organelles	SL2.2: Explain the function of key cell organelles
	SO2.3: Understand the structure and function of Golgi bodies		CI2.3: Golgi bodies	SL2.3: Describe the role of Golgi bodies in a cell
	SO2.4: Understand the structure and function of cytosol		CI2.4: Cytosol	
	SO2.5: Learn the structure and function of the endoplasmic reticulum		CI2.5: Endoplasmic reticulum	SL2.4: Compare the rough and smooth endoplasmic reticulum
	SO2.6: Understand the structure and function of ribosomes		CI2.6: Ribosomes	
	SO2.7: Learn the structure and function of mitochondria		CI2.7: Mitochondria	
	SO2.8: Understand the structure and function of peroxisomes		CI2.8: Peroxisomes	

SO2.9: Understand the cell division and cycle: mitosis and meiosis	Mitosis and Meiosis	SL2.5: Describe the stages of mitosis and meiosis
SO2.10: Learn about cell cycle regulation	CI2.10: Cell cycle regulation	

Suggested Sessional	SW2.1 Assignments	Draw a well labelled diagram of fluid mosaic model and describe it.
Work (SW): anyone	SW2.2 Mini Project	Prepare chart on cell organelles.
	SW2.3 Other Activities	Prepare collection of photos from internet of different cellular organisations
	(Specify)	and electron micrograph of cell organelles

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	04	18

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO3-98BT107.3: Evaluate the roles cell division, cell cycle and	SO3.1: Understand the process of mitosis	LI3.1: Observation of mitosis in cell samples	CI3.1: Mitosis	SL3.1: Describe the stages of mitosis
cell signalling.	SO3.2: Learn the process of meiosis	LI3.2: Observation of meiosis in cell samples	CI3.2: Meiosis	SL3.2: Compare mitosis and meiosis
	SO3.3: Understand cell cycle regulation		CI3.3: Cell cycle regulation	SL3.3: Explain the mechanisms of cell cycle checkpoints
	SO3.4: Learn about cell junctions		CI3.4: Cell junctions	
	SO3.5: Understand cell adhesion and extracellular matrix		CI3.5: Cell adhesion and extracellular matrix	SL3.4: Describe the role of the extracellular matrix in cell adhesion
	SO3.6: Learn about programmed cell death		CI3.6: Programmed cell death	
	SO3.7: Understand cell signaling		CI3.7: Cell signalling	
	SO3.8: Learn about signaling molecules and their receptors		CI3.8: Signalling molecules and their receptors	
	SO3.9: Understand intracellular signal transduction pathways		CI3.9: Intracellular signal transduction pathways	

Suggested Sessional Work (SW):	SW3.1 Assignments	Describe cell division and cell cycle
anyone	SW3.2 Mini Project	Prepare complete draft on cell signalling and its types
	SW3.3 Other Activities	Collect links of videos based on cell division process and explain them
	(Specify)	in front of class

Item	Cl	LI	SW	SL	Total
Approx. Hrs	08	04	01	05	18

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO4-98BT107.4: Students will exhibit mastery of Genetic Principles and Mendel's laws of inheritance.	SO4.1: Understand Mendel and his experiments	LI4.1: Observation of Mendelian inheritance in pea plants	CI4.1: Mendel and his experiments	SL4.1: Explain the significance of Mendel's experiments
	SO4.2: Learn about multiple alleles	LI4.2: Study of blood group inheritance	CI4.2: Multiple alleles	SL4.2: Describe examples of multiple alleles
	SO4.3: Understand the chromosomal theory of inheritance		CI4.3: Chromosomal theory of inheritance	SL4.3: Discuss the evidence supporting the chromosomal theory of inheritance
	SO4.4: Understand gene interactions: intragenic and intergenic		CI4.4: Intragenic and intergenic interactions	
	SO4.5: Learn about incomplete dominance		CI4.5: Incomplete dominance	SL4.4: Provide examples of incomplete dominance
	SO4.6: Understand lethal genes		CI4.6: Lethal genes	
	SO4.7: Learn about complementary and supplementary genes		CI4.7: Complementary and supplementary genes	

SO4.8: Understand inhibitory and duplicate genes	CI4.8: Inhibitory and duplicate genes	
SO4.9: Learn about epistatic genes and population genetics	CI4.9: Epistatic genes and population genetics	

Suggested Sessional Work (SW):	SW4.1 Assignments	Describe laws of inheritance given by Mendel
anyone	SW4.2 Mini Project	Describe the examples of Intergenic interactions
	SW4.3 Other Activities	Prepare list of assumption of Hardy-Winberg Law /equilibrium and give
	(Specify)	its derivation

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	05	19

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5-98BT107.5: Illustrate molecular organization of chromosome and its alterations.	SO5.1: Understand chromosome structure and organization in prokaryotes	LI5.1: Observation of prokaryotic chromosome structure	CI5.1: Chromosome structure in prokaryotes	SL5.1: Describe the organization of chromosomes in prokaryotes
	SO5.2: Understand chromosome structure and organization in eukaryotes	LI5.2: Observation of eukaryotic chromosome structure	CI5.2: Chromosome structure in eukaryotes	SL5.2: Describe the organization of chromosomes in eukaryotes
	SO5.3: Learn about the extranuclear genome		CI5.3: Extranuclear genome	SL5.3: Explain the role of the extranuclear

		genome
SO5.4: Understand abnormal chromosomes and chromosomal mutations	CI5.4: Abnormal chromosomes and chromosomal mutations	SL5.4: Describe types of chromosomal mutations
SO5.5: Learn about deletion and duplication	CI5.5: Deletion and duplication	
SO5.6: Understand inversion and translocation	CI5.6: Inversion and translocation	
SO5.7: Learn about aneuploidy and polyploidy	CI5.7: Aneuploidy and polyploidy	
SO5.8: Understand crossing over	CI5.8: Crossing over	
SO5.9: Learn about sex determination	CI5.9: Sex determination	SL5.5: Describe mechanisms of sex determination

Suggested Sessional Work (SW): anyone	SW5.1 Assignments	Describe molecular organization of eukaryotic chromosome.
	SW5.2 Mini Project	Describe the chromosomal mutations in detail
	SW5.3 Other Activities (Specify)	Prepare a detail draft on sex determination and its examples

Course Duration (In Hours) To Attain Course Outcomes

Course Title: Cell Biology and Genetics

Course Code: 98BT107

Course Outcomes (COs)	Class Lecture (CI)	Laboratory Instruction (LI)	Self- Learning (SL)	Sessional work (SW)	Total Hours (LI+CI+SL+SW)
CO1-98BT107.1: Students will demonstrate a thorough understanding of cell, cell theory, cell types and pre cellular evolution.	8	4	4	1	17
CO2-98BT107.2: Students will exhibit proficiency in drawing and explaining ultrastructure of cell membrane and cell organelles.	10	4	4	1	19
CO3-98BT107.3: Evaluate the roles cell division, cell cycle and cell signalling.	9	4	4	1	18
CO4-98BT107.4: Students will exhibit mastery of Genetic Principles and Mendel's laws of inheritance.	9	4	4	1	18
CO5-98BT107.5: Illustrate molecular organization of chromosome and its alterations.	9	4	5	1	19
Total Hours	45	20	21	05	91

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome

Course Title: Cell Biology and Genetics

Course Code: 98BT107

Course Outcomes	Marks distribution			Total Marks
		A An E		
CO1-98BT107.1: Students will demonstrate a thorough understanding of cell, cell theory, cell types and pre cellular evolution.	02	02	01	05
CO2-98BT107.2: Students will exhibit proficiency in drawing and explaining ultrastructure of cell membrane and cell organelles.	03	05	02	10
CO3-98BT107.3: Evaluate the roles cell division, cell cycle and cell signaling.	05	05	05	15
CO4-98BT107.4: Students will exhibit mastery of Genetic Principles and Mendel's laws of inheritance.	04	03	03	10
CO5-98BT107.5: Illustrate molecular organization of chromosome and its alterations.	05	04	01	10
Total Marks	19	19	12	50

Legend: A, apply; An, Analyse; E, evaluate.

Suggested learning Resources:

(a) Books:

- 1. Cell & amp; molecular biology- De Robertis B.J. publications Pvt. Ltd.
- 2. Cell & amp; molecular biology Gerald karp john wills & amp; essential cell biology Albert's D. Bray
- 3. Developmental biology- SF Gilbert senior associates.
- 4. Molecular Biology of Cell- Alberts, B et al.
- 5. Genetics- Strickberger, 2nd.

6. Microbial Genetics – D. Frifielder.

(b) Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Course Title: Cell Biology and Genetics **Code:** 98BT107

CO/PO Mapping															
Course Outcome (Cos)	Program Outcomes (POs)												Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT107.1: Students will demonstrate a thorough understanding of cell, cell theory, cell types and pre cellular evolution.	-	-	1	2	2	2	2	-	1	2	2	3	3	-	-
CO2-98BT107.2: Students will exhibit proficiency in drawing and explaining ultrastructure of cell membrane and cell organelles.	-	-	-	-	-	-	-	-	2	2	3	3	2	-	1
CO3-98BT107.3: Evaluate the roles cell division, cell cycle and cell signalling.	-	1	1	1	-	2	2	-	3	3	3	2	2	2	1
CO4-98BT107.4: Students will exhibit mastery of Genetic Principles and Mendel's laws of inheritance.	-	1	1	2	2	2	2	3	-	1	2	2	2	2	2
CO5-98BT107.5: Illustrate molecular organization of chromosome and its alterations.	1	1	1	-	-	3	3	3	1	2	3	2	2	2	1

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Semester: I

Course

Course Curriculum

POs & PSOs No.	COs	SOs No.	Laboratory	Classroom	Self-
			Instruction	Instruction (CI)	Learning
			(LI)		(SL)
РО	CO1-98BT704-B.1:	SO1.1 SO1.2	LI1, LI2	1.1,1.2,1.3,1.4,1.5,	1SL-
1,2,3,4,5,6,7,8,9,10,11,12	Identify the different types	SO1.3 SO1.4		1.6, 1.7, 1.8	1,2,3,4
PSO 1,2,3	of bioremediation	SO1.5 SO1.6			
	techniques, mechanism and	SO1.7 SO1.8			
	microbes for bioremediation				
РО	CO2-98BT704-B.2:	SO2.1 SO2.2	LI1, LI2	2.1, 2.2, 2.3, 2.4, 2.5,	2SL-
1,2,3,4,5,6,7,8,9,10,11,12	Differentiate criteria of	SO2.3 SO2.4		2.6, 2.7, 2.8, 2.9, 2.10	1,2,3,4
PSO 1,2,3	types of bioremediations	SO2.5 SO2.6			
	and its detail process.	SO2.7 SO2.8			
	-	SO2.9			
		SO 2.10			
PO1,2,3,4,5,6,7,8,9,10,11,12	CO3-98BT704-B.3:	SO3.1 SO3.2	LI1, LI2	3.1,3.2,3.3,3.4,3.5,	3SL-
PSO 1,2,3	Evaluate the roles Bio	SO3.3 SO3.4		3.6, 3.7, 3.8, 3.9	1,2,3,4
	sorption & Bioleaching and	SO3.5 SO3.6			
	phytoremediation.	SO3.7 SO3.8			
		SO3.9			
РО	CO4-98BT704-B.4: Use of	SO4.1 SO4.2	LI1, LI2	4.1,4.2,4.3,4.4,4.5,	4SL-
1,2,3,4,5,6,7,8,9,10,11,12	Bioremediation of phenols,	SO4.3 SO4.4		4.6, 4.7, 4.8, 4.9	1,2,3,4
	cyanides, dyes, understand	SO4.5 SO4.6			
PSO 1,2,3	biodegradation through	SO4.7			
	pathway engineering.	SO4.8			
		SO4.9			
РО	CO5-98BT704-B.5: Case	SO5.1 SO5.2	LI1, LI2	5.1,5.2,5.3,5.4,5.5,	5SL-
1,2,3,4,5,6,7,8,9,10,11,12	study and demonstration of	SO5.3 SO5.4		5.6, 5.7, 5.8, 5.9	1,2,3,4,5
PSO 1,2,3	bioremediation plan for	SO5.5 SO5.6			
	industrial waste.	SO5.7 SO5.8			
		SO5.9			

Program Name	Bachelor of Technology (B.Tech.) Biotechnology	7				
Semester	Ι					
Course Code:	98BT101					
Course title:	Biology for Engineers	Developer: Mr. Paras Koshe				
Pre-requisite:	Student should have basic knowledge about Physiology	and biology and various system of our body				
Rationale:	since the origin of man, therefore this branch of science	ram allow students to know that Biology is related to mankind ever stands first in order of studies as compared to other branches of w about various phenomenon of life processes such as health and				
Course Outcomes (COs):	 disease, birth, growth and death, 98BT101: 1 The basic idea of cell organization, classification of living organism and nomenclature and biodiversity covered the unit. 98BT101: 2 Explain morphology, anatomy and function of different parts of flowering plants and emphasis on plant physiology, 98BT101: 3 Learn about the human physiology with emphasis on various organ systems. 98BT101: 4 Understand the male and female reproductive system and know about sexually transmitted diseases 					

Scheme of Studies:

Board of	Course Code	Course Title	Scheme of Studies (Hrs/Week)					Total Credits	
study	Code	The	CI	LI	SW	SL	Total study Hrs. (CI+LI+SW+SL)	(L:T:P=1:1:0)	
BSC	98BI101	Biology for Engineers	2	0	1	1	4	2	

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial(T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning.

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

Board	Couse	Course		Scheme of Assessment (Marks)						
of Study	Code	Title			Progres	ssive Assess	sment (PRA))	End Semester	
			Class/Home Assignment	Class Test 2	Seminar one	Class Activity any one	Class Attendance	Total Marks (CA+CAT+CT+SA+AT)	Assessment (ESA)	Marks (PRA+ ESA)
			5 number 3 marks each (CA)	(2 best out of 3) 10 marks each (CT)	(SA)	(CAT)	(AT)			
BSC	98BI101	Biology for Engineers	15	20	5	5	5	50	50	100

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of						
instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work	Item	Cl	LI	SW	SL	Total
(SW), and Self Learning (SL). As the course progresses, students should showcase their	Approx.	06	00	01	01	08
mastery of Session Outcomes (SOs), culminating in the overall achievement of Course	Hrs					
Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO 1: The basic idea of cell organization, classification of living organism and nomenclature	SO1.1: Understand the diversity of living organisms		CI1.1: Diversity of living organisms	SL1.1: Describe the major groups of living organisms
and biodiversity covered in the unit	SO1.2: Learn about the classification of living organisms		CI1.2: Classification of living organisms	
	SO1.3: Understand the systematic and binomial system of nomenclature		CI1.3: Systematic and binomial nomenclature	
	SO1.4: Learn about cell theory and organization		CI1.4: Cell theory and organization	
	SO1.5: Understand the basic chemical constituents of living bodies		CI1.5: Basic chemical constituents of living bodies	
	SO1.6: Learn about the role of chemical constituents in biological functions		CI1.6: Role of chemical constituents in biological functions	

Suggested Sessional Work	SW1.1 Assignments	Describe in detail about the diversity and classification of living organism		
(SW): anyone	SW1.2 Mini Project	Draw well labelled diagram of Plant cell and animal cell.		
	SW1.3 Other Activities (Specify)	Write a note on red data book and collect information about recently endangered and extinct species,		

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	03	10

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO 2: Explain morphology, anatomy and function of different parts of flowering plants and emphasis on plant physiology	SO2.1: Understand animal and plant tissues		CI2.1: Animal tissues	SL2.1: Compare and contrast animal and plant tissues
	SO2.2: Learn about the morphology, anatomy, and function of different parts of flowering plants		CI2.2: Anatomy and function of flowering plant parts	SL2.2: Describe the morphology and function of different plant parts
	SO2.3: Understand the movement of water, food, nutrients, and gases in plants		CI2.3: Movement of water, food, nutrients, and gases	SL2.3: Explain the processes involved in the movement of water and nutrients in plants
	SO2.4: Learn about plant respiration		CI2.4: Plant respiration	
	SO2.5: Understand photosynthesis in plants		CI2.5: Photosynthesis	
	SO2.6: Learn about plant growth and development		CI2.6: Plant growth and development	

Suggested Sessional Work (SW): <i>anyone</i>	SW1.1 Assignments	Explain the process of photosynthesis in detail,
	SW1.2 Mini Project	Draw well labelled diagrams of plant tissues and animal tissues.
	SW1.3 Other Activities (Specify)	Watch animation and learn more about the plant growth and development. Grow a baby plant and watch and observe the growth and development practically and minutely.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	04	11

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO 3: Learn about the human physiology with emphasis on various organ systems of human body	SO3.1: Understand the structure and function of the digestive system		CI3.1: Digestive system	SL3.1: Describe the processes of digestion and absorption
	SO3.2: Learn about the respiratory system		CI3.2: Respiratory system	SL3.2: Explain the mechanism of breathing and gas exchange
	SO3.3: Understand the circulatory system and body fluids		CI3.3: Circulatory system and body fluids	SL3.3: Describe the path of blood flow through the heart and major blood vessels
	SO3.4: Learn about neural control and coordination		CI3.4: Neural control and coordination	SL3.4: Explain how the nervous system controls and coordinates body functions
	SO3.5: Understand chemical coordination and regulation		CI3.5: Chemical coordination and regulation	
	SO3.6: Learn about endocrine glands and their functions		CI3.6: Endocrine glands and functions	

Suggested Sessional Work	Assignments:	Describe endocrine system and the various types of glands in body.					
(SW): anyone	Mini Project:	Draw structure of different types of system of human body. (Digestive system					
	respiratory system)						
	Other Activities	Watch animation on explaining the organ transplantation and try to write article on					
	(Specify):	red biotechnology.					

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	04	11

Course outcome (CO)	Session Outcomes (SOs)	Laboratory	Classroom	Self-Learning (SL)
		Instruction (LI)	Instruction (CI)	
CO 4: Understand the male and female reproductive system and know about sexually transmitted diseases	SO4.1: Understand the male reproductive system		CI4.1: Male reproductive system	SL4.1: Describe the structure and function of the male reproductive system
	SO4.2: Learn about the female reproductive system		CI4.2: Female reproductive system	SL4.2: Describe the structure and function of the female reproductive system
	SO4.3: Understand the production of gametes		CI4.3: Gametogenesis	SL4.3: Explain the process of spermatogenesis and oogenesis
	SO4.4: Learn about fertilization		CI4.4: Fertilization	
	SO4.5: Understand embryo		CI4.5: Embryo	
	development		development	
	SO4.6: Learn about sexually transmitted diseases (STDs)		CI4.6: Sexually transmitted diseases	

Suggested Sessional Work	Assignments:	Suggest the aspects of reproductive health which need to be given special attention in present scenario.
(SW): anyone	Mini Project:	Draw the structure of male and female reproductive system on chart paper.
	Other Activities (Specify):	Write an article on Medical Termination of Pregnancy (MTP).

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	04	11

Course outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO 5 The student gains an understanding of the fundamentals of immunology and Origin of life and mechanism of evolution	SO5.1: Understand the theories and evidence for the origin of life		CI5.1: Theories of the origin of life	SL5.1: Describe the major theories about the origin of life
	SO5.2: Learn about adaptive radiation		CI5.2: Adaptive radiation	SL5.2: Provide examples of adaptive radiation in different species
	SO5.3: Understand the mechanisms of evolution		CI5.3: Mechanisms of evolution	SL5.3: Explain the principles of natural selection and genetic drift
	SO5.4: Learn about the origin and evolution of man		CI5.4: Origin and evolution of man	SL5.4: Describe the evolutionary history of human beings
	SO5.5: Understand basic concepts of immunology		CI5.5: Basic concepts of immunology	
	SO5.6: Learn about vaccines, AIDS, and cancer		CI5.6: Vaccines, AIDS, and cancer	

Suggested Sessional Work (SW): Anyone	Assignments:	Detail explanation of principle of vaccine and its production						
	Mini Project:	Collect some old photographs showing of early man and make poster showing evolution of man with much evidence.						

Other Activities	Write an article on modern vaccine (Recombinant DNA vaccine and subunit
(Specify):	vaccine)

Course Duration (in Hours) to Attain Course Outcomes

Course Title: Biology for Engineers

Course Code: 98BT101

Course Outcomes (COs)	Class	Laboratory	Self-	Sessional	Total Hours	
	lecture	Instruction (LI)	Learning	work	(Li+CI+SL+SW)	
	(CI)		(SL)	(SW)		
98BT101.1 The basic idea of cell organization,						
classification of living organism and nomenclature and	6	0	1	1	08	
biodiversity covered in the unit.						
98BT101.2 Explain morphology, anatomy and function of						
different parts of flowering plants and emphasis on plant	6	0	3	1	10	
physiology,						
98BT101.3 Learn about the human physiology with	6	0	4	1	11	
emphasis on various organ systems of human body.	0	0	4	1	11	
98BT101.4 Understand the male and female reproductive	6	0	4	1	11	
system and know about sexually transmitted diseases	0	0	4	1	11	
98BT101.5 The student gains an understanding of the						
fundamentals of immunology and Origin of life and	6	0	4	1	11	
mechanism of evolution.						
Total Hours	30	00	16	05	51	

End-Semester Assessment Scheme for Setting up Question Paper and Assessment to Evaluate the Course Outcome

Course Title: Biology for Engineers

Course Code: 52BT201

Course Outcomes	Ι	Ma Distrib	Total Marks		
	Α	A An E		С	
98BT101.1 The basic idea of cell organization, classification of living organism and nomenclature and biodiversity covered in the unit.	2	1	1	1	5
98BT101.2 Explain morphology, anatomy and function of different parts of flowering plants and emphasis on plant physiology,	2	4	2	2	10
98BT101.3 Learn about the human physiology with emphasis on various organ systems of human body.	3	5	5	2	15
98BT101.4 Understand the male and female reproductive system and know about sexually transmitted diseases	2	3	3	2	10
98BT101.5 The student gains an understanding of the fundamentals of immunology and Origin of life and mechanism of evolution.	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend:A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Roitt I.M, Brostoff, J., Male D.K., Immunology (Illustrated Publisher, Mosby).
2	T. J. Kindt, R.A. G. B. A. Osborne, J. Kuby. Immunology (W.H. Freeman and Company, New York).
3	Biology by Peter H Raven, George B Johnson, Kenneth A. Mason, Jonathan Losos, Susan Singer (Macgraw Hill)
4	Campbell, N.A. and Reece, J.B. (2008) Biology 8th edition, Pearson Benjamin Cummings, San Francisco.

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: B.Tech. Biotechnology

Course Title: Biology for Engineers

Course Code: 98BT101

Course Outcome (Co)		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
98BT101.1 The basic idea of cell organization, classification of living organism and nomenclature and biodiversity covered in the unit.	3	2	3	2	1	1	1	1	2	2	2	2	3	1	1
98BT101.2 Explain morphology, anatomy and function of different parts of flowering plants and emphasis on plant physiology,	2	2	3	2	2	1	1	1	2	2	2	2	2	2	1
98BT101.3 Learn about the human physiology with emphasis on various organ systems of human body.	2	2	3	2	2	1	1	1	2	2	2	2	1	2	1
98BT101.4 Understand the male and female reproductive system and know about sexually transmitted diseases	2	1	2	2	1	1	1	1	2	1	1	1	1	1	2
98BT101.5 The student gains an understanding of the fundamentals of immunology	3	3	3	2	2	2	1	1	3	2	3	2	3	2	2

Semester: I

and Origin of life and								
mechanism of evolution.								

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
РО	98BT101.1 The basic idea of cell	SO1.1, SO1.2	-	1.1,1.2,1.3,1.4, 1.5,1.6	1SL-1
1,2,3,4,5	organization, classification of living	SO1.3,			
	organism and nomenclature and	SO1.4SO1.5,			
PSO 1,2,3	biodiversity covered in the unit.	SO1.6			
PO	98BT101.2 Explain morphology,	SO2.1 SO2.2	-	2.1, 2.2, 2.3, 2.4, 2.5, 2.6	2SL-1,2,3
1,2,3,4,5	anatomy and function of different	SO2.3 SO2.4,			
	parts of flowering plants and	SO2.5 SO2.6			
PSO 1,2,3	emphasis on plant physiology,				
РО	98BT101.3 Learn about the human	SO3.1 SO3.2	-	3.1,3.2,3.3,3.4,3.5,3.6	3SL-
1,2,3,4,5	physiology with emphasis on various	SO3.3 SO3.4,			1,2,3,4
	organ systems of human body.	SO3.5, SO3.6			
PSO 1,2,3					
РО	98BT101.4 Understand the male and	SO4.1 SO4.2	-	4.1,4.2,4.3,4.4,4.5,4.5,4.6	4SL-
1,2,3,4,5	female reproductive system and	SO4.3 SO4.4,			1,2,3,4
	know about sexually transmitted	SO4.5, SO4.6			
PSO 1,2,3	diseases				
РО	98BT101.5 The student gains an	SO5.1 SO5.2	-	5.1,5.2,5.3,5.4,5.5,5.6	5SL-
1,2,3,4,5	understanding of the fundamentals of	SO5.3, SO5.4,			1,2,3,4
	immunology and Origin of life and	SO5.5, SO5.6,			
PSO 1,2,3	mechanism of evolution.				

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology						
Semester	Ι						
Course Code:	98ME104						
Course title:	Basic Mechanical Engineering and Manufacturing Process	ng and Curriculum Developer: Er. Ketan Agrawal					
Pre-requisite:	Students should have basic knowledge of physics.						
Rationale:	The curriculum for basic mechanical engineering and manufacturing processes provides students with foundational knowledge in mechanics, thermodynamics, and materials science, alongside practical skills in manufacturing techniques. It emphasizes industry relevance, problem-solving abilities, interdisciplinary understanding, and professional development to prepare students for successful careers in engineering.						
Course	CO1-98ME104.1. Acquiring knowled	ge of materials and their properties for engineering applications					
Outcomes (COs):	CO2-98ME104.2. Understand casting	g and forming principles, ability to select processes, analyse defects, and					
(COS).	optimize production for efficient manu	ifacturing.					
	CO3-98ME104.3. Acquiring knowled	ge of working of lathe machine and drilling machine and welding process					
	CO4-98ME104.4. Enhancement of f	undamental knowledge of Thermodynamics. Demonstrate various types of					
	boilers and their relative merits and de	merits. Define the fundamental of IC engine.					
	CO5-98ME104.5. Explain stress, strai	in and their relationship with different material.					

Scheme of Studies:

Board of			S	urs/Week)	Total Credits (C)			
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(L: T:P=2:1:1)
ESC	98ME104 and 98ME 154	Basic Mechanical Engineering and Manufacturing Process	3	2	1	2	8	3+1=4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others).
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies).

SW: Sessional Work (includes assignment, seminar, mini project etc.).

SL: Self Learning.

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Boar d of	Course code	Course Title	Scheme of A	ssessme	nt (Marks))				
study	code		Progressive A	Assessm		End Semester	Total Marks			
			Class/Hom e assignment (5 number- 3 marks each) (CA)	Class Test 2 (Best 2 out of 3) 10 Mark s each (CT)	Semina r one (SA)	Class activit y (CAT)	Class attendanc e (AT)	Total Marks (CA+CT+CAT+SA+A T)	Assessmen t (ESA)	(PRA+ESA)
ESC	98ME10 4	Basic Mechanical Engineering and Manufacturin g Process	15	20	5	5	5	50	50	100

Scheme of Assessment: Practical

Board of Study	Course Code	Course Title		Scheme of Assessment (Marks)							
Study	Couc			Progressive Assessment (PRA)					Total		
			Class/Home	Viva	Viva	Class	Total Marks	Assessment	Marks		
			Assignment	Voce I	Voce II	Attendance	(CA+VV1+VV2+SA+AT)	(ESA)	(PRA+ ESA)		
			5 number						,		
			7 marks each			(AT)					
			(CA)								
ECC	98ME514	Biochemical Engineering	35	5	5	5	50	50	50		

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including	* *					
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning		Cl	LI	SW	SL	Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),	Approx.	09	04	01	02	16
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Hrs					

Course outcome	Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (CI)	Self-Learning
(CO)		(LI)		(SL)
CO1-98ME104.1.	SO1.1: Knowledge of	LI1.1: Introduction of basic	CI1.1: Classification of engineering	SL1.1: Compare
Acquiring knowledge	mechanical, thermal,	mechanical engineering	material, Properties of Materials:	ferrous and non-
of materials and their	electrical, and chemical	lab.	Strength, elasticity, stiffness,	ferrous materials.
properties for	properties of materials.		malleability, ductility, brittleness	
engineering				
applications				

SO1.2: Ability to select materials suitable for specific engineering applications.	LI1.2: To demonstrate the working of 2-stroke petrol engine.	CI1.2: Toughness and hardness. Elementary ideas of fracture, fatigue & creep.	SL1.2: Classify different types of steel used in engineering purpose.
SO1.3: Understanding material behaviour under various types of stress, including tensile, compressive, shear, and torsional.		CI1.3: Ferrous Materials: Carbon steels, its classification based on % carbon as low, mild, medium & high carbon steel, its properties & applications	
SO1.4: Understand the properties and applications of wrought iron and cast iron.		CI1.4: Wrought iron. Cast iron, Alloy steels: stainless steel, tool steel	
SO1.5: Introduction to heat treatment processes of carbon steels.		CI1.5: Elementary introduction to Heat-treatment of carbon steels: annealing, normalizing, quenching and tempering and casehardening	
SO1.6: Understand the composition and uses of non-ferrous metals and alloys.		CI1.6: Common uses of various non- ferrous metals & alloys, its composition such as Cu-alloys: Brass, Bronze	
SO1.7: Understand the properties and uses of aluminium alloys.		CI1.7: Al-alloys such as Duralumin	
SO1.8: Evaluate the advantages and disadvantages of non- ferrous metals.		CI1.8: Advantages and disadvantages of non-ferrous metals	
SO1.9: Understand the basics of material selection for engineering applications.		CI1.9: Overview of material selection criteria for various engineering applications	

Suggested Sessional Work	SW1.1	Compare wrought iron, cast iron and steel in terms of their mechanical
(SW)	Assignments	properties and application.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	02	16

Course outcome (CO)	Session Outcomes (SOs)	Laboratory	Classroom Instruction	Self-Learning (SL)
		Instruction (LI)	(CI)	
CO2-98ME104.2.	SO2.1: Understanding the	LI2.1: To	CI2.1: Basic metal	SL2.1: Understanding the
Understand casting and forming	principles of molten metal	demonstrate the	forming operations &	principles of molten metal
principles, ability to select	flow, solidification, and mold	working of a 4-	uses such as Forging,	flow, solidification, and
processes, analyze defects, and	design	stroke diesel	Rolling	mold design
optimize production for		engine		
efficient manufacturing.	SO2.2: Knowledge of	LI2.2: To	CI2.2: Wire & Tube-	SL2.2: Knowledge of
	forming processes including	demonstrate the	drawing/making and	forming processes
	forging, rolling, extrusion,	working of a 2-	Extrusion	including forging, rolling,
	and sheet metal forming	stroke petrol		extrusion, and sheet metal
		engine		forming
	SO2.3: Skills to identify and	-	CI2.3: Applications of	
	analyze defects in cast and		metal forming	
	formed parts such as		operations, Presswork,	
	porosity, shrinkage, and		die & punch assembly	
	surface irregularities			
	SO2.4: Understanding		CI2.4: Cutting and	
	cutting and forming		forming, its applications.	
	processes and their		Hot-working versus cold-	
	applications		working	
	SO2.5: Knowledge of pattern		CI2.5: Pattern &	
	making and allowances, and		allowances, Moulding	
	the properties of molding		sands and its desirable	
	sands		properties	
	SO2.6: Understanding the		CI2.6: Mould making	
	process of mold making with		with the use of a core,	
			Gating system	

the use of a core and gating system	
SO2.7: Identify and understand casting defects,	CI2.7: Casting defects, remedies, Cupola
remedies, and the use of Cupola Furnace and Die- casting	Furnace, Die-casting and its uses
SO2.8: Revision of metal forming and casting processes	CI2.8: Revision
SO2.9: Assessment and evaluation of knowledge on metal forming and casting	CI2.9: Assessment
processes	

Suggested Sessional Work (SW): SW2.1 Assignments Ex	Explain different type of patterns used in casting process.
---	---

				Item	Cl	LI	SW	SL	Total
				Approx. Hrs	09	04	01	02	16
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Class	room Instruction	ı S	Self-Learning (SL))
		(LI)		(CI)					
CO3-98ME104.3. Acquiring	SO3.1: Understand lathe	LI3.1: To demonstrate	CI3.1:1	Basic principles o	f S	L3.1:	Classi	fy oxy	/_
knowledge of working of	machine principles and	the working of lathe	Lathe n	nachine	a	cetyle	ne gas	flame	s used
lathe machine and drilling	perform basic lathe	machine.					velding	g and	their
machine and welding	operations.					pplica			
process	SO3.2: Describe the	LI3.2: To demonstrate		Operations			Explai		
	machines and operations	the working of drilling	perform	ned on lathe	a	ccesso	ories ar	nd lath	e
	of shaper, planer, drilling,	machine.	machin	e	a	ttachn	nents.		
	milling, and grinding.								
	Apply knowledge of								
	machining processes to								
	practical applications.								

SO3.3: Explain the	CI3.3: Basic description
importance and	and operations of Shaper
fundamental concepts of	machine
welding.	
SO3.4: Identify types of	CI3.4: Basic description
flames in gas welding and	and operations of Drilling
demonstrate their	machine
appropriate uses.	
SO3.5: Describe basic	CI3.5: Basic description
description and	and operations of Milling
operations of milling	machine
machine.	
SO3.6: Describe basic	CI3.6: Basic description
description and	and operations of
operations of grinding	Grinding machine
machine.	č
SO3.7: Explain the	CI3.7: Importance &
importance and basic	basic concepts of welding
concepts of welding.	
SO3.8: Classify different	CI3.8: Classification of
welding processes.	welding processes
SO3.9: Identify and	CI3.9: Gas welding, types
explain types of flames in	of flames
gas welding and their	
uses.	

Suggested Sessional Work	SW3.1 Assignments	Classify welding processes, including gas welding, electric arc welding, resistance welding, soldering, and brazing.
(SW):	rissignments	werding, soldering, and orazing.

			Item	Cl	LI	SW	_	Total
		. .	Approx. Hrs	09	04	01	03	17
Course outcome (CO)	Session Outcomes	Laboratory	Classroom Instruction	1	Self-	Lear	ning ((SL)
	(SOs)	Instruction (LI)	(CI)		r 4 1	T •	1	.1
CO4-98ME104.4	SO4.1: Analyze steam	LI4.1: To demonstrate	CI4.1: First and second				lown	the
Improvement of the basic	properties, processes,	the working of	law of thermodynamics			nt type		
understanding of	boiler classification,	Cochran Boiler.				ngs u	sed in	the
thermodynamics. Give	efficiency, and			bo	oiler.			
examples of different	performance							
boiler types and discuss	SO4.2: Describe	LI4.2: To demonstrate	CI4.2: Steam properties			Defin		
the advantages and	refrigeration cycles,	the working of		th	ermo	dynar	nics a	ind
disadvantages of each.	COP, and refrigerant	Babcock and Wilcox		cl	assify	theri	nodyı	namic
Describe the foundation of	properties, including	Boiler.		sy	vstem	•		
an IC engine.	eco-friendly options.							
	SO4.3: Understand the		CI4.3: Steam processes	S	L4.3:	Expla	ain	
	operation of two-stroke		at constant pressure	te	rmino	ology	of I.C	2.
	and four-stroke		_	E	ngine	•		
	petrol/diesel engines.							
	SO4.4: Evaluate the		CI4.4: Volume,					
	efficiency and		enthalpy & entropy					
	performance of internal		10 10					
	combustion engines.							
	SO4.5: Understand the		CI4.5: Classification					
	classification and		and working of boilers					
	working of boilers.							
	SO4.6: Perform		CI4.6: Efficiency &					
	efficiency &		performance analysis					

performance analysis of boilers.	
SO4.7: Differentiate	CI4.7: Natural and
between natural and induced draught.	induced draught
SO4.8: Calculate the	CI4.8: Calculation of
height of a chimney.	chimney height
SO4.9: Explain refrigeration, vapor	CI4.9: Refrigeration, vapor absorption &
absorption & compression cycles.	compression cycles

Suggested	SW4.1	Explain steam engines, indicator diagrams, Carnot, Otto, and diesel cycles.
Sessional Work (SW):	Assignments	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	02	16

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5-98ME104.5	SO5.1: Understand	LI5.1: To	CI5.1: Introduction,	SL5.1: Define Poisson's
Explain stress, strain and	basics of stress, strain,	demonstrate the	normal and shear stresses	ratio
their relationship with	and stress-strain	working of a Double		
different material.	diagrams	Acting Steam		
		Engine		
	SO5.2: Apply	LI5.2: To	CI5.2: Stress-strain	SL5.2: Solve numerical
	knowledge of elastic	demonstrate the	diagrams for ductile	problems associated
	constants and strain	working of different	materials	with bending stresses in
	energy concepts	boiler mountings		beams
	SO5.3: Analyze pure		CI5.3: Stress-strain	
	bending of beams and		diagrams for brittle	
	torsion in shafts		materials	
	effectively			
	SO5.4: Understand		CI5.4: Elastic constants,	
	elastic constants and		strain energy	
	strain energy			
	SO5.5: Understand the		CI5.5: Introduction, simple	
	simple bending theory		bending theory	
	SO5.6: Analyze stress		CI5.6: Stress in beams of	
	in beams of different		different cross sections and	
	cross sections and		bending moments	
	bending moments			
	SO5.7: Understand		CI5.7: Torsion of shafts of	
	torsion of shafts of		circular section	
	circular section			
	SO5.8: Analyze torque		CI5.8: Torque and twist	
	and twist and shear		and shear stress due to	
	stress due to torque		torque	

SO5.9: Evaluate the	CI5.9: Revision and
efficiency and	assessment
performance of	
different mechanical	
systems	

Suggested	SW5.1 Assignments	Draw and explain stress –strain diagram for mild steel.
Sessional Work		
(SW):		

Course duration (in hours) to attain Course Outcomes:

Course Title: Basic Mechanical Engineering and Manufacturing Process

Course Code:98ME104

Course Outcomes (COs)	Class lecture (Cl)	Laboratory Instruction (LI)	Sessional work (SW)	Self- Learning (SL)	Total Hours (Li+Cl+SL+SW)
CO1-98ME104.1. Acquiring knowledge of materials and their properties for engineering applications	09	04	01	02	16
CO2-98ME104.2. Understand casting and forming principles, ability to select processes, analyze defects, and optimize production for efficient manufacturing.	09	04	01	02	16
CO3-98ME104.3. Acquiring knowledge of working of lathe machine and drilling machine and welding process	09	04	01	02	16
CO4-98ME104.4. Enhancement of fundamental knowledge of Thermodynamics. Demonstrate various types of boilers and their relative merits and demerits. Define the fundamental of IC engine.	09	04	01	03	17
CO5-98ME104.5. Explain stress, strain and their relationship with different material.	09	04	01	03	17
Total Hours	45	15	5	12	82

End Semester Assessment Scheme for Setting up Question Paper and Assessment to Evaluate the Course Outcome

Course Title: Basic Mechanical Engineering and Manufacturing Process

Course Code:98ME104

Course Outcomes	I	Marks D	Distributi	on	Total
	A An		E	С	Marks
CO1-98ME104.1. Acquiring knowledge of materials and their properties for engineering applications	2	1	1	1	5
CO2-98ME104.2. Understand casting and forming principles, ability to select processes, analyse defects, and optimize production for efficient manufacturing.	2	4	5	1	12
CO3-98ME104.3. Acquiring knowledge of working of lathe machine and drilling machine and welding process	3	5	5	1	14
CO4-98ME104.4. Enhancement of fundamental knowledge of Thermodynamics. Demonstrate various types of boilers and their relative merits and demerits. Define the fundamental of IC engine.	2	3	5	1	11
CO5-98ME104.5. Explain stress, strain and their relationship with different material.	2	4	1	1	08
Total Marks	11	17	17	05	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Sawhney GS; Fundamentals of Mechanical Engg; PHI.
2	Agrawal B & CM; Basic Mechanical Engg. Wiley India.
3	Nag PK, Tripathi et al; Basic Mechanical Engg; TMH.
4	Mubeen, A., Mechanics of solids, Pearson Education Asia.
5	Irving H. Shames, Engineering Mechanics, Prentice Hall
6	Nakra and Chaudhary; Instrumentation & measurement; TMH.
7	Nag PK; Engineering Thermodynamics; TMH.

(b) Online Resources:

1	Link: Coursera - Fundamentals of Manufacturing Processes
2	Link: MIT Open Course Ware - Introduction to Solid Mechanics
3	Link: edX - Introduction to Mechanical Engineering
4	Stanford Online Course: Manufacturing and Design

(c) Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to Beverage producing plants & Distillery/Fermenter units
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Course Title: Basic Mechanical Engineering and Manufacturing Process

Course Code: 98ME104

Course Outcome (CO)	Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98ME104.1. Acquiring knowledge of materials and their properties for engineering applications	3	2	2	2	3	1	1	1	2	1	2	1	3	2	1
CO2-98ME104.2. Understand casting and forming principles, ability to select processes, analyse defects, and optimize production for efficient manufacturing.	2	3	3	2	3	2	1	2	2	2	3	2	3	2	2
CO3-98ME104.3. Acquiring knowledge of working of lathe	2	2	3	2	3	2	2	1	2	2	2	1	2	3	2

machine and drilling machine and welding process															
CO4-98ME104.4. Enhancement of fundamental knowledge of Thermodynamics. Demonstrate various types of boilers and their relative merits and demerits. Define the fundamental of IC engine.	3	3	2	2	2	1	1	2	3	2	3	2	3	2	3
CO5-98ME104.5. Explain stress, strain and their relationship with different material.	2	2	2	1	3	2	1	2	2	2	2	1	2	2	1

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO	CO1-98ME104.1. Acquiring	SO1.1 SO1.2	LI 1, LI 2, LI 3	1.1,1.2,1.3,1.4,1.	161 1 2
1,2,3,4,5,6	knowledge of materials and their	SO1.3, SO1.4,		5,1.6	1SL-1,2

	properties for engineering	SO1.5, SO1.6,		1.7,1.8,1.9	
PSO 1,2, 3	applications	SO1.7, SO1.8,			
		SO1.9			
РО	CO2-98ME104.2. Understand	SO2.1 SO2.2			
1,2,3,4,5,6	casting and forming principles,	SO2.3, SO2.4,		2.1, 2.2, 2.3,	
1,2,3,4,3,0	ability to select processes, analyse	SO2.5, SO2.6,	LI 1, LI 2, LI 3	2.4,2.5,2.6	2SL-1,2
PSO 1,2, 3	defects, and optimize production	SO2.7, SO2.8,		2.7,2.8,2.9	
F SO 1,2, 5	for efficient manufacturing.	SO2.9			
РО	CO3-98ME104.3. Acquiring	SO3.1 SO3.2			
	knowledge of working of lathe	SO3.3 SO3.4,		3.1,3.2,3.3,3.4,3.	
1,2,3,4,5,6 PSO 1,2, 3	machine and drilling machine and	SO3.5, SO3.6,	LI 1, LI 2, LI 3	5,3.6	3SL-1,2
	welding process	SO3.7, SO3.8,		3.7,3.8,3.9	
FSO 1,2, 5		SO3.9			
	CO4-98ME104.4. Enhancement				
РО	of fundamental knowledge of	SO4.1 SO4.2		41424244	
	Thermodynamics. Demonstrate	SO4.3 SO4.4,		4.1,4.2,4.3,4.4, 4.5,4.6	
1,2,3,4,5,6	various types of boilers and their	SO4.5, SO4.6,	LI 1, LI 2, LI 3	4.7,4.8,4.9	4SL-1,2
PSO 1,2, 3	relative merits and demerits.	SO4.7, SO4.8,		4.7,4.0,4.9	
150 1,2, 5	Define the fundamental of IC	SO4.9			
	engine.				
РО	CO5-98ME104.5. Explain stress,	SO5.1 SO5.2			
	strain and their relationship with	SO5.3, SO5.4,		5.1,5.2,5.3,5.4,5.	
1,2,3,4,5,6	different material.	SO5.5, SO5.6,	LI 1, LI 2, LI 3	5, 5.6	5SL-1,2
DSO 1 2 2		SO5.7, SO5.8,		5.7,5.8,5.9	
PSO 1,2, 3		SO5.9			

Program Name	Bachelor of Technology- Biotechnology										
Semester	Ι										
Course Code:	98BT106										
Course title:	Introduction to Biotechnology	Curriculum Developer: Dr. Deepak Mishra, Dr Ashutosh Pandey									
Pre- requisite:	Student should have basic knowledge of Botany, Zoology and other related fields of life sciences.										
Rationale:	The paper on Introduction to Biotechnology in a B.Tech. Biotechnology program explores the concept and techniques used for improvement development and growth of plant tissues in laboratorial conditions. It delves into the use of precise instruments and techniques for micro propagation of plants. The second part of this course will provide precise knowledge of genetic engineering tools for improvement in plant varieties and stable genetic transformation. This study enables students to understand how recombinant DNA technology helps us for development of new plant varieties. It also explores the knowledge of biotechnology for generation of novel characteristics in plants.										
Course	CO1-98BT106.1: Familiarization with the basic c	oncepts, ideas and scope of Biotechnology.									
Outcomes	CO2-98BT106.2: Understand concepts of cell str	ucture, Biomolecules and microbial culture techniques.									
(COs):	CO3-98BT106.3: Acquired Skills of the various r and its application.	nethods and processes used to create recombinant DNA molecules									
	CO4-98BT106.4: Recognize various methods rela	ted to tissue culture for improvement in plants and animals.									
	CO5-98BT106.5: Explore application of Biotechn living organisms.	nology for improvement and development of novel characters in									

Scheme of Studies:

Board of	Course				Total Credits(C)			
Study		Course Title	Cl	LI	SW	SL	Total Study Hrs. (CI+LI+SW+SL)	(L: T:P=3:0:0)
Program Common (PC)	98BT106	Introduction to Biotechnology	3	0	1	5	9	3+0 = 3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others).

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies).

SW: Sessional Work (includes assignment, seminar, mini project etc.).

SL: Self Learning.

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of		Course Title			Scher	ne of Assessi	ment (Marks)		
Study	Code			Progress	sive Asses	ssment (PRA))	End Semester	Total Marks
			Class/Home	Class Test	Seminar	Class	Total Marks	Assessment	Marks
			Assignment	2	one	Attendance	(CA+CT+SA+AT)	(ESA)	(PRA+ ESA)
			5 number	(2 best		(AT)			LSAJ
			3 marks each	out	(SA)				
			(CA)	of 3)					
				10 marks					
				each (CT)					
РС	98BT106	Introduction To Biotechnology	15	20	10	5	50	50	100

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction	Approximate Hours							
including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self	Item	Cl	LI	SW	SL	Total		
Learning (SL). As the course progresses, students should showcase their mastery of Session		09	00	01	05	15		
Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the	Hrs							
course's conclusion.								

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-98BT106.1: Familiarization with the basic concepts, ideas and scope of Biotechnology.	SO1.1: Understand definitions and scope of biotechnology		CI1.1: Definitions and basic concepts of biotechnology	SL1.1: Read about key definitions and terminology in biotechnology
	SO1.2: Explore the historical perspectives of biotechnology		CI1.2: Historical evolution of biotechnology	SL1.2: Research key historical milestones in biotechnology
	SO1.3: Recognize the commercial potential of biotechnology		CI1.3: Commercial applications and potential of biotechnology	SL1.3: Analyze case studies on biotechnology commercialization
	SO1.4: Identify the interdisciplinary nature of biotechnology		CI1.4: Interdisciplinary challenges in biotechnology	SL1.4: Review how biotechnology integrates with other disciplines
	SO1.5: Learn about good laboratory practices		CI1.5: Principles of good laboratory practices (GLP)	SL1.5: Study guidelines and best practices for laboratory work
	SO1.6: Understand biotechnology's impact in India		CI1.6: Overview of biotechnology developments in India	
	SO1.7: Analyze global trends in biotechnology		CI1.7: Global trends and advancements in biotechnology	

a	SO1.8: Evaluate the scope and importance of piotechnology	CI1.8: Scope and importance of biotechnology in modern science	
s	SO1.9: Review and summarize key concepts in piotechnology	CI1.9: Summary of key concepts and their applications	

Course-Curriculum:

Suggested Sessional	SW1.1 Assignments	Describe in detail about scope and importance of biotechnology.
Work (SW): anyone	SW1.2 Mini Project	Standardize the protocols for implantation of GLP principles in biotechnological
		research.
	SW1.3 Other Activities	Collection of different evidence of existence of biotechnology in ancient era.
	(Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	0	01	05	15

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO2-98BT106.2: Understand concepts of cell structure, Biomolecules and microbial culture techniques.	SO2.1 Explore the concept of cell and biomolecules.		CI2.1 Cell and Biomolecules	SL2.1 Search various contents for studying cell, biomolecules, and microbial culture.
	SO2.2 Describe the structure and function of cells.		CI2.2 Ultra Structure and Function of Cells	SL2.2 Design the protocol for fermentation.

SO2.3 Reflect on cell types.	CI2.3 Prokaryotic and Eukaryotic Cells	SL2.3 Learn about different categories of biomolecules.
SO2.4 Explain the concept and types of biomolecules.	CI2.4 Introduction to Biomolecules	SL2.4 Standardize the protocol for microbial culture.
SO2.5 Assess the concept of microbial culture.	CI2.5 Microbial Culture and Application: Introduction	SL2.5 Learn the methods of microbe's isolation and characterization.
SO2.6 Explain the steps of microbial culture.	CI2.6 Microbial Culture Techniques	
SO2.7 Explain the concept of fermentation.	CI2.7 Fermentation	
SO2.8 Assess the role of microbial culture.	CI2.8 Application of Microbial Culture Technology	
SO2.9 Discuss recent advancements in microbial technologies.	CI2.9 Recent Advancements in Microbial Technologies	

Suggested Sessional Work (SW): anyone	SW2.1 Assignments	Describe in detail about different types of cells and classify organism based on cells
	SW2.2Mini Project	Designing of a fermentation model.
	SW2.3 Other Activities	Collection, isolation and characterization of microbes from
	(Specify)	different sources.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	10	00	01	05	16

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory	Classroom Instruction	Self-Learning (SL)
		Instruction (LI)	(CI)	
98BT106.3: Acquired Skills of the	SO3.1 Explain the concept of		CI3.1 Recombinant DNA	SL3.1 Read about
various methods and processes used to create recombinant plants.	recombinant DNA technology.		Technology: Introduction	various types of vectors used for cloning.
	SO3.2 Assess the tools of		CI3.2 Tools of rDNA	SL3.2 Study the structure
	rDNA technology.		Technology	and function of plasmids.
	SO3.3 Explain the concept of a DNA library.		CI3.3 DNA Library	SL3.3 Illustrate the mechanism of DNA transfer.
	SO3.4 Assess the role of		CI3.4 Introduction of	
	transformation in recombinant		Recombinant DNA into	
	DNA technology.		Host Cells	
	SO3.5 Describe recombinant		CI3.5 Identification of	SL3.4 Study different
	screening methods.		Recombinants	categories of PCR.
	SO3.6 Assess the role of PCR in recombinant DNA technology.		CI3.6 Polymerase Chain Reaction (PCR)	SL3.5 Study the application of recombinant DNA technology.
	SO3.7 Describe hybridization		CI3.7 Hybridization	
	techniques.		Techniques	
	SO3.8 Describe the concept of DNA sequencing.		CI3.8 DNA Sequencing	

SO3.9 Describe the concept of bioinformatics.	CI3.9 Introduction to Bioinformatics	
SO3.10 Describe genome sequencing projects.	CI3.10 Genome Sequencing Projects	

Suggested Sessional Work (SW): <i>anyone</i>	SW3.1 Assignments	Describe in detail cloning vector and mechanism of DNA transfer.
	SW3.2 Mini Project	Describe the role of different vectors in genetic transformation.
	SW3.3 Other Activities	Prepare a list of application of genetic engineering.
	(Specify)	

				Item Approx. Hrs	C1 09	LI 00	SW 01	SL 05	Total 15
Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Ins	struction (CI)	Self	Lea	rning	(SL)	
CO4-98BT106.4:SO4.1 Explore the concRecognize variousplant cell culture.methods related to		-	CI4.1 Plant Cell Culture and Application: Introduction		SL4.1 Learn about different categories of tissue culture.				
tissue culture for improvement in plants and animals.	SO4.2 Assess the role of cell and tissue culture techniques.	-	CI4.2 Cell and Culture Techni				andaro of cell		
	SO4.3 Explain the applications of tissue culture.	-	CI4.3 Applicat and Tissue Cul			-			/arious ulture.

	xplain the role of ic plants.	-	CI4.4 Transgenic Plants with Beneficial Traits	SL4.4 Case studies related to the success of transgenics.
	valuate the impact of cell culture.	-	CI4.5 Animal Cell Culture and Applications: Introduction	SL4.5 Case studies related to animal cell culture.
	Describe the impact of cell culture les.	-	CI4.6 Animal Cell Culture Techniques	
	xplain primary and cell lines.	-	CI4.7 Primary Culture and Cell Lines	
SO4.8 D of cell li	Describe applications nes.	-	CI4.8 Applications of Animal Cell Culture	
SO4.9 E technolo	xplain stem cell 9gy.	-	CI4.9 Stem Cell Technology	

Suggested	SW4.1 Assignments	Explain about different types of tissue culture techniques.
Sessional Work	SW4.2 Mini Project	Describe the various techniques used in development of transgenic plants.
(SW): anyone	SW4.3 Other Activities	Prepare one article on stem cell technology
	(Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs.	08	00	01	05	14

Course Outcome (CO)			Classroom Instruction (CI)	Self-Learning (SL)
CO5-98BT106.5: Explore application of Biotechnology for improvement and development of novel characters in living	SO5.1 Define the role of biotechnology in society.	-	CI5.1 Biotechnology and Society	SL5.1 Learn about the basic concept and requirement of chloroplast genome.
organisms.	SO5.2 Execute the role of biotechnology for healthcare.	-	CI5.2 Biotechnology and Medicines	SL5.2 Review the concept of chloroplast transformation.
	SO5.3 Apply the role of biotechnology in agriculture.	-	CI5.3 Biotechnology in Agriculture	SL5.3 Learn how to apply transgenic technology in plants.
	SO5.4 Apply biotechnology for the food industry.	-	CI5.4 Food and Beverages Technology	
	SO5.5 Apply the role of biosafety and bioethics.	-	CI5.5 Biosafety and Bioethics in Biotechnology	
	SO5.6 Discuss the impact of biotechnology on environmental sustainability.	-	CI5.6 Biotechnology and Environmental Sustainability	SL5.4 Research environmental impacts of biotech applications.
	SO5.7 Analyze the economic impact of biotechnology.		CI5.7 Economic Aspects of Biotechnology	SL5.5 Review case studies on the economic impact of biotech.

SO5.8 Evaluate current	CI5.8 Trends and Future	
trends and prospects in biotechnology.	Prospects in Biotechnology	

Suggested Sessional Work (SW): anyone	SW5.1 Assignments	Explain applications of biotechnology
	SW5.2 Mini Project	Describe the role of biotechnology in various sectors
	SW5.3 Other Activities (Specify)	Prepare a detail document on biosafety in labs

Course duration (in hours) to attain Course Outcomes

Course Title: Introduction To Biotechnology

Course Code:98BT106

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Sessional work (SW)	Self-Learning (SL)	Total Hours (Li+CI+SL+SW)
CO1-98BT106.1: Familiarization with the basic concepts, ideas and scope of Biotechnology.	09	0	05	01	15
CO2-98BT106.2: Understand concepts of cell structure, Biomolecules and microbial culture techniques.	09	0	05	01	15
CO3-98BT106.3: Acquired Skills of the various methods and processes used to create recombinant DNA molecules and its application.	10	0	05	01	16
CO4-98BT106.4: Recognize various methods related to tissue culture for improvement in plants and animals.	09	0	05	01	15
CO5-98BT106.5: Explore application of Biotechnology for improvement and development of novel characters in living organisms.	08	0	05	01	14
Total Hours	45	0	25	05	75

End Semester Assessment Scheme for Setting up Question Papers and Assessments to Evaluate the Course Outcome

Course Title: Introduction To Biotechnology

Course Code: 98BT106

Course Outcomes	l	on	Total		
	А	An	E	С	Marks
CO1-98BT106.1: Familiarization with the basic concepts, ideas and scope of Biotechnology.	2	1	1	1	5
CO2-98BT106.2: Understand concepts of cell structure, Biomolecules and microbial culture techniques.	2	4	2	2	10
CO3-98BT106.3: Acquired Skills of the various methods and processes used to create recombinant DNA molecules and its application.	2	3	3	2	10
CO4-98BT106.4: Recognize various methods related to tissue culture for improvement in plants and animals.	3	5	5	2	15
CO5-98BT106.5: Explore application of Biotechnology for improvement and development of novel characters in living organisms.	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend: A, apply; An, Analyse; E, evaluate; C, create

Suggested learning Resources:

(a) Books:

- 1. Introduction to Biotechnology by P. K Gupta, Rastogi Publications
- 2. Biotechnology by Smith, Cambridge Press
- 3. Textbook of Biotechnology By R C Dubey
- 4. Biotechnology Expending Horizons by B D Singh

(b) Online Resources:

- 1. Coursera "Introduction to Biotechnology" by University of California, San Diego URL: Introduction to Biotechnology
- 2. edX "Principles of Biochemistry" by Harvard University, URL: Principles of Biochemistry
- 3. Biotechnology Innovation Organization (BIO), URL: BIO
- 4. YouTube Crash Course: "Biotechnology Genetic Engineering and GMOs" URL: CrashCourse Biotechnology

(c) Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Course Title: Introduction To Biotechnology

Course	Code:	98BT106
--------	-------	---------

Course Outcome (Cos)					Pro	gram O	utcom	es (POs	5)				-	gram Sp comes (P	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT106.1: Familiarization with the basic concepts, ideas and scope of Biotechnology.	-	1	-	1	2	2	3	-	2	1	2	3	2	2	3
CO2-98BT106.2: Understand concepts of cell structure, Biomolecules and microbial culture techniques.	-	1	-	-	-	-	3	-	2	2	2	3	1	3	3
CO3-98BT106.3: Acquired Skills of the various methods and processes used to create recombinant DNA molecules and its application.	-	1	1	1	-	-	3	-	2	1	2	3	1	2	2
CO4-98BT106.4: Recognize various methods related to tissue culture for improvement in plants and animals.	-	-	1	-	2	2	3	3	1	1	3	3	1	3	3
CO5-98BT106.5: Explore application of Biotechnology for improvement and development of novel characters in living organisms.	-	-	1	-	-	2	3	3	1	2	3	3	1	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Semester: I

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
РО	CO1-98BT106.1: Familiarization with	SO1.1 SO1.2	-	1.1,1.2,1.3,1.4,1.5, 1.6, 1.7, 1.8,	1SL-
1,2,3,4,5	the basic concepts, ideas and scope of	SO1.3 SO1.4		1.9	1,2,3,4,5
	Biotechnology.	SO1.5 SO1.6			
PSO 1,2,3		SO1.7 SO1.8			
		SO1.9			
PO	CO2-98BT106.2: Understand concepts	SO2.1 SO2.2	-	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	2SL-
1,2,3,4,5	of cell structure, Biomolecules and	SO2.3 SO2.4		2.8, 2.9	1,2,3,4,5
	microbial culture techniques.	SO2.5 SO2.6			
PSO 1,2,3		SO2.7 SO2.8			
		SO2.9			
PO	CO3-98BT106.3: Acquired Skills of the	SO3.1 SO3.2	-	3.1,3.2,3.3,3.4,3.5, 3.6, 3.7, 3.8,	3SL-
1,2,3,4,5	various methods and processes used to	SO3.3 SO3.4		3.9, 3.10	1,2,3,4,5
	create recombinant DNA molecules and its	SO3.5 SO3.6			
PSO 1,2,3	application.	SO3.7 SO3.8			
		SO3.9 SO3.10			
РО	CO4-98BT106.4: Recognize various	SO4.1 SO4.2	-	4.1,4.2,4.3,4.4, 4.5, 4.6, 4.7, 4.8,	4SL-
1,2,3,4,5	methods related to tissue culture for	SO4.3 SO4.4		4.9	1,2,3,4,5
	improvement in plants and animals.	SO4.5 SO4.6			
PSO 1,2,3		SO4.7 SO4.8			
		SO4.9			
РО	CO5-98BT106.5: Explore application of	SO5.1 SO5.2	-	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8	5SL-
1,2,3,4,5	Biotechnology for improvement and				1,2,3,4,5
	development of novel characters in living				
PSO 1,2,3	organisms.	SO5.7 SO5.8			

Program Name	B.Tech. Biotechnology					
Semester	Ι					
Course Code:	98CH102/98CH152					
Course title:	Engineering Chemistry /Engineering Curriculum Developer: Dr Ashutosh Pandey Chemistry Lab					
Pre-requisite:	Students must have fundamental knowledge of mathematics, nature of molecule, valence shell electron pair repulsion theory, and different concentration terms to understand the concept of engineering chemistry.					
Rationale:	The students studying engineering chemistry should possess foundational understanding about basic mathematics, different concentration terms and valence shell electron pair repulsion theory to understand the basic principle of chromatography and spectroscopic analysis.					
Course Outcomes (COs):	 CO 98CH102.1: Apply VSEPR theory to predict the three-dimensional shapes of molecules. CO 98CH102.2: Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug molecule. CO 98CH102.3: Explain and apply the concept of intermolecular forces, hydrogen bond, and transition metal complexes. CO 98CH102.4: Predict the concept of thermodynamics, free energy & entropy and apply Nernst equation, water chemistry as well as explain concept of acid-base, metallurgy, Emf cell and corrosion. CO 98CH102.5: Collectively aim to equip students with a comprehensive understanding of the theoretical principles, practical methodologies, and diverse applications of various spectroscopic techniques. 					

Scheme of Studies:

Board of	Course	Course Title	Scheme of studies (Hours/Week)					Total
Study	Code		Cl	LI	SW	SL	Total StudyHours (CI+LI+SW+SL)	Credits (C) (L:T:P)
BSC	98CH102/ 98CH152	Engineering Chemistry	2	2	1	2	7	2+1=3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e., Lecture(L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini projected.),

SL: Self-Learning,

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback teachers ensure outcome of earning.

Scheme of Assessment: Theory

Board	Course	Course	Scheme of Assessment (Marks)							
of	Code	Title		Progressive Assessment (PRA)				End	Total Marks	
study			Class/Home	Class Test	Seminar	Class	Class	Total Marks	Semester	(PRA+ESA)
			assignment	2 (2 best	one (SA)	Activity one	Attendance	(CA+CT+SA+CAT)	Assessment	
			5 number (3	out of 3)		(CAT)			(ESA)	
			marks each)	(CT)						
			(CA)							
BS	98CH102	Engineering	15	20	5	5	5	50	50	100
		Chemistry								

Scheme of Assessment: Practical

Board	Course	Course				Scheme of Assessment (Marks)		
of	Code	Title			Progress	ive Assessment (PRA)		End	Total Marks
study			Class/Home	Viva	Viva	Class Attendance	Total Marks	Semester	(PRA+ESA)
			assignment	Voce-I	Voce-I		(CA+CT+SA+CAT)	Assessment	
			5 number (3					(ESA)	
			marks each)						
			(CA)						
BS	98CH152	Engineering							
		Chemistry	35	5	5	5	50	50	100
		Lab							

Course-Curriculum Detailing:						
This course syllabus illustrates the expected learning achievements, both at the course and session	Item	CI	LI	SW	SL	Total
levels, which students are anticipated to accomplish through various modes of instruction including	Approx					
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning	Hrs	6	4	1	3	14
(SL).As the course progresses, students should showcase their mastery of Session Outcomes (SOs),						
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

98CH102.1 Apply VSEPR theory to predict the three-dimensional shapes of	Session Outcomes (SOs)	Laboratory Instructions (LI)	Classroom Instruction (CI)	Self-Learning (SL)
molecules.	SO1.1 Recognize the fundamental particles: electron, proton, and neutron.	LI1.1 Demonstrate the characteristics of electrons, protons, and neutrons using models.	CI1.1 Lecture on the discovery and properties of electrons, protons, and neutrons.	SL1.1 Read research articles on the discovery and impact of subatomic particles.
	SO 1.2 Describe the shapes of s, p, and d orbitals.	LI1.2 Construct 3D models of s, p, and d orbitals.	CI 1.2 Discuss the shapes and orientations of orbitals in atoms.	SL1.2 Create a diagram showing the shapes of different orbitals.
	SO 1.3 Explain the concept of quantum numbers and their types.		CI 1.3 Lecture on quantum numbers and their significance in atomic structure.	SL1.3 Study and summarize the four quantum numbers.
	SO 1.4 Apply Aufbau's principle, Hund's rule, and Pauli's principle for electron configuration.		CI 1.4 Teach the rules for filling electrons in orbitals with examples.	
	SO 1.5 Identify different types of chemical bonds: ionic, covalent, and coordinate bonds.		CI 1.5 Explain the characteristics and formation of ionic, covalent, and coordinate bonds.	

sp3, sp3d, sp3d2, and sp3d3).importance in molecular geometry.

SW-1 Suggested Sessional Work (SW):	SW 1.1 Assignments: Applications of molecular orbital theory for the determination of bond order and magnetic behaviour.
	SW 1.2 Mini Project: Hybridization and its application.
	SW 1.3 Other Activities (Specify): Write an essay on different type of chemical bond.

				Item	CI	LI	SW	SL	Total		
				Approx Hrs	6	4	1	2	13		
98CH102.2: Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug molecule.	Session Outcomes (SOs) Laboratory Instructions (LI) Classroom Instr			Instruction (CI)			Self-Learning (SL)				
	SO2.1: Understand the concept of representations of 3- dimensional structures.	ept of molecules and determine of 3-dimensional their percentage yield.					SL2.1: Study articles on the importance of 3D structures in drug design.				
	SO2.2: Explain structural isomers and stereoisomers.	LI2.2: To determine the acid value or saponification value of oil/fat.	CI2.2: Discuss str and stereoisomers		s.	life a struc	2: Read pplicat tural an oisome	tions o nd	it real- of		

SO2.3: Describe symmetry, chirality, and optical activity.	CI2.3: Explain symmetry, chirality, and optical activity with molecular models.	
SO2.4: Explain and identify different types of reactions with mechanisms.	CI2.4: Lecture on different types of reactions including substitution, addition, elimination, oxidation, and reduction.	
SO2.5: Apply the concept of mechanisms to synthesize drug molecules.	CI2.5: Discuss the steps and mechanisms involved in the synthesis of drug molecules.	
SO2.6: Understand enantiomers, diastereomers, and their importance.	CI2.6: Explain the concept of enantiomers, diastereomers, and their significance in pharmaceuticals.	

SW-2 Suggested Sessional	SW 2.1 Assignments: Conformational isomerism and conformational analysis.
Work (SW):	SW 2.2 Case studies
	SW 2.3 Other Activities (Specify): Explain the concept of enantiomers.

Item	CI	LI	SW	SL	Total
Approx Hrs	6	4	1	2	13

98CH102.3 understand the concept of Intermolecular forces, Hydrogen bond,	Session Outcomes (SOs)	Laboratory Instructions (LI)	Classroom Instruction (CI)	Self-Learning (SL)
Transition metal complexes by applying this concept	SO3.1: Describe ionic, dipolar, London dispersion force, and van der Waals interaction.	LI3.1: Synthesize an inorganic metal complex.	CI3.1: Lecture on ionic, dipolar, London dispersion forces, and van der Waals interactions.	SL3.1: Study articles on the impact of intermolecular forces in chemical reactions.
	SO3.2: Explain hydrogen bonds and types of hydrogen bonds.	LI3.2: Determine two acid and two basic radicals.	CI3.2: Discuss the nature and types of hydrogen bonds with examples.	SL3.2: Research the role of hydrogen bonds in biological systems.
	SO3.3: Describe coordination compounds.		CI3.3: Explain coordination compounds, IUPAC naming, and Werner theory.	
	SO3.4: Describe metal-ligand bonding by VBT.		CI3.4: Lecture on metal- ligand bonding by Valence Bond Theory (VBT).	
	SO3.5: Explain metal-ligand bonding by CFT.		CI3.5: Discuss metal-ligand bonding by Crystal Field Theory (CFT) with diagrams.	
	SO3.6: Understand the energy level diagrams for transition metal ions and their magnetic properties.		CI3.6: Explain the energy level diagrams for transition metal ions and their magnetic properties.	

SW-3 Suggested Sessional Work	SW 3.1 Assignments: VBT theory	v. CFT theory, the energy level di	agrams for transition metal ions and their
88		,,,,,	

(SW):	magnetic properties
	SW 3.2 Mini Project: applications of transition metal complexes
	SW 3.3 Other Activities (Specify):

Item	CI	LI	SW	SL	Total
ApproxHrs	6	4	1	2	13

98CH102.4 Predict the concept of thermodynamics, free energy & entropy and apply Nernst	Session Outcomes (SOs)	Laboratory Instructions (LI)	Classroom Instruction (CI)	Self-Learning (SL)
equation, water chemistry as well as explain concept of acid-base, metallurgy, Emf cell and	SO4.1: Describe the structure of water and its significance.	LI4.1: Determine the hardness of a water sample.	CI4.1: Lecture on the molecular structure of water.	SL4.1: Read articles on the unique properties of water.
corrosion.	SO4.2: Identify sources and specifications for water.	LI4.2: Test for various impurities in water.	CI4.2: Discuss the various sources of water and their specifications.	SL4.2: Research the impact of water impurities on health and industry.
	SO4.3: Explain the types and causes of water hardness.		CI4.3: Lecture on temporary and permanent hardness of water.	
	SO4.4: Understand boiler feed water and related troubles.		CI4.4: Explain scale and sludge formation in boilers.	
	SO4.5: Describe water softening methods like lime-soda and zeolite		CI4.5: Discuss boiler corrosion and its prevention.	

processes.	
SO4.6: Understand municipal water treatment processes.	including carbonate,
	phosphate, colloidal, and Calgon conditioning.

	SW 4.1 Assignments: Applications of green corrosion inhibitors.
(SW):	SW 4.2 Mini Project: Analysis of water quality parameters.
	SW 4.3 Other Activities (Specify): Write an essay on acid-base concepts, ionic and solubility product of salts.

				Item	CI	LI	SW	SL	Total
				ApproxHrs.	6	4	1	2	13
Course Outcomes (CO)	Session Outcomes (SOs)	Laboratory Instructions (LI)	Classro (CI)	oom Instructio	n S	Self-I	.earni	ng (Sl	L)
98CH102.5: Collectively aim to equip students with a comprehensive understanding of the theoretical principles, practical methodologies, and diverse applications of various spectroscopic techniques.	SO5.1: Describe electromagnetic radiation and types of spectra.	LI5.1: Perform an experiment to determine the absorption spectrum of a given sample using UV-Visible spectroscopy.	nature of electror	nagnetic n and types of	c e	of difference	: Study ferent to omagn ion on	types of the second sec	

SO5.2: Explain Lambert's and Beer's law and their applications.	LI5.2: Conduct a practical application of Beer's law to determine the concentration of a solution.	CI5.2: Discuss Lambert's and Beer's laws with examples and applications.	SL5.2: Research real- world applications of Lambert's and Beer's laws in industry.
SO5.3: Understand the principle, instrumentation, and application of UV-Visible spectroscopy.		CI5.3: Lecture on the principle, instrumentation, and applications of UV- Visible spectroscopy.	
SO5.4: Describe the principle, instrumentation, and application of IR spectroscopy.		CI5.4: Explain the working principle and applications of IR spectroscopy.	
SO5.5: Explain the principle, instrumentation, and application of NMR spectroscopy.		CI5.5: Lecture on the principle, instrumentation, and applications of NMR spectroscopy.	
SO5.6: Understand the introduction, types, and applications of chromatography.		CI5.6: Discuss various types of chromatography and their applications.	

SW-5 Suggested Sessional Work	SW 5.1 Assignments: Applications Nuclear magnetic resonance and magnetic resonance imaging
(SW)	SW 5.2 Mini Project: Fluorescence and its applications in medicine
	SW 5.3 Other Activities (Specify): Write an essay on surface characterization techniques. Diffraction and

	scattering.
--	-------------

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Instruction (LI)	Sessional Work (SW)	Self- Learning (SL)	Total hour (Cl+LI+SW+Sl)
98CH102.1: Apply VSEPR theoryto predict the three-dimensional shapes of molecules.	06	04	01	02	13
98CH102.2: Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug molecule	06	04	01	02	13
98CH102.3: Explain and apply the concept of Intermolecular forces, Hydrogen bond, and transition metal complexes.	06	04	01	02	13
98CH102.4: Predict the concept of thermodynamics, free energy & entropy and apply Nernst equation, water chemistry as well as explain concept of acid-base, metallurgy, Emf cell and corrosion.	06	04	01	02	13
98CH102.5 : Collectively aim toequip students with a comprehensive understanding of the theoretical principles, practical methodologies, and diverse applications of various spectroscopic techniques.	06	04	01	02	13
Total Hours	30	20	05	10	65

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	Marks Distribution			
		R	U	А	•	
CO-1	Atomic and Molecular Structure & Periodic properties	03	01	01	05	
CO-2	Stereochemistry, Organic reactions and synthesis of a drug molecule	02	06	02	10	
CO-3	Intermolecular forces and Transitionmetal complexes	03	07	05	15	
CO-4	Use of free energy in chemical equilibrium	-	10	05	15	
CO-5	Spectroscopic techniques and applications	03	02	-	05	
	Total	11	26	13	50	

**The end of semester assessment for Organic Chemistry-I will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment

(a) Suggested books

- 1. Jain & Jain Engineering Chemistry Dhanpat Rai & Sons
- 2. Jain & Jain Engineering Chemistry Wiley India Edition
- 3. B.K. Sharma Industrial Chemistry Goel Publication

- 4. B.K. Sharma Engineering Chemistry Krishna Publication
- 5. S. S. Dara Engineering Chemistry S. Chand Publication
- 6. Shashi Chawla Engineering Chemistry Dhanpat Rai & Sons

(b) Suggested Web Sources:

- 1. https://nptel.ac.in/course.html
- 2. https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=5
- 3. https://swayam.gov.in/explorer?category=Chemistry
- Mode of Delivery: Lecture, demonstration, E-tutoring, discussion, assignments, quizzes, case study, power point.

LMS/ICT Tools: Digital Classrooms, DLMS, ZOOM, G-Suite, MS Power-Point, Online Resources.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to NCL, CSIR laboratories
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

CO-PO-PSO Mapping

Program: B.Tech. Biotechnology

Course Title: Engineering Chemistry

Semester: I

Course Code: 98CH102

Course Outcomes					Р	rogrami	me Outc	ome (PC))				Programme Specific Outcome (PSO)		
Course Outcomes	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO 1: Apply VSEPR theory to predict the three-dimensional shapes of molecules.	3	1	2	2	3	2	3	2	2	1	3	2	2	3	1
CO 2: Describe the concept of symmetry, chirality, and optical activity, and synthesize chiral drug molecule.	2	1	2	2	1	2	3	2	1	1	2	2	2	3	1
CO 3: Explain and apply the concept of intermolecular forces, hydrogen bond, and transition metal complexes.	2	2	1	1	1	2	2	2	1	2	1	2	1	3	1
CO 4: Predict the concept of thermodynamics, free energy & entropy, and apply Nernst equation, water chemistry as well as explain the concept of acid-base, metallurgy, Emf cell, and corrosion.	2	2	2	2	3	2	3	2	2	1	2	3	3	3	2
CO 5: Collectively aim to equip students with a comprehensive understanding of the theoretical principles, practical methodologies,	2	-	-	1	1	3	3	3	1	1	2	2	3	3	2

and diverse applications of various								
spectroscopic techniques.								

**Legend:1–Low, 2–Medium, 3–High

Course Curriculum Map

POs & PSOs No.	COs. No. & Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2,3	CO1: Apply VSEPR theory to predict the three-dimensional shapes of molecules.	SO1.1, SO1.2, SO1.3, SO1.4, SO1.5, SO1.6	LI.1.1, LI.1.2,	CI 1.1, CI 1.2, CI 1.3, CI 1.4, CI 1.5, CI 1.6	SL 1.1, SL2.2
PO1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2,3	CO2: Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug molecule.	SO2.1, SO2.2, SO2.3, SO2.4, SO2.5, SO2.6	LI.2.1, LI.2.2,	CI 2.1, CI 2.2, CI 2.3, CI 2.4, CI 2.5, CI 2.6	SL2.1, SL2.2
PO1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2,3	CO3: Explain and apply the concept of intermolecular forces, hydrogen bond, and transition metal complexes.	SO3.1, SO3.2, SO3.3, SO3.4, SO3.5, SO3.6	LI.3.1, LI.3.2	CI 3.1, CI 3.2, CI 3.3, CI 3.4, CI 3.5, CI 3.6	SL3.1, SL3.2

PO1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2,3	CO4: Predict the concept of	SO4.1, SO4.2, SO4.3, SO4.4,	LI.4.1, LI.4.2,	CI 4.1, CI 4.2, CI 4.3, CI 4.4, CI 4.5, CI 4.6	SL4.1, SL4.2
	thermodynamics, free energy & entropy and	SO4.5, SO4.6			
	apply Nernst equation,				
	water chemistry as well as explain the				
	concept of acid-base,				
	metallurgy, Emf cell and corrosion.				
PO1,2,3,4,5,6,7,8,9,10,11,12	CO 5: Collectively	SO5.1, SO5.2,	LI5.1, LI5.2,	CI5.1, CI5.2, CI5.3,	SL5.1, SL5.2
PSO 1,2,3	aim to equip students with a comprehensive	SO5.3, SO5.4, SO5.5, SO5.6		CI5.4, CI5.5, CI5.6	
	understanding of the	505.5, 505.0			
	theoretical principles,				
	practical				
	methodologies, and diverse applications of				
	various spectroscopic				
	techniques.				

Program Name	B.Tech Biotechnology							
Semester	Ι							
Course Code	HSMC01							
Course title	Communication Skills Curriculum Developer: Dr Ashutosh Pandey							
Pre-requisite	Students should have basic knowledge of English Language							
Rationale		SWR skills of the students should be well developed and enhanced. Besides, they as it plays a vital role in shaping individual's personality and career. It also boosts the audience fearlessly						
Course Outcomes	CO1- HSMC01.1 Students will learn cont	ident speaking skills						
(COs)	CO2 - HSMC01.2 Students learn leadersh	CO2 - HSMC01.2 Students learn leadership skill and team spirit.						
	CO3- HSMC01.3 Students will be able to communicate effectively in Hindi and English languages without hindrances.							
	CO4- HSMC01.4 Students learn basis gra	mmar skills						
	CO5- HSMC01.5 The study of Dramas ar	d Poems written by Indian Writers.						

Scheme of Studies:

Board of				S	Total Credits(C)			
Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(L:T:P=2:0:0)
HS	HSMC01	Communication Skills	2	0	1	1	4	2

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others).

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies).

SW: Sessional Work (includes assignment, seminar, mini project etc.).

SL: Self Learning.

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board	Course	Course Title				Schem	e of Assessme	nt (Marks)		
of Study	Code			End Semester Assessment (ESA)	Total Marks (PRA+ESA)					
			Class/Home Assignment; 5 number, 3 marks each (CA)	Class Test 2; (2 best out of 3); 10 marks each (CT)	Seminar one; (SA)	Classroom Activity; (CA)	Class Attendance; (AT)	Total Marks (CA+CT+SA+AT)		
HS	HSMC01	Communication Skills	15	20	5	5	5	50	50	100

Course-Curriculum: This course syllabus illustrates the expected learning achievements, both at the						
course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW),	4	Cl	LI	SW	SL	Total
and Self Learning (SL). As the course progresses, students should showcase their mastery of Session	Approx.	06	0	01	02	08
Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the	Hrs					
course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1- HSMC01: Students will learn confident speaking skills	SO1.1: Understand linguistic techniques		CI1.1: Lecture on syntax and morphology	SL1.1: Read articles on linguistic techniques and their applications
	SO1.2: Explore modern usages of language		CI1.2: Discuss modern language changes and their impacts	SL1.2: Research contemporary language usage in digital communication
	SO1.3: Improve reading comprehension		CI1.3: Lecture on strategies for effective reading comprehension	
	SO1.4: Develop skills in English phonetic symbols		CI1.4: Demonstration and practice of the International Phonetic Alphabet (IPA)	
	SO1.5: Enhance oral presentation skills		CI1.5: Workshop on organizing and delivering effective presentations	
	SO1.6: Understand audition communication		CI1.6: Lecture on the role of audition in effective communication	

Suggested Sessional Work (SW): <i>anyone</i>	SW1.1 Assignments SW 1.2 Mini Project
	SW 1.3 Other Activities (Specify)

Item	Cl	LI	SW	SL	Total
Approx.	06	00	01	01	08
Hrs					

Course Outcome (CO)	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO2- HSMC01: Students learn leadership skill and team spirit	SO2.1: Write definitions of engineering terms		CI2.1: Lecture on defining engineering terms	SL2.1: Research and write definitions of common engineering terms
	SO2.2: Describe objects in engineering		CI2.2: Discuss the descriptions of various engineering objects	
	SO2.3: Explain engineering processes		CI2.3: Lecture on key engineering processes	
	SO2.4: Understand principles of engineering		CI2.4: Explain fundamental engineering principles	
	SO2.5: Listen to and comprehend topics of general interest		CI2.5: Engage in listening activities on general interest topics	
	SO2.6: Reproduce information from business and daily life		CI2.6: Discuss scenarios from business, travel, health, and more	

Suggested Sessional Work	SW2.1 Assignments
(SW): anyone	SW2.2 Mini Project
	SW2.3 Other Activities (Specify)

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	0	01	02	09

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO3 HSMC01.3 Students will be able to communicate effectively in Hindi and English languages	SO3.1: Understand the format of formal letters		CI3.1: Lecture on the structure and components of formal letters	SL3.1: Read sample formal letters and identify key components
without hindrances	SO3.2: Write applications		CI3.2: Workshop on writing applications	SL3.2: Draft an application for a hypothetical job or position
	SO3.3: Draft enquiry letters		CI3.3: Discuss the purpose and structure of enquiry letters	
	SO3.4: Write letters calling for quotations		CI3.4: Lecture on how to write letters calling for quotations	
	SO3.5: Prepare tender documents		CI3.5: Workshop on the components of tender documents	

SO3.6: Draft order and	CI3.6: Discuss the structure
complaint letters	and tone of order and
	complaint letters

Suggested	SW3.1 Assignments
Sessional Work	SW3.2 Mini Project
(SW): anyone	SW3.3 Other Activities (Specify)

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	0	01	02	09

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO4-HSMC01.4 Students learn basis grammar skills	SO4.1: Master precise writing		CI4.1: Lecture on techniques for precise writing	SL4.1: Read and summarize complex texts
	SO4.2: Develop skills in noting and drafting		CI4.2: Workshop on noting and drafting	SL4.2: Draft notes on given topics
	SO4.3: Describe simple engineering objects and processes		CI4.3: Lecture on technical descriptions	SL4.3: Write technical descriptions of simple engineering objects
	SO4.4: Write comprehensive reports		CI4.4: Discuss the structure and components of report writing	

	SO4.5: I	Practice note writing		CI4.5: Workshop on effective note writing	
	SO4.6: 0 write co	Create slogans and mments		CI4.6: Lecture on slogan writing and effective commenting	
Suggested Sessional Work (SW): <i>anyone</i>		SW4.1 Assignments SW4.2 Mini Project SW4.3 Other Activitie	es (Specify)		

				Item Approx.	C1 06	LI 0	SW 01	SL 03	Total 09
Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instr (CI)	Hrs ruction	Self	SI 5 1: Review and			
CO5- HSMC01.5 The study of Dramas and Poems written by Indian Writers.	SO5.1: Write technical observation reports		CI5.1: Lecture of and components reports						
	SO5.2: Develop skills in writing survey reports		CI5.2: Discuss the methodology and survey reports		SL5.2: Conduc survey and drat				
	SO5.3: Write trouble reports		CI5.3: Lecture of and reporting tec		trou	ible r	ractice eports ical sco	on	-

SO5.4: Draft laboratory reports	CI5.4: Discuss the format and details required in laboratory reports	
SO5.5: Create project reports on engineering subjects	CI5.5: Workshop on compiling comprehensive project reports	
SO5.6: Enhance speaking skills for presentations	CI5.6: Lecture on effective presentation techniques	

Suggested Sessional Work (SW):	SW5.1 Assignments
anyone	SW5.2 Mini Project
	SW5.3 Other Activities (Specify)

Course Duration (in Hours) To Attain Course Outcomes

Course Title: Communication Skills

Course Code: 56MB205

Course Outcomes (COs)	Class lecture (Cl)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (LI+CI+SL+SW)
CO1- HSMC01.1 Students will learn confident speaking skills	6	0	1	1	8
CO2- HSMC01.2 Students learn leadership skill and team spirit	6	0	2	1	9
CO3- HSMC01.3 Students will be able to communicate effectively in Hindi and English languages without hindrances	6	0	2	1	9
CO4- HSMC01.4 Students learn basis grammar skills	6	0	2	1	9
CO5 HSMC01.5 The study of Dramas and Poems written by Indian Writers	6	0	3	1	10
Total Hours	30	0	10	05	45

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome

Course Title: Communication Skills

Course Code: HSMC01

Course Outcomes	Ι	Marks D	listributi	on	Total
	Α	An	Ε	С	Marks
CO1- HSMC01.1 Students will learn confident speaking skills	2	1	1	1	5
CO2- HSMC01.2 Students learn leadership skill and team spirit	2	4	2	2	10
CO3- HSMC01.3 Students will be able to communicate effectively in Hindi and English languages without hindrances	2	3	3	2	10
CO4- HSMC01.4 Students learn basis grammar skills	3	5	5	2	15
CO5 HSMC01.5 The study of Dramas and Poems written by Indian Writers	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend: A, apply; An, analyse; E, evaluate; C, create

Suggested learning Resources:

(a) Books:

S. No.	Title/Author/Publisher details
1	Communication Skills by Dr. Meenu Pandey Nirali Praksahan.
2	A Practical Guide to English Grammar by K.P. Thakur
3	English Conversation Practise by Grant Taylor Tata McGraw Hill Education Private Limited.
4	Advanced Language Practice by Michael Vince Macmillan Education, Oxford 2003
5	Six Weeks to Words of Power by Wilfred Funk W.R. Goyal Publishers and Distributors

(b) Online Resources:

(c) Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: BTech Biotechnology

Course Title: Communication Skills

Course **Program Outcomes Program Specific** Outcome Outcome (COs) PO1 PO2 PO3 **PO4** PO5 PO6 **PO7 PO8 PO9 PO10** PO11 **PO12** PSO1 PSO2 PSO3 CO1-HSMC01 Students will learn 1 1 2 1 2 3 3 3 3 3 3 1 1 2 confident speaking skills CO2-HSMC01 Students learn 2 2 2 2 2 3 2 3 3 2 2 1 1 1 leadership skill and team spirit CO3-HSMC01.3 Students will be able to 1 2 2 3 2 3 2 3 2 3 1 1 2 1 communicate effectively in Hindi and English languages

Course Code: HSMC01

Semester: I

1

without hindrances															
CO4- HSMC01.4 Students learn basic grammar skills	-	1	1	1	2	2	-	1	2	3	2	3	-	1	1
CO5- HSMC01.5 The study of Dramas and Poems written by Indian Writers	-	1	1	1	-	-	-	3	2	3	3	3	-	1	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum

POs & PSOs No.	COs	SOs No.	Laboratory	Classroom	Self-Learning
			Instruction (LI)	Instruction (CI)	(SL)
РО	CO1- HSMC01	SO1.1 SO1.2		CI1.1, CI 1.2, CI	1SL-1,2
1,2,3,4,5,6,7,8,9,10,11,12	Students will learn confident	SO1.3 SO1.4		1.3,CI1.4, CI 1.5,	
	speaking skills	SO1.5,		CI1.6	
PSO 1,2,3		SO1.6			
PO	CO2- HSMC01	SO2.1 SO2.2		CI 2.1, CI 2.2, CI	2SL-1,2
1,2,3,4,5,6,7,8,9,10,11,12	Students learn leadership skill and	SO2.3 SO2.4		2.3, CI2.4, CI2.5,	
	team spirit	SO2.5,		CI2.6	
PSO 1,2,3		SO2.6			
РО	CO3- HSMC01.3	SO3.1 SO3.2		CI 3.1, CI 3.2, CI	3SL-1
1,2,3,4,5,6,7,8,9,10,11,12	Students will be able to communicate	SO3.3 SO3.4		3.3, CI 3.4,	
	effectively in Hindi and English	SO3.5,		CI3.5, CI3.6	
PSO 1,2,3	languages without hindrances	SO3.6			
PO	CO4-HSMC01.4 Students learn	SO4.1 SO4.2		CI 4.1, CI 4.2, CI	SL4-1,2
1,2,3,4,5,6,7,8,9,10,11,12	basis grammar skills	SO4.3 SO4.4		4.3, CI 4.4,	
		SO4.5,		CI4.5, CI4.6	
PSO 1,2,3		SO4.6			
РО	CO5- HSMC01.5 The study of	SO5.1 SO5.2		CI 5.1, CI 5.2, CI	5SL-1,2
1,2,3,4,5,6,7,8,9,10,11,12	Dramas and Poems written by Indian	SO5.3 SO5.4		5.3, CI 5.4, CI	
	Writers	SO5.5,		5.5, CI5.6	
PSO 1,2,3		SO5.6			

Program Name	Bachelor of Technology (B.Tech.) Biotechnology						
Semester	Ι						
Course Code	VAC-101						
Course title	Sustainable Development Goals (SDGs)	Curriculum Developer: Dr Ashutosh Pandey					
Pre-requisite	Student should have basic knowledge of Environment, Natu	aral resources, Climate change and sustainability					
Rationale	The goal is to promote sustainable development, balancing economic, environmental, and social needs for prosperity for present and future generations. Students will be trained in efficient natural resource management and environmental pollution prevention, using environmental management tools to improve environmental quality, assess local vulnerabilities, and achieve sustainable developmental needs.						
Course Outcomes (COs)	theories, and concepts. VAC101.2: Explore strategies for assessing sustainable dev politics behind it. VAC101.3: Understand resource overuse, population growth	Development Goals and grasp sustainable development's history, elopment and learn about the science, technology, economics, and , economic growth, sustainability, and renewable resource transition					
	 challenges. VAC101.4: Understand attitudes towards people, society, and sustainable development causes and solutions and evaluate solution arguments' quality, credibility, and limitations. VAC101.5: Do design thinking methods accelerate SDG implementation? Develop values-based sustainable development education knowledge and tool 						

Scheme of Studies:

Board of	Course	Course Title		Scł	Total Credits			
Study	Code		Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C) (L: T:P)
Program Core VAC	VAC101	Sustainable Development Goal	2	0	1	1	4	0

Legend: CI: Class room Instruction (Includes different instructional strategies i.e.Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project).

SL: Self Learning,

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

Board of	Course Code	Course Title	Scheme of Assessment (Marks)							
Study	Coue			Progress		End Semester Assessment	Total Marks			
			Class/Home	Class Test	Seminar	Class	Total Marks	Assessment	IVIAINS	
			Assignment	2	one	Attendance	(CA+CT+SA+AT)	(ESA)	(PRA+	
			5 number	(2 best out	(SA)	(AT)			ESA)	
			3 marks each	of 3)						
			(CA)	10 marks each (CT)						
VAC	VAC101	Sustainable Development Goal	15	20	10	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session	Item	CI	LI	SW	SL	Total
levels, which students are anticipated to accomplish through various modes of instruction including						
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Approx Hrs	06	00	01	01	08
cummating in the overall achievement of Course Outcomes (COS) upon the course's conclusion.						

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
VAC101.1: Critically evaluate the 17 new UN Sustainable Development Goals and grasp sustainable development's history,	SO1.1: Understand the Need for and Importance of Sustainable Development		CI1.1: Historical & Policy Perspectives of Sustainable Development	SL1.1: Research and Reflect on the Challenges & Strategies of Attaining SDGs in Your Own Country

theories, and concepts.	SO1.2: Understand the Historical & Policy Perspectives of Sustainable Development	CI1.2: Sustainable Development: World and India Perspective
	SO1.3: Understand Sustainable Development from a World and India Perspective	CI1.3: Introduction to 17 SDGs
	SO1.4: Gain Knowledge of the 17 SDGs	CI1.4: Specific Learning Objectives for Different SDGs
	SO1.5: Explain Specific Learning Objectives for Different SDGs	CI1.5: Challenges & Strategies of Attaining SDGs in Developed and Developing Nations
	SO1.6: Explain the Challenges & Strategies of Attaining SDGs in Developed and Developing Nations	CI1.6: Different SDG Goals Details and Their Importance

SW-1 Suggested Sessional	SW1.1 Assignments: Overview of SDGs, Sustainable Consumption and Production, Details of 17 SDGs
Work (SW)	SW1.2 Other Activities (Specify): Note down the different challenges in our state and district to achieve SDG

Item	CI	LI	SW	SL	Total
Approx Hrs	06	00	01	01	08

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
VAC101.2: Explore strategies for assessing sustainable development and learn about the science, technology,	SO2.1: Explain Sustainable Development		CI2.1: Focus of NEP-2020 on SDG	SL2.1: Research and Reflect on the Tools, Systems, and Innovation for Sustainability in Education
economics, and politics behind it.	SO2.2: Understand the NEP- 2020 and SDG		CI2.2: Education for Sustainable Development (ESD)	
	SO2.3: Discuss Higher Education's Role in Achieving SDGs		CI2.3: Berlin Declaration 2021 on ESD	
	SO2.4: Explain How Education Contributes to Sustainable Development		CI2.4: Integration of ESD in Curriculum and Textbooks	
	SO2.5: Explain the Measuring Techniques for Sustainability		CI2.5: Tools, Systems, and Innovation for Sustainability	
	SO2.6: Special Focus on SDG 4 - Quality Education and Lifelong Learning		CI2.6: Measuring Sustainability: How Do We Measure Sustainability	

SW-1 Suggested Sessional Work (SW)	SW2.1 Assignments: Education role to achieve SDGs, the role of education in Sustainable Development, Measuring techniques of sustainability, Sustainability Indicators
	SW2.2 Other Activities (Specify): Seminar and group discussion on ESD and measuring sustainability millennium development goals (MDGs)

Item	CI	LI	SW	SL	Total
Approx Hrs	06	00	01	01	08

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
VAC101.3: Understand resource overuse, population growth, economic growth, sustainability, and renewable resource transition challenges.	 SO3.1: Understand current economic issues in the context of the global sustainable development debate SO3.2: Outline of health, hygiene, and water sanitation issues SO3.3: Discuss the renewable energy resources and their importance in the present scenario 3.4: Explain the importance of sustainable production and 		CI3.1: Circular Economy (Basic Model of Reuse, Recycle, and Reduce) CI3.2: Rural & Urban Problems & Challenges CI3.3: Sustainable Production and Consumption CI3.4: Renewable Energy	SL3.1: Research and Reflect on the Non-Renewable Energy Resources in Your Region
	SO3.6: Understanding the SDGs		CI3.5: Health & Hygiene, Water, Sanitation & Water Management CI3.6: Waste Management	

SW-1 Suggested Sessional Work (SW):	SW 3.1 Assignments: Ecofriendly energy resources importance, types of waste and its management, Urban Problems & Challenges
	SW 3.2 Other Activities (Specify): Visit of wastewater treatment plant, visit of water treatment process.

Item	CI	LI	SW	SL	Total
Approx Hrs	06	00	01	01	08

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
VAC101.4 Understand attitudes towards people, society, and sustainable development causes and solutions and evaluate solution arguments' quality, credibility, and	SO4.1: Understand environmental sustainability is crucial in reducing the impacts of climate change		CI4.1: The Greenhouse Effect: Causes and Consequences	SL4.1: Research and Reflect on Carbon Credit and Carbon Trading, and the Kyoto Protocol
limitations.	SO4.2: Discuss causes of emission of GHGs and its consequences		CI4.2: Climate Change: A Threat to Sustainable Development	
	SO4.3: Explain how climate change and sustainable development both play a role in shaping the human and environmental factors of the world		CI4.3: Adaptation to Current and Future Climate Regimes	
	SO4.4: Explain the importance of sustainable production and consumption		CI4.4: The Consequences: Crop Failure	
	SO4.5: Climate change is disrupting national economies and affecting lives and livelihoods, especially for the most vulnerable, and its mitigation		CI4.5: Solutions: Technology and Lifestyle Changes	
	SO4.6: Understanding the SDGs		CI4.6: Mitigating Climate Change	

SW-4 Suggested Sessional Work (SW):	SW 4.1 Assignments: Urban Sustainability and Climate Change, Sustainable Development Policies, Agreement on Climate Change, Trade and Sustainability, Resilient cities – What makes a city sustainable, green, and resilient
	SW 4.2 Other Activities (Specify):

Item	CI	LI	SW	SL	Total
Approx Hrs	06	00	01	01	08

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
VAC101.5 Do design thinking methods accelerate SDG implementation? Develop values- based sustainable development	SO5.1: Understand the relevance and the concept of sustainability and the global initiatives in this direction		CI5.1: Corporate Social Responsibility	SL5.1: Research and Reflect on the United Nations Goals for Peace and Justice
education knowledge and tool	SO5.2: Understand the role of Corporations and Ecological Sustainability SO5.3: Explain the role of CSR in Sustainability		CI5.2: Sustainable Products and Services CI5.3: Business and Environment	
	SO5.4: Understand the SD challenge for companies, their responsibility and their potentials for action SO5.5: Discuss the role of world government for world justice and peace		CI5.4: Corporations and Ecological Sustainability CI5.5: Life Cycle Assessment: LCA Overview and Application	

SO5.6: Understand the SDGs	CI5.6: World Peace and Justice: United Nations Goals for Peace and Justice, World Government for Peace
----------------------------	--

SW-5	Suggested Sessional Work	SW	5.1	Assignments:	Consumption	patterns	and	lifestyles,	Company	perspectives	for		
(SW):		envi	environmental sustainability and an introduction to economic growth.										
		Othe	er Ac	tivities (Specify	<i>ı</i>):								

Course Outcomes (CO)	Class Lecture	Lab Instructions	Sessional Work	Self- Learning	Total hour (Cl+LI+SW+Sl)
	(Cl)	(LI)	(SW)	(Sl)	
VAC101.1: Critically evaluate the 17 new UN Sustainable Development Goals and grasp sustainable development's history.	6	0	1	1	8
VAC101.2: Explore strategies for assessing sustainable development and learn about the science, technology, economics, and politics behind it.	6	0	1	1	8
VAC101.3: Understand resource overuse, population growth, economic growth, sustainability, and renewable resource transition challenges.	6	0	1	1	8
VAC101.4 Understand attitudes towards people, society, and sustainable development causes and solutions and evaluate solution arguments' quality, credibility, and limitations.	6	0	1	1	8
VAC101.5 Do design thinking methods accelerate SDG implementation? Develop values-based sustainable development education knowledge and tool	6	0	1	1	8
Total Hours	30	0	5	5	40

Brief of Hours suggested for the Course Outcome

Suggestion for End Semester Assessment

CO	Unit Titles		Marks Distribution					
		R	U	Α				
CO-1	Need for and Importance of Sustainable Development	03	01	01	05			
CO-2	Education for Sustainable Development (ESD): Tools, Systems, and Innovation for Sustainability	02	06	02	10			
CO-3	Discuss the sustainable production and consumption	03	07	05	15			
CO-4	How Climate Change may be Threat to Sustainable Development	-	10	05	15			
CO-5	Role of Corporations and Ecological Sustainability	03	02	-	05			
	Total	11	26	13	50			

Legend: R: Remember, U: Understand, A: Apply A: Analyse E:Evaluate C:Create

***The end of semester assessment for Sustainable Development Goals will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Faculty can also design different tasks as per requirement, for end semester assessment.

Suggested Learning Resources:

(a) Books:

- 1. Surender Kumar and Shunsuke Managi, 2009: *The Economics of Sustainable Development: The Case of India (Natural Resource Management and Policy)*, Springer Switzerland.
- 2. Onyeka Osuji, New Edition June 2022: Corporate Social Responsibility in Developing and Emerging Markets, Cambridge.

- 3. Ram Kumar Mishra, Ch Lakshmi Kumari, Sandeep Chachra, P.S. Janaki Krishna, March 2022: *Smart Cities for Sustainable Development*, Springer Switzerland.
- 4. Tracey Strange and Anne Bayley: Sustainable Development: Linking Economy, Society, Environment.
- 5. Sushma Goyal, 2016: Management of Resources For Sustainable Development, The Orient Blackswan.
- 6. S. Ramaswamy and Sathis G. Kumar, 2009: *Energy, Environment and Sustainable Development: Issues and Policies*, Regal Publications.
- 7. 9b)Daniel Yergin, September 2015: The New Map: Energy, Climate, and the Clash of Nations, Penguin Press.
- 8. Laurie, R., Nonoyama-Tarumi, Y., Mckeown, R., & Hopkins, C., 2016: Contributions of Education for Sustainable Development (ESD) to Quality Education: A Synthesis of Research. Journal of Education for Sustainable Development, 10(2), 226–242.
- 9. OECD, 2019: Sustainable Results in Development: Using the SDGs for Shared Results and Impact, OECD Publishing, Paris.
- 10. Ziai, Aram, 2016: Development Discourse and Global History from Colonialism to the Sustainable Development Goals, Routledge, London & New York.
- 11. Hazra, Somnath., Bhukta, Anindya, 2020: Sustainable Development Goals: An Indian Perspective, Springer Switzerland.
- 12. HM Saxena, January 2021: Environmental Ecology, Biodiversity and Climate Change, Rawat Publication.

(b) Online resources

- 1. URL: United Nations Sustainable Development Goals
- 2. URL: [UN SDG Goals AIU Publications] (https://www.aiu.ac.in/documents/AIU_Publications/UN-SDG goals)
- 3. URL: UNESCO Education for Sustainable Development
- 4. URL: NPTEL Online Course on Sustainable Development
- 5. URL: [Berlin Declaration on Education for Sustainable Development] (https://www.iau-hesd.net/news/5180-berlin-declaration-education-sustainable development-adopted-unesco-esd-conference-17-19)

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion

- 5. Role Play
- 6. Visit to industry, water treatment plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Curriculum Development Team

Professor G C Mishra, Director Cement Technology, AKS University Professor Kamlesh Choure, Head Dept of Biotechnology AKS University Professor Mahendra Kumar Tiwari, Head Deptt of Environmental Science, AKS University

COs, POs and PSOs Mapping

Course Title: Sustainable Development Goals (SDGs)

Course	Code:	VAC101
--------	-------	--------

Course Outcome (CO)	Progr	amme C	bjective	es (POs)									Programme Specific Objective (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
VAC101.1 Need for and Importance of Sustainable Development	1	2	3	2	3	2	1	2	3	1	2	3	1	2	3
VAC101.2 Education for Sustainable Development (ESD): Tools, Systems, and Innovation for Sustainability	2	1	2	3	2	1	2	3	1	2	3	1	2	3	1
VAC101.3 Discuss the sustainable production and consumption	3	2	1	2	3	1	2	3	2	1	2	3	3	2	1
VAC101.4 How Climate	1	3	2	1	3	2	1	3	2	3	1	2	2	1	3

Change may be Threat to Sustainable Development															
VAC101.5 Role of Corporations and Ecological Sustainability	2	1	3	2	1	3	2	1	3	2	3	1	3	2	1

Legend: 1–Low,2–Medium, 3–High

Course Curriculum Map

POs &PSOs No.	Cos No. & Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO1: Examine critically the 17 newly minted UN Sustainable Development Goals and understand the historical evolution, key theories, and concepts of sustainable development.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO1.6	-	Unit-1.0 Introduction to Sustainable Development: 1.1,1.2,1.3,1.4,1.5,1.6	SL1
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO2: Identify and apply methods for assessing the achievement of sustainable development and discover the science, technology, economics, and politics underlying the concepts of sustainability.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5 SO2.6	-	Unit-2 Special focus on SDG 4-Quality Education and Lifelong Learning: 2.1,2.2,2.3,2.4,2.5,2.6	SL1
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO3: Understand the implications of overuse of resources, population growth and economic growth and sustainability and explore the challenges the society faces in making transition to renewable resource use.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6	-	Unit-3: Understanding the SDGs: 3.1, 3.2,3.3,3.4,3.5,3.6	SL1

PO1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO4: Develop skills to understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and apply critical thinking skills to evaluate the quality, credibility and limitations of an argument for solution.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6	- Unit-4 : Climate Change, Energy and Sustainable Development 4.1, 4.2,4.3,4.4,4.5,4.6	SL1
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO5: Describe the steps of the design thinking methodology and how design thinking can accelerate effective SDG implementation. Deepen knowledge and pedagogical tools to incorporate values-based education for sustainable development in educational programmes and processes	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6	- Unit 5: Sustainable Business Practices, LCA and World peace and justice 5.1,5.2,5.3,5.4,5.5,5.6	SL1

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology						
Semester	Ι						
Course Code	98ME151	98ME151					
Course title	Workshop Practice Lab Curriculum Developer: Er. Ketan Agrawal						
Pre-requisite	Basic knowledge of mathematical skills with some scientific temperament.						
Rationale	It is a place of work that prepares a variety of jobs and products using different kinds of instruments, hand tools, and machines. To prepare products, the workshop divides into various branches based on the nature of the work. 1. Fitting shop; 2. Welding shop 3. Shop for sheet metal 4. M/C Shop; 5. Foundry & Forging Shop, etc.						
Course Outcomes	CO1-98ME151.1: Understand varie	ous production processes, select appropriate methods for different materials, optimize					
(COs)	manufacturing efficiency, and ensure product quality.						
	CO2-98ME151.2: Acquired proficiency in using hand tools, understanding different types of fits and tolerances,						
	interpreting engineering drawings, and precision measurement techniques.						
	CO3-98ME151.3: Develop fundam	ental wood measuring, cutting, and joining skills. Gain expertise in handling various					
	carpentry tools and machinery.						
	CO4-98ME151.4: Appreciate and access the use of casting processes in manufacturing and understand the workings of						
	various casting processes.						
	CO5-98ME151.5: Analyze and acc	ess the importance of welding processes in manufacturing and apply knowledge to select					
	an appropriate welding process base	ed on the type of industrial application.					

Scheme of Studies:

				S	Total Credits(C)			
oard of Study	Course Code	de Course Title		LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(L: T:P=0:0:1)
ESC	98ME151	Workshop Practice Lab	0	2	1	1	4	0+0+1=1

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies).

SW: Sessional Work (includes assignment, seminar, mini project etc.).

SL: Self Learning.

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of	Course	Course Title					Scheme of	Assessment (Marks)		
Study	Code				P	rogressi	ve Assessme	nt (PRA)	End Semester	Total
			Class/Home	Class	Seminar	Class	Class	Total Marks	Assessment	Marks
			Assignment	Test 2	one	-	Attendance	(CA+CT+CAT+SA+AT)	(ESA)	(PRA+
			5 number	(2 best	(SA)	(CAT)	(AT)	,		ESA)
			3 marks each	out						
			(CA)	of 3)						
				10 marks						
				each						
				(CT)						
ESC	98ME151	Workshop Practice Lab	35	-	5	5	5	50	50	100

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and						
session levels, which students are anticipated to accomplish through various modes of	Item	Cl	LI	SW	SL	Total
instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase	Approx. Hrs	0	06	01	01	08
their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-98ME151.1: Understand various production processes, selecting appropriate methods for different materials, optimizing manufacturing efficiency, and ensuring product quality.		 L11.1: Safety aspects pertaining to common manufacturing practices. L11.2: Introduction of tools and machines used in each process. L11.3: Basic instructions and procedures for using lathe and drilling machine. 		SL1.1: Introduction to additive manufacturing.

Suggested Sessional	SW1.1 Assignments	Enumerate general safety rules applicable in workshop.
Work (SW):		

Item	Cl	LI	SW	SL	Total
Approx. Hrs	0	06	01	01	08

Course outcome (CO)	Session Outcomes	Laboratory Instruction (LI)	Classroom Instruction	Self-Learning (SL)
	(SOs)		(CI)	(51)
CO2-98ME151.2: Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawings, and		LI2.1: Instructions for using proper fitting tools in the correct way.		SL2.1: Types of drilling tools and threading tools.
precision measurement techniques.		LI2.2: Drawing of a simple workpiece for carrying out different fitting operations.		threading tools.
		LI2.3: Demonstration of different inspection, checking, and measuring methods used for proper fitting work.		

Suggested Sessional Work (SW): SW2.1 Assignments Classification and uses of different fitting hand tools.

				Item	Cl	LI	SW	SL	Total
				Approx. Hrs	0	06	01	01	08
Course outcome (CO)	Session Outcomes	Laboratory	Classro	om Instruction	ı	Self	-Lear	ning	(SL)
	(SOs)	Instruction (LI)		(CI)					
CO3-98ME151.3.		LI3.1: Carpentry tools			S	L3.1	: Expl	ain de	efects
Develop fundamental		introduction.			iı	n timl	ber an	d	
skills such as measuring,					c	onvei	rsion o	of wo	od.
cutting and joining wood.									
Gain expertise in handling									
various carpentry tools and									
machinery.									
		LI3.2: Drawing of a							
		simple workpiece for							

preparation of common
carpentry joinery work.
LI3.3: Demonstration
of different inspection,
checking, and
measuring methods
used for proper
carpentry work.

Suggested Sessional Work (SW):	SW3.1 Assignments: Explain the different types of wood working machines used in modern
anyone	woodwork
	SW3.2 Mini Project: Production of any one type of joints listed below-
	Dovetail Joint/Corner Joint/Mortise and Tenon Joint etc.

				Cl	LI	SW	SL	Total		
				Approx. Hrs	0	06	01	01	08	
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Classro	om Instruction	Self-Learning (SL)					
		(LI)	(CI)							
CO4-98ME151.4:		LI4.1: Safety instructions			S	L4.1:	Explai	n type	es of	
Appreciate and access the		for foundry shop, pattern			m	moulding sand.				
use of casting processes in		making, and mould								
manufacturing and		preparation.								
understand the workings of		LI4.2: Drawing of a								
various casting processes.		simple workpiece for								
		preparation of a pattern.								
		LI4.3: Instructions for								
		sand preparation, mould								
		preparation, melting, and								
		casting properly in a safe								
		manner.								

Suggested Sessional Work (SW):	SW4.1 Assignments	Explain various defects generated during casting process.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	0	06	01	01	08

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5-98ME151.5: Analyze and access the importance		LI5.1: Welding tools		SL5.1: Study of
of welding processes in manufacturing and apply		introduction for Electric Arc		TIG and MIG
knowledge to select an appropriate welding process		Welding process.		welding processes.
based on the type of industrial application.		LI5.2: Drawing of a simple		
		welded joint viz. square butt		
		joint, T joint, Lap joint, etc.		
		LI5.3: Actual production of		
		a welded joint as described		
		above.		

Suggested Sessional Work (SW):	SW5.1 Mini Project	Preparing lap joint using arc welding process.
--------------------------------	--------------------	--

Course Duration (in Hours) to Attain Course Outcomes

Course Title: Workshop Practice Lab

Course Code:98ME151

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self- Learning (SL)	Sessional work (SW)	Total Hours (LI+CI+SL+SW)
CO1-98ME151.1: Understand various production processes, selecting appropriate methods for different materials, optimizing manufacturing efficiency, and ensuring product quality.	-	6	1	1	8
CO2-98ME151.2: Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawings, and precision measurement techniques.	-	6	1	1	8
CO3-98ME151.3. Develop fundamental skills such as measuring, cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.	-	6	1	1	8
CO4-98ME151.4: Appreciate and access the use of casting processes in manufacturing and understand the workings of various casting processes.	-	6	1	1	8
CO5-98ME151.5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select an appropriate welding process based on the type of industrial application.	-	6	1	1	8
Total Hours	-	30	05	05	40

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Workshop Practice Lab

Course Code:98ME151

Course Outcomes]	Marks D	Distributi	Total	
	Α	An	E	С	Marks
CO1-98ME151.1: Understand various production processes, selecting appropriate methods for different materials, optimizing manufacturing efficiency, and ensuring product quality.	2	1	1	1	5
CO2-98ME151.2: Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawings, and precision measurement techniques.	2	4	4	2	12
CO3-98ME151.3. Develop fundamental skills such as measuring, cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.	3	5	3	3	14
CO4-98ME151.4: Appreciate and access the use of casting processes in manufacturing and understand the workings of various casting processes.	2	3	4	2	11
CO5-98ME151.5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select an appropriate welding process based on the type of industrial application.	2	3	1	2	8
Total Marks	11	16	13	10	50

Legend:A, Apply;An, Analyze;E, Evaluate;C, Create

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Course Title: Workshop Practice Lab

Course Code: 98ME151

Course Outcome (CO)	Program Outcomes (POs)											Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1: Understand various production processes, selecting appropriate methods for different materials, optimizing manufacturing efficiency, and ensuring product quality.	3	3	2	2	3	2	2	2	3	2	2	2	3	2	2
CO2: Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawings, and precision	2	2	3	2	2	3	2	1	2	1	1	2	2	3	2

Semester: I

measurement techniques.															
CO3: Develop fundamental skills such as measuring, cutting, and joining wood. Gain expertise in handling various carpentry tools and machinery.	2	2	2	2	1	2	2	1	1	1	1	1	1	2	3
CO4: Appreciate and access the use of casting processes in manufacturing and understand the workings of various casting processes.	3	2	3	3	3	2	2	2	3	2	2	2	3	3	2
CO5: Analyze and assess the importance of welding processes in manufacturing and apply knowledge to select an appropriate welding process based on the type of industrial application.	3	2	3	3	3	2	2	2	3	2	2	2	3	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6 PSO 1,2, 3	CO1-98ME151.1: Understand various production processes, selecting appropriate methods for different materials, optimizing manufacturing efficiency, and ensuring product quality.		LI 1.1 LI 1.2 LI 1.3		1SL-1
PO 1,2,3,4,5,6 PSO 1,2, 3	CO2-98ME151.2: Acquired proficiency in using hand tools, understanding different types of fits and tolerances, interpreting engineering drawings, and precision measurement techniques.		LI 2.1 LI 2.2 LI 2.3		2SL-1
PO 1,2,3,4,5,6 PSO 1,2, 3	CO3-98ME151.3. Develop fundamental skills such as measuring, cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.		LI 3.1 LI 3.2 LI 3.3		3SL-1
PO 1,2,3,4,5,6 PSO 1,2, 3	CO4-98ME151.4: Appreciate and access the use of casting processes in manufacturing and understand the workings of various casting processes.		LI 4.1 LI 4.2 LI 4.3		4SL-1
PO 1,2,3,4,5,6 PSO 1,2, 3	CO5-98ME151.5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select an appropriate welding process based on the type of industrial application.		LI 5.1 LI 5.2 LI 5.3		5SL-1

Suggested learning Resources:

(a) Books:

- 1. Hajra Choudhury S.K., Hajra Choudhury A.K., and Nirjhar Roy S.K., *Elements of Workshop Technology*, Media Promoters and Publishers Private Limited, Mumbai, Vol. I (2008) and Vol. II (2010).
- 2. Kalpakjian S. and Steven S. Schmid, *Manufacturing Engineering and Technology*, Pearson Education India, 2002.

- 3. Rao P.N., Manufacturing Technology, Tata McGraw Hill House, Vol. I and Vol. II (2007).
- 4. Roy A. Lindberg, Processes and Materials of Manufacture, Prentice Hall India, 4th edition, 1998.

(b) Online Resources:

- 1. NPTEL Online Courses (NPTEL) Comprehensive courses on various manufacturing processes, materials, and workshop practices.
- 2. MIT OpenCourseWare (MIT OCW) Free lecture notes, exams, and videos on manufacturing processes and mechanical engineering.
- 3. Coursera (Coursera) Courses in manufacturing and workshop practices from top universities and companies.
- 4. edX (edX) Courses on manufacturing technology and related subjects from universities like MIT, Harvard, and more.
- 5. NYC CNC (YouTube) Detailed tutorials and practical demonstrations on CNC machining and other manufacturing processes.
- 6. Welding Tips and Tricks (YouTube) Practical tips and tutorials on various welding techniques.
- 7. Khan Academy (Khan Academy) Educational resources on materials science and basic engineering principles.
- 8. Engineering Toolbox (Engineering Toolbox) Engineering resources including materials properties and machining data.
- 9. Free Engineering Books (Free Engineering Books) Free downloads of e-books on workshop practices, machining, and manufacturing technology.
- 10. TWI Global (TWI Global) Resources and articles on welding, joining, and other manufacturing processes.
- 11. Manufacturing Processes and Workshop Technology (Google Books) Search for textbooks and reference books on workshop practice and manufacturing processes.

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion

- 5. Role play
- 6. Visit to Beverage producing plants & Distillery/Fermenter units
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology						
Semester	Ι						
Course Code	HSMC09						
Course title	Sports and Yoga Curriculum Developer: Er. Ketan Agrawal, Assistant Professor						
Pre-requisite	Student should have basic knowledge of Applications of Yoga and Meditation and its concepts.						
Rationale	The Sports and Yoga subject is essential for students to understand both the historical and practical aspects of Yoga. Students should grasp Yoga's original texts and principles to preserve its authentic practices. Simultaneously, they need practical knowledge of how Yoga enhances sports performance, flexibility, and mental focus. This integrated understanding ensures that students can effectively apply Yoga techniques to improve athletic performance while respecting its traditional roots, promoting a holistic approach to health and fitness.						
Course Outcomes (COs)	 HSMC09.1: A student shall be able to describe the brief introduction of yoga and its practices. HSMC09.2: A student shall be able to describe pranayama with the practice of bandh and mudra. HSMC09.3: A student shall be able to describe meditation techniques and their benefits. HSMC09.4: A student shall be able to explain the physical and mental benefits of regular yoga practice and how it enhances overall well-being. HSMC09.5: A student shall be able to integrate yoga practices with sports training to improve flexibility, strength, and performance in athletic activities. 						

Board of Study	Course Code	Course Title			Scheme of studies (Hours/Week)			Total Credits
Study			Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(L: T:P=0:0:0)
AU	HSMC09	Sports & Yoga	3	2	1	1	7	0

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Assessment Scheme: Theory

Board of	Course			Scheme of Assessment (Marks)						
Study	Code	Title		Pr	ogressiv	ve Assess	sment (PRA)		End Semester	Total
			Class/Home Assignment	Class Test			Class Attendance	Total Marks	Assessment (ESA)	Marks (PRA+
			5 number	(2 best out	(SA)	(CAT)	(AT)	(CA+CT+CAT+SA+AT)		ESA)
			3 marks each	of 3)						
			(CA)	10 marks each (CT)						
ESC	HSMC09	Yoga and Sports	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of	Item	CI	LI	SW	SL	Total
instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work	Approx Hrs.	05	04	01	01	11
(SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course						
Outcomes (COs) upon the course's conclusion.						

Course Outcome (CO)	Session Outcome (SO)	Laboratory Instructions (LI)	Classroom Instructions (CI)	Self-Learning (SL)
HSMC09.1: A student shall be able to describe the brief introduction of yoga and its practices.	SO1.1 Understand the Introduction to Yoga and Yogic Practices	LI1.1 Basic instructions and procedures for Yoga practice	CI1.1 Overview of Yoga: Etymology, definitions, aim, objectives, and misconceptions	SL1.1 Study of the foundational principles of Yoga
	SO1.2 Understand Shatkarma: meaning, purpose, and significance in Yoga Sadhana	LI1.2 Introduction to Shatkarma techniques and their applications	CI1.2 Discussion on Shatkarma practices and their role in Yoga	
	SO1.3 Describe the rules and regulations to be followed by Yoga practitioners		CI1.3 Exploration of rules, regulations, and common misconceptions about Yoga	
	SO1.4 Explain Yoga practices: Asanas, Pranayama, and Meditation		CI1.4 Analysis of different Yoga practices and their benefits	
	SO1.5 Analyze the benefits of Yoga in physical and mental health		CI1.5 Evaluation of Yoga's impact on physical and mental health	

Item	CI	LI	SW	SL	Total
Approx Hrs.	05	04	01	01	11

Course Outcome (CO)	Session Outcome (SO)	Laboratory Instructions (LI)	Classroom Instructions (CI)	Self-Learning (SL)
HSMC09.2: A student shall be able to describe pranayama with the practice of bandh and	SO2.1 Understand the Breathing Practices and Pranayama	LI2.1 Instructions on sectional breathing techniques: Abdominal, Thoracic, and Clavicular	CI2.1 Overview of sectional breathing techniques and their benefits	SL2.1 Study of breathing practices and their impact on health
mudra.	SO2.2 Understand the Concept of Puraka, Rechaka, and Kumbhaka	LI2.2 Guidelines for practicing Puraka, Rechaka, and Kumbhaka	CI2.2 Discussion on Puraka, Rechaka, and Kumbhaka techniques and their significance in Pranayama	
	SO2.3 Describe the Concept of Bandha and Mudra		CI2.3 Analysis of Bandha and Mudra practices and their roles in Yoga	
	SO2.4 Understand Anuloma- Viloma/Nadi Shodhana		CI2.4 Overview and benefits of Anuloma- Viloma/Nadi Shodhana	
	SO2.5 Understand Shitali and Bhramari techniques		CI2.5 Exploration of Shitali and Bhramari techniques and their benefits	

Item	CI	LI	SW	SL	Total
Approx Hrs.	05	04	01	01	11

Course Outcome (CO)	Session Outcome (SO)	Laboratory Instructions (LI)	Classroom Instructions (CI)	Self-Learning (SL)
HSMC09.3: A student shall be able to describe meditation techniques and their benefits.	SO3.1: Understand the Practices Leading to Meditation	LI3.1: Introduction to meditation practices, including recitation of Pranava Mantra	CI3.1: Overview of various practices leading to meditation such as Pranava Mantra and Anter Maun	SL3.1: Study of meditation practices and their impact on mental clarity
	SO3.2: Understand the Recitation of Pranava Mantra	LI3.2: Instructions for the correct recitation of Pranava Mantra	CI3.2: Exploration of Pranava Mantra's significance and its role in meditation	
	SO3.3: Describe Breath Meditation		CI3.3: Analysis of Breath Meditation techniques and their benefits	
	SO3.4: Understand Anter Maun		CI3.4: Overview of Anter Maun and its role in meditation practices	
	SO3.5: Describe Om Dhyana		CI3.5: Discussion on Om Dhyana techniques and their benefits	

Item	CI	LI	SW	SL	Total
Approx Hrs.	05	04	01	02	12

Course Outcome (CO)	Session Outcome (SO)	Laboratory Instructions (LI)	Classroom Instructions (CI)	Self-Learning (SL)
HSMC09.4: A student shall be able to explain the physical and mental benefits of regular yoga practice and how it enhances overall well-	SO4.1: Understand the Ashtanga of Yoga: Yama, Niyama, Aasanas, Pranayama, Pratyahara, Dharana, Dhyana, Samadhi	LI4.1: Basic instructions for practicing each aspect of Ashtanga Yoga	CI4.1: Overview and detailed discussion of the Ashtanga of Yoga and its components	SL4.1: Study the comprehensive impact of each Ashtanga component on holistic well-being
being.	SO4.2: Understand the Benefits of Yoga	LI4.2: Explanation of the physiological and psychological benefits of Yoga	CI4.2: Exploration of various benefits of Yoga, including physical health, mental clarity, and emotional stability	SL4.2: Research on empirical evidence supporting the benefits of Yoga
	SO4.3: Understand the Need of Yoga in contemporary lifestyle		CI4.3: Analysis of why Yoga is essential for maintaining balance in today's fast-paced world	
	SO4.4: Describe Surya Namaskar and its components		CI4.4: Overview of the sequence, benefits, and techniques of Surya Namaskar	
	SO4.5: Analyze the overall impact of		CI4.5: Discussion on the practical aspects of	

integrating Yoga into daily routines	incorporating Yoga into everyday routines for	
	improved quality of life	

Item	CI	LI	SW	SL	Total
Approx Hrs.	05	04	01	02	12

Course Outcome (CO)	Session Outcome (SO)	Laboratory Instructions (LI)	Classroom Instructions (CI)	Self-Learning (SL)
HSMC09.5: A student shall be able to integrate yoga practices with sports training to improve flexibility, strength, and performance in athletic activities.	SO5.1: Understand the importance of self- awareness in maintaining an active lifestyle	LI5.1: Guidelines for self- assessment and goal setting for physical fitness	CI5.1: Overview of how self-awareness contributes to a successful active lifestyle	SL5.1: Study of self- assessment tools and techniques for improving physical fitness
	SO5.2: Learn strategies to increase physical fitness effectively	LI5.2: Introduction to various physical fitness exercises and routines	CI5.2: Analysis of different methods to enhance physical fitness, including exercise types and intensity	SL5.2: Research on effective fitness routines and their impact on overall health
	SO5.3: Develop strategies to make productive use of free time for physical activity		CI5.3: Discussion on maximizing free time for physical activities and balancing it with other responsibilities	
	SO5.4: Understand the benefits of staying active during weekly holidays		CI5.4: Exploration of the impact of regular activity during holidays on overall fitness and well-being	

SO5.5: Recognize the value of consistent effort	CI5.5: Discussion on the role of persistence and	
in achieving a healthy	effort in sustaining a	
lifestyle	healthy lifestyle	

Course Duration (in Hours) to Attain Course Outcomes

Course Title: Workshop Practice Lab

Course Code:98ME151

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self- Learning (SL)	Sessional work (SW)	Total Hours (LI+CI+SL+SW)
HSMC09.1 : A student shall be able to describe the brief introduction of yoga and its practices.	5	4	1	1	11
HSMC09.2 : A student shall be able to describe pranayama with the practice of bandh and mudra.	5	4	1	1	11
HSMC09.3 : A student shall be able to describe meditation techniques and their benefits.	5	4	1	1	11
HSMC09.4 : A student shall be able to explain the physical and mental benefits of regular yoga practice and how it enhances overall well-being.	5	4	1	2	12
HSMC09.5 : A student shall be able to integrate yoga practices with sports training to improve flexibility, strength, and performance in athletic activities.	5	4	1	2	12
Total Hours	25	20	05	07	57

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Workshop Practice Lab

Course Code:98ME151

Course Outcomes	Marks Distribution						
	Α	An	E	С	Marks		
HSMC09.1 : A student shall be able to describe the brief introduction of yoga and its practices.	2	1	1	1	5		
HSMC09.2 : A student shall be able to describe pranayama with the practice of bandh and mudra.	2	4	4	2	12		
HSMC09.3 : A student shall be able to describe meditation techniques and their benefits.	3	5	3	3	14		
HSMC09.4 : A student shall be able to explain the physical and mental benefits of regular yoga practice and how it enhances overall well-being.	2	3	4	2	11		
HSMC09.5 : A student shall be able to integrate yoga practices with sports training to improve flexibility, strength, and performance in athletic activities.	2	3	1	2	8		
Total Marks	11	16	13	10	50		

Legend:A, Apply;An, Analyze;E, Evaluate;C, Create

Suggested learning Resources:

(a) Books:

- 1- Singh S.P. & yogi Mukesh, Foundation of Yoga, Standard Publication, New Delhi ,2010
- 2- Swami Dherendra Brhamchari, Yogasana Vigyaan, Dherendra Yoga Prakshan, New Delhi 1966
- 3- Sarswati, Swami Satyananda, Asan Pranayama Mudra Bandha, Yog Prakshan Trust Munger, 2013
- 4- H.R. Nagendra, Asan Pranayama Mudra Bandha, Swami Vivekananda Yog Prakshan, Banglore 2002
- 5- Ishwer Bhardwaj, Saral Yogashan, Satyam Publication House, New Delhi 2018
- 6- Shri Ram Chauhan, Mudra Rahasya, Bhartiye Yog Sansthan, New Delhi 2014
- 7- Dr Vishwanath Prasad Sangha, Dhyan Yog, Bhartiye Yog Sansthan, New Delhi 1987
- 8- Shri Deshraj, Dhyan Sadhna, Bhartiye Yog Sansthan, New Delhi 2015
- 9- Bhartiye Yog Sansthan, New Delhi 2014

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 10. Improved lecture
- 11. Tutorial
- 12. Case method
- 13. Group Discussion
- 14. Role play
- 15. Visit to Beverage producing plants & Distillery/Fermenter units
- 16. Demonstration
- 17. ICT Based teaching Learning
- 18. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Course Title: Workshop Practice Lab

Course Outcome (CO)	Progr	Program Outcomes (POs)										Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
HSMC09.1 : A student shall be able to describe the brief introduction of yoga and its practices.	3	3	2	2	3	2	2	2	3	2	2	2	3	2	2
HSMC09.2: A student shall be able to describe pranayama with the practice of bandh and mudra.	2	2	3	2	2	3	2	1	2	1	1	2	2	3	2
HSMC09.3: A student shall be able to describe meditation techniques and their benefits.	2	2	2	2	1	2	2	1	1	1	1	1	1	2	3
HSMC09.4 : A student shall be able to explain the physical and mental benefits of	3	2	3	3	3	2	2	2	3	2	2	2	3	3	2

Semester: I

Course Code: 98ME151

regular yoga practice and how it enhances overall well-being.															
HSMC09.5: A student shall be able to integrate yoga practices with sports training to improve flexibility, strength, and performance in athletic activities.	3	2	3	3	3	2	2	2	3	2	2	2	3	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction	Classroom Instruction (CI)	Self-Learning (SL)
1202110			(LI)		(~_)
PO 1,2,3,4,5,6	HSMC09.1 : A student shall be able to describe the brief introduction of yoga and its practices.	SO1.1 SO1.2 SO1.3	LI 1.1 LI 1.2 LI 1.3	1.1,1.2,1.3,1.4,1.5	1SL-1
PSO 1,2, 3		SO1.4 SO1.5	21110		
PO 1,2,3,4,5,6	HSMC09.2 : A student shall be able to describe pranayama with the practice of bandh and mudra.	SO2.1 SO2.2 SO2.3	LI 2.1 LI 2.2	2.1,2.2,2.3,2.4,2.5	2SL-1
PSO 1,2, 3		SO2.4 SO2.5	LI 2.3		
PO 1,2,3,4,5,6 PSO 1,2, 3	HSMC09.3 : A student shall be able to describe meditation techniques and their benefits.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	LI 3.1 LI 3.2 LI 3.3	3.1,3.2,3.3,3.4,3.5	3SL-1
PO 1,2,3,4,5,6 PSO 1,2, 3	HSMC09.4 : A student shall be able to explain the physical and mental benefits of regular yoga practice and how it enhances overall well-being.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	LI 4.1 LI 4.2 LI 4.3	4.1,4.2,4.3,4.4,4.5	4SL-1
PO 1,2,3,4,5,6 PSO 1,2, 3	HSMC09.5 : A student shall be able to integrate yoga practices with sports training to improve flexibility, strength, and performance in athletic activities.	SO 1.5 SO 5.1 SO 5.2 SO 5.3 SO 5.4 SO 5.5	LI 5.1 LI 5.2 LI 5.3	5.1,5.2,5.3,5.4,5.5	5SL-1

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology									
Semester	Ι										
Course Code	Core-1 NCC Awareness										
Course title	NCC Awareness	Curriculum Developer: Er. Ketan Agrawal, Assistant Professor									
Pre-requisite	Certificate course with NCC major s	subject.									
Rationale	Students studying NCC Awareness	dents studying NCC Awareness theory.									
Course Outcomes (COs)											
	Core-1 NCC Awareness CO2 It	t also enlightens leadership qualities among young students.									
	Core-1 NCC Awareness CO programmes, debates, demonstra	3 To promote National Integration among cadets through state awareness tions, and cultural presentations.									
	Core-1 NCC Awareness CO4 this subject aims to develop the students of personality, physical and mental health, and social quality.										
		It also provides knowledge about different social activity- tree plantation, blood ganize different social awareness programs in educational institutions.									

Scheme of Studies:

Board of	Course	Course Title		Scheme of studies (Hours/Week)						
Study	Code		Cl	LI	SW	SL Total Study Hours		(C)		
							(CI+LI+SW+SL)			
AU	Core-1 NCC	NCC Awareness	6	0	0	0	6	6		
	Awareness									

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others).

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies).

SW: Sessional Work (includes assignment, seminar, mini project etc).

SL: Self Learning,

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

Board of	Course Code	Course Title	Sch	Scheme of Assessment (Marks)								
Study		The	Progressive As Class/Home Assignment 5 number -3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)		Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+ CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)		
AU	Core-1 NCC Awarene ss	NCC Awarene ss	15	20	5	5	5	50	50	100		

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including	Item	CI	LI	SW	SL	Total
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning	Approx	5	0	0	0	5
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),	Hrs.					
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

Session Outcomes (SOs)	Learning Instructions (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO1.1 Understand the History of National Cadet Corps SO1.2 Understand the National Cadet Corps of Independent India SO1.3 Understand the Aims and Objectives		 CI1.1 Overview of the National Cadet Corps of Independent India CI1.2 Discussion on the Motto of the National Cadet Corps CI1.3 Exploration of the Aims and Objectives of NCC 	
SO1.4 Preparation of NCC Flag SO1.5 Preparation of NCC song		the NCC Emblem, Flag, and Song CI1.5 Analysis of the Organization of NCC: Army, Navy, and Air	
	(SOs) SO1.1 Understand the History of National Cadet Corps SO1.2 Understand the National Cadet Corps of Independent India SO1.3 Understand the Aims and Objectives SO1.4 Preparation of NCC Flag SO1.5 Preparation of	(SOs)(LI)SO1.1 Understand the History of National Cadet Corps	(SOs)(LI)(CI)SO1.1 Understand the History of National Cadet CorpsCI1.1 Overview of the National Cadet Corps of Independent IndiaSO1.2 Understand the National Cadet Corps of Independent IndiaCI1.2 Discussion on the Motto of the National Cadet CorpsSO1.3 Understand the Aims and ObjectivesCI1.3 Exploration of the Aims and Objectives of NCCSO1.4 Preparation of NCC FlagCI1.4 Examination of the NCC Emblem, Flag, and SongSO1.5 Preparation of NCC songCI1.5 Analysis of the Organization of NCC:

Item	CI	LI	SW	SL	Total
Approx Hrs.	5	0	0	0	5

Course Outcome (CO)	Session Outcomes (SOs)	Learning Instructions (LI)	Classroom Instruction (CI)	Self-Learning (SL)
Core-1 NCC Awareness	SO2.1 Understand the		CI2.1 Overview of the number	
CO2 It also enlightens	number of lectures		of lectures required	
leadership qualities among young students.				
	SO2.2 Understand about		CI2.2 Discussion on the roles	
	the Navy and Air Force		and functions of the Navy and Air Force	
	SO2.3 Preparation of the Army		CI2.3 Examination of the organizational structure of the Army, Navy, and Air Force	
	SO2.4 Understand the command and control		CI2.4 Exploration of the regimental structure, command, and control	
	SO2.5 Preparation of Honors and Awards		CI2.5 Analysis of the badges and ranks in the Army, Navy, and Air Force	
	SO2.6 Understanding the Honors and Awards		CI2.6 Overview of the various honours and awards given in the defence services	

Item	CI	LI	SW	SL	Total
Approx Hrs.	5	0	0	1	5

Course Outcome (CO)	Session Outcomes (SOs)	Learning Instructions (LI)	Classroom Instruction (CI)	Self-Learning (SL)
Core-1 NCC Awareness CO3: To promote National Integration among	SO3.1 Meaning and concept of Introduction to personality development		CI3.1 Overview of the factors influencing and shaping personality	SL3.1 Study of decision making and problem- solving techniques
cadets through state awareness programme, debates, demonstrations, cultural presentation.	SO3.2 Understand the meaning of personality development		CI3.2 Exploration of the concept and importance of personality development	
	SO3.3 Understanding the change your mindset		CI3.3 Discussion on techniques to change and develop a positive mindset	
	SO3.4 Understanding about decision making		CI3.4 Analysis of decision-making processes and strategies	
	SO3.5 Understand teamwork		CI3.5 Examination of the principles and benefits of teamwork	

SO3.6 Understanding	CI3.6 Overview of
social skills and	social skills, etiquettes,
etiquette	and manners

Item	CI	LI	SW	SL	Total
Approx Hrs.	5	0	0	0	5

Course Outcome (CO)	Session Outcomes (SOs)	Learning Instructions (LI)	Classroom Instruction (CI)	Self-Learning (SL)
Core-1 NCC Awareness CO4 The aim of this subject is to develop the	SO4.1 Understanding about the Introduction of leadership	LI4.1 Introduction to leadership	CI4.1 Overview of leadership and its importance	SL4.1 Study of leadership case studies
students of personality, physical and mental health, and social quality.	SO4.2 Preparation of types of Leadership		CI4.2 Exploration of different types of leadership	
	SO4.3 Understanding about how to develop leadership		CI4.3 Discussion on techniques to develop leadership skills	
	SO4.4 Understanding about the Leadership traits		CI4.4 Analysis of essential leadership traits and their significance	
	SO4.5 Preparation of Leadership case study		CI4.5 Examination of leadership case study: Field Marshal General Sam H.F.J. Manekshaw	

SO4.6 Understanding the	CI4.6 Examination of	
contributions of General	leadership case study:	
K.M. Cariappe	General K.M. Cariappe	

Item	CI	LI	SW	SL	Total
Approx Hrs.	5	0	0	0	5

Course Outcome (CO)	Session Outcomes (SOs)	Learning Instructions (LI)	Classroom Instruction (CI)	Self-Learning (SL)
Core-1 NCC Awareness CO5 It also provides knowledge about different social activity- tree plantation, blood donation, first aid and how to organize different social awareness programs in educational institutions.	SO5.1 Understanding the importance of tree plantation SO5.2 Understanding the significance of blood donation SO5.3 Understanding the basics of first aid		 CI5.1 Overview of the benefits and methods of tree plantation CI5.2 Discussion on the importance of blood donation and how to organize a blood donation camp CI5.3 Instruction on basic first aid techniques and their application in emergency situations 	SL5.1 Study of effective social awareness programs
	SO5.4 Understanding how to organize social awareness programs in educational institutions SO5.5 Understanding the role of educational		CI5.4 Exploration of methods to raise social awareness within educational settings CI5.5 Examination of case studies on successful	

institutions in social	social awareness programs	
activities	organized by educational	
	institutions	

Brief of Hours suggested for the Course Outcome

Course Outcomes (CO)	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (SL)	Total Hours (Cl+SW+SL)
CO1. To develop knowledge about discipline, character, brotherhood, the spirit of adventure, and ideals of selfless service.	5	0	0	5
CO2. It also enlightens leadership qualities among young students.	5	0	0	5
CO3. To promote National Integration among cadets through state awareness programs, debates, demonstrations, cultural presentations, etc.	5	0	0	5
CO4. The aim of this subject is to develop the students' personality, physical and mental health, and social quality.	5	0	0	5
CO5. It also provides knowledge about different social activities - tree plantation, blood donation, first aid, and how to organize different social awareness programs in educational institutions.	5	0	0	5

Suggestion for End Semester Assessment

66			
СО	Unit	Marks	Total
		Distribution	

	Titles	R	U	Α	Marks
CO1. To develop knowledge about discipline, character, brotherhood, the spirit	History of National Cadet	01	01	03	05
of adventure, and ideals of selfless service.	Corps:				
CO2. It also enlightens leadership qualities among young students.	Introduction to Defense	01	01	03	05
	Services:				
CO3. To promote National Integration among cadets through state awareness programs, debates, demonstrations, cultural presentations, etc.	Personality development	-	03	10	13
CO4. The aim of this subject is to develop the students' personality, physical and mental health, and social quality.	Leadership, first aid	-	03	10	13
CO5. It also provides knowledge about different social activities - tree	First aid	01	03	10	14
plantation, blood donation, first aid, and how to organize different social					
awareness programs in educational institutions.					
Total		03	12	36	50

Legend: R: Remember, U: Understand, and A: Apply

The end of semester assessment for NCC Awareness will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment

CO-PO-PSO Mapping

Course Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1. To develop knowledge about discipline, character, brotherhood, the spirit of adventure, and ideals of selfless service.	3	2	2	2	2	3	3	2	2	2	1	2	2	3	1
CO2. It also enlightens leadership qualities among young students.	2	3	2	2	2	2	3	2	2	2	2	3	2	2	1
CO3. To promote National Integration among cadets through state awareness programs, debates, demonstrations, cultural	2	2	3	2	2	2	2	3	3	2	2	2	3	2	2

presentations, etc.															
CO4. The aim of this subject is to develop the students' personality, physical and mental health, and social quality.	3	2	2	3	2	2	2	2	2	2	3	2	2	3	2
CO5. It also provides knowledge about different social activities - tree plantation, blood donation, first aid, and how to organize different social awareness programs in educational institutions.	2	2	3	2	3	2	2	2	2	2	2	2	3	2	3

Course Curriculum Map

POs & PSOs /*-No.	COs No.& Titles	SOs No.	Classroom Instruction	Self-
			(CI)	Learning (SL)
PO:	CO.1 To develop knowledge about discipline	SO1:1.1	Unit-1.0	()
1,2,3,4,5,6,7,8,9,10,11,12	character, brotherhood, the spirit of adventure and	SO2:1.2	History of National Cadet	
PSO:1,2,3	ideals of selfless service.	SO3:1.3	Corps: 1.1,1.2,1.3,1.4,1.5	
150.1,2,5		SO4:1.4	Corps. 1.1,1.2,1.5,1.4,1.5	
		SO4.1.4 SO5:1.5		
PO:	CO.2 It also enlightens leadership qualities among	SO1:2.1	Unit-2.0 Introduction to	
1,2,3,4,5,6,7,8,9,10,11,12	young students.	SO2:2.2	Defense Services	
PSO: 1,2,3	young students.	SO3:2.3	2.1,2.2,2.3,2.4,2.5	
100. 1,2,5		SO3:2.3	2.1,2.2,2.3,2.1,2.3	
		SO5:2.5		
PO:	CO.3 To promote National Integration among	SO1:3.1	Unit-3: Personality	
1,2,3,4,5,6,7,8,9,10,11,12	cadets through state awareness programme,	SO2:3.2	development	
PSO: 1,2,3	debates, demonstrations, cultural presentation etc.	SO3:3.3	3.1,3.2,3.3,3.4,3.5	
		SO4:3.4		
		SO5:3.5		
PO:	CO.4 The aim of this subject is to develop the students	SO1:4.1	Unit-4: Leadership, first	
1,2,3,4,5,6,7,8,9,10,11,12	of personality, physical and mental health, and social	SO2:4.2	aid	
PSO: 1,2,3	quality.	SO3:4.3	4.1,4.2,4.3,4.4,4.5	
		SO4:4.4		
		SO5:4.5		
PO:	CO5. It also provides knowledge about different social	SO1:5.1	5.1,5.2,5.3,5.4,5.5	
1,2,3,4,5,6,7,8,9,10,11,12	activities - tree plantation, blood donation, first aid,	SO2:5.2		
PSO: 1,2,3	and how to organize different social awareness	SO3:5.3		
	programs in educational institutions.	SO4:5.4		
		SO5:5.5		

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6 PSO 1,2, 3	CO.1 To develop knowledge about discipline character, brotherhood, the spirit of adventure and ideals of selfless service.	SO1.1 SO1.2 SO1.3	LI 1.1 LI 1.2 LI 1.3		1SL-1
PO 1,2,3,4,5,6 PSO 1,2, 3	CO.2 It also enlightens leadership qualities among young students.	SO2.1 SO2.2 SO2.3	LI 2.1 LI 2.2 LI 2.3		2SL-1
PO 1,2,3,4,5,6 PSO 1,2, 3	CO.3 To promote National Integration among cadets through state awareness programme, debates, demonstrations, cultural presentation etc.	SO3.1 SO3.2 SO3.3	LI 3.1 LI 3.2 LI 3.3		3SL-1
PO 1,2,3,4,5,6 PSO 1,2, 3	CO.4 The aim of this subject is to develop the students of personality, physical and mental health, and social quality.	SO4.1 SO4.2 SO4.3	LI 4.1 LI 4.2 LI 4.3		4SL-1
PO 1,2,3,4,5,6 PSO 1,2, 3	CO5. It also provides knowledge about different social activities - tree plantation, blood donation, first aid, and how to organize different social awareness programs in educational institutions.	SO5.1 SO5.2 SO5.3	LI 5.1 LI 5.2 LI 5.3		5SL-1

B. Tech. Biotechnology 2nd Semester

Program Name	Bachelor of Technology (B.Tech.)- Biotech	Bachelor of Technology (B.Tech.)- Biotechnology							
Semester	Ш								
Course Code:	98BT207								
Course title:	Biochemistry and Metabolism	Curriculum Developer: Chahana Desai, Teaching Associate							
Pre-requisite:	Students should have basic cellular and molecular knowledge of biomolecules,								
Rationale:	Biochemistry combines biology and chemistry to study living matter. It powers scientific and medical discovery in fields such as pharmaceuticals, forensics and nutrition and Metabolism consists of a series of reactions that occur within cells of living organisms to sustain life. The process of metabolism involves many interconnected cellular pathways to ultimately provide cells with the energy required to carry out their function.								
Course Outcomes (COs):	CO1-98BT207.1. Summarize concepts of cell CO2-98BT207.2. Explain the structure and fu CO3-98BT207.3. Analyze enzyme kinetic da CO4-98BT207.4. Identify the key molecules CO5-98BT207.5. Understand the basic mecha	anction of biological molecules ta and regulation of enzyme activity. involved in regulation of metabolic pathways and disorders							
		nd consumption of ATP in each metabolic pathway							

Scheme of Studies:

Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C (L: T:P=2:1:1)	
BSC	98BT207	Biochemistry and metabolism	3	2	1	2	3+2+2+2=8	2+1+1=4	

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies); SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of		Course Title		Scheme of Assessment (Marks)								
Study	Code			Progressive Assessment (PRA)								
			Class/Home	Class Test	Seminar one	Class Activity	Class	Total Marks	Semester			
			Assignment	2	(SA)	(CAT)	Attendance	(CA+CT+CAT+SA+AT)	Assessmen			
		5 number	(2 best out			(AT)		t	(PRA+			
			3 marks each	of 3)					(ESA)	ESA)		
			(CA)	10 marks								
			(en)	each (CT)								
		Biochemistry										
BSC	98BT207	and metabolism	15	20	5	5	5	50	50	100		

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session **Approximate Hours** levels, which students are anticipated to accomplish through various modes of instruction including SW Item Cl LI SL Total Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning 09 02 02 01 14 Approx. (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), Hrs culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-98BT207.1 Summarize concepts of cell biology.	SO1.1 Explain concept of Biochemistry	LI1.1 Basic instruments used in biochemical processes	CI1.1 Definition, scope, and importance of biochemistry	SL1.1 Find out some scope of biochemistry
	SO1.2 Define Basic terminology related to biochemistry	LI1.2Demonstrate the working of pH meter	CI1.2 Hydrogen bonding and structure of water molecule	SL1.2 Draw and elaborate structure of water molecule
	SO1.3 Elaborate the various types of bond formation		CI1.3 Chemical foundation of biology: pH, buffer	SL1.3 Write down different types of bonds with required diagrams
	SO1.4 Define the mechanism of pH and buffers		CI1.4 Weak bonds and covalent bonds	
	SO1.5 Explain the concept of and types of biomolecules		CI1.5 Structure, properties, and function of carbohydrate	
	SO1.6 Relate the concept of how biomolecules are involved in various processes		CI1.6 Classification of carbohydrate	
	SO1.7 Outline differences between various biomolecules		CI1.7 Biological role of peptidoglycan	

SO, 1.8 Define the	CI 1.8 Lipids:
mechanism of biological	classification, structure,
separations	and function
SO, 1.9 Explain the role of peptidoglycan	CI1.9 Structure and function of fatty acid

Suggested Sessional Work (SW): <i>anyone</i>	SW1.1 Assignments	Describe in detail about the scope and importance of biochemistry.
	SW1.2 Mini Project	Draw a diagram of pH meter and its mechanism.
	SW1.3 Other Activities	Draw a structure of water molecule and its properties.
	(Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	03	17

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)
		(LI)	(CI)	
CO2-98BT207.2.	SO2.1 Explain concept of and	LI2.1 Perform Benedict's	CI2.1 Structure,	SL2.1 Structures of
Explain the structure	types of biomolecules	test for reducing sugars	properties, and function	various biomolecules
and function of			of carbohydrate	
biological molecules				
	SO2.2 Relate the concept of	LI2.2	CI2.2 Classification of	SL2.2 Different types of
	how biomolecules are	Perform	carbohydrate	bonds present in each
	involved in various processes	Iodine test		biomolecule
	-	for starch		
	SO2.3 Outline differences	LI2.3	CI2.3 Biological role of	SL2.3 Write down a few
	between various biomolecules	Perform	peptidoglycan	points on the importance
		Biuret test		of biomolecules
		for protein		
	SO2.4 Define the mechanism	LI2.4	CI2.4 Lipids:	
	of biological separations	Perform	classification, structure,	
		Emulsion	and function	
		test for		
		lipids		

SO2.5 Explain the role of	CI2.5 Structure and
peptidoglycan	function of fatty acid
SO2.6 Compare and contrast	CI2.6 Protein
the structure of nucleic acids	classification, primary,
	secondary, tertiary, and
	quaternary structure
SO2.7 Discuss the role of	CI2.7 Enzyme kinetics
enzymes in biological	and regulation
processes	
SO2.8 Illustrate the metabolic	CI2.8 Glycolysis and
pathways of carbohydrates	Krebs cycle
SO2.9 Analyze the impact of	CI2.9 Genetic mutations
mutations on protein function	and protein synthesis

Suggested Sessional Work (SW): SW2.1 Assignments		Describe types and importance of biomolecules.		
anyone SW2.2 Mini Project		Make a flow chart on types of biomolecules with examples.		
	SW2.3 Other Activities (Specify)	Make Power point presentation on how biomolecules are generated?		

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	03	01	02	15

Course outcome	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction	Self-Learning (SL)
(CO)			(CI)	
CO3-98BT207.3	SO3.1 Elucidate the	LI3.1 Perform the	CI3.1 Introduction,	SL3.1 Find out the
Analyse enzyme	characteristics and	Centrifugation process as Unit	characteristics, and	examples of different
kinetic data and	nomenclature parameters of the	Operation	nomenclature of enzymes	groups of enzymes
regulation of enzyme	enzymes	-		according to their
activity.				classification
	SO3.2 Classify the different		CI3.2 Classification of	SL3.2 What are
	types of enzymes according to		enzymes	vitamins and how are
	various criteria			

			they important to our body?
SO3.3 Elaborate on the		CI3.3 Application of	
importance, types, and		enzymes	
classification of vitamins with			
their respective functions			
SO 3.4 Explain the role of plant		CI3.4 Vitamins:	
and animal hormones		Introduction,	
		classification, and	
		function	
SO 3.5 Discuss micro and		CI3.5 Micro and	
macronutrients		macronutrients	
SO 3.6 Introduce the		CI3.6 Introduction and	
importance of plant and animal		importance of plant and	
hormones		animal hormones	
SO 3.7 Explain the concept of	LI3.2 Basic	CI 3.7 Definition, scope,	
enzymes	instruments	and importance of	
	used in	biochemistry	
	biochemical		
	processes		
SO 3.8 Define Basic	LI3.3	CI 3.8 Hydrogen bonding	
terminology related to enzyme	Demonstrate	and structure of water	
kinetics	the working of	molecule	
	pH meter		
SO 3.9Elaborate the various		CI 3.9 Chemical	
types of bond formation		foundation of biology: pH,	
		buffer	

Suggested Sessional	SW3.1 Assignments	Classification of vitamins and its sources.	
Work (SW): anyone	_	Differentiate between fat soluble and water-soluble vitamins.	
	SW3.2 Mini Project	Differentiate between micronutrient and macronutrients	
	SW3.3 Other Activities	Prepare one Power point presentation on Mechanism of action of enzymes.	
	(Specify)		

			Item Cl	LI SW SL Total
			Approx. Hrs 09	0 02 01 03 15
Course outcome (CO)	Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)
	(SOs)	(LI)	(CI)	
CO4-98BT207.4	SO4.1: Understand the	LI4.1: Perform enzyme	CI4.1: Lecture on the	SL4.1: Research and
Identify the key molecules	role and characteristics	assays to determine	biochemical properties	prepare a report on the
involved in regulation of	of enzymes.	activity and specificity.	and functions of	latest advancements in
metabolic pathways and			enzymes.	enzyme technology.
disorders. Evaluate total	SO4.2: Classify	LI4.2: Analyze vitamin	CI4.2: Discuss case	SL4.2: Create a chart
generation and consumption of	enzymes based on their	content in food samples	studies on industrial	that categorizes vitamins
ATP in each metabolic pathway	types of reactions.	using spectrophotometry.	applications of	based on solubility and
			enzymes.	their functions.
	SO4.3: Explain the		CI4.3: Group activities	SL4.3: Develop a
	application of enzymes		to classify and name	presentation on the role
	in various industries.		different enzymes.	of different hormones in
				plant and animal
				growth.
	SO4.4: Describe the		CI4.4: Presentation on	
	importance of vitamins		the health benefits and	
	and their functions.		sources of vitamins.	
	SO4.5: Differentiate		CI4.5: Interactive	
	between water-soluble		session on the role of	
	and fat-soluble		macronutrients in the	
	vitamins.		diet.	
	SO4.6: Identify the role		CI4.6: Explain the	
	of macronutrients in		differences between	
	human health.		micro and	
			macronutrients.	
	SO4.7: Understand the		CI4.7: Debate on the	
	significance of		importance of plant	
	micronutrients and their		hormones in agriculture.	
	sources.			
	SO4.8: Explain the role		CI4.8: Analyse the	
	of plant hormones in		physiological effects of	
	growth and		animal hormones	
	development.		through examples.	1

SO4.9: Discuss the	CI4.9: Quizzes on the	
importance of animal	classification and	
hormones in regulating	function of vitamins and	
bodily functions.	nutrients.	

Suggested Sessional	SW4.1 Assignments	Detailed description about pentose phosphate pathway
Work (SW): anyone	SW4.2 Mini Project	Draw a flow chart of glycolysis and TCA cycle
	SW4.3 Other Activities	Find out some videos about how lipid metabolism takes place.
	(Specify)	

				Item	C1 09	LI	SW	SL	Total	
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Clas	Approx. Hrs ssroom Instruc (CI)	02 01 03 15 Self-Learning (SL)					
CO5-98BT207.5 Metabolism- Basic concept, anabolism and catabolism, carbohydrate metabolism, glycolysis, gluconeogenesis, TCA,	SO5.1: Understand the basic concepts of metabolism.	LI5.1: Perform experiments to measure the rate of glycolysis in yeast cells.	experiments to fundamental principles of metabolism. glycolysis in yeast					SL5.1: Research and f prepare a report on the significance of the TCA cycle.		
pentose phosphate pathway and its significance. Lipid metabolism- β- oxidation and ω-oxidation, biosynthesis of fatty	SO5.2: Differentiate between anabolism and catabolism.	LI5.2: Analyze the levels of key intermediates in the TCA cycle.	anabo	215.2: Discussion on nabolic and catabolic athways.			SL5.2: Create a flowchart of the glycolysis pathway.			
	SO5.3: Explain the steps and significance of glycolysis.			3: Group activit out the glycoly: way.	•	pres pent path	.3: De entatic ose ph way an ificanc	on on lospha nd its	the ate	
	SO5.4: Describe gluconeogenesis and its importance.		the k invol	4: Presentation of ey enzymes ved in oneogenesis.	on					

SO5.5: Understand the TCA cycle and its role in metabolism.	CI5.5: Lecture on the TCA cycle and its integration with other
SO5.6: Explain the pentose phosphate pathway.	pathways. CI5.6: Interactive session on the significance of the pentose phosphate
SO5.7: Describe β - oxidation and ω -oxidation of fatty acids.	pathway. CI5.7: Discussion on the steps involved in β- oxidation and ω- oxidation.
SO5.8: Understand the biosynthesis of fatty acids.	CI5.8: Lecture on the biosynthesis of fatty acids and its regulation.
SO5.9: Explain the regulation of carbohydrate and lipid metabolism.	CI5.9: Quizzes on carbohydrate and lipid metabolism pathways.

Suggested	SW5.1 Assignments	Explain general mechanism of urea cycle
Sessional Work	SW5.2 Mini Project	Describe the biosynthesis of purine and pyrimidine nucleotides and various reactions of amino
(SW): anyone		acids.
	SW5.3 Other	Prepare power point presentation of urea cycle.
	Activities (Specify)	

Course Duration (in hours) to Attain Course Outcomes

Course Title: Biochemistry and metabolism

Course Code: 98BT207

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self- Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98BT207.1. Summarize concepts of cell biology	9	2	2	1	14
CO2-98BT207.2. Explain the structure and function of biological molecules	9	4	3	1	17
CO3-98BT207.3. Analyse enzyme kinetic data and regulation of enzyme activity	9	3	2	1	15
CO4-98BT207.4. Identify the key molecules involved in regulation of metabolic pathways and disorders. Evaluate total generation and consumption of ATP in each metabolic pathway	9	2	3	1	15
CO5-98BT207.5. Understand the basic mechanisms of metabolic pathways	9	2	3	1	15
Total Hours	45	13	13	05	76

End semester Assessment Scheme for Setting up Question Paper and Assessment to Evaluate the Course Outcome

Course Outcomes		T- 4-1 Massler			
	Α	An	Ε	С	Total Marks
CO1-98BT207.1. Summarize concepts of cell biology	2	1	1	1	5
CO2-98BT207.2. Explain the structure and function of biological molecules.	2	4	4	1	11
CO3-98BT207.3. Analyze enzyme kinetic data and regulation of enzyme activity.	3	5	4	1	13
CO4-98BT207.4. Identify the key molecules involved in regulation of metabolic pathways and disorders. Evaluate total generation and consumption of ATP in each metabolic pathway.	2	3	5	1	11
CO5-98BT207.5. Understand the basic mechanisms of metabolic pathways.	5	4	1	0	10
Total Marks	14	17	15	04	50

Course Title: Biochemistry and metabolism

Course Code: 98BT207

Legend: A, apply; An, analyze; E, evaluate; C, create

Suggested Learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Outlines of Biochemistry: Conn & Stump
2	Principles of Biochemistry: Voet & Voet
3	Principles of Biochemistry: Jeffory Zubey
4	Clinical Biochemistry: D.C Deb.
5	Biochemistry: Stryer
6	Lehninger's Principles of Biochemistry: Nelson & amp; Cox

(b) Online Resources:

1	https://ocw.mit.edu/courses/7-05-general-biochemistry-spring-2020/
2	https://www.nobelprize.org/prizes/lists/all-nobel-prizes-in-chemistry/
3	Biochemical Principles of Energy Metabolism Coursera

(c) Suggested instructions/Implementation Strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Demonstration
- 7. ICT Based teaching Learning

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Course Title: Biochemistry and metabolism

Course Outcome		Program Outcomes (POs)					Program Specific Outcomes (PSOs)								
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT207.1. Summarize concepts of cell biology	-	1	-	1	2	2	3	-	2	2	3	3	1	2	1
CO2-98BT207.2. Explain the structure and function of biological molecules	-	1	-	-	-	-	3	-	2	2	3	3	3	-	2
CO3-98BT207.3. Analyse enzyme kinetic data and regulation of enzyme activity	-	1	1	1	-	-	3	-	2	2	3	3	1	2	-
CO4-98BT207.4. Identify the key molecules involved in regulation of metabolic pathways and disorders.	-	-	1	-	2	2	3	3	2	2	3	3	2	1	3
CO5-98BT207.5. Understand the basic mechanisms of metabolic pathways	-	-	1	-	-	2	3	3	2	2	3	3	1	1	2
CO6-98BT207.6. Evaluate total generation and consumption of ATP in each metabolic pathway	-	-	1	1	2	2	3	3	2	2	3	3	2	1	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Semester: II Semester Course Code: 98BT207

Course Curriculum:

		Laboratory	Classroom	Self-
		Instruction (LI)	Instruction (CI)	Learning
				(SL)
CO1-98BT207.1. Summarize concepts of cell	SO1.1	LI 1	1.1,1.2,1.3,1.4	1SL-
biology	SO1.2	LI 2		1,2,3
	SO1.3			
	SO1.4			
CO2-98BT207.2. Explain the structure and	SO2.1	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-
function of biological molecules	SO2.2	LI 2	2.5,2.6	1,2,3
	SO2.3	LI 3		
	SO2.4	LI 4		
	SO2.5			
CO3-98BT207.3. Analyse enzyme kinetic data	SO3.1	LI 1	3.1,3.2,3.3,3.4,3.5,	3SL-1,2
and regulation of enzyme activity	SO3.2		3.6	
	SO3.3			
	SO3.4			
CO4-98BT207.4. Identify the key molecules	SO4.1	LI 1	4.1,4.2,4.3,4.4,4.5,	4SL-
involved in regulation of metabolic pathways	SO4.2		4.6,4.7	1,2,3
and disorders. Evaluate total generation and	SO4.3			
consumption of ATP in each metabolic pathway	SO4.4			
CO5-98BT207.5. Understand the basic	SO5.1	LI 1	5.1,5.2,5.3,5.4,5.5,	5SL-1,2
mechanisms of metabolic pathways	SO5.2			
× •	SO5.3			
-	CO2-98BT207.2. Explain the structure and function of biological molecules CO3-98BT207.3. Analyse enzyme kinetic data and regulation of enzyme activity CO4-98BT207.4. Identify the key molecules involved in regulation of metabolic pathways and disorders. Evaluate total generation and consumption of ATP in each metabolic pathway CO5-98BT207.5. Understand the basic	biology SO1.2 SO1.3 SO1.4 CO2-98BT207.2. Explain the structure and SO2.1 function of biological molecules SO2.2 SO2.3 SO2.4 SO2.5 CO3-98BT207.3. Analyse enzyme kinetic data and regulation of enzyme activity SO3.2 SO3.3 SO3.4 CO4-98BT207.4. Identify the key molecules SO4.1 involved in regulation of metabolic pathways and disorders. Evaluate total generation and SO4.3 consumption of ATP in each metabolic pathway CO5-98BT207.5. Understand the basic SO5.1 mechanisms of metabolic pathways SO5.2	biology SO1.2 LI 2 SO1.3 SO1.4 CO2-98BT207.2. Explain the structure and function of biological molecules SO2.1 LI 1 function of biological molecules SO2.2 LI 2 SO2.3 LI 3 SO2.4 LI 4 SO2.5 CO3-98BT207.3. Analyse enzyme kinetic data and regulation of enzyme activity SO3.2 SO3.3 SO3.4 CO4-98BT207.4. Identify the key molecules SO4.1 LI 1 involved in regulation of metabolic pathways and disorders. Evaluate total generation and SO4.3 CO5-98BT207.5. Understand the basic mechanisms of metabolic pathways SO5.2 SO5.1 LI 1 mechanisms of metabolic pathways SO5.2 S	biologySO1.2 SO1.3 SO1.4LI 2 SO1.3 SO1.4CO2-98BT207.2. Explain the structure and function of biological moleculesSO2.1 SO2.2LI 1 LI 2 2.5,2.6CO3-98BT207.3. Analyse enzyme kinetic data and regulation of enzyme activitySO3.1 SO3.2LI 1 SO3.3CO4-98BT207.4. Identify the key moleculesSO4.1 SO4.4LI 1 SO3.3CO4-98BT207.4. Identify the key molecules involved in regulation of metabolic pathways and disorders. Evaluate total generation and consumption of ATP in each metabolic pathways mechanisms of metabolic pathwaysSO5.1 SO5.2LI 1 LI 1CO5-98BT207.5. Understand the basic mechanisms of metabolic pathwaysSO5.2LI 1 LI 1

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology								
Semester	II	Ι							
Course Code:	98EV205	8EV205							
Course title:	Ecology & Environmental Studies Curriculum Developer: Ms. Suman Patel								
Pre-requisite:	The student must have a knowledge about the environmental components, pollution, biodiversity, and ecosystem at senior secondary, Class 12 th level.								
Rationale:	Ecology and environmental science integrate concepts from various disciplines, including biology, chemistry, physics, geography, sociology, and economics. This interdisciplinary approach encourages students to think critically, make connections between different fields of study, and apply their knowledge to real-world problems. It also prepares them for careers in fields such as environmental management, conservation biology, renewable energy, and sustainability.								
Course Outcomes (COs):	 CO1-98EV205.1: Learn about environment and Natural resources. CO2-98EV205.2: Students will learn about natural resources, their importance and environmental impacts of human activities on natural resource. CO3-98EV205.3: Gain knowledge about ecosystems & the conservation of biodiversity and its importance. CO4-98EV205.4: Aware students about problems of environmental pollution, its impact on human and ecosystem and control measures. CO5-98EV205.5: Apply the knowledge to resolve various social & environmental issues. 								

Scheme of Studies:

Board of	Course Code	Course Title	Scheme of studies (Hours/Week)					
Study			Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L: T:P=2:0:0)
HS	98EV205	Ecology & Environmental Studies	2	0	1	2	5	2

Legends:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);
SW: Sessional Work (includes assignment, seminar, mini project etc.);
SL: Self Learning;

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of	Course	Course Title		Scheme of Assessment (Marks)					
Study	Code			Progr	essive Assess	ment (PRA)		End	Total Marks
			Class/Home	Class Test 2	Seminar one	Class	Total Marks	Semester	(PRA+
			Assignment	(2 best out	(SA)	Attendance	(CA+CT+SA+AT)	Assessmen	ESA)
			5 number	of 3)		(AT)		t	
			3 marks each	10 marks each				(ESA)	
			(CA)	(CT)					
HS	98EV205	Ecology & Environmental Studies	15	20	10	5	50	50	100

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including	Approxima	te H	ours			
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning	Item	Cl	LI		SL	
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),	Approx.	06	0	01	02	09
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Hrs					

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
98EV205.1: Learn about environment and Natural resources.	SO1.1: Define the scope and importance of natural resources.	LI1.1: Conduct an experiment to assess the impact of deforestation on soil quality.	CI1.1: Lecture on the definition and importance of natural resources.	SL1.1: Research and write a report on the need for public awareness regarding natural resource conservation.
	SO1.2: Understand the need for public awareness about environmental issues.		CI1.2: Discuss the need for public awareness and its impact on resource conservation.	SL1.2: Develop a presentation on sustainable practices for conserving water resources.
	SO1.3: Identify problems associated with the over- exploitation of forest resources.		CI1.3: Case study analysis on deforestation and its effects.	
	SO1.4: Explain the issues related to water resources, including over-utilization, floods, and droughts.		CI1.4: Group discussion on the benefits and problems of dams.	
	SO1.5: Describe the challenges of land resource management, including land degradation, soil erosion, and desertification.		CI1.5: Lecture on land degradation, soil erosion, and desertification.	
	SO1.6: Discuss the conflicts over water resources and the role of dams in water management.		CI1.6: Interactive session on conflicts over water resources.	

Suggested Sessional	SW1.1 Assignments: Describe in detail components of environment.
Work (SW): anyone	SW1.2Mini Project
,	SW1.3 Other Activities (Specify)

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	0	01	02	09

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
98EV205.2: Students will learn about natural resource, its importance and environmental impacts of human activities on natural resource.	SO2.1: Understand world food problems and their causes.		CI2.1: Lecture on the global food crisis and contributing factors.	SL2.1: Research and write a report on the effects of modern agriculture on food security.
	SO2.2: Discuss the effects of modern agriculture practices.		CI2.2: Group discussion on sustainable agricultural practices.	SL2.2: Develop a presentation on the benefits and challenges of alternate energy sources.
	SO2.3: Explain the problems associated with fertilizer and pesticide use.		CI2.3: Case study analysis on the environmental impact of fertilizers and pesticides.	
	SO2.4: Identify the uses and environmental effects of extracting and using mineral resources.		CI2.4: Lecture on the exploitation of mineral resources and its environmental consequences.	
	SO2.5: Describe the growing energy needs and the role of renewable and non-renewable energy sources.		CI2.5: Discussion on the comparison between renewable and non- renewable energy sources.	

SO2.6: Explain the role of individuals in conserving natural resources and promoting equitable use for sustainable lifestyles.	CI2.6: Interactive session on the role of individuals in resource conservation.	
--	---	--

Suggested Sessional Work (SW): anyone	SW2.1 Assignments: Discuss the roll of an individual in conservation of natural resources.
	SW2.2 Mini Project
	SW2.3 Other Activities (Specify)

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	0	01	03	10

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
98EV205.3: Gain knowledge about ecosystem and the conservation of biodiversity and its importance.	SO3.1: Understand the concept of an ecosystem and its components.		CI3.1: Lecture on the structure and function of ecosystems.	SL3.1: Research and prepare a report on the value of biodiversity at global and local levels.
	SO3.2: Describe the structure and function of different ecosystems.		CI3.2: Discussion on energy flow and ecological succession in ecosystems.	SL3.2: Create a presentation on the types and characteristics of terrestrial and aquatic ecosystems.
	SO3.3: Explain energy flow and ecological succession in ecosystems.		CI3.3: Case study analysis of food chains, food webs, and ecological pyramids.	SL3.3: Write an essay on the threats to biodiversity and conservation strategies.
	SO3.4: Identify food chains, food webs, and ecological pyramids.		CI3.4: Lecture on food chains, food webs, and ecological pyramids.	
	SO3.5: Understand the diversity of ecosystems and their classification.		CI3.5: Presentation on the biogeographical classification of India.	
	SO3.6: Discuss the threats to biodiversity and conservation strategies.		CI3.6: Interactive session on endangered and endemic species of India.	

Suggested Sessional Work	SW3.1 Assignments: Describe the structure of pond ecosystem.
(SW): anyone	SW2.2 Mini Project
	SW2.3 Other Activities (Specify)

Item	Cl	LI	SW	SL	Total
Approx.Hrs	06	0	01	02	9

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
98EV205.4: Aware students about problems of environmental pollution, its impact on human and ecosystem and control measures.	SO4.1: Define various types of pollution and their causes.		CI4.1: Lecture on the definition, causes, and effects of air and water pollution.	SL4.1: Research and write a report on the effects of noise and thermal pollution.
	SO4.2: Explain the effects and control measures of air and water pollution.		CI4.2: Discussion on control measures for air and water pollution.	SL4.2: Develop a presentation on solid waste management strategies.
	SO4.3: Describe the causes and effects of soil, marine, and noise pollution.		CI4.3: Case study analysis on soil and marine pollution.	SL4.3: Write an essay on the role of individuals in preventing pollution.
	SO4.4: Discuss control measures for soil, marine, and noise pollution.		CI4.4: Lecture on control measures for noise and marine pollution.	
	SO4.5: Understand the role of solid waste management in urban and industrial contexts.		CI4.5: Group discussion on urban and industrial waste management practices.	
	SO4.6: Review disaster management strategies for floods, earthquakes, cyclones, and landslides.		CI4.6: Interactive session on disaster management and case studies.	

Suggested Sessional Work	SW4.1 Assignments: Discuss the effects of air pollution on plants, humans, animals and environment
(SW): anyone	SW4.2 Mini Project
	SW4.3 Other Activities (Specify)

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	0	01	02	09

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
98EV205.5: Apply the knowledge to resolve various social & environmental issues.	SO5.1: Understand the principles of sustainable development.		CI5.1: Lecture on the concept and principles of sustainable development.	SL5.1: Research and write a report on urban problems related to energy and water conservation.
	SO5.2: Explain water conservation methods including rainwater harvesting and watershed management.		CI5.2: Discussion on rainwater harvesting and watershed management techniques.	SL5.2: Develop a presentation on the resettlement and rehabilitation of people and its associated problems.
	SO5.3: Discuss environmental ethics and possible solutions.		CI5.3: Interactive session on environmental ethics and possible solutions.	SL5.3: Write an essay on the impact of climate change and global warming.
	SO5.4: Describe the impacts of climate change, global warming, and acid rain.		CI5.4: Lecture on climate change, global warming, acid rain, and ozone layer depletion.	
	SO5.5: Identify the causes and effects of ozone layer depletion and nuclear accidents.		CI5.5: Case study analysis on nuclear accidents and their environmental impact.	
	SO5.6: Understand environmental legislation and the importance of public awareness.		CI5.6: Discussion on environmental legislation and public awareness strategies.	

Suggested Sessional Work (SW): anyone	SW5.1 Assignments: Explain rainwater harvesting system.
	SW5.2 Mini Project
	SW5.3 Other Activities (Specify)

Course Duration (in Hours) to Attain Course Outcomes

Course Title: Ecology & Environmental Studies

Course Code:98EV205

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98EV205.1: Learn about environment and Natural resources	6	0	2	1	9
CO2-98EV205.2: Students will learn about natural resource, its importance and environmental impacts of human activities on natural resource	6	0	2	1	9
CO3-98EV205.3: Gain knowledge about ecosystem & the conservation of biodiversity and its importance	6	0	3	1	10
CO4-98EV205.4: Aware students about problems of environmental pollution, its impact on human and ecosystem and control measures	6	0	2	1	9
CO5-98EV205.5: Apply the knowledge to resolve various social & environmental issues	6	0	2	1	9
Total Hours	30	0	11	05	46

End Semester Assessment Scheme for Setting Up Question Paper and Assessment to Evaluate the Course Outcome

Course Title: Ecology & Environmental Studies

Course Code: 98EV205

Course Outcomes	Ι	Ma Distril	Total Marks		
	Α	An	Ε	С	
CO1-98EV205.1: Learn about environment and Natural resources.	2	1	1	1	5
CO2-98EV205.2: Students will learn about natural resources, its importance and environmental impacts of human activities on natural resource.	2	4	2	2	10
CO3-98EV205.3: Gain knowledge about ecosystem & the conservation of biodiversity and its importance.	2	3	3	2	10
CO4-98EV205.4: Aware students about problems of environmental pollution, its impact on human and ecosystem and control measures.	3	5	5	2	15
CO5-98EV205.5: Apply the knowledge to resolve various social & environmental issues.	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend: A: apply; An: analyze, E: evaluate, C: create

Suggested learning Resources:

(a) Books:

S. No.	Title/Author/Publisher details
1	A textbook of Environmental Studies, Erach Bharucha, UGC Publication Delhi
2	A textbook of Environmental science: Purohit Shami & Agrawal, Agrobios Student edition Jaipur
3	A textbook of Environmental Studies: Kaushi & Kaushik New age International Publication
4	Paryavaran Addhyan: MP Hindi Granth Academy

(b) Online Resources:

- 1. Khan Academy Ecology: Khan Academy Ecology Course
- 2. National Geographic Environment: National Geographic Environment

3. Coursera - Ecology and Environmental Science Courses: Coursera Ecology Courses

(c) Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: B.Tech. Biotechnology

Course Title: Ecology & Environmental Studies

Semester: II Semester Course Code: 98EV205

Course Outcomes (COs)	Prog	ram O	utcome	es (POs	š)								Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98EV205.1: Learn about environment and Natural resources.	3	3	2	2	1	1	2	1	2	1	1	1	3	2	2
CO2-98EV205.2: Students will learn about natural resource, its importance and environmental impacts of human activities on natural resource.	3	3	2	3	2	2	3	2	2	1	2	1	3	2	3
CO3-98EV205.3: Gain knowledge about ecosystem & the conservation of biodiversity and its importance.	3	3	2	3	2	2	3	2	2	1	2	1	3	3	3
CO4-98EV205.4: Aware students about problems of environmental pollution, its impact on human and ecosystem and control measures.	3	3	3	3	3	3	3	3	2	2	3	2	3	3	3
CO5-98EV205.5: Apply the knowledge to resolve various social & environmental issues.	3	3	3	3	3	3	3	3	2	3	3	2	3	3	3

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5 PSO 1,2,3	CO1-98EV205.1: Learn about environment and Natural resources.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		1.1,1.2,1.3,1.4,1.5, 1.6, 1.7, 1.8, 1.9	1SL- 1,2,3,4,5
PO 1,2,3,4,5 PSO 1,2,3	CO2-98EV205.2: Students will learn about natural resource, its importance and environmental impacts of human activities on natural resource.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	2SL- 1,2,3,4,5
PO 1,2,3,4,5 PSO 1,2,3	CO3-98EV205.3: Gain knowledge about ecosystem & the conservation of biodiversity and its importance.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		3.1,3.2,3.3,3.4,3.5, 3.6, 3.7, 3.8	3SL- 1,2,3,4,5
PO 1,2,3,4,5 PSO 1,2,3	CO4-98EV205.4: Aware students about problems of environmental pollution, its impact on human and ecosystem and control measures.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		4.1,4.2,4.3,4.4, 4.5, 4.6, 4.7, 4.8, 4.9	4SL- 1,2,3,4,5
PO 1,2,3,4,5 PSO 1,2,3	CO5-98EV205.5: Apply the knowledge to resolve various social & environmental issues.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6 SO5.7 SO5.8		5.1,5.2,5.3,5.4,5.5, 5.6, 5.7, 5.8	5SL- 1,2,3,4,5

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology						
Semester	Π						
Course Code:	98ME206	98ME206					
Course title:	Engineering Drawing	Curriculum Developer: Er. Alok Ranjan Tiwari					
Pre-requisite:	Student should have basic knowledge of Geometry, Geometrical Shapes, basic knowledge of Computer, Mouse and keyboard use, navigating menus and dialogs, managing files and directories, etc.						
Rationale:	The students studying Graphics are essential in mechanical engineering, allowing engineers to visualize and communicate complex ideas clearly and concisely. Using graphics, engineers can create detailed plans for construction projects, analyses structural components, and convey design concepts to clients and stakeholders.						
Course Outcomes (COs):	CO2-98ME206.2. Know and use common CO3-98ME206.3. Apply computer aided of viewpoints. CO4-98ME206.4. Produce part models; co using animation.	ngineering Graphics and visual aspects of design. In drafting tools with the knowledge of drafting standards. drafting techniques to represent line, surface or solid models in different Engineering arry out assembly operation and show working procedure of a designed project work understand the viewing perception of a solid object in Isometric and perspective tion by Auto CAD					

Scheme of Studies:

				S				
Board of Study	CourseCode	CourseTitle	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)
ESC	98ME206	Engineering Drawing	2	0	1	1	4	1+1=2

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others).

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies). SW: Sessional Work (includes assignment, seminar, mini project etc.).

SL: Self Learning.

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of		Course Title		Scheme of Assessment (Marks)						
Study	Code			Progressive Assessment (PRA)					End	Total Marks
			Assignment	2 (2 best out	(SA)	Class Activity (CAT)		Total Marks (CA+CT+CAT+S A+AT)	Semester Assessment (ESA)	(PRA+ ESA)
ESC	98ME206	Engineering Drawing	15	20	5	5	5	50	50	100

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction	Approximate	Hrs				
including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self	Item	Cl	LI	SW	SL	Total
Learning (SL). As the course progresses, students should showcase their mastery of Session	Approx.Hrs	6	0	01	02	09
Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the						
course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-98ME206.1. Get introduced with Engineering Graphics and visual aspects of design.	SO1.1: Understand the concept and applications of representative factor scales.		CI1.1: Lecture on the representative factor and its applications in scales.	SL1.1: Research and prepare a report on the different types of scales used in engineering drawing.

SO1.2: Learn the construction techniques of plain scales.	CI1.2: Demonstrate the construction of plain scales.	SL1.2: Develop a presentation on the importance and applications of plain scales.
SO1.3: Understand diagonal scales and their usage.	CI1.3: Discuss the construction and use of diagonal scales.	
SO1.4: Learn to construct scales of chords.	CI1.4: Lecture on the construction and use of scales of chords.	
SO1.5: Understand the construction of ellipse, parabola, and hyperbola by different methods.	CI1.5: Discuss different methods for constructing ellipse, parabola, and hyperbola.	
SO1.6: Learn to draw normal and tangent lines to conic sections.	CI1.6: Lecture on constructing normal and tangent lines to ellipse, parabola, and hyperbola.	

Suggested Sessional Work (SW):	SW1.1 Assignments	Ellipes by concentric circle method, Cycloid, Involutes of Circle
anyone	SW1.2Mini Project	Model of Hexagon, Pentagon, Square

Item	Cl	LI	SW	SL	Total
Approx.Hrs	6	0	01	02	09

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO2-98ME206.2. Know and use common drafting tools with the knowledge of drafting standards.	SO2.1: Understand the different types of projection.		CI2.1: Lecture on the types of projection and their applications.	SL2.1: Research and write a report on the historical development of projection techniques.
	SO2.2: Learn the principles of orthographic projection.		CI2.2: Demonstrate the process of creating orthographic projections.	SL2.2: Develop a presentation comparing first and third angle projection methods.
	SO2.3: Differentiate between first and third angle projection.		CI2.3: Discussion on the differences between first and third angle projections.	
	SO2.4: Understand the projection of points and lines.		CI2.4: Lecture on projecting points and lines in different planes.	
	SO2.5: Learn to project a line inclined to one plane.		CI2.5: Demonstrate the projection of lines inclined to one plane.	
	SO2.6: Understand the projection of a line inclined to both planes.		CI2.6: Interactive session on projecting lines inclined to both planes.	

Suggested Sessional Work (SW):	SW2.1	Draw Projection of point & Projection of Straight Line
anyone	Assignments	
	SW2.2Mini Project	Make a project on different first & Third angle projection

ſ	Item	Cl	LI	SW	SL	Total
	Approx. Hrs	06	00	01	02	09

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)
		(LI)	(CI)	
CO3-98ME206.3. Apply computer aided drafting techniques to represent line, surface or solid models in different engineering viewpoints.	SO3.1: Understand the projection of planes such as circles and polygons in different positions.	-	CI3.1: Lecture on the principles of projecting planes in different positions.	SL3.1: Research and create a report on the applications of plane projections in engineering.
	SO3.2: Learn to project polyhedrons like prisms in different positions.	-	CI3.2: Demonstrate the projection techniques for prisms.	SL3.2: Develop a presentation on the significance of prism projections in technical drawing.
	SO3.3: Understand the projection of pyramids in various orientations.	-	CI3.3: Discussion on the methods for projecting pyramids.	
	SO3.4: Learn the projection techniques for solids of revolution such as cylinders.	-	CI3.4: Lecture on projecting cylinders in different positions.	
	SO3.5: Understand the projection of cones in various orientations.	-	CI3.5: Demonstrate the projection methods for cones.	
	SO3.6: Apply knowledge of projecting different solids in practical scenarios.	-	CI3.6: Interactive session on the applications of projections of solids in engineering and design.	

Suggested	SW3.1 Assignments	Draw three problems of projection of plane
Sessional Work	SW3.2 Mini Project	Make models of plane and solid by thermocol
(SW): anyone		

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	02	09

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO4-98ME206.4. Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	SO4.1: Understand the sectioning of right solids by normal planes.		CI4.1: Lecture on the principles of sectioning right solids with normal planes.	SL4.1: Research and write a report on the applications of solid sectioning in engineering.
	SO4.2: Learn to section right solids using inclined planes.		CI4.2: Demonstrate sectioning techniques for right solids with inclined planes.	SL4.2: Develop a presentation on the importance of inclined plane sectioning in design.
	SO4.3: Understand the intersection of cylinders.		CI4.3: Discussion on the methods for determining the intersection of cylinders.	
	SO4.4: Learn the development of surfaces using the parallel line method.		CI4.4: Lecture on the parallel line method for surface development of right solids.	
	SO4.5: Understand the radial line method for surface development.		CI4.5: Demonstrate the radial line method for developing surfaces of right solids.	
	SO4.6: Apply knowledge of sectioning and surface development in practical scenarios.		CI4.6: Interactive session on the applications of sectioning and surface development in engineering and design.	

Suggested	SW4.1	Develop prism and cylinder
Sessional Work	Assignments	
(SW): anyone	SW4.2 Mini Project	Develop pyramid and Cone

Item		Cl	LI	SW	SL	Total
Appro	x. Hrs	06	00	01	02	09

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5-98ME206.5 To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto CAD	SO5.1: Understand the concept of isometric scale and isometric axes.		CI5.1: Lecture on isometric scale, axes, and their applications.	SL5.1: Research and write a report on the historical development and applications of isometric projections.
	SO5.2: Learn to create isometric projections from orthographic drawings.		CI5.2: Demonstrate the process of converting orthographic drawings to isometric projections.	SL5.2: Develop a presentation on the significance of isometric projections in engineering design.
	SO5.3: Introduction to Computer Aided Drafting (CAD). SO5.4: Understand the basic commands of CAD software.		 CI5.3: Lecture on the benefits and applications of CAD in engineering. CI5.4: Demonstrate basic drafting commands in CAD such as line, circle, polygon. 	
	SO5.5: Learn transformations and editing commands in CAD. SO5.6: Apply CAD skills to solve projection problems.		CI5.5: Lecture on transformation and editing commands like move, rotate, mirror, array. CI5.6: Interactive session on solving projection problems using CAD.	

Suggested Sessional Work (SW): SW5.1 Assignments		Draw Isometric view of a cone resting centrally on a cube		
anyone SW5.2 Mini Project		Drawing of different orthographic view of planes and solid by Auto CAD		
		commands		

Course duration (in hours) to Attain Course Outcomes

Course Title: Bioprocess Equipment Design

Course Code:98ME206

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98ME206.1. Get introduced with Engineering Graphics and visual aspects of design.	6	0	2	1	9
CO2-98ME206.2. Know and use common drafting tools with the knowledge of drafting standards.	6	0	2	1	9
CO3-98ME206.3. Apply computer aided drafting techniques to represent line, surface or solid models in different engineering viewpoints.	6	0	2	1	9
CO4-98ME206.4. Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	6	0	2	1	9
CO5-98ME206.5. To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto CAD	6	0	2	1	9
Total Hours	30	00	10	5	45

End semester Assessment Scheme for Setting up Question Paper and Assessment to Evaluate the Course Outcome

Course Title: Engineering Drawing

Course Code:98ME206

Course Outcomes		Marks D	Distributio)n	- Total Marks
	Α	An	Е	С	Total Marks
CO1-98ME206.1. Get introduced with Engineering Graphics and visual aspects of design.	2	1	1	1	5
CO2-98ME206.2. Know and use common drafting tools with the knowledge of drafting standards.	2	4	5	1	12
CO3-98ME206.3. Apply computer aided drafting techniques to represent line, surface or solid models in different engineering viewpoints.	3	5	5	1	14
CO4-98ME206.4. Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	2	3	5	1	11
CO5-98ME206.5. To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto CAD	2	4	1	1	10
Total Marks	11	17	17	05	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

CO, PO and PSO Mapping

Program Name: B.Tech. Biotechnology

Semester: II Semester Course Code: 98ME206

Course	Title:	Enginee	ring	Drawing
Course	I IUICI	Linginiee	a mg	Draming

Course Outcomes (COs)	-	am Ou	itcome	s (POs)									0	m Specif	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	nes (PSO PSO2	s) PSO3
CO1-98ME206.1. Get	101	102	105	104	105	100	107	100	10)	1010	1011	1012	1501	1502	1505
introduced with		-							-						
Engineering Graphics and	3	2	2	1	2	1	1	1	2	1	1	1	3	2	2
visual aspects of design.															
CO2-98ME206.2. Know															
and use common drafting	3	3	2	1	2	1	1	1	2	1	1	1	3	2	2
tools with the knowledge	5	5	2	1	2	1	1	1	2	1	1	1	5	Ζ.	Z
of drafting standards.															
CO3-98ME206.3. Apply															
computer aided drafting															
techniques to represent	3	3	3	2	3	2	2	1	2	1	2	2	3	3	3
line, surface or solid	Ũ	U	U	_	U	-	-	-	_	-	-	_	U	U	U
models in different															
engineering viewpoints. CO4-98ME206.4. Produce															
part models; carry out															
assembly operation and															
show working procedure of	3	3	3	3	3	3	3	1	3	2	3	2	3	3	3
a designed project work															
using animation.															
CO5-98ME206.5. To															
make the student															
understand the viewing															
perception of a solid object	3	3	3	3	3	2	2	2	3	2	3	2	3	3	3
in Isometric and	3	3	3	3	3	Z	Z	Z	3	2	3	2	3	3	3
perspective Projection,															
Design modulation and															
simulation by Auto CAD	·					r. 1. 0									

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum Map

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6 PSO 1,2, 3	CO1-98ME206.1 Get introduced with Engineering Graphics and visual aspects of design.	SO1.1 SO1.2 SO1.3 SO1.4		1.1,1.2,1.3,1.4,1.5,1.6	1SL-1,2
PO 1,2,3,4,5,6 PSO 1,2, 3	CO2-98ME206.2 Know and use common drafting tools with the knowledge of drafting standards.	SO2.1 SO2.2 SO2.3 SO2.4		1.1,1.2,1.3,1.4,1.5,1.6	2SL-1,2
PO 1,2,3,4,5,6 PSO 1,2, 3	CO3-98ME206.3 Apply computer aided drafting techniques to represent line, surface or solid models in different engineering viewpoints.	SO3.1 SO3.2		1.1,1.2,1.3,1.4,1.5,1.6	3SL-1,2
PO 1,2,3,4,5,6 PSO 1,2, 3	CO4-98ME206.4 Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	SO4.1 SO4.2 SO4.3		1.1,1.2,1.3,1.4,1.5,1.6	4SL-1,2
PO 1,2,3,4,5,6 PSO 1,2, 3	CO5-98ME206.5 To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto CAD	SO5.1 SO5.2 SO5.3		1.1,1.2,1.3,1.4,1.5,1.6	5SL-1,2

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Computer Aided Engg drawing, VTU Belgaum, Visvesvaraya Tech. University
2	Engineering Drawing, Bhatt N.D., Panchal V.M. & Ingle P.R., Charotar Publishing House
3	Engineering Drawing, R.K. Dawan, S. Chand Publication.
4	Engineering Drawing, Agrawal and Agrawal, TMH

(b) Online Resources:

- 1. Online Resource for Ecology and Environment Ecology and Environmental Science by The Nature Conservancy
- 2. Online Resource for Ecology and Environment EPA's Environmental Education
- 3. Online Resource for Ecology and Environment National Geographic's Environment Section

(c) Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to Beverage producing plants & Distillery/Fermenter units
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

Program Name	Bachelor of Technology (B.Tech.)- Biote	echnology			
Semester	II				
Course Code:	98PH203				
Course title:	Engineering Physics	Curriculum Developer: Dr. O.P. Tripathi, and Mr. Saket Kumar			
Pre-requisite:		ents should be familiar with the fundamentals of Wave Mechanics laser & fiber optics, Quantum Mechanics, Solid State sics & Superconductivity, and Nano Technology.			
Rationale:	Superconductivity, and Nano Technology These fields are essential in optics, aco	we Mechanics, Laser & Fiber Optics, Quantum Mechanics, Solid State Physics & to understand their impact on modern technology and scientific advancement. ustics, quantum mechanics, telecommunications, medical imaging, and more. s to contribute to cutting-edge research and innovation.			
Course Outcomes (COs):	CO1-98PH203.1: Through this chapter st and biomechanics to the modern concepts.	rudents are brought to learn about historical development of optics, atomic physics			
	CO2-98PH203.2: Explain the concept of	coherence and its importance in laser operation and optical fiber communication.			
	CO3-98PH203.3: Quantum mechanics m	ath covers operators, eigenvalues, eigenvectors, phase, group velocities, uncertainty			
	principle, Debroglie's matter waves, Schroeffect.	odinger's wave equation, wave function interpretation, eigenvalues, and Compton's			
	CO4-98PH203.4: Evaluate current resear	ch topics and advancements in solid-state physics and superconductivity, including			
	high-temperature superconductors, topolog	gical superconductors, and quantum computing applications.			
	CO5-98PH203.5: Investigate the applic	ations of nanotechnology in various fields, including electronics, nanorobotics,			
	quantum computing, space energy, DNA r	nanipulation, biomedical engineering, polymers, textiles, and nano composites.			

Scheme of Studies:

Board of	Course	Course Title		Total Credits				
Study	Code		Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C) (L+T+P)
ESC	98PH203	Engineering Physics	3	2	1	2	8	4

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e., Lecture (L) and Tutorial (T) and others), **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacher to ensure outcome of Learning.

Scheme of Assessment: Theory

				Scher	ne of Asse	essment (N	Iarks)			
Board of Study	Course Code	Course Title		Р		Assessme	nt (PRA)		End Semester	Total
Study			Class/Home Assignment 5 number 3 marks each (CA)	Class Test2 (2 best out of 3) 10 marks each (CT)	Semina r one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	Assessment (ESA)	Marks (PRA+ ESA)
ESC	98PH203	Engineering Physics	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus outlines the expected learning outcomes that students should achieve through						
different modes of instruction, such as classroom instruction (CI), laboratory instruction (LI),	-	CI	LI	SW	SL	Total
sessional work (SW), and self-learning (SL), at both the course and session levels. Students should	Approx	12	04	01	02	19
demonstrate their mastery of Session Outcomes (SOs) as the course proceeds, which will lead to	Hrs					
their overall attainment of Course Outcomes (COs) at the end of the course.		•				

Course Outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
98PH203.1: Through this chapter students are brought to learn about historical development of	SO 1.1: Understanding interference, coherent sources, and the principle of superposition for various applications in physics, optics, acoustics, and engineering.	LI 1.1: Demonstration of coherent sources and superposition principles.	CI 1.1: Explanation of interference, coherent sources, and principle of superposition.	SL 1.1: Study historical experiments on interference and superposition principles.
optics, atomic physics and biomechanics to the modern concepts.	SO 1.2: Design and analyze interference-based devices, such as interferometers, for precision measurements.	LI 1.2: Demonstration of different types of interference.	CI 1.2: Discussion on types of interference and their practical applications.	SL 1.2: Research practical applications of interference in various fields.
	SO 1.3: Experimental explanation about interference from parallel thin films. SO 1.4: Experimental explanation about wedge-shaped films.		CI 1.3: Study the effects of parallel thin films on interference patterns. CI 1.4: Explanation of interference in wedge- shaped films and related	
	SO 1.5: Experimental explanation about Newton's rings and Michelson's Interferometer, and their applications.		Cl 1.5: Detailed study of Newton's rings and Michelson's Interferometer.	
	SO 1.6: Introduce Fresnel diffraction, diffraction at a straight edge, and diffraction at double and n-slits.		CI 1.6: Explanation of Fresnel diffraction and its mathematical formulations.	

SO 1.7: Explain the dispersive and resolving power of diffraction gratings and prisms.	CI 1.7: Study the principles behind diffraction gratings and resolving power calculations.
SO 1.8: Explain the production of plane-polarized light by different methods.	CI 1.8: Explanation of polarization and polarizing materials.
SO 1.9: Discuss Brewster's law, Malus's law, and double refraction.	Cl 1.9: Detailed explanation of Brewster's and Malus's laws and their applications.
SO 1.10: Explain double refraction using Nicol prism.	Cl 1.10: Discuss the phenomenon of double refraction and the use of Nicol prisms.
SO 1.11: Explain quarter and half- wave plates.	CI 1.11: Explanation of phase retardation using quarter and half-wave plates.
SO 1.12: Explain the components and function of a polarimeter.	Cl 1.12: Explanation of polarimeter components and calibration procedures.

SW-1	SW-1 Suggested Sessional Work (SW):
Suggested	A. Assignments:
Sessional	1. Explain the phenomenon of wave reflection and calculate the reflection coefficient for a given interface.
Work	2. Wave Equation Problems:
(SW)	a. Derive the wave equation for a traveling wave on a string under tension.
	b. Solve the wave equation to find the general solution for a harmonic wave propagating in one dimension.
	c. Investigate the behavior of standing waves on a vibrating string and determine the node and antinode positions.
	d. Analyze the properties of electromagnetic waves and relate them to Maxwell's equations.

Mini Project: Develop computational models to study wave interference, diffraction, and scattering effects in complex geometries and materials.

Other Activities (Specific):

BS-101.2: Explain the concept of coherence and its importance in laser operation and optical fiber communication.

Item	CI	LI	SW	SL	Total
Approx Hrs	09	04	01	01	16

Course Outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
98PH203.2: Explain the concept of coherence and its importance in laser operation and optical fiber communication.	SO 2.1: Understand LASER principles, including absorption, stimulated and spontaneous emission, coherence, pumping, and population inversion.	LI 2.1: Conduct hands- on experiments to demonstrate LASER principles, such as: LASER beam propagation and divergence	CI 2.1: Define LASER (Light Amplification by Stimulated Emission of Radiation) and its basic principles.	SL 2.1: Emphasize the importance of proper training, handling, and maintenance of LASER systems.
	SO 2.2: Discuss the coherence, directionality, and monochromaticity of laser light.		CI 2.2: Explanation of coherence, directionality, and monochromaticity of laser light.	
	SO 2.3: Provide a mathematical explanation of Einstein's coefficients.		CI 2.3: Discussion on the significance of Einstein's coefficients in LASER operations.	
	SO 2.4: Explain the principle and working of He-Ne and Ruby lasers with energy level diagrams.		CI 2.4: Detailed study of the working principles of He-Ne and Ruby lasers.	

SO 2.5: Provide fundamental ov optical fibers an	erview of	CI 2.5: Explanation of different types of optical fibers and their applications.	
SO 2.6: Explain of total internal (TIR) and its sign optical fiber tra	reflection in activities su nificance in measuring nur	ch as and its role in optical fibers. yzing , and oupling reinforce ncepts	
SO 2.7: Explain each componer transmitting, re processing optic	t in ceiving, and	Cl 2.7: Discussion on optical communication system components and their functions.	
SO 2.8: Explore applications of communication telecommunica data networking	practical optical , including tions and	CI 2.8: Discussion on emerging applications in fiber-optic sensing, biomedical imaging, and quantum communication.	
SO2.9: Apply d techniques to so world problems	lve real-	CI2.9: Discussion on the applications of differentiation in various fields.	

SW-2 Suggested Sessional	SW2.1 Assignments:
Work (SW)	• Determine the equation of motion for system
	• What would be the steady state of solution.
	SW2.2 Other Activities (Specific):

Item	CI	LI	SW	SL	Total
Approx Hrs	10	04	01	02	19

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instructions	Classroom Instruction	Self-Learning (SL)
		(LIs)	(CIs)	
CO3-98PH203.3: Quantum mechanics math covers operators, eigenvalues, eigenvectors, phase, group velocities,	SO 3.1: Explain the difference between phase velocity and group velocity.	LI 3.1: Conduct experiments to measure phase and group velocities using wave packets.	Cl 3.1: Explain the relationship between phase velocity and group velocity.	
uncertainty principle, Debroglie's matter waves, Schrodinger's wave equation, wave function interpretation, eigenvalues, and Compton's effect.	SO 3.2: Explain the uncertainty principle with elementary proof and applications.	LI 3.2: Provide opportunities for students to practice calculating uncertainty relations and interpreting their physical meaning in different scenarios.	CI 3.2: Discussion on the commutator relationship and its implications for position and momentum uncertainties.	SL 3.1: Research historical experiments demonstrating the uncertainty principle.
	SO 3.3: Present de Broglie's concept of matter waves.		CI 3.3: Explain de Broglie's equation: $\lambda = h / p$, where h is Planck's constant.	SL 3.2: Explore applications of matter waves in modern physics.
	SO 3.4: Explain Schrödinger's wave equation (time- dependent and time- independent).		CI 3.4: Explain the significance of the time- independent Schrödinger equation: ĤΨ = EΨ.	
	SO 3.5: Discuss the interpretation of wave functions and the matching of impedances.		CI 3.5: Classroom discussion on the interpretation of wave functions in quantum mechanics.	
	SO 3.6: Present the mathematical definition of eigenvalues and eigenfunctions.		CI 3.6: Explain the role of eigenvalues and eigenfunctions in linear transformations and operators.	

SO 3.7: Derive the	CI 3.7: Discuss the
Compton shift formula	implications of the
using relativistic energy	Compton effect in
and momentum	quantum mechanics and
conservation principles.	particle physics.
SO 3.8: Discuss the	CI 3.8: Explain quantum
concept of quantum	tunneling, its principles,
tunneling and its	and its significance in
applications.	quantum mechanics.
SO 3.9: Explain the	CI 3.9: Discuss the
concept of wave-particle	historical context and
duality.	significance of wave-
	particle duality in
	quantum mechanics.
SO3.10 Assessment and	CI 3.10: Assessment and
revision	revision

SW-3 Suggested Sessional	SW 3.1: Assignments In the double-hole experiment using white light, consider two points on the
Work (SW) (anyone)	projection screen, one corresponding to a path difference of 5000 Å (point A), and the other corresponding to a path difference of 40,000 Å (point B).
	Find all the wavelengths (in the visible region) which correspond to constructive and destructive interference at point A and B.
	SW3.2 Mini Project: Discuss how Compton scattering is used in Compton cameras for gamma-ray imaging, electron microscopy, and spectroscopy techniques.
	SW3.3 A. Other Activities: Discuss limitations of the classical Compton shift formula and extensions to the theory, such as the Klein-Nishina formula for higher-energy photons and
	relativistic corrections.

Item	CI	LI	SW	SL	Total
Approx Hrs	08	04	01	04	13

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LIs)	Classroom Instruction (CIs)	Self-Learning (SLs)
98PH203.4: Evaluate current research topics and advancements in solid-state physics and superconductivity, including high- temperature superconductors, topological superconductors, and	SO 4.1: Define energy bands as ranges of allowed energy levels for electrons in solids.	LI 4.1: Conduct interactive demonstrations to illustrate energy bands using models or simulations.	Cl 4.1: Explain the formation of energy bands in solids due to the periodic arrangement of atoms.	SL 4.1: Research historical developments in solid-state physics and energy band theory.
quantum computing applications.	SO 4.2: Introduce the concept of classification of matter based on properties.	LI 4.2: Conduct activities categorizing various materials based on their properties.	Cl 4.2: Discuss the importance of classifying matter in physics and materials science.	SL 4.2: Explore different classifications of matter and their significance.
	SO 4.3: Explain the concept of the band gap in semiconductors.		Cl 4.3: Discuss the role of band gaps in determining the electrical properties of semiconductors.	
	SO 4.4: Introduce PN junction diodes and Zener diodes, including their I-V characteristics.		CI 4.4: Explain how Zener diodes operate in the breakdown region and illustrate the I-V characteristics of PN junction diodes.	
	SO 4.5: Define a tunnel diode and its characteristics.		CI 4.5: Explain the concept of negative differential resistance (NDR) in tunnel diodes.	

SO 4.6: Introduce the Hall effect and its applications.	CI 4.6: Explain the Hall coefficient and its significance in understanding the Hall effect.	
SO 4.7: Explain the distinctions between Type-I and Type-II superconductors.	CI 4.7: Discuss the characteristics of superconductors and the Meissner effect.	
SO 4.8: Discuss pract applications of superconductivity.	ical CI 4.8: Explain various applications of superconductors in technology and medicine.	

SW- 4 Suggested Sessional Work (SW) (anyone)	 SW 4.1 Assignments Explore the applications of P-N junction diodes in electronic circuits, including rectification, signal detection, and voltage regulation.
	• Provide examples of practical applications of the Hall effect in devices such as Hall sensors, magnetic field sensors, and magnetic flux measurement systems. Discuss the advantages and limitations of using the Hall effect for these purposes
	SW4.2 Mini Project
	SW4.3 Other Activities
	 Engage students in circuit analysis exercises involving PN junction diodes and Zener diodes, challenging them to design and analyze simple diode circuits. Conduct hands-on experiments to demonstrate the Hall effect using a Hall probe and magnetic field source, allowing students to observe the generation of Hall voltage in real-time.

Item	CI	LI	SW	SL	Total	
Approx Hrs	9	4	01	4	18	

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-learning
98PH203.5: Investigate the applications of nanotechnology in various fields, including electronics, nanorobotics, quantum computing, space energy, DNA manipulation, biomedical	SO 5.1: Understand the concept of nanotechnology and its significance in various fields.	LI 5.1: Conduct experiments to demonstrate nanoscale properties using nanomaterials.	Cl 5.1: Explain the fundamentals of nanotechnology, including concepts of quantum dots, quantum wires, and quantum wells.	SL 5.1: Research the historical development of nanotechnology and its implications in various fields.
engineering, polymers, textiles, and nano composites.	SO 5.2: Discuss the unique properties of materials at the nanoscale compared to bulk materials.	LI 5.2: Perform comparative analysis of the properties of bulk and nanoscale materials.	Cl 5.2: Discuss how size and structure affect the properties of materials at the nanoscale.	SL 5.2: Explore literature on the unique behaviors of nanoscale materials.
	SO 5.3: Describe different types of nanomaterials, including nanoparticles, nanowires, nanotubes, and nanocomposites.		CI 5.3: Explain the differences between various nanomaterials and their specific properties and applications.	SL 5.3: Investigate the applications of different types of nanomaterials in industry.
	SO 5.4: Explore techniques used for the preparation of nanomaterials and nanofibers.		Cl 5.4: Discuss various methods for synthesizing nanomaterials and their importance in nanotechnology.	SL 5.4: Research advancements in preparation techniques for nanomaterials.
	SO 5.5: Explain characterization techniques for nanomaterials using XRD and SEM.		CI 5.5: Discuss the principles and applications of XRD and SEM in analyzing nanomaterials.	

SO 5.6: Discuss potential applications of nanotechnology in medicine and electronics.	CI 5.6: Explain the impact of nanotechnology on fields like drug delivery and DNA sequencing.
SO 5.7: Explore the role of nanotechnology in environmental remediation.	CI 5.7: Discuss case studies on the use of nanotechnology for water purification and air filtration.
SO 5.8: Investigate the future trends in nanotechnology and its implications for society.	CI 5.8: Discuss ethical considerations and societal impacts of nanotechnology advancements.

SW- 5 Suggested Sessional Work (SW) (anyone)	 SW 5.1 Assignments: Discuss the different types of nanomaterials, including nanoparticles, carbon nanotubes, nano clays, nano mud, and nano fibers. Explain their structures, properties, and potential applications. Explain how nanomaterials can be characterized using techniques such as X-ray diffraction (XRD) and scanning electron microscopy (SEM). Discuss the principles behind these characterization methods and their applications in nanoscience.
	SW5.2 Mini Project SW5.3 Other Activities

Course Outcomes	Class Lecture (CI)	Laboratory Instructions (LI)	Sessional Work (SW)	Self Learning (SL)	Total hour (Cl+LI+SW+SL)
98PH203.1: Through this chapter students are brought to learn about historical development of optics, atomic physics and biomechanics to the modern concepts.	12	4	01	02	19
98PH203.2: Explain the concept of coherence and its importance in laser operation and optical fiber communication.	9	04	01	01	15
98PH203.3: Evaluate current research topics and advancements in solid-state physics and superconductivity, including high-temperature superconductors, topological superconductors, and quantum computing applications.	10	04	01	02	19
98PH203.4: Evaluate current research topics and advancements in solid-state physics and superconductivity, including high-temperature superconductors, topological superconductors, and quantum computing applications.	08	04	01	4	13
98PH203.5: Investigate the applications of nanotechnology in various fields, including electronics, nanorobotics, quantum computing, space energy, DNA manipulation, biomedical engineering, polymers, textiles, and nano composites.	9	4	01	4	18
Total Hours	48	20	05	13	84

Brief of Hours Suggested for the Course Outcome

Unit	Unit Titles	Marks	Total Marks		
		R	U	Α	
Unit-1	Wave Mechanics	03	01	01	05
Unit-2	Laser & Fiber Optics	02	06	02	10
Unit-3	Quantum Mechanics	03	07	05	15
Unit-4	Solid State Physics & Superconductivity	-	10	05	15
Unit-5	Nano Technology	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

CO-PO-PSO Mapping

Course Outcome (Cos)					Prog	gramme	Outco	me (PC))					amme Sp come (P	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
98PH203.1: Through this chapter students are brought to learn about historical development of optics, atomic physics and biomechanics to the modern concepts.	3	3	1	2	1	1	1	1	1	1	3	2	2	1	3
98PH203.2: Explain the concept of coherence and its importance in laser operation and optical fiber communication.	3	3	3	3	2	1	3	2	2	3	2	1	2	3	2
98PH203.3: Evaluate current research topics and advancements in solid-state physics and superconductivity, including high-temperature superconductors, topological superconductors, and quantum computing applications.	3	3	3	3	2	1	2	1	1	2	1	2	3	2	3
98PH203.4: Evaluate current research topics and advancements in solid-state physics and superconductivity, including high-temperature superconductors,	3	3	2	3	3	3	2	2	2	3	2	3	2	3	2

topological superconductors, and quantum computing applications.															
98PH203.5: Investigate the applications of nanotechnology in various fields, including electronics, nanorobotics, quantum computing, space energy, DNA manipulation, biomedical engineering, polymers, textiles, and nano composites.	3	3	2	3	3	2	1	3	2	3	2	2	2	3	3

Legend: *l* – *Low, 2* – *Medium, 3* – *High*

Course Curriculum Map

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3	98PH203.1: Through this chapter students are brought to learn about historical development of optics, atomic physics and biomechanics to the modern concepts.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5, SO1.6, SO1.7, SO1.8, SO1.9 SO 1.10 SO1.11 SO1.12	1LI-1,2	CI1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11,1.12	1SL-1,2
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3	98PH203.2: Explain the concept of coherence and its importance in laser operation and optical fiber communication.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5, SO2.6, SO2.7, SO2.8, SO2.9	1LI-1,2	CI1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	2SL-1
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3	98PH203.3: Evaluate current research topics and advancements in solid-state physics and superconductivity, including high- temperature superconductors, topological	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5, SO3.6, SO3.6, SO3.7, SO3.8,	1LI-1,2	CI1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10	3SL-1,2

PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3	superconductors, and quantum computing applications. 98PH203.4: Evaluate current research topics and advancements in solid-state physics and superconductivity, including high- temperature superconductors, topological superconductors, and quantum computing applications.	SO3.9 SO3.10 SO4.1 SO4.2 SO4.3 SO4.4 SO4.5, SO4.6, SO4.6, SO4.7, SO4.8	1LI-1,2	CI1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	4SL-1,2
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3	98PH203.5: Investigate the applications of nanotechnology in various fields, including electronics, nanorobotics, quantum computing, space energy, DNA manipulation, biomedical engineering, polymers, textiles, and nano composites.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5, SO5.6, SO5.7, SO5.8, SO5.9	1LI-1,2	CI1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.	58L- 1,2,3,4

Suggested Learning Resources:

(a) Books:

- 1. Engineering Physics by A.B. Bhattacharya, Khanna Publishing House, Revised edition 21, 2020
- 2. Physics for Engineers by N.K. Verma, Prentice Hall India, 2017

- 3. Physics of Vibrations and Waves by H.J. Pain, National Council for Cement and Building Materials, 5th Edition, Wiley, 2006
- 4. Optics by Ajoy Ghatak, McGraw Hill Education India, 2017
- 5. Department Provided Lab Manual
- 6. Engineering Physics Lab Manual

(b) Online Resources:

- 1. MIT OpenCourseWare (OCW): Free courses in Physics, including Engineering Physics. MIT OCW Physics
- 2. Coursera: Courses from various universities on topics relevant to Engineering Physics. Coursera Physics Courses
- 3. edX: Courses from institutions like Harvard and MIT on advanced physics topics. edX Physics Courses
- YouTube Channels: MinutePhysics: Short videos on various physics topics. <u>MinutePhysics YouTube Channel</u>, Veritasium: Explores complex physics concepts. <u>Veritasium YouTube Channel</u>, MIT OpenCourseWare: Full lectures and courses. <u>MIT</u> <u>OCW YouTube Channel</u>
- 5. HyperPhysics: Exploration environment for physics concepts. HyperPhysics
- 6. The Feynman Lectures on Physics: Classic physics textbook series available for free online. The Feynman Lectures on Physics
- 7. OpenStax: Free textbooks, including College Physics. OpenStax College Physics
- 8. arXiv: Repository of electronic preprints approved for publication. arXiv Physics
- 9. Google Scholar: Web search engine indexing scholarly literature. <u>Google Scholar</u>
- 10. PhET Interactive Simulations: Free interactive math and science simulations. PhET Simulations
- 11. Physlets: Interactive physics animations and simulations. Physlets

(c) Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial

- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to Beverage producing plants & Distillery/Fermenter units
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

_	BTech Biotechnology							
Semester I	II							
Course Code: 9	98EE208							
Course title:	Basic Electrical & Electronics Engineering	Curriculum Developer: Er. K K Tripathi, Assistant Professor						
Pre-requisite:	Students should have basic knowledge of electrical a	nd electronics circuits.						
	A process of introducing formal knowledge of basic electronic devices along with necessary knowledge a	electrical elements and AC, DC, and magnetic circuit in electrical and bout single-phase Transformer.						
(COs):	Kirchhoff laws to identify the node voltages and networks.							

Scheme of Studies:

				S				
Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L: T:P=2:1:1)
ESC	98EE208	Basic Electrical & Electronics Engineering	3	2	1	1	7	3+1=4

Legends:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);
SW: Sessional Work (includes assignment, seminar, mini project etc.);
SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of		Course Title		Scheme of Assessment (Marks)						
Study	Code		Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks	Seminar one (SA)	Class Activity (CAT)		Total Marks	Semester Assessmen	Total Marks (PRA+ ESA)
ESC	98EE208	Basic Electrical & Electronics Engineering	15	each (CT) 20	5	5	5	50	50	100

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session		te H	ours			
levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning		Cl	LI	SW	SL	Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),	Approx.	09	03	1	02	15
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Hrs					

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)
		(LI)	(CI)	
CO1-98EE208.1.	SO1.1: Understand the	LI1.1: Explore real-world	CI1.1: Lecture on the	SL1.1: Research and
Recall the concepts of	importance of electrical	applications of electrical	significance of electrical	write a report on the
voltage, current, power and	engineering in daily life.	engineering.	engineering in various	impact of electrical
energy for different circuit			industries.	engineering in modern
elements. Apply the				society.
Kirchhoff laws to identify				
the node voltages and				

branch currents, apply different network theorems				
in the complex networks.				
	SO1.2: Identify different		CI1.2: Discuss various	
	electrical elements and		electrical elements and	
	their classifications.		their classifications.	
	SO1.3: Understand the		CI1.3: Lecture on the	
	basic concepts of		fundamentals of electrical	
	electrical networks.		network theory.	
	SO1.4: Differentiate	LI1.2:	CI1.4: Discuss the	
	between active and	Identify	characteristics of active	
	passive elements in a	active and	and passive circuit	
	circuit.	passive	elements.	
		elements in		
		sample		
		circuits.		
	SO1.5: Understand		CI1.5: Lecture on voltage	
	voltage and current		and current sources,	
	sources.		including dependent and	
	sources.		independent sources.	
	SO1.6: Perform source		CI1.6: Demonstrate	
	conversion in electrical		source conversion	
	circuits.		techniques with	
			examples.	
	SO1.7: Analyze DC	LI1.3: Practice DC circuit	CI1.7: Lecture on the	
	circuits using the mesh	analysis using the mesh	mesh analysis method for	
	method.	method.	DC circuits.	
	SO1.8: Analyze DC		CI1.8: Demonstrate the	
	circuits using the nodal		nodal analysis method	
	method.		with practical examples.	
	SO1.9: Apply Thevenin's		CI1.9: Lecture on	SL1.2: Develop a
	and superposition		Thevenin's and	presentation on the
	theorems to solve		superposition theorems	application of Thevenin's
	circuits.		with problem-solving	theorem in circuit design.
			sessions.	

Suggested Sessional	SW1.1 Assignments	Numerical Problems on mesh and nodal analysis.
Work (SW): anyone	SW1.2 Assignments	Derive different network theorems
	SW1.3 Other Activities	Make a power point presentation on "Importance of electrical engineering in day-to-day
	(Specify)	life"

Item	Cl	LI	SW	SL	Total
Approx. Hrs	7	02	1	02	12

Course outcome (CO)	Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)
	(SOs)	(LI)	(CI)	
CO2-98EE208.2.	SO2.1: Understand the	LI2.1: Measure voltage and	CI2.1: Lecture on 1-phase	SL2.1: Research and
Understand the concept of	basics of 1-phase AC	current in 1-phase AC	AC circuits and	write a report on the
single phase and poly phase	circuits under sinusoidal steady state.	circuits.	sinusoidal steady state.	applications of 1-phase AC circuits.
AC circuits and construct				
the phasor diagrams.				
	SO2.2: Differentiate		CI2.2: Discuss the	
	between active, reactive,		concepts of active,	
	and apparent power.		reactive, and apparent	
			power.	
	SO2.3: Explain the		CI2.3: Lecture on the	
	physical meaning of		physical interpretation	
	reactive power.		and significance of	
			reactive power.	
	SO2.4: Calculate power		CI2.4: Demonstrate	
	factor and its importance		power factor calculation	
	in AC circuits.		with examples.	
	SO2.5: Analyze 3-phase	LI2.2:	CI2.5: Lecture on 3-phase	
	balanced supply systems.	Experiment	balanced supply systems	
		with 3-phase	and their analysis.	
		balanced		
		supply and		
		measure		
		power.		
	SO2.6: Understand 3-		CI2.6: Discuss the	
	phase unbalanced supply		differences and	
	systems and their		challenges of unbalanced	
	challenges.		3-phase systems.	
	SO2.7: Explain star and		CI2.7: Lecture on star	SL2.2: Develop a
	delta connections in 3-		and delta connections and	presentation on the
	phase systems.		their applications.	advantages and

	disadvantages of star and delta connections.	
--	--	--

Suggested Sessional	SW2.1 Assignments	Find current, voltage and power of a purely inductive circuit.
Work (SW):	SW2.2 Assignments	Find current, voltage, power and impedance of RLC series circuit.

Item	Cl	LI	SW	SL	Total
Approx.	11	03	01	03	18
Hrs					

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO3-98EE208.3.	SO3.1: Review the laws	LI3.1: Demonstrate the laws	CI3.1: Lecture on the	SL3.1: Research and
Understand the basic	of electromagnetism and	of electromagnetism using	fundamental laws of	prepare a report on
operating principle, types,	their applications.	practical examples.	electromagnetism.	historical experiments in
efficiency of				electromagnetism.
Transformers.				
	SO3.2: Understand the		CI3.2: Discuss mmf,	
	concepts of mmf and		flux, and their	
	flux and their		interrelationships.	
	relationships.			
	SO3.3: Analyze		CI3.3: Lecture on the	
	magnetic circuits and		analysis of magnetic	
	their characteristics.		circuits with examples.	
	SO3.4: Explain the basic		CI3.4: Lecture on single-	
	concepts and		phase transformer	
	construction features of		construction and	
	single-phase		operation.	
	transformers.			
	SO3.5: Understand	LI3.2: Conduct	CI3.5: Discuss voltage,	
	voltage, current, and	experiments on	current, and impedance	
	impedance	voltage and	transformation principles.	
	transformation in	current		
	transformers.	transformation		

	in		
	transformers.		
SO3.6: Analyze equivalent circuits and phasor diagrams of transformers.		CI3.6: Lecture on equivalent circuits and phasor diagrams.	
SO3.7: Explain voltage regulation, losses, and efficiency of transformers.		CI3.7: Discuss voltage regulation, losses, and efficiency calculations.	
SO3.8: Conduct OC and SC tests on transformers and interpret the results.	LI3.3: Perform OC and SC tests on transformers and analyze the data.	CI3.8: Lecture on OC and SC tests and their significance.	
SO3.9: Understand the importance of transformer protection mechanisms.		CI3.9: Discuss various transformer protection methods and devices.	SL3.2: Create a presentation on transformer protection mechanisms.
SO3.10: Explain the troubleshooting and maintenance procedures for transformers.		CI3.10: Lecture on troubleshooting and maintenance practices.	
SO3.11: Describe the maintenance of transformer oil and drying out processes.		CI3.11: Discuss the methods for maintaining transformer oil and drying out.	SL3.3: Develop a maintenance schedule for a transformer.

Suggested	SW3.1	Write a note on circuit breaker.
Sessional Work	Assignments	
(SW): anyone	SW3.2	Discuss various losses associated with transformer.
	Assignments	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	10	04	01	02	17

Course outcome (CO)	Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)
	(SOs)	(LI)	(CI)	
CO4-98EE208.4. Design and analyse the different types of digital circuits.	SO4.1: Understand number systems used in digital electronics.	LI4.1: Experiment on converting between decimal, binary, octal, and hexadecimal.	CI4.1: Lecture on the various number systems and their uses.	SL4.1: Research the history and development of digital number systems.
	SO4.2: Learn about complements, operations, and conversions in number systems.		CI4.2: Discuss the concepts of complements and number operations. CI4.3: Lecture on	
	SO4.3: Understand floating point and signed numbers in digital electronics.		floating point representation and signed numbers.	
	SO4.4: Explore Demorgan's theorem and basic logic gates.		CI4.4: Lecture on Demorgan's theorem and its applications.	
	SO4.5: Understand the function and representation of logic gates.	LI4.2: Implement basic logic gates using digital electronics kits.	CI4.5: Discuss the AND, OR, NOT, NOR, NAND, EX-NOR EX-OR gates.	
	SO4.6: Learn to create and interpret truth tables for logic gates.		CI4.6: Lecture on constructing truth tables for different logic gates.	
	SO4.7: Design and analyze half and full adder circuits.	LI4.3: Construct half and full adder circuits and	CI4.7: Lecture on the design and operation of adder circuits.	SL4.2: Research applications of adders in digital systems.

SO4.8: Understand the operation of R-S and J-K flip flops. SO4.9: Learn about proportional, integral, and derivative controls.	test their functionality. LI4.4: Implement a PID control system and analyze its response.	CI4.8: Discuss the principles of R-S and J-K flip flops. CI4.9: Lecture on PID control and its application in process control.	
SO4.10: Explore computer interfacing and applications in fermentation processes.		CI4.10: Discuss computer interfacing techniques in fermentation processes.	SL4.3: Develop a project proposal for using computer interfacing in a bioreactor.

Suggested	SW4.1	Implement logic circuit for full adder.
Sessional Work	Assignments	
(SW): anyone	SW4.2 Mini Project	Implement logic circuit for SR flip flop.
	SW4.3 Mini Project	Perform various arithmetic operation on various types of number system.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	9	03	1	2	15

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5-98EE208.5 Understand and analyse the	SO5.1: Understand the different types of passive	LI5.1: Experiment on measuring and	CI5.1: Lecture on the properties and types of	SL5.1: Research and present a report on
various types of	components: resistors,	identifying resistors,	resistors, inductors, and	applications of passive
semiconductor devices.	inductors, and capacitors.	inductors, and capacitors.	capacitors.	components in electronic circuits.
	SO5.2: Learn the basics		CI5.2: Lecture on the	
	of semiconductors and		fundamentals of	
	their importance in electronics.		semiconductors.	
	SO5.3: Explore the V-I		CI5.3: Lecture and	
	characteristics of diodes.		demonstration on the V-I	
			characteristics of diodes.	
	SO5.4: Understand the	LI5.2: Experiment on	CI5.4: Discuss the working	SL5.2: Study and write
	structure and working of	the V-I characteristics	principle and applications of	about the historical
	bipolar junction	of BJTs.	BJTs.	development of BJTs and
	transistors (BJT).			their impact on technology.
	SO5.5: Learn about CC		CI5.5: Lecture on the	
	(common collector), CB		different transistor	
	(common base), and CE		configurations.	
	(common emitter)			
	transistor configurations.			
	SO5.6: Understand the		CI5.6: Discuss the active,	
	different modes of operation of BJTs.		cutoff, and saturation modes of BJTs.	
	SO5.7: Explore the		CI5.7: Lecture on DC biasing	SL5.3: Create a
	concept of DC biasing in		techniques for BJTs.	simulation of a transistor
	BJTs.			amplifier circuit and
				analyze its performance.
	SO5.8: Apply knowledge		CI5.8: Discuss practical	
	of BJTs in practical		applications of BJTs in	
	circuits.		electronic circuits.	

Suggested	SW5.1 Assignments	Describe how transistor works as an amplifier.
Sessional Work	SW5.2 Assignments	How will you compare different configuration of transistor.
(SW):	SW5.3 Assignments	Find the current gain in various configuration of transistor.

Course duration (in hours) to attain Course Outcomes:

Course Title: Basic Electrical & Electronics Engineering

Course Code: 98EE208

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (LI+CI+SL+SW)
CO1-98EE208.1. Recall the concepts of voltage, current,	9	3	2	1	15
power and energy for different circuit elements. Apply the					
Kirchhoff laws to identify the node voltages and branch					
currents, apply different network theorems in the complex					
networks.					
CO2-98EE208.2. Understand the concept of single phase	11	3	3	1	18
and poly phase AC circuits and construct the phasor					
diagrams.					
CO3-98EE208.3. Understand the basic operating	7	2	2	1	12
principle, types, efficiency of Transformers.					
CO4-98EE208.4. Design and analyse the different types	10	4	2	1	17
of digital circuits.					
CO5-98EE208.5. Understand and analyse the various types of semiconductor devices.	9	3	2	1	15
Total Hours	46	15	11	5	72

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Bioreactor Engineering

Course Code: 55MBT102

Course Outcomes		Marks I	Distributi	on	
	Α	An	E	С	Total Marks
CO1-98EE208.1. Recall the concepts of voltage, current, power and energy for different circuit elements. Apply the Kirchhoff laws to identify the node voltages and branch currents, apply different network theorems in the complex networks.	2	1	1	1	5
CO2-98EE208.2. Understand the concept of single phase and poly phase AC circuits and construct the phasor diagrams.	2	4	5	1	12
CO3-98EE208.3. Understand the basic operating principle, types, efficiency of Transformers.	3	5	5	1	14
CO4-98EE208.4. Design and analyse the different types of digital circuits.	2	3	5	1	11
CO5-98EE208.5. Understand and analyse the various types of semiconductor devices.	2	4	1	1	10
Total Marks	11	17	17	05	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

- 1. Integrated Electronics by Millman and Halkias, McGraw Hill
- 2. Electronics Devices and Circuits by R. Boylested and L. Nashelsky, Prentice Hall India
- 3. Digital Logic and Computer Design by M. M. Mano, Pearson Education India
- 4. Theory and Problems of Basic Electrical Engineering by D.P. Kothari and I. J. Nagrath, Prentice Hall India Learning Private Limited
- 5. Basic Electrical Engineering by D. C. Kulshreshtha, McGraw Hill
- 6. Fundamentals of Electrical Engineering by Ashfaq Hussain, Dhanpat Rai and Co

(b) Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to Beverage producing plants & Distillery/Fermenter units
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Course Title: Basic Electrical and Electronic Engineering

Course Outcome (Cos)	Prog	ram O	utcom	es (POs	5)								•	n Specif nes (PSC	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98EE208.1. Recall the concepts of voltage, current, power and energy for different circuit elements. Apply the Kirchhoff laws to identify the node voltages and branch currents, apply different network theorems in the complex networks.	3	3	2	2	2	1	1	1	2	2	2	2	3	2	2
CO2-98EE208.2. Understand the concept of single phase and poly phase AC circuits and construct the phasor diagrams.	3	2	2	2	2	1	1	1	2	2	2	2	3	3	2
CO3-98EE208.3. Understand the basic operating principle, types, efficiency of Transformers.	3	2	2	2	2	1	1	1	2	2	2	2	3	3	2
CO4-98EE208.4. Design and analyse the different types of digital circuits.	3	3	3	2	3	1	1	1	2	3	2	2	3	3	3
CO5-98EE208.5. Understand and analyse the various types of semiconductor devices.	3	2	2	2	2	1	1	1	2	2	2	2	3	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Semester: II Semester **Course Code:** 98EE208

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3	CO1-98EE208.1. Recall the concepts of voltage, current, power and energy for different circuit elements. Apply the Kirchhoff laws to identify the node voltages and branch currents, apply different network theorems in the complex networks.	SO1.1 SO1.2 SO1.3 SO1.4	LI 1 LI 2 LI 3 LI 4	1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8, 1.9,1.10,1.11,1.12,1.13,1.14	1SL-1
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3	CO2-98EE208.2. Understand the concept of single phase and poly phase AC circuits and construct the phasor diagrams.	SO2.1 SO2.2 SO2.3	LI 1	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13	2SL-1,2,3
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3	CO3-98EE208.3. Understand the basic operating principle, types, efficiency of Transformers.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	LI 1 LI 2 LI 3	3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8	3SL-1
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3	CO4-98EE208.4. Design and analyse the different types of digital circuits.	SO4.1 SO4.2 SO4.3 SO4.4	LI 1	4.1,4.2,4.3,4.4, 4.5 4.6,4.7,4.8,4.9,4.10	4SL-1,2
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3	CO5-98EE208.5. Understand and analyse the various types of semiconductor devices.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	LI 1 LI 2 LI 3 LI 4	5.1,5.2,5.3,5.4,5.5, 5.6 5.7,5.8,5.9,5.10	5SL-1

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology					
Semester	II					
CourseCode:	98CA204					
Coursetitle:	undamentals of Computer and Programming Curriculum Developer: Er. Vinay Shrivastava					
Pre-requisite:	Students should have basic knowledge of computer engineering & programming.					
Rationale:	The Fundamental of Computer & Programming covers multimedia techniques, image, coloring, and digital transmission. It covers various internet and multimedia applications, enabling coding work and targeting specific audiences online. Configuration and customization are crucial for achieving desired outcomes in programming and multimedia. This subject enables effective online work and enables effective targeting strategies.					
CourseOutcomes (COs):	 CO1- 98CA204.1. Illustrate the terminologies associated with computing and its devices. CO2- 98CA204.2. Explain the importance of C programming and characteristics of programming language. CO3- 98CA204.3. Explain the importance of conditional statements and arithmetic programming in C language. CO4- 98CA204.4. Explain the importance of C array and functions of programming in C language. CO5- 98CA204.5 Acquire the basic and advances knowledge of ms-word, ms-excel, ms-powerpoint. 					

Scheme of Studies:

				S				
Board of Study	CourseCode	CourseTitle	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L: T:P=1:1:0)
ESC	98CA204	Fundamentals of computer & programming	2	-	1	1	4	2

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others); LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies); SW: Sessional Work (includes assignment, seminar, mini project etc.); SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board	Course	Course Title		Scheme of Assessment (Marks)						
of Study	Code			Progressive Assessment (PRA)					End Semester	Total Marks
			Class/Home	Class Test	Seminar one	Class Activity	Class	Total Marks	Assessmen	(PRA+
			Assignment	2	(SA)	(CAT)	Attendance	(CA+CT+CAT+SA+AT)	t	ESA)
			5 number	(2 best out			(AT)		(ESA)	· ·
			3 marks each	of 3)						
			(CA)	10 marks						
				each (CT)						
РС	98CA204	Fundamentals of computer & programming	15	20	5	5	5	50	50	100

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session	Approximate	Hour	'S			
levels, which students are anticipated to accomplish through various modes of instruction						
including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self	Item	Cl	LI	SW	SL	Total
Learning (SL). As the course progresses, students should showcase their mastery of Session	Approx.Hrs	06	00	01	02	09
Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the						
course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory	Classroom Instruction (CI)	Self-Learning (SL)
		Instruction (LI)		
CO1- 98CA204.1. Illustrate	SO1.1: Understand the		CI1.1: Lecture on the	SL1.1: Research and
the terminologies associated	basic introduction to		introduction and history of	present a report on the
the terminologies associated	computers.		computers.	evolution of computers.
with computing and its	SO1.2: Learn the		CI1.2: Discuss the	
devices.	characteristics of		characteristics and	
	computers.		capabilities of modern	
			computers.	

SO1.3: Understand	CI1.3: Lecture on primary	
different types of	and secondary memory in	
computer memory.	computers.	
SO1.4: Explore various	CI1.4: Discuss machine	SL1.2: Study the
types of programming	languages, assembly	differences between
languages.	languages, and high-level	programming languages
	languages.	and their applications.
SO1.5: Learn basic DOS	CI1.5: Demonstrate and	
commands.	practice basic DOS	
	commands.	
SO1.6: Apply DOS	CI1.6: Hands-on session on	
commands for file and	file and directory	
directory management.	management using DOS	
	commands.	

Suggested Sessional	SW1.1 Assignments: Describe in detail "Applications of computer in various
Work (SW): anyone	Sectors".

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	02	09

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO2- 98CA204.2.	SO2.1: Understand the		CI2.1: Lecture on the history and	SL2.1: Research the key
Explain the importance of	historical development of the C programming		evolution of C programming.	milestones in the development of C and its
C programming and	language.			impact.
characteristics of	SO2.2: Identify the C character set and their		CI2.2: Introduction to the C character set.	
programming language.	usage.			
	SO2.3: Differentiate between types of C constants and variables.		CI2.3: Discuss types of C constants and variables.	
	SO2.4: Learn C keywords, identifiers, and literals.		CI2.4: Lecture on C keywords, identifiers, and literals.	SL2.2: Create a glossary of C keywords with examples.
	SO2.5: Understand basic input and output functions in C.		CI2.5: Demonstrate usage of printf and scanf functions.	
	SO2.6: Apply various operators in C programming.		CI2.6: Lecture on arithmetic, relational, assignment, logical, increment and decrement, and conditional operators in C.	

Suggested	SW2.1 Assignments: Describe C language development
Sessional Work	
(SW): anyone	

Item	Cl	LI	SW	SL	Total
Approx.	06	00	01	03	10
Hrs.					

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO3- 98CA204.3 Explain	SO3.1: Understand the		CI3.1: Introduction to	SL3.1: Research and
the importance of conditional	control instructions in C.		control instructions in C.	report on different control
statements and arithmetic				structures in C.
programming in C language.	SO3.2: Implement		CI3.2: Lecture on if, if-	
	decision control		else, and if-else if	
	structures using if		statements.	
	statements.			
	SO3.3: Utilize nested if		CI3.3: Examples and	
	statements for complex		practice problems using	
	decision-making.		nested if statements.	
	SO3.4: Understand and		CI3.4: Lecture on while,	SL3.2: Develop small
	apply loop control		for, do-while, odd loop,	projects to practice
	structures.		and nested loop.	different loop structures.
	SO3.5: Use case control		CI3.5: Discussion on	
	structures and statements		case control structure and	
	like break and continue.		break, continue	
			statements.	
	SO3.6: Learn and apply		CI3.6: Lecture on goto	SL3.3: Write a program to
	the use of goto and exit		and exit statements with	demonstrate the use of
	statements.		examples.	goto and exit.

Suggested Sessional Work (SW): anyone	SW3.1 Assignments	Describe conditional statements
---------------------------------------	-------------------	---------------------------------

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	01	08

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)
		(LI)	(CI)	
CO4-98CA204.4. Explain	SO4.1: Understand the		CI4.1: Introduction to	SL4.1: Research and
the importance of C array	concept of arrays and		arrays and their	write a report on the
the importance of C array	their uses.		importance.	applications of arrays.
and functions of	SO4.2: Learn array		CI4.2: Methods of	
programming in C language.	initialization techniques.		initializing arrays in C.	
programming in C language.	SO4.3: Understand and		CI4.3: Explanation and	
	implement 2D arrays.		examples of 2D arrays.	
	SO4.4: Practice		CI4.4: Hands-on session	
	initialization of 1D and		on initializing 1D and 2D	
	2D arrays.		arrays.	
	SO4.5: Understand the		CI4.5: Lecture on the	
	need for functions in		necessity and advantages	
	programming.		of using functions.	
	SO4.6: Learn to declare,		CI4.6: Explanation of	
	define, and call functions		function declaration,	
	in C.		definition, and calling.	

Suggested Sessional Work (SW): anyone	SW4.1 Assignments	Coding array and function.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	01	8

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5- 98CA204.5 Acquire the basic and advances knowledge of ms-word, ms- excel, ms-powerpoint.	SO5.1: Understand the basic features and functions of MS-Office.		CI5.1: Introduction to MS- Office and its components.	SL5.1: Research on the evolution of MS-Office and its impact on productivity.
	SO5.2: Learn the functionalities and applications of MS Word.		CI5.2: Overview of MS Word features and basic operations.	SL5.2: Prepare a report on the advantages of using MS Word for documentation.

SO5.3: Master the use of	CI5.3: Demonstration of MS
menus, commands, and	Word menus, commands, and
toolbars in MS Word.	toolbars.
SO5.4: Perform	CI5.4: Introduction to Excel
arithmetic operations in	functions and basic arithmetic
Excel and understand its	operations.
functionalities.	
SO5.5: Develop skills in	CI5.5: Overview of
creating and formatting	PowerPoint features and
PowerPoint presentations.	presentation design.
SO5.6: Understand	CI5.6: Introduction to
networking concepts,	networking, protocols, and
including types,	cybersecurity.
protocols, and security.	

Suggested Sessional Work (SW): anyone	SW5.1 Assignments	Internet and its applications

Course Duration (in hours) to Attain Course Outcomes:

Course Title: Fundamentals of computer & programming

Course Code: 98CA204

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instructions (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1- 98CA204.1. Illustrate the terminologies associated with computing and its devices.	6	-	2	1	9
CO2- 98CA204.2. Explain the importance of C programming and characteristics of programming language.	6	-	2	1	9
CO3- 98CA204.3. Explain the importance of conditional statements and arithmetic programming in C language.	6	-	3	1	10
CO4- 98CA204.4. Explain the importance of C array and functions of programming in C language.	6	-	1	1	8
CO5- 98CA204.5 Acquire the basic and advances knowledge of ms-word, ms-excel, ms-powerpoint.	6	-	1	1	8
Total Hours	30	00	09	05	44

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title:	Fundamentals of	f Computer	& Programming

Course Code: 98CA204

Course Outcomes]	Ma Distril	Total Marks		
	Α	An	Ε	С	Marks
CO1- 98CA204.1. Illustrate the terminologies associated with computing and its devices.	1	2	1	1	5
CO2- 98CA204.2. Explain the importance of C programming and characteristics of programming language.	1	5	4	2	12
CO3- 98CA204.3. Explain the importance of conditional statements and arithmetic programming in C language.	1	5	5	3	14
CO4- 98CA204.4. Explain the importance of C array and functions of programming in C language.	1	5	3	2	11
CO5- 98CA204.5 Acquire the basic and advances knowledge of ms-word, ms-excel, ms-powerpoint.	1	1	4	2	08
Total Marks	05	18	17	10	50

Legend: A, apply; An, analyze; E, evaluate; C, create

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Course Title: Fundamentals of Computer & Programming

Course Outcome (CO)	Prog	ram O	utcom	es (POs	5)								0	m Specif nes (PSO	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98CA204.1. Illustrate	3	2	2	1	2	1	1	1	2	2	1	2	3	2	2
the terminologies associated															
with computing and its															
devices.															
CO2- 98CA204.2. Explain	3	3	2	2	2	1	1	1	2	2	2	2	3	3	2
the importance of C															
programming and															
characteristics of															
programming language.															
CO3- 98CA204.3. Explain	3	3	3	2	2	1	1	1	2	2	2	2	3	3	3
the importance of conditional															
statements and arithmetic															
programming in C language.															
CO4- 98CA204.4. Explain	3	3	3	2	3	1	1	1	2	2	2	2	3	3	3
the importance of C array and															
functions of programming in															
C language.															
CO5- 98CA204.5 Acquire the	3	2	2	1	3	1	1	1	2	3	2	2	3	3	3
basic and advances															
knowledge of ms-word, ms-															
excel, ms-powerpoint.															

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Semester: II Semester Course Code: 98CA204

Course Curriculum:

POs & PSOs No.	COs	SOs No.	(LI)	Classroom Instruction (CI)	Self-
					Learning
					(SL)
PO	CO1-98CA204.1. Illustrate the	SO1.1 SO1.2		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	SL1.1
1,2,3,4,5,6,7,8,9,10,11,12	terminologies associated with computing	SO1.3 SO1.4			
PSO 1,2, 3	and its devices.	, SO1.5			
PO	CO2-98CA204.2. Explain the importance	SO2.1 SO2.2		2.1, 2.2, 2.3,	SL2.1
1,2,3,4,5,6,7,8,9,10,11,12	of C programming and characteristics of	SO2.3 SO2.4,		2.4,2.5,2.6,2.7,2.8	
PSO 1,2, 3	programming language.	SO2.5			
РО	CO3-98CA204.3. Explain the importance	SO3.1 SO3.2		3.1,3.2,3.3,3.4,3.5,3.6,3.7	SL3.1
1,2,3,4,5,6,7,8,9,10,11,12	of conditional statements and arithmetic	SO3.3 SO3.4			
PSO 1,2, 3	programming in C language.	SO3.5			
PO	CO4- 98CA204.4. Explain the importance	SO4.1 SO4.2		4.1,4.2,4.3,4.4, 4.5,4.6,4.7	SL4.1
1,2,3,4,5,6,7,8,9,10,11,12	of C array and functions of programming	SO4.3 SO4.4			
PSO 1,2, 3	in C language.	SO4.5			
РО	CO5- 98CA204.5 Acquire the basic and	SO5.1 SO5.2		5.1,5.2,5.3,5.4,5.5,	SL5.1
1,2,3,4,5,6,7,8,9,10,11,12	advances knowledge of ms-word, ms-	SO5.3 SO5.4		5.6,5.7,5.8,5.9	
PSO 1,2, 3	excel, ms-powerpoint.	SO5.5			

Suggested Learning Resources:

(a) Books:

- 1. Fundamentals of Computers by E. Balagurusamy
- 2. Fundamentals of Computers by P.K. Sinha
- 3. Fundamentals of Computers by V. Rajaraman
- 4. Let Us C by Yashwant Kanitkar

(b) Online Resources

- 1. Computer Basics Computer Hope provides definitions for many computing terms.
- 2. TechTerms A dictionary of computer and technology terms.
- 3. HowStuffWorks Offers articles explaining computing concepts and devices.
- 4. Conditional Statements in C Programiz provides tutorials on conditional statements in C.
- 5. Arithmetic Operations in C Tutorialspoint explains arithmetic operations in C.
- 6. W3Schools C Programming Basic to advanced C programming concepts, including conditional statements and arithmetic operations

(c) Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to Beverage producing plants & Distillery/Fermenter units
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

Program Name	Bachelor of Technology (B.Tech.)- Biot	technology				
Semester	II					
CourseCode:	98MS201					
Coursetitle:	Mathematics	Curriculum Developer: Ms. Arpana Tripathi				
Pre-requisite:	Students should have basic knowledge of	Students should have basic knowledge of calculus				
Rationale:	structures, optimizing processes, or simul	athematical models to represent real-world systems, whether they are designing lating physical phenomena. Mathematics is a critical aspect of engineering as it ary for modeling and analyzing complex systems. In engineering, mathematics is zing structures and machines.				
CourseOutcomes (COs):	CO2-98BT506-A.2. Apply differentiation CO3-98BT506-A.3. Classify and solve the CO4-98BT506-A.4. Explain the basic co	n and integration in vector &scalar valued functions he ordinary differential equation with constant coefficients oncept of Laplace Transforms ical methods for finding roots differentiation and integration.				

Scheme of Studies:

				S	Scheme of	studies (Ho	urs/Week)	
Board ofStudy	CourseCode	CourseTitle	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L: T:P=1:1:0)
BSC	98MS201	Mathematics	2	0	1	2	5	2

Legends:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);
SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of		Course Title			Sche	me of Assessme	ent (Marks)		
Study	Code		Progressive As	sessment ((PRA)			End	Total Marks
			Class/Home	Class	Seminar one	Class	Total Marks	Semester	(PRA+
			Assignment	Test 2	(SA)	Attendance	(CA+CT+SA+AT)	Assessmen	ESA)
			5 number	(2 best		(AT)		t	
			3 marks each	out				(ESA)	
			(CA)	of 3)					
				10 marks					
				each					
				(CT)					
BSC	98MS201	Mathematics	15	20	5	5	5	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Item	Cl	LI	SW	SL	Total
Approx.Hrs	06	00	01	2	09

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1- 56MB205.1: Explain The Concept of Determinant	SO1.1: Define Cramer's rule for solving simultaneous equations.		CI1.1: Lecture on the theory of Cramer's rule.	SL1.1: Write a report on solving simultaneous equations using Cramer's rule.
and Matrix	SO1.2: Explain the solution methods for quadratic equations. SO1.3: Describe the properties and classification of matrices.		CI1.2: Class activity on solving quadratic equations. CI1.3: Lecture on special types of matrices and their characteristics.	
	SO1.4: Perform basic arithmetic operations on matrices. SO1.5: Compute the transpose of a matrix and understand its significance.		CI1.4: Lecture on arithmetic operations involving matrices. CI1.5: Practical session on calculating and using matrix transposes.	
	SO1.6: Find the inverse of a matrix and use it to solve simultaneous equations.		CI1.6: Demonstration of matrix inversion and solving equations.	SL1.2: Create a project on real- world applications of matrix inversion and simultaneous equations.

SW1.1 Assignments	Describe in detail about the Determinant of the matrix
-------------------	--

Suggested Sessional	SW1.2Mini Project	Draw a well labelled diagram of a matrices
Work (SW): anyone	SW1.3 Other Activities	Write an article on "Latest research in the field of mathematics"
	(Specify)	

				Item	Cl	LI	SW	SL	Total
				Approx.Hrs	06	00	01	2	09
Course outcome	Session Outcomes (SOs)	Laboratory	Classroom Instr	ruction (CI)	S	elf-Lo	earnin	g (SL	.)
(CO)		Instruction (LI)							
CO2-98BT506-A	SO2.1: Define limits and		CI2.1: Lecture on		SL2.1:				
Define the role of	functions and their role in		of limits and func	tions.	report				
Differentiation of	differentiation.				signific		of		
standard function and					limits i				
Integration					differen	ntiatio	on.		
	SO2.2: Explain the definition		CI2.2: Class activ						
	and process of differentiation.		differentiating sta	ndard					
			functions.						
	SO2.3: Apply the chain rule		CI2.3: Class exerc	cise on					
	to differentiate composite		differentiating usi	ng the chain					
	functions.		rule.	-					
	SO2.4: Perform implicit		CI2.4: Discussion		SL2.2:				
	differentiation and		applications of im	plicit	on the				
	logarithmic differentiation.		differentiation.		differen			olving	g real-
				•.	world 1	oroble	ems.		
	SO2.5: Understand and apply		CI2.5: Class activ						
	parametric differentiation and successive differentiation.		parametric and su differentiation.	ccessive					
	SO2.6:		CI2.6: Lecture						
	Explain		on integration						
	integration as		techniques						
	the inverse of		including						
	differentiation		parts,						
	unicicilitation		parts,						

and solve	substitution,	
integrals.	and partial	
	fractions.	

Suggested Sessional Work (SW): anyone	SW2.1 Assignments	To solve Parametric differentiation, successive differentiation substitution and partial fraction
	SW2.2 Other Activities (Specify)	Attain at least one seminar or online talk on Calculus and its applications

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	02	09

Course outcome (CO)	Session Outcomes (SOs)	Laboratory	Classroom Instruction (CI)	Self-Learning (SL)
		Instruction (LI)		
98BT506-A.3. Comprehend the working Equations of first order and first degree, variable separable	SO3.1: Explain the formation of differential equations.		CI3.1: Equations of first order and first degree, variable separable, homogeneous and linear differential equations.	SL3.1: Study and summarize the concepts of equations of first order and first degree.
	SO3.2: Learn the concept of linear differential equations. SO3.3: Define the working of the integral.		CI3.2: Characteristics of equations reducible to linear differential equations. CI3.3: Linear differential equations of order greater than one with constant coefficients.	SL3.2: Research and review homogeneous and linear differential equations.
	SO3.4: Learn about the complementary function in differential equations.		CI3.4: Application of linear differential equations.	

SO3.5: Analyze linear differential equations of order greater than one.	CI3.5: Complementary function and particular integral in linear differential equations.
SO3.6: Understand the characteristics of variable separable equations.	CI3.6: Characteristics of variable separable equations.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	02	16

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)
		(LI)	(CI)	
CO4-98BT506-A.4:	SO4.1: Observe the role		CI4.1: Definition and	SL4.1: Read and
Introduction transforms of	of linearity and shifting in		transforms of elementary	summarize information
elementary function,	Laplace Transforms.		functions in Laplace	on elementary functions
properties of linearity			Transforms.	in Laplace Transforms.
	SO4.2: Explore common		CI4.2: Define and	SL4.2: Study and review
	applications of inverse		understand the properties	the properties of
	Laplace Transforms.		of linearity in Laplace	transforms of elementary
	_		Transforms.	functions.
	SO4.3: Analyze the		CI4.3: Define and	
	working and applications		understand the properties	
	of Laplace Transforms.		of shifting in Laplace	
			Transforms.	
	SO4.4: Recognize various		CI4.4: Introduction to	
	applications of linearity		inverse Laplace	

and shifting in Laplace	Transforms and their
Transforms.	applications.
SO4.5: Discover the	CI4.5: Application of
applications of transforms	transforms of elementary
of elementary functions.	functions in solving
	differential equations.
SO4.6: Investigate the	CI4.6: Discuss and
disadvantages of Laplace	analyze the disadvantages
Transforms.	and limitations of Laplace
	Transforms.

88	SW4.1 Assignments	Write an article on "Role of transforms in elementary function"
Work (SW): anyone	SW4.2 Other Activities (Specify)	Make a presentation on Non-Viral Gene therapy techniques

]	Item	Cl	LI	SW	SL	Total
	Approx. Hrs	06	00	01	02	09

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
98BT506-A.5. To Examine Distance between two points area of triangle, a locus of points, straight line, slope	SO5.1: Introduce Analytical Plane Geometry and understand its basic concepts.		CI5.1: Introduction to Analytical Plane Geometry and basic forms (double intercept, normal, slope- point).	SL5.1: Investigate the role of Geometry in practical applications.
	SO5.2: Recognize the limitations of Geometry in real-life applications.		CI5.2: Define and understand certain coordinates and their significance in Analytical Plane Geometry.	SL5.2: Explore various kinds of Geometry and their limitations.

SO5.3: Analyze principles and concepts of Geometry and their applications.	CI5.3: Calculate distance between two points and area of a triangle using Analytical Plane Geometry.
SO5.4: Define the concept of locus of points, straight line, slope, and intercept form.	CI5.4: Understand and apply the concepts of locus of points, straight line, and slope-intercept form.
SO5.5: Explore applications of straight lines and slopes in Analytical Plane Geometry.	CI5.5: Apply concepts of straight lines and slopes to solve problems in Analytical Plane Geometry.
SO5.6: Understand and use the two-point form and general equation of the first degree.	CI5.6: Learn about and solve problems using the two-point form and general equation of the first degree.

Suggested Sessional	SW5.1 Assignments	Write an article on "Role of Geometry and its Properties"
Work (SW): anyone	SW5.2 Other Activities	Make a presentation on Lab-On-A-Chip technique with applications
	(Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Mathematics

Course Code: 98MS201

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Sessional work (SW)	Self-Learning (SL)	Total Hours (Li+CI+SW+SL)
CO1-98MS201.1: Explain Determinant and Matrix	6	0	1	2	09
CO2- 98MS201.2: Apply differentiation and integration in vector &scalar valued functions	6	0	1	2	09
CO3- 98MS201 .3: Classify and solve the ordinary differential equation with constant coefficients	6	0	1	2	09
CO4- 98MS201.4: Explain the basic concept of Laplace Transforms	6	0	1	2	09
CO5- 98MS201. 5: Apply Basic numerical methods for finding roots differentiation and integration	6	0	1	2	09
Total Hours	30	0	05	10	45

End Semester Assessment Scheme for Setting Up Question Paper and Assessment to Evaluate the Course Outcome

Course Title: Mathematics

Course Code: 98MS201

Commo Ontoomoo		Total Marks			
Course Outcomes	А	An	Ε	С	Iotai Marks
CO1-98MS201.1: Explain Determinant and Matrix	2	1	1	1	5
CO2- 98MS201.2: Apply differentiation and integration in vector &scalar valued functions	3	4	2	1	10
CO3- 98MS201 .3: Classify and solve the ordinary differential equation with constant coefficients	4	5	5	1	15
CO4-98MS201.4: Explain the basic concept of Laplace Transforms	3	4	3	0	10
CO5 -98MS201.5: Apply Basic numerical methods for finding roots differentiation and integration	5	4	1	0	10
Total Marks	17	18	12	03	50

Legend: A, apply; An, Analyze, E-Evaluate, C, Create

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology **Course Title:** Mathematics

Semester: II Semester Course Code: 98MS201

Course Outcome COs		Program Outcomes (POs)										Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98MS201.1: Explain															
Determinant and Matrix	-	-	-	1	2	2	2	-	1	2	2	3	3	3	1
CO2- 98MS201. 2: Apply differentiation and integration in vector &scalar valued functions	-	-	-	-	-	-	3	-	2	2	3	3	1	1	2
CO3 -98MS201. 3 : Classify and solve the ordinary differential equation with constant coefficients	-	1	1	2	-	-	2	-	1	1	1	2	1	3	1
CO4- 98MS201.4: Explain the basic concept of Laplace Transforms	-	1	1	-	2	2	2	2	-	1	-	-	1	2	2
CO5 -98MS201.5: Apply Basic numerical methods for finding roots differentiation and integration	1	1	1	-	-	2	3	3	1	2	2	2	1	1	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs	COs	SOs No.	Laboratory	Classroom	Self-Learning (SL)
No.			Instruction (LI)	Instruction (CI)	
PO 1,2,3,4,5,6	CO1-98MS201.1: Explain Determinant	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5	1SL-1,2,3,4,5
7,8,9,10,11,12	and Matrix	SO1.3 SO1.4			
		SO1.5			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO2-98MS201.2: Apply differentiation	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3
7,8,9,10,11,12	and integration in vector &scalar valued	SO2.3 SO2.4	LI 2	2.5	
	functions	SO2.5			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO3-98MS201.3: Classify and solve	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5	3SL-1,2,3,4,5
7,8,9,10,11,12	the ordinary differential equation with	SO3.3 SO3.4			
	constant coefficients	SO3.5			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO4-98MS201.4: Explain the basic	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,	4SL-1,2,3,4,5
7,8,9,10,11,12	concept of Laplace Transforms	SO4.3 SO4.4		4.5	
		SO4.5			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO5-98MS201.5: Apply Basic	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5	5SL-1,2,3,4,5
7,8,9,10,11,12	numerical methods for finding roots	SO5.3 SO5.4			
	differentiation and integration	SO5.5			
PSO 1,2, 3					

Suggested learning Resources:

(a) Books:

- 1. Mathematics Part I Textbook for Class XI, NCERT Publication
- 2. Mathematics Part II Textbook for Class XI, NCERT Publication
- 3. Analytic Geometry Shantinarayan, HC Sinha, DK Jha, Sharma
- 4. Ordinary Differential Equations Golden Series, NP Bali

5. Differential Equations - Chaurasia, V B L, Indus Valley Publications, Jaipur, 2006

(b) Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Demonstration
- 7. ICT Based teaching Learning
- 8. Brainstorming

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology						
Semester	II						
CourseCode:	HSMC07						
Coursetitle:	Fundamentals of Indian KnowledgeCurriculum Developer: Ms. Arpana TripathiSystem						
Pre-requisite:	Creating awareness among the youths about the true history and past rich culture of India.						
Rationale:	India has very rich and versatile knowledge system and cultural heritage since antiquity. The Indian Knowledge systems was developed on life science, medical science, literature, drama, art, music, dance, astronomy, mathematics, architecture (Sthapatyaveda), chemistry, aeronautics etc., during ancient period. In this basic course, a special attention is given to the ancient and historical perspective of ideas occurrence in the ancient society, and implication to the concept of material world and religious, social and cultural beliefs. On the closer examination, religion, culture and science have appeared epistemological very rigidly connected in the Indian Knowledge System. This land of Bharat Bhumi has provided invaluable knowledge stuff to the society and the world in all spheres of life.						
Course Outcomes (COs):	 CO-HSMC07.1: To understand the ancient civilization, Indian knowledge systems, concept of Panch Mahabhuta, origin of the name Bharat Varsha, ancient rivers, ancient universities, and ancient agriculture. CO-HSMC07.2: Students will be able to learn about ancient books, religious places, the basic concepts of Indian dance, music, and arts, as well as the fundamental aspects of Sangeeta and Natyashashtra. CO-HSMC07.3: Students will be able to gain knowledge on Vedic Science, Astronomy, Astrovastu, Vedic Mathematics, Aeronautics, Metallurgy, Nakhatras, Panchang, and Concepts of Zero, Pi, and Point. CO-HSMC07.4: Understanding Ancient Engineering, Science and Technology, Town Planning, Temple Architecture, Chemistry and Metallurgy, and Metal Manufacturing. CO-HSMC07.5: Students will be able to understand life, nature, and health through the basic concepts of Ayurveda and Yoga, Traditional Medicinal Systems, Ethnomedicine, Nature Conservation, and World Heritage Sites. 						

Scheme of Studies:

Category of	Course	Course Title		Scheme of studies (Hours/Week)					
Course	Code		CI	LI	SW	SL	Total Study Hours CI+LI+SW+SL	Credits (C)	
HS	HSMC07	Indian Knowledge System	2	0	1	1	4	2	

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Session Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Assessment Scheme: Theory

Board of		Course Title	Scheme of Assessment (Marks)								
Study	Code		Progressive As	End	Total Marks						
			Class/Home	Class	Seminar one	Class	Total Marks	Semester	(PRA+		
			Assignment	Test 2	(SA)	Attendance	(CA+CT+SA+AT)	Assessmen	ESA)		
			5 number	(2 best		(AT)		t			
			3 marks each	out				(ESA)			
			(CA)	of 3)							
				10 marks							
				each							
				(CT)							
		Indian									
HS	HSMC07	Knowledge	15	20	5	5	5	50	50		
		System									

Course-Curriculum Detailing: This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	01	08

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)
		(LI)	(CI)	
СО-НЅМС07.1: То	SO1.1: Understand		CI1.1: Overview of Indian	SL1.1 Golden era of India
understand the ancient	Overview of Indian		Knowledge Systems (IKS)	
civilization, Indian	Knowledge Systems (IKS)			
knowledge systems,	SO1.2: Understand		CI 1.2: Classification of	
concept of Panch	Classification of Ancient		Ancient IKS texts	
Mahabhuta, origin of the	IKS texts			
name Bharat Varsha,	SO1.3: Understand		CI 1.3: Introduction to	
ancient rivers, ancient	Introduction to Panch		Panch Mahabhutas (Earth,	
universities, and ancient	Mahabhutas (Earth,		Water, Fire, Sky, and Air)	
agriculture.	Water, Fire, Sky, and Air)			
	SO1.4: Understand Origin		CI 1.4: Origin of the name	
	of the name Bharatvarsha:		Bharatvarsha: the Land of	
	the Land of Natural		Natural Endowments	
	Endowments			
	SO1.5: Understand Rivers		CI1.5: Rivers of ancient	
	of ancient India (The		India (The Ganga,	
	Ganga, Yamuna,		Yamuna, Godawari,	
	Godawari, Saraswati,		Saraswati, Narmada,	
	Narmada, Sindhu, and		Sindhu, and Kaveri)	
	Kaveri)			
	SO1.6: Understand		CI 1.6: Agriculture system	
	Ancient Agriculture and		in ancient India, Ancient	
	ancient Universities:		Universities: Takshashila	
	Takshashila and Nalanda,		and Nalanda, Gurukul	
	Gurukul system		system	

SW-1 Suggested Sessional Work	SW1.1 Assignments: Concepts of Panch Mahabhuta, Classification of ancient texts, origin of
(SW)	ancient rivers
	SW1.2 Mini Project: Ancient Universities: Takshashila and Nalanda,
	SW1.3 Other Activities (Specify):

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	01	08

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO-HSMC07.2: Students will be able to learn about ancient books, religious places, the basic concepts of Indian dance, music, and arts, as well as the fundamental aspects of Sangeeta and Natyashashtra	SO2.1: Understand the Ancient Indian Books: Vedas, Puranas, Shastras, Upanishads, Mahakavyas (Ramayana & Mahabharata), Smrities, Samhitas SO2.2: Understand the Religious Places: Puries, Dhams, Jyotiralinga, Shaktipeeths, Kumbha Mela SO2.3: Understand the Legendary Places of Madhya Pradesh: Ujjain, Chitrakoot, Omkareshwar, Bharhut, Maihar SO2.4: Understand the Basic Concept of Indian Art, Music and Dance, Indian Musical Instruments SO2.5: Understand the Fundamental Aspects of Sangeeta and Natya Shastra SO2.6: Understand the Different Schools of Music, Dance, and		 CI2.1: Ancient Indian Books: Vedas, Puranas, Shastras, Upanishads, Mahakavyas (Ramayana & Mahabharata), Smrities, Samhitas CI 2.2: Religious Places: Puries, Dhams, Jyotiralinga, Shaktipeeths, Kumbha Mela CI 2.3: Legendary Places of Madhya Pradesh: Ujjain, Chitrakoot, Omkareshwar, Bharhut, Maihar CI 2.4: Basic Concept of Indian Art, Music and Dance, Indian Musical Instruments CI 2.5: Fundamental Aspects of Sangeeta and Natya Shastra CI 2.6: Different Schools of Music, Dance, and Painting in 	SL1.1Access to texts such as the Vedas, Puranas, and Upanishads.
	Painting in Different Regions of India		Different Regions of India	

5 vi 2 Suggesteu Sessional violik (5 vi). 5 vi 2:1 Assign	SW 2.1 Assignments: Visit of Chitrakoot, Maihar and Bharhuta		
anyone SW 2.2 Mini P	roject: Kumbhmela, Story of Ramayana and Mahabharata		
SW 2.3 Other	Activities (Specify):		

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	01	08

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO-HSMC07.3: Students	SO3.1: Understand Vedic		CI 3.1: Vedic Cosmology	SL 3.1 Vedic Astronomy
will be able to gain	Cosmology			and Mathematics - The
knowledge on Vedic				Historical Development
Science, Astronomy,	SO3.2: Understand		CI 3.2: Astronomy,	
Astrovastu, Vedic	Astronomy, Astrovastu,		Astrovastu, Vedang	
Mathematics, Aeronautics,	Vedang Jyotish,		Jyotish, Nakshatras,	
Metallurgy, Nakhatras,	Nakshatras, Navagraha,		Navagraha, Rashis,	
Panchang, and Concepts	Rashis, Vastushastra and		Vastushastra and their	
of Zero, Pi, and Point.	their related plants		related plants	
	SO3.3: Understand Time		CI 3.3: Time and	
	and Calendar, Panchang		Calendar, Panchang	
	SO3.4: Understand the		CI 3.4: Concept of Zero,	
	Concept of Zero, Point, Pi		Point, Pi -number system,	
	-number system,		Pythagoras	
	Pythagoras			
	SO3.5: Understand Vedic		CI 3.5: Vedic	
	Mathematics, Vimana-		Mathematics, Vimana-	
	Aeronautics, Basic idea of		Aeronautics, Basic idea of	
	planetary model of		planetary model of	
	Aryabhatta		Aryabhatta	
	SO3.6: Understand the		CI 3.6: Varanamala of	
	Varanamala of Hindi		Hindi language based on	
	language based on		classification of sounds	
	classification of sounds on		based on their origin,	
	the basis of their origin,		Basic purpose of science	
	Basic purpose of science		of Vyakarana	
	of Vyakarana			

SW-3 Suggested Sessional	SW3.1 Assignments: Varanamala of Hindi language based on classification of sounds based on their origin
Work (SW)	SW3.2 Mini Project: Nakshatras, Navagraha and their related plants
	SW3.3 Other Activities (Specify):

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	01	08

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)
		(LI)	(CI)	
CO-HSMC07.4:	SO 4.1: Understand the		CI 4.1: Engineering	SL3.1Temple Architecture
Understanding Ancient	Engineering Science and		Science and Technology	of India
Engineering, Science and	Technology in Vedic and		in Vedic and Post-Vedic	
Technology, Town	Post-Vedic Era		Era	
Planning, Temple	SO 4.2: Understand Town		CI 4.2: Town and Home	
Architecture, Chemistry	and Home Planning,		Planning, Sthapatyaveda	
and Metallurgy, and Metal	Sthapatyaveda			
Manufacturing.	SO 4.3: Understand		CI 4.3: Chemistry and	
	Chemistry and Metallurgy		Metallurgy as gleaned	
	as gleaned from		from Archaeological	
	Archaeological Artifacts		Artifacts	
	SO 4.4: Understand the		CI 4.4: Chemistry of	
	Chemistry of Dyes,		Dyes, Pigments used in	
	Pigments used in		Paintings, Fabrics,	
	Paintings, Fabrics,		Potteries, and Glass	
	Potteries, and Glass			
	SO 4.5: Understand		CI 4.5: Temple	
	Temple Architecture:		Architecture: Khajuraho,	
	Khajuraho, Sanchi Stupa,		Sanchi Stupa, Chonsath	
	Chonsath Yogini Temple		Yogini Temple	
	SO 4.6: Understand		CI 4.6: Mining and	
	Mining and Manufacture		Manufacture in India of	
	in India of Iron, Copper,		Iron, Copper, Gold from	
	Gold from Ancient Times		Ancient Times	

SW-4 Suggested Sessional Work	SW 4.1 Assignments: Varanamala of Hindi language based on classification of sounds based on their
(SW)	origin
	SW4.2 Mini Project: Nakshatras, Navagraha and their related plants
	SW 4.3 Other Activities (Specify):

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	01	08

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)
CO-HSMC07.5: Students		(LI)	(CI)	
will be able to understand	SO 5.1: Understand the		CI 5.1: Fundamentals of	SL5.1 Ethnobotany and
life, nature, and health	Fundamentals of		Ayurveda (Charaka &	Ethnomedicine of India
through the basic concepts	Ayurveda (Charaka &		Shushruta) and Yogic	
of Ayurveda and Yoga,	Shushruta) and Yogic		Science (Patanjali),	
Traditional Medicinal	Science (Patanjali),		Ritucharya and	
Systems, Ethnomedicine,	Ritucharya and		Dinacharya	
Nature Conservation, and	Dinacharya			
World Heritage Sites.	SO 5.2: Understand the		CI 5.2: Traditional System	
	Traditional System of		of Indian Medicines	
	Indian Medicines		(Ayurveda, Siddha, Unani,	
	(Ayurveda, Siddha, Unani,		and Homoeopathy)	
	and Homoeopathy)			
	SO 5.3: Understand		CI 5.3: Fundamentals of	
	Fundamentals of		Ethnobotany and	
	Ethnobotany and		Ethnomedicines of India	
	Ethnomedicines of India			
	SO 5.4: Understand		CI 5.4: Nature	
	Nature Conservation in		Conservation in Indian	
	Indian Ancient Texts		Ancient Texts	
	SO 5.5: Understand the		CI 5.5: Introduction to	
	Introduction to Plant		Plant Science in	
	Science in Vrikshayurveda		Vrikshayurveda	
	SO 5.6: Understand the		CI 5.6: World Heritage	
	World Heritage Sites of		Sites of Madhya Pradesh:	
	Madhya Pradesh:		Bhimbetka, Sanchi,	
	Bhimbetka, Sanchi,		Khajuraho	
	Khajuraho			
SW-5 Suggested Sessional		Assignments: Visit to world	Heritage Site Khajuraho	•
			d Dincharya, Ethnomedicinal p	olants
		Other Activities (Specify):	····· j ···, ···· · ····· · ······ ·	

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self-Learning (SL)	Total hour (Cl+SW+Sl)
HSMC07. 1: To understand Indian Civilization and Indian	6	1	1	8
Knowledge Systems				
HSMC07. 2: Students will have the ability to apply the	6	1	1	8
knowledge gained about Indian Art, Literature and Religious				
Places				
HSMC07. 3: Student will be able to understand the Ancient	6	1	1	8
Science, Astronomy and Vedic Mathematics				
HSMC07. 4: Understand the Engineering, Technology and	6	1	1	8
Architecture				
HSMC07. 5: Understand about the Life, Nature and Health	6	1	1	8
Total	30	5	5	40

Brief of Hours suggested for the Course Outcome

Suggestion for End Semester Assessment

Comme Onteomor		Marks E	Distributio	on	Total Manla
Course Outcomes	Α	An	E	С	Total Marks
CO1-98MS201.1: Indian Civilization and Indian Knowledge Systems	2	1	1	1	5
CO2-98MS201.2: Indian Art, Literature and Religious Places	3	4	2	1	10
CO3-98MS201.3: Ancient Science, Astronomy and Vedic Mathematics	4	5	5	1	15
CO4-98MS201.4: Engineering, Technology and Architecture	3	4	3	0	10
CO5-98MS201.5: Life, Nature and Health	5	4	1	0	10
Total Marks	17	18	12	03	50

Legend: A, apply; An, Analyze, E-Evaluate, C, Create

The end of semester assessment for Indian Knowledge Systems will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course teacher for above tasks. Teacher can also design different tasks as per requirement, for end semester assessment.

COs, POs and PSOs Mapping

Programme Title: B.Tech-Biotechnology **Course Title:** Fundamentals of Indian Knowledge System Semester: II Course Code: HSMC07

Course Outcome COs	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO-1: To understand the ancient civilization, Indian Knowledge Systems, Concept of Panch Mahabhuta, Origin of name Bharat Varsha, Ancient Rivers, Ancient Universities and ancient agriculture.	-	-	-	1	2	2	2	-	1	2	2	3	3	3	1
CO-2: Students will have the ability to learn about ancient books, Religious places, basic concept of Indian dance, music and arts, and fundamental aspects of Sangeeta and Natyashashtra etc.	-	-	-	-	-	-	3	-	2	2	3	3	1	1	2
CO3: Student will be able to gain knowledge on Vedic Science, Astronomy, Astrovastu, Vedic Mathematics, Aeronautics, Metallurgy, Nakhatras, Panchang, Concept of Zero, Pi and point etc.	-	1	1	2	-	-	2	-	1	1	1	2	1	3	1
CO- 4: Understanding on ancient Engineering, Science and Technology, Town Planning, Temple architecture,	-	1	1	-	2	2	2	2	-	1	-	-	1	2	2

Chemistry and Metallurgy, Metal manufacturing etc.															
CO- 5: Student will able to understand about the Life, Nature and Health through basic concept of Ayurveda and Yoga, Traditional Medicinal Systems, Ethnomedicine, Nature conservation, World Heritage Sites etc.	1	1	1	-	-	2	3	3	1	2	2	2	1	1	2

Legend 1–Low,2–Medium, 3–High

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO1,2,3,4,5,6, 7,8,9,10,11,12	CO-1: To understand the ancient civilization, Indian Knowledge Systems,	SO1.1SO1.2SO1. 3SO1.4 SO1.5		Unit-1 : Indian Civilization and Indian Knowledge	
PSO 1,2, 3, 4, 5	Concept of Panch Mahabhuta, Origin of name Bharat Varsha, Ancient Rivers, Ancient Universities and ancient agriculture.			Systems 1.1,1.2,1.3,1.4,1.5,1.6	
PO1,2,3,4,5,6,	CO-2: Students will have	SO2.1SO2.2SO2.		Unit-2: Indian Art,	
7,8,9,10,11,12	the ability to learn about ancient books, religious	3 SO2.4		Literature and Religious Places	As mentioned,
PSO 1,2, 3, 4, 5	places, basic concept of Indian dance, music and arts, and fundamental aspects of Sangeeta and Natyashashtra etc.	SO2.5		2.1,2.2,2.3,2.4,2.5,2.6	
PO1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO3: Student will be able to gain knowledge on Vedic Science, Astronomy, Astrovastu, Vedic Mathematics, Aeronautics, Metallurgy, Nakhatras, Panchang, Concept of Zero, Pi and point etc.	SO3.1SO3.2 SO3.3 SO3.4, SO3.5		Unit-3: Ancient Science, Astronomy and Vedic Mathematics 3.1, 3.2,3.3,3.4,3.5,3.6	

Course Curriculum Map

PO1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO- 4: Understanding on ancient Engineering, Science and Technology, Town Planning, Temple architecture, Chemistry and Metallurgy, Metal manufacturing etc.	SO4.1SO4.2SO4. 3SO4.4 SO4.5	Unit-4: Engineering, Technology and Architecture 4.1, 4.2,4.3,4.4,4.5,4.6
PO1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO- 5: Student will able to understand about the Life, Nature and Health through basic concept of Ayurveda andYoga, Traditional Medicinal Systems, Ethnomedicine, Nature conservation, World Heritage Sites etc.	SO5.1SO5.2SO5. 3SO5.4, SO5.5	Unit 5: Life, Nature and Health 5.1,5.2,5.3,5.4,5.5,5.6

Suggested Learning Resources:

(a) Books:

- An Introduction of Indian Knowledge Systems: Concept and Applications Mahadevan, B.; Bhat V. R. and Pavana, Nagendra R. N. Prentice Hall of India, 2022
- 2. Indian Knowledge Systems: Vol. I and II Kapoor, Kapil and Singh, A. K. D.K. Print World Ltd, 2005
- 3. Science of Ancient Hindus: Unlocking Nature in Pursuit of Salvation Kumar, Alok Createpace Independent Publishing, 2014
- 4. A History of Agriculture in India Randhava, M.S. ICAR, New Delhi, 1980
- 5. Panch Mahabhuta Yogcharya, Jnan Dev Yog Satsang Ashram, 2021
- 6. The Indian Rivers Singh, Dhruv Sen Springer, 2018
- 7. The Wonder That Was India Basam, Arthur Llewellyn Sidgwick & Jackson, 1954

- 8. Ancient Cities, Sacred Skies: Cosmic Geometries and City Planning in Ancient India Malville, J. MacKim & Gujaral, Lalit M. -IGNCA & Aryan Books International, New Delhi, 2000
- 9. The Natya Shastra of Bharat Muni Jha, Narendra Innovative Imprint, Delhi, 2023
- 10. Astronomy in India: A Historical Perspective Padmanabhan, Thanu Indian National Science Academy, New Delhi & Springer (India), 2010

(b) Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to Religious places, World Heritage Sites
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Curriculum Development Team:

- 1. Er. Anant Kumar Soni, Hon'ble Pro-Chancellor and Chairman, AKS University, Satna (M.P.).
- 2. Prof. B.A. Copade, Hon'ble Vice Chancellor, AKS University, Satna (M.P.).
- 3. Prof. G.C. Mishra, Director, IQAC, AKS University, Satna (M.P.).
- 4. Prof. R.L.S. Sikarwar, Director, Centre for Traditional Knowledge Research & Application, AKS University, Satna (M.P.).
- 5. Prof. Kamlesh Chaure, HOD, Department of Biotechnology, AKS University, Satna (M.P.).
- 6. Dr. Akhilesh Waoo, HoD, Department of Computer Science, AKS University, Satna (M.P.).
- 7. Dr. Shailendra Yadav, HoD, Department of Chemistry, AKS University, Satna (M.P.).
- 8. Dr. Kaushik Mukherji, HoD, Department of Management, AKS University, Satna (M.P.).
- 9. Dr. Neeraj Verma, PG Coordinator, Faculty of Agriculture Science and Technology, AKS University, Satna (M.P.)
- 10. Dr. Dilip Kumar Tiwari, HoD, Department of Yoga, AKS University, Satna (M.P.).
- 11. Shri Mirza Shamiullah Beg, Department of Arts, AKS University, Satna (M.P.).
- 12. Shri Vivek Shrivastava, Examination, AKS University, Satna (M.P.).
- 13. Shri Manish Agrawal, Department of Mining, AKS University, Satna (M.P.).

B. Tech. Biotechnology 3rd Semester

Program Name	B.Tech. Biotechnology									
Semester	III									
Course Code:	98BT302									
Course title:	Principles of Microbiology	Curriculum Developer: Mr. Vivek Kumar Agnihotri, Assistant Professor								
Pre-requisite:	To understand and work effectively in microl foundation in the basics of microbiology.	o understand and work effectively in microbiology, especially when preparing consortia as you described, it's important to have a strong oundation in the basics of microbiology.								
Rationale:	Understanding the principle of microbiology revolves around microorganisms, their functions, and their roles in various environments, including their interactions with humans, animals, plants, and the ecosystem. The rationale for studying microbiology is multi-faceted, encompassing scientific, medical, environmental, and industrial perspectives.									
Course Outcomes (COs):	CO3. Acknowledged about the different to CO4. How to interact microorganisms with	of microbes as well as different bacteriological techniques involved in microbiology. types of microorganisms and their significance.								

Scheme of Studies:

Board of Study CourseCode (
Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)	
BSC	98BT302	Principles of Microbiology	4	0	0	0	4	4	

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning.

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of	Course	Course Title			S	cheme of Assessn	nent (Marks)		
Study	Code				Progressive As	ssessment (PRA)		End	Total Marks
			Class/Home Assignment 5 number 3 marks each		(SA)	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	- Semester Assessment (ESA)	(PRA+ ESA)
Program Elective (PE)	98BT302	Principles of Microbiology	(CA)	each (CT)	5	5	5	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI),		te H	ours			
Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students	Item	Cl	LI	SW	SL	Total
should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Approx. Hrs	09	04	01	04	18

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1: Understand the different fields in microbiology.	SO1.1 Know about the Microbial World	LI1.1 Learn how to handle pathogens	CI1.1 Introduction to the microbial world	SL1.1 Remember Carriers in Disease Transmission
incroolology.	SO1.2 Learn about the History of Microorganisms	LI1.2 Practice historical resume techniques	CI1.2 Historical Resume	SL1.2 Explore the microflora of the university
	SO1.3 Know about the life of Microbes	LI1.3 Prepare and observe microbial samples	CI1.3 Microbial life	SL1.3 Investigate microbial life in local environments
	SO1.4 Know about Prokaryotic & Eukaryotic Microorganisms		CI1.4 Prokaryotes & Eukaryotes	SL1.4 Compare prokaryotic and eukaryotic microorganisms
	SO1.5 Learn about the Archea & Protozoa		CI1.5 Archea & Protozoa	
	SO1.6 Learning of classification of microorganisms		CI1.6 Classification of microorganisms	
	SO1.7 Know about the Microbial Cell Structure		CI1.7 Structure of microbial cell	
	SO1.8 Know about the cyanobacteria		CI1.8 Characteristics of cyanobacteria	
	SO1.9 Know about the actinomycetes		CI1.9 Characteristics of actinomycetes	

Suggested Sessional	SW1.1 Assignments	Summarizes classification of microorganism- Bacteria.
Work (SW): anyone	SW1.2 Mini Project	Demonstrate how to isolate microbes from soil.
	SW1.3 Other Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	02	16

Course Outcome (CO)	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO2: Understand the growth and control of microbes	SO2.1 Understand the basic principles of light microscopy	LI2.1 Prepare sample for light microscopy	CI2.1 Light microscope: basic principles	SL2.1 Create a chart of the parts of a light microscope
as well as different bacteriological	SO2.2 Learn about phase contrast microscopy		CI2.2 Types of phase contrast microscopy	SL2.2 Draw a diagram of phase contrast microscopy
techniques involved in microbiology.	SO2.3 Learn about dark field microscopy		CI2.3 Basic principles of dark field microscopy	
	SO2.4 Learn about fluorescent microscopy		CI2.4 Basic principles and types of fluorescent microscopy	
	SO2.5 Understand the principles of electron microscopy	LI2.2 Prepare sample for electron microscopy	CI2.5 Principles of electron microscope	
	SO2.6 Learn about the working and function of electron microscopy		CI2.6 Working and function of electron microscope	
	SO2.7 Know about electron probe microscopy		CI2.7 Electron probe microscopy	
	SO2.8 Understand the types of electron microscopy (TEM, SEM, STEM)		CI2.8 Types of electron microscopy: TEM, SEM, STEM	
	SO2.9 Learn about sample preparation for electron microscopy	LI2.3 Sample preparation for EM analysis	CI2.9 Sample preparation for EM analysis	

Suggested Sessional	SW2.1 Assignments	Justify the role of SEM and TEM in biotechnology.
Work (SW): anyone	SW2.2 Mini Project	Differentiate between SEM and TEM.
	SW2.3 Other Activities (Specify)	Incorporate some YouTube videos based on features of how TEM works.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	1	3	17

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO3: Acknowledged about the different types of microorganisms and their	SO3.1 Understand the mathematical expression of microbial growth	LI3.1 Calculate microbial growth rates	CI3.1 Mathematical expression of microbial growth	SL3.1 Review and summarize mathematical models of microbial growth
significance.	SO3.2 Learn to interpret growth curves		CI3.2 Growth curve: phases and characteristics	SL3.2 Plot and analyze a growth curve from experimental data
	SO3.3 Measure microbial growth accurately		CI3.3 Methods for measuring microbial growth	
	SO3.4 Understand synchronous culture techniques		CI3.4 Synchronous culture: principles and applications	
	SO3.5 Learn about continuous culture systems		CI3.5 Continuous culture: concepts and methods	
	SO3.6 Understand the cultivation of microorganisms	LI3.2 Practice cultivation techniques	CI3.6 Cultivation of microorganisms: methods and conditions	
	SO3.7 Learn about sterilization techniques		CI3.7 Sterilization methods and their applications	
	SO3.8 Understand biosafety in microbial work		CI3.8 Biosafety guidelines and practices	
	SO3.9 Learn about pure culture techniques		CI3.9 Pure culture techniques and isolation methods	

Suggested Sessional	SW3.1 Assignments	Write about Sterilization Techniques.
Work (SW): anyone	SW3.2 Mini Project	

		Item	Cl	LI	SW	SL	Total	
		Approx. Hrs	09	04	01	03	17	
SW3.3 Other Activities (Specify)	Know about Biosafety Levels.							

	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
Course Outcome (CO)				
	SO4.1 Identify different types of pathogens	LI4.1 Identification of pathogens in clinical samples	CI4.1 Types of pathogens and their characteristics	SL4.1 Research and summarize case studies of specific pathogens
	SO4.2 Understand the sources of infection, including carriers and vectors		CI4.2 Sources of infection: carriers and vectors	SL4.2 Explore local carriers and vectors of infectious diseases
	SO4.3 Learn about congenital infections		CI4.3 Congenital infections: causes and effects	
	SO4.4 Understand modes and sources of infection		CI4.4 Modes of infection and sources	
	SO4.5 Study pathogenesis of bacterial infections		CI4.5 Pathogenesis of bacterial infections	
	SO4.6 Study pathogenesis of fungal infections		CI4.6 Pathogenesis of fungal infections	
	SO4.7 Study pathogenesis of viral infections		CI4.7 Pathogenesis of viral infections	
	SO4.8 Study pathogenesis of protozoan infections		CI4.8 Pathogenesis of protozoan infections	
	SO4.9 Learn about prophylaxis and preventive measures	LI4.2 Techniques for testing antimicrobial efficacy	CI4.9 Prophylaxis and preventive measures for infections	

			Item	Cl	LI	SW	SL	Total
			Approx. Hrs	09	04	01	03	17
Suggested Sessional	SW4.1 Assignments	Write about the Morphology and Pathogenesis of Herpes Vi	Write about the Morphology and Pathogenesis of Herpes Virus.					
Work (SW): anyone	SW4.2 Mini Project							
	SW4.3 Other	Search and learn via YouTube how to take Preventive Measures and Chemotherapy for the Papova						
	Activities (Specify)	Virus.						

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5: Identify novel microbes by using standard operating procedures used in microbiology.	SO5.1 Understand methods to assess microbial diversity	LI5.1 Use methods to assess microbial diversity	CI5.1 Methods for assessing microbial diversity	SL5.1 Research and summarize various methods of assessing microbial diversity
	SO5.2 Learn about culture- dependent methods and their merits and demerits		CI5.2 Culture-dependent methods: merits and demerits	SL5.2 Compare culture-dependent and culture-independent methods in microbial studies
	SO5.3 Learn about culture- independent methods and their merits and demerits		CI5.3 Culture- independent methods: merits and demerits	
	SO5.4 Understand molecular analysis techniques for bacterial communities	LI5.2 Perform molecular analysis of bacterial communities	CI5.4 Molecular analysis techniques: density gradient, gel electrophoresis	
	SO5.5 Study density gradient centrifugation for bacterial analysis		CI5.5 Density gradient centrifugation: principles and applications	

SO5.6 Learn about gel electrophoresis for bacterial community analysis	CI5.6 Gel electrophoresis: techniques and interpretation
SO5.7 Understand Restriction Fragment Length Polymorphism (RFLP)	CI5.7 RFLP: principles and applications
SO5.8 Learn about 16S rRNA	CI5.8 16S rRNA gene
gene analysis for microbial	analysis: methods and
diversity	significance
SO5.9 Compare and contrast	CI5.9 Comparison of
molecular techniques for	molecular techniques for
bacterial community analysis	bacterial analysis

Suggested Sessional	SW5.1 Assignments	Write about the Microbial Diversity
Work (SW): anyone	SW5.2 Mini Project	
	SW5.3 Other	Try to learn about 16s RNA Sequencing.
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Principles of Microbiology

Course Code: 98BT302

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1. Understand the different fields in microbiology.	09	04	04	01	18
CO2. Understand the growth and control of microbes as well as different bacteriological techniques involved in microbiology.	09	04	02	01	16

CO3. Acknowledged about the different types of microorganisms and their significance.	09	04	03	01	17
CO4. How to interact microorganisms with higher organisms.	09	04	03	01	17
CO5 . Identify novel microbes by using standard operating procedures used in microbiology	09	04	03	01	17
Total Hours	45	20	15	05	85

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome

Course Title: Principles of Microbiology

Course Code: 98BT302

Course Outcomes		n	Total Marks		
	U	Α	An	Е	
CO1. Understand the different fields in microbiology.	02	03	04	1	10
CO2. Understand the growth and control of microbes as well as different bacteriological techniques involved in microbiology.	03	04	02	1	10
CO3. Acknowledged about the different types of microorganisms and their significance.	02	05	02	1	10
CO4. How to interact microorganisms with higher organisms.	02	05	02	1	10
CO5. Identify novel microbes by using standard operating procedures used in microbiology	03	03	03	1	10
Total Marks	12	20	13	05	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

	List of Books								
1	Textbook of Microbiology, R.C. Dubey and D. K. Maheshwari, S. Chand Publications, 5 & 2022								
2	Microbiology, M.J. Pelczar, E.C.S Chan and N.R. Kreig, McGraw Hill, 5 & 2002								
3	General Microbiology, R. Y. Stanier, E. A. Adelberg, J. L. Ingraham, Mac Millan Press, 1 & 2014								
4	General Microbiology, Hans G. Schlegel, Cambridge University Press, 7 & 2000								

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to Microbiology lab
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

Course Title: Principles of Microbiology

Semester: IIIrd Sem

	CO/PO/PSO Mapping														
Course Outcome (Cos)		Program Outcomes (POs)										Program Specific			
													Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1. Understand the different fields in microbiology.	1	-	-	1	2	2	1	-	1	2	2	3	3	3	1
CO2. Understand the growth and control of microbes as well as different bacteriological techniques involved in microbiology.	1	-	2	-	-	-	3	2	2	2	3	3	1	1	2
CO3. Acknowledged about the different types of microorganisms and their significance.	1	1	1	1	1	-	2	-	3	1	1	2	1	1	1
CO4 . How to interact microorganisms with higher organisms.	-	1	1	-	2	2	2	3	-	1	-	-	1	2	3
CO5. Identify novel microbes by using standard operating procedures used in microbiology	1	1	1	-	-	2	3	3	1	2	2	2	1	-	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Code: 98BT302

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory	Classroom	Self-Learning (SL)
			Instruction (LI)	Instruction (CI)	
PO 4, 5, 6, 7, 9,	CO1. Understand the different fields in	SO1.1 SO1.2	IL 1	1.1,1.2,1.3,1.4,1.5,1.6	1SL-1,2
10, 11, 12	microbiology.	SO1.3 SO1.4	IL 2		
PSO 1,2, 3		SO1.5 SO1.6			
PO 7,9,10,11,12	CO2. Understand the growth and control of	SO2.1 SO2.2	IL 1	2.1, 2.2, 2.3, 2.4	2SL-1,2
PSO 1,2, 3	microbes as well as different bacteriological	SO2.3 SO2.4	IL 2		
	techniques involved in microbiology.				
PO 2,3,4,	CO3. Acknowledged about the different	SO3.1 SO3.2	IL 1	3.1,3.2,3.3,3.4,3.5	3SL-1,2
7,9,10,11,12	types of microorganisms and their	SO3.3 SO3.4	IL 2		
PSO 1,2, 3	significance.	SO3.5 SO3.6			
PO 2,3,5,6	CO4. How to interact microorganisms with	SO4.1 SO4.2	IL 1	4.1,4.2,4.3,4.4,4.5,4.6	4SL-1,2
7,8,10,11,12	higher organisms.	SO4.3 SO4.4,	IL 2		
PSO 1,2, 3		SO 4.5, SO4.6			
PO 1,2,3,6	CO5. Identify novel microbes by using	SO5.1 SO5.2	IL 1	5.1,5.2,5.3,5.4,5.5	5SL-1
7,8,9,10,11,12	standard operating procedures used in	SO5.3 SO5.4,	IL 2		
PSO 1, 3	microbiology	SO5.5			

Program Name	Bachelor of Technology (B Tech) -Biotechnology									
Semester	III Semester									
Course Code:	98BT304	98BT304								
Course title:	Biophysical Tools and Techniques Curriculum Developer: Dr. Deepak Mishra, Professor									
Pre-requisite:	Student should have basic knowledge of Biotechnology, Biochemistry and Laboratory skills.									
Rationale:	The Bio physical tools and techniques course for B Tech Biotechnology students is integral for equipping them with essential skills in utilizing advanced instruments crucial for biotechnological research. It focuses on bridging biological principles with physical and chemical methodologies, enabling comprehensive study of biomolecules, cellular processes, and environmental interactions. Practical training with instruments such as spectrophotometers, chromatographs, and microscopes enhances students' proficiency in experimental design, data analysis, and interpretation. This hands-on experience not only prepares them for academic research but also for careers in biotechnology, pharmaceuticals, and healthcare industries where such skills are in high demand. Moreover, the course emphasizes ethical considerations in research, ensuring responsible and effective use of bio physical tools. By fostering critical thinking and problem-solving abilities, it cultivates innovation and prepares students to tackle complex challenges in biotechnological applications. Ultimately, the course aims to empower B Tech Biotechnology students with the knowledge and practical expertise needed to contribute meaningfully to advancements in biological sciences and related fields.									
Course Outcomes COs):	CO2-98BT304.2: Acquired knowledge and tec	ic concept's good laboratory practices, Quality Management and basic instrumentation. chnical Skills of advanced molecular biology Techniques.								
	CO3-98BT304.3: Equipped to comprehend the fundamentals of Chromatography Techniques and its application.CO4-98BT304.4: Recognize various methods related to Electrophoresis and its applications.									
	CO5-98BT304.5: Explore role of centrifugation and physical methods of imaging of biological molecules.									

Scheme of Studies:

Board of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)	
Program Common (PC)	98BT304	Biophysical Tools and Techniques	3	2	1	3	09	3+1=4	

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning.

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of		Course Title		Scheme of Assessment (Marks)										
Study	Code			Progressive Assessment (PRA)										
			Class/Home Assignment	Class Test 2	Seminar one	Activity	Class Attendance	Total Marks	Semester Assessment	(PRA+ ESA)				
			5 number	(2 best out	(SA)		(AT)	(CA+CT+SA+AT)	(ESA)					
			3 marks each	of 3)										
			(CA)	10 marks each (CT)										
PC	98BT304	Biophysical Tools and Techniques	15	20	5	5	5	50	50	100				

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which	Approxima	te Ho	ours			
students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should	Item	Cl	LI	SW	SL	Total
showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Approx. Hrs	09	04	01	03	17

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-98BT304.1: Familiarization with the basic concept's good laboratory practices, Quality Management and basic instrumentation	SO1.1 Understand the concept of Good Laboratory Practice (GLP)	Li1.1 Demonstrate proper lab notebook documentation practices	CI1.1 Lecture on principles of GLP and its importance in research	SL1.1 Read a chapter on GLP from a designated textbook
	SO1.2 Comprehend quality management in a laboratory setting	Li1.2 Conduct a mock audit of laboratory procedures	CI1.2 Discuss quality control and quality assurance processes in labs	SL1.2 Watch a video on quality management systems
	SO 1.3 Describe the steps involved in analysis		CI 1.3 Outline the steps of qualitative and quantitative analysis	SL1.3 Write a report summarizing an analysis method of choice
	SO1.4 Differentiate between qualitative and quantitative analysis		CI 1.4 Compare and contrast qualitative vs. quantitative analysis in class	
	SO 1.5 Explain biosafety guidelines and handling problems in the lab		CI 1.5 Review biosafety levels and guidelines in biotechnology	
	SO 1.6 Understand the working principle and instrumentation of common biotech lab instruments		CI 1.6 Overview of the principles and uses of key lab instruments	
	SO 1.7 Prepare different types of solutions		CI 1.7 Explain the process of making standard solutions and buffers	

SO 1.8 Conduct different types of titrations	CI 1.8 Detailed lecture on titration techniques and calculations	
SO 1.9 Describe the principles of osmosis and diffusion	CI 1.9 Teach the concepts of osmosis and diffusion with examples	

Suggested Sessional	SW1.1 Assignments	Describe in detail about instruments used in biotechnology lab.
Work (SW):anyone	SW1.2Mini Project	Prepare list of articles used in your lab and classify them
	SW1.3 Other Activities (Specify)	Preparation of GLP manual for biotechnology laboratory.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	03	17

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO2-98BT304.2: Acquired knowledge and technical Skills of advanced molecular biology Techniques.	2.1 Understand the principles of DNA isolation	2.1 Perform DNA extraction from plant tissue	2.1 Lecture on the basic principles of DNA isolation	2.1 Read research papers on DNA isolation methods
	2.2 Comprehend the principles of RNA isolation	2.2 Isolate RNA from cultured cells	2.2 Discuss the methodologies of RNA extraction and purification	2.2 Study protocols for RNA isolation from various sources
	2.3 Explain the process of protein isolation		2.3 Overview of protein extraction techniques	2.3 Review articles on protein isolation methods
	2.4 Describe the technique of DNA fingerprinting		2.4 Lecture on DNA fingerprinting and its applications	
	2.5 Understand DNA footprinting methodology		2.5 Explain DNA footprinting and its role in molecular biology	
	2.6 Comprehend the concept of DNA imprinting		2.6 Discuss the principles of DNA imprinting and its biological significance	
	2.7 Understand the use of DNA microarray technology		2.7 Teach the working principle and applications of DNA microarrays	

2.8 Explain the process of DNA sequencing	2.8 Discuss the various DNA sequencing technologies and their applications	
2.9 Describe Southern, Northern, and Western blotting techniques	2.9 Detailed lecture on Northern and Western blotting techniques	

Suggested Sessional	SW2.1 Assignments	Assess the role of different blotting techniques
Work (SW):anyone	SW2.2Mini Project	Designing of poster for molecular biology techniques
	SW2.3 Other Activities (Specify)	To demonstration of protocols for molecular biology techniques.

			Item Approx.	C1 LI SW SL Total Hrs 09 04 01 05 19
Course Outcome (CO)	Session Outcomes(SOs)	Laboratory Instruction(LI)	Class room Instruction (CI)	Self-Learning (SL)
CO3-98BT304.3: Equipped to comprehend the fundamentals of Chromatography Techniques and its applications.	SO3.1 Explain the concept of chromatography	LI3.1 Perform paper chromatography	CI3.1 Separation and identification of material: concept of chromatography	SL3.1 Collection of books and study materials for study chromatography
	SO3.2 Assessing the principle of chromatography		CI3.2 principle of chromatography	SL3.2 Study different factors affecting chromatography
	SO3.3 Explaining concept of paper chromatography	LI3.2 Perform thin layer chromatography	CI3.3 paper chromatography	SL3.3 categorization of different types of chromatography
	SO3.4 Assessing thin layer chromatography		CI3.4 thin layer chromatography	
	SO3.5 Describe about		CI3.5 Column	SL3.4 Study of role of

column chromato	ography	chromatography	chromatography	for separation	
SO3.6 Assess concept of chromatography	sing the adsorption	CI3.6 adsorption chromatography	SL3.5 Assess chromatography	application	of
SO3.7 Describe liquid chromatog	e	CI3.7 gas liquid chromatography			
SO3.8 Describ affinity chromate		CI3.8 affinity chromatography			
SO3.9 Describe permeation chromatography		CI3.9 gel permeation chromatography			

Suggested Sessional Work (SW): anyone	SW3.1 Assignments	Describe in detail about different types of chromatography.
	SW3.2 Mini Project	Describe the role of different chromatography techniques
	SW3.3 Other Activities (Specify)	Standardization of protocol for chromatography.

			Item Approx.Hr	Cl LI SW SL Total s 09 04 01 05 20
Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO4-98BT304.4: Recognize various methods related to Electrophoresis and its applications.	4.1 Understand the concept and basic principle of electrophoresis	4.1 Perform a basic gel electrophoresis experiment	4.1 Lecture on the concept and principle of electrophoresis	4.1 Read research articles on the history and development of electrophoresis
	4.2 Identify factors affecting electrophoretic mobility	4.2 Test the effects of different buffer pH levels on electrophoretic mobility	4.2 Discuss factors affecting electrophoretic mobility (pH, voltage, etc.)	4.2 Study case studies on troubleshooting electrophoresis experiments
	4.3 Explain free electrophoresis		4.3 Lecture on the principles and applications of free electrophoresis	4.3 Review protocols and papers on free electrophoresis
	4.4 Describe moving boundary electrophoresis		4.4 Detailed lecture on moving boundary electrophoresis	4.4 Watch a video tutorial on moving boundary

		electrophoresis
4.5 Understand zone electrophoresis	4.5 Discuss the principles and applications of zone electrophoresis	4.5 Write a report on zone electrophoresis methods
4.6 Comprehend paper electrophoresis	4.6 Lecture on paper electrophoresis and its historical significance	
4.7 Explain gel electrophoresis	4.7 Overview of gel electrophoresis techniques and applications	
4.8 Understand capillary electrophoresis	4.8 Teach the working principle and applications of capillary electrophoresis	
4.9 Describe immunoelectrophoresis and isoelectric focusing	4.9 Lecture on immunoelectrophoresis and isoelectric focusing	

Suggested Sessional	SW4.1 Assignments	Explain general characteristics and silent features of centrifugation
Work (SW): anyone	SW4.2 Mini Project	Describe the role of physical methods of imaging biological molecules.
	SW4.3 Other Activities (Specify)	Standardization of protocol of centrifugation used for biological research.

It	em	Cl	LI	SW	SL	Total
Α	pprox. Hrs	09	04	01	05	19

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO4-98BT304.4: Recognize various methods related to Electrophoresis and its applications.	5.1 Understand the basic principle of sedimentation	5.1 Demonstrate sedimentation using a simple centrifuge	5.1 Lecture on the basic principles of sedimentation	5.1 Read research articles on sedimentation in biological systems
	5.2 Identify factors affecting sedimentation	5.2 Investigate the effects of particle size on sedimentation rate	5.2 Discuss factors affecting sedimentation (particle size, density, etc.)	5.2 Study case studies on sedimentation analysis in different materials
	5.3 Explain the use of ultracentrifuge		5.3 Lecture on the principles and applications of ultracentrifugation	5.3 Review protocols for ultracentrifugation experiments
	5.4 Understand the role of analytical centrifuge		5.4 Detailed lecture on analytical centrifugation	5.4 Watch a video tutorial on analytical centrifugation techniques
	5.5 Describe differential centrifugation		5.5 Discuss the principles and steps of differential centrifugation	5.5 Write a report on the applications of differential centrifugation
	5.6 Comprehend density gradient centrifugation		5.6 Lecture on the methodology and applications of density gradient centrifugation	
	5.7 Explain physical methods of imaging intact biological structures		5.7 Overview of X-ray imaging and its applications	
	5.8 Understand the principles of CAT-Scan		5.8 Lecture on the principles and applications of CAT-Scan	
	5.9 Describe the uses of ECG and EEG		5.9 Discuss the working principles and uses of ECG and EEG	

S	W51 Assignments	Understanding the Pasia Principles and Factors Affacting Sadimentation
3	W5.1 Assignments	Understanding the Basic Principles and Factors Affecting Sedimentation

Suggested Sessional Work (SW): anyone	SW5.2 Mini Project	To explore physical methods of imaging intact biological structures using X-ray, CAT- Scan, ECG, and EEG.
	SW5.3 Other Activities (Specify)	To understand the operation and applications of ultracentrifuges and analytical centrifuges.

Course duration (in hours) to attain Course Outcomes:

Course Title: Biophysical Tools and Techniques

Course True. Diophysical roots and reeninques	Course Couc./0D1304				
Course Outcomes(COs)	Class lecture (CI)	Laboratory Instruction(LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98BT304.1: Familiarization with the basic concepts good laboratory practices, Quality Management and basic instrumentation.	9	4	3	1	17
CO2-98BT304.2: Acquired knowledge and technical Skills of advanced molecular biology Techniques.	9	4	3	1	17
CO3-98BT304.3: Equipped to comprehend the fundamentals of Chromatography Techniques and its application.	9	4	5	1	19
CO4-98BT304.4: Recognize various methods related to Electrophoresis and its applications.	9	4	5	1	19
CO5-98BT304.5: Explore role of centrifugation and physical methods of imaging of biological molecules.	9	4	5	1	19
Total Hours	45	20	21	05	91

Suggested Sessional	SW4.1 Assignments	Explain about different factors affecting electrophoresis and its performance.
Work (SW): anyone	SW4.2 Mini Project	Compare different protocols of gel electrophoresis.
	SW4.3 Other Activities (Specify)	Prepare one article on application of electrophoresis for biological research.

Course Code:98BT304

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Biophysical Tools and Techniques

Course Code: 98BT304

Course Outcomes		n	Total Marks		
	A	An	E	С	
CO1-98BT304.1: Familiarization with the basic concepts good laboratory practices, Quality Management and basic instrumentation.	2	1	1	1	5
CO2-98BT304.2: Acquired knowledge and technical Skills of advanced molecular biology Techniques.	2	3	2	2	9
CO3-98BT304.3: Equipped to comprehend the fundamentals of Chromatography Techniques and its application.	2	4	3	2	11
CO4-98BT304.4: Recognize various methods related to Electrophoresis and its applications.	3	4	4	2	13
CO5-98BT304.5: Explore role of centrifugation and physical methods of imaging of biological molecules.	5	4	2	1	12
Total Marks	14	16	12	08	50

Legend: A, Apply; An, Analyze;vE, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Biochemical Calculations by Irwin H. Segel, John Wiley & Sons (2nd Edition), 1975
2	Practical Biochemistry, Principles and Techniques, Keith Wilson and John Walker
3	Principles of Physical Biochemistry, K.E. Van Holde, Prentice Hall.
4	Principles and Practice of Bioanalysis, Richard F. Venn
5	Biochemical Calculations by Irwin H. Segel

(b) Online Resources:

Suggested instructions/Implementation strategies:

1. Improved lecture

2. Tutorial

3. Case method

- 4. Group Discussion
- 5. Role play
- 6. Visit to virology lab (BSL-3)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

Course Title: Biophysical Tools and Techniques

Semester: III Semester

Course Outcome (Cos)		Program Outcomes (POs)										Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT304.1: Familiarization with the basic concepts good laboratory practices, Quality Management and basic instrumentation.	1	2	3	2	2	2	3	2	2	1	2	3	2	2	3
CO2-98BT304.2: Acquired knowledge and technical Skills of advanced molecular biology Techniques.	1	2	2	1	2	3	3	2	1	2	2	2	2	3	3
CO3-98BT304.3: Equipped to comprehend the fundamentals of Chromatography Techniques and its application.	1	2	2	2	1	2	3	1	2	1	2	2	1	2	3
CO4-98BT304.4: Recognize various methods related to Electrophoresis and its applications.	1	1	3	1	1	2	3	1	2	2	1	3	1	2	3
CO5-98BT304.5: Explore role of centrifugation and physical methods of imaging of biological molecules.	1	2	3	1	1	2	2	1	1	2	2	3	1	2	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Code: 52BT208

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory	Classroom	Self-Learning
			Instruction (LI)	Instruction (CI)	(SL)
PO 1,2,3,4,5, 6,	CO1-98BT304.1: Familiarization with the	SO1.1 SO1.2 SO1.3	1.1,1.2	1.1,1.2,1.3,1.4,1.5, 1.6,	1SL-1,2,3
7,8,9,10,11, 12	basic concepts good laboratory practices,	SO1.4 SO1.5 SO1.6		1.7, 1.8, 1.9,1.10	
	Quality Management and basic	SO1.7 SO1.8 SO1.9			
PSO 1,2,3	instrumentation.	SO1.10			
PO 1,2,3,4,5, 6,	CO2-98BT304.2: Acquired knowledge and	SO2.1 SO2.2 SO2.3	2.1, 2.2	2.1, 2.2, 2.3, 2.4, 2.5,	2SL-1,2,3
7,8,9,10,11, 12	technical Skills of advanced molecular	SO2.4 SO2.5 SO2.6		2.6, 2.7, 2.8, 2.9, 2.10	
	biology Techniques.	SO2.7 SO2.8 SO2.9			
PSO 1,2,3		SO2.10			
PO 1,2,3,4,5, 6,	CO3-98BT304.3: Equipped to	SO3.1 SO3.2 SO3.3	3.1,3.2	3.1,3.2,3.3,3.4,3.5, 3.6,	3SL-1,2,3,4,5
7,8,9,10,11, 12	comprehend the fundamentals of	SO3.4 SO3.5 SO3.6		3.7, 3.8, 3.9	
	Chromatography Techniques and its	SO3.7 SO3.8 SO3.9			
PSO 1,2,3	application.				
PO 1,2,3,4,5, 6,	CO4-98BT304.4: Recognize various	SO4.1 SO4.2 SO4.3	4.1,4.2	4.1,4.2,4.3,4.4, 4.5, 4.6,	4SL-1,2,3,4,5
7,8,9,10,11, 12	methods related to Electrophoresis and its	SO4.4 SO4.5 SO4.6		4.7, 4.8, 4.9, 4.10	
	applications.	SO4.7 SO4.8 SO4.9			
PSO 1,2,3		SO4.10			
PO 1,2,3,4,5, 6,	CO5-98BT304.5: Explore role of	SO5.1 SO5.2 SO5.3	5.1,5.2	5.1,5.2,5.3,5.4,5.5, 5.6,	5SL-1,2,3,4,5
7,8,9,10,11, 12	centrifugation and physical methods of	SO5.4 SO5.5 SO5.6		5.7, 5.8	
	imaging of biological molecules.	SO5.7 SO5.8			
PSO 1,2,3					

Program Name	Bachelor of Technology B.Tec.(H)-Biote	chnology						
Semester	III Semester							
Course Code:	98EN305							
Course title:	Entrepreneurship Development	Curriculum Developer: Mr. Dhirendra Mishra,						
Pre-requisite:	Students should have basic knowledge of							
Rationale:	Entrepreneurs perform a vital function in economic development. They have been referred to as the human agents needed "to mobilize capital, to exploit natural resources, to create markets and to carry on trade". It might well be said that the entrepreneurial input spells the difference between prosperity and poverty among nations.							
	difference between prosperity and poverty among nations. Many economic theories emphasize the significant roles played by individual entrepreneurs as they combine talents, abilities, and drive to transform resources into profitable undertakings. Joseph Schumpeter, the first major writer to highlight the human agent in the process of economic development, believed that the economy was propelled by the activities of persons. Who wanted to promote new goods and new methods of production, or to exploit a new source of materials or new market not merely for profit but also to the purpose of creating?							
Course Outcomes (COs):		ishing a business in a competitive environment tanding to examine the existing business ventures						
	CO3-98EN305 Examine various busin	ess considerations such as marketing, financial and teaming etc.						
	CO4-98EN305 Assessing strategies fo	r planning a business venture						
	CO5-98EN305 Create business ideas t	hat can drive the innovative society						

Scheme of Studies:

Board of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L: T:P=2:1:0)
HS	00010000	Entrepreneurship Development	3	0	1	3	7	2+1 = 3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of	Course	Course Title			Schem	e of Assessme	nt (Marks)		
Study	Code			Progressiv		End Semester Assessment	Total Marks		
			Class/Home	Class Test 2	Seminar	Class	Total Marks	Assessment	IVIALKS
			Assignment	(2 best out	one	Attendance	(CA+CT+SA+AT)	(ESA)	
			5 number	of 3)	(SA)	(AT)			
			3 marks each	10 marks each					
			(CA)	(CT)					
HS	98EN305	Entrepreneurship Development	15	20	10	5	50	50	100

				í
				1
				1
				1
				1

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction	Approximatel	Hour	5			
(CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses,	Item	Cl	LI	SW	SL	Total
students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of	Approx.Hrs	09	00	01	02	12
Course Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-98EN305.1: Basic aspects of establishing a business in a competitive environment	•		1.1 Lecture on the definition and key concepts of entrepreneurship	1.1 Read a book on famous entrepreneurs and their journeys
	1.2 Comprehend the needs and importance of entrepreneurship		1.2 Classroom discussion on the importance of entrepreneurship for economic growth	1.2 Watch TED Talks on entrepreneurship and innovation
	1.3 Identify factors influencing entrepreneurship		1.3 Lecture on internal and external factors influencing entrepreneurship	
	1.4 Describe the promotion of entrepreneurship		1.4 Discuss government and private sector initiatives for promoting entrepreneurship	
	1.5 Understand the characteristics of successful entrepreneurs		1.5 Classroom activity: Group discussion on traits of successful entrepreneurs	
	1.6 Explain the role of innovation in entrepreneurship		1.6 Lecture on the importance of innovation in entrepreneurial success	
	1.7 Understand the challenges faced by entrepreneurs		1.7 Discuss common challenges and obstacles in entrepreneurship	
	1.8 Comprehend the concept of entrepreneurial mindset		1.8 Lecture on developing an entrepreneurial mindset	
	1.9 Understand the features of a successful entrepreneurship ecosystem		1.9 Discuss the components of a supportive entrepreneurship ecosystem	

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	Interview one successful and one unsuccessful entrepreneur in your place/location. Identify five major characteristics of both
	SW1.2Mini Project	Meet one or two Government officials involved in the promotion of small enterprise. Ask them about the specific facilities the government offers to entrepreneurs to establish small-scale facilities. Also try to know the extent of use of these facilities by the entrepreneurs and major problems faced by them in this regard.
	SW1.3 Other Activities (Specify)	Case study –N.R. Narayana Murthy

Item	Cl	LI	SW	SL	Total
Approx.Hrs	09	00	01	02	12

Course	Session Outcomes (SOs)	Laboratory	Classroom Instruction (CI)	Self-Learning (SL)
Outcome (CO)		Instruction (LI)		
CO2-98EN305.2: Know various form of business organization.	2.1 Understand the different forms of business organization		2.1 Lecture on sole proprietorship, partnership, and corporation	2.1 Read case studies on different business organizations
	2.2 Comprehend the characteristics of each business form		2.2 Discuss the advantages and disadvantages of different business forms	2.2 Watch video lectures on business structures
	2.3 Identify the steps in project identification		2.3 Lecture on the process of identifying a business project	

2.4 Understand the criteria for selecting a product	2.4 Classroom discussion on factors influencing product selection
2.5 Describe the stages of project formulation	2.5 Explain the components of project formulation in a detailed lecture
2.6 Understand how to assess project feasibility	2.6 Lecture on the methods of assessing technical, financial, and market feasibility
2.7 Comprehend the importance of feasibility studies	2.7 Discuss the role of feasibility studies in project success
2.8 Learn to use project management tools	2.8 Overview of project management software and tools in a classroom setting
2.9 Understand the impact of project management on business success	2.9 Discuss real-world examples of successful and failed projects

SW2.1 Assignments	Suppose you propose two-three enterprise like travel agency in a tourist place like Nainital. elaborate which form of ownership you will chose and why?
SW2.2Mini Project	Selection of the product.
SW2.3 Other Activities (Specify)	How an entrepreneurs do assessment of project feasibility
	SW2.2Mini Project

Item	Cl	LI	SW	SL	Total
Approx.Hrs	09	00	01	02	12

Course Outcome (CO)		Session Outco	mes (SOs)	Laboratory	Classroom Instruction	Self-Learning (SL)
				Instruction (LI)	(CI)	
CO3-98EN305.3: Con	rrelation	3.1 Understand	the importance		3.1 Lecture on the importance of finance	3.1 Read articles on
among various types of	of loans	of finance and	the role of loans		and loan management	successful loan
and repayment of loans.		and repayment	S			management strategies
		3.2 Identify the	characteristics		3.2 Discuss key characteristics of	3.2 Watch webinars on
		of business fina	ance		business finance such as risk, return, and	business finance
					liquidity	fundamentals
		3.3 Explain sou	rces of fixed		3.3 Lecture on various sources of fixed	
		capital and the	r management		capital and their management	
		3.4 Compreher	d working		3.4 Detailed discussion on working	
		capital manage	ment and its		capital management, including sources	
		sources			and strategies	
		3.5 Understand	how to apply		3.5 Classroom activity on preparing a	
		for loans and n	nanage		loan application and repayment plan	
		repayments	-			
		3.6 Describe in	ventory		3.6 Lecture on inventory management	
		management of	f direct and		practices for direct and indirect raw	
		indirect raw ma	aterials		materials	
		3.7 Understand	the importance		3.7 Classroom discussion on the impact	
		of inventory m	anagement		of inventory management on business	
			-		operations	
		3.8 Learn techn	niques for		3.8 Overview of inventory management	
		effective inven			techniques such as JIT (Just-In-Time) and	
		management	-		EOQ (Economic Order Quantity)	
		3.9 Evaluate re	al-world		3.9 Case study analysis of companies	
		examples of fix	ed and working		fixed and working capital management	
		capital manage			practices	
Suggested Sessional Work (SW): anyoneSW3.1 Assignments			Issue of debentu	re is source of shore	rt-term loans.	
()·)·····	SW3.2	Mini Project	Visit to an enter	prise and find out i	ts financial position whether it is over-capita	alized or under –capitalized.
		-5			situation whatever be the case.	- ··· F - ···· - ····
	SW3.3	Other	200		ed on financing the enterprise.	
		es (Specify)				

				Item		Cl	LI	SW	SL	Total
				Approx.		09	00	01	02	12
Course Outcome (CO)	Session Outcomes (SOs)	Laboratory	Classroom Instruction		Self	f-Lear	rning	(SL)		
		Instruction (LI)	(CI)							
	4.1 Understand the meaning and importance of marketing	d	4.1 Lecture on the fundament concepts of marketing and its significance		4.1 Read articles on the role of marketing in business success					
	4.2 Comprehend the marketing- mix and its components	-	4.2 Discuss the 4Ps (Product, Place, Promotion) and their re- marketing strategy	ole in	app	Watch licatio t in dif	on of t	he ma	rketin	g-
	4.3 Explain product management concepts, including product line and product mix	2	4.3 Lecture on product line, product mix, and their management							
	4.4 Understand the stages of the product life cycle	•	4.4 Classroom discussion on product life cycle stages (Intr Growth, Maturity, Decline)							
	4.5 Analyze the importance of marketing research and surveys	4.5 Lecture on the role of main research and the benefits of su	0							
	4.6 Understand the process of conducting marketing research		4.6 Classroom activity on des conducting a marketing surve	signing and						
	4.7 Comprehend physical distribution and stock management		4.7 Lecture on physical distri methods and stock managemetechniques							
	4.8 Explore strategies for effective stock management		4.8 Discuss inventory control techniques such as Just-In-Tir and Economic Order Quantity	me (JIT)						
	4.9 Evaluate real-world examples of product management and distribution		4.9 Case study analysis of suc product management and dist strategies	ccessful						
Suggested Sessional Work (SW): anyone	SW4.1 AssignmentsESW4.2 Mini ProjectM		roduct. running a manufacturing entergepare systematic report on the s		nim h	ow he	/she t	ook de	ecisio	1 on
		· ·	be videos based on Marketing N		nt.					

Item	Cl	LI	SW	SL	Total
Approx.Hrs	09	00	01	02	12

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5-98EN305.5 : To compare various government policy for international business and analyzed institutions support for export.	5.1 Understand the meaning and significance of international business		5.1 Lecture on the definition and importance of international business	5.1 Read articles on global business strategies and trends
	5.2 Comprehend the process of selecting a product for international markets		5.2 Discuss criteria for product selection for international markets	5.2 Watch webinars on international product strategies
	5.3 Learn how to select a market for international business		5.3 Lecture on market selection criteria and methods for international expansion	
	5.4 Understand the principles of export financing		5.4 Classroom discussion on various export financing options such as letters of credit and export credit insurance	
	5.5 Explore institutional support available for exports		5.5 Lecture on the roles of export promotion agencies and government institutions in supporting exports	
	5.6 Evaluate real-world examples of successful market entry strategies		5.6 Case study analysis of businesses that have successfully entered international markets	
	5.7 Understand the challenges and risks in international business		5.7 Discuss common challenges such as cultural differences, legal issues, and economic instability	
	5.8 Learn about the documentation and compliance required for international trade		5.8 Lecture on the essential documentation and compliance requirements for international trade	

5.9 Analyze the impact of global trade policies on international business	5.9 Classroom discussion on the effects of global trade policies, tariffs, and trade agreements	
---	--	--

Suggested Sessional Work (SW): anyone	SW5.1 Assignments	Write about Institutional support for exports for international business.
	SW5.2 Mini Project	Make a list of financial institutes those support for export and write about their polices for export
	SW5.3 Other Activities (Specify)	Find out some you tube videos based on international business.

Course duration (in hours) to attain Course Outcomes:

Course Title: Entrepreneurship Development

Course Code: 98EN305

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98EN305.1 : Understand basic aspects of establishing a business in a competitive environment.	9	0	2	1	12
CO2-98EN3055.2 : Apply the basic understanding to examine the existing business ventures.	9	0	2	1	12
CO3-98EN305.3 : Examine various business considerations such as marketing, financial and teaming etc.	9	0	2	1	12
CO4-98EN305.4 : Assessing strategies for planning a business venture	9	0	2	1	12
CO5-98EN305.5 : Create business ideas that can drive the innovative society	9	0	2	1	12
Total Hours	45	00	10	05	60

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Entrepreneurship Development

Course Code: 98EN305

Course Outcomes	Mar	rks Dis	Total Marks		
	Α	An	Ε	С	
CO1-98EN3055.1: Understand basic aspects of establishing a business in a competitive environment.	2	1	1	1	5
CO2-98EN305.2: Apply the basic understanding to examine the existing business ventures.	2	4	2	2	10
CO3-98EN3055.3: Examine various business considerations such as marketing, financial and teaming.	3	5	5	2	15
CO4-98EN305.4: Assessing strategies for planning a business venture	2	3	3	2	10
CO5-98EN305.5: Create business ideas that can drive the innovative society	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend: A, apply; An, analyze; E, evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Holt DH. Entrepreneurship: New Venture Creation.
2	Kaplan JM Patterns of Entrepreneurship.
3	Gupta CB, Khanka SS. Entrepreneurship and Small Business Management, Sultan Chand & Sons

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method

4. Group Discussion

5. Role play

6. Industrial Visit

7. Demonstration

8. ICT Based teaching Learning

9. Brainstorming

CO, PO and PSO Mapping

Program Name: Bachelor of Technology-Biotechnology **Course Title:** Entrepreneurship Development

Semester: III Semester Course Code: 98EN305

ping							
Program Outcomes (POs) Program Specific Ou (PSOs)					utcomes		
PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
2	-	-	1	2	2	2	1
-	-	-	-	-	1	1	2
-	1	1	1	-	1	1	1
-	1	1	-	2	1	1	3
1	1	1	-	-	1	3	2
	PO1 2	Program PO1 PO2 2 - - - - 1	Program Outcom PO1 PO2 PO3 2 - - - - - - 1 1	Program Outcomes (Period PO1 PO2 PO3 PO4 2 - - 1 - - - - - - 1 1 1 1	Program Outcomes (POs) PO1 PO2 PO3 PO4 PO5 2 - - 1 2 - - - - - - - 1 1 1 - - - 1 1 1 - -	Program Outcomes (POs) Program PO1 PO2 PO3 PO4 PO5 PSO1 2 - - 1 2 2 - - - 1 2 2 - - - - 1 1 - 1 1 1 - 1	Program Outcomes (POs)Program Specific O (PSOs)PO1PO2PO3PO4PO5PS01PS022122211-111-11

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5	CO1-98EN305.1: Understand basic aspects of establishing a business in a	SO1.1 SO1.2 SO1.3 SO1.4		1.1,1.2,1.3,1.4,1.5	18L-1,2,3,4
PSO 1,2,3	competitive environment	SO1.5			
PO 1,2,3,4,5 PSO 1,2,3	CO2-98EN305.2: Apply the basic understanding to examine the existing business ventures	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		2.1, 2.2, 2.3, 2.4, 2.5,	2SL-1,2
PO 1,2,3,4,5 PSO 1,2,3	CO3-98EN305.3: Examine various business considerations such as marketing, financial and teaming etc.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6		3.1,3.2,3.3,3.4,3.5 3.6	3SL-1,2
PO 1,2,3,4,5 PSO 1,2,3	CO4-98EN305.4: Assessing strategies for planning a business venture.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6 SO4.7		4.1,4.2,4.3,4.4,4.5, 4.6,4.7	4SL-1,2,3

PO 1,2,3,4,5	CO5-98EN305.5: Create business ideas that	SO5.1 SO5.2		5.1,5.2,5.3,5.4,5.5	58L-1,2,3
PSO 1,2,3	can drive the innovative society.	SO5.3 SO5.4 SO5.5 SO5.6		5.6	
Program Name	B. Tech. Biotech Semester	· · · · ·			
Semester	ш				
Course Code:	98BT301				
Course title:	Computational Biology & Bioinformatics	Curriculum Devel	l oper : Mr. Piyush Kant I	Rai, Assistant Profes	sor
Pre-requisite:	Biology fundamentals (molecular biology, g technologies, Linux/Unix, version control, a		< · // //	nematics, bioinforma	tics tools, genomics, NGS
Rationale:	The proposed syllabus integrates essential programming skills, statistical and mathemat the necessary tools to analyze biological dat	tical methods, and databa	ase management. This co	omprehensive approa	ch ensures students acquire
Course Outcomes (COs):	 98BT301.1: The unit will explain bioinform 98BT301.2: Analyze protein information utilization in research. 98BT301.3: Operates diverse data generatio analyses. 98BT301.4: Master sequence and phyloger interpret results. 98BT301.5: Navigate databases, execute and gene identification. 	n techniques, understand	PROT, TREMBL data	bases, mastering th ges, and apply proble assembly, mutation	meir structures for effective em-solving skills in biologica matrices, BLAST usage, and

Scheme of Studies:

					Scheme of	studies (Hou	ırs/Week)	
Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L: T:P=3:0:1)
РС	98BT301	Computational Biology and Bioinformatics	3	2	1	2	8	3+0+1=4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning.

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of	Course	Course Title			Schen	ne of Assessment (1	Marks)		
Study	Code			Р	Progressive Assess	sment (PRA)		End	Total Marks
			Class/Home Assignment	(lass lest 7	Seminar one	Class Attendance	Total Marks	Semester Assessment	(PRA+ESA)
			5 number	(2 best out	(SA)	(AT)	(CA+CT+SA+AT)	(ESA)	
			3 marks	of 3)					
			each	10 marks each (CT)					
			(CA)	()					
РС	98BT301	Computational Biology and Bioinformatics	15	20	5	10	50	50	100
		Biomormatics							

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through	Approximate Hours						
various modes of instruction including Classroom Instruction (CI), Laboratory		Item	Cl	LI	SW	SL	Total
Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Approx. Hrs	09	04	01	02	16
progresses, students should showcase their mastery of Session Outcomes (SOs),							
culminating in the overall achievement of Course Outcomes (COs) upon the							
course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-98BT301.1: The unit will explain bioinformatics history, homology, and utilize sequence databases (EMBL, GENBANK,	SO1.1 Understand the concept of computational biology	Li1.1Analyze computational biology case studies	CI1.1 Lecture on the fundamentals of computational biology and its importance	SL1.1 Read a review article on the evolution of computational biology
Entrez, Unigene).	SO1.2 Introduction to bioinformatics	LI1.2 Hands-on session with bioinformatics tools	CI1.2 Lecture on the basics of bioinformatics and its role in computational biology	SL1.2 Watch an introductory video on bioinformatics tools and techniques
	SO1.3 Review the history of bioinformatics		CI1.3 Classroom discussion on the historical development of bioinformatics	
	SO1.4 Learn basic terminology used in bioinformatics		CI1.4 Lecture on key bioinformatics terms and definitions	
	SO1.5 Understand the scope and applications of bioinformatics		CI1.5 Discuss the various applications of bioinformatics in research and industry	
	SO1.6 Introduction to the National Center for Biotechnology Information (NCBI)		CI1.6 Lecture on the role of NCBI and its resources	
	SO1.7 Define and understand biological sequence databases		CI1.7 Classroom discussion on the importance and uses of biological sequence databases	
	SO1.8 Overview of various primary and secondary biological databases		CI1.8 Lecture on primary databases (e.g., GenBank, EMBL, DDBJ) and secondary databases (e.g., SwissProt, PIR)	

databases: GenBank, EMBL,Explore and compare differentDDBJ, Swiss Prot, PIR, MIPS,databases such as GenBank,TIGR, TAIRSwissProt, and TAIR

Suggested Sessional	SW1.1 Assignments	Summarizes the GenBank, EMBL and DDBJ
Work (SW): anyone	SW1.2 Mini Project	Demonstrate how to retrieve data from EMBL.
	SW1.3 Other Activities (Specify)	correlate the data redundancy among INSDC databases.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	2	16

Course	Session Outcomes	LaboratoryInstruction (LI)	Classroom Instruction	Self Learning (SL)
Outcome (CO) CO2-49BT505.2: Analyze protein information from PDB,	(SOs) SO2.1 Define biological databases and their significance	2.1 Create a comparative report on different biological databases	(CI) CI 2.1 Lecture on the definition and importance of biological databases	SL2.1 Read articles on the role of biological databases in research
SWISS-PROT, TREMBL databases, mastering their structures for effective utilization in research.	SO 2.2 Identify and describe different types of biological databases		CI 2.2 Lecture on types of biological databases: primary, secondary, and others	SL2.2 Watch videos explaining various types of biological databases
	SO 2.3 Overview primary and secondary databases	2.2 Explore primary and secondary databases to understand their features	CI 2.3 Classroom discussion on the characteristics of primary and secondary databases	
	SO 2.4 Understand nucleic acid sequence databases (NCBI, EMBL, DDBJ)		CI 2.4 Lecture on nucleic acid sequence databases and their roles	
	SO 2.5 Explore the SWISS- PROT protein sequence database		CI 2.5 Classroom lecture on SWISS-PROT and its significance in protein sequence analysis	
	SO 2.6 Learn database searching techniques using BLAST and FASTA		CI 2.6 Lecture on BLAST and FASTA algorithms and their applications	
	SO 2.7 Perform and interpret BLAST searches		CI 2.7 Classroom activity on interpreting BLAST search results	
	SO 2.8 Perform and interpret FASTA searches		CI 2.8 Classroom discussion on the differences between BLAST and FASTA	

SO 2.9 Compare results from	CI2.9 Case study analysis of	
BLAST and FASTA searches	BLAST and FASTA results to	
	understand their efficacy	

		Item Cl LI SW		SL	Total			
			Approx. Hrs	09	04	01	04	18
Suggested Sessional	SW2.1 Assignments	Justify the role of SwissProt in biotechnology.						
Work (SW): anyone	SW2.2 Mini Project	Interpret the TrEMBL result concerning the DNA.						
	SW2.3 Other Activities (Specify)	Incorporate some youtube videos based on features of TrEMBL construction.						

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO3-49BT505.3 Operates diverse data generation techniques, understand bioinformatics challenges, and apply problem-solving skills in biological	SO3.1 Understand the concepts of local and global alignments	LI3.1 Perform local and global alignments using alignment tools	CI3.1 Lecture on the difference between local and global alignments	SL3.1 Read articles on the applications of local and global alignments
analyses.	SO 3.2 Learn pairwise sequence alignment techniques	LI3.2 Use software to perform pairwise alignments and analyze results	CI3.2 Lecture on pairwise alignment methods and algorithms	SL3.2 Watch tutorials on pairwise sequence alignment techniques
	SO 3.3 Understand substitution scoring and gap penalties		CI3.3 Classroom discussion on scoring systems and the impact of gap penalties	SL3.3 Study different substitution matrices and their use cases
	SO 3.4 Comprehend the statistical significance of sequence alignments		CI3.4 Lecture on the statistical methods for evaluating alignment significance	SL3.4 Explore statistical models used in sequence alignment significance

m	0 3.5 Learn about ultiple sequence gnment methods	CI3.5 Classroom discussion on various methods for multiple sequence alignment	
pro	O 3.6 Explore ogressive alignment ethods	CI 3.6 Lecture on progressive alignment methods and their applications	
mo	O 3.7 Understand otifs and patterns in quences	CI 3.7 Classroom discussion on the identification and significance of motifs and patterns	
fre	O 3.8 Compare results om different gnment methods	CI 3.8 Classroom activity analyzing and comparing alignment results from different methods	
ali	O 3.9 Apply sequence gnment techniques to al-world data	CI 3.9 Case study analysis of real-world applications of sequence alignment	

			Item	Cl	LI	SW	SL	Total
			Approx. Hrs	09	04	01	04	18
Suggested Sessional	SW3.1 Assignments	Write about Local and global alignment.						
Work (SW): anyone	SW3.2 Mini Project							
	SW3.3 Other	Search and find the amrita lab and there find alignment methods.						
	Activities (Specify)							

(LI)	(CI)	
netic phylogenetic mod	del elements and structure o	f SL4.1 Read articles on the development and use of phylogenetic models
	e LI4.1 Construct a enetic phylogenetic mo	e LI4.1 Construct a basic CI 4.1 Lecture on the elements and structure o

mutation matrices, BLAST usage, and interpret results.	SO4.2 Learn data analysis techniques for phylogenetics	LI4.2 Analyze genetic data for phylogenetic studies using software tools	CI 4.2 Lecture on methods of data analysis in phylogenetics	SL4.2 Watch tutorials on phylogenetic data analysis
	SO4.3 Understand tree building methods		CI 4.3 Classroom discussion on different tree building methods	SL4.3 Research different phylogenetic tree building algorithms
	SO 4.4 Learn tree evaluation techniques		CI 4.4 Lecture on tree evaluation methods and criteria	SL4.4 Study case studies on phylogenetic tree evaluation
	SO 4.5 Explore methods for searching for a phylogenetic tree		CI 4.5 Classroom discussion on techniques for searching phylogenetic trees	
	SO 4.6 Understand the use of phylogenetic software		CI 4.6 Lecture on various phylogenetic software tools	
	SO 4.7 Learn to use CLUSTAL for phylogenetic analysis		CI 4.7 Classroom demonstration on using CLUSTAL for phylogenetic analysis	
	SO 4.8 Learn to use PHYLIP for phylogenetic analysis		CI 4.8 Classroom demonstration on using PHYLIP for phylogenetic analysis	
	SO 4.9 Understand UPGMA for phylogenetic analysis		CI4.9 Lecture on the UPGMA method and its applications	

Suggested Sessional	SW4.1 Assignments	Write about mathematical associated with phylogenetic analysis.
Work (SW): anyone	SW4.2 Mini Project	
	SW4.3 Other	Search and learn via YouTube how to interpret phylogenetic tree.
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	04	18

Course Outcome (CO)	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5-49BT505.5: Navigate databases, execute similarity searches (BLAST, FASTA),	SO5.1 Understand the physical properties of proteins	LI5.1 Analyze the physical properties of a given protein sample	CI 5.1 Lecture on the physical properties of proteins	SL5.1 Read articles on protein physical properties
and annotate genomes, integrating pattern finding and gene identification.	SO 5.2 Learn about secondary structures of proteins	LI5.2 Predict secondary structures using computational tools	CI 5.2 Classroom discussion on alpha and beta structures	SL5.2 Study secondary structure prediction methods
	SO 5.3 Understand alpha and beta structures		CI 5.3 Lecture on the significance of alpha and beta structures	SL5.3 Explore case studies involving alpha and beta structures
	SO 5.4 Learn about protein motifs		CI 5.4 Classroom discussion on common protein motifs	SL5.4 Research different protein motifs and their functions
	SO 5.5 Understand tertiary structures of proteins		CI 5.5 Lecture on the formation and significance of tertiary structures	
	SO 5.6 Explore specialized protein structures		CI 5.6 Classroom discussion on specialized structures and their functions	

SO 5.7 Learn about pr conformation	otein	CI 5.7 Lecture on protein conformation and its importance
SO 5.8 Understand the bioinformatics in drug discovery		CI 5.8 Lecture on bioinformatics applications in drug discovery
SO 5.9 Learn about do and prediction of drug	e	CI5.9 Classroom discussion on docking methods and drug quality prediction

Suggested Sessional	SW5.1 Assignments	Write about protein function aspect and its properties.
Work (SW): anyone	SW5.2 Mini Project	
	SW5.3 Other	Try to learn and apply Rasmol to learn protein structure using virtual lab.
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes

Course Title: Computational biology and bioinformatics

Course Code: 98BT301

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98BT301.1: The unit will explain bioinformatics history, homology, and utilize sequence databases (EMBL, GENBANK, Entrez, Unigene).		4	2	1	16
CO2-98BT301.2: Explain Bioinformatics resources, computational tools and associated algorithms	9	4	2	1	16

CO3-98BT301.3: Analyze protein information from PDB, SWISS-PROT, TREMBL databases, mastering their structures for effective utilization in research.	9	4	4	1	18
CO4-98BT301.4: Analyze evolutionary tree to understand evolutionary genetics	9	4	4	1	18
CO5-98BT301.5: Compare sequence alignment tools to predict structures & functions of gene, RNA and Proteins & Predict protein structures and its functional annotations through databases	9	4	4	1	18
Total Hours	45	20	16	5	86

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title Computational biology and bioinformatics

Course Code 98BT301

Course Outcomes		Total Marks			
	А	An	E	С	
CO1-98BT301.1: The unit will explain bioinformatics history, homology, and utilize sequence databases (EMBL, GENBANK, Entrez, Unigene).	02	03	04	1	10
CO2-98BT301.2: Analyze protein information from PDB, SWISS-PROT, and TREMBL databases, mastering their structures for effective utilization in research.	03	04	02	1	10
CO3-98BT301.3: Analyze protein information from PDB, SWISS-PROT, TREMBL databases, mastering their structures for effective utilization in research.	02	05	02	1	10
CO4-98BT301.4: Analyze evolutionary tree to understand evolutionary genetics	02	05	02	1	10
CO5-98BT301.5: Compare sequence alignment tools to predict structures & functions of gene, RNA and Proteins & Predict protein structures and its functional annotations through databases.	03	04	03	1	11

Total Marks	12	21	13	05	51

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Bioinformatics Thomas Dandekar, Meik Kunz Springer-Verlag GmbH Germany, part of Springer Nature 2023
2	Introduction to bioinformatics, Arthur Lesk Oxford University Press 2023
3	Essential bioinformatics, Jin Xiong, Cambridge University Press 2007

(b) Online Resources:

Suggested instructions/Implementation strategies:

1. Improved lecture

2. Tutorial

3. Case method

- 4. Group Discussion
- 5. Role play
- 6. Visit to Research lab (BSL-1)
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Course Title: Computational Biology and Bioinformatics

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

CO/PO/PSO Mapping															
Course Outcome (Cos)		Program Outcomes (POs)								Program Specific Outcomes (PSOs)					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT301.1: The unit will explain bioinformatics history, homology, and utilize sequence databases (EMBL, GENBANK, Entrez, Unigene).	-	-	-	1	2	2	1	-	1	2	2	3	3	3	1
CO2-98BT301.2: Analyze protein information from PDB, SWISS-PROT, and TREMBL databases, mastering their structures for effective utilization in research.	-	-	-	-	-	-	3	-	2	2	3	3	1	1	2
CO3-98BT301.3: Analyze protein information from PDB, SWISS-PROT, TREMBL databases, mastering their structures for effective utilization in research.	-	1	1	1	-	-	2	-	3	1	1	2	1	1	1
CO4-98BT301.4: Analyze evolutionary tree to understand evolutionary genetics	-	1	1	-	2	2	2	3	-	1	-	-	1	2	3
CO5-98BT301.5: Compare sequence alignment tools to predict structures & functions of gene, RNA and Proteins & Predict protein structures and its functional annotations through databases.	1	1	1	-	-	2	3	3	1	2	2	2	1	-	2

Course Code: 98BT301

Semester: III

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 4,5,6	CO1-98BT301.1: The unit will explain	SO1.1 SO1.2 SO1.3		1.1,1.2,1.3,1.4,1.5,1.6, 1.7 1.8 1.9	
7,9,10,11,12	bioinformatics history, homology, and utilize sequence databases (EMBL, GENBANK,	SO1.4 SO1.5 SO1.6 SO1.7 SO1.8 SO1.9	IL 1 IL 2		1SL-1,2
PSO 1,2, 3	Entrez, Unigene).	501.7 501.8 501.9	11. 2		
PO 7,9,10,11,12	CO2-98BT301.2: Analyze protein information from PDB, SWISS-PROT, and	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5 SO2.6	IL 1	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7 2.8 2.9	
PSO 1,2, 3	TREMBL databases, mastering their structures for effective utilization in research.	SO2.7 SO2.8 SO2.9	IL 2		2SL-1,2
PO 2,3,4,	CO3-98BT301.3: Analyze protein	SO3.1 SO3.2 SO3.3		3.1,3.2,3.3,3.4,3.5, 3.6, 3.7, 3.8,	
7,9,10,11,12	information from PDB, SWISS-PROT,	SO3.4 SO3.5 SO3.6	IL 1	3.9	3SL-
PSO 1,2, 3	TREMBL databases, mastering their structures for effective utilization in research.	SO3.7 SO3.8 SO3.9	IL 2		1,2,3,4
PO 2,3,5,6 7,8,10,11,12	CO4-98BT301.4: Analyze evolutionary tree to understand evolutionary genetics	SO4.1 SO4.2 SO4.3 SO4.4,SO 4.5,SO4.6 SO4.7 SO4.8 SO4.9	IL 1 IL 2	4.1,4.2,4.3,4.4,4.5,4.6, 4.7, 4.8, 4.9	4SL- 1,2,3,4
PSO 1,2, 3	CO5 09DT201 5. Common common	SOF 1 SOF 2 SOF 2		51525254555(575850	
PO 1,2,3,6 7,8,9,10,11,12	CO5-98BT301.5: Compare sequence alignment tools to predict structures & functions of gene, RNA and Proteins &	SO5.1 SO5.2 SO5.3 SO5.4,SO5.5 SO5.6 SO5.7 SO5.8 SO5.9	IL 1 IL 2	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	5SL-
PSO 1, 3	Predict protein structures and its functional annotations through databases.				1,2,3,4

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology									
Semester	III									
CourseCode:	98ME306									
Coursetitle:	Fluid Mechanics Curriculum Developer: Er. Lokesh Agrawal, Assistant Professor									
Pre-requisite:	Students should have a solid foundation in physics, calculus, mechanics, thermodynamics, biology, and chemistry.									
Rationale:	Fluid mechanics is crucial in biotechnology for understanding fluid behaviors in biological systems, such as cell cultures, bioreactors, and drug delivery. Mastery of fluid mechanics enables optimization of processes like fermentation and separation techniques. This knowledge aids in designing efficient biotechnological processes, enhancing productivity and sustainability.									
CourseOutcomes (COs):	CO2: 98ME356.2 Comprehension of CO3: 98ME356.3 Apply Bernoulli's e CO4: 98ME356.4 Demonstrate profic	ental properties of fluids and their practical significance. fluid motion, kinematics, and various types of fluid flow dynamics equation and related principles to solve fluid dynamics problems. eiency in material and energy balance calculations in unit operations ress Equipment Operation, Optimization, and Power Consumption Analysis.								

Scheme of Studies:

Board of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L: T:P=2:0:0)
OS	98ME306	Fluid Mechanics	2	0	1	2	5	2+0+0=2

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning.

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

				Scheme of Assessment (Marks)						
					Progress	sive Assessment	(PRA)			
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity (CAT)	Class Attendance (AT)	Total Marks (CA+CT+CAT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
os	98ME306	Fluid Mechanics	15	20	5	5	5	50	50	100

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which						
students are anticipated to accomplish through various modes of instruction including Classroom Instruction						
(CI) Laboratory Instruction (LI) Sessional Work (SW) and Self Learning (SL) As the course progresses	ltem			SW		Total
students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of	Approx.Hrs	06	00	01	04	11
Course Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-98ME356.1.	1.1 Understand the		1.1 Lecture on the	1.1 Read articles on the
Understand fundamental	difference between ideal		characteristics of ideal and	applications of ideal and real
properties of fluids and their	and real fluids		real fluids	fluids
practical significance.				
	1.2 Learn about Newtonian		1.2 Classroom discussion on	1.2 Study case studies on
	and Non-Newtonian fluids		Newtonian and Non-	Newtonian and Non-
			Newtonian fluids	Newtonian fluids
	1.3 Understand the		1.3 Lecture on properties of	1.3 Research different fluid
	properties of fluid (mass		fluids and their significance	properties and their
	density, weight density,			industrial applications
	etc.)			
	1.4 Learn about viscosity		1.4 Lecture on viscosity and	1.4 Watch tutorials on
	and surface tension		surface tension and their	measuring viscosity and
			effects	surface tension
	1.5 Understand gas laws and		1.5 Classroom discussion on	
	humidity		gas laws and their	
	-		applications in fluids	
	1.6 Understand fluid statics		1.6 Lecture on fluid statics:	
	(pressure, Pascal's law,		pressure, Pascal's law, and	
	hydrostatic law)		hydrostatic law	

Suggested Sessional Work	SW1.1 Assignments	Explore and differentiate between Newtonian and non-Newtonian fluids. Provide real-		
(SW):anyone		world examples of each type		
	SW1.2Mini Project	Document and observe these scenarios, noting down relevant data such as fluid types,		
		dimensions, and observed behaviors.		
	SW1.3 Other Activities	Make a power point presentation on "Buoyancy and Floatation"		
	(Specify)			

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	03	10

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO2-98ME356.2	2.1 Understand the description of		2.1 Lecture on the basic	2.1 Read articles on real-world
Comprehension of fluid motion,	fluid motion		principles of fluid motion	applications of fluid motion
kinematics, and various types of fluid				
flow dynamics.				
	2.2 Learn the Lagrangian and		2.2 Classroom discussion on	2.2 Study case studies
	Eulerian approaches		Lagrangian and Eulerian	comparing the two approaches
			approaches	
	2.3 Identify different types of		2.3 Lecture on types of fluid	2.3 Research examples of
	fluid flow		flow (laminar, turbulent,	different fluid flow types in
			etc.)	nature and industry
	2.4 Understand and apply the		2.4 Lecture on the	
	continuity equation		continuity equation and its	
			applications	
	2.5 Learn about the acceleration		2.5 Classroom discussion on	
	of a fluid particle		fluid particle acceleration	
	2.6 Understand the motion of		2.6 Lecture on curved path	
	fluid particles along a curved		motion and vortex motion	
	path and vortex motion			

Suggested Sessional Work (SW):anyone	SW2.1 Assignments	Define laminar, turbulent, and transitional flow. Compare and contrast these types of flow, highlighting their characteristics and the factors influencing their occurrence. Provide real-world examples for each type of flow.
	SW2.2Mini Project	Make a project on the continuity equation and its significance in fluid dynamics.
	SW2.3 Other Activities (Specify)	Make Power point presentation on Vortex Motion.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	03	10

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO3-98ME356.3 Apply	3.1 Understand and derive		3.1 Lecture on the derivation	3.1 Read articles on the
Bernoulli's equation and related	Euler's Equation		and significance of Euler's	historical development and
principles to solve fluid			Equation	applications of Euler's
dynamics problems of motion.				Equation
	3.2 Learn the principles and		3.2 Lecture on Bernoulli's	3.2 Study case studies on
	applications of Bernoulli's		Equation and its practical	Bernoulli's Equation in
	Equation		applications	engineering and natural
				systems
	3.3 Understand the working		3.3 Classroom discussion on	3.3 Research various
	and applications of a		the design and use of	industrial applications of
	Venturimeter		Venturimeters	Venturi meters
	3.4 Learn the working		3.4 Lecture on the Pitot tube	
	principles of a Pitot tube		and its application in flow	
			measurement	
	3.5 Understand the concepts		3.5 Lecture on kinetic	
	of kinetic energy and		energy and momentum	
	momentum correction		correction factors in fluid	
	factors		flow	
	3.6 Learn about flow		3.6 Classroom discussion on	
	through pipelines and flow		flow through pipelines and	
	measurement techniques		various flow measurement	
	_		techniques	

Sug	ggested Sessional	SW3.1 Assignments	Derive and explain the impulse momentum equation for a control volume. Discuss its significance in
Wo	ork (SW): anyone		analyzing fluid flow problems and provide examples demonstrating its application.
		SW3.2 Mini Project	Collect and compile the data obtained from each flow measurement device.
		SW3.3 Other	Prepare one Power point presentation on "Different flow measurement device"

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	04	11

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO4-98ME356.4 Demonstrate	4.1 Understand the basic		4.1 Lecture on the	4.1 Read chapters on material
proficiency in material and energy	concepts of material balances		fundamentals of material	balances from a chemical
balance calculations in unit			balances	engineering textbook
operations				
	4.2 Apply material balance		4.2 Classroom discussion on	4.2 Solve practice problems on
	concepts to unit operations		material balance applications in	material balances in various
			unit operations	unit operations
	4.3 Learn to solve material		4.3 Lecture on material	4.3 Review case studies on
	balance problems in		balances in bioprocesses	material balance applications in
	bioprocesses		_	bioprocesses
	4.4 Understand the basic		4.4 Lecture on the	4.4 Study examples of energy
	concepts of energy balances		fundamentals of energy	balances in chemical
			balances	engineering
	4.5 Learn about sensible and		4.5 Lecture on sensible and	
	latent heats		latent heats	
	4.6 Apply thermo chemical		4.6 Classroom discussion on	
	calculations using steam tables		thermo chemical calculations	
	-		and steam tables	

ſ	Suggested Sessional	SW4.1 Assignments	"Describe the importance of simultaneous material and energy balance in bioprocesses. Provide real-
	Work (SW): anyone		world examples to illustrate its application."
		SW4.2 Mini Project	Utilize energy balance concepts to determine energy inputs (sensible and latent heats) and losses.
		SW4.3 Other Activities	Make a Power point presentation on "Energy balance in various bioprocesses"
		(Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	04	11

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5-98ME356.5 Proficiency in Process Equipment Operation, Optimization, and Power Consumption Analysis.	5.1 Understand the basic principles of agitation and its applications		5.1 Lecture on the fundamentals of agitation in chemical processes	5.1 Read chapters on agitation and mixing from a chemical engineering textbook
	5.2 Learn about fluid flow through packed columns		5.2 Classroom discussion on the principles of fluid flow through packed columns	5.2 Solve practice problems related to fluid flow in packed columns
	5.3 Understand the concept of fluidization		5.3 Lecture on fluidization and its industrial applications	5.3 Watch tutorials on fluidization processes and their applications
	5.4 Explore different fluid transport mechanisms		5.4 Classroom discussion on fluid transport mechanisms	5.4 Review case studies on fluid transport in various industries
	5.5 Learn about the equipment used for gas movement		5.5 Lecture on gas moving devices and their applications	
	5.6 Calculate power requirements for agitation		5.6 Classroom discussion on the calculation of power requirements for different agitation systems	

Suggested Sessional	SW5.1 Assignments	Explain the significance of fluidization in packed columns and its impact on fluid transport
Work (SW): anyone		efficiency. Provide examples to illustrate.
	SW5.2 Mini Project	Prepare a comprehensive report detailing the project methodology, findings, and
		recommendations for optimizing fluid dynamics in process equipment.
	SW5.3 Other Activities (Specify)	Prepare one article on the "How Mixing effects the working mechanism of Impellers"

Course duration (in hours) to attain Course Outcomes:

Course Title: Fluid M	Aechanics		Course Code:98N		
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction(LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98ME356.1. Understand fundamental properties of fluids and their practical significance.	06	00	04	1	11
CO2-98ME356.2. Comprehension of fluid motion, kinematics, and various types of fluid flow dynamics	06	00	03	1	10
CO3-98ME356.3. Apply Bernoulli's equation and related principles to solve fluid dynamics problems.	06	00	03	1	10
CO4-98ME356.4. Demonstrate proficiency in material and energy balance calculations in unit operations	06	00	04	1	11
CO5-98ME356.5. Proficiency in Process Equipment Operation, Optimization, and Power Consumption Analysis.	06	00	04	1	11
Total Hours	30	00	18	05	53

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Fluid Mechanics

Course Code: 98ME356

Course Outcomes	Marks Distribution		Total Marks		
	Α	An	Ε	С	
CO1-98ME356.1. Understand fundamental properties of fluids and their practical significance.	2	1	1	1	5
CO2-98ME356.2. Comprehension of fluid motion, kinematics, and various types of fluid flow dynamics	2	4	5	1	12

CO3-98ME356.3. Apply Bernoulli's equation and related principles to solve fluid dynamics problems.	3	5	5	1	14
CO4-98ME356.4. Demonstrate proficiency in material and energy balance calculations in unit operations	2	3	5	1	11
CO5-98ME356.5. Proficiency in Process Equipment Operation, Optimization, and Power Consumption Analysis.	2	4	1	1	10
Total Marks	11	17	17	05	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books

S.No.	Title/Author/Publisher details					
1	Fluid Mechanics & Hydraulic Machines, S.S. Rattan: Khanna Book Publishing					
2	Introduction to Fluid Mechanics, P.J. Pritchard, A.T. McDonald and R.W. Fox, Wiley India					
3	Fluid Mechanics- F.M. White – Tata McGraw Hill.					
4	Introduction to Fluid Mechanics and Fluid Machines, S. K. Som, G. Biswas and S. Chakraborty, Tata McGraw Hill "					

(b) Online Resources

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial

3. Case method

- 4. Group Discussion
- 5. Role play
- 6. Visit to Beverage producing plants & Distillery/Fermenter units
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Course Title: Fluid Mechanics

Semester: III Semester

Course Code: 98ME356

CO/PO/PSO Mapping									
Course Outcome (Cos)		Program Outcomes (POs)			Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1-98ME356.1. Understand fundamental properties of fluids and their practical significance.	1	1	-	1	2	1	2	2	1

CO2-98ME356.2. Comprehension of fluid motion, kinematics,	1	1	1	-	-	1	1	1	2
and various types of fluid flow dynamics									
CO3-98ME356.3. Apply Bernoulli's equation and related	1	1	1	1	2	1	1	1	1
principles to solve fluid dynamics problems.									
CO4-98ME356.4. Demonstrate proficiency in material and	1	-	1	-	-	1	1	1	3
energy balance calculations in unit operations									
CO5-98ME356.5. Proficiency in Process Equipment Operation,	1	-	1	1	2	1	1	3	2
Optimization, and Power Consumption Analysis.									

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6	CO1-98ME356.1. Understand fundamental	SO1.1 SO1.2			
	properties of fluids and their practical	SO1.3 SO1.4		1.1,1.2,1.3,1.41.5,1.6	1SL-1,2,3,4
PSO 1,2, 3	significance.	SO1.5 SO1.6			
PO 1,2,3,4,5,6	CO2-98ME356.2. Comprehension of fluid	SO2.1 SO2.2		21 22 22	
	motion, kinematics, and various types of	SO2.3 SO2.4		2.1, 2.2, 2.3, 2.4,2.5,2.6	2SL-1,2,3
PSO 1,2, 3	fluid flow dynamics	SO2.5 SO2.6		2.4,2.3,2.0	

PO 1,2,3,4,5,6	CO3-98ME356.3. Apply Bernoulli's	SO3.1 SO3.2			
	equation and related principles to solve fluid	SO3.3 SO3.4	3.1,3.2,3.3,3	.4,3.5,3.6 3SL-1,2,3	3
PSO 1,2, 3	dynamics problems.	SO3.5 SO3.6			
PO 1,2,3,4,5,6	CO4-98ME356.4. Demonstrate proficiency	SO4.1 SO4.2	41424	2 4 4	
	in material and energy balance calculations	SO4.3 SO4.4	4.1,4.2,4	481-173	,4
PSO 1,2, 3	in unit operations	SO4.5 SO 4.6	4.3,4	.0	
PO 1,2,3,4,5,6	CO5-98ME356.5. Proficiency in Process Equipment Operation, Optimization, and	SO5.1 SO5.2 SO5.3 SO5.4	5.1,5.2,5.3	,5.4,5.5, 5SL-1,2,3 ,	4
PSO 1,2, 3	Power Consumption Analysis.	SO5.5 SO5.6	5.6	JJL-1,2,3,	-

Program Name	B.Tech. Biotechnology	B.Tech. Biotechnology			
Semester	III	II			
CourseCode:	98BT303	8BT303			
Coursetitle:	Biostatistics	Curriculum Developer: KEERTI SAMDARIYA, Assistant Professor			
Pre-requisite:	Student should have basic knowledge of biostatistics, their role and application in biological field.				
Rationale:	The paper on BIOSTATISTICS in an B.Tech Biotechnology program explores the role of biostatistics and their activity in biological systems. Biostatistics pertains to the acquisition and interpretation of quantitative information in medical research. Finding the correct mathematical hypotheses, biological models, and statistical tests is essential for adequate study designs as a mandatory prerequisite for useful study outcomes.				
CourseOutcomes (COs):	 98BT303.1: Describe the roles biostatistics serves in the discipline of public health. 98BT303.2: Apply basic statistical concepts commonly used in public health and health Sciences 98BT303.3: Demonstrate basic analytical techniques to generate results 				
		sults of commonly used statistical analyses in written summaries e statistical reasoning skills accurately and contextually			

Scheme of Studies:

Board of	CourseCode	Course Title		Scheme of studies (Hours/Week)					
Study			Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C) (L: T:P)	
BSC	98BT303	Biostatistics	2	0	1	1	5	1+1+1=3	

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback ofteacher to ensure outcome of Learning.

Scheme of Assessment: Theory

Board of	Course	Course Title				Schem	e of Assessmer	nt (Marks)		
Study	Code				Progressiv	ve Assessm	ent (PRA)		End Semester	Total
			Class/Home Assignment5 number 3 marks each (CA)	Class Test2 (2 best out of 3) 10 marks each (CT)	Seminar (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	Assessment (ESA)	Marks (PRA+ ESA)
BSC	98BT303	Biostatistics	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:	Item	CI	LI	SW	SL	Total
This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including	Approx. Hrs.	06	4	01	02	13
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning						
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),						
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

CO.1 98BT303.1: Describe the roles	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
	definitions, historical development, and applications of biostatistics.	LI1.1 Conduct a historical analysis of key developments in biostatistics through a lab presentation.	CI1.1 Lecture: Introduction to biostatistics - Definitions, historical resume, and applications.	SL1.1 Research and write a report on the historical milestones in the field of biostatistics.
	SO 1.2 Identify and apply different methods of sampling.	LI1.2 Perform a simple random sampling and non- random sampling exercise using a dataset.	CI 1.2 Discussion: Methods of sampling - Random sampling and non-random sampling.	SL1.2 Develop a flowchart illustrating the steps involved in different sampling methods.
	SO 1.3 Understand sampling errors and non-sampling errors.		CI 1.3 Case Study: Identify sampling and non-sampling errors in a real-world study.	
	SO 1.4 Learn the types of data and methods for data collection.		CI 1.4 Workshop: Types of data and methods for data collection.	
	SO 1.5 Understand how to organize data into a frequency distribution.		CI 1.5 Practical: Organize a dataset into a frequency distribution.	
	SO 1.6 Develop skills in presenting data effectively.		CI 1.6 Presentation: Effective methods of data presentation.	

SW-1 Suggested Sessional Work (SW): anyone	1.1. Assignments: Differentiate between Random Sampling and Non-random sampling, portance of biostatistics and their applications
	1.2 Mini Project: Measures of central Tendency by suitable examples.
	1.3 Other Activities (Specify): Find out some you tube videos based on history, methods, and application of
	biostatistics.

Item	CI	LI	SW	SL	Total
Approx. Hrs.	06	04	01	02	13

CO.2 98BT303.2: Apply basic statistical concepts commonly used in public health and health Sciences	Session- Outcomes (SOs)	Laboratory-Instruction (LI)	Classroom- Instruction (CI)	Self-Learning (SL)
	SO2.1 Understand the concept and importance of measures of central tendency.	LI2.1 Calculate the mean, median, and mode of a given dataset.	tendency.	SL2.1 Research and compare the uses of mean, median, and mode in different fields.
	SO 2.2 Calculate the mean of a dataset accurately.	LI2.2 Perform calculations to find the mean of various datasets.		
	SO 2.3 Calculate the median of a dataset accurately.		CI 2.3 Practical: Calculation of median from provided data.	
	SO 2.4 Calculate the mode of a dataset accurately.		CI 2.4 Practical: Calculation of mode from provided data.	
	SO 2.5 Evaluate the merits and demerits of mean, median, and mode in different scenarios.		CI 2.5 Discussion: Merits and demerits of mean, median, and mode.	
	SO 2.6 Understand the concept and importance of measures of dispersion, including range, mean deviation, and standard deviation.		CI 2.6 Lecture: Introduction to measures of dispersion - Range, mean deviation, and standard deviation.	

SW-2 Suggested Sessional Work (SW)	a. Assignments: Calculate mean median and mode by related questions., write short note on range
WOIK (SW)	b. Mini Project: Measures of central Tendency by suitable examples.
	c. Other Activities (Specify): Find out some you tube videos based on calculation method of mean median
	and mode.

Item	CI	LI	SW	SL	Total
Approx. Hrs.	06	04	01	02	13

CO.3 98BT303.3: Demonstrate basic analytical	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
techniques to generate results			to probability - Definitions and fundamental concepts.	SL3.1 Research and summarize the historical development and applications of probability theory.
	SO3.2 Apply theorems of probability to solve problems.	calculations using	CI3.2 Discussion: Theorems of probability and their applications.	SL3.2 Develop a set of practice problems involving probability theorems and provide solutions.
	SO3.3 Understand and apply the addition rule in probability.		CI3.3 Practical: Using the addition rule to solve probability problems.	
	SO3.4 Understand and apply the multiplication rule in probability.		CI3.4 Practical: Using the multiplication rule to solve probability problems.	
	SO3.5 Understand the concept and applications of probability distributions, including binomial, Poisson, and normal distributions.		CI3.5 Lecture: Introduction to probability distributions - Binomial, Poisson, and normal distributions.	
	SO3.6 Perform calculations using binomial, Poisson, and normal probability distributions.		CI3.6 Workshop: Solving problems using binomial, Poisson, and normal distributions.	

SW-3 Suggested Sessional Work	a. Assignments: Write about probability distribution and Calculate probability by suitable
(SW):	examples
	b. Mini Project: how probability is important in biological system?
	c. Other Activities (Specify): Find out some you tube videos based on probability theorems.

Item	CI	LI	SW	SL	Total
Approx. Hrs.	06	04	01	02	13

CO.4 98BT303.4: Interpret results of commonly used	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)	
statistical analyses in written summaries	SO4.1 Understand the concept and importance of correlation and regression in statistical analysis.	LI4.1 Conduct an experiment to calculate the correlation coefficient between two variables using a given dataset.	CI 4.1 Lecture: Introduction to correlation and regression - Definitions and significance.		
	SO 4.2 Identify and differentiate between positive and negative correlation.	LI4.2 Perform an analysis to identify positive and negative correlations in various datasets.	CI 4.2 Practical: Identifying types of correlation - Positive and negative.	SL4.2 Develop a set of practice problems involving identification of positive and negative correlations and provide solutions.	
	SO 4.3 Calculate the correlation coefficient and interpret its meaning.		CI 4.3 Workshop: Calculation and interpretation of the correlation coefficient.		
	SO 4.4 Understand the principles of linear regression and how to derive the regression equation.		CI 4.4 Lecture: Principles of linear regression and derivation of the regression equation.		
	SO 4.5 Apply linear regression techniques to analyze relationships between variables.		CI 4.5 Practical: Applying linear regression to analyze relationships between variables in given datasets.		
	SO 4.6 Interpret the results of regression analysis to make predictions and informed decisions.		CI4.6 Discussion: Interpreting regression analysis results for predictions and decision-		

	making.	

(SW):	 SW 4.1. Assignments: Illustrating Principles of Correlation and Regression and Explain application of regression equation. SW4.2 Mini Project: how regression equation is important in area of biological research? SW 4.3 Other Activities (Specify): Find out some you tube videos based on Correlation and Regression.
	SW 4.3 Other Activities (Specify): Find out some you tube videos based on Correlation and Regression.

Item	CI	LI	SW	SL	Total
Approx. Hrs.	06	04	01	02	13

CO.5 98BT303.5:	Session Outcomes	LaboratoryInstruction	Classroom Instruction	Self-Learning
Demonstrate	(SOs)	(LI)	(CI)	(SL)
statistical reasoning skills accurately and contextually	significance testing and its importance in hypothesis testing.	LI5.1 Conduct a hypothesis test using a dataset, including the formulation of null and alternative hypotheses.	CI5.1 Lecture: Introduction to significance testing - Concepts of null and alternative hypotheses.	SL5.1 Research and write a report on the historical development and applications of hypothesis testing in statistics.
	testing hypotheses.	LI5.2 Perform the procedure for testing hypotheses on sample data, including calculating p-values and making decisions.	CI5.2 Workshop: Procedure of hypothesis testing - Steps and methodologies.	SL5.2 Develop a detailed guide on the steps involved in hypothesis testing, including examples and common pitfalls.
	SO5.3 Understand and apply the T- Test for small samples.		CI5.3 Lecture: Introduction to T- Test - Properties and applications.	-
	SO5.4 Calculate and interpret the T- Test results for small sample sizes.		CI5.4 Practical: Applying the T- Test to small samples and interpreting results.	
	SO5.5 Understand the properties of the Chi-Square distribution and its applications.		CI5.5 Lecture: Properties of Chi- Square distribution and its relevance in statistical testing.	-

SO5.6 Perform Chi-Square tests for	CI5.6 Practical: Performing and
independence and homogeneity,	interpreting Chi-Square tests for
including interpretation of results.	independence and homogeneity
	using sample data.

SW-5 Suggested Sessional Work (SW):	SW 5.1 Assignments: Differentiate null and alternative hypothesis and explain chi square test.
	SW 5.2 Mini Project: How T-Test and Chi-Square test are playing important role in biostatistics?
	SW 5.3 Other Activities (Specify): Find out some you tube videos based on Test of significance.

Brief of hours suggested for the Course Outcome

Course Outcomes (COs)	Class lecture (Cl)	Laboratory Instruction (LI)	Self- Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1. Describe the roles biostatistics serves in the discipline of public health.	6	4	2	1	13
CO2. Apply basic statistical concepts commonly used in public health and health Sciences	6	4	2	1	13
CO3. Demonstrate basic analytical techniques to generate results	6	4	2	1	13
CO4. Interpret results of commonly used statistical analyses in written summaries	6	4	2	1	13
CO5. Demonstrate statistical reasoning skills accurately and contextually	6	4	2	1	13
Total Hours	30	20	10	05	65

Suggestion for End semester Assessment

Course Outcome	Unit Titles	N	Marks Distribution					
		R	U	Α				
CO1	Introduction to Biostatistics	03	02	04	09			
CO2	Measures of central Tendency	04	05	02	11			
CO3	Probability	02	06	02	10			
CO4	Correlation and Regression	03	05	02	10			
C05	Test of significance	03	04	03	10			
Total		15	22	13	50			

Legend: R: Remember U: understand A: Apply

The end of semester assessment for biostatistics will be held with the written examination 50 Marks.

Suggested learning Resources:

(a) Books:

S.no.	Title	Author	Publisher	Edition & Year
1	Biostatistics	P.N.Arora, P.K.Malhan	Himalaya Publishing House	2 & 2005
2	Fundamentals of biostatistics	Khan and khanam	Ukaaz Publication	2 & 2004
3	Elements Of Biostatistics,	Prasad	Rastogi Publication	3& 2009

CO, PO and PSO Mapping

Program Title: B. Tech. Biotechnology

Semester: 3rd

Course Code: 98BT303

Course Title: Biostatistics

							CO	/PO Ma	pping						
Course Outcome COs	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
98BT303.1	_	-	-	1	2	2	2	-	1	2	2	3	3	2	1
98BT303.2	-	-	-	-	-	-	3	-	2	2	3	3	2	1	2
98BT303.3	-	1	1	1	-	-	2	-	3	1	1	2	1	2	1
98BT303.4	-	1	1	-	2	2	2	3	-	1	-	-	2	2	3
98BT303.5	1	1	1	-	-	2	3	3	1	2	2	2	2	1	2

Legend: (1) Low (2) Medium (3) High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6	98BT303.1	SO1.1 SO1.2	LI 1	Unit-1 Introduction to Biostatistics	1SL-1,2,
7,8,9,10,11,12	Describe the roles	SO1.3 SO1.4,	LI 2	1.1,1.2,1.3,1.4,1.5, 1.6	
PSO 1,2, 3	biostatistics serves in the discipline of public health.	SO1.5 SO1.6			
PO 1,2,3,4,5,6	98BT303.2	SO2.1 SO2.2	LI 1	Unit-2 Measures of central	2SL-1,2
7,8,9,10,11,12	Apply basic statistical	SO2.3 SO2.4	LIII LI2	Tendency	251-1,2
7,0,7,10,11,12	concepts commonly used in	SO2.5 SO2.4 SO2.5 SO2.6		2.1, 2.2, 2.3, 2.4, 2.5, 2.6	
PSO 1,2, 3	public health and health	502.5 502.0		2.1, 2.2, 2.3, 2.7, 2.3,2.0	
150 1,2, 5	Sciences				
PO 1,2,3,4,5,6	98BT303.3	SO3.1 SO3.2	LI 1	Unit-3 Probability	3SL-1,2
7,8,9,10,11,12	Demonstrate basic analytical	SO3.3 SO3.4	LI 2	3.1,3.2,3.3,3.4,3.5,3.6	
	techniques to generate results	SO3.5 SO3.6			
PSO 1,2, 3					
PO 1,2,3,4,5,6	98BT303.4	SO4.1 SO4.2	LI 1	Unit-4	4SL-1,2
7,8,9,10,11,12	Interpret results of commonly	SO4.3 SO4.4	LI 2	Correlation and Regression	
	used statistical analyses in	SO4.5 SO4.6		4.1,4.2,4.3,4.4,4.5, 4.6	
PSO 1,2, 3	written summaries				
PO 1,2,3,4,5,6	98BT303.5	SO5.1 SO5.2	LI 1	Unit-5 Test of significance	5SL-1,2
7,8,9,10,11,12	Demonstrate	SO5.3 SO5.4	LI 2	5.1,5.2,5.3,5.4,5.5,5.6	
	statistical reasoning skills	SO5.5 SO5.6			
PSO 1,2, 3	accurately and contextually				

Program Name	B.Tech. Biotechnology				
Semester	III	Π			
Course Code:	HMSC301				
Course title:	Universal Human Values Curriculum Developer: Dr Ashutosh Pandey, Assistant Professor				
Pre-requisite:	Creating awareness among the students on a holistic perspective about life.				
Rationale:	The purpose is to help develop a holistic perspective about life. A self- reflective methodology of teaching is adopted. It opens the space for the student to explore his/her role (value) in all aspects of living – as an individual, as a member of a family, as a part of the society and as a unit in nature. Through this process of self-exploration, students can discover the values intrinsic in them.				
Course Outcomes (COs):	foundations, curriculum, and procedu HMSC 301.2: Differentiate the Self HMSC 301.3: To explore how tr contribute to a peaceful society. HMSC 301.4: Understand the harmo	ortance of understanding classroom value inputs, skills vs. values, education's needs, ure in assessing happiness, prosperity, and society. and Body and grasp Self-Harmony and Self-Body Coexistence. ust, respect, and other naturally appropriate feelings in human-human relationships ony in nature and existence, and workout their mutually fulfilling participation in nature. he ability to apply the gained knowledge in Implications of Holistic Understanding- A			

Scheme of Studies:

Course Category	Course Code	Course Title		Scheme of studies (Hours/Week)				Total Credits
			CI	LI	SW	SL	Total Hours	(C)
							(CI+LI+SW+SL)	(L:T:P)
VAC	UHV	Universal Human Values	4 (3+1)	0	1	1	1	4

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini projectetc.),

SL: SelfLearning,

C: Credits

Note: Proposed examination scheme (Marking) as per the recommendation of University Grant Commission (UGC) for Under Graduate Courses in Fundamentals of Universal Human Values 2022-23 onwards SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

						Sc	heme of Assess	sment (Marks)		
				Progressive Assessment (PRA)						
Course Category	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (HA)	Assignment 5 number 3 marks each marks		Class Activity anyone (TCA)	Class Attendance (TA)	Total, Marks (HA+CT+TSN+TCA+TA)	End Semester Assessment (ESA)	Total Marks (PRA+ESA)
VAC	HSMC	Universal Human Value	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:	Item	SO	LI	SW	SL	Total
This course syllabus illustrates the expected learning achievements, both at the course and session	Approx	12	0	01	02	15
levels, which students are anticipated to accomplish through various modes of instruction including	Hrs.					
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning						
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),						
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.						

НМSC 301.1: То	Session Outcomes	Laboratory	Classroom Instruction	SelfLearning
explores the importance	(SOs)	Instruction	(CI)	(SL)
of understanding		(LI)		
classroom value inputs,	SO1.1 Understand the need		CI 1.1 Lecture: Introduction to	SL1.1 Research and
skills vs. values,	for and importance of value		value education - Need,	prepare a report on
education's needs,	education.		guidelines, content, and process.	the role of value
foundations, curriculum,				education in personal
and procedure in				and professional life.
assessing happiness,	SO1.2 Explain the basic		CI 1.2 Workshop: Basic guidelines	SL1.2 Reflective
prosperity, and society.	guidelines and content for		and content for value education.	essay on how value
	value education.			education can
				influence societal
				change.
	SO 1.3 Understand the		CI 1.3 Lecture: Self-exploration –	
	process of self-exploration		Its content and process.	
	and its significance.			
	SO 1.4 Explain the concepts		CI 1.4 Practical: Exercises on self-	
	of 'Natural Acceptance' and		exploration using natural	
	'Experiential Validation' in		acceptance and experiential	
	self-exploration.		validation.	
	SO 1.5 Understand the		CI 1.5 Discussion: Continuous	
	basic human aspirations of		happiness and prosperity - Basic	
	continuous happiness and		human aspirations.	
	prosperity.			
	SO 1.6 Explain the concepts		CI 1.6 Lecture: Right	
	of right understanding,		understanding, relationship, and	
	relationships, and physical		physical facilities - Their role in	
	facilities in fulfilling human		human aspirations.	
	aspirations.			

SO 17 Crit	tically appraise	CI 1.7 Workshop: Understanding	
	scenario of		
		happiness and prosperity - A	
	ing happiness	critical appraisal of the current	
and prosper	rity.	scenario.	
SO 1.8 Uno	derstand the	CI 1.8 Lecture: Methods to fulfill	
method to t	fulfill human	human aspirations - Living in	
aspirations	by living in	harmony at various levels.	
harmony at	t various levels.		
SO 1.9 Dev	velop a personal	CI 1.9 Practical: Developing a	
plan for liv	ring in harmony	personal plan for living in	
with onese	lf and others.	harmony.	
SO 1.10 Re	eflect on the	CI 1.10 Discussion: Impact of	
impact of v	value education	value education on personal and	
on personal	l and societal	societal well-being.	
well-being.			
SO 1.11 Ex	xplore the	CI 1.11 Lecture: Value education	
relationship	p between value	and its contribution to sustainable	
education a	and sustainable	development.	
developme	nt.		
SO 1.12 Ev	valuate the role of	CI1.12 Seminar: The role of	
educational	l institutions in	educational institutions in	
promoting	value education.	promoting value education.	

Suggested Sessional Work (SW)	SW 1.1 Assignments: Continuous Happiness and Prosperity-the Basic Human Aspirations
	SW 1.2 Mini Project: Relationship and Physical Facility
	SW 1.3 Other Activities (Specify): Quiz, Class Test

Item	SO	LI	SW	SL	Total
Approx Hrs.	11	0	01	02	14

HMSC 301.2: Differentiate	Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
the Self and Body and grasp	(SOs)	Instruction	(CI)	(SL)
Self-Harmony and Self-		(LI)		
Body Coexistence.	SO2.1 Understand the concept of harmony in the human being and the self.		CI 2.1 Lecture: Introduction to harmony in the human being and the self.	SL2.1 Research and write an essay on different philosophical perspectives of self and harmony.
	SO 2.2 Explain the co- existence of the sentient 'I' and the material 'Body'.		CI 2.2 Lecture: Understanding human being as a co-existence of the sentient 'I' and the material 'Body'.	SL2.2 Reflective journal on personal experiences of the relationship between 'I' and the body.
	SO 2.3 Differentiate between the needs of Self ('I') and the 'Body' - Sukh and Suvidha.		CI 2.3 Discussion: Needs of Self ('I') and 'Body' - Sukh (happiness) and Suvidha (facilities).	
	SO 2.4 Understand the Body as an instrument of 'I' (I being the doer, seer, and enjoyer).		CI 2.4 Lecture: The Body as an instrument of 'I' - Roles of doer, seer, and enjoyer.	

SO 2.5 Describe the	CI 2.5 Workshop:
characteristics and activities	Exploring characteristics
of 'I' and harmony in 'I'.	and activities of 'I' -
	Finding harmony within.
SO 2.6 Understand the	CI 2.6 Lecture: Harmony
harmony of 'I' with the	of 'I' with the Body -
Body: Sanyam and Swasthya.	Sanyam (self-regulation)
	and Swasthya (health).
SO 2.7 Appraise physical	CI 2.7 Practical:
needs correctly in the context	Appraising physical needs
of harmony and well-being.	correctly to maintain
	harmony and well-being.
SO 2.8 Understand the	CI 2.8 Lecture: Prosperity
detailed meaning of	- Detailed understanding
Prosperity.	and its implications.
SO 2.9 Develop programs for	CI 2.9 Workshop:
Sanyam (self-regulation) and	Developing personal
Swasthya (health).	programs for Sanyam and
	Swasthya.
SO 2.10 Reflect on personal	CI 2.10 Discussion:
practices and their alignment	Reflecting on personal
with the concept of Sanyam	practices and their
and Swasthya.	alignment with Sanyam
-	and Swasthya.

SO 2.11 Evaluate the impact	CI 2.11 Lecture:
of Sanyam and Swasthya on	Evaluating the impact of
overall well-being.	Sanyam and Swasthya on
	individual and societal
	well-being.

Suggested Sessional Work	SW 2.1: Assignments: Harmony in the self
(SW-2)	SW 2.2: Mini Project: Body an instrument
	SW 2.3: Other Activities (Specify): Quiz, Class Test.

Item	SO	LI	SW	SL	Total
Approx. Hrs.	13	0	01	05	19

НМSC 301.3: То	Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
explore how trust,	(SOs)	Instruction (LI)	(CI)	(SL)
respect, and other	SO3.1 Understand the concept		CI 3.1 Lecture: Introduction to	SL3.1 Research and write
naturally appropriate feelings in human-human	of harmony in the family and		harmony in the family - The basic	an essay on the
relationships contribute	its importance as the basic unit		unit of human interaction.	significance of family
to a peaceful society.	of human interaction.			harmony in societal
				development.
	SO 3.2 Explain the values in		CI 3.2 Workshop: Understanding	e e
	human-human relationships,		values in human-human	1 1
	including the meanings of		relationships - Nyaya and Ubhay-	and observations of
	Nyaya and Ubhay-tripti.		tripti.	values in human
				relationships.
	SO 3.3 Understand the		CI 3.3 Lecture: Trust (Vishwas) and	
	foundational values of trust		Respect (Samman) as foundational	
	(Vishwas) and respect		values of relationships.	
	(Samman) in relationships.			
	SO 3.4 Differentiate between		CI 3.4 Discussion: Understanding	
	intention and competence in		Vishwas - Intention vs. competence.	
	the context of Vishwas.			
	SO 3.5 Explain the meaning of		CI 3.5 Lecture: Understanding	
	Samman and differentiate		Samman - Difference between	
	between respect and		respect and differentiation.	
	differentiation.			
	SO 3.6 Identify and		CI 3.6 Workshop: Exploring other	
	understand other salient values		salient values in relationships.	
	in relationships.			
	SO 3.7 Understand the		CI 3.7 Lecture: Harmony in society	
	concept of harmony in society		- An extension of the family.	
	as an extension of the family.			

are a report on
educational
can contribute
armony.
e a reflective
rsonal actions
omote societal
te a personal
to enhance
with societal

Suggested Sessional Work (SW-3):	SW 3.1 Assignments: Respect their right evaluation
	SW 3.2 Mini Project: Trust is the fundamental value of relationships
	SW 3.3 Other Activities (Specify): Quiz, Class Test.

Item	SO	LI	SW	SL	Total
Approx. Hrs.	12	0	01	04	17

HMSC 301.4: Understand	Session Outcomes (SOs)	Laboratory	Classroom Instruction (CI)	Self-Learning (SL)
the harmony in nature and		Instruction (LI)		
existence, and workout	SO4.1 Understand the		CI 4.1 Lecture: Introduction to	SL4.1 Research and write a
their mutually fulfilling	concept of harmony in		harmony in nature.	report on the importance of
participation in nature.	nature and its significance.			harmony in nature for
				sustainable living.
	SO4.2 Explain the		CI4.2 Workshop: Exploring	SL4.2 Reflective journal on
	interconnectedness and		interconnectedness and mutual	personal observations of
	mutual fulfillment among		fulfillment in nature.	interconnectedness in nature.
	the four orders of nature.			
	SO4.3 Understand		CI4.3 Lecture: Recyclability	
	recyclability and self-		and self-regulation in nature.	
	regulation in nature.			
	SO4.4 Explore the concept		CI4.4 Discussion:	
	of existence as co-existence		Understanding existence as co-	
	(Sah-astitva) of mutually		existence.	
	interacting units.			
	SO4.5 Understand the		CI4.5 Lecture: Holistic	
	holistic perception of		perception of harmony at all	
	harmony at all levels of		levels of existence.	
	existence.			
	SO 4.6 Identify examples		CI4.6 Workshop: Identifying	
	of mutual fulfillment in		mutual fulfillment in nature.	
	nature.			

CO(4.7) A mala set the set $1 = 1$	CI47 Diamain NL 1	
SO 4.7 Analyze the role of	CI4.7 Discussion: Natural	
natural cycles in	cycles and their role in	
maintaining harmony in	maintaining harmony.	
nature.		
SO 4.8 Explore the concept	CI 4.8 Seminar: Co-existence	SL4.3 Prepare a project
of co-existence in various	in different cultures and	proposal for a community-
cultures and philosophies.	philosophies.	based initiative to promote
		harmony with nature.
SO 4.9 Understand the	CI 4.9 Lecture: Human	
impact of human activities	activities and their impact on	
on the harmony in nature.	natural harmony.	
SO 4.10 Identify ways to	CI 4.10 Workshop: Sustainable	
restore and maintain	practices to restore and	
harmony in nature through	maintain natural harmony.	
sustainable practices.		
SO 4.11 Reflect on	CI 4.11 Discussion: Personal	SL4.4 Write a reflective essay
personal actions and their	actions and natural harmony.	on personal actions that can
alignment with natural		promote societal harmony.
harmony.		
SO 4.12 Evaluate the	CI4.12Lecture: The importance	
importance of educating	of education in promoting	
others about harmony in	harmony in nature and	
nature and existence.	existence.	

Suggested (SW-4):	Sessional		SW 4.1 Assignments: Harmony in nature SW 4.2 Mini Project: Exploring4 orders of nature SW 4.3 Other Activities (Specify): Quiz, Class Test.	
----------------------	-----------	--	---	--

Item	SO	LI	SW	SL	Total
Approx. Hrs.	12	0	01	05	18

HMSC 301.5: Students	Session Outcomes	Laboratory	Classroom Instruction	Self-Learning
will have the ability to	(SOs)	Instruction	(CI)	(SL)
apply the gained		(LI)		
knowledge in Implications	SO5.1 Understand the		CI 5.1 Lecture: Introduction to	SL5.1 Reflective
of Holistic Understanding-	natural acceptance of		natural acceptance of human	journal on personal
A Look at Professional	human values.		values.	values and natural
Ethics.				acceptance.
	SO 5.2 Explain the		CI 5.2 Workshop: Exploring	SL 5.2 Write an essay
	definitiveness of ethical		definitiveness of ethical human	on the importance of
	human conduct.		conduct.	ethical conduct in
				professional life.
	SO 5.3 Understand the		CI 5.3 Lecture: Basis for	SL 5.3 Interview
	basis for humanistic		humanistic education.	educators about the
	education.			challenges and benefits
				of humanistic
				education.
	SO 5.4 Explore the		CI 5.4 Seminar: Humanistic	SL 5.4 Research and
	concept of a humanistic		constitution and universal order.	write a paper on the
	constitution and			impact of a humanistic
	humanistic universal			constitution on societal
	order.			well-being.
	SO 5.5 Identify the		CI 5.5 Lecture: Competence in	
	competence in		professional ethics.	
	professional ethics			
	required for augmenting			
	the universal human order.			

SO 5.6 Understand the	CI 5.6 Workshop: People-	
ability to utilize	friendly and eco-friendly	
professional competence	production systems.	
for promoting people-	1 5	
friendly and eco-friendly		
production systems.		
SO 5.7 Analyze the scope	CI 5.7 Discussion:	
and characteristics of eco-	Characteristics of eco-friendly	
friendly technologies and	technologies and management	
management models.	models.	
SO 5.8 Evaluate case	CI 5.8 Seminar: Case studies of	
studies of typical holistic	holistic technologies,	
technologies, management	management models, and	
models, and production	production systems.	
systems.		
SO 5.9 Understand the	CI 5.9 Lecture: Strategy for	
strategy for transitioning	transitioning to universal human	
from the current state to a	order at the individual level.	
universal human order at		
the individual level.		
SO 5.10 Explore the role	CI 5.10 Workshop: Role of	SL 5.5 Prepare a project
of socially and	responsible engineers,	proposal for
ecologically responsible	technologists, and managers.	implementing a socially
engineers, technologists,		responsible engineering
and managers.		practice in your
		community.
SO 5.11 Understand the	CI 5.11 Lecture: Strategy for	
strategy for transitioning	transitioning to universal human	
to a universal human order	order at the societal level.	
at the societal level.		

SO 5.12 Explore the role	CI5.12 Seminar: Role of
of mutually enriching	enriching institutions and
institutions and	organizations.
organizations in achieving	
a universal human order.	

Suggested Sessional Work (SW-5): anyone	SW 5.1 Assignments: Human conduct
	SW 5.2 Mini Project: Humanistic constitution
	SW 5.3 Other Activities (Specify): Quiz, Class Test.

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self- Learning (SL)	Total hour (CI+SW+SL)
HMSC 301.1: To explores the importance of understanding classroom value inputs, skills vs. values, education's needs, foundations, curriculum, and procedure in assessing happiness, prosperity, and society.	12	0	01	02	15
HMSC 301.2: Differentiate the Self and Body and grasp Self-Harmony and Self-Body Coexistence.	11	0	01	02	14
HMSC 301.3: To explore how trust, respect, and other naturally appropriate feelings in human-human relationships contribute to a peaceful society.	13	0	01	05	19
HMSC 301.4: Understand the harmony in nature and existence, and workout their mutually fulfilling participation in nature.	12	0	01	04	17
HMSC 301.5: Students will have the ability to apply the gained knowledge in Implications of Holistic Understanding- A Look at Professional Ethics.	12	0	01	05	18
Total Hours	60	0	05	18	83

Brief of Hours suggested for the Course Outcome

Suggestion for End Semester Assessment: Suggested Specification Table

CO	Unit Titles	Marks Dis	Total		
		R	U	Α	Marks
CO-1	HMSC 301.1: To explores the importance of understanding classroom value inputs, skills vs. values, education's needs, foundations, curriculum, and procedure in assessing happiness, prosperity, and society.	02	04	05	11
CO-2	HMSC 301.2: Differentiate the Self and Body and grasp Self-Harmony and Self-Body Coexistence.	03	07	04	14
CO-3	HMSC 301.3: To explore how trust, respect, and other naturally appropriate feelings in human-human relationships contribute to a peaceful society.	02	06	02	10
CO-4	HMSC 301.4: Understand the harmony in nature and existence, and workout their mutually fulfilling participation in nature.	03	03	02	08
CO-5	CO-5 HMSC 301.5: Students will have the ability to apply the gained knowledge in Implications of Holistic Understanding- A Look at Professional Ethics.		02	02	07
	Total	13	22	15	50

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional / Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Online sources)
- 8. Brainstorming
- 9. Seminar
- 10. Workshop

SuggestedLearningResources:

(a) Books:

S. No.	Title	Author	Publisher	Edition&Year
1	Jeevan Vidya: Ek Parichaya	A Nagaraj	Jeevan Vidya Prakashan, Amarkantak	1998
2	Human Values	A.N.Tripath	New AgeIntl. Publishers, New Delhi,	2004
3	Universal Human Values		AICTE	2021

4	Human Values and Professional Ethics	R.R. Gaur, R Sangal And G P Bagaria	Excel Book Publisher	2009
5	Vyavaharvadï Samajshastra	A Nagaraj	Jeevan VidyaPrakashan, Amar kantak	1999
6	Manava Vyavahara Darsana	A Nagaraj	Jeevan Vidya Prakashan, Amarkantak	2003
7	Foundations of Ethics and Management,	BP Banerjee	ExcelBook	2005
8	Fundamentals of Ethicsfor Scientists & Engineers	EGSeebauer& RobertL.Berry	OxfordUniversity Press.	2000
9	Engineering Ethichs (includingHumanValues)	MGovindrajran,S Natrajan and V.S. SenthilKumar	Eastern Economy Edition,PrenticeHall ofIndiaLtd.	-

Curriculum Development Team

- 1. Professor G C Mishra, Director Cement Technology, AKS University
- 2. Professor Mahendra Tiwari
- 3. Dr S K Jha , Head of the Department, Dept. of Cement Technology
- 4. DrRahul Omar, Assistant Professor, Dept. of Cement Technology
- 5. DrRohit Omar, Assistant Professor, Dept. of Cement Technology
- 6. Dr Gaurav Shukla, Assistant Professor, Dept of Cement Technology
- 7. ErPriynka Singh, Assistant Professor, Dept. of Cement Technology
- 8. Er A K Bhattacharya, Faculty , Dept. of Cement Tech.(Former GM M/s Dalmia Cement)
- 9. Sh Rajesh Kushuwaha, Faculty, Faculty, Dept. Cement Tech. (former Manager M/s JP cement)

10. Sh V K Singh, Sr Faculty, Dept. Cement Tech. (Former GM M/s Maihar Cement)

COs. POsandPSOs Mapping

Program Title: B.TechCourse Code: HMSC301;

Course Title: Universal Human Values

					Pro	ogram (Outcor	nes					Prog	ramSpe	cificOu	tcome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	The ability to apply technical & engineering knowledge for production	Ability to understand the day to plant operational problems of cement	Ability to understand the latest cement manufacturing technology	Ability to use the research based innovative knowledge for sustainable
HMSC 301.1 To understanding Value Education	2	2	3	2	1	1	1	3	2	1	1	2	2	2	2	2
HMSC 301.2 Students will have the ability to learn about Harmony in the Human Being	2	2	1	3	1	2	1	3	2	2	2	2	2	2	2	2
HMSC 301.3 Student will be able to gain knowledge on Harmony in the Family and Society.	2	1	2	1	1	2	2	3	2	1	2	3	2	2	2	2
HMSC 301.4 Understanding Harmony in the Nature/Existence.	1	1	1	2	1	2	1	3	2	1	2	2	2	2	3	3
HSMC301.5: Student will able to understand about Implications of Holistic Understanding- A Look at Professional Ethics.	1	1	1	1	1	2	2	3	1	2	2	2	3	2	3	2

Legend:1-Low,2-Medium,3-High

Course Curriculum Map: Physics-I

POs&PSOsNo.	Cos No.&Titles	SOs No.	Laborat ory Instruct ion (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4	HMSC 301.1 To understanding Value Education	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO1.6 SO1.7 SO1.8 SO1.9 SO1.10 SO1.11 SO1.12		Unit-1: Understanding Value Education 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9 , 1.10, 1.11, 1.12	SL1,2
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4	HMSC 301.2 Students will have the ability to learn about Harmony in the Human Being	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5 SO2.6 SO2.7 SO2.8 SO2.9 SO2.10 SO2.11		Unit-2: Harmony in the Huma Being 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8,2.9, 2.10, 2.11	SL1,2
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4	HMSC 301.3 Student will be able to gain knowledge on Harmony in the Family and Society.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6 SO3.7 SO3.8 SO3.9 SO3.10 SO3.11 SO3.12 SO3.13		Unit-3: Harmony in the Family and Society 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9 3.10 3.11 3.12 3.13	SL1,2,3,4
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4	HMSC 301.4 Understanding Harmony in the Nature/Existence.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6 SO4.7 SO4.8 SO4.9 SO4.10 SO4.11 SO4.12		Unit-4: Harmony in th Nature/Existence Implications of Holistic 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9, 4.10 4.11 4.12	SL1,2,3,4,5
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4	HSMC301.5 Student will able to understand about Implications of Holistic Understanding- A Look at Professional Ethics.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6 SO5.7 SO5.8 SO5.9 SO5.10 SO5.11 SO5.12		Unit 5: Understanding- A Look at Professional Ethics 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8, 5.9, 5.10 5.11 5.12	SL1,2,3,4

B. Tech. Biotechnology 4th Semester

Program Name	Bachelor of Technology (B.Tech.)- Biotechn	Bachelor of Technology (B.Tech.)- Biotechnology					
Semester	IV						
Course Code:	98BT402						
Course title:	Biochemical Engineering	Curriculum Developer: Er. Arpit Srivastava, Assistant Professor					
Pre-requisite:	Students should have basic knowledge of basic	Students should have basic knowledge of basic mathematical calculations, and fermentation.					
Rationale:	outside, there is a lot of opportunity for bioche work in the food industry, nuclear industry, hea other sectors. Biochemical engineers develop no	Biochemical engineering provides information in bioprocess engineering, bioinformatics, and biotechnology for students. In India and outside, there is a lot of opportunity for biochemical engineers. Across a range of industries, biochemical engineers can find work. They work in the food industry, nuclear industry, healthcare industry, chemical manufacturing firms, pharmaceutical industry, research labs, and other sectors. Biochemical engineers develop novel products and manufacturing methods from biological materials by utilizing cutting-edge technology and their expertise in biology, chemistry, and engineering. They frequently collaborate in a laboratory setting with scientists and					
Course Outcomes (COs):	CO2-98BT402.2. Discuss the role of Energy B	CO1-98BT402.1. Illustrate the basic mechanism of Biochemical Engineering & Mass Balance CO2-98BT402.2. Discuss the role of Energy Balance in bioprocessing CO3-98BT402.3. Comprehend & distinguish among the working mechanism of Heat transfer					
	*	e mechanism of Cellular Metabolism and Kinetics					

Scheme of Studies:

Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:1)
Program Common (PC)	98BT402	Biochemical Engineering	2	2	1	3	8	3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

						Sche	eme of Assessm	ent (Marks)		
						sive Assessment	(PRA)		End	Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity (CAT)	Class Attendance (AT)	Total Marks (CA+CT+CAT+SA+AT)	Semester Assessment (ESA)	(PRA+ ESA)
РС	98BT402	Biochemical Engineering	15	20	5	5	5	50	50	100

Scheme of Assessment: practical

						Scheme of As	ssessment (Marks)		
				Prog	gressive As	ssessment (PRA	A)		T. (.1
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)

РС	98BT452	Biochemical Engineering	35	5	5	5	50	50	50	
----	---------	----------------------------	----	---	---	---	----	----	----	--

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which		e Hou	rs			
students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should	Item	Cl	LI	SW	SL	Total
showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes	Approx.	06	04	01	05	16
(COs) upon the course's conclusion.	Hrs					

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT402.1	SO1.1	LI1.1	Unit-1	SL1.1
Illustrate the basic mechanism	Explain concept of	To determine the biomass	CI1.1	Practice to operate scientific
of Biochemical Engineering &	Biochemical engineering	yield	Outline of Biochemical	calculator
Mass Balance			Engineering	
	SO1.2	LI1.2	CI1.2	SL1.2
	Define Basic terminology,	To determine the	Significance of Biochemical	Solve numerical problems
	scope and application	consumption of substrate	Engineering	related to Mass Balance
	SO1.3		CI1.3	SL1.3
	Elaborate the scientific		Thermodynamic preliminaries, law	Write down few points on
	applications of Mass		of conservation of mass	Microbial growth kinetics
	balance			
	SO1.4		CI1.4	SL1.4
	Define the mechanism of		Types of material balances,	Learn to calculate the mass
	Conservation of Mass in		Procedure of material balance	balance based numerical
	biochemical engineering			
	SO1.5		CI1.5	SL1.5
	Describe Material balance		Material balance with: recycle,	Understand the basic
	and its significance		bypass, and purge stream	problem solving related to
				biomass-substate based yield
	SO1.6		CI1.6	
	Interpret and solve		Derive and Solve numerical	
	stoichiometry of growth and		related to stoichiometry of growth	
	product formation, Derive		and product formation Derive	
	Biomass yield, Theoretical		Biomass yield, Theoretical	
	yield, Oxygen demand,		yield, Oxygen demand, Max.	
	Max. possible Yield		possible Yield	

			Item	Cl	LI	SW	SL	Total		
		Approx. Hrs 06 04 01 05 16								
Suggested Sessional	SW1.1 Assignments	V1.1 Assignments Describe in detail about the role of Biochemical Engineering in Product development								
Work (SW): anyone	SW1.2 Mini Project	Differentiate between Upstream and Downstrean	n processing							
	SW1.3 Other Activities (Specify)	Draw a flowchart compiling all procedures used in Mass Balance equations								

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT402.2.	SO2.1	LI2.1	Unit-2	SL2.1
Discuss the role of Energy	Explain concept of Energy	Demonstrate the working of	CI2.1	Find out the role of Kinetic,
Discuss the role of Energy	balance	Energy balance in	Basic energy concepts, units,	Potential and Internal energy
Balance in bioprocessing		fermentation process	Energy balance equations	in biochemical engineering
	SO2.2	LI2.2	CI2.2	SL2.2
	Distinguish between	To perform the experiment	Adiabatic process, Steady	Read the difference between
	Adiabatic process, Steady	of production of microbial	state process	Adiabatic process, Steady
	state process	biomass		state process
	SO2.3		CI2.3	SL2.3
	Outline the mechanism of		Enthalpy change in Non-	Write down few points on
	Enthalpy change in Non-		Reactive process	Enthalpy change in Non-
	Reactive process			Reactive process
	SO2.4		CI2.4	SL2.4
	Define the mechanism of		Procedure for energy	Solve all numerical related to
	biological separations		balance calculation	energy balance equations
	SO2.5		CI2.5	
	Explain the role of Rotary		Enthalpy change due to	
	vacuum filtration unit		Reaction	
	SO2.6		CI2.6	
	Illustrate the mechanism of		Change of Phase, Energy and	
	change in Phase due to		Mass Balance equation	
	energy, critical mechanism		corelation, Fermentation	
	of Energy and Mass Balance		Energy	
	equation, Solve numerical			

	Item	Cl	LI	SW	SL	Total
	Approx. Hrs	06	04	01	04	15
problem related to energy						
balance and phase changes						

Suggested Sessional	SW2.1 Assignments	Solve numerical on the basis of energy balance equation
Work (SW): anyone	SW2.2 Mini Project	Make a project on Adiabatic process and Steady State process
	SW2.3 Other Activities (Specify)	Make a Power point presentation on Energy mass balance

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO3-98BT402.3. Comprehend & distinguish among the working mechanism of Heat transfer	SO3.1 Elucidate the Mechanism of heat transfer, Equipment of heat transfer	LI3.1 To perform the Heat transfer to observe how heat transfer occurring in fermentation technology	Unit-3 CI3.1 Mechanism of heat transfer, Equipment of heat transfer	SL3.1 Find out the process of heat transfer in fermentation
	SO3.2 Derive the mathematical expression for Conduction, Heat transfer between fluids	LI3.2 to perform the experiment on heat transfer	CI3.2 Conduction, Heat transfer between fluids	SL3.2 Read the process of Conduction, Convection and Radiation
	SO3.3 Distinguish Heat Transfer and Overall heat transfer coefficient		CI3.3 Heat Transfer and Overall heat transfer coefficient	SL3.3 Solve numerical problem given in textbooks of Heat transfer
	SO3.4 Solve numerical on Heat transfer coefficients		CI3.4 Calculations of Heat transfer coefficients	
	SO3.5 Explain the role of Mass transfer in biochemical engineering		CI3.5 Mass Transfer - Introduction	

		Item	Cl	LI	SW	SL	Total
		Approx. Hrs	06	04	01	05	16
SO3.6	CI3.6						
Discuss Liquid –Liquid	Liquid –Liqui	d Mass					
Mass transfer	transfer						

Suggested Sessional	SW3.1 Assignments	Derive the equations for Heat Transfer for conduction, convection in fermentation technology
Work (SW): anyone	SW3.2 Mini Project	Describe the role of heat Transfer coefficients
	SW3.3 Other Activities	Prepare one Power point presentation on "Double Pipe Heat Exchangers and its mechanism"
	(Specify)	

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-98BT402.4.	SO4.1	LI4.1	Unit-4	SL4.1
Interpretate the mechanism of	Elucidate the Fundamental	To perform the kinetics of	CI4.1	Find out the Fundamental
Biochemical Kinetics	Reaction Kinetics	enzyme using graphical	Fundamental Reaction	Reaction Kinetics
		method	Kinetics	
	SO4.2	LI4.2 To check the enzyme	CI4.2	SL4.2
	Distinguish among Rates of	kinetics of the bacterial	Rates of Chemical Reaction,	Understand how the rate of
	Chemical Reaction,	microbes	Elementary Reaction and	chemical reaction occurs
	Elementary Reaction and		Equilibrium	
	Equilibrium			
	SO4.3		CI4.3	SL4.3
	Analyse the Temperature		Temperature Dependence of	Evaluate and derive
	Dependence of Reaction Rate		Reaction Rate Constant k	Temperature Dependence of
	Constant k			Reaction Rate Constant k
	SO4.4		CI4.4	SL4.4

	Iter	m	Cl	LI	SW	SL	Total
	Ар	prox. Hrs	6	04	01	04	15
Distinguish among the Rate	Rate Equations for Fir	rst- and D) erive	diffe	erent k	inds (of
Equations for First- and	Second-Order Reactio	ons e	nzym	e rea	ction l	cineti	c
Second-Order Reactions		S	tudy				
SO4.5	CI4.5						
Discuss Enzyme Reaction	Enzyme Reaction Kin	netics					
Kinetics							
SO4.6	CI4.6						
Evaluate Enzyme Reaction	Evaluation of Enzyme	e					
Kinetics	Reaction Kinetics						

Suggested Sessional	SW4.1 Assignments	Determine the working mechanism and applications of enzymes
Work (SW): anyone	SW4.2 Mini Project	Derive the MM Equation for ES complex theory
	SW4.3 Other	Make a project on "Inhibitors for enzyme reactions"
	Activities (Specify)	

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-98BT402.5 . Examine and demonstrate the mechanism of Cellular Metabolism and Kinetics	SO5.1 Elucidate Carbohydrate Metabolism, Glycolysis	LI5.1 To determine the ATPs produced in Glycolysis	Unit-5 CI5.1 Carbohydrate Metabolism, Glycolysis	SL5.1 Find out the role of glycolysis
	SO5.2 Discuss the role of TCA cycle	LI5.2 To determine the protein 3D structure, function and annotations using	CI5.2 Metabolic Pathway of TCA cycle	SL5.2 List down various kinds of metabolites produced in TCA cycle

	Protein Data Bank (PDB database)		
SO5.3 Analyse the working of Electron transport system		CI5.3 Electron transport system	SL5.3 Draw the flow chart for ETC
SO5.4 Discuss Oxidative Phosphorylation		CI5.4 Oxidative Phosphorylation	SL5.4 Draw the flow chart for Oxidative Phosphorylation
SO5.5 Describe Microbial growth curve		CI5.5 Microbial Growth curve	SL5.5 Draw the graph for Microbial Growth curve
SO5.6 Derive Cell Growth kinetics in Batch culture		CI5.6 Cell Growth kinetics in Batch culture	

Suggested Sessional	SW5.1 Assignments	Explain general mechanism of Cell Growth kinetics
Work (SW): anyone	SW5.2 Mini Project	Describe the Biomass and Product based yield factors
	SW5.3 Other	Write metabolic pathway for TCA cycle
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Biochemical Engineering

Course Code: 98BT402

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO5-98BT402.5.	6	4	5	1	16
Examine and demonstrate the mechanism of Cellular					
Metabolism and Kinetics					
СО2-98ВТ402.2.	6	4	5	1	16
Discuss the role of Energy Balance in bioprocessing					
СОЗ-98ВТ402.3.	6	4	4	1	15
Comprehend & distinguish among the working mechanism					
of Heat transfer					

CO4-98BT402.4.	6	4	5	1	16
Interpretate the mechanism of Biochemical Kinetics					
CO5-98BT402.5.	6	4	4	1	15
Examine and demonstrate the mechanism of Cellular					
Metabolism and Kinetics					
Total Hours	30	20	23	05	78

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Biochemical Engineering

Course Code: 98BT402

Course Outcomes		Marks I	Distributio	n	Total Marks	
	Α	An	E	С		
CO5-98BT402.5. Examine and demonstrate the mechanism of Cellular Metabolism and Kinetics	2	1	1	1	5	
CO2-98BT402.2. Discuss the role of Energy Balance in bioprocessing	2	4	5	1	12	
CO3-98BT402.3. Comprehend & distinguish among the working mechanism of Heat transfer	3	5	5	1	14	
CO4-98BT402.4. Interpretate the mechanism of Biochemical Kinetics	2	3	5	1	11	
CO5-98BT402.5. Examine and demonstrate the mechanism of Cellular Metabolism and Kinetics	5	4	1	0	10	
Total Marks	14	17	17	04	52	

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

(b)

S.No.	Title/Author/Publisher details
1	Pauline M. Doran, "Bioprocess engineering principles": Academic press
2	James E. Bailey & David F. Ollis- Biochemical engineering fundamentals
3	Peter F. Stanbury, Allan Whitaker "Principles of fermentation technology"

4	Fundamentals of Biochemistry. Author, JL Jain et al. Edition, reprint. Publisher, S. Chand Publishing, 2004.
5	Biotechnology-Questioning The Reasons: 2 nd Edition, Book Rivers Publication

(c) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Semester: IV Semester

Course Title: Biochemical Engineering

Course Code: 98BT402

			CO/	'PO Ma	pping										
Course Outcome		Program Outcomes (POs)									Program Specific Outcomes (PSOs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO5-98BT402.5. Examine and demonstrate the mechanism of Cellular Metabolism and Kinetics	-	1	-	1	2	2	3	-	3	2	2	3	1	2	1
CO2-98BT402.2. Discuss the role of Energy Balance in bioprocessing	-	1	-	-	-	-	3	-	2	2	3	3	3	-	2
CO3-98BT402.3. Comprehend & distinguish among the working mechanism of Heat transfer	-	1	1	1	-	-	3	-	3	1	1	2	1	2	-
CO4-98BT402.4. Interpretate the mechanism of Biochemical Kinetics	-	-	1	-	2	2	3	3	-	1	3	3	2	1	3
CO5-98BT402.5. Examine and demonstrate the mechanism of Cellular Metabolism and Kinetics	1	-	1	-	-	2	3	3	1	2	2	2	1	1	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6	CO5-98BT402.1.	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5,1.6	1SL-1,2,3,4,5
7,8,9,10,11,12	Examine and demonstrate the mechanism of	SO1.3 SO1.4	LI 2		
	Cellular Metabolism and Kinetics	SO1.5 SO1.6			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO2-98BT402.2.	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4, 2.5,	2SL-1,2,3,4,5
7,8,9,10,11,12	Discuss the role of Energy Balance in	SO2.3 SO2.4	LI 2	2.6	
	bioprocessing	SO2.5 SO2.6			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO3-98BT402.3.	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5, 3.6	3SL-1,2,3,4
7,8,9,10,11,12	Comprehend & distinguish among the	SO3.3 SO3.4	LI 2		
	working mechanism of Heat transfer	SO3.5 SO3.6			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO4-98BT402.4.	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4, 4.5,	4SL-1,2,3,4,5
7,8,9,10,11,12	Interpretate the mechanism of Biochemical	SO4.3 SO4.4	LI 2	4.6	
	Kinetics	SO4.5 SO4.6			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO5-98BT402.5.	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5, 5.6	5SL-1,2,3,4
7,8,9,10,11,12	Examine and demonstrate the mechanism of	SO5.3 SO5.4	LI 2		
,	Cellular Metabolism and Kinetics	SO5.5 SO5.6			
PSO 1,2, 3					

Program Name	Bachelor of Technology (B Tech) -Biotechnology	Bachelor of Technology (B Tech) -Biotechnology						
Semester	V							
Course Code:	98BT404							
Course title:	Biosafety, Bioethics and IPRs Curriculum Developer: Dr. Deepak Mishra, Professor							
Pre-requisite:	Student should have basic knowledge of Biotechnology, Genetic Engineering and Research.							
Rationale:	The paper on Biosafety, Bioethics and IPRs in a B Tech Biotechnology program is interconnected concepts that serve to ensure the responsible and ethical use of biotechnology and biological resources. They encompass various aspects, from safety and ethics in research to the protection of intellectual property. The primary goal biosafety is to ensure the safe handling, transport, and disposal of biological materials, especially those with hazardous potential. This is crucial in laboratories, research facilities, and industrial settings where biological research is conducted. Bioethics guides decision-making, ensuring that scientific progress respects human rights, dignity, and welfare. It covers informed consent, privacy, research ethics, animal welfare, and issues surrounding emerging technologies like genetic engineering and cloning. IPRs incentivize innovation by allowing researchers and inventors to profit from their work.							
Course Outcomes (COs):	 incentivize innovation by allowing researchers and inventors to profit from their work. CO1-98BT404.1: Familiarization with the basic concepts, key principles and regulations of biosafety in biotechnological research. CO2-98BT404.2: Acquired Skills to analyze and address ethical, legal, and socioeconomic, health and safety implications of biotechnology. CO3-98BT404.3: Equipped to comprehend the fundamentals of IPRs, including the legal frameworks and laws. CO4-98BT404.4: Recognize various methods related to patents and the patenting process law and regulations in India. CO5-98BT404.5: Explore role of regulatory framework for recombinant DNA research, Biotechnology and food safety laws. 							

Scheme of Studies:

Γ										
	Board of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L: T: P=2:0:1)	
	РС	98BT405	Biosafety, Bioethics and IPRs	2	2	1	3	8	3	

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					Sc	cheme of	Assessment (Marks)		
				Progre	essive Asse	essment (*		End Semester Assessment	Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number	Class Test 2 (2 best out of 3)	Seminar one	Activity	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	(ESA)	(PRA+ ESA)

			3 marks each (CA)	10 marks each (CT)	(SA)					
PC	98BT404	Biosafety, Bioethics and IPRs	15	20	5	5	5	50	50	100

Scheme of Assessment: practical

						Scheme of As	sessment (Marks)		
					Total				
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	(PRA+ ESA)
РС	98BT455	Biosafety, Bioethics and IPRs	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which
students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI),
Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should
showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course OutcomesApproximate HoursItemClLISWApprox.0604(COs) upon the course's conclusion.0604

SL

04

Total

15

Course outcome (CO)	Session Outcomes(SOs)	Laboratory Instruction(LI)	Class room Instruction(CI)	Self-Learning(SL)
CO1-98BT404.1: Familiarization with the basic concepts, key principles and regulations of biosafety in biotechnological research.		LI1.1 Case study on Biosafety	Unit-1 Cl1.1 Biosafety: Introduction	SL1.1 Search various reference books and study material to start the learning of Biosafety
	SO1.2 Explain History of biosafety		CI1.2 Historical prospective	
	SO1.3 Explain objectives of biosafety		CI1.3 objectives,	SL1.2 Examine biosafety in your institution's lab
	SO1.4 Study of risk assessment and its regulation		Cl1.4, risk assessment in biotechnological research and their regulation	
	SO1.5 Study the concept of containment		CI1.5 physical and biological contaminants	SL1.3 Classify your lab based on biosafety level
	SO1.6 Study planned introduction of GMOs		CI1.6 field trial and planned introduction of GMOs,	SL1.4 To implement guideline in biotech laboratory.

Suggested Sessional	SW1.1 Assignments	Describe in detail biosafety guidelines for regulation of RDT research in India.
Work (SW):anyone	SW1.2Mini Project	Prepare biosafety symbols and implement in your laboratory.
	SW1.3 Other Activities (Specify)	Preparation of biosafety manual for biotechnology laboratory.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	05	16

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT404.2: Acquired Skills to analyze and address ethical, legal, and socioeconomic, health and safety implications of biotechnology.	-	LI2.1 Case Study on Women Health Ethics	Unit-II Cl2.1 Bioethics: Introduction	SL2.1 Search various books and resources for study the bioethics.
		LI2.2 Case Study on Medical Negligence	CI2.2 Ethical issues related to biotechnology	SL2.2 study about failure of biotech products- case study
	SO2.3 Reflecting impact of biotech research in society		CI2.3 legal and socioeconomic impacts of biotechnology	
	SO2.4 Explain health and safety issues of biotech		CI2.4 health and safety issues	SL2.3 to learn about control measures for biotech research
	SO2.5 Assessing the benefits of cloning		CI2.5 possible benefits of successful cloning	SL2.4 standardize the protocol for successful cloning
	SO2.6 Explaining the ethical concern of cloning		CI2.6 Ethical concerns of gene cloning	SL2.5 to learn hazards of cloning

Suggested Sessional Work (SW):anyone	SW2.1 Assignments	Assess the impact on RDT research on human and environment.		
	SW2.2Mini Project	Designing of poster for showing benefits of cloning		
	SW2.3 Other Activities (Specify)	To perform case studies on GMOs and their impact.		

Course Outcome (CO)	Session Outcomes(Sos)	Laboratory	Class room Instruction	Self-Learning(SL)
		Instruction(LI)	(CI)	
CO3-98BT404.3: Equipped to comprehend the fundamentals of IPRs, including the legal frameworks and laws.	SO3.1 Explain the role of IPRs.	LI3.1 Case Study on clinical trial of drugs	Unit-III CI3.1 Intellectual Property Rights-: Introduction	SL3.1 Collection of books and study materials for IPRs
	SO3.2 Assessing the concept of Intellectual Property		CI3.2 intellectual property: trade secret	SL3.2 Study different types of intellectual property
	SO3.3 Explaining concept of Patent and copy right	LI3.2 preparation of business plan		SL3.3 categorization of different types of intellectual property
	SO3.4 Assessing different plant varieties		CI3.4 plant variety protection	
	SO3.5 Describe about WIPO GATT and Trips		CI3.5 WIPO, GATT, TRIPs,:	SL3.4 Study of role of WIPO for IPR protection
	SO3.6 Assessing the concept of PBR act		CI3.6 plant breeder's rights	SL3.5 Assess law and legislation for IPRs

Suggested Sessional	SW3.1 Assignments	Describe in detail about different types of intellectual properties.
Work (SW): anyone	SW3.2 Mini Project	Describe the role of different Laws for protection of intellectual property.
	SW3.3 Other Activities (Specify)	Prepare a list of plant varieties protected through PBR Act and PPVFR Act.

IttemC1LISWSLTotalAppnox.Hrs0604010516

Course Outcome (CO)	Session Outcomes(SOs)	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning(SL)
CO4-98BT404.4: Recognize various methods related to patents and the patenting process law and regulations in India.	SO4.1 Exploring the concept of Patents and Patenting process	LI4.1 Proxy Filling of Process Patent	Unit-IV CI4.1 Patents and patent processing: Introduction	SL4.1 Learn about different categories of Patents
	SO4.2 Assessing role of Patenting	LI4.2 Proxy filling of Product Patent	CI4.2 Essential requirements	
	SO4.3 Explaining the concept of patent law		CI4.3 International scenario of patents	SL4.2 Compare Rules of different countries
	SO4.4 Explaining the role of patent for biologics.		CI4.4 patenting of biological materials	SL4.3 Learn about various criteria for patentnig
	SO4.5 Evaluate impact of patent in india		CI4.5 significance of patents in India	SL4.4 Case studies related to patenting in India
	SO4.6 evaluate impact of patenting' of biological items		CI4.6 protection of biotechnological inventions	SL4.5 Case studies related to biological patents

Suggested Sessional Work (SW): anyone	SW4.1 Assignments	Explain about patent and patent processing procedure.
	SW4.2 Mini Project	Study the silent features of different law of patenting worldwide
	SW4.3 Other Activities (Specify)	Prepare one article on international status of patenting.

Item	Cl	LI	SW	SL	Total
Approx.Hrs	06	04	01	04	15

Course Outcome (CO)	Session Outcomes(SOs)	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self- Learning(SL)
CO5-98BT404.5: Explore role of regulatory framework for recombinant DNA research, Biotechnology and food safety laws.	SO5.1 Define the concept of regulation of RDNA research	LI5.1 Demonstration of regulation of GM Products	Unit-V CI5.1 Regulatory framework in Biotechnology	SL5.1 learn about basic concept & requirement of GMOs development
	SO5.2 Able to execute role of Regulation of RDT Research		CI5.2 Regulation of RDT research;	SL5.2 Review concept of RDT research
	SO5.3 Apply the role of Regulation of Food products	LI5.2 case study on Regulation of food	CI5.3 Regulation of food and food ingredients	SL5.3 learn how to apply Law to regulate food products
	SO5.4 Apply the Role of Regulatory framework of RDT		CI5.4 Regulatory framework in India governing GMOs	
	SO5.5 Study the Recombinant DNA Guideline 1990		CI5.5 Recombinant DNA Guidelines (1990)	
	SO5.6 Elaborate Revised Guideline for Research in Transgenic Plants (1998)		CI5.6 Revised Guidelines for Research in Transgenic Plants (1998)	SL5.4 Learn about novel characters of GM Plants

Suggested Sessional	SW5.1 Assignments	Explain general characteristics and silent features of RDNA laws.
Work (SW): anyone	SW5.2 Mini Project	Describe the role of Law and legislations for development of new varieties.
	SW5.3 Other Activities (Specify)	Prepare a detail document on international Food law and regulations

Course duration (in hours) to attain Course Outcomes:

Course Title: Biosafety Bioethics and IPRs

Course Title: Biosafety, Bioethics and IPRs				Course Code:98BT404			
Course Outcomes(COs)	Class lecture (CI)	Laboratory Instruction(LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)		
CO1-98BT404.1: Familiarization with the basic concepts, key principles and regulations of biosafety in biotechnological research.	6	4	4	1	15		
CO2-98BT404.2: Acquired Skills to analyze and address ethical, legal, and socioeconomic, health and safety implications of biotechnology	6	4	5	1	16		
CO3-98BT404.3: Equipped to comprehend the fundamentals of IPRs, including the legal frameworks and laws.	6	4	5	1	16		
CO4-98BT404.4: Recognize various methods related to patents and the patenting process law and regulations in India	6	4	5	1	16		
CO5-98BT404.5: Explore role of regulatory framework for recombinant DNA research, Biotechnology and food safety laws.	6	4	4	1	15		
Total Hours	30	20	23	05	78		

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Biosafety, Bioethics and IPRs

Course Code:98BT404

Course Outcomes		Total Marks				
	Α	An	Ε	С		
CO1-98BT404.1: Familiarization with the basic concepts, key principles and regulations of biosafety in biotechnological research.	2	1	1	1	5	
CO2-98BT404.2: Acquired Skills to analyze and address ethical, legal, and socioeconomic, health and safety implications of biotechnology	2	4	2	2	10	

CO3-98BT404.3: Equipped to comprehend the fundamentals of IPRs, including the legal frameworks and laws.	2	3	3	2	10
CO4-98BT404.4: Recognize various methods related to patents and the patenting process law and regulations in India	3	5	5	2	15
CO5-98BT404.5: Explore role of regulatory framework for recombinant DNA research, Biotechnology and food safety laws.	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend:A, Apply;An, Analyze;E, Evaluate;C, Create

Suggested learning Resources:

(d) Books:

(e)

S.No.	Title/Author/Publisher details
1	Sateesh MK (2010) Bioethics and Bio safety, I. K. International Pvt Ltd.
2	Sree Krishna V (2007) Bioethics and Bio safety in Biotechnology, New age international publishers
3	The law and strategy of Biotechnological patents by Sibley. Butterworth publications.
4	Intellectual property rights – Ganguli – Tat McGraw-Hill
5	Biotechnology-B. D. Singh- Kalyani Publications

(f) Online Resources:

Suggested instructions/Implementation strategies:

- 10. Improved lecture
- 11. Tutorial
- 12. Case method

- Group Discussion
 Role play
 Visit to virology lab (BSL-3)
 Demonstration
- 17. ICT Based teaching Learning
- 18. Brainstorming

CO, PO and PSO Mapping

Program Name: B.Tech. Biotechnology

Semester: 4th Semester

Course Title: Biosafety, Bioethics and IPRs

Course Code: 98BT404

Course Outcome (Cos)		Program Outcomes (POs)									Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT404.1: Familiarization with the basic concepts, key principles and regulations of biosafety in biotechnological research.	1	1	2	2	3	1	2	3	2	1	2	3	2	2	3
CO2-98BT404.2: Acquired Skills to analyze and address ethical, legal, and socioeconomic, health and safety implications of biotechnology	1	1	1	1	2	1	2	2	1	2	2	2	2	3	3
CO3-98BT404.3: Equipped to comprehend the fundamentals of IPRs, including the legal frameworks and laws.	1	1	2	2	2	1	3	2	2	1	2	2	1	2	3
CO4-98BT404.4: Recognize various methods related to patents and the patenting process law and regulations in India	1	1	2	1	3	1	3	3	2	2	1	3	1	2	3
CO5-98BT404.5: Explore role of regulatory framework for recombinant	1	1	2	1	3	1	3	3	1	2	2	3	1	2	2

DNA research, Biotechnology and food								
safety laws.								

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs	COs	SOs No.	Laboratory	Classroom	Self-Learning (SL)
No.			Instruction (LI)	Instruction (CI)	
PO 1,2,3,4,5, 6,	CO1-98BT404.1: Familiarization with the	SO1.1 SO1.2	LI1	1.1,1.2,1.3,1.4,1.5,	1SL-1,2,3,4
7,8,9,10,11, 12	basic concepts, key principles and regulations	SO1.3 SO1.4	LI2	1.6	
	of biosafety in biotechnological research.	SO1.5 SO1.6			
PSO 1,2,3					
PO 1,2,3,4,5, 6,	CO2-98BT404.2: Acquired Skills to analyze	SO2.1 SO2.2	LI1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4,5
7,8,9,10,11, 12	and address ethical, legal, and socioeconomic,	SO2.3 SO2.4	LI2	2.5, 2.6	
	health and safety implications of	SO2.5 SO2.6			
PSO 1,2,3	biotechnology				
PO 1,2,3,4,5, 6,	CO3-98BT404.3: Equipped to comprehend	SO3.1 SO3.2	LI1	3.1,3.2,3.3,3.4,3.5,	3SL-1,2,3,4,5
7,8,9,10,11, 12	the fundamentals of IPRs, including the legal	SO3.3 SO3.4	LI2	3.6	
	frameworks and laws.	SO3.5 SO3.6			
PSO 1,2,3					
PO 1,2,3,4,5, 6,	CO4-98BT404.4: Recognize various	SO4.1 SO4.2	LI1	4.1,4.2,4.3,4.4,4.5,	4SL-1,2,3,4,5
7,8,9,10,11, 12	methods related to patents and the patenting	SO4.3 SO4.4	LI2	4.6	
	process law and regulations in India	SO4.5 SO4.6			
PSO 1,2,3					
PO 1,2,3,4,5, 6,	CO5-98BT404.5: Explore role of	SO5.1 SO5.2	LI1	5.1,5.2,5.3,5.4,5.5,	5SL-1,2,3,4
7,8,9,10,11, 12	regulatory framework for recombinant DNA	SO5.3 SO5.4	LI2	5.6	
	research, Biotechnology and food safety	SO5.5 SO5.6			
PSO 1,2,3	laws.				

B. Tech. Biotechnology								
IV	V							
98BT406								
Industrial Fermentation Curriculum Developer: Sonal Gupta								
Students should have basic knowledge of microbiology and fermentation								
in the pipes of a chemical factory, monitor the in cheese production to ensure quality. Fermenta pharmaceuticals, energy, food and feedstock, b	Industrial microbiology assists industrial production processes using variety of microbial strains. They may examine microbial growth found in the pipes of a chemical factory, monitor the impact industrial waste has on the local ecosystem, or oversee the microbial activities used in cheese production to ensure quality. Fermentation is frequently used for the cultivation of biomass and in the production of enzymes, pharmaceuticals, energy, food and feedstock, bioactive compounds, biopolymers, etc., in which different microorganisms, and including filamentous fungi, are involved. The overall objective of this subject is to make student more relative about their best career opportunity in this field							
 CO1-98BT406.1. Describe the fundamentals of Industrial Microbiology and Fermentation Technology CO2-98BT406.2. Define the role of microbiology for the production of desired bioproducts CO3-98BT406.3. Derive the working mechanism of upstream and downstream processing CO4-98BT406.4. Interpretate the mechanism of fermentation process in industry CO5-98BT406.5. Examine the mechanism of biological product development using microbes 								
	IV 98BT406 Industrial Fermentation Students should have basic knowledge of micro Industrial microbiology assists industrial production the pipes of a chemical factory, monitor the induction to ensure quality. Fermentare pharmaceuticals, energy, food and feedstock, It filamentous fungi, are involved. The overall obthis field. CO1-98BT406.1. Describe the fundamentals of CO2-98BT406.2. Define the role of microbioloc CO3-98BT406.3. Derive the working mechanistic content of the state of the st							

Scheme of Studies:

Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:1)
Program Common (PC)	98BT405	Industrial Fermentation	2	2	1	3	8	3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

	Scheme of Assessment (Marks)		
Board of Study Couse Code Course Title	Progressive Assessment (PRA)	End Semester Assessment	Total Marks

			Class/Home Assignment 5 number 3 marks each	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar (SA)	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	(ESA)	(PRA+ ESA)
РС	98BT405	Industrial Fermentation	15	20	10	5	50	50	100

Scheme of Assessment: Practical

						Scheme of As	sessment (Marks)		
				Prog	gressive As	ssessment (PRA	A)		Total
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
РС	98BT456	Industrial Fermentation lab	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which	Арр	oroximate Hou	rs				
students are anticipated to accomplish through various modes of instruction including Classroom Instruction							
(CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses,		Item	Cl	LI	SW	SL	Total
students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of		Approx. Hrs	06	04	01	05	16
Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT406.1. Describe the fundamentals of Industrial Microbiology and Fermentation Technology	SO1.1 Explain the concept of Fermentation	LI1.1 To Demonstrate the working of a Bench Top bioreactor	Unit-1 CI1.1 Introduction, fermentation and fermenters	SL1.1 Search various reference books and study material to start the learning of microorganisms
	SO1.2 Elaborate the historical perspective of fermentation	L11.2 To perform the isolation of microorganisms from different kinds of samples	CI1.2 Brief history and developments in industrial microbiology	SL1.2 Find out the literature showing use of fermentation technology in ancient India
	SO1.3 Differentiate between Solid-state and liquid-state (stationary and submerged) fermentations		CI1.3 Solid-state and liquid-state (stationary and submerged) fermentations	SL1.3 Derive the equation representing various mode of fermentations
	SO1.4 Derive the equations based on Batch, fed-batch and continuous fermentations		CI1.4 Batch, fed-batch and continuous fermentations	SL1.4 Explore different bioproducts manufacture in laboratory
	SO1.5 Explain & compare the components of a typical bioreactor, types of bioreactors-Laboratories, pilot- scale and production fermenters		CI1.5 Components of a typical bioreactor, types of bioreactors-Laboratories, pilot- scale and production fermenters	SL1.5 Draw a well labelled diagram of a bioreactor

SO1.6	CI1.6
Examine the difference and working	Continuous stirred tank fermenter, tower
of various types of reactors	fermenter, fixed bed, fluidized bed
	bioreactors and air-lift fermenter

			Item	Cl	LI	SW	SL	Total	
			Approx. Hrs	6	06	01	05	18	
Suggested SessionalSW1.1 AssignmentsDescribe in detail "Applications of Microorganisms in various Sectors"									
Work (SW): anyone	SW1.2 Mini Project Draw various types of Fermenters with specifications								
	SW1.3 Other Activities (Specify)	List down the tables of different domains of micr	oorganisms whi	ich ai	e ind	ustria	lly im	portant	

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT405.2. Define the role of microbiology for the production of desired bioproducts	SO2.1 Explain the role of industrial scope of fermentation	LI2.1 To Demonstrate the working of a pH electrode	Unit-1 CI2.1 Overview on industrial fermentation- measurement of parameters	SL2.1 Search various reference books and study material to start the learning of microorganisms
	SO2.2 Derive the roles of Isolation of strains, media and ingredients: pH, temperature, dissolved oxygen, foaming and aeration	L12.2 To perform the primary and secondary of microorganisms from different kinds of samples	CI2.2 Isolation of strains, media and ingredients: pH, temperature, dissolved oxygen, foaming and aeration	SL2.2 Find out the literature showing use of fermentation technology in ancient India
	SO2.3 Compare different identification, screening & preservation techniques	L12.3 To prepare the different kinds of nutrient media for microbial culture	CI2.3 Primary and secondary screening, strain development, preservation and maintenance of industrial strains	SL2.3 Derive the equation representing various mode of fermentations
	SO2.4 Differentiate among different kinds of media used in industrial microbiology		CI2.4 Crude and synthetic media; molasses, corn-steep liquor, sulphite waste liquor, whey and yeast extract	SL2.4 Explore different bioproducts manufacture in laboratory

		Item	Cl	LI	SW	SL	Total]
		Approx. Hrs	06	06	01	05	17	
SO2.5 Describe the Downstream processing: Filtration, centrifugation	CI2.5 Downstream processing centrifugation	: Filtration,	D	L 2.5 raw a biorea		belled	diagran	ı of
SO2.6 Examine the difference and working of various types of reactors	Cl2.6 Cell disruption, solvent precipitation and ultrafil							

Suggested Sessional	SW1.1 Assignments	Write down any 5 kinds of Unit Operations used in Downstream Processing
Work (SW): anyone	SW1.2 Mini Project	Draw a well labelled diagram of Bacterial Cell Wall showing gram+/- staining
	SW1.3 Other Activities (Specify)	Watch animation related to working of different kinds of bioreactor used in various industries

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT405.3 Derive the working mechanism of upstream and	SO3.1 Explain the role of Metabolic pathways	LI3.1 To Demonstrate the working of a pH electrode	Unit-3 CI3.1 Metabolic pathways and metabolic control mechanisms	SL3.1 Search various reference books and study material to start the learning of microorganisms
downstream processing	SO3.2 Define the concept of biological product production	LI3.2 To perform the primary and secondary Screening of microorganisms from different kinds of samples	CI3.2 Industrial production of citric acid, lactic acid	SL3.2 Find out the literature showing use of Lactic Acid in industries

			Item	Cl	LI	SW	SL	Total
			Approx. H	rs 06	04	01	05	16
SO3.3 Understand the steps of ABE fermentation	LI3.3 To prepare the different kinds of nutrient media for microbial culture	CI3.3 Industrial production of Enzy: (alpha-amylase, lipase, xylase pectinases, proteases)	mes D	SL3.3 Derive th Termentat				
SO3.4 Comprehend the concept of microbial production of enzymes		CI3.4 ABE Fermentation	W bi	SL3.4 Write abo bioprodu aborator	ets ma		ure in	
SO3.5 Examine the role of metabolic pathways in prokaryotes and eukaryotes		CI3.5 Microbial Production of Lysin Glutamic acid	ne and F	SL3.5 Find out Penzymes				
SO3.6 Revision and assessment		CI3.6 Revision and assessmen	nt					

Suggested Sessional	SW3.1 Assignments	Describe in detail cultivation of microorganisms
Work (SW): anyone	SW3.2 Mini Project	Prepare a flowchart showing industrial production of biological products using fermentation
	SW3.3 Other Activities (Specify)	Make a Power Point Presentation on "Different Types of Microbial Culture Media"

Course outcome (CO)Session Outcomes (SOs)Laboratory Instruction (LI)Class room Instruction (CI)Self-Learning (SL)
--

CO4-98BT405.4	SO4.1	LI4.1	Unit-4	SL4.1
Interpretate the	Define the Microbial	To perform the antibiotic production	CI4.1	Find out more antibiotics
mechanism of	production of	using fungi	Importance and production of	and their production
fermentation process in	therapeutic compounds		Beta-lactam, aminoglycosides,	process
industry			(Rifamycin)	
	SO4.2	LI4.2	CI4.2	SL4.2
	Understand the	To perform the microbial growth	Microbial production of	List out the role of
	production of	kinetics by observing the biomass	Peptide antibiotics	Antibiotic Resistance
	antibiotics	produced and representation on graph	Quinolinones	Genes
	SO4.3		CI4.3	SL4.3
	Classify the difference		Biotransformation of steroids	Explore the medical
	between different		and its microbial production	applications of Steroids
	classes of antibiotics			
	SO4.4		CI4.4	SL4.4
	Recognize the various		Vitamin B12 and Riboflavin	Make a flowchart showing
	applications of		production through	metabolic pathway for
	Lactamase enzyme		fermentation	Vitamin B ₁₂ and Vitamin
				B ₂
	SO4.5		CI4.5	SL4.5
	Derive the production		Production of Biogas;	Explore how Biogas is
	of Vitamins through		Anaerobic digestion	produced in rural areas of
	microbes			India
	SO4.6 revision and		CI4.6 revision and discussion	
	discussion			

Suggested Sessional	SW4.1 Assignments	Explain the role of Antibiotics and its disadvantages
Work (SW): anyone	SW4.2 Mini Project	Describe how therapeutics being produced in biotech-based industries
	SW4.3 Other	Make a list of "Biogas producing centres in India"
	Activities (Specify)	

			Item Approx. H	C1 LI SW SL Total rs 06 02 01 03 12
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-98BT405.5 Examine the mechanism of biological product development using microbes	SO5.1 Identify Modern trends in microbial production of bioplastics	LI5.1 To perform the growth of Algae using a photobioreactor column	Unit-5 CI5.1 Modern trends in microbial production of bioplastics (PHA, PHB)	SL5.1 Explore the various kinds of biopolymers and their applications
	SO5.2 Recognize the production mechanism of different polymer		CI5.2 Production of bioinsectices (Thuricide), Biopolymer (Dextran, Alginate, Xanthan, Pullulan)	SL5.2 Read research on advancement in production of biofertilizers
	SO5.3 Explain the role of biofertilizers in agriculture		CI5.3 Biofertilizers (Nitrogen fixer Azotobacter, Phosphate solubilizing microorganisms)	SL5.3 Find out different centres where Single Cell Proteins are used
	SO5.4 Comprehend the role of Azotobacter in biofertilizer		CI5.4 Microbial production of Single Cell Protein	
	SO5.5 Production mechanism and importance of Single cell protein SO4.6 Revision and		CI5.5 Production of biological weapons with reference to anthrax CI5.6 Revision and	
	discussion		discussion	

Suggested Sessional	SW5.1 Assignments	Explain general characteristics of Biopolymers & their applications
Work (SW): anyone	SW5.2 Mini Project	Describe the production process of Single Cell Production
	SW5.3 Other	Prepare one article on Applications of Biofertilizers
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Industrial Fermentation			Course Code: 98BT405				
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)		
CO1-98BT405.1: Describe the fundamentals of Industrial	6	4	5	1	16		
Microbiology and Fermentation Technology							
CO2-98BT405.2: Define the role of microbiology for the production of desired bioproducts	6	6	5	1	18		
CO3-98BT405.3: Elaborate the working mechanism of upstream and downstream processing	6	4	5	1	16		
CO4-98BT405.4: Interpretate the mechanism of fermentation process in industry	6	4	5	1	16		
CO5-98BT405.5 : Examine the mechanism of biological product development using microbes	6	2	3	1	12		
Total Hours	30	20	18	05	78		

Course Code: 98BT405

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Industrial Fermentation

Course Outcomes		Marks Distribution				
	Α	An	E	С	_ Total Marks	
CO1-98BT405.1: Describe the fundamentals of Industrial Microbiology and Fermentation Technology	2	1	1	1	5	
CO2-98BT405.2: Define the role of microbiology for the production of desired bioproducts	2	4	2	2	10	
CO3-98BT405.3: Elaborate the working mechanism of upstream and downstream processing	3	5	5	2	15	
CO4-98BT405.4: Interpretate the mechanism of fermentation process in industry	2	3	3	2	10	
CO5-98BT405.5: Examine the mechanism of biological product development using microbes	5	4	1	0	10	

Total Marks	14	17	12	07	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

(b)

S.No.	Title/Author/Publisher details
1	Textbook of Microbiology by Ananthnarayanan and Paniker's, eighth edition, Universities Press
2	Microbiology; Lansing M Prescott, John P. Harley, Donald A Klein, Sixth edition, Mc Graw Hill Higher education.
3	J.E. Bailey and D.F. Ollis, Biochemical Engineer-ing Fundamentals, McGraw-Hill, New York
4	Industrial Microbiology and Biotechnology, Pradeep Verma, Springer, 2022
5	An Introduction to Industrial Microbiology, Sivakumar, K. Sukesh and Joe, S. Chand Publications, 2010

(c) Online Resources:

Suggested instructions/Implementation strategies:

- 19. Improved lecture
- 20. Tutorial
- 21. Case method
- 22. Group Discussion
- 23. Role play
- 24. Visit to Industrial plant of Biotech-based organizations
- 25. Demonstration
- 26. ICT Based teaching Learning
- 27. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: IV Semester

Course Title: Industrial Fermentation

Course Code: 98BT405

С	O/PO/PSO	Mapping						
Course Outcome (Cos)		Program Outcomes (POs)			Program Specific Outcomes (PSOs)			
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1-98BT405.1: Describe the fundamentals of Industrial Microbiology and Fermentation Technology	2	-	-	1	2	2	2	1
CO2-98BT405.2: Define the role of microbiology for the production of desired bioproducts		1	1	-	-	1	1	2
CO3-98BT405.3: Elaborate the working mechanism of upstream and downstream processing	1	1	1	1	-	1	1	1
CO4-98BT405.4: Interpretate the mechanism of fermentation process in industry		1	1	-	2	1	1	3
CO5-98BT405.5: Examine the mechanism of biological product development using microbes	1	1	1	-	-	1	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory	Classroom	Self-Learning (SL)
			Instruction (LI)	Instruction (CI)	
PO 1,2,3,4,5	CO1-98BT405.1: Describe the fundamentals	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5	1SL-1,2,3,4,5
	of Industrial Microbiology and Fermentation	SO1.3 SO1.4	LI 2	1.6	
PSO 1,2,3	Technology	SO1.5 SO1.6			
PO 1,2,3,4,5	CO2-98BT405.2: Define the role of	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4,5
	microbiology for the production of desired	SO2.3 SO2.4	LI 2	2.5, 2.6, 2.7	
PSO 1,2,3	bioproducts	SO2.5 SO2.6	LI 3		
		SO2.7			
PO 1,2,3,4,5	CO3-98BT405.3: Elaborate the working	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5	3SL-1,2,3,4,5
	mechanism of upstream and downstream	SO3.3 SO3.4	LI 2		
PSO 1,2,3	processing	SO3.5	LI 3		
PO 1,2,3,4,5	CO4-98BT405.4: Interpretate the	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,	4SL-1,2,3,4,5
	mechanism of fermentation process in	SO4.3 SO4.4	LI 2	4.5	
PSO 1,2,3	industry	SO4.5			
PO 1,2,3,4,5	CO5-98BT405.5: Examine the mechanism	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5	5SL-1,2,3
	of biological product development using	SO5.3 SO5.4			
PSO 1,2,3	microbes	SO5.5			

Program Name	Bachelor of Technology - Biotechnology						
Semester	IV						
Course title:	Genetic Engineering and Molecular Diagnostics	ering and Molecular Curriculum Developer: Shaily Mishra, Assistant Professor					
Pre-requisite:	Students should have basic knowledge of biology, biochemistry of nucleic acids, immune system related biological processes.						
Rationale:	the basic principles and clinical significance of	stic techniques in a B.Sc. Biotechnology program provides students with an understanding of f laboratory testing in the field of molecular diagnostics. Students will gain insights about the o perform basic molecular diagnostic techniques and their applications in the identification of oorganisms.					
Course Outcomes (COs):	CO1-: Understand the basic structure of DNA and RNA, modes of DNA replication and its damage and repair mechanism. CO2-: Students are able to understand the chemical and molecular processes that occur in and between cells.						
	CO3-: Gain knowledge about the protein synthesis mechanism and regulation of gene expression in prokaryotes.						
	CO4-: Demonstrate an understanding of basic molecular diagnostic techniques.						
	CO5-: Apply molecular diagnostic technique	s to the identification and diagnosis of diseases.					

					Scheme of	fstudies (Hou	rs/Week)	
Board of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)
Program Common (PC)	98BT403	Genetic Engineering and Molecular Diagnostics	3	2	1	3	9	4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

						Progressive Asso	essment (PRA)		End	Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each	Class Test 2 (2 best out of 3) 10 marks each (CT)	Class Activity (CAT)	Seminar (SA)	Class Attendance (AT)	Total Marks (CA+CT+CAT+SA+AT)	Semester Assessment (ESA)	(PRA+ ESA)

РС	98Bt403	Genetic Engineering and Molecular Diagnostics	15	20	05	05	05	50	50	100

Scheme of Assessment: Practical

				Scheme of Assessment (Marks)							
				Progressive Assessment (PRA)							
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)		
РС	98BT453	Genetic Engineering and Molecular Diagnostics	35	5	5	5	50	50	50		

This course syllabus illustrates the expected learning achievements, both at the course and session	ApproximateHours						
levels, which students are anticipated to accomplish through various modes of instruction including							
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning		Item	Cl	LI	SW	SL	Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),		Approx.Hrs	9	04	01	3	17
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-	SO1.1	LI1.1	Unit-1 DNA structure and replication	SL1.1
Understand the basic structure of	Learn about DNA as genetic	Preparation of solutions	CI1.1	Study experiments that proves
DNA and RNA, modes of DNA replication and its damage and repair mechanism.	material	for Molecular biology experiments.	DNA as genetic material,	DNA as genetic material
	SO1.2		CI1.2	
	Understand the structure of DNA		Structure of DNA	
	SO1.3		CI1.3	
	Study about different forms of DNA		Types of DNA	
	SO1.4	LI1.2	CI1.4	SL1.2
	Understand the experimental proof of semi conservative DNA replication.	DNA isolation from different sources	Semi conservative nature of DNA replication	Understand the role of proteins and enzymes in DNA replication
	SO1.5		CI1.5	
	Role of replicon and polymerases in prokaryotes		Replicon and DNA polymerases in prokaryotes	
	SO1.6		CI1.6	
	Role of replicon and polymerases in eukaryotes		Replicon and DNA polymerases in	
	SO1.7		eukaryotes CI1.7	
	Study the process of replication in prokaryotes		Replication of DNA in prokaryotes	
	SO1.8		CI1.8	
	Role of telomere in termination of replication		Telomere and end replication problem	
	SO1.9		CI1.9	SL1.3
	Study the process of replication in eukaryotes		Replication of DNA in eukaryotes	Study about various factors responsible for DNA Damage

Suggested Sessional Work	SW1.1 Assignments	Describe in detail the function of machinery involved in DNA replication.				
(SW):anyone	SW1.2Mini Project	Diagrammatic representation of repair mechanism of damaged DNA.				
	SW1.3 Other Activities (Specify)	Search research papers related to DNA damage.				

Item	Cl	LI	SW	SL	Total
Approx.Hrs	9	04	01	03	17

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2- Students are able to understand the chemical and molecular processes that occur in and between cells.	SO2.1 Understand the structure of RNA	L12.1 Isolation of bacterial plasmid and their separation to confirm the coiling.	Unit-2 Transcription CI2.1 RNA structure	SL2.1 Function of different types of RNA.
	SO2.2 Types of RNA		CI2.2 Types of RNA	
	SO2.3 Study the role of RNA polymerase enzyme in transcription	LI2.2 Agarose gel electrophoresis	CI2.3 Transcription in prokaryotes: Prokaryotic RNA polymerase	SL2.2 Study the interaction of DNA and proteins.
	SO2.4 Learn about importance of different promoters		CI2.4 Role of sigma factor and promoter	
	SO2.5 Understand the mechanism of transcription in prokaryotes		CI2.5 Initiation, elongation and termination of RNA chains in prokaryotes	
	SO2.6 Study the role of RNA polymerase enzyme in eukaryotes		C12.6 Transcription in eukaryotes: Eukaryotic RNA polymerases,	SL2.3 Understand the role of regulatory proteins.
	SO2.7 Study the role of transcription factors, promoters and enhancers		CI2.7 Transcription factors, promoters, enhancers	
	SO2.8 Understand the mechanism of DNA replication in prokaryotes		C12.8 Mechanism of transcription in eukaryotes	

SO2.9	Cl2.9	
Learn about RNA processing	RNA splicing and processing	

			Item Cl LI SW SL To			Total		
			Approx.Hrs	9	04	01	03	17
Suggested Sessional Work	SW1.1 Assignments	W1.1 Assignments Differentiate between structure of RNA polymerase in prokaryotes and eukaryotes.						
(SW):anyone	SW1.2Mini Project	W1.2 Mini Project Diagrammatic representation of mechanism of different types of RNA splicing.						
	SW1.3 Other Activities (Specify)	Make a PowerPoint presentation on mechanism of transcription in prokaryotes.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO3- Gain knowledge about the protein synthesis mechanism and regulation of gene expression in prokaryotes.	SO3.1 Study about genetic code	LI3.1 Demonstration of AMES test or reverse mutation for carcinogenicity	Unit-3 Translation & Gene Expression CI3.1 Genetic code and its characteristics	SL4.1 Structure of protein (primary, secondary and tertiary)
	SO3.2 Study the role of ribosome in translation.	LI3.2 Kirby-Bauyer method (disc-diffusion method) to study antibiotic sensitivity of a bacterial culture	CI3.2 Prokaryotic translation: ribosome structure and assembly,	SL4.2 Role of protein in biological activities.
	SO3.3 Role of charging of aminoacyl tRNA in translation		CI3.3 Charging of tRNA, aminoacyl tRNA synthetases	

SO3.4 Structure and function of mRNA	CI3.4 Polycistronic and monocistronic mRNA	
SO3.5 Steps involved in process of protein synthesis in prokaryotes	CI3.5 Mechanism of initiation, elongation and termination of polypeptides	SL4.3 Understand the role of molecular chaperones
SO3.6 Steps involved in process of protein synthesis in eukaryotes	CI3.6 Mechanism of initiation, elongation and termination of polypeptides	SL4.3 Understand the role of molecular chaperones
SO3.7 Post-translational modifications	CI3.7 Post-translational modifications of proteins	SL4.4 Study the role of regulatory proteins in gene regulation.
SO3.8 Learn about types of post- translational modifications	CI3.8 Types of Post-translational modifications of proteins	
SO3.9 Understand the mechanism of protein modifications	CI3.9 Mechanism of protein modifications	

Suggested Sessional Work	SW3.1 Assignments	Describe the importance of post translation modification of proteins.
(SW):anyone	SW3.2Mini Project	Diagrammatic representation of <i>lac</i> and <i>trp</i> operon.
SW3.3 Other Activities (Specify)		Draw a chart of genetic code and watch you tube videos of models of protein structures.

			Item	Cl LI SW SL Total
<i>a</i> (22)			Approx.	
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-	SO4.1	LI4.1	Unit-4	SL4.1
Demonstrate an understanding of	Understand about molecular	A kit-based detection of a	Molecular Diagnostics	Study different molecular
basic molecular diagnostic	diagnostic techniques.	microbial infection (Widal	Techniques-I	techniques
techniques.		test).	CI4.1	
			Introduction to molecular	
			Diagnostics	
	SO4.2	LI4.2	CI4.2	SL4.2
	Explain PCR and DNA	Demonstration of PCR	PCR and its applications	Gain insights of DNA
	sequencing			replication mechanism
	SO4.3		CI4.3	
	Learn about the function of		Types of PCR	
	different types of PCR		51	
	SO4.4		CI4.4	
	Application of DNA		DNA sequencing and its	
	sequencing		method	
	SO4.5		CI4.5	
	Different types of DNA		Types of DNA sequencing	
	sequencing methods		Types of DIVA sequencing	
	SO4.6		CI4.6	SL4.3
	Understand difference among		Blotting Techniques- Southern	Learn about DNA,RNA and
	different blotting technique		Blotting Techniques- Southern	protein
	SO4.7		CI4.7	
	504./		014./	

Concept of Blotting Techniques	Northern Blotting	
SO4.8 Applications of blotting techniques	CI4.8 Southern Blotting	
SO4.9 Demonstrate about the diagnosis of genetic diseases.	CI4.9 Diagnosis of genetic diseases,	SL4.4 Study about molecular basis of genetic diseases.

Suggested Sessional Work	SW4.1 Assignments	Differentiate between different blotting techniques used in molecular biology.
(SW): anyone	SW4.2 Mini Project	Diagrammatic representation of PCR and DNA sequencing methods.
	SW4.3 Other Activities	Find out some you tube videos related to detection of genetic diseases and mutation in DNA.
	(Specify)	

Item	Cl	LI	SW	SL	Total
Approx.Hrs	9	04	01	03	17

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
C05-	SO5.1	LI5.1	Unit-5	SL5.1
Apply molecular diagnostic	Describe the techniques for	Perform any one immune-	Molecular Diagnostics	Study about effect of different
techniques to the identification and	testing microbial susceptibility	diagnostic test (Typhoid,	Techniques-II	antibiotics
diagnosis of diseases.		Malaria, and Dengue).	CI5.1	on microbial cell
			Susceptibility tests- Micro-	
			dilution and macro-dilution	
			broth procedures	
	SO5.2		CI5.2	
	Learn about types and		Diffusion test procedures.	
	applications of susceptibility			
	test			
	SO5.3	L15.2	CI5.3	SL5.2
	Study the tests for bactericidal	Demonstration of ELISA	Tests for bactericidal activity	List out antibiotics that have
	activity.			bactericidal effect
	SO5.4		CI5.4	
	Understand the application of		Application of bactericidal	
	bactericidal activity		activity	
	SO5.5		CI5.5	SL5.3
	Elucidate enzyme immuno		Enzyme Immuno assay	Learn about role of enzyme-
	assay technique			substrate complex in
				immunological diagnostics.
	SO5.6	452	CI5.6	

Recognize the application	on of	Applications of enzyme	
enzyme in immunodiagi		immunoassays in diagnostic	
tests		microbiology	
SO5.7		CI5.7	
Learn about Immunodia	agnostic	Immunodiagnostic tests	
tests			
SO5.8		CI5.8	
Understand the application	ion of	Application of	
immunodiagnostic tests		immunodiagnostic tests	
SO5.9		CI5.9	
Explain different immu	une	Immuno florescence	
assays techniques			

Suggested Sessional Work	SW5.1 Assignments	Draw a ray diagram to show different immuno assay methods used in molecular diagnostics.
(SW): anyone	SW5.2 Mini Project	Make a power point presentation on immune fluorescence.
	SW5.3 Other Activities	Search research paper on microbial susceptibility test.
	(Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Genetic Engineering and M D

Course Outcomes(COs)	Class lecture (CI)	Laboratory Instruction(LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
C01-	9	04	03	01	17
Understand the basic structure of DNA and RNA, modes of DNA					
replication and its damage and repair mechanism.					
CO2-	9	04	03	01	17
Students are able to understand the chemical and molecular					
processes that occur in and between cells.					
CO3-	9	04	03	01	17
Gain knowledge about the protein synthesis mechanism and					
regulation of gene expression in prokaryotes.					
CO4-	9	04	03	01	17
Demonstrate an understanding of basic molecular diagnostic					
techniques.					
CO5-	9	04	03	01	17
Apply molecular diagnostic techniques to the identification and					
diagnosis of diseases.					
Total Hours	45	20	15	05	85

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Molecular biology and diagnostic techniques

Course Outcomes		Marks I	Distribution	l	Total Marks
	Α	An	E	С	
C01-	2	1	1	0	4
Understand the basic structure of DNA and RNA, modes of DNA replication and its damage and repair mechanism.					
CO2-	2	4	2	0	08
Students are able to understand the chemical and molecular processes that occur in and between cells.					
CO3-	3	5	4	1	13
Gain knowledge about the protein synthesis mechanism and regulation of gene expression in prokaryotes.					
C04-	2	3	3	2	10
Demonstrate an understanding of basic molecular diagnostic techniques.					
C05-	4	4	2	2	12
Apply molecular diagnostic techniques to the identification and diagnosis of diseases.					
Total Marks	13	17	12	05	47

Legend:A, Apply;An, Analyze;E, Evaluate;C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Genes V by Benjamin Lewin, Oxford University Press, New York, 1994.
2	Gene IX, Benjamin Lewin Oxford University Press, New York, 2006.
3	Principles of Genetics, Snustad and Simmons, Seventh Edition, John Wiley and Sons, Inc., 2015.
4	Molecular Cell Biology, Lodish et.al., W. H. Freeman and Company, Eighth Edition, 2016.
5	Genomes 5 by T.A. Brown, John Wiley and sons (Asia)PTE LTD, New York, Fifth Edition2023
6	Genes V by Benjamin Lewin, Oxford University Press, New York, 1994.

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 28. Improved lecture
- 29. Tutorial
- 30. Case method
- 31. Group Discussion
- 32. Role play
- 33. Visit to Industrial plant of fermentation industries
- 34. Demonstration
- 35. ICT Based teaching Learning
- 36. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: IV Semester

Course Title: Genetic Engineering and Molecular Diagnostics

	CO/PO Mapping														
Course Outcome					Р	rogram O	outcome	s (POs)					Program Specific Outcomes (PSOs)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
C01-	_	_	_	_	2	2 455	3	-	3	3	3	3	2	2	1

Understand the basic structure of DNA and RNA, modes of DNA replication and its damage and repair mechanism.															
CO2- Students are able to understand the chemical and molecular processes that occur in and between cells.	-	-	-	-	-	-	3	-	3	2	3	3	2	1	2
CO3- Gain knowledge about the protein synthesis mechanism and regulation of gene expression in prokaryotes.	-	-	-	-	-	-	3	-	3	1	3	3	1	1	3
CO4- Demonstrate an understanding of basic molecular diagnostic techniques.	-	-	-	-	2	2	3	3	-	1	3	3	1	1	3
CO5- Apply molecular diagnostic techniques to the identification and diagnosis of diseases.	-	-	-	-	-	2	3	3	-	2	3	3	1	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No. PO 1,2,3,4,5, 6, 7, 8, 9 10, 11, 12 PSO 1,2,3	COs CO1- Understand the basic structure of DNA and RNA, modes of DNA replication and its damage and repair mechanism.	SOs No. SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO1.6 SO1.7 SO1,8 SO1.9	Laboratory Instruction (LI) LI 1 LI 2	Classroom Instruction (CI) 1.1,1.2,1.3,1.4,1.5, 1.6,1.7,1.8,1.9	Self-Learning (SL) 1SL-1,2,3
PO 1,2,3,4,5, 6, 7, 8, 9 10, 11, 12 PSO 1,2,3	CO2- Students are able to understand the chemical and molecular processes that occur in and between cells.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5 SO2.6 SO2.7 SO2.8 SO2.9	LI 1 LI 2	2.1,2.2,2.3,2.4,2.5,2.6, 2.7,2.8,2.9	2SL-1,2,3
PO 1,2,3,4,5, 6, 7, 8, 9 10, 11, 12 PSO 1,2,3	CO3- Gain knowledge about the protein synthesis mechanism and regulation of gene expression in prokaryotes.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6 SO3.7 SO3.8	LI 1 LI 2	3.1,3.2,3.3,3.4,3.5, 3.6,3.7,3.8,3.9	3SL-1,2,3

		SO3.9			
PO 1,2,3,4,5, 6, 7, 8, 9 10, 11, 12 PSO 1,2,3	CO4- Demonstrate an understanding of basic molecular diagnostic techniques.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6 SO4.7 SO4.8 SO4.9	LI 1 LI 2	4.1,4.2,4.3,4.4, 4.5, 4.6.4.7,4.8,4.9	4SL-1,2,3
PO 1,2,3,4,5, 6, 7, 8, 9 10, 11, 12 PSO 1,2,3	CO5- Apply molecular diagnostic techniques to the identification and diagnosis of diseases.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6 SO5.7 SO5.8 SO5.9	LI 1 LI2	5.1,5.2,5.3,5.4,5.5, 5.6,5.7,5.8,5.9	5SL-1,2,3

Program Name	Bachelor of Technology (B.Tech.)-	Biotechnology
Semester	IV	
CourseCode:	98BT401	
Coursetitle:	Molecular Biology	Curriculum Developer: Shaily Mishra, Assistant Professor
Pre-requisite:	Students should have basic knowled	ge of genetics, biochemistry of nucleic acids, chromosomes and gene structure.
Rationale:	basic knowledge and explore skills ir the various processes such as DNA r	B.Tech Biotechnology program seeks to understand the molecular basis of genetic processes. The students will acquire molecular biology an become aware of the complexity and harmony of cell. The course enlightens the students about eplication, transcription, translation, regulation, repair and advances in the topics in recent research. The students will rimental procedures using relevant techniques.
CourseOutcomes COs):	CO2-98BT401.2. Understand molect CO3-98BT401.3. Students are able to CO4-98BT401.4. Gain knowledge a	mposition, structure and characteristics of nucleic acids. cular phenomena of DNA copying and transmission of information, its damage and repair mechanism. to understand the chemical and molecular processes that occur in and between cells. bout the protein synthesis mechanism and its localization in and between the cells. gene function, respond to environment and associated phenomena.

					Scheme o	fstudies (Hour	rs/Week)	
Board ofStudy	CourseCode	CourseTitle	Cl	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)
ProgramCommon(PC)	98BT401	Molecular Biology	3	2	1	3	9	3+1=4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

							Scheme of A	ssessment (Marks)		
					Progressiv	e Assessment (PR	A)			Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity (CAT)	Class Attendance (AT)	Total Marks (CA+CT+CAT+SA+AT)	End Semester Assessment (ESA)	(PRA+ ESA)

PC Biology 15 20 5 50 50	РС	98BT401 Molecula Biology		20	5	5	5	50	50	100
--------------------------	----	-----------------------------	--	----	---	---	---	----	----	-----

Scheme of Assessment: practical

						Scheme of Ass	essment (Marks)		
				Prog	ressive Asse	essment (PRA)	1		
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
РС	98BT451	Molecular Biology	35	5	5	5	50	50	50

Course-Curriculum:						
This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are		ours				
anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction						
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of	Item	Cl	LI	SW	SL	Total
Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Approx.Hrs	09	04	01	03	17

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT401.1	SO1.1	LI1.1	Unit-1	SL1.1
Understand the composition,	Understand the chemical nature	Isolation of bacterial genomic	Genetic Material	Study about prokaryotic and
structure and characteristics of	and structure of genetic	DNA.	CI1.1	eukaryotic cells.
nucleic acids.	material.		Chemical nature,	
	SO1.2		CI1.2	
	Study the structure &		Structure & properties of	
	properties of genetic material		genetic material	
	SO1.3	LI1.2	CI1.3	SL1.2
	Explain experimental	Isolation of plant genomic	DNA as the genetic material-	Learn about experimental evidences
	evidences to show DNA as	DNA.	experimental evidences	of genetic material.
	genetic material.			
	SO1.4		CI1.4	SL1.3
	Understand structure and forms		Structure of DNA,	Study the Watson and Crick model
	of DNA			of DNA.
	SO1.5		CI1.5	
	Alternative forms of DNA		Alternative forms of DNA	
	SO1.6		CI1.6	
	Explain RNA as genetic		RNA as genetic material	
	material			
	SO1.7		CI1.7	
	Organization of genetic		Genomic organization/	
	material into the cell.		packaging of genetic material,.	
	SO1.8		CI1.8	
	Organization of DNA-		Nucleosome model	
	Nucleosome model			
	SO1.9 revision and discussion		CI1.9 revision and discussion	

Suggested Sessional Work	SW1.1 Assignments	Diagrammatic representation of experiments to prove DNA as genetic material.
(SW):anyone	SW1.2Mini Project	Differentiate between prokaryotic and eukaryotic genome organization.
	SW1.3 Other Activities (Specify)	Find out some you tube videos based on working model of biological activity associated with DNA.

Item	Cl	LI	SW	SL	Total
Approx.Hrs	9	04	01	04	18

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT401.2.	SO2.1	LI2.1	Unit-2	SL2.1
Understand molecular phenomena	Understand about the origin	Isolation of bacterial plasmid	DNA replication and repair	Study the structure of DNA and its
of DNA copying and transmission	site of DNA replication.	and their separation to confirm	CI2.1	functions.
of information, its damage and		the coiling.	Origin of DNA replication,.	
repair mechanism.				
	SO2.2	Li2.2 To Prepare the setup for	CI2.2	
	Understand about the model of	gel electrophoresis and PCR	Replication of bacterial	
	DNA replication in prokaryotes		chromosomes- Theta model	
	SO2.3		CI2.3	
	Understand about the model of		Replication of eukaryotic	
	DNA replication in eukaryotes		chromosomes-Linear model	
	SO2.4		CI2.4	SL2.2
	Rolling circle mechanism of		Rolling circle replication	Learn the functions of telomere
	DNA replication.			
	SO2.5		CI2.5	SL2.3
	Understand the function of		DNA polymerases	Study the fundamentals of cell
	DNA polymerases			division
	SO2.6		CI2.6	
	Explain the enzymes and		Mechanism of DNA replication	
	mechanism involved in DNA		and its regulation	
	replication.			
	SO2.7		CI2.7	SL2.4
	Define the concept of telomere		Telomere replication	Find out the different kinds of DNA
				damage in the cell
	SO2.8		CI2.8	
	Explain the role of different		DNA repair mechanisms: photo	
	repair mechanism of DNA		reactivation, excision,	
	damage		mismatch, post replication	
			recombination repair, SOS	
			repair	
	SO2.9 Revision and discussion		CI2.9 Revision and discussion	

Suggested Sessional Work	SW2.1 Assignments	Write the mechanism of DNA replication in both prokaryotes and eukaryotes.
(SW):anyone	SW2.2Mini Project	Find some research paper on causes of DNA damage in the cell.
	SW2.3 Other Activities (Specify)	Draw a neat labelled diagram of various repair mechanism in the cell

Item	Cl	LI	SW	SL	Total
Approx.Hrs	09	04	01	03	17

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO3-98BT401.3	SO3.1	LI3.1	Unit-3	SL3.1
Students are able to understand the	Understand the process	Competent cell preparation	Gene Expression I -	DNA binding proteins and their
chemical and molecular processes	involved in synthesis of RNA	using bacterial <i>E.coli</i> strain.	Transcription	interaction with DNA.
that occur in and between cells.	molecules from DNA.		CI3.1: Transcriptional unit	
	SO3.2		CI3.2	
	Study the role of bacterial and		Bacterial and eukaryotic RNA	
	eukaryotic RNA polymerases		polymerases	
	SO3.3		CI3.3	
	Learn the role of sigma factor.		Role of sigma factor. Cis-	
	Cis-regulatory sequence,		regulatory sequence,	
	enhancers/silencers		enhancers/silencers	
	SO3.4	LI3.2	CI3.4	SL3.2
	Factors and enzymes	Bacterial transformation	Cognate transcription factors	Functions of different types of
	involved in RNA			RNAs.
	synthesis.			
	803.5		CI3.5	
	Steps involved in process of		Initiation, elongation &	
	transcription		termination of transcription	
	SO3.6		CI3.6	SL3.3
	Role of regulatory proteins		Role of transcription factors,	Study the importance of Central
	in RNA synthesis.		promoters and enhancers.	Dogma.
	SO3.7		CI3.7	
	Post transcriptional		Processing of rRNA, tRNA and	
	modification in synthesized		mRNA, poly-A tailing, 5'	
	RNA.		capping,	
	SO3.8		CI3.8	
	Understand the function of		RNA editing	
	RNA editing			
	SO3.9 Revision and		CI3.9 Revision and discussion	
	discussion			

Suggested Sessional Work (SW):	SW3.1 Assignments	Describe mechanism of transcription in prokaryotes and eukaryotes.
anyone	SW3.2 Mini Project	Diagrammatic representation of process of RNA processing in different types of RNAs.
	SW3.3 Other Activities (Specify)	Write the role of various proteins and enzyme involved in transcription process and RNA processing.

Item	Cl	LI	SW	SL	Total
Approx.Hrs	09	04	01	04	18

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-98BT401.4	SO4.1	LI4.1	Unit-4	SL4.1
Gain knowledge about the protein synthesis mechanism and its	Study of genetic code and wobble hypothesis.	Restriction digestion of plant genomic DNA	Gene Expression II - Translation CI4.1: Genetic code, wobble hypothesis.	Structure of protein (primary, secondary and tertiary)
localization in and between the cells.			hypothesis.	(cruary)
	SO4.2	LI4.2	CI4.2: Ribosomal RNA and	SL4.2
	Role of ribosome and different RNAs	Restriction digestion of bacterial genomic DNA	ribosome organization, transferRNA,	Role of protein in biological activities.
	SO4.3	Senerine Di II	CI4.3: Translation process-	SL4.3
	Steps involved in process of protein synthesis in prokaryotes		initiation, elongation, termination in prokaryotes	Understand the role of molecular chaperones
	SO4.4 Steps involved in process of protein synthesis in eukaryotes		CI4.4: Translation process- initiation, elongation, termination in eukaryotes	
	SO4.5 Comparison of eukaryotic and prokaryotic protein synthesis systems.		CI4.5: Comparison of eukaryotic and prokaryotic protein synthesis systems.	
	SO4.6 Importance Post- translational modifications.		CI4.6: Post- translational modifications	SL4.4 Interaction of proteins in and between the cell.
	SO4.7 Translocation of proteins in and between the cells.		CI4.7: Translocation of proteins across ER membrane, protein modifications and folding in ER, transport into mitochondria, chloroplast, nucleus and peroxisomes	
	SO4.8 Learn about role of molecular chaperones		CI4.8: Molecular chaperones	

SO4.9 Revision and discussion CI4.9 Revision and discussion

Suggested Sessional Work (SW): anyoneSW4.1 AssignmentsSW4.2 Mini Project		Describe the importance of post translation modification. Diagrammatic representation of translation process in both prokaryotes and eukaryotes.
	SW4.3 Other Activities (Specify)	Draw a chart of genetic code and watch you tube videos of models of protein structures.

Item	Cl	LI	SW	SL	Total
Approx.Hrs	09	04	01	03	17

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-98BT401.5	SO5.1	LI5.1	Unit-5	SL5.1
The regulation of gene function,	Learn about role of gene	Demonstration of DNA	Regulation of Gene Expression	Concept of gene and unit of
respond to environment and associated phenomena.	regulation in prokaryotes	amplification using thermal cycler.	CI5.1: Regulation in prokaryotes	gene.
•	SO5.2	LI5.2 to check the gene	CI5.2: Positive and negative gene	
	Types of gene regulation	expression using RTPCR	regulation	
	SO5.3 Understand the operon concept.		CI5.3: Operon concept	
	SO5.4 Study the concept of lac and trp operons in prokaryotes.		CI5.4: lac and trp operon	SL5.2 Study of operon model and structural genes
	SO5.5 Understand ara operon and glucose effect		CI5.5: <i>ara</i> operon, catabolite repression, attenuation	
	SO5.6 Control of gene expression in eukaryotes.		CI5.6: Regulation in eukaryotes- methylation & acetylation	SL5.3 Study the role of regulatory proteins in gene regulation.
	SO5.7 Hormonal regulation of gene expression		CI5.7: Hormonal control of gene expression	
	SO5.8 Mechanism of RNA silencing		CI5.8: RNA silencing	
	SO5.9 Revision and discussion		C15.9 Revision and discussion	

Suggested Sessional Work	SW5.1 Assignments	Describe mechanism of gene regulation in prokaryotic and eukaryotic organism.
(SW): anyone	SW5.2 Mini Project	Diagrammatic representation of positive and negative regulation in prokaryotes.
	_	
	SW5.3 Other Activities	Read research paper related to gene regulation in both prokaryotic and eukaryotic organisms.
	(Specify)	

Course duration (in hours)to attain Course Outcomes:

Course Title: Molecular Biology

Course Code:98BT401

Course Outcomes(COs)	Class lecture (CI)	Laboratory Instruction(LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98BT401.1. Understand the composition, structure and characteristics of nucleic acids.	9	4	3	1	17
CO2-98BT401.2. Understand molecular phenomena of DNA copying and transmission of information, its damage and repair mechanism.	9	4	4	1	18
CO3-98BT401.3. Students are able to understand the chemical and molecular processes that occur in and between cells.	9	4	3	1	17
CO4-98BT401.4. Gain knowledge about the protein synthesis mechanism and its localization in and between the cells.	9	4	4	1	18
CO5-98BT401.5. The regulation of gene function, respond to environment and associated phenomena.	9	4	3	1	17
Total Hours	45	20	17	5	87

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Molecular Biology

Course Code:98BT401

Course Outcomes	Marks Distribution				Total Marks
	А	An	E	С	
CO1-98BT401.1. Understand the composition, structure and characteristics of nucleic acids.	2	1	1	1	5
CO2-98BT401.2. Understand molecular phenomena of DNA copying and transmission of information, its damage and repair mechanism.	2	4	5	1	12
CO3-98BT401.3. Students are able to understand the chemical and molecular processes that occur in and between cells.	3	5	5	1	14

CO4-98BT401.4. Gain knowledge about the protein synthesis mechanism and its localization in and	2	3	5	1	11
between the cells.					
CO5-98BT401.5. The regulation of gene function, respond to environment and associated phenomena.	5	4	1	0	10
Total Marks	14	17	17	04	52

Legend:A, Apply;An, Analyze;E, Evaluate;C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Genes V by Benjamin Lewin, Oxford University Press, New York, 1994.
2	Gene IX, Benjamin Lewin Oxford University Press, New York, 2006.
3	Principles of Genetics, Snustad and Simmons, Seventh Edition, John Wiley and Sons, Inc., 2015.
4	Molecular Cell Biology, Lodish et.al., W. H. Freeman and Company, Eighth Edition, 2016.
5	Genomes 5 by T.A. Brown, John Wiley and sons (Asia)PTE LTD, New York, Fifth Edition2023

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 37. Improved lecture
- 38. Tutorial
- 39. Case method
- 40. Group Discussion
- 41. Role play
- 42. Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants
- 43. Demonstration
- 44. ICT Based teaching Learning
- 45. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: IV Semester

Course Title: Molecular Biology

Course Code: 98BT401

	1		CO)/PO M	apping										
Course Outcome	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT401.1. Understand the composition, structure and characteristics of nucleic acids.	-	-	-	-	2	2	3	-	3	3	3	3	2	2	1
CO2-98BT401.2. Understand molecular phenomena of DNA copying and transmission of information, its damage and repair mechanism.	-	-	-	-	-	-	3	-	3	2	3	3	2	1	2
CO3-98BT401.3. Students are able to understand the chemical and molecular processes that occur in and between cells.	-	-	-	-	-	-	3	-	3	1	3	3	1	1	3
CO4-98BT401.4. Gain knowledge about the protein synthesis mechanism and its localization in	-	-	-	-	2	2	3	3	-	1	3	3	1	1	3

and between the cells.															
CO5-98BT401.5. The regulation of gene function, respond to environment and associated phenomena.	-	-	-	-	-	2	3	3	-	2	3	3	1	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6	CO1-98BT401.1. Understand the composition,	SO1.1 SO1.2 SO1.3	LI 1	1.1,1.2,1.3,1.4,1.5 ,	1SL-1,2,3
7,8,9,10,11,12	structure and characteristics of nucleic acids.	SO1.4 SO1.5 SO1.6	LI 2	1.6,1.7,1.8, 1.9	
		SO1.7 SO1.8 SO1.9			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO2-98BT401.2. Understand molecular	SO2.1 SO2.2 SO2.3	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4
7,8,9,10,11,12	phenomena of DNA copying and transmission of	SO2.4 SO2.5 SO2.6	LI2	2.5,2.6,2.7,2.8, 2.9	
	information, its damage and repair mechanism.	SO2.7 SO2.8 SO2.9			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO3-98BT401.3. Students are able to understand	SO3.1 SO3.2 SO3.3	LI 1	3.1,3.2,3.3,3.4,3.5,	3SL-1,2,3
7,8,9,10,11,12	the chemical and molecular processes that occur	SO3.4 SO3.5 SO3.6	LI2	3.6,3.7,3.8, 3.9	
	in and between cells.	SO3.7 SO3.8 SO3.9			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO4-98BT401.4. Gain knowledge about the	SO4.1 SO4.2 SO4.3	LI 1	4.1,4.2,4.3,4.4.4.5,	4SL-1,2,3,4
7,8,9,10,11,12	protein synthesis mechanism and its localization	SO4.4 SO4.5 SO4.6	LI2	4.6,4.7,4.8, 4.9	
	in and between the cells.	SO4.7 SO4.8 SO4.9			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO5-98BT401.5. The regulation of gene function,	SO5.1 SO5.2 SO5.3	LI 1	5.1,5.2,5.3,5.4,5.5,	5SL-1,2,3
7,8,9,10,11,12	respond to environment and associated	SO5.4 SO5.5 SO5.6	LI2	5.6,5.7,5.8, 5.9	
	phenomena.	SO5.7 SO5.8 SO5.9			
PSO 1,2, 3					

Program name	Bachelor of Technology (B. Tech) Biotechnology
Semester	IV
CourseCode:	98BT404
Coursetitle:	Immunology and Immuno Technology Developer: Mr. PARAS KOSHE
Pre-requisite:	Student should have basic knowledge about Physiology and biology and various system of our body
Rationale:	The paper on "Immunology and Immuno Technology" in B.tech. Biotechnology program allow predicting the working principle and application of numerous cells involved in defense responses. This subject will build up the basic and advanced mechanism of immune responses during the different stresses. This subject offers the students the opportunity to advance their knowledge of immunology.
CourseOutcomes (COs):	 98BT404.1: The immune system, including its organs, cells, and receptors, will be covered in class. 98BT404.2: Comparative study of immunogen and antigen and descriptive study of structure of antibody and its production. 98BT404.3: Understand the mechanism of generation of B and T cell responses and study the their relationship with MHC, Cytokines and complement system 98BT404.4: The molecular foundations of antigen recognition, hypersensitivity reactions, and antigen-antibody interactions will be thoroughly understood by the students. 98BT404.5: The student gains an understanding of the fundamentals of immunology and how it can be used to treat diseases of humans as a result of the course.

Scheme of Studies:

		Scheme ofstudies (Hours/Week)				ırs/Week)	Total Credits(C)	
Board of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	(L: T: P=3:0:1)
Program Core(PCC)	98BT404	Immunology and Immuno Technology	3	2	1	1	7	4

Legends:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial(T) and others);

LI: Laboratory Instruction(Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

						Schem	e of Assessment	(Marks)		
						Progressive Ass ClassActivitya	essment (PRA)		- End Semester	Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment	Class Test 2 (2 best out	Seminar one	nyone	Class Attendance	Total Marks	Assessmen t	
			5 number 3 marks each (CA)	of 3) 10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CAT+CT+SA+AT)	(ESA)	(PRA+ ESA)
PCC	98BT404	Immunology and Immuno Technology	15	20	5	5	5	50	50	100

_		1				1
						1

						Scheme of Ass	sessment (Marks)		
				Prog	ressive Asse	essment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II		Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
РС		Immunology and Immuno Technology	35	5	5	5	50	50	50

Scheme of Assessment: Practical

Course-Curriculum:

	Approximate Hours					
This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom	Item	Cl	LI	SW	SL	Total
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Approx.Hrs	09	04	01	04	18

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
---------------------	------------------------	-----------------------------	-----------------------------	--------------------

CO 1: Understand the essential of immune system cells to the organism	SO1.1: Able to define the immune system	LI1.1 Prepare a detailed report on the various components of the immune system	CI 1.1: Introduction : overview of the immune system	SL 1.1: Study about the basic of immune systems
	SO1.2: Understanding fundamental of immune system and Lymphatic system.	LI1.2 Dissect a model of the thymus and spleen to understand their structure and function.	CI 1.2: Lymphatic system	SL 1.2: Learn about defence mechanism in lower organism
	SO1.3: Understanding fundamental of lymphoid organs and their structure and functions.		CI 1.3: Lymphoid organs	SL 1.3: Read the working principle of the non-specific immune system
	SO1.4: In depth study about the specific immune systems and their cells.		CI 1.4: Cells of the immune system and their functions	SL 1.4: Compare the B-cells and T-cells
	SO1.5 Able to know innate and acquired immunity and their role in human life,		CI 1.5: Innate and Acquired immunity	
	SO1.6 Focus on the cells and processes of innate immunity.		CI 1.6: Cells and processes of Innate immunity	
	SO1.7: To know the cells and organs and their functions in acquired immunity.		CI 1.7: Cells and organs of the Acquired immunity-	
	SO1.8: Basic and advanced understanding of Anatomical and Physiological barriers of innate immunity.		CI 1.8: Anatomical and Physiological barriers;	
	SO1.9 Students will able to learn innate immune responses and their mechanism how these responses help in pathogen elimination.		CI 1.9 Innate immune response and their recognition structures; Pathogen elimination.	

			Item	Cl	LI	SW	SL	Total
			Approx.Hrs	09	06	01	03	19
Suggested Sessional Work (SW): <i>anyone</i>	SW1.1 Assignments	Describe in details about the immune system and lymphatic	system.					
	SW1.2 Mini Project	Draw well labelled diagram of different lymphoid organs an	nd mention the	ir fun	ction	s.		
	SW1.3 Other Activities (Specify)	Watch animation on mode of action of first line of defence. barriers,	And various a	naton	nical	and ph	ysiolo	ogical

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO 2: Know the fundamentals of immunoglobulins, antigens, and their classifications	SO2.1: Discuss the properties of antigens	LI 2.1: Demonstration of Antibody-antigen interaction	CI 2.1: Antigens: Properties and types, Haptens and Adjuvants	SL 2.1: Fundamental structure of immunoglobins
	SO2.2: Discuss the types of antigens	LI2.2 Determination of bleeding time of an individual	CI 2.2: Antigens: Properties and types, Haptens and Adjuvants	SL 2.2: Read the working principle of non-specific immune system
	SO2.3 explain Haptens and Adjuvants	LI2.3 Determination of Clotting time of an individual	CI 2.3: Haptens and Adjuvants	SL 2.3: Read in details about the monoclonal and polyclonal antibody
	SO2.4: Build up the concept about the antibody's structures and classes		CI 2.4: Antibodies: Types, Molecular structure of Immuno-globulins, allotypes & idiotypes	

SO2.5: Build up the concept about the antibody's structures and classes	CI 2.5: Antibodies: Types, Molecular structure of Immuno-globulins, allotypes & idiotypes	
SO2.6: Summarizing the mode of monoclonal Antibody	CI 2.6: monoclonal Antibody	
SO2.7: Learn how body functions under the pathogen attack	CI 2.7: organization and expression of immunoglobulin genes.	
SO 2.8: Learn the concept of generation of antibody diversity and its importance.	CI 2.8: generation of Ab diversity	
SO 2.9 Summarizing the mode of action and mechanism of class switching of antibodies.	CI 2.9 class switching	

Suggested Sessional Work (SW): <i>anyone</i>	SW1.1 Assignments	Discuss about cytokines and their role in immune responses
	SW1.2 Mini Project	Draw well labelled diagram of immunoglobin and mention their types
	SW1.3 Other Activities (Specify)	Watch animation on Antibody-antigen interaction mechanism

			Item Approx	C1 LI SW SL Total Hrs 09 02 01 02 14
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO 3: In-depth study about action of immune responses and their genetic regulations	SO3.1: Discuss about how immune cell are activated and Summarizing the mode of action of B- cells and T-Cells in defence	LI3.1 Determination of Haemoglobin % of given human blood	CI 3.1: Generation of B-Cell and T-Cell Responses	SL3.1: Figure out the fundamental differences between humoral and cell-mediated immune responses
	SO3.2: Learn the structure and function of MHC molecules.		CI3.2: Major histocompatibility complex	SL 3.2: Advance the knowledge of the regulation of B & T cells on exposure to the antigens
	SO3.3: Able to visualize Activation of MHC I and II by peptide binding.		CI3.3: peptide binding by class I and class II molecules,	
	SO 3.4 Focus on antigen processing and presentation and their role in antibody production and immunity		CI 3.4: antigen processing and presentation	
	SO 3.5: Summarizing the mode of action of B-cells and T-Cells in defence.		CI 3.5: -Cell receptor, B- and T-cell activation and differentiation.	

SO 3.6: Learn about various types of signalling pathways and molecules involved in it	CI 3.6: signaling pathways	
SO 3.7 Learn how body functions under the pathogen attack	CI 3.7 Cytokines: properties	
SO 3.8 Elaborate and describe the role of T helper cells in cytokine production.	CI 3.8 Role of T- helper cells in cytokine production	
SO 3.9 Describe about the pathways types functions and role of complement system in immunity.	CI 3.9 complement system	

Suggested Sessional Work (SW): <i>anyone</i>	Assignments:	Describe in detail about cytokines and their functions.
	Mini Project:	Elaborate the structure and function of MHC molecules.
	Other Activities (Specify):	Watch animation on explaining the functionality of cell mediated immune system.

Item		Cl	LI	SW	SL	Total
App	ox.Hrs	09	06	01	03	19

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO 4: Elaborate the various immunodeficiency related diseases and functionality of immune system	SO4.1: Discuss about principles and types of Antigen antibody Interactions	LI3.1 Determination of blood group of an individual	CI4.1: Antigen antibody Interactions	SL4.1: Study the MHCs
	SO 4.2: To know the mechanism and examples of precipitation reaction.	LI3.2 Determination of Rh factor of an individual	CI 4.2: Precipitation reaction	SL 4.2: Learn what are the CD4 & CD8
	SO4.3: Focus on the mechanism and examples of agglutination reaction	LI3.3 To perform ELISA test (KIT method)	CI4.3: agglutination reactions	SL 4.3: Study the nature of HIV and why is it not curable so far
	SO 4.4: Discus about Antibody affinity and activity		CI 4.4: Antibody affinity and activity	
	SO4.5: Explain isolation of lymphoid cells from blood and lymphoid organs,		CI4.5: isolation of lymphoid cells from blood and lymphoid organs,	
	SO4.6: Discuss principles types and applications of RIA		CI4.6: Radioimmunoassay	
	SO 4.7: Explain the procedure and applications of western blot.		CI 4.7: Western blot	
	SO 4.8: Discuss Immunoprecipitation – Immunoflouroscence, flow cytometry		CI 4.8: Immunoprecipitation – Immunoflouroscence , flow cytometry	

SO 4.9 Describe various types of diagnostic method like ELISA and Rocket immunoelectrophoresis.	CI 4.9 Diagnostics methods: Immunodiffussion, immunoelectrophoresis. ELISA	
---	---	--

Suggested Sessional Work (SW): <i>anyone</i>	Assignments:	Elaborate the Principle and types of ELISA and RIA
	Mini Project:	Describe the mechanism and types of antigen antibody interactions
	Other Activities (Specify):	Make a poster explaining how pathogen make fool and escape from host immune machineries

Item	Cl	LI	SW	SL	Total
Approx.Hrs	09	02	01	02	14

Course outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO 5: Basic principles and applications of various immunization techniques as well as the various vaccinations	SO 5.1: Explain Vaccinology- Active immunization	Li5.1 to perform the antibiotic sensitive test of microbes	CI 5.1: Molecular Immunology	SL 5.1: Apply the idea of Infection to suppress the immunity to human health
	SO 5.2: Explain Vaccinology- passive immunization		CI 5.2: Preparation of vaccines	SL 5.2: Revise the ELSIA for several diseases' diagnosis.
	SO5.3: Illustrate thevaccine technology and application		CI 5.3: Vaccines & Vaccination	
	SO5.4 Explain application of recombinant DNA technology for the study of the immune systems		CI 5.4: application of recombinant DNA technology for the study of the immune systems	
	SO5.5 Explain the role and action of catalytic antibodies in - immunotherapy with genetically engineered		CI 5.5: catalytic antibodies- immunotherapy with genetically engineered antibodies	

antibodies			
SO5.6: Discuss about Hypersensitivity- Delay hypersensitivity and immediate	red	CI 5.6 Hypersensitive reactions	
SO5.7: Describe about Immune responses to infectious diseases		CI 5.7: Immune responses to infectious diseases	
SO5.8: Demonstrate ab Tumor Immunology w focusing the role of Vaccines		CI 5.8 Tumor Immunology-Vaccines	
SO5.9Explain autoimmunity and their in tissue and organ transplantation.	role	CI 5.9 Autoimmunity, tissue and organ transplant	

Suggested Sessional Work (SW): Anyone	Assignments:	Detail explanation of principle of vaccine production
	Mini Project:	Discuss about the western blotting techniques and it application in infection detection
	Other Activities (Specify):	How ELISA functioning differs from RIA.

Course duration (in hours) to attain Course Outcomes:

Course Title: Immunology and Immuno- Technology

Course Code:52BT201

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self- Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
98BT404.1: The immune system, including its organs, cells, and receptors, will be covered in class.	9	4	4	1	18
98BT404.2: comprehensive understanding of innate immunity and the cell types involved.	9	6	3	1	19
98BT404.3: Understand the structure and operation of antibodies.	9	2	2	1	14

98BT404.4: The molecular foundations of antigen recognition, hypersensitivity reactions, and antigen-antibody interactions will be thoroughly understood by the students.	9	6	3	1	19
98BT404.5: The student gains an understanding of the fundamentals of immunology	9	2	2	1	14
and how it can be used to treat diseases of humans as a result of the course.					
Total Hours	45	20	14	05	84

End-semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Immunology and Immuno- Technology

Course Code: 98BT404

Course Outcomes	Marks Distributio			n	Total Marks
	Α	An	E	С	_ IOUAI MIARKS
98BT404.1: The immune system, including its organs, cells, and receptors, will be covered in class.	2	1	1	1	5
98BT404.2: comprehensive understanding of innate immunity and the cell types involved.	2	4	2	2	10
98BT404.3: Understand the structure and operation of antibodies.	3	5	5	2	15
98BT404.4: The molecular foundations of antigen recognition, hypersensitivity reactions, and antigen-antibody interactions will be thoroughly understood by the students.	2	3	3	2	10
98BT404.5: The student gains an understanding of the fundamentals of immunology and how it can be used to treat diseases of humans as a result of the course.	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend:A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1	Roitt I.M, Brostoff, J., Male D.K., Immunology (Illustrated Publisher, Mosby).
2	T. J. Kindt, R.A. G. B. A. Osborne, J. Kuby. Immunology (W.H. Freeman and Company, New York).

3	Paul, W.E. (2008). Fundamental immunology (Lippincott Williams & Wilkins).
4	T.G. Parslow, D.P. Stites, A.I. Terr. Medical immunology (Lange Medical Books/McGraw-Hill).

Suggested instructions/Implementation strategies:

- 46. Improved lecture
- 47. Tutorial
- 48. Case method
- 49. Group Discussion
- 50. Role play
- 51. Visit to virology lab (BSL-3)
- 52. Demonstration
- 53. ICT Based teaching Learning
- 54. Brainstorming

CO, PO and PSO Mapping

Program Name: B.Tech. Biotechnology

Semester: IV Semester

Course Title: Immunology and Immuno- Technology

Course Code: 98BT404

CO	O/PO/PSO Mapping	
Course Outcome (Cos)	Program Outcomes (POs)	Program Specific Outcomes (PSOs)
		(1 308)

	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
98BT404.1: The immune system, including its organs, cells, and	1	2	2	3	1	2	2	1
receptors, will be covered in class.								
98BT404.2: comprehensive understanding of innate immunity	1	2	3	2	1	1	1	2
and the cell types involved.								
98BT4041.3: Understand the structure and operation of	1	2	3	2	1	1	1	1
antibodies.								
98BT404.4: The molecular foundations of antigen recognition,	-	1	1	-	2	1	1	3
hypersensitivity reactions, and antigen-antibody interactions								
will be thoroughly understood by the students.								
98BT404.5: The student gains an understanding of the	1	1	1	-	-	1	3	2
fundamentals of immunology and how it can be used to treat								
diseases of humans as a result of the course.								

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High,

Course Curriculum:

POs & PSOs	COs	SOs No.	Laboratory	Classroom Instruction (CI)	Self-Learning (SL)
No.			Instruction (LI)		
PO 1,2,3,4,5	98BT404.1: The immune system,	SO1.1, SO1.2	LI 1	1.1,1.2,1.3,1.4, 1.5,1.6,1.7,1.8,1.9	1SL-1,2,3,4,
	including its organs, cells, and receptors,	SO1.3,	LI 2		
PSO 1,2,3	will be covered in class.	SO1.4SO1.5,			
		SO1.6, SO1.7,			
		SO1.8, SO1.9			
PO 1,2,3,4,5	98BT404.2: comprehensive understanding	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	2SL-1,2,3
	of innate immunity and the cell types	SO2.3 SO2.4,	LI 2		
PSO 1,2,3	involved.	SO2.5 SO2.6,	LI 3		
		SO2.7, SO2.8,			
		SO2.9			
PO 1,2,3,4,5	98BT404.3: Understand the structure and	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	3SL-1,2
	operation of antibodies.	SO3.3 SO3.4,			
PSO 1,2,3		SO3.5, SO3.6,			
		SO3.7, SO3.8,			
		SO3.9			
PO 1,2,3,4,5	98BT404.4: The molecular foundations of	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,4.5,4.5,4.6,4.7,4.8,4.9	4SL-1,2,3
	antigen recognition, hypersensitivity	SO4.3 SO4.4,	LI 2		
PSO 1,2,3	reactions, and antigen-antibody interactions	SO4.5, SO4.6,	LI 3		
	will be thoroughly understood by the	SO4.7 SO4.8,			
	students.	SO4.9			

PO 1,2,3,4,5	98BT404.5: The student gains an	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	5SL-1,2
	understanding of the fundamentals of	SO5.3, SO5.4,			
PSO 1,2,3	immunology and how it can be used to	SO5.5, SO5.6,			
	treat diseases of humans as a result of the	SO5.7, SO5.8,			
	course.	SO5.9			

B. Tech. Biotechnology 5th Semester

Program name	Bachelor of Technology (B. Tech.)- Biotechnology							
Semester	V th							
Course Code:	98BT503	98BT503						
Course title:	Animal Biotechnology	Curriculum Developer: Dr. Monika Soni, Assistant Professor						
Pre-requisite:	Students should have basic knowledge of an	nimal biotechnology						
Rationale:	aims to enhance livestock production, de encompasses ethical considerations, environ food security, medical breakthroughs, and prevention, and biopharmaceutical produc	inipulation, reproductive technologies, and molecular biology applications in animals. The subject evelop disease-resistant breeds, and advance medical research through transgenic animals. It nmental impact assessment, and regulatory frameworks. This multidisciplinary field contributes to sustainable agriculture. The focus is on innovative techniques for genetic enhancement, disease etion in animals. As a dynamic field, Animal Biotechnology integrates biology, genetics, and ile promoting responsible and sustainable practices in animal science.						
Course Outcomes (COs):	CO2-98BT503.2: To understand the role of CO3-98BT503.3: To study about cell clonin	ng and cell selection process and analysis of cytotoxicity and viability of cells. nonoclonal antibody production and its application.						

Scheme of Studies:

					urs/Week)			
Board of Study	Course Code	ode Course Title	CI	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)
Program Common(PC)	98BT503	Animal Biotechnology	3	2	1	2	8	3+1=4
Legends:	LI: Laborato SW: Session SL: Self Lean C: Credits.	m Instruction (Includes different ry Instruction (Includes Practi al Work (includes assignment rning; SL has to be planned and perf	ical perfo , seminar,	rmances in , mini proje	laboratory o ct etc.);	workshop, fie	ld or other instructional strat	

						Scher	ne of Assessme	ent (Marks)		
					Progres	sive Assess	ment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
РС	98BT503	Animal Biotechnology	15	20	5	5	5	50	50	100

Scheme of Assessment: Theory

Scheme of Assessment: Practical

						Scheme of A	ssessment (Marks)		
				Prog	gressive 1	Assessment (P	RA)		Total
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II		Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	(PRA+ ESA)
РС	98BT553	Animal Biotechnology	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session						
levels, which students are anticipated to accomplish through various modes of instruction	Item	CI	тт	SW	SL	Total
including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self			LI	3 W	SL	Total
Learning (SL). As the course progresses, students should showcase their mastery of Session	Approx. Hours	9	4	1	5	22
Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the						
course's conclusion.						

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
СО1-98ВТ503.1: То			Unit-1	
explain about fundamentals of animal biotechnology and define the role of tissue culture media and their constituents.	SO1.1 Explain in detail about history of animal biotechnology.		Cl1.1 Brief detail of animal biotechnology history.	SL1.1 Search various reference books and other study material to start the learning about animal tissue culture and animal biotechnology.
	SO1.2 Explain in detail to specific goals & future of animal biotechnology.		CI1.2 Describe the scope, and future of animal biotechnology.	
	SO1.3 Explain the basic requirements in laboratory.	LI1.1 Demonstration of basic requirements (Instruments, Glasswares and others) in animal tissue culture laboratory.	CI1.3 Basic requirements use in animal tissue culture laboratory.	SL1.2 Learn about all requirements for animal biotechnology laboratory.
	SO1.4 Describe the application & function of basic requirements in ATC laboratory.		CI1.4 Define the Application & function of requirements in laboratory.	
	SO1.5 Describe and define the cell culture media.		CI1.5 Different components involves in cell culture media.	SL1.3 Learn about all components involves to the preparation of cell culture media.
	SO1.6 Describe the different cell culture media & their components in ATC laboratory.		CI1.6 Different cell culture media & their components.	

SO1.7 Explain the general use of ingredients in cell culture media.		CI1.7 Different ingredients like organic salts, vitamins, hormones etc. use in cell culture media for media preparation.	SL1.4 Practice to the preparation of media.
SO1.8 Explain the pros & cons of different ingredients in cell culture media.		CI1.8 Study the Pros & cons of cell culture media's ingredients.	
SO1.9 Describe about some growth factors use in cell culture media. Explain the advantages of sterilization of media. Explain the general process of preparation and sterilization of media. Describe the application of growth factors in cell culture media.	LI1.2 Demonstration of media preparation and sterilization.	CI1.9 Some growth factors like hormones, antibiotics etc. use in media. Study the advantage of Sterilization of media. Different sterilization techniques for sterilization of media. Application of different growth factors involves in cell culture media.	sterilization techniques to

Suggested Sessional	SW1.1 Assignment	Describe in detail about animal tissue culture.
Work (SW): anyone	SW1.2 Mini Project	Define cell culture medium & explain about various factors for the growth of animal cells/tissues.
	SW1.3 Other Activities (Specify)	Explain the process of media preparation and sterilization.

Item	CI	LI	SW	SL	Total
Approx. Hours	9	4	1	5	16

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
СО2-98ВТ503.2: То			Unit-2	
understand the role of different cell lines in animal cell culture.	SO2.1 Explain in detail about different types of tissue culture techniques.		CI2.1 Brief details of different tissue culture technique.	SL2.1 Search various reference books and other study material to start the learning about different cell/tissue culture techniques.
	SO2.2 Explain in detail about future prospects into tissue culture technique.		CI2.2 Study the scope and application of tissue culture technique.	
	SO2.3 Define the primary cell culture and its types.		CI2.3 Types of primary cell culture and methods for preparation of primary cells.	SL2.2 Learn in detail types of primary and secondary cell culture.
	SO2.4 Explain the advantages of primary cell culture.		CI2.4 Study the advantages of primary cell culture.	
	SO2.5 Describe different examples to culture chicken embryo fibroblast, liver and kidney.	LI2.1 Demonstration of chicken embryo fibroblast culture.	CI2.5 Preparation and culture of chicken embryo fibroblast, liver and kidney.	
	SO2.6 Explain in detail about application of fibroblast, liver, and kidney cells.		CI2.6 Study the application of fibroblast, liver, and kidney cells.	
	SO2.7 Define the secondary cell culture and study about different cell lines.		CI2.7 Types of secondary cell culture and preparation of cell lines.	SL2.3 Practice to the preparation of cell lines.

	8 Explain in detail to cation of secondary cell re.		CI2.8 Study the application of secondary cell culture.	SL2.4 Learn about different cell separation techniques for the sorting of cells.
techni to a separa Defin its ap	ation and explain its iques. Explain in detail application of cell ation techniques. he the Organ culture and pplication. Explain in to pros & cons of organ	cells by using fluorescence activated cell shorter (FACs)	CI2.9 Isolation/ Separation of cells using different techniques. Study the application of cell separation techniques. Different methods using for culture of organ and its application and limitations. Study the pros & cons of organ culture.	culture and its development by

Suggested Sessional	SW2.1 Assignment	Describe about different cell culture techniques.
Work (SW): anyone	SW2.2 Mini Project	Detail study about cell lines.
	SW2.3 Other Activities (Specify)	Study one review article on cell separation using any techniques from animal cells.

Item	CI	LI	SW	SL	Total
Approx. Hours	9	4	1	6	23

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
СОЗ-98ВТ503.3: То			Unit-3	
study about cell cloning and cell selection process and analysis of cytotoxicity and viability of cells.	SO3.1 Explain in detail of contamination in cell culture.	LI3.1 Demonstration of contaminants and decontaminants in animal tissue culture laboratory/medium.	CI3.1 Brief details of different contaminants in cell culture.	SL3.1 Search various reference books and other study material to start the learning about different contaminants.
	SO3.2 Explain in detail to removal of contamination in cell culture.		CI3.2 Removal of contamination in cell culture.	
	SO3.3 Describe/Study about Cell cloning and selection.		CI3.3 Various methods of cloning and selection of cell.	SL3.2 Learn in detail cloning and selection of cell.
	SO3.4 Explain in detail to pros & cons of cell cloning.		CI3.4 Study the pros & cons of cell cloning.	
	SO3.5 Explain in detail about scale up technique for development of cell culture.		CI3.5 Different scale-up techniques for cell culture development.	SL3.3 Learn about scale-up technique.
	SO3.6 Explain in detail to application of scale-up technique.		CI3.6 Study the application of scale- up technique.	
	SO3.7 Describe the characterization and preservation of animal cells.	LI3.2 To preserve the animal cells by using cryopreservation technique.	CI3.7 Various techniques for characterization and preservation of animal cells.	SL3.4 Learn in detail characterization and preservation of animal cells.
	SO3.8 Explain in detail to application of cryopreservation technique.		CI3.8 Study the application of cryopreservation techniques.	

cytotoxicity & viability.

Suggested Sessional Work (SW): anyone	SW3.1 Assignment	Describe cloning and selection of cells and characterization and preservation methods for animal cells.
	SW3.2 Mini Project	Describe the methods to scale up of animal cell culture.
	SW3.3 Other Activities (Specify)	Prepare one review article on cytotoxicity and viability of cells.

Item	CI	LI	SW	SL	Total
Approx. Hours	9	4	1	5	22

CO4-98BT503.4:To study the method of monoclonal antibody production and its application.Common Common Comm	Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
	study the method of monoclonal antibody production and its	the transgene and transgenic		CI4.1 Brief details of transgenic	books and other study material to start the learning about

SO4.2 Explain in detail to scope & application of transgenic animal production.		CI4.2 Study the scope and application of transgenic animal production.	
SO4.3 Explain in detail the methods of foreign gene transfer and their validation.	LI4.1 Demonstration of foreign gene transfer in animal cells by using any method.	CI4.3 Various methods of gene transfer.	
SO4.4 Explain in detail to advantage & disadvantage of gene transfer methods.		CI4.4 Study the advantage & disadvantage of gene transfer methods.	
SO4.5 Explain in detail about transgenesis and organ transplantation.		CI4.5 Different steps of transgenesis and organ transplantation.	SL4.2 Learn in detail organ transplantation.
SO4.6 Explain in detail to application, advantage, & disadvantage of transgenesis & organ transplantation.		CI4.6 Study the application, advantage, & limitation of transgenesis & organ transplantation.	
SO4.7 Describe in detail about gene therapy.		CI4.7 Various methods and application of gene therapy.	SL4.3 Learn in detail gene therapy.
SO4.8 Explain in detail to pros & cons of gene therapy and Explain in detail In Vitro Fertilization and embryo transfer technique.		CI4.8 Study the pros & cons of gene therapy and Detail in IVF and embryo transfer technique.	SL4.5 Learn to the methods of monoclonal antibody production.
SO4.9 Explain in detail to application & limitation of IVF & embryo transfer technique and Detail about monoclonal antibody, & methods of their production and application	LI4.2 To prepare monoclonal antibody from animal cells.	CI4.9 Study the application & limitation of IVF & embryo transfer technique and Detail about monoclonal antibody, & methods of their production and application	SL4.4 Learn to the process of IVF and embryo transfer in animal cells.SL4.5 Learn to the methods of monoclonal antibody production.

Suggested Sessional	SW4.1 Assignment	Describe the transgenesis process and production of transgenic animal.
Work (SW): anyone	SW4.2 Mini Project	Describe in the detail of gene therapy and its application.
	SW4.3 Other Activities (Specify)	Study one research article on IVF and embryo transfer technique.

Item	CI	LI	SW	SL	Total
Approx. Hours	9	4	1	4	21

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
СО5-98ВТ503.5: То			Unit-5	
describe the recent research in the field of animal biotechnology.	SO5.1 Describe and define the vaccine.		CI5.1 Brief details of vaccine.	SL5.1 Search various reference books and other study material to start the learning about vaccine production.
	SO5.2 Explain in detail to scope of vaccine in animal biotechnology.		CI5.2 Study the scope of vaccine.	
	SO5.3 Explain in detail the vaccine production.	LI5.1 Demonstration of cell culture based vaccine to control of various diseases.	1	

SO5.4 Explain in detail to application & limitation of vaccine production.	LI5.2 prepare the media and culture the bacterial cells	CI5.4 Study the application, & limitation of vaccine production.	
SO5.5 Explain in detail about cell culture use for diagnosis and treatment of disease.		CI5.5 Detail of cell culture in diagnosis and treatment of disease.	SL5.2 Learn in detail about cell culture for disease diagnosis.
SO5.6 Explain in detail to application of cell culture diagnosis methods.		CI5.6 Study the application of cell culture diagnosis methods.	
SO5.7 Explain in detail to pros & cons of cell culture diagnosis methods.		CI5.7 Study the pros & cons of cell culture diagnosis methods.	
SO5.8 Describe in detail recent research in animal biotechnology.		CI5.8 Detail in recent research in the field of animal biotechnology.	SL5.3 Learn in detail current research in animal biotechnology to solve the problems.
SO5.9 Describe in detail scope of recent research in animal biotechnology and application & limitation of recent research in animal biotechnology field.		C15.9 Study the scope of current research in animal biotechnology field and the application & limitation of recent research in animal biotechnology field.	SL5.4 Learn to the challenges in animal biotechnology field.

Suggested Sessional	SW5.1 Assignment	Explain in detail about vaccine production and their application.
Work (SW): anyone	SW5.2 Mini Project	Describe in the detail of cell culture to diagnosis and treatment of disease.
	SW5.3 Other Activities (Specify)	Study review articles on the current research in the field of biotechnology.

Course duration (in hours) to attain Course Outcomes:

Course Title: Animal Biotechnology						
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)	
CO1-98BT503.1 : To explain about fundamentals of animal biotechnology and define the role of tissue culture media and their constituents.	9	4	5	1	19	
CO2-98BT503.2 : To understand the role of different cell lines in animal cell culture.	9	4	5	1	19	
CO3-98BT503.3 : To study about cell cloning and cell selection process and analysis of cytotoxicity and viability of cells.	9	4	6	1	20	
CO4-98BT503.4 : To study the method of monoclonal antibody production and its application.	9	4	5	1	19	
CO5-98BT503.5 : To describe the recent research in the field of animal biotechnology.	9	4	4	1	18	
Total Hours	45	20	25	05	95	

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcomes:

Course Title: Animal Biotechnology

Course Code: 98BT503

Legend:**R**, Remember; U, Understand; A, Apply

Course Outcomes	Mark	s Distribu	Total Marks	
	R	U	Α	
CO1-98BT503.1 : To explain about fundamentals of animal biotechnology and define the role of tissue culture media and their constituents.	2	3	4	9
CO2-98BT503.2: To understand the role of different cell lines in animal cell culture.	2	4	4	10

CO3-98BT503.3 : To study about cell cloning and cell selection process and analysis of cytotoxicity and viability of cells.	3	4	4	11
CO4-98BT503.4 : To study the method of monoclonal antibody production and its application.	3	3	4	10
CO5-98BT503.5 : To describe the recent research in the field of animal biotechnology.	3	4	3	10
Total Marks	13	18	19	50

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1.	Ranga M.M., Animal Biotechnology. Agrobios India Limited, 2002.
2.	Ramadass P, Meera Rani S., Text Book of Animal Biotechnology. Akshara Printers, 1997.
3.	R. Ian Freshney, Culture of Animal cells, A Manual of basic technique 4th Edition 2002.
4.	Masters J.R.W., Animal Cell Culture: Practical Approach. Oxford University Press,2000.

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to animal biotechnology lab
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: Vth Semester

Course Title: Animal Biotechnology

Course Code: 98BT503

CO/PO/PSO Mapping															
Course Outcome (Cos)		Program Outcomes (POs)									Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT503.1 : To explain about fundamentals of animal biotechnology and define the role of tissue culture media and their constituents.	-	1	-	1	2	2	2	-	3	1	3	-	2	2	1
CO2-98BT503.2 : To understand the role of different cell lines in animal cell culture.	-	1	-	-	-	-	3	-	3	2	3	2	1	1	2
CO3-98BT503.3 : To study about cell cloning and cell selection process and analysis of cytotoxicity and viability of cells.	1	1	1	1	-	-	2	-	3	1	2	3	1	1	1
CO4-98BT503.4 : To study the method of monoclonal antibody production and its application.	1	-	1	-	2	2	3	3	-	1	3	2	1	1	3
CO5-98BT503.5 : To describe the recent research in the field of animal biotechnology.	1	-	1	-	-	2	2	3	-	2	2	3	1	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO1,2,3,4,5,6,7,8,9,	CO1-98BT503.1: To explain about	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5	1SL-1,2,3,4,5
10,11,12	fundamentals of animal biotechnology and	SO1.3 SO1.4	LI 2	1.6,1.7,1.8,1.9	
	define the role of tissue culture media and	SO1.5 SO1.6			
PSO 1,2,3	their constituents.	SO1.7 SO1.8			
		SO1.9			
PO1,2,3,4,5,6,7,8,9,	CO2-98BT503.2: To understand the role of	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4,5
10,11,12	different cell lines in animal cell culture.	SO2.3 SO2.4	LI 2	2.5,2.6,2.7,2.8,2.9	
		SO2.5 SO2.6			
PSO 1,2,3		SO2.7 SO2.8			
		SO2.9			
PO1,2,3,4,5,6,7,8,9,	CO3-98BT503.3: To study about cell cloning	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,	3SL-1,2,3,4,5,6
10,11,12	and cell selection process and analysis of	SO3.3 SO3.4	LI 2	3.6,3.7,3.8,3.9	
	cytotoxicity and viability of cells.	SO3.5 SO3.6			
PSO 1,2,3		SO3.7 SO3.8			
		SO3.9			
PO1,2,3,4,5,6,7,8,9,	CO4-98BT503.4: To study the method of	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,4.5,	4SL-1,2,3,4,5
10,11,12	monoclonal antibody production and its	SO4.3 SO4.4	LI 2	4.6,4.7,4.8,4.9	
	application.	SO4.5 SO4.6			
PSO 1,2,3		SO4.7 SO4.8			
		SO4.9			
PO1,2,3,4,5,6,7,8,9,	CO5-98BT503.5: To describe the recent	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,	5SL-1,2,3,4
10,11,12	research in the field of animal biotechnology.	SO5.3 SO5.4	LI2	5.6,5.7,5.8,5.9	
·		SO5.5 SO5.6			
PSO 1,2,3		SO5.7 SO5.8			
		SO5.9			

Program Name	B. Tech. Biotechnology							
Semester	V							
Course Code:	98BT504							
Course title:	Distillates and Fermentation Curriculum Developer: Er. Arpit Srivastava, Assistant Professor							
Pre-requisite:	Students should have basic knowledge of micr	obiology and fermentation						
Rationale:	found in the pipes of a chemical factory, monitoused in cheese production to ensure quality.	problems related to industrial production processes. They may examine microbial growth or the impact industrial waste has on the local ecosystem, or oversee the microbial activities Fermentation is frequently used for the cultivation of biomass and in the production of eedstock, bioactive compounds, biopolymers, etc., in which different microorganisms, and						
Course Outcomes (COs):	CO1-98BT504.1. Describe the fundamentals of CO2-98BT504.2. Define the role of microbiol CO3-98BT504.3. Derive the working mechanism CO4-98BT504.4. Interpretate the mechanism CO5-98BT504.5. Examine the mechanism of	logy for the production of desired bioproducts ism of upstream and downstream processing						

Scheme of Studies:

					Scheme of	studies (Hou	ırs/Week)	
Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)
Program Common (PC)	, ob 100.	Distillates and Fermentation	3	2	1	3	9	3+1=4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)		
				End	Total Marks
Board of	Couse Code	Course Title		Semester	
Board of Study	Couse Code	Course Thie	Progressive Assessment (PRA)	Assessment	

			Class/Home Assignment 5 number 3 marks each	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar (SA)	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	(ESA)	(PRA+ ESA)
РС	98BT504	Distillates and Fermentation	15	20	10	5	50	50	100

Scheme of Assessment: Practical

						Scheme of As	ssessment (Marks)		
				Prog	gressive A	ssessment (PR	A)		Total
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	(PRA+ ESA)
РС	98BT554	Distillates and Fermentation lab	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels,	A	pproximate H	ours				
which students are anticipated to accomplish through various modes of instruction including Classroom							
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Item	Cl	LI	SW	SL	Total
progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall		Approx. Hrs	09	04	01	05	19
achievement of Course Outcomes (COs) upon the course's conclusion.	-						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT504.1. Describe the fundamentals of Distillates and Fermentation Technology	SO1.1: Understand microbial metabolic pathways	LI1: Study metabolic pathways in microorganisms	Cl1.1: Lecture on metabolic pathways in microbes	SL1.1: Research recent advances in microbial metabolism
	SO1.2: Comprehend metabolic control mechanisms		Cl1.2: Lecture on metabolic control mechanisms	
	SO1.3: Understand industrial production of citric acid		Cl1.3: Lecture on industrial production of citric acid	
	SO1.4: Learn about lactic acid fermentation		Cl1.4: Case study on lactic acid fermentation	SL1.2: Study the applications of lactic acid in industries
	SO1.5: Evaluate enzyme production processes	LI2: Enzyme extraction and activity assay	CI1.5: Lecture on microbial enzyme production (lipase, xylase, pectinases, proteases)	
	SO1.6: Analyze acetone-butanol fermentation		Cl1.6: Group discussion on acetone- butanol fermentation	

SO1.7: Study cheese fermentation process	CI1.7: Seminar on cheese fermentation
SO1.8: Compare different fermentation methods	CI1.8: Comparison of solid-state and submerged fermentation
SO1.9: Understand the role of fermentation in industrial applications	CI1.9: Industrial visit to enzyme production facility

Suggested Sessional	SW1.1 Assignments	Describe in detail "Applications of Microorganisms in various Sectors"				
Work (SW): anyone	SW1.2 Mini Project	Draw various types of Fermenters with specifications				
	SW1.3 Other Activities (Specify)	List down the tables of different domains of microorganisms which are industrially important				

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	05	19

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT504.2. Define the role of microbiology for the production of desired bioproducts	SO2.1: Comprehend microbial production of insulin	LI1: Demonstrate insulin production	Cl2.1: Lecture on microbial production of insulin	SL2.1: Research recent advances in microbial therapeutic production
	SO2.2: Understand production of interferons		Cl2.2: Lecture on interferon production	

SO2.3: Analyze production of	LI2: Amylase activity	CI2.3: Lecture on microbial	
amylase	assay	production of enzymes (amylase)	
SO2.4: Evaluate microbial production of amino acids (EAA/N-EAA)		Cl2.4: Lecture on amino acid production	
SO2.5: Study vitamin B12 fermentation		Cl2.5: Lecture on vitamin B12 and riboflavin fermentation	SL2.2: Study the health benefits of vitamin B12 and riboflavin
SO2.6: Understand microbial production of riboflavin		Cl2.6: Case study on riboflavin production	
SO2.7: Learn about fermentation techniques for therapeutic compounds		Cl2.7: Seminar on microbial production techniques	
SO2.8: Compare different microbial production methods		Cl2.8: Comparison of microbial and chemical production methods	
SO2.9: Understand industrial applications of microbial therapeutic compounds		Cl2.9: Industrial visit to a pharmaceutical production facility	

Suggested Sessional Work (SW): SW1.1 Assignments		Write down any 5 kinds of Unit Operations used in Downstream Processing		
anyone	SW1.2 Mini Project	Draw a well labelled diagram of Bacterial Cell Wall showing gram+/- staining		
	SW1.3 Other Activities	Watch animation related to working of different kinds of bioreactor used in various		
	(Specify)	industries		

	Item		Cl LI SW SL Tota	
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Approx. I Class room Instruction (CI)	Hrs 09 04 01 05 19 Self-Learning (SL)
CO1-98BT504.3 Derive the working mechanism of upstream and downstream processing	SO3.1: Understand microbial production of bioplastics	LI3.1: Study bioplastic production processes	CI3.1: Lecture on microbial production of bioplastics (PHB, PHA)	SL3.1: Research recent advances in bioplastic production
	SO3.2: Study bioinsecticides production	LI3.2: effect of bioinsecticide on plant growth	CI3.2: Lecture on bioinsecticides (thuricide) production	
	SO3.3: Analyze biopolymer production		CI3.3: Lecture on biopolymer production (dextran, alginate, xanthan, pullulan)	
	SO3.4: Understand the role of biofertilizers		CI3.4: Lecture on biofertilizers (nitrogen fixer Azotobacter, phosphate solubilizing microorganisms)	SL3.2: Study the benefits of biofertilizers in agriculture
	SO3.5: Study single cell protein production		CI3.5: Lecture on single cell protein production	

SO3.6: Evaluate production of biological weapons	CI3.6: Lecture on biological weapons with reference to anthrax
SO3.7: Learn about microbial production techniques	CI3.7: Seminar on modern microbial production techniques
SO3.8: Compare different microbial production methods	CI3.8: Comparison of microbial production methods for different products
SO3.9: Understand industrial applications of modern microbial production	CI3.9: Industrial visit to a facility producing modern microbial products

Suggested Sessional	SW3.1 Assignments	Describe in detail cultivation of microorganisms		
Work (SW): anyone SW3.2 Mini Project		Prepare a flowchart showing industrial production of biological products using fermentation		
	SW3.3 Other Activities (Specify)	Make a Power Point Presentation on "Different Types of Microbial Culture Media"		
	· · · · · · · · · · · · · · · · · · ·			

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	05	19

Course outcome (CO) Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
--	--------------------------------	-----------------------------	--------------------

CO4-98BT504.4	SO4.1: Comprehend the	LI4.1: Study biogas	CI4.1: Lecture on the	SL4.1: Research recent
Interpretate the mechanism of	process of biogas	production process	substrate digester and	advances in biogas
fermentation process in industry	production		microorganisms in biogas	production
			production	
	SO4.2: Understand	LI4.2: to use sugarcane juice	CI4.2: Lecture on bioethanol	
	bioethanol production	for bioethanol production	production from sugar,	
			molasses, starch, and	
			cellulosic materials	
	SO4.3: Analyze ethanol		CI4.3: Lecture on ethanol	
	recovery techniques		recovery methods	
	SO4.4: Study microbial		CI4.4: Lecture on microbial	SL4.2: Study the benefits of
	production of hydrogen gas		production of hydrogen gas	hydrogen gas as a biofuel
	SO4.5: Understand		CI4.5: Lecture on biodiesel	
	biodiesel production from		production from	
	hydrocarbons		hydrocarbons	
	SO4.6: Evaluate enzyme		CI4.6: Lecture on	
	immobilization techniques		immobilization of enzymes	
	SO4.7: Learn about the		CI4.7: Seminar on the	
	useful features of biofuels		advantages of biofuels	
	SO4.8: Compare different		CI4.8: Comparison of	
	biofuel production methods		different biofuel production	
			methods	
	SO4.9: Understand		CI4.9: Industrial visit to a	
	industrial applications of		biofuel production facility	
	biofuels			

Suggested Sessional	SW4.1 Assignments	Explain the role of Antibiotics and its disadvantages
Work (SW): anyone	<i>ne</i> SW4.2 Mini Project Describe how therapeutics being produced in biotech-based industries	
	SW4.3 Other Activities (Specify)	Make a list of "Biogas producing centres in India"

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	05	19

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-98BT504.5	SO5.1: Comprehend the	LI5.1: Demonstrate	CI5.1: Lecture on the	SL5.1: Research recent
Examine the mechanism of	distillation process	distillation process	fundamentals of	advances in distillation
biological product			distillation	technology
development using microbes				
	SO5.2: Understand types	LI5.2 compare two	CI5.2: Lecture on types of	
	of mixtures in distillation	column chromatography	mixtures	
		for two liquids		
	SO5.3: Analyze the laws		CI5.3: Lecture on the laws	
	of gases related to		of gases	
	distillation			
	SO5.4: Study the role of		CI5.4: Lecture on the role	SL5.2: Study the
	atmospheric pressure in		of atmospheric pressure	applications of distillation
	distillation			in various industries
	SO5.5: Understand		CI5.5: Lecture on Raoult's	
	Raoult's Law		Law	
	SO5.6: Evaluate different		CI5.6: Lecture on types of	
	types of distillation units		distillation units	
	SO5.7: Learn about the		CI5.7: Seminar on	
	methods of distillation		distillation methods	
	SO5.8: Compare different		CI5.8: Comparison of	
	types of distillation		different distillation	
	columns		columns	
	SO5.9: Understand		CI5.9: Industrial visit to a	
	industrial applications of		distillation unit	
	distillation			

Suggested Sessional	SW5.1 Assignments	Explain general characteristics of Biopolymers & their applications	
Work (SW): anyone	SW5.2 Mini Project	Describe the production process of Single Cell Production	
	SW5.3 Other	Prepare one article on Applications of Biofertilizers	
	Activities (Specify)		

Course duration (in hours) to attain Course Outcomes:

Course Title: Distillates and Fermentation			Course Code: 98BT504		
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98BT504.1: Describe the fundamentals of	9	4	5	1	19
Distillates and Fermentation Technology					
CO2-98BT504.2: Define the role of microbiology for the	9	4	5	1	19
production of desired bioproducts					
CO3-98BT504.3: Elaborate the working mechanism of	9	4	5	1	19
upstream and downstream processing					
CO4-98BT504.4: Interpretate the mechanism of	9	4	5	1	19
fermentation process in industry					
CO5-98BT504.5 : Examine the mechanism of biological	9	4	5	1	19
product development using microbes					
Total Hours	45	20	25	05	95

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Distillates and Fermentation

Course Code: 98BT504

Course Outcomes		n	Total Marks			
	А	An	E	С		
CO1-98BT504.1: Describe the fundamentals of Distillates and Fermentation Technology	2	1	1	1	5	
CO2-98BT504.2: Define the role of microbiology for the production of desired bioproducts	2	4	2	2	10	
CO3-98BT504.3: Elaborate the working mechanism of upstream and downstream processing	3	5	5	2	15	
CO4-98BT504.4: Interpretate the mechanism of fermentation process in industry	2	3	3	2	10	
CO5-98BT504.5: Examine the mechanism of biological product development using microbes	5	4	1	0	10	
Total Marks	14	17	12	07	50	

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

(b)

S.No.	Title/Author/Publisher details
1	Textbook of Microbiology by Ananthnarayanan and Paniker's, eighth edition, Universities Press
2	Microbiology; Lansing M Prescott, John P. Harley, Donald A Klein, Sixth edition, Mc Graw Hill Higher education.
3	J.E. Bailey and D.F. Ollis, Biochemical Engineer-ing Fundamentals, McGraw-Hill, New York
4	Industrial Microbiology and Biotechnology, Pradeep Verma, Springer, 2022
5	An Introduction to Industrial Microbiology, Sivakumar, K. Sukesh and Joe, S. Chand Publications, 2010

(c) Online Resources:

Suggested instructions/Implementation strategies:

- 10. Improved lecture
- 11. Tutorial
- 12. Case method
- 13. Group Discussion
- 14. Role play
- 15. Visit to Industrial plant of Biotech-based organizations
- 16. Demonstration
- 17. ICT Based teaching Learning
- 18. Brainstorming

CO, PO and PSO Mapping

Program Name: M. Sc. Microbiology

Course Title: Distillates and Fermentation Technology

Course Code: 98BT504

С	CO/PO/PSO Mapping										
Course Outcome (Cos)	Program Outcomes (POs)					Program	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3			
CO1-98BT504.1: Describe the fundamentals of Distillates and Fermentation Technology	2	-	-	1	2	2	2	1			
CO2-98BT504.2: Define the role of microbiology for the production of desired bioproducts	-	-	-	-	-	1	1	2			
CO3-98BT504.3: Elaborate the working mechanism of upstream and downstream processing	-	1	1	1	-	1	1	1			
CO4-98BT504.4: Interpretate the mechanism of fermentation process in industry	-	1	1	-	2	1	1	3			
CO5-98BT504.5: Examine the mechanism of biological product development using microbes	1	1	1	-	-	1	3	2			

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs	COs	SOs No.	Laboratory	Classroom	Self-Learning (SL)
No.			Instruction (LI)	Instruction (CI)	
PO 1,2,3,4,5	CO1-98BT504.1: Describe the	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5	1SL-1,2,3,4,5
	fundamentals of Distillates and	SO1.3 SO1.4	LI 2	1.6	
PSO 1,2,3	Fermentation Technology	SO1.5 SO1.6			
PO 1,2,3,4,5	CO2-98BT504.2: Define the role of	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4,5
	microbiology for the production of desired	SO2.3 SO2.4	LI 2	2.5, 2.6, 2.7	
PSO 1,2,3	bioproducts	SO2.5 SO2.6	LI 3		
		SO2.7			

PO 1,2,3,4,5	CO3-98BT504.3: Elaborate the working	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5	3SL-1,2,3,4,5
	mechanism of upstream and downstream	SO3.3 SO3.4	LI 2		
PSO 1,2,3	processing	SO3.5	LI 3		
PO 1,2,3,4,5	CO4-98BT504.4: Interpretate the	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,	4SL-1,2,3,4,5
	mechanism of fermentation process in	SO4.3 SO4.4		4.5	
PSO 1,2,3	industry	SO4.5			
PO 1,2,3,4,5	CO5-98BT504.5: Examine the mechanism	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5	5SL-1,2,3
	of biological product development using	SO5.3 SO5.4			
PSO 1,2,3	microbes	SO5.5			

Program Name	Bachelor of Technology (B.Tech.)- Biotechn	Bachelor of Technology (B.Tech.)- Biotechnology							
Semester	V								
Course Code:	98BT505								
Course title:	Bioseparations	Curriculum Developer: Er. Arpit Srivastava, Assistant Professor							
Pre-requisite:	Students should have basic knowledge of fermentation and downstream processing								
Rationale:	critical step in manufacturing of pharmaceutical purity, cost, and environmental impact. This c	purification of biosynthetic products. Downstream processing or bioseparation constitutes a s such as antibiotics, hormones, antibodies and vaccines and enzymes with regards to product course offers the importance of downstream processing in biotechnology and its problems ctive of this course is to impart knowledge and skills on different separation, purification,							
Course Outcomes (COs):	CO1-98BT505.1. Illustrate the basic mechanism of Bioseparations CO2-98BT505.2. Discuss the role of Downstream processing in bioprocessing CO3-98BT505.3. Comprehend & distinguish among the working mechanism of unit operators used in bioseparations CO4-98BT505.4. Interpretate the mechanism of isolation of products through analytical methods								
	CO5-98BT505.5. Examine and demonstrate th								

Scheme of Studies:

		Course Title						
Board of Study	CourseCode		Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)
Program Common (PC)	98BT505	Bioseparations	3	2	1	3	9	3+1=4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					Progressiv	e Assessment (I	PRA)			Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity (CAT)		Total Marks (CA+CT+CAT+SA+AT)	End Semester Assessment (ESA)	(PRA+ ESA)

PE	98BT505	Bioseparations	15	20	5	5	5	50	50	100

Scheme of Assessment: Practical

						Scheme of Ass	sessment (Marks)		
					Total				
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II		Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	(PRA+ ESA)
PE	98BT555	Bioseparations	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the	Approximate Hours						
course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory		Item	Cl	LI	SW	SL	Total
Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Approx. Hrs	09	04	01	02	16
progresses, students should showcase their mastery of Session Outcomes (SOs),							
culminating in the overall achievement of Course Outcomes (COs) upon the							
course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT505.1	SO1.1: Understand the	LI1.1: Study the overview of	CI1.1: Lecture on the history	SL1.1: Research recent
Illustrate the basic mechanism	history and scope of	a bioprocess	and scope of downstream	advances in downstream
of Bioseparations	downstream processing		processing in biotechnology	processing
	SO1.2: Comprehend the	LI1.2: demonstrate different	CI1.2: Lecture on the	
	problems and requirements	processing units	problems and requirements	
	of purification		of purification	
	SO1.3: Understand the		CI1.3: Lecture on upstream	
	overview of upstream and		and downstream processing	
	downstream processing			
	SO1.4: Learn about the		CI1.4: Lecture on the	SL1.2: Study different classes
	characteristics of		characteristics of	of bioproducts
	biotechnology products		biotechnology products	
	SO1.5: Evaluate the		CI1.5: Lecture on the	
	physicochemical basis of		physicochemical basis of	
	bio-separation		bio-separation	
	SO1.6: Study the classes of		CI1.6: Lecture on different	
	bioproducts		classes of bioproducts	
	SO1.7: Learn about the		CI1.7: Seminar on the	
	importance of downstream		importance of downstream	
	processing		processing	
	SO1.8: Compare upstream		CI1.8: Comparison of	
	and downstream processing		upstream and downstream	
	methods		processing methods	

SO1.9: Understand the	CI1.9: Industrial visit to a	
industrial applications of	downstream processing	
downstream processing	facility	

Suggested Sessional	SW1.1 Assignments	Describe in detail about the role of Bioseparation in Product development	
Work (SW): anyone	SW1.2 Mini Project	Differentiate between Upstream and Downstream processing	
	SW1.3 Other Activities (Specify)	Draw a flowchart compiling all procedures used in bioseparation/downstream processing	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	02	16

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT505.2.	SO2.1: Understand cell	LI2.1: Demonstrate cell	CI2.1: Lecture on	SL2.1: Research recent
Discuss the role of Downstream	disruption for product	disruption techniques	mechanical, enzymatic, and	advances in cell disruption
processing in bioprocessing	release		chemical methods of cell	techniques
			disruption	
	SO2.2: Comprehend the	LI2.2: to perform quorum	CI2.2: Lecture on	
	pretreatment and	sensing of bacteria	pretreatment and	
	stabilization of byproducts		stabilization of byproducts	
	SO2.3: Analyze filtration		CI2.3: Lecture on	
	principles		conventional and cross flow	
			filtration	
	SO2.4: Study filter media		CI2.4: Lecture on filter	SL2.2: Study the applications
	and membrane fouling		media and membrane	of filtration in bioseparation
			fouling	
	SO2.5: Understand rotary		CI2.5: Lecture on rotary	
	vacuum filtration		vacuum filtration equipment	
	SO2.6: Evaluate different		CI2.6: Comparison of	
	filtration methods		different filtration methods	

SO2.7: Learn about the	CI2.7: Seminar on filtration
principles of filtration	principles
SO2.8: Compare	CI2.8: Comparison of cell
mechanical, enzymatic, and	disruption methods
chemical cell disruption	
methods	
SO2.9: Understand the	CI2.9: Industrial visit to a
industrial applications of	facility using physical
physical methods of	methods of separation
separation	

Suggested Sessional	SW2.1 Assignments	Describe Filteration and its application in bioseparation techniques	
Work (SW): anyone	SW2.2 Mini Project	Make a project on Rotatory Drum Vaccum Filter and its applications	
	SW2.3 Other Activities (Specify)	Make Power point presentation on production of biomass	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	02	16

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT505.3 Comprehend & distinguish among the working mechanism of unit operators used in bioseparations	SO3.1: Understand aqueous two-phase extraction principles	LI3.1: Demonstrate aqueous two-phase extraction	Cl3.1: Lecture on aqueous two-phase extraction principles	SL3.1: Research recent advances in aqueous two- phase extraction
	SO3.2: Comprehend phase separation techniques		Cl3.2: Lecture on phase separation	
	SO3.3: Analyze membrane separation methods	LI3.2: Demonstrate membrane separation	CI3.3: Lecture on membrane separation, ultrafiltration, and dialysis	

SO3.4: Study p	rotein	CI3.4: Lecture on	SL3.2: Study the applications
precipitation m		precipitation of proteins by	of protein precipitation in
		different methods	bioseparation
SO3.5: Underst	tand	CI3.5: Lecture on	
sedimentation	principles	sedimentation principles	
		and sedimentation	
		coefficient	
SO3.6: Evaluate	e	CI3.6: Lecture on tubular	
centrifugation	techniques	and disk centrifuges	
SO3.7: Learn al	bout	CI3.7: Lecture on	
ultracentrifuga	tion	ultracentrifugation and	
		sedimentation at low	
		accelerations	
SO3.8: Compar	re flocculation	CI3.8: Lecture on	
principles		flocculation principles	
SO3.9: Underst	tand the	CI3.9: Industrial visit to a	
industrial appli	ications of	facility using product	
product isolation	on methods	isolation methods	

Suggested Sessional	SW3.1 Assignments	Derive the equations for Centrifugation using sedimentation, terminal velocity and gravity
Work (SW): anyone	SW3.2 Mini Project	Describe the role of Ultracentrifuge in industries
	SW3.3 Other	Prepare one Power point presentation on "Different types of Centrifuge and their applications"
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	04	04	01	04	13

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT505.4	SO4.1	LI4.1	Unit-4 Product purification	SL4.1
Interpretate the mechanism of	Elucidate the application &	To perform the Column	by chromatography	Find out the industrial
isolation of products through	working mechanism of	Chromatography process as	CI4.1	applications of
analytical methods	Chromatography	Unit Operation for	Chromatography principles,	Chromatography
		extraction of different	chromatography equipment	
		compounds	and detectors	
	SO4.2	LI4.2 To perform the TLC	CI4.2	SL4.2
	Distinguish among Ion-	of the amino acid presence	Ion-exchange, size	List down various kinds of
	exchange, size exclusion,	in the given	exclusion, hydrophobic	Chromatographic columns
	hydrophobic interactions		interaction	used in analysis
	SO4.3		CI4.3	SL4.3
	Analyze the working of		Bioaffinity chromatography	List down various kinds of
	Bioaffinity chromatography			Solvents used in
				Chromatographic technique
	SO4.4		CI4.4	SL4.4
	Distinguish among the		Pseudo affinity	List down the various kinds
	working mechanism of		Chromatographic techniques	of Detectors associated with
	Pseudo affinity		-	chromatography
	Chromatographic techniques			

Suggested Sessional	SW4.1 Assignments	Determine the working mechanism and applications of different kind of chromatographic techniques
Work (SW): anyone	SW4.2 Mini Project	Derive the Qualitative and Quantitative data optimization and retrieval through chromatographic
		detectors and equations associated with it
	SW4.3 Other	Perform the extraction of different compounds and calculate the Retention time for each compound in
	Activities (Specify)	laboratory

Item	Cl	LI	SW	SL	Total
Approx. Hrs	8	04	01	05	18

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT505.5 Interpretate the mechanism of isolation of products through analytical methods	SO5.1 Elucidate the application & working mechanism of Chromatography	LI5.1 To determine the AA sequences comparison on the basis of peptide mapping using ProteoMapper (Server/tool)	Unit-5 Final product formulation and finishing operations CI5.1 Analysis of the final product - Protein-based contaminants	SL5.1 Find out the industrial applications of Chromatography
	SO5.2 Distinguish among Ion- exchange, size exclusion, hydrophobic interactions	LI5.2 To determine the protein 3D structure, function and annotations using Protein Data Bank (PDB database)	CI5.2 Removal of altered forms of the protein of interest from the product stream	SL5.2 List down various kinds of Chromatographic columns used in analysis
	SO5.3 Analyze the working of Bioaffinity chromatography		CI5.3 NMR and X-Ray Crystallography (protein structure determination)	SL5.3 List down various kinds of Solvents used in Chromatographic technique
	SO5.4 Distinguish among the working mechanism of Pseudo affinity Chromatographic techniques		CI5.4 Determination of protein concentration (all the major protein assays – principles)	SL5.4 List down the various kinds of Detectors associated with chromatography
	SO5.5 Describe and draw Amnio acid's structure and functions		CI5.5 Amino acid analysis, Peptide mapping	SL5.5 List down the various bioinformatics-based server/tool that assist in study of protein/proteomics
	SO5.6 Explain the process of Protein sequencing		CI5.6 N-terminal sequencing, Analysis of secondary and tertiary structure	

805.7	CI5.7
Define the protein-based	Detection of protein-based
product impurities	product impurities
SO5.8	CI5.8
Explain the Rapid methods for	Rapid methods for
detection of specific organisms	detection of specific
and toxins (ELISA/RIA)	organisms and toxins

Suggested Sessional	SW5.1 Assignments	Explain general mechanism of ELISA and RIA
Work (SW): anyone	SW5.2 Mini Project	Describe the RIPP model by giving an example from microbial production of any product from
		therapeutic domain
	SW5.3 Other	Prepare one article on the "Structure and Bonds associated with Proteins"
	Activities (Specify)	-

Course duration (in hours) to attain Course Outcomes:

Course Title: Bioseparations		Course Code: 98BT505					
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)		
CO1-98BT505.1. Illustrate the basic mechanism of	9	4	2	1	16		
Bioseparations							
CO2-98BT505.2. Discuss the role of Downstream	9	4	2	1	16		
processing in bioprocessing							
CO3-98BT505.3. Comprehend & distinguish among the	9	4	2	1	16		
working mechanism of unit operators used in							
bioseparations							
CO4-98BT505.4. Interpretate the mechanism of isolation	4	4	4	1	13		
of products through analytical methods							
CO5-98BT505.5. Examine and demonstrate the	8	4	5	1	18		
mechanism of product purification							
Total Hours	40	20	18	05	87		

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Bioseparations

Course Code: 98BT505

Course Outcomes		n	Total Marks		
	А	An	E	С	
CO1-98BT505.1. Illustrate the basic mechanism of Bioseparations	2	1	1	1	5
CO2-98BT505.2. Discuss the role of Downstream processing in bioprocessing	2	4	5	1	12
CO3-98BT505.3. Comprehend & distinguish among the working mechanism of unit operators used in bioseparations	3	5	5	1	14
CO4-98BT505.4. Interpretate the mechanism of isolation of products through analytical methods	2	3	5	1	11
CO5-98BT505.5. Examine and demonstrate the mechanism of product purification	5	4	1	0	10
Total Marks	14	17	17	04	52

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

(b)

S.No.	Title/Author/Publisher details
1	Roger G.Harrison, Paul Todd, Scott R.Rudge and Demetri P. Pterides – Biosepartions Science and Engineering – Oxford University Press - 2003
2	R.O. Jenkins, (Ed.) – Product Recovery In Bioprocess Technology – Biotechnology By Open Learning Series, Butterworth-Heinemann (1992).
3	J.C. Janson And L. Ryden, (Ed.) – Protein Purification – Principles, High Resolution Methods And Applications, VCH Pub. 1989.
4	Fundamentals of Biochemistry. Author, JL Jain et al. Edition, reprint. Publisher, S. Chand Publishing, 2004.
5	Bioseparations: Principles and Techniques; Sivasankar, B; PHI Publications, 2009

Suggested instructions/Implementation strategies:

- 19. Improved lecture
- 20. Tutorial
- 21. Case method
- 22. Group Discussion
- 23. Role play

24. Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants

- 25. Demonstration
- 26. ICT Based teaching Learning
- 27. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: V Semester

Course Title: Bioseparations

Course Code: 98BT505

Course Outcome	Program Outcomes (POs)	Program Specific Outcomes (PSOs)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT505.1. Illustrate the basic mechanism of Bioseparations	-	1	-	1	2	2	3	-	3	2	2	3	1	2	1
CO2-98BT505.2. Discuss the role of Downstream processing in bioprocessing	-	1	-	-	-	-	3	-	2	2	3	3	3	-	2
CO3-98BT505.3. Comprehend & distinguish among the working mechanism of unit operators used in bioseparations	-	1	1	1	-	-	3	-	3	1	1	2	1	2	-
CO4-98BT505.4. Interpretate the mechanism of isolation of products through analytical methods	-	-	1	-	2	2	3	3	-	1	3	3	2	1	3
CO5-98BT505.5. Examine and demonstrate the mechanism of product purification	1	-	1	-	-	2	3	3	1	2	2	2	1	1	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6		SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5,	1SL-1,2
	CO1 09PT505 1 Illustrate the basic	SO1.3 SO1.4	LI 2	1.6, 1.7, 1.8, 1.9	
7,8,9,10,11,12	CO1-98BT505.1. Illustrate the basic mechanism of Bioseparations	SO1.5SO1.6			
		SO1.7 SO1.8			
PSO 1,2, 3		SO1.9			
PO 1,2,3,4,5,6		SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2
	CO2 09PT505 2 Discuss the sale of	SO2.3 SO2.4	LI 2	2.5, 2.6, 2.7, 2.8,	
	CO2-98BT505.2. Discuss the role of	SO2.5SO2.6		2.9	
	Downstream processing in bioprocessing	SO2.7 SO2.8			
		SO2.9			

PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3	CO3-98BT505.3. Comprehend & distinguish among the working mechanism of unit operators used in bioseparations	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6 SO3.7 SO3.8 SO3.9	LI 1 LI 2	3.1,3.2,3.3,3.4,3.5, 3.6, 3.7, 3.8, 3.9	3SL-1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3	CO4-98BT505.4. Interpretate the mechanism of isolation of products through analytical methods	SO4.1 SO4.2 SO4.3 SO4.4	LI 1 LI 2	4.1,4.2,4.3,4.4	4SL-1,2,3,4
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3	CO5-98BT505.5. Examine and demonstrate the mechanism of product purification	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6 SO5.7 SO5.8SO5.9	LI 1 LI 2	5.1,5.2,5.3,5.4,5.5, 5.6, 5.7, 5.8,5.9	5SL-1,2,3,4,5

Program Name	B. Tech. Biotech Semester-	
Semester	V th	
Course Code:	98BT506-C	
Course title:	Molecular modeling and Drug designing (MMDD)	Curriculum Developer: Mr. Piyush Kant Rai, Teaching associate
Pre-requisite:	Students must have knowledge of Molecular m	odels and their structures which is important in drug designing.
Rationale:	2D and 3D structure modeling and in analyz	emester-V th program explores the critical role of specialized mechanisms of protein ing microbial evolution and diversity. It delves into the use of tools for understanding rn more about how these data are generated and what biological mystery can be

Course Outcomes	
(COs):	98BT506-C1: Explain the various stages of drug discovery
	98BT506-C2: Define the concept of receptor and ligand binding
	98BT506-C3: Describe physicochemical Properties and the techniques involved in QSAR
	98BT506-C4: Learn introduction to Bioinformatics and Cheminformatics
	98BT506-C5: Learn methods in molecular and quantum mechanics and Explain various structure-based drug design methods

Scheme of Studies:

Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)
Program Elective (PE)	98BT506-C	Molecular modeling and Drug designing (MMDD)	3	2	1	1	7	4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Progressi Class Test 2 (2 best out of 3) 10 marks each (CT)		nent (PRA) Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
Program Elective (PE)	98BT506- C	Molecular modeling and Drug designing (MMDD)	16	19	5	5	5	50	50

Scheme of Assessment: practical

	Scheme of Assessment (Marks)			
	Progressive Assessment (PRA)			

Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
Program Elective (PE)	98BT556- C	Molecular modeling and Drug designing (MMDD)-lab	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI),	. .	nte H	ours			
Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students		Cl	LI	SW	SL	Total
should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course	A	09	04	01	02	16
Outcomes (COs) upon the course's conclusion.	Hrs					

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT506C1: Explain the various stages of drug discovery	SO1.1: Understand bond length, bond angle, torsion angle, and non- covalent interactions	LI1.1: Study molecular structure using modeling software	CI1.1: Lecture on basic concepts of molecular structure	SL1.1: Research recent advances in molecular modeling
	SO1.2: Comprehend molecular structure and internal energy	LI1.2: Demonstrate energy minimization of small molecules	CI1.2: Lecture on molecular structure and internal energy	
	SO1.3: Learn energy minimization techniques		CI1.3: Lecture on energy minimization of small molecules	
	SO1.4: Evaluate empirical representation of molecular energies		CI1.4: Lecture on empirical representation of molecular energies	SL1.2: Study different force fields used in molecular mechanics
	SO1.5: Understand the use of force fields and molecular mechanics methods		CI1.5: Lecture on the use of force fields and molecular mechanics methods	
	SO1.6: Discuss global energy minimum		CI1.6: Lecture on the concept of global energy minimum	
	SO1.7: Learn molecular representation in graphics		CI1.7: Seminar on molecular representation in graphics	
	SO1.8: Compare different molecular modeling software		CI1.8: Comparison of molecular modeling software	

SO1.9: Understand the industrial applications of molecular modeling	CI1.9: Industrial visit to a molecular modeling facility	
---	--	--

Suggested Sessional	SW1.1 Assignments	Write about the Schrodinger wave equation and its improvement			
Work (SW): anyone	SW1.2 Mini Project	Learn different types of force fields.			
	SW1.3 Other Activities (Specify)	Which force field is the most stable and frequently used for biologically active molecule			

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	4	1	2	16

Course	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction	Self-Learning (SL)
Outcome (CO)			(CI)	
CO2-98BT506- C2: Define the	O2.1: Understand the criteria for synthesizing drugs	LI2.1: Study drug synthesis techniques	Cl2.1: Lecture on the rational basis of drug designing	SL2.1: Research recent advances in drug designing
concept of receptor and ligand binding	SO2.2: Comprehend pharmacophore-based drug design	LI2.2: Demonstrate pharmacophore modeling	Cl2.2: Lecture on pharmacophore-based drug design	
	SO2.3: Analyze lead finding and lead optimization		CI2.3: Lecture on lead finding and lead optimization	
	SO2.4: Study receptor-based design		CI2.4: Lecture on receptor based design	SL2.2: Study different receptor structures used in drug design
	SO2.5: Understand the process of structure-based design		CI2.5: Lecture on the process of structure-based design	

SO2.6: Evaluate design of energy inhibitors	CI2.6: Lecture on design of energy inhibitors
SO2.7: Learn about action and reaction in drug design	CI2.7: Seminar on action and reaction in drug design
SO2.8: Compare different drug designing approaches	CI2.8: Comparison of drug designing approaches
SO2.9: Understand the industrial applications of drug designing	CI2.9: Industrial visit to a drug designing facility

Suggested Sessional	SW2.1 Assignments Write about the Lipinski rule of five	
Work (SW): anyone	SW2.2 Mini Project Write about lead and target optimization.	
	SW2.3 Other Activities (Specify)	Find out some you tube videos based on how a drug works in the system.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	4	1	2	16

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Class room	Self-Learning (SL)
		(LI)	Instruction	
			(CI)	
CO3-98BT506-C3: Describe	SO3.1: Understand the tools	LI3.1: Demonstrate the	CI3.1: Lecture on	SL3.1: Research recent advances in
	Ludi, Ludi/CAP, AutoDock,	use of Ludi and	computer based tools	computer based drug designing tools
and the techniques involved	and GRAMM	AutoDock	for drug designing	
in QSAR				
	SO3.2: Comprehend scoring	LI3.2: Demonstrate	Cl3.2: Lecture on	
	and docking modes	docking simulations	scoring and docking	
			modes	

SO3.3: Analyze QSAR	CI3.3: Lecture on	
principles and methods	QSAR principles and	
	methods	
SO3.4: Study drug design by	CI3.4: Lecture on drug	SL3.2: Study the applications of
receptor site fit	design by receptor	QSAR in drug designing
	site fit	
SO3.5: Understand active site	Cl3.5: Lecture on	
simulations using PDB	active site simulations	
structure data	using PDB structure	
	data	
SO3.6: Evaluate homology	Cl3.6: Lecture on	
modeling	homology modeling	
	techniques	
SO3.7: Learn about	Cl3.7: Lecture on	
perturbation free energy	perturbation free	
	energy and its	
	practical applications	
SO3.8: Compare different	Cl3.8: Comparison of	
computer based drug	computer based drug	
designing tools	designing tools	
SO3.9: Understand the	Cl3.9: Industrial visit	
industrial applications of	to a computer based	
computer based drug	drug designing facility	
designing		

Suggested Sessional	SW3.1 Assignments	Write about the minimum and maximum range and its significance with respect to ADMET properties
Work (SW): anyone	SW3.2 Mini Project	
	SW3.3 Other	Employ the virtual lab for docking basics.
	Activities (Specify)	

				Item	С	1 L	I SW	V SL	Total			
				Approx. Hrs	0	9 4	1	2	16			
Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Ins	truction (CI)		Self-]	Learn	ing (SI	(_)			
CO4-98BT506-C4: Learn introduction to Bioinformatics and Cheminformatics	SO4.1: Understand basic principles of molecular dynamics	molecular dynamics of molecular dynamics a						SL4.1: Research recent advances in molecular dynamics				
Cheminormatics	SO4.2: Comprehend Monte Carlo simulation for conformational analysis	LI4.2: Demonstrate Monte Carlo simulations	Cl4.2: Lecture on Monte Carlo simulation for conformational analysis									
	SO4.3: Analyze ab initio and Density-Functional Theory		CI4.3: Lecture of Density-Function									
	SO4.4: Study semiemperical methods		Cl4.4: Lecture of methods	on semiemperica	al	semie	cation	s of ical me	thods			
	SO4.5: Understand organized drug discovery and development		Cl4.5: Lecture of discovery and of the second secon	on organized dru development	Ig							
	SO4.6: Evaluate pharmacology and screening systems		CI4.6: Lecture of and screening s	on pharmacology systems	y							
	SO4.7: Learn about alternative strategies in lead identification		CI4.7: Seminar strategies in lea	on alternative ad identification								
	SO4.8: Compare lead optimization strategies		CI4.8: Compari optimization st									
	SO4.9: Understand the industrial applications of		Cl4.9: Industria discovery facili	•								

		molecular dynam discovery	ics and drug							
Suggested Sessional	SW4	.1 Assignments	prepare a flow chart of drug discovery and development.							
Work (SW): anyone	SW4	.2 Mini Project								
	SW4	.3 Other	Relate the forc	ce field and Newton equation	of motion for a	biological syster	n			
	Activ	vities (Specify)								
						Itom	C1	II SW S	I Tot	1

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	4	1	2	16

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
CO5-98BT506-C5: Learn methods in molecular and quantum mechanics and Explain various structure- based drug design methods.	SO5.1: Understand enzyme catalytic principles	LI5.1: Study enzyme catalytic principles	CI5.1: Lecture on enzyme catalytic principles	SL5.1: Research recent advances in enzyme inhibitors
Subou unug ubbgir inconousi	SO5.2: Comprehend affinity labels and suicide inactivation	LI5.2: Demonstrate affinity labeling techniques	CI5.2: Lecture on affinity labels and suicide inactivation	
	SO5.3: Analyze enzyme inhibition theories		CI5.3: Lecture on theories of enzyme inhibition	
	SO5.4: Study enzyme inhibition as a tool for drug development		CI5.4: Lecture on enzyme inhibition as a tool for drug development	SL5.2: Study the applications of enzyme inhibition in drug development
	SO5.5: Understand structure-based drug design		CI5.5: Lecture on structure-based drug design	

SO5.6: Evaluate structural bioinformatics in drug discovery	CI5.6: Lecture on structural bioinformatics	
	in drug discovery	
SO5.7: Learn about illustrative examples of enzyme inhibitors	CI5.7: Seminar on illustrative examples of enzyme inhibitors	
SO5.8: Compare different enzyme inhibition strategies	CI5.8: Comparison of enzyme inhibition strategies	
SO5.9: Understand the industrial applications of enzyme inhibitors in drug development	CI5.9: Industrial visit to a facility using enzyme inhibitors in drug development	

Suggested Sessional	SW5.1 Assignments	illustrate the theories of enzyme inhibition
Work (SW): anyone	SW5.2 Mini Project	
	SW5.3 Other	Rewrite the Scope and limitations of Enzyme background
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Molecular modeling and Drug designing (MMDD)

Course Code: 98BT506-C

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98BT506C1: Explain the various stages of drug discovery		4	2	1	16
CO2- 98BT506-C2: Define the concept of receptor and ligand binding	9	4	2	1	16

CO3- 98BT506-C3: Describe physicochemical Properties and the techniques involved in QSAR	9	4	2	1	16
CO4- 98BT506-C4: Learn introduction to Bioinformatics and Cheminformatics	9	4	2	1	16
CO5- 98BT506-C5: Learn methods in molecular and quantum mechanics and Explain various structure-based drug design methods.	9	4	2	1	16
Total Hours	45	20	10	5	80

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Computational biology and bioinformatics

Course Code: 98BT301

Course Outcomes		Marks D	n	Total Marks		
	Α	An	Е	С		
CO1-98BT506-C1: Explain the various stages of drug discovery	02	03	04	1	10	
CO2-98BT506-C2: Define the concept of receptor and ligand binding	02	05	02	1	10	
CO3-98BT506-C3: Describe physicochemical Properties and the techniques involved in QSAR	04	04	01	1	10	
CO4-98BT301-A.4 Learn Introduction to Bioinformatics and Cheminformatics	03	04	02	1	10	
CO5-98BT301-A.5 Learn methods in molecular and quantum mechanics and Explain various structure-based drug design methods	04	03	02	1	11	
Total Marks	15	19	11	05	51	

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(c) Books:

(d)

S.No.	Title/Author/Publisher details	
1	MOLECULAR MODELLING AND DRUG DESIGN K. Anand Solomon Mjp Publishers	2011
2	Guidebook On Molecular Modeling In Drug Design Cohen Claude Elsevier India	2014
3	Molecular Modeling in Drug Design Rebecca Wade and Outi Salo-Ahen MDPI	2019

(e) Online Resources:

Suggested instructions/Implementation strategies:

- 28. Improved lecture
- 29. Tutorial
- 30. Case method
- 31. Group Discussion
- 32. Role play
- 33. Visit to Research lab (BSL-1)
- 34. Demonstration
- 35. ICT Based teaching Learning
- 36. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: 5th Sem

Course Title: Molecular modeling and Drug designing (MMDD)

Course Code: 98BT506-C

				(CO/PO/	PSO Ma	apping								
Course Outcome (Cos)					ł	Program	Outcom	es (POs))				Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT506-C1: Explain the various stages of drug discovery	-	-	-	1	2	2	2	-	1	2	2	3	-	-	-
CO2-98BT506-C2: Define the concept of receptor and ligand binding	-	-	-	-	-	-	-	-	2	2	3	3	-	-	-
CO3-98BT506-C3:Describe	-	1											-	1	
physicochemical Properties and the techniques involved in QSAR			1	1	-	-	2	-	3	1	1	2			1
CO4-98BT301-A.4 Learn Introduction to Bioinformatics and Cheminformatics	1	1	1	-	2	2	2	3	-	1	-	-	1	1	1
CO5-98BT301-A.5 Learn methods in molecular and	-	1											-	1	
quantum mechanics and Explain various structure-based drug design methods			1	-	-	2	-	3	1	2	2	2			1

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 4,5,6	CO1-98BT506-C1: Explain the various	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5,	
7,9,10,11,12	stages of drug discovery	SO1.3 SO1.4	LI 2	1.6, 1.7, 1.8, 1.9	
7,9,10,11,12		SO1.5SO1.6			1SL-1,2
		SO1.7 SO1.8			
PSO 1,2, 3		SO1.9			
	CO2-98BT506-C2: Define the concept of	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4, 2.5,	
PO 9,10,11,12	receptor and ligand binding	SO2.3 SO2.4	LI 2	2.6, 2.7, 2.8, 2.9	
		SO2.5SO2.6			2SL-1,2
PSO 1,2, 3		SO2.7 SO2.8			
		SO2.9			
PO 2,3,4,5,	CO3-98BT506-C3:Describe	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,	
7,9,10,11,12	physicochemical Properties and the	SO3.3 SO3.4	LI 2	3.6, 3.7, 3.8, 3.9	
7,9,10,11,12	techniques involved in QSAR	SO3.5 SO3.6			3SL-1,2
		SO3.7 SO3.8			
PSO 1,2, 3		SO3.9			
PO 1,2,3,5,6	CO4-98BT301-A.4 Learn Introduction to	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4	
7,8,10	Bioinformatics and Cheminformatics	SO4.3 SO4.4	LI 2		461 4 2
		SO4.5 SO4.6			4SL-1, 2
PSO 1,2, 3		SO4.7			
PO 2,3,4,5,6	CO5-98BT301-A.5	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,	
7,8,10,11,12	Learn methods in molecular and	SO5.3 SO5.4	LI 2	5.6, 5.7, 5.8, 5.9	
. , , ,	quantum mechanics and Explain various	SO5.5 SO5.6			5SL-1,2
PSO 1,2, 3	structure-based drug design methods	SO5.7 SO5.8			

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology						
Semester	V						
Course Code:	98BT506-A						
Course title:	Nanotechnology and Engineering	Curriculum Developer: Arpit Srivastava, Assistant Professor					
Pre-requisite:	Students should have basic knowledge of Physical & Biological Science						
Rationale:	Nanotechnology is a rather young discipline, which came up in the nineties. Nevertheless, Nanotech has gained so much importance within the last years that universities at all rankings have introduced or are going to introduce Nanotechnology teaching programs. Predictions say that NT will change our lives and society more than computer technology and electricity have done together. The course will provide an overview over NT. It will show that the nano regime is so different from other regimes because both classical and quantum effects can be active thus leading to unique properties of nano devices. It is a highly interdisciplinary science, which will be reflected in the course by making reference to chemistry, physics, biology, pharmacy, and engineering. Applications of Nanotechnology, as they are already in use today or as they are planned for the						
Course Outcomes (COs):	mes CO2-98BT506-A.2. Define the role of biotechnology in nanoscience						

Scheme of Studies:

					uurs/Week)Total Study Hours (CI+LI+SW+SL)Total Credits(C) (L:T:P=3:0:1)73+1=4			
Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	•	
Program Elective (PE)	98BT506-A	Nanotechnology and Engineering	3	2	1	1	7	3+1=4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

	Scheme of Assessment (Marks)

Board of Study	Couse Code	Course Title		Progressiv	ve Assessr	nent (PRA)		(ESA)	Total
			Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	Assessment (ESA)	Marks (PRA+ ESA)
PE	98BT506- A	Nanotechnology and Engineering	15	20	5	5	5	50	50

Scheme of Assessment: Practical

				Scheme of Assessment (Marks)					
				Pro	gressive	Assessment (PRA)		Total Marks
Board of Study	Course Code	Course Title	Class/Home Assignment	Viva Voca I	Viva Voce II	Class Attendance	Total Marks	End Semester Assessment (ESA)	IVIAI KS
Study	Code		5 number	voce 1	voce II		(CA+VV1+VV2+SA+AT)	. ,	(PRA+ ESA)

			7 marks each						
			(CA)						
PE	98BT556- A	Nanotechnology and Engineering	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session		te H	ours			
levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning	Item	Cl	LI	SW	SL	Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),	Approx.	09	04	01	02	16
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Hrs					

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-56MB205.1: Explain fundamentals of Nanotechnology	SO1.1: Understand basic concepts and introduction to nanotechnology	LI1.1: Study the basic concepts of nanotechnology using simulations	Cl1.1: Lecture on basic concepts and introduction to nanotechnology	SL1.1: Research recent advances in nanotechnology

SO1.2: Comprehend nanomechanics and nanotribology	LI1.2: Demonstrate nanomechanics techniques	Cl1.2: Lecture on nanomechanics and nanotribology	
SO1.3: Analyze scanning probe microscopy		Cl1.3: Lecture on scanning probe microscopy	
SO1.4: Study nanomaterials and its handling		Cl1.4: Lecture on nanomaterials and its handling	SL1.2: Study the applications of nanomaterials
SO1.5: Understand nanobots and nanofuture		Cl1.5: Lecture on nanobots and nanofuture	
SO1.6: Evaluate nano- fying electronics		Cl1.6: Lecture on nano- fying electronics	
 SO1.7: Learn about nanofibres		Cl1.7: Seminar on nanofibres	
SO1.8: Compare nanopores and nanotubes		Cl1.8: Comparison of nanopores and nanotubes	
SO1.9: Understand the industrial applications of nanotechnology		Cl1.9: Industrial visit to a nanotechnology facility	

SW1.1 Assignments	Describe in detail about the Nanoparticles
SW1.2 Mini Project	Draw a well labelled diagram of a microscope

Suggested Sessional Work (SW):	SW1.3 Other Activities	Write an article on "Latest research in the field of
anyone	(Specify)	Nanotechnology"

T

			Item		Cl	LI	SW	SL	Total
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Approx. Class room Instru (CI)		09	9 04 01 02 16 Self-Learning (SL)			16 SL)
CO2-98BT506-A Define the role of biotechnology in nanoscience	fine the role of technology inintroduction to nanoscienceproduction of nanoparticles usingintrodu nanoscience		Cl2.1: Lecture on introduction to nanoscience				esearcl s in na		
	SO2.2: Comprehend optical microscopy	LI2.2: Demonstrate optical microscopy techniques	Cl2.2: Lecture on op microscopy	otical					
	SO2.3: Analyze atomic force microscopy		CI2.3: Lecture on ato force microscopy	omic					
	SO2.4: Study SEM techniques		Cl2.4: Lecture on SE techniques	М	арр	olicati	udy th ons of hnolog	SEM	in
	SO2.5: Understand the production of nanoparticles		Cl2.5: Lecture on production of nanoparticles						
	SO2.6: Evaluate collision / coalescence mechanism		CI2.6: Lecture on co / coalescence mecha						

SO2.7: Learn about nanoparticle agglomerates	CI2.7: Seminar on nanoparticle agglomerates
SO2.8: Compare aerogels and their properties	CI2.8: Comparison of aerogels and their properties
SO2.9: Understand the industrial applications of nanoparticles	Cl2.9: Industrial visit to a nanoparticle production facility

Suggested Sessional	SW2.1 Assignments	Make a table to distinguish different nanoparticles with their biological applications
Work (SW): anyone	SW2.2 Mini Project	Write down the protocol for the production of Nanoparticle in laboratory
	SW2.3 Other Activities (Specify)	Attain at least one seminar or online talk on Nanotechnology and its applications

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	05	16

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
98BT506-A.3.	SO3.1: Understand cancer	LI3.1: Study the use of	Cl3.1: Lecture on cancer	SL3.1: Research recent
Comprehend the working	and current approaches	nanoparticles in cancer	and current approaches to	advances in cancer drug
mechanism of nanoparticles	to its cure through	therapy	its cure through	delivery systems
in Cancer treatment	nanoparticles		nanoparticles	
	SO3.2: Comprehend	LI3.2: Demonstrate	Cl3.2: Lecture on	
	characteristics of tumor	tumor tissue	characteristics of tumor	
	tissues	characterization	tissues	
		techniques		
	SO3.3: Analyze drug		CI3.3: Lecture on drug	
	delivery to tumors		delivery to tumors	
	SO3.4: Study physio-		Cl3.4: Lecture on physio-	SL3.2: Study the
	chemical properties of		chemical properties of	applications of

nanoparticles i	n cancer	nanoparticles in cancer	nanoparticles in cancer
therapy		therapy	therapy
SO3.5: Underst	tand site-	CI3.5: Lecture on site-	
specific deliver	y of	specific delivery of	
chemotherape	utic agents	chemotherapeutic agents	
SO3.6: Evaluate	e the	CI3.6: Lecture on the	
effectiveness o	of different	effectiveness of different	
nanoparticles		nanoparticles in cancer	
		therapy	
SO3.7: Learn al	bout	CI3.7: Seminar on	
nanoparticle-b	ased	nanoparticle-based	
imaging techni	ques	imaging techniques	
SO3.8: Compar	re different	CI3.8: Comparison of	
cancer drug de	livery	different cancer drug	
systems		delivery systems	
SO3.9: Underst	tand the	CI3.9: Industrial visit to a	
industrial appli	ications of	cancer drug delivery	
nanoparticles i	n cancer	research facility	
therapy			

Suggested Sessional	SW3.1 Assignments	Make a table to distinguish different nanoparticles with their biological applications
Work (SW): anyone	SW3.2 Mini Project	Write down the protocol for the production of Nanoparticle in laboratory
	SW3.3 Other Activities (Specify)	Attain at least one seminar or online talk on Nanotechnology and its applications

				C1 LI SW SL Total 08 02 01 05 16
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Approx. Hrs Class room Instruction (CI)	Self-Learning (SL)
CO4-98BT506-A.4:	SO4.1: Understand the	LI4.1: Study non-viral	CI4.1: Lecture on non-viral	SL4.1: Research recent
Interpretate the mechanism of drug delivery and nanoparticle-based designing	basics of non-viral gene therapy	gene therapy techniques	gene therapy with nanoparticles	advances in gene therapy
	SO4.2: Comprehend	LI4.2: Demonstrate	CI4.2: Lecture on	
	hyperthermia in gene therapy	hyperthermia techniques	hyperthermia in gene therapy	
	SO4.3: Analyze controlled		CI4.3: Lecture on	
	delivery of		controlled delivery of	
	chemotherapeutic drugs		chemotherapeutic drugs	
	SO4.4: Study		CI4.4: Lecture on	SL4.2: Study the
	nanoparticles to		nanoparticles to	applications of
	circumvent MDR		circumvent MDR	nanoparticles in overcoming MDR
	SO4.5: Understand		CI4.5: Lecture on potential	
	potential problems using		problems using	
	nanoparticles		nanoparticles	
	SO4.6: Evaluate the		CI4.6: Lecture on the	
	application of		application of	
	nanotechnology in		nanotechnology in	
	agriculture		agriculture	
	SO4.7: Learn about		Cl4.7: Seminar on	
	nanotechnology in		nanotechnology in	
	medicine		medicine	

SO4.8: Compare	CI4.8: Comparison of
nanotechnology	nanotechnology
applications in different	applications in different
fields	fields
SO4.9: Understand the	Cl4.9: Industrial visit to a
industrial applications of	nanotechnology research
nanotechnology in gene	facility
therapy	

Suggested Sessional	SW4.1 Assignments	Write an article on "Role of Nanoparticles in Non-Viral Gene Therapy"
Work (SW): anyone	SW4.2 Mini Project	List down the conditions of MDR, XDR and TDR in microbes
	SW4.3 Other Activities (Specify)	Make a presentation on Non-Viral Gene therapy techniques

Item	Cl	LI	SW	SL	Total
Approx. Hrs	08	02	01	05	13

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
98BT506-A.5.	SO5.1	LI5.1	Unit-5	SL5.1
To Examine the mechanism	Identify different classes	To retrieve the	Biosensors and	Find out the role of
of nano-sensors &	of biosensors and	oncological based data	Nanosensors	Biosensors
demonstrate the significance	describe their functioning	from Cancer Genome	CI5.1	
of biosensors in industries.	principles	Atlas	Introduction to	
			Biosensors, types and	
			working of biosensors	

SO5.2	CI5.2	SL5.2
Recognize limitations of	Importance of biosensors,	Explore the various kinds
biosensors in real-life	parts of biosensors and its	of biosensors
applications	function, Channel Gating	
	Biomimetic Membranes	
SO5.3	CI5.3	SL5.3
Analyze the principles	Membrane Biosensors	Read research on
and concepts of	Based on Ion Channel	advancement in
transducers and their	Gating	biosensors
application in biosensor		
design		
SO5.4	CI5.4	SL5.4
Define the fundamentals	Nanofabrication,	Observe the natural
of diagnostic devices and	medicine-Potential	biosensors around us
biomarker testing in	Biomedical Applications	
biological fluids		
SO5.5	CI5.5	SL5.5
Discover the technical	Applications of Polymer	Find out the meaning of
and societal factors	Nanostructures, Types of	Biomimicry
involved in point-of-care	nanosensors, LAB-On-A-	
diagnostics and wearable	CHIP, Applications of	
sensors	Biosensors	

Suggested Sessional	SW5.1 Assignments	Write an article on "Role of Biosensors and its mechanism"
Work (SW): anyone	SW5.2 Mini Project	List down the principles of biosensors and Nanosensors
	SW5.3 Other Activities (Specify)	Make a presentation on Lab-On-A-Chip technique with applications

Course duration (in hours) to attain Course Outcomes:

Course Title: Nanotechnology and Engineering				Course (Code: 98BT506.A
Course Outcomes (COs)	Class	Laboratory	Sessional	Self-	Total Hours
	lecture	Instruction (LI)	work	Learning	(Li+CI+SW+SL)

	(CI)		(SW)	(SL)	
CO1-98BT506-A.1: Explain fundamentals of	8	2	1	5	16
Nanotechnology					
CO2-98BT506-A.2: Define the role of biotechnology in	8	4	1	5	18
nanoscience					
CO3-98BT506-A.3: To Comprehend the working	8	2	1	5	16
mechanism of nanoparticles in Cancer treatment					
CO4-98BT506-A.4: Interpretate the mechanism of drug	8	2	1	5	16
delivery and nanoparticle-based designing					
CO4-98BT506-A.5: To Examine the mechanism of nano-	8	2	1	5	16
sensors & demonstrate the significance of biosensors in					
industries.					
Total Hours	40	12	05	25	82

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Nanotechnology and Engineering

Course Code: 98BT506.A

Course Outcomes]	on	Total Marks		
Course Outcomes	Α	An	Ε	С	
CO1-98BT506-A.1: Explain fundamentals of Nanotechnology	2	1	1	1	5
CO2-98BT506-A.2: Define the role of biotechnology in nanoscience	3	4	2	1	10
CO3-98BT506-A.3: To Comprehend the working mechanism of nanoparticles in Cancer treatment	4	5	5	1	15
CO4-98BT506-A.4: Interpretate the mechanism of drug delivery and nanoparticle- based designing	3	4	3	0	10
CO4-98BT506-A.5: To Examine the mechanism of nano-sensors & demonstrate the significance of biosensors in industries.	5	4	1	0	10

Total Marks	17	18	12	03	50
-------------	----	----	----	----	----

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

Books:

S.No.	Title/Author/Publisher details
1	Bharat Bhushan., Nanotribology and Nanomechanics - An introduction, Springer.
2	Mark, Ratner Daniel Ratner, Nanobiotechnology- next big idea.
3	Challa S.S.R.Kumar, Joseph Hornes, Carola Leuschner, Nanofabrication towards Biomedical applications.
4	Pharmaceutical Nanobiotechnology for Targeted Therapy, Hamed Barabadi, Ebrahim Mostafavi, Muthupandian Saravanan, Springer 2022
5	Charles P. Poole, Jr., Frank J. Owens; "Introduction to Nanotechnology", John Wiley& Sons, 2003,

(a) Online Resources:

Suggested instructions/Implementation strategies:

- 37. Improved lecture
- 38. Tutorial
- 39. Case method
- 40. Group Discussion
- 41. Role play
- 42. Demonstration
- 43. ICT Based teaching Learning
- 44. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: V Semester

Course Title: Nanotechnology and Engineering

Course Code: 98BT506-A

				CO/PO	Mappi	ng									
Course Outcome		Program Outcomes (POs)								Program Specific Outcomes (PSOs)					
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT506-A.1: Explain fundamentals of Nanotechnology	-	-	-	1	2	2	2	-	1	2	2	3	3	3	1
CO2-98BT506-A.2: Define the role of biotechnology in nanoscience	-	-	-	-	-	-	3	-	2	2	3	3	1	1	2
CO3-98BT506-A.3: To Comprehend the working mechanism of nanoparticles in Cancer treatment	-	1	1	1	-	-	2	-	3	1	1	2	1	1	1
CO4-98BT506-A.4: Interpretate the mechanism of drug delivery and nanoparticle-based designing	-	1	1	-	2	2	2	3	-	1	-	-	1	2	2
CO4-98BT506-A.5: To Examine the mechanism of nano-sensors &	1	1	1	-	-	2	3	3	1	2	2	2	1	1	2

demonstrate the								
significance of biosensors								
in industries.								

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6		SO1.1 SO1.2 SO1.3	LI 1	1.1,1.2,1.3,1.4,1.5,	
7,8,9,10,11,12	CO1-98BT506-A.1: Explain	SO1.4 SO1.5SO1.6	LI 2	1.6, 1.7, 1.8, 1.9	1SL-
	fundamentals of Nanotechnology	SO1.7 SO1.8 SO1.9			1,2,3,4,5
PSO 1,2, 3					
PO 1,2,3,4,5,6		SO2.1 SO2.2 SO2.3	LI 1	2.1, 2.2, 2.3, 2.4, 2.5,	
7,8,9,10,11,12	CO2-98BT506-A.2: Define the role of	SO2.4 SO2.5SO2.6	LI 2	2.6, 2.7, 2.8, 2.9	ACT 1 2 2
	biotechnology in nanoscience	SO2.7 SO2.8 SO2.9			2SL-1,2,3
PSO 1,2, 3					
PO 1,2,3,4,5,6		SO3.1 SO3.2 SO3.3	LI 1	3.1,3.2,3.3,3.4,3.5,	
7,8,9,10,11,12	CO3-98BT506-A.3: To Comprehend	SO3.4 SO3.5 SO3.6	LI 2	3.6, 3.7, 3.8, 3.9	3SL-
	the working mechanism of nanoparticles in Cancer treatment	SO3.7 SO3.8 SO3.9			1,2,3,4,5
PSO 1,2, 3	nanoparticles in Cancer treatment				
PO 1,2,3,4,5,6	CO4-98BT506-A.4: Interpretate the	SO4.1 SO4.2 SO4.3	LI 1	4.1,4.2,4.3,4.4	461
7,8,9,10,11,12	mechanism of drug delivery and	SO4.4	LI 2		4SL-
	nanoparticle-based designing				1,2,3,4,5

PSO 1,2, 3					
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3	CO4-98BT506-A.5: To Examine the mechanism of nano-sensors & demonstrate the significance of biosensors in industries.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6 SO5.7 SO5.8SO5.9	LI 1 LI 2	5.1,5.2,5.3,5.4,5.5, 5.6, 5.7, 5.8,5.9	5SL- 1,2,3,4,5

Program Name	B.Tech. Biotechnology	
Semester	V	
Course Code:	98BT506-B	
Course title:	Pharmaceutical Biotechnology	Curriculum Developer: Mrs. Keerti Samdariya, Assistant Professor
Pre-requisite:	Students should have basic knowledge of	f pharmaceutical biotechnology
Rationale:	biotechnology in drug discovery, de technology and biopharmaceutical m	chnology in B.tech. Biotechnology program explores the role of velopment, and production, including the use of recombinant DNA anufacturing. Students need to develop practical skills in laboratory cing, purifying, and analyzing pharmaceutical biotechnology products.

CO1-98BT506-B: Understand the role of biotechnology in drug discovery, development, and production, including recombinant DNA technology and biopharmaceutical manufacturing.
CO2-98BT506-B : Extend practical skills in laboratory techniques and methods used in producing, purifying, and analyzing pharmaceutical biotechnology products.
CO3-98BT506-B : Evaluate knowledge of regulatory frameworks and quality control practices specific to pharmaceutical biotechnology.
CO4-98BT506-B : Understand the application of biotechnology in the pharmaceutical industry. Apply regulatory aspects, ethical considerations, and safety requirements associated with pharmaceutical biotechnology.
CO5-98BT506-B : Apply the knowledge of GLP and GMP in the Pharmaceutical laboratory.

Scheme of Studies:

				S	che	me of studies (Hours/Week)	Total Credits	
Board of Study	Course Code	Course Title	Cl LI	SWS]		Total Study Hours (CI+LI+SW+SL)	(C) (L: T: P=3:0:1)	
Program Common (PC)		Pharmaceutical Biotechnology	3 2	1	3	9	3+1=4	

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					Scher	ne of Assessm	ent (Marks)		-
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3)	Progressive Ass Seminar one (SA)	Class Class Attendance (AT)) Total Marks (CA+CT+SA+AT)	End Semester Assessme nt (ESA)	
PE	98BT506-	Pharmaceutica l Biotechnology	1.5	20	10	5	50	50	100

Scheme of Assessment: Practical

	Scheme of Assessment (Marks)	
	Progressive Assessment (PRA)	

Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II		Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PE	98BT556- B	Pharmaceutical Biotechnology	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and		ate H	lour	5		
session levels, which students are anticipated to accomplish through various modes of		Cl	LI	SW	SL	Total
instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase	Approx.	09	04	01	05	19
their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course	Hrs					
Outcomes (COs) upon the course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
---------------------	------------------------	--------------------------------	----------------------------	-----------------------

CO1 -98BT506-B: Understand the role of biotechnology in drug discovery, development, and production, including recombinant DNA technology and biopharmaceutical manufacturing.	SO1.1 Define and describe Antibiotics and synthetic antimicrobial agents.	LI1.1 Demonstration of antibiotic action with bacterial strain.	Unit 1 CI1.1 A brief outline of the discovery of antibiotics.	SL1.1 Explore the various kinds of biopolymers and their applications
	SO1.2 Define and describe synthetic antimicrobial agents.	LI1.2 Diagrammatic presentation of types of antibiotics.	CI1.2 Define and describe Antibiotics and synthetic antimicrobial agents.	
	SO1.3 Differentiate antifungal antibiotics, antitumor substances	-	CI1.3 The general structure of beta-lactam antibiotics.	SL1.2 Read research on advancement in the production of biofertilizers
	SO1.4 Differentiate Chemical disinfectants, antiseptics, and preservatives.		CI1.4 Classification and Explanation of Antifungal antibiotics, antitumor substances, Peptide antibiotics, Chloramphenicol, Sulphonamides, and	SL1.3 Find out different centers where Single Cell Proteins are used

SO1.5 Classification and Explanation of Antifungal antibiotics	Quinolinone antimicrobial agents. CI1.5 Classification and mechanism of action of antimicrobial agents.
SO1.6 Classification and Explanation of antitumor substances,	CI1.6 Classification and mechanism of action of antimicrobial agents
SO1.7Classification andExplanation of Peptideantibiotics,Chloramphenicol,Sulphonamides, andQuinolinone antimicrobialagents.	CI1.7 Classification and mechanism of action of antimicrobial agents
SO1.8 Classification and Explanation of Chloramphenicol, Sulphonamides, and Quinolinone antimicrobial agents.	CI1.8 Classification and mechanism of action of antimicrobial agents
SO1.9 Revision and assessment	CI1.9 Revision and assessment

Suggested Sessional	SW3.1 Assignments	Describe in detail about Antibiotics and their classification.
Work (SW): anyone	SW3.2 Mini Project	Describe the role of antibiotics in medical system
	SW3.3 Other Activities	Prepare a diagrammatic poster for different antiviral
	(Specify)	, antibacterial and antifungal drug and their role in health .

				Item Approx.	Hrs	C1 09	LI 04	SW 01	SL 05	Total 19
Course outcome (CO)	Course outcome (CCD)		Classroom Instruction (CI)			SL)				
CO1 -98BT506-B: Extend practical skills in laboratory techniques and methods for producing, purifying, and analyzing pharmaceutical biotechnology products	SO2.1 To explain the Mechanism of action of antibiotics inhibitors of cell wall synthesis. SO2.2 Mechanism of action of antibiotics (inhibitors of nucleic acid synthesis)	LI2.1 To perform the Mode of action of antibiotic antimicrobial agents. LI2.2 To perform the Mode of action of non-antibiotic antimicrobial agents.	action of a (inhibitors synthesis, and protein CI2.2 M action of (inhibitors	s of cell wa nucleic aci n synthesis Mechanism of antib s of cell nucleic aci	ll id s) of oiotics wall	SI Va us	of a ant	ad the action ibiotio s assa or bact tibility	of cs. ys we terial	
	SO2.3 Mechanism of action of antibiotics (inhibitors of protein synthesis		action (inhibitors	s of cell nucleic aci	oiotics wall	Le pr		Molec les of 1g.		

SO2.4	CI2.4	SL2.3
To describe	Molecular principles of	Read about inhibitors of
Molecular principles	drug targeting.	cell wall synthesis,
of drug targeting.		nucleic acid, and
		protein synthesis.
SO2.5	CI2.5	
To describe the	Mode of action of	
Mode of action of	bacterial killing by	
bacterial killing by	quinolinones, Bacterial	
quinolinones.	resistance to	
 	quionolinones.	
SO2.6	CI2.6	
To explain the	How the antimicrobial	
cellular permeability	agents reach the targets	
barrier.	(cellular permeability	
	barrier, cellular transport	
	system and drug diffusion	
SO2.7	CI2.7	
To elaborate on drug	How the antimicrobial	
diffusion	agents reach the targets	
	(cellular permeability	
	barrier, cellular transport	
	system and drug diffusion	
SO2.8	CI2.8	
To explain the Drug	How the antimicrobial	
delivery system in	agents reach the targets	
gene therapy.	(cellular permeability	
	barrier, cellular transport	
	system and drug diffusion	
SO2.9 Revision and	CI2.9 Revision and	
assessment	assessment	

Suggested Sessional Work	SW2.1 Assignments	Describe in detail Mechanism of action of antibiotics .
(SW): anyone	SW2.2 Mini Project	Various Mode of action of Bacterial resistance to quionolinones
	SW2.3 Other Activities	How the antimicrobial agents reach the targets (cellular permeability
	(Specify)	barrier, cellular transport)

				LI SW SL Total 04 01 05 19
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO3-98BT506-B : Evaluate knowledge of regulatory frameworks and quality control practices specific to pharmaceutical biotechnology.	SO3.1 Explain the Microbial contamination.	LI3.1 Demonstrate the sterilization process.	Unit 3 CI3.1 Microbial contamination and spoilage of pharmaceutical products and their sterilization.	SL3.1 Discuss various types of vaccines involved in health system
	SO3.2	LI3.2 Perform the production of	CI3.2 Read about variou Microbial contamination and spoilage of	

Define and differentiate sterile injectibles, and non-injectibles.	microbial culture.	pharmaceutical products and their sterilization.	process in industrial production of drugs.
SO3.3 Describe the sterilization process used in the pharmaceutical industry.		CI3.3 Manufacturing procedures and in process control of pharmaceuticals	
SO3.4 Describe Manufacturing procedures and in process control of pharmaceuticals		CI3.4 pharmaceuticals produced by microbial fermentations (streptokinase, streptodornase).	
SO3.5 Explain pharmaceuticals produced by microbial fermentations (streptokinase, streptodornase)		CI3.5 New vaccine technology, DNA vaccines, synthetic peptide vaccines, multivalent subunit vaccines.	
SO3.6 Explain pharmaceuticals produced by microbial fermentations (streptokinase, streptodornase)		CI3.6 New vaccine technology, DNA vaccines, synthetic peptide vaccines, multivalent subunit vaccines.	

SO3.7 illustr vaccine tech DNA vaccine synthetic pep vaccines,	nology, es,	CI3.7 New vaccine technology, DNA vaccines, synthetic peptide vaccines, multivalent subunit vaccines.	
SO3.8 illustr vaccine techr multivalent s vaccines.	nology,	CI3.8 New vaccine technology, DNA vaccines, synthetic peptide vaccines, multivalent subunit vaccines.	
SO3.9 Revis assessment	sion and	CI3.9 Revision and assessment	

Suggested Sessional Work (SW): anyoneSW3.1 Assignments		Describe in detail on New vaccine technology, DNA vaccines, synthetic peptide vaccines.
	SW3.2 Mini Project	Describe the role of different vaccines.
	SW3.3 other activity	Prepare one article on different types of diseases and their vaccines.

			F					. 	
				Item	Cl	LI	SW	SL	Total
				Approx. Hrs	09	04	01	05	19
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)		Learn (SL)	ning	
CO4-98BT506-B : Understand the application of biotechnology in the pharmaceutical industry. Apply regulatory aspects, ethical considerations, and safety requirements associated with pharmaceutical biotechnology	SO4.1 Describe the classification of pharmacopeia.	LI4.1 To analyze the Immobilization process.		Financing R&D ral and market ook		a (r F	SL4.1 I about the Governation oractice policies	Learn he iment ory es and	
	SO4.2 Explain the Government regulatory practices and policies.	LI4.2 To develop a model of the application of microbial enzymes in pharmaceuticals.	Gove	P, BP, USP. ernment regula tices and polici perspective	•	a t I F	SL4.2 about ypes mmob procedu pharma applica	va vilizati ures aceutio	for cal

SO4.3 Describe IP, BP, USP. Government regulatory practices and policies, FDA perspective	CI4.3 IP, BP, USP. Government regulatory practices and policies, FDA perspective
SO4.4 Evaluate reimbursement of drugs and biologicals.	CI4.4 Reimbursement of drugs and biologicals, legislative perspective. Rational drug design.
SO4.5 Define and describe Immobilization procedures for pharmaceutical applications.	CI4.5 Immobilization procedures for pharmaceutical applications (liposomes). Macromolecular, cellular and synthetic drug carriers.
SO4.6 Explain pharmaceuticals produced by microbial fermentations streptokinase.	CI4.6 Explain pharmaceuticals produced by microbial fermentations streptokinase
SO4.7 Explain pharmaceuticals produced by microbial fermentations streptodornase	CI4.7 Explain pharmaceuticals produced by microbial fermentations streptokinase.

SO4.8 Biosensors in pharmaceuticals. Application of microbial enzymes in pharmaceuticals	CI4.8 Biosensors in pharmaceuticals. Application of microbial enzymes in pharmaceuticals	
SO4.9 Revision and assessment	CI4.9 Revision and assessment	

Suggested Sessional	SW4.1	Explain Biosensors and their application in the pharmaceutical industry.
Work (SW): anyone	Assignments	
	SW4.2 Mini	Describe the various types of Pharmacopeias.
	Project	
	SW4.3 Other	Prepare one article on the IP, BP, USP. Government regulatory practices and policies,
	Activities	FDA perspective.
	(Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	05	19

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO5-98BT506-B : Apply		LI5.1 Use of	Unit-5	SL5.1 Find out the role
the knowledge of Quality	SO5.1 Explain Good	Good	CI5.1	of Good Manufacturing
Assurance and	Manufacturing Practices	Laboratory		Practices (GMP) and

Validation, GLP, and GMP in the Pharmaceutical laboratory.	(GMP) in the pharmaceutical industry.	Practices (GLP)	Good Manufacturing Practices (GMP) and Good Laboratory Practices (GLP) in the pharmaceutical industry.	pharmaceutical industry.
	SO5.2 Define quality control. in pharmaceuticals.	LI5.2 To do the sterilization of glass wares	. CI5.1 Good Manufacturing Practices (GMP) and Good Laboratory Practices (GLP) in the pharmaceutical industry.	
	SO5.3 Define Quality assurance and quality management in pharmaceuticals.		CI5.2 Good Manufacturing Practices (GMP) and Good Laboratory Practices (GLP) in the pharmaceutical industry.	
	SO5.3 Elaborate ISO, WHO, and US certification		CI5.3 ISO, WHO and US certification	
	SO5.4 Evaluate the Sterilization control and sterility testing.		CI5.4 Sterilization control and sterility testing (heat sterilization, D value, z value, survival curve, Radiation, gaseous and filter sterilization)	

SO5.5 Elaborate Chemical and biological indicators SO5.6 Design and layout of	CI5.5 Chemical and biological indicators. CI5.6 Design and layout of	
sterile product manufacturing unit. (Designing of Microbiology laboratory), Safety in the microbiology laboratory.	sterile product manufacturing unit. (Designing of Microbiology laboratory), Safety in the microbiology laboratory.	
SO5.7 Design and layout of sterile product manufacturing unit. (Designing of Microbiology laboratory), Safety in the microbiology laboratory.	CI5.7 Design and layout of sterile product manufacturing unit. (Designing of Microbiology laboratory), Safety in the microbiology laboratory.	
SO5.8 Design and layout of sterile product manufacturing unit. (Designing of Microbiology laboratory), Safety in the microbiology laboratory.	CI5.8 Design and layout of sterile product manufacturing unit. (Designing of Microbiology laboratory), Safety in the microbiology laboratory.	
SO5.9 Revision and assessment	CI5.9 Revision and assessment	

Suggested Sessional	SW5.1	Explain Sterilization control and sterility testing.
Work (SW): anyone	Assignments	

SW5.2 Mini	Describe the Design and layout of the sterile product manufacturing unit.
Project	
SW5.3 Other	Prepare one article on ISO, WHO, and US certification.
Activities	
(Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Pharmaceutical Biotechnology

Course Code: 98BT506-BE

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self- Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98BT506-B : Understand the role of biotechnology in drug discovery, development, and production, including recombinant DNA technology and biopharmaceutical manufacturing.	9	4	5	1	19
CO2-98BT506-B : Extend practical skills in laboratory techniques and methods used in producing, purifying, and analyzing pharmaceutical biotechnology products.	9	4	5	1	19
CO3-98BT506-B : Evaluate knowledge of regulatory frameworks and quality control practices specific to pharmaceutical biotechnology.	9	4	5	1	19

CO4-98BT506-B: Understand the application	9	4	5	1	19
of biotechnology in the pharmaceutical industry.					
Apply regulatory aspects, ethical considerations, and safety requirements associated with pharmaceutical biotechnology.					
CO5-98BT506-B: Apply the knowledge of	9	4	5	1	19
GLP and GMP in the Pharmaceutical					
laboratory.					
Total Hours	45	20	25	05	95

End-semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Pharmaceutical Biotechnology

Course Code: 98BT506-BE

Course Outcomes	Ν	Total			
	Α	An	Ε	С	Marks
CO1-98BT506-B : Understand the role of biotechnology in drug discovery, development, and production, including recombinant DNA technology and biopharmaceutical manufacturing.		1	1	1	5

CO2-98BT506-B : Extend practical skills in laboratory techniques and methods used in producing, purifying, and analyzing pharmaceutical biotechnology products.	2	4	2	2	10
CO3-98BT506-B : Evaluate knowledge of regulatory frameworks and quality control practices specific to pharmaceutical biotechnology.	3	5	5	2	15
CO4-98BT506-B : Understand the application of biotechnology in the pharmaceutical industry. Apply regulatory aspects, ethical considerations, and safety requirements associated with pharmaceutical biotechnology.		3	3	2	10
CO5-98BT506-B : Apply the knowledge of GLP and GMP in the Pharmaceutical laboratory.	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(f) Books:

S.No.	Title/Author/Publisher details
1	Pharmaceutical Microbiology – Edt. By W.B.Hugo & A.D.Russell Sixth edition. Blackwell scientific Publications.
2	Analytical Microbiology –Edt by Frederick Kavanagh Volume I & II. Academic Press New York.
3	Quinolinone antimicrobial agents – Edt. by David C. Hooper, John S.Wolfson .ASM Washington DC.
4	Pharmaceutical Microbiology – Edt. By W.B.Hugo & A.D.Russell Sixth edition. Blackwell scientific Publications.
5	Analytical Microbiology –Edt by Frederick Kavanagh Volume I & II. Academic Press New York.

Suggested instructions/Implementation strategies:

- 45. Improved lecture
- 46. Tutorial
- 47. Case method
- 48. Group Discussion
- 49. Role play
- 50. Visit to virology lab (BSL-3)
- 51. Demonstration
- 52. ICT Based teaching Learning
- 53. Brainstorming

CO, PO and PSO Mapping

Program Name: B.Tech. Biotechnology

Semester: V Semester

Course Title: Pharmaceutical Biotechnology

Course Code:

СО	/PO/PSO	Mapping	5					
Course Outcome (Cos)		Program	Outcom	Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3
CO1-98BT506-B : Understand the role of biotechnology in drug discovery, development, and production, including recombinant DNA technology and biopharmaceutical manufacturing.	1	2	2	3	1	2	2	1
CO298BT506-B- : Extend practical skills in laboratory techniques and methods used in producing, purifying, and analyzing pharmaceutical biotechnology products.	1	2	3	2	1	1	1	2
CO3-98BT506-B : Evaluate knowledge of regulatory frameworks and quality control practices specific to pharmaceutical biotechnology.	1	2	3	2	1	1	1	1

CO4-98BT506-B : Understand the application of biotechnology in the pharmaceutical industry. Apply regulatory aspects, ethical considerations, and safety requirements associated with pharmaceutical biotechnology.		1	1	-	2	1	1	3
CO5-98BT506-B : Apply the knowledge of GLP and GMP in the Pharmaceutical laboratory.	1	1	1	-	-	1	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs &	COs	SOs No.	Laboratory	Classroom	Self-
PSOs No.			Instruction	Instruction (CI)	Learning
			(LI)		(SL)
PO	CO1-98BT506-B: Understand the role of	SO1.1 SO1.2 SO1.3	LI 1	1.1,1.2,1.3,1.4,1.5,	1SL-1,2,3
1,2,3,4,5	biotechnology in drug discovery,	SO1.4 SO1.5SO1.6	LI 2	1.6, 1.7, 1.8, 1.9	
	development, and production, including	SO1.7 SO1.8 SO1.9			
PSO 1,2,3	recombinant DNA technology and				
	biopharmaceutical manufacturing.				
РО	CO2-98BT506-B: Extend practical skills in	SO2.1 SO2.2 SO2.3	LI 1	2.1, 2.2, 2.3, 2.4, 2.5,	2SL-
1,2,3,4,5	laboratory techniques and methods used in	SO2.4 SO2.5SO2.6	LI 2	2.6, 2.7, 2.8, 2.9	1,2,3,4
	producing, purifying, and analyzing	SO2.7 SO2.8 SO2.9			, , ,
PSO 1,2,3	pharmaceutical biotechnology products.				
РО	CO3-98BT506-B: Evaluate knowledge of	SO3.1 SO3.2 SO3.3	LI 1	3.1,3.2,3.3,3.4,3.5,	3SL-1,2
1,2,3,4,5	regulatory frameworks and quality control	SO3.4 SO3.5 SO3.6	LI 2	3.6, 3.7, 3.8, 3.9	
	practices specific to pharmaceutical	SO3.7 SO3.8 SO3.9			
PSO 1,2,3	biotechnology.				

PO 1,2,3,4,5 PSO 1,2,3	CO498BT506-B-:Understandtheapplicationofbiotechnologyinthepharmaceutical industry.Applyregulatoryaspects,ethicalconsiderations,andsafetyrequirementsassociatedwithpharmaceuticalbiotechnology.	SO4.1 SO4.2 SO4.3 SO4.4	LI 1 LI 2	4.1,4.2,4.3,4.4	4SL-1,2
PO 1,2,3,4,5 PSO 1,2,3	CO5-98BT506-B : Apply the knowledge of GLP and GMP in the Pharmaceutical laboratory.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6 SO5.7 SO5.8SO5.9	LI 1 LI 2	5.1,5.2,5.3,5.4,5.5, 5.6, 5.7, 5.8,5.9	5SL-1

Program Name	Bachelor of Technology (B.Tech.)- Biotech	nology						
Semester	V							
Course Code:	98BT501-A							
Course title:	Plant Biotechnology	Curriculum Developer: Kamlesh Kumar Soni						
Pre-requisite:	Student should have basic knowledge of Molecular Biology and Biotechnology							
Rationale:	The paper on Plant Biotechnology in B. Tech. Biotech Semester-V program is a rather most important discipline. Nevertheless, the subject Plant Biotechnology has become demanding subject for the last few years that universities at all rankings have introduced or are going to introduce Plant Biotechnology teaching programs. The course will provide an overview over Plant Biotechnology. It will in understanding the basic and advance application in tissue culture and transgenic based plant development. Applications of Plant Biotechnology, as they are already in use today or as they are planned for the future, will be discussed							
Course Outcomes (COs):	 98BT501-A.1. Explain fundamentals of P 98BT501-A.2. Define the role of tissue cu 98BT501-A.3. Understand the working m 98BT501-A.4. Interpretate the mechanism 98BT501-A.5. Examine the mechanism o 	alture media and its constituents in micropropagation of ex-plants nechanism of callus culture n of plant-based vector and plasmids						

Scheme of Studies:

Board of Study	CourseCode	Course Title						
			Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)
Program Common (PC)	98BT501	Plant Biotechnology	3	2	1	3	9	3+1=4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

						Sche	eme of Assessm	ent (Marks)		
					Progress	sive Assessment	(PRA)	1		Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	(SA)	Class Activity (CAT)	Class Attendance (AT)	Total Marks (CA+CT+CAT+SA+AT)	End Semester Assessment (ESA)	(PRA+ ESA)

РС	98BT501	Plant Biotechnology	15	20	5	5	5	50	50	100	
----	---------	------------------------	----	----	---	---	---	----	----	-----	--

Scheme of Assessment: Practical

						Scheme of As	sessment (Marks)		
				Progressive Assessment (PRA)					
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
РС	98BT551	Plant Biotechnology-lab	35	5	5	5	50	50	50

Course-Curriculum:

Unit-I: Basics of Plant tissue culture						
This course syllabus illustrates the expected learning achievements, both at the course and session levels, which	Approximat	е Ноі	irs			
students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI),						
Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students	Item	Cl	LI	SW	SL	Total
should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course	Approx.	09	04	01	02	16
Outcomes (COs) upon the course's conclusion.	Hrs					

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT501-A.1: Explain	SO1.1: Understand the	LI1.1: to perform the plant	CI1.1: Lecture on the introduction	SL1.1: Research recent
fundamentals of Plant	introduction and	tissue culture of bamboo	and historical perspective of plant	advances in plant tissue
Biotechnology	historical perspective of		tissue culture	culture
	plant tissue culture			
	SO1.2: Comprehend the	LI1.2: Demonstrate tissue	CI1.2: Lecture on tissue culture lab	
	organization of a tissue	culture lab organization	organization	
	culture lab			
	SO1.3: Analyze		CI1.3: Lecture on preparation of	
	preparation of stock		stock solution and sterilization	
	solution and		techniques	
	sterilization techniques			
	SO1.4: Study types of		CI1.4: Lecture on types of nutrient	SL1.2: Study the applications
	nutrient media and		media and media composition	of different nutrient media
	media composition			
	SO1.5: Understand		CI1.5: Lecture on sterilization and	
	sterilization and		preparation of explants	
	preparation of explants			
	SO1.6: Evaluate		Cl1.6: Lecture on initiation of culture	
	initiation of culture			

SO1.7: Learn about the importance of aseptic techniques	CI1.7: Seminar on aseptic techniques in plant tissue culture
SO1.8: Compare different methods of culture initiation	Cl1.8: Comparison of different methods of culture initiation
SO1.9: Understand the industrial applications of plant tissue culture	Cl1.9: Industrial visit to a plant tissue culture facility

			Item	Cl	LI	SW	SL	Total
Approx. Hrs 09 4 0					01	02	16	
Suggested Sessional	SW1.1 Assignments	Briefly explain "Sterilization menthids: why it i	is important"					
Work (SW): anyone	SW1.2 Mini Project	Preparation of different types of media						
	SW1.3 Other Activities (Specify)	Look the animated video about agrobacterium transformation from internet sources						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT501-A.2: Define the role of tissue culture media and its constituents in micropropagation of ex-plants	O2.1: Understand the concept of totipotency	LI2.1: Study totipotency in plant tissue culture	CI2.1: Lecture on totipotency	SL2.1: Research recent advances in totipotency
	SO2.2: Comprehend tissue and organ culture	LI2.2: Demonstrate tissue and organ culture techniques	CI2.2: Lecture on tissue and organ culture	

SO2.3: Analyze establishment and maintenance of callus culture	CI2.3: Lecture on establishment and maintenance of callus culture	
SO2.4: Study organogenesis	Cl2.4: Lecture on organogenesis	SL2.2: Study the applications of organogenesis
SO2.5: Understand cell suspension cultures	CI2.5: Lecture on cell suspension cultures	
SO2.6: Evaluate single cell clones and methods of single cell culture	CI2.6: Lecture on single cell clones and methods of single cell culture	
SO2.7: Learn about embryo culture and embryo rescue	CI2.7: Seminar on embryo culture and embryo rescue	
SO2.8: Compare different tissue culture methods	CI2.8: Comparison of different tissue culture methods	
SO2.9: Understand the industrial applications of plant tissue culture methods	CI2.9: Industrial visit to a tissue culture research facility	

Suggested Sessional Work	SW1.1 Assignments	Write about the totipotency and pluripotency
(SW): anyone	SW1.2 Mini Project	Use leaf as explant to make callus
	SW1.3 Other Activities (Specify)	Some text book to understand about the embryo and its culture: applications

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	02	16

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO3-98BT501-A.3: Understand the working mechanism of callus culture	SO3.1: Understand protoplast isolation and culture regeneration	LI3.1: To Study protoplast isolation techniques	CI3.1: Lecture on protoplast isolation and culture regeneration	SL3.1: Research recent advances in protoplast culture
	SO3.2: Comprehend protoplast fusion and somatic hybrids	LI3.2: Demonstrate protoplast fusion techniques	CI3.2: Lecture on protoplast fusion and somatic hybrids	
	SO3.3: Analyze production of haploid plants		Cl3.3: Lecture on production of haploid plants	
	SO3.4: Study somoclonal variations and somatic embryogenesis		CI3.4: Lecture on somoclonal variations and somatic embryogenesis	SL3.2: Study the applications of somatic embryogenesis
	SO3.5: Understand production of virus-free plants		CI3.5: Lecture on production of virus-free plants	
	SO3.6: Evaluate germplasm conservation and cryopreservation		CI3.6: Lecture on germplasm conservation and cryopreservation	
	SO3.7: Learn about hardening and transfer of whole plants to soil		CI3.7: Seminar on hardening and transfer of whole plants to soil	
	SO3.8: Compare different protoplast culture methods		CI3.8: Comparison of different protoplast culture methods	
	SO3.9: Understand the industrial applications of protoplast culture		CI3.9: Industrial visit to a protoplast culture facility	

22	SW1.1 Assignments	Write 5 applications protoplasts in plant biotechnology							
(SW): anyone	How somatic hybrid is different from cytoplasmic hybrid; their applications in plant biotechnology								
	SW1.3 Other Activities (Specify)	Find out hardening methods and why is important							
			Item	Cl	LI	SW	SL	Total	

Approx. Hrs	09	04	01	05	16	

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-98BT501-A.4: Interpretate the mechanism of plant-based vector and plasmids	SO4.1: Understand transformation vectors and Agrobacterium tumefaciens	LI4.1: Study transformation vector techniques	Cl4.1: Lecture on transformation vectors and Agrobacterium tumefaciens	SL4.1: Research recent advances in plant genetic engineering
	SO4.2: Comprehend the structure of T-DNA and Ti plasmid	LI4.2: Demonstrate T-DNA and Ti plasmid structure	CI4.2: Lecture on T-DNA and Ti plasmid structure	
	SO4.3: Analyze Ti plasmid derived vector systems		CI4.3: Lecture on Ti plasmid derived vector systems	
	SO4.4: Study physical methods of transferring genes to plants		Cl4.4: Lecture on physical methods of transferring genes to plants	SL4.2: Study the applications of gene transfer methods
	SO4.5: Understand microprojectile bombardment		Cl4.5: Lecture on microprojectile bombardment	
	SO4.6: Evaluate electroporation techniques		Cl4.6: Lecture on electroporation techniques	

SO4.7: Learn about viral vector systems	CI4.7: Seminar on viral vector systems
SO4.8: Compare different recombinant selection methods	CI4.8: Comparison of different recombinant selection methods
SO4.9: Understand the industrial applications of genetic engineering in plants	CI4.9: Understand the industrial applications of genetic engineering in plants

22	SW1.1 Assignments	Details on Agrobacterium tumefaciens and Ti-Plasmid
(SW): anyone	SW1.2 Mini Project	Selection of transformed plant; how is it done?
	SW1.3 Other Activities (Specify)	Look some videos on Agrobacterium mediated plant transformation

Item	Cl	LI	SW	SL	Total
Approx. Hrs	s 09	04	01	02	16

Course outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-98BT501-A.5: Socioeconomic importance of transgenics	SO5.1: Understand the development of new qualities in transgenic plants	LI5.1: Study transgenic plant development techniques	CI5.1: Lecture on development of new qualities in transgenic plants	SL5.1: Research recent advances in transgenic technology
	SO5.2: Comprehend herbicide tolerance and insect/pest resistance	LI5.2: Demonstrate herbicide tolerance techniques	CI5.2: Lecture on herbicide tolerance and insect/pest resistance	
	SO5.3: Analyze disease resistance and drought resistance		CI5.3: Lecture on disease resistance and drought resistance	
	SO5.4: Study bt-cotton and its applications		CI5.4: Lecture on bt-cotton and its applications	SL5.2: Study the applications of bt-cotton
	SO5.5: Understand the production of therapeutic proteins and compounds		CI5.5: Lecture on production of therapeutic proteins and compounds	
	SO5.6: Evaluate oral vaccines and their development		CI5.6: Lecture on oral vaccines and their development	
	SO5.7: Learn about improvement in seed quality		CI5.7: Seminar on improvement in seed quality	

SO5.8: Compare different genetic marker techniques	CI5.8: Comparison of different genetic marker techniques	
	CI5.9: Industrial visit to a transgenic technology research facility	

Suggested Sessional Work (SW): <i>anyone</i>	SW1.1 Assignments	Briefly explain Bt-Cotton, mode of action and its application
	SW1.2 Mini Project	Treat plant with salt and drought stress and record some physiology parameters and morphology of the plant
	SW1.3 Other Activities (Specify)	Application of various markers: read in depth to understand the differences among the biomarkers

Course duration (in hours) to attain Course Outcomes (Course Title: Plant Biotechnology) (Course Code: 98BT501-4)

(Course Title: Plant Biotechnology) (Course Code: 98BT	501-A)				
Course Outcomes (COs)	Class lecture	Laboratory	Self-Learning	Sessional work	Total Hours
	(CI)	Instruction (LI)	(SL)	(SW)	(Li+CI+SL+SW)
CO1-98BT501-A.1: Explain fundamentals of Plant	9	4	2	1	16
Biotechnology					
CO2-98BT501-A.2: Define the role of tissue culture media and	9	4	2	1	16
its constituents in micropropagation of ex-plants					
CO3-98BT501-A.3: Understand the working mechanism of	9	4	2	1	16
callus culture					
CO4-98BT501-A.4: Interpretate the mechanism of plant-based	9	4	2	1	16
vector and plasmids					
CO5-98BT501-A.5. Examine and demonstrate the	9	4	2	1	16
mechanism of product purification					
Total Hours	45	20	10	05	80

Course Outcomes		n	Total Marks		
	A	An	E	С	
CO1-98BT501-A.1: Explain fundamentals of Plant Biotechnology	2	1	1	1	5
CO2-98BT501-A.2: Define the role of tissue culture media and its constituents in micropropagation of ex-plants	2	4	5	1	12
CO3-98BT501-A.3: Understand the working mechanism of callus culture	3	5	5	1	14
CO4-98BT501-A.4: Interpretate the mechanism of plant-based vector and plasmids	2	3	5	1	11
CO5-98BT501-A.5. Examine and demonstrate the mechanism of product purification	5	4	1	0	10
Total Marks	14	17	17	04	52

Suggested learning Resources:

(a) Books:

S.no.	Title	Author	Publisher	Edition & Year
1	Plant Tissue Culture	K.K. De	New Central Book Agency	1 & 2018 (reprint)
2	Plant Biotechnology: The Genetic manipulation of plants	Adrian Slater, Nigel Scott, and Mark Fowler	Oxford University Press	2 & 2008
3	Plant Biotechnology	B.D. Singh	Kalyani Publication	4 & 2022
4	Principle of Plant Biotechnology	S.S. Purohit	Agrobios (India)	1 & 2015

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 54. Improved lecture
- 55. Tutorial
- 56. Case method
- 57. Group Discussion
- 58. Role play
- 59. Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants
- 60. Demonstration
- 61. ICT Based teaching Learning
- 62. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

CO/PO Mapping															
Course Outcome		Program Outcomes (POs)					Program Specific Outcomes (PSOs)								
COs	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT501-A.1: Explain fundamentals of Plant Biotechnology	1	1	1	-	-	-	1	-	-	2	1	2	2	2	-
CO2-98BT501-A.2: Define the role of tissue culture media and its constituents in micropropagation of ex-plants	1	1	1	2	2	-	1	1	-	2	3	2	2	2	1
CO3-98BT501-A.3: Understand the working mechanism of callus culture	-	1	1	1	-	-	2	-	3	1	1	2	1	1	1
CO4-98BT501-A.4: Interpretate the mechanism of plant-based vector and plasmids	3	3	3	2	2	3	2	2	1	2	-	1	2	2	3
CO5-98BT501-A.5. Examine and demonstrate the mechanism of product purification	2	2	2	-	-	2	3	3	1	2	1	2	2	1	3
<i>Legends</i> : CO/PO/PSO Mapping R	ange:	Low,	1; Me	edium,	2; Higl	h, 3									

Semester: V Semester

Course Title: Plant Biotechnology

Course Code: 98BT501-A

Program Name: B. Tech. Biotechnology

Semester: V Semester

Course Title: Plant Biotechnology

Course Code: 98BT501-A

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory	Classroom	Self-Learning (SL)
	CO1-98BT501-A.1: Explain fundamentals	SO1.1 SO1.2	Instruction (LI)	Instruction (CI) 1.1,1.2,1.3,1.4,1.5,	1SL-1,2,3,4,5
PO 1,2,3,4,5,6	of Plant Biotechnology	SO1.3 SO1.4		1.6, 1.7, 1.8, 1.9	151 1,2,5,1,5
7,8,9,10,11,12	of I fait Diotectifiology	SO1.5SO1.6		110, 11, 10, 10	
		SO1.7 SO1.8			
PSO 1,2, 3		SO1.9			
DO 1 2 2 4 5 6	CO2-98BT501-A.2: Define the role of tissue	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4,5
PO 1,2,3,4,5,6	culture media and its constituents in	SO2.3 SO2.4	LI 2	2.5, 2.6, 2.7, 2.8,	···))-))-
7,8,9,10,11,12	micropropagation of ex-plants	SO2.5SO2.6		2.9	
		SO2.7 SO2.8			
PSO 1,2, 3		SO2.9			
	CO3-98BT501-A.3: Understand the working	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,	3SL-1,2,3,4,5
PO 1,2,3,4,5,6	mechanism of callus culture	SO3.3 SO3.4	LI 2	3.6, 3.7, 3.8, 3.9	
7,8,9,10,11,12		SO3.5 SO3.6			
		SO3.7 SO3.8			
PSO 1,2, 3		SO3.9			
PO 1,2,3,4,5,6	CO4-98BT501-A.4: Interpretate the mechanism	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4	4SL-1,2,3,4,5
7,8,9,10,11,12	of plant-based vector and plasmids	SO4.3 SO4.4	LI 2		
PSO 1,2, 3					
	CO5-98BT501-A.5. Examine and	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,	5SL-1,2,3,4,5
PO 1,2,3,4,5,6	demonstrate the mechanism of product	SO5.3 SO5.4	LI 2	5.6, 5.7, 5.8, 5.9	
7,8,9,10,11,12	purification	SO5.5 SO5.6			
		SO5.7			
PSO 1,2, 3		SO5.8SO5.9			

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology						
Semester	V						
Course Code:	98BT502						
Course title:	Enzyme Engineering and Technology Curriculum Developer: Piyush Kant Rai, Assistant professor						
Pre-requisite:	Student should have basic knowledge of Molecular Biology and Biotechnology						
Rationale:	The paper on Plant Biotechnology in B. Tech. Biotech Semester-V program is a rather most important discipline. Nevertheless, the subject Plant Biotechnology has become demanding subject for the last few years that universities at all rankings have introduced or are going to introduce Plant Biotechnology teaching programs. The course will provide an overview over Plant Biotechnology. It will in understanding the basic and advance application in tissue culture and transgenic based plant development. Applications of Plant Biotechnology, as they are already in use today or as they are planned for the future, will be discussed						
Course Outcomes (COs):	 98BT502-CO1. Explain relationship between the structure and function of enzymes 98BT502CO2. Define the speed of a biochemical reaction in sense of thermodynamics, kinetics and molecula interactions. 						
	98BT502CO3. Interpretate the significant mechanisms of regulation of enzymatic action and specifies importance of enzymes in regulation of metabolism;						
	98BT502CO4. Apply appropriate methods for and resolve problems.	r determination of catalytic parameters and activity of enzymes					

98BT502-CO5. Validate the considering kinetics and thermodynamics of enzymatic reactions						

Scheme of Studies:

					Sc	cher	me of studies (Hours/Week)	Total Credits
Board of Study	Course Code	Course Title	C	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C) (L:T:P=2:0:1)
Program Common (PC)	98BT502	Enzyme Engineering and Technology	2	2	1	2	7	2+1=3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

						Scher	ne of Assessm	nent (Marks)		
					Progress	ive Assessmen	t (PRA)			Total
Board of Study	('ourse life		Class/Home Assignment 5 number 3 marks each (CA)	of 3)	Seminar one	Class Activity (CAT)		Total Marks (CA+CT+CAT+SA+AT)	End Semester Assessment (ESA)	Marks (PRA+ ESA)
Program Common (PC)	98BT502	Enzyme Engineering and Technology	15	20	5	5	5	50	50	100

Scheme of Assessment: Practical

Scheme of Assessment (Marks)	
Progressive Assessment (PRA)	

Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
Program Common (PC)	98BT552	Enzyme Engineering and Technologylab	35	5	5	5	50	50	50

Course-Curriculum:

Unit-I:						
This course syllabus illustrates the expected learning achievements, both at the course and session	Approxima	te H	ours			
levels, which students are anticipated to accomplish through various modes of instruction including						
Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning	Item	Cl	LI	SW	SL	Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),	Approx.	06	04	01	02	13
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Hrs					
g = 1						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
98BT502-CO1. Explain relationship between the structure and function of enzymes	SO1.1: Understand enzyme nomenclature and classification	LI1.1: Experiment on enzyme activity measurement	Cl1.1: Introduction to enzymes and their significance	SL1.1: Research different enzyme classes

SO1.2: Learn about factors affecting enzyme activity	LI1.2: Demonstration of factors affecting enzyme activity	Cl1.2: Lecture on factors affecting enzyme activity	SL1.2: Study various factors affecting enzyme activity
SO1.3: Comprehend theories of enzyme-substrate complex formation		Cl1.3: Theories of enzyme- substrate complex formation	
SO1.4: Understand catalytic RNA and its role		Cl1.4: Catalytic RNA and its significance	
SO1.5: Study metal-activated enzymes and metalloenzymes		Cl1.5: Lecture on metal- activated enzymes and metalloenzymes	
SO1.6: Learn about coenzymes used in biological reactions		Cl1.6: Coenzymes and their roles in biological reactions	

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	Write a report on enzyme nomenclature
	SW1.2 Mini Project	Mini Project: Analysis of Michaelis-Menten plot
	SW1.3 Other Activities (Specify)	Assignment on Briggs-Haldane modification

				Item Approx. Hrs	Cl 06	LI 4	SW 01	SL 02	Total 13
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class r (CI)	oom Instructio	n	Selt	f-Lear	ning ((SL)
98BT502CO2. Define the speed of a biochemical reaction in sense of thermodynamics, kinetics and molecular interactions.	SO2.1: Learn kinetics of uncatalyzed reactions	LI2.1: Kinetics experiment on uncatalyzed reaction		ntroduction to e kinetics	D	kin und	.1: Stu etics c catalyz ctions	of ed	

SO2.2: Understand Michaelis-Menten equation SO2.3: Learn about Briggs-	LI2.2: Michaelis- Menten kinetics experiment	Cl2.2: Michaelis- Menten equation and its significance Cl2.3: Briggs-Haldane	SL2.2: Research on Michaelis-Menten kinetics
Haldane modification		modification	
SO2.4: Study Lineweaver- Burk and Eadie-Hofstee plots		CI2.4: Lineweaver-Burk and Eadie-Hofstee plots	
SO2.5: Understand classification of BiBi reactions		CI2.5: Classification of BiBi reactions	
SO2.6: Learn about multisubstrate kinetics and allosteric enzymes		CI2.6: Multisubstrate kinetics and allosteric enzymes	

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	Write a report on uncatalyzed reaction kinetics
	SW1.2 Mini Project	Mini Project: Analysis of Michaelis-Menten plot
	SW1.3 Other Activities (Specify)	Assignment on Briggs-Haldane modification

			Item	Cl	LI	SW	SL	Total	
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Approx. Hrs 06 04 Class room Instruction (CI)			Self	01 02 13 Self-Learning (SL)		
98BT502CO3. Interpretate the significant mechanisms of regulation of enzymatic action and specifies importance of enzymes in regulation of metabolism	SO3.1: Learn about types of enzyme inhibition	LI3.1: Experiment on enzyme inhibition	CI3.1: Introduction to enzyme inhibition			typ enz	SL3.1: Study types of enzyme inhibition		
	SO3.2: Understand kinetics of enzyme inhibition	LI3.2: Kinetics of enzyme inhibition experiment	CI3.2: Kinetics of enzyme inhibition			Res enz inh	SL3.2: Research on enzyme inhibition kinetics		
	SO3.3: Study mechanism of enzyme catalysis		Cl3.3: Mech enzyme cata		of				
	SO3.4: Understand protein-ligand binding and cooperativity		CI3.4: Protein-ligand binding and cooperativity						
	SO3.5: Learn about Hill and Adair equations		CI3.5: Hill and Adair equations						
	SO3.6: Study enzyme catalysis examples like chymotrypsin and ribonuclease		CI3.6: Enzyn examples	ne cata	lysis				

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	Write a report on enzyme inhibition types
	SW1.2 Mini Project	Mini Project: Analysis of enzyme inhibition kinetics
	SW1.3 Other Activities (Specify)	Assignment on enzyme catalysis mechanism

				Item		Cl	LI	SW	SL	Total
			•	Approx. H	Irs	06	04	01	02	13
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI) Self-Learning (SL)							
98BT502CO4. Apply appropriate methods for determination of catalytic parameters and activity of enzymes and resolve problems.	SO4.1: Learn methods of enzyme immobilization	LI4.1: Experiment on enzyme immobilization	CI4.1: Introduction to enzyme SL4.1: Study methods of immobilization			of er	izyme			
	SO4.2: Understand applications of immobilized enzymes	LI4.2: Demonstration of immobilized enzyme applications	Cl4.2: Applications of immobilized enzyme					applic zymes		is of
	SO4.3: Study design of immobilized enzyme reactors		Cl4.3: Design of imm enzyme reactors	obilized						
	SO4.4: Learn about packed bed reactors		CI4.4: Packed bed rea	actors						

SO4.5: Understand fluidized-bed membrane	CI4.5: Fluidized-bed membrane reactors
reactors	
SO4.6: Study extraction and purification of	CI4.6: Extraction and purification of enzymes
enzymes	

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	Write a report on enzyme immobilization methods
	SW1.2 Mini Project	Mini Project: Application of immobilized enzyme
	SW1.3 Other Activities (Specify)	Assignment on immobilized enzyme reactors

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	02	13

Course outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
98BT502-CO5. Validate the considering kinetics and thermodynamics of enzymatic reactions	SO5.1: Learn concepts of enzyme engineering	LI5.1: Study enzyme engineering techniques	CI5.1: Introduction to enzyme engineering	SL5.1: Research enzyme engineering concepts
	SO5.2: Understand prediction of enzyme structure	LI5.2: Demonstration of enzyme structure prediction	CI5.2: Prediction of enzyme structure	SL5.2: Study methods of enzyme structure prediction
	SO5.3: Study site- directed mutagenesis		CI5.3: Site-directed mutagenesis	
	SO5.4: Learn about protein engineering techniques		CI5.4: Protein engineering techniques	
	SO5.5: Understand genetic engineering techniques for enzyme technology		CI5.5: Genetic engineering for enzyme technology	

SO5.6: Study applications of enzyme engineering	CI5.6: Applications of enzyme engineering
---	--

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	Write a report on enzyme engineering
	SW1.2 Mini Project	Mini Project: Predicting enzyme structure
	SW1.3 Other Activities (Specify)	Assignment on site-directed mutagenesis

Course duration (in hours) to attain Course Ou					
(Course Title: Enzyme Engineering and Technology (Course Outcomes (COs)	Course Code Class	: 98BT502) Laboratory	Self-	Sessional work	Total Hours
Course Outcomes (COS)	lecture	Instruction (LI)	Learning	(SW)	(Li+CI+SL+SW)
	(CI)		(SL)	(~ · · ·)	
98BT502-CO1. Explain relationship between	6	4	2	1	13
the structure and function of enzymes					
98BT502CO2. Define the speed of a	6	4	2	1	13
biochemical reaction in sense of					
thermodynamics, kinetics and molecular					
interactions.					
98BT502CO3. Interpretate the significant	6	4	2	1	13
mechanisms of regulation of enzymatic action					
and specifies importance of enzymes in					
regulation of metabolism;					
98BT502CO4. Apply appropriate methods for	6	4	2	1	13
determination of catalytic parameters and					
activity of enzymes and resolve problems.					
98BT502-CO5. Validate the considering	6	4	2	1	13
kinetics and thermodynamics of enzymatic					
reactions					
Total Hours	30	20	10	05	65

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Outcomes		Marks Distribution					
	Α	An	Е	С	Total Marks		
98BT502-CO1. Explain relationship between the structure and function of enzymes	2	1	1	1	5		
98BT502CO2. Define the speed of a biochemical reaction in sense of thermodynamics, kinetics and molecular interactions.	2	4	5	1	12		
98BT502CO3. Interpretate the significant mechanisms of regulation of enzymatic action and specifies importance of enzymes in regulation of metabolism;	3	5	5	1	14		
98BT502CO4. Apply appropriate methods for determination of catalytic parameters and activity of enzymes and resolve problems.	2	3	5	1	11		
98BT502-CO5. Validate the considering kinetics and thermodynamics of enzymatic reactions	5	4	1	0	10		
Total Marks	14	17	17	04	52		

Suggested learning Resources:

(c) Books:

S.no.	Title	Author	Publisher	Edition & Year
1	Enzymes	Palmer	Horwood Publishing Series.	2001

2	Fundamentals of Enzymology	Price and Stevens	Oxford University Press	2002
3	Enzyme Technology	Helmut uhling	John Wiley	1998
4	Introduction to Proteins Structure	Branden and Tooze	Garland Publishing Group.	1998

(d) Online Resources:

Suggested instructions/Implementation strategies:

- 63. Improved lecture
- 64. Tutorial
- 65. Case method
- 66. Group Discussion
- 67. Role play
- 68. Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants
- 69. Demonstration
- 70. ICT Based teaching Learning
- 71. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: V Semester

Course Title: Enzyme Engineering and Technology

			CO)/PO M	apping										
Course Outcome		Program Outcomes (POs)								Program	Program Specific Outcomes (PSOs)				
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
98BT502-CO1. Explain relationship between the structure and function of enzymes	1	1	1	-	-	-	1	-	-	2	1	2	2	2	-
98BT502CO2. Define the speed of a biochemical reaction in sense of thermodynamics, kinetics and molecular interactions.	1	1	1	2	2	-	1	1	-	2	3	2	2	2	1
98BT502CO3. Interpretate the significant mechanisms of regulation of enzymatic action and specifies importance of enzymes in regulation of metabolism;	-	1	1	1	-	-	2	-	3	1	1	2	1	1	1
98BT502CO4. Apply appropriate methods for determination of catalytic parameters and activity of enzymes and resolve problems.	3	3	3	2	2	3	2	2	1	2	-	1	2	2	3

98BT502-CO5. Validate the considering kinetics and thermodynamics of enzymatic reactions	2	2	2	-	-	2	3	3	1	2	1	2	2	1	3
<i>Legends</i> : CO/PO/PSO Mapping	g Ran	ge: L	ow, 1;	Mediu	m, 2; F	Iigh, 3									

Program Name: B. Tech. Biotechnology

Semester: V Semester

Course Title: Enzyme Engineering and Technology

Course Code: 98BT502

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3	98BT502-CO1. Explain relationship between the structure and function of enzymes	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5SO1.6	LI 1 LI 2	1.1,1.2,1.3,1.4,1.5, 1.6, 1.7, 1.8, 1.9	1SL- 1,2,3,4,5
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3	98BT502CO2. Define the speed of a biochemical reaction in sense of thermodynamics, kinetics and molecular interactions.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5SO2.6	LI 1 LI 2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	2SL-1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3	98BT502CO3. Interpretate the significant mechanisms of regulation of enzymatic action and specifies importance of enzymes in regulation of metabolism;	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6	LI 1 LI 2	3.1,3.2,3.3,3.4,3.5, 3.6, 3.7, 3.8, 3.9	3SL-1,2

PO 1,2,3,4,5,6 7,8,9,10,11,12	98BT502CO4. Apply appropriate methods for determination of catalytic parameters and activity of enzymes and resolve problems.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6	LI 1 LI 2	4.1,4.2,4.3,4.4, 4.5, 4.6	4SL-1,2
PSO 1,2, 3					
PO 1,2,3,4,5,6	98BT502-CO5. Validate the considering	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5, 5.6	5SL-1,2
7,8,9,10,11,12	kinetics and thermodynamics of enzymatic	SO5.3 SO5.4	LI 2		
	reactions	SO5.5 SO5.6			
PSO 1,2, 3					

B. Tech. Biotechnology 6th Semester

Program Name	B. Tech. Biotech Semester-				
Semester	VI th				
Course Code:	98BT606-C				
Course title:	Bio-programming and Soft Computing Techniques Curriculum Developer: Mr. Piyush Kant Rai, Teaching associate				
Pre-requisite:	Students must have knowledge of Bio-progra	mming and Soft Computing Techniques.			
Rationale:	programming and soft computing technic solutions for complex problems. By mimi- these techniques offer efficient ways to r	Computing Techniques in B. Tech. Biotech Semester-VI th program explores the Bio- ques integrate principles from biology and computer science to develop innovative cking biological processes such as evolution, neural networks, and genetic algorithms, model, analyze, and optimize systems in various fields such as healthcare, e advancements in personalized medicine, biomolecular engineering, and adaptive research and technological innovation.			
Course Outcomes (COs):	CO2 98BT606-C. Outline the advanced gen CO3 98BT606-C. Apply web-based method	ocomputing methods, principles and practices. nomics, transcriptomics and proteomics methods ds and tools for simulation of biological problems og and protein-ligand interactions for drug discovery ases and softwares used in Bio-computing			

Scheme of Studies:

			Scheme of studies (Hours/Week)					
Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)
ProgramElective (PE)	98BT606-C	Bio-programming and Soft Computing Techniques	3	2	1	1	7	4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)	
				Total Marks
Cοι	ouse Code	Course Title		

Board of Study				Progressive Assessment (PRA)					
			Class/Home Assignment 5 number 3 marks each	2 (2 best out	Seminar one (SA)	Class Attendance (AT)	Total Marks	End Semester Assessment (ESA)	
Program Elective (PE)		Bio-programming and Soft Computing Techniques	15	20	5	5	5	50	50

Scheme of Assessment: Practical

			Scheme of Assess	sment (N	Aarks)				
			Progressive Asses	ssment (I	PRA)				Tatal
Board of Study	Course Code	Course Title			Viva Voce II	Class Attendance (AT)	Total Marks	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
Program Elective (PE)	98BT656-C	Bio-programming and Soft Computing Techniques	35	5	5	5	50	50	50

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which	Approximate Hours						
students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students	Item	Cl	LI	SW	SL	Total	
should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Approx. Hrs	9	04	01	03	17	

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
98BT656CO1. Understand about the biocomputing methods, principles and practices.	Explain Introduction to R Programming Overview of the R Language	LI1.1 Installation of R program via R project installer	Introduction to R Programming Overview of the R Language	Vectors and array in R.
	Defining R Project; Obtaining R, where to get help Generating R Code –Basic Programming Concepts, Scripts, Text editors for R	LI1.2 To install and run R program	Defining R Project; Obtaining R, where to get help Generating R Code –Basic Programming Concepts, Scripts, Text editors for R	What is script?
	Features of Graphical User Interfaces (GUI's) for R; Vectors and Matrices, Data Frames and tests works		Graphical User Interfaces (GUI's) for R; Vectors and Matrices, Data Frames and tests	How many R- packages are there for biological sequence analysis
	Can answer datasets included in R Packages	622	Datasets included in R Packages	

How to Manipulate objects in R, Graphics (Basics) Mathematical Operations,	Manipulating objects, Graphics (Basics) Mathematical Operations
Basic Matrix computation Regular Sequences	Basic Matrix computation Regular Sequences
Basic Matrix computation Regular Sequences	Basic Matrix computation Regular Sequences
Apply strings and Pattern matching on any dataset	Strings and Pattern matching
Hypothesis testing and data handling; t-tests	Hypothesis testing and data handling; t-tests
ANNOVA basics	ANNOVA basics

Suggested Sessional	SW1.1 Assignments	Write about the R packages
Work (SW): anyone	SW1.2 Mini Project	Learn different types of libraries in R
	SW1.3 Other Activities (Specify)	What is annova do a thorough searching

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	4	1	3	17

Course	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
Outcome (CO)				
98BT656 CO2.	Introduction to	To learn Basics of MATLAB	Introduction to	Make a 2d simulation
Outline the	MATLAB		MATLAB	of any arbitrary
advanced genomics,				program.
transcriptomics and	How to use MATLAB as	To explore various tools of	MATLAB as	Explore MATLAB uses
proteomics	calculator	MATLAB	calculator	
methods			Standard MATLAB	Remember steps of
	Standard MATLAB windows		windows	calling MATLAB tools
			operations with variables	
	Understanding the operations with variables			
	Understanding the operations with arrays		Understanding the operations with arrays	
	writing script files		writing script files	
	Can writing functions, simple graphics		writing functions, simple graphics	

	SW2.3 Other Activities (Specify)	Find out some you tube v	ideos based on how	to getting st	arted v	vith M	ATLAB		
work (Sw): anyone	SW2.2 Mini Project	List a various operations and array used in MATLAB							
Suggested Sessional Work (SW): anyone	SW2.1 Assignments	Write about the basics of	MATLAB				·	•	
				Approx. H	Irs 0	• 4	1	3	17
				Item	C	1 L	SW	SL	Total
			devi	ces					
	external devices		with						
	Communication with		Commu	nication					
	MATLAB		1	ATLAB					
	File Input-output in		Data typ	es, File t-output					
	what are the Data types,		Data tvn	es. File					

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Class room	Self-Learning (SL)
		(LI)	Instruction	
			(CI)	
98BT656 CO3. Apply web-	Introduction to	Write First	Introductio	Remember basics of python
based methods and tools for	Python	python	n to	
simulation of biological		program	Python	
problems		using		
*		PyCharm		
	Remember the	Li3.2 To learn the data	Features of	Understand how python works
	features of	input and output of the R	Python	
	Python			
	Data types,		Th Data	Write the features of PyCharm
	Variables		types,	
	operators		Variab	
	_		les	
			operat	
			ors	

What are the Data	Data types,
types,	Variab
Variables,	les,
operators and	operat
expressions-1	ors
· · · · · · · · · · · · · · · · · · ·	and
	expres
	sions-1
Data types,	Data types,
Variables,	Variab
operators and	les,
expressions-2	operat
cxpressions-2	
	ors
	and
	expres
	sions-
	2.
Understand	Understan
functions,	d
Data	functio
structures	ns,
	Data
	structu
	res
What is Input and	Input and
Output,	Output
Introduction to	Introductio
object-	n to
oriented	object-
programming	oriente
CSS and	d
Zope-1	progra
	mming
	CSS
	and
	Zope-1
Introduction to	Introductio
object-	n to
oriented	object-
programming	oriente
<u> </u>	

CSS a Zope-	nd	d	
Zope-	2	progra	
		mming	
		CSS	
		and	
		and Zope-2	

			Item	Cl	LI	SW	SL	Total
			Approx. Hrs	09	4	1	1	15
Suggested Sessional Work (SW): anyone	SW3.1 Assignments	Write about the Objected oriented CSS			•			
work (6 w): unyone	SW3.2 Mini Project							
	SW3.3 Other Activities (Specify)	Employ the python programming skill to make a DNA base	e counter					

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
98BT656 CO4. Analyse vaccine designing and protein-ligand interactions for drug discovery	Remember Soft Computing Techniques and Algorithms	Make first algorith m for biologica l sequence s.		Learn basic of soft computing
	Introduction to Soft computing	LI4.2 To search for the gene gene network in KEGG database	Introduction to Soft computing	

Hidden Markov	Hidden Markov
Models:	Models:
Application in	Application in
Bioinformatics	Bioinformatics
	ANN (Artificial
	Neural Networks)
ANN (Artificial Neural	ANN (Artificial
Networks)-1	Neural Networks)-
	1
Types of ANN	Types of ANN
(Artificial Neural	(Artificial Neural
Networks)	Networks)
How to do Identification	Identification – Lead
– Lead	optimization.
optimization.	
Lead optimization.	Lead optimization.
Apply Basic concepts	Basic concepts and
and Applications of	Applications of
Genetic	Genetic
Algorithms-1	Algorithms
Apply Basic concepts	Basic concepts and
and Applications of	Applications of
Genetic	Genetic
Algorithms-2	Algorithms

Suggested Sessional Work (SW): anyone	SW4.1 Assignments	prepare a flow chart of classical case of ANN
Work (SW). unyone	SW4.2 Mini Project	
	SW4.3 Other Activities (Specify)	Relate The genetic algorithm with ANN

			item	Cl	LI	SW	SL	Total]
			Approx. Hrs	09	4	1	2	16	_
Course Outcome (CO)	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Classroom Instru	iction	(CI)	Se	lf-Lea	arning	(SL)
98BT656 CO5. Compare various databases and software's used in Bio-	Understand Introduction to VB	How to make HTML using VB	Introdu	iction 1	to VE	3		(rise Basic of VB
computing	What introduction to Client/Server Technology	LI5.2 to make first program using Visual basics	Introduction to Client/Server Technology				R n C t/ e te		
	Evaluate Data types, Strings		Data ty	•					
	Apply Variant, Constant, Data Arrays		Varian Da	t, Cons ta Arra					
	Looping and Interactive statements Functions in VB		Loopin Int sta	ng and eractiv tement nctions	ve ts				
	Understand the working with controls and procedures			ng with ntrols a ocedure	and				

Introduction to Data	Introduction to
Connectivity-1	Data Connectivity-1
Introduction to Data	Introduction to
Connectivity-2	Data
	Connectivity-2
Different Database	Different Database
Connectivity.	Connectivity.

Suggested Sessional Work (SW): anyone	SW5.1 Assignments	illustrate the theories of DATA types
	SW5.2 Mini Project	
	SW5.3 Other Activities (Specify)	Rewrite the Scope and limitations of VB

Course duration (in hours) to attain Course Outcomes: Course Title: Bio-programming and Soft Computing Techniques

Course Outcomes (COs)	Class lecture	Laboratory	Self-Learning	Sessional work	Total Hours
	(CI)	Instruction (LI)	(SL)	(SW)	(Li+CI+SL+SW)
98BT656 CO1. Understand about the	9	4	3	1	17
biocomputing methods, principles and practices.					
98BT656 CO2. Outline the advanced genomics,	9	4	3	1	17
transcriptomics and proteomics methods					
98BT656 CO3. Apply web-based methods and	9	4	3	1	17
tools for simulation of biological problems					
98BT656 CO4. Analyse vaccine designing and protein-ligand interactions for drug discovery	9	4	1	1	15
protein ingunu interactions for an ug discovery					

98BT656 CO5. Compare various databases and software's used in Bio-computing	9	4	2	1	13
Total Hours	45	20	12	5	79

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:Course Title: Bio-programming and Soft Computing TechniquesCourse Code:

Course Outcomes	Marks I	Distributi		Total Marks	
	Α	An	Ε	С	
98BT656 CO1. Understand about the biocomputing methods, principles and practices.	03	02	04	1	10
98BT656 CO2. Outline the advanced genomics, transcriptomics and proteomics methods	03	04	02	1	10
98BT656 CO3. Apply web-based methods and tools for simulation of biological problems	03	04	02	1	10
98BT656 CO4. Analyse vaccine designing and protein-ligand interactions for drug discovery	03	03	03	1	10
98BT656 CO5. Compare various databases and software's used in Bio-computing	03	02	04	1	10
Total Marks	15	15	15	05	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

Books:

S.No.	Title/Author/Pub	lisher details		
1	Nathan Yan	The Art of R Programming	No Starch Press, US; 7 edition	2016
2	Rudra Prathap – C	Betting started with MATLAB	oxford	2019

3	Soft Computing: Fundamentals and Applications	Alpha Science International Ltd	2015	
---	---	---------------------------------	------	--

Online Resources:

Suggested instructions/Implementation strategies:

Improved lecture Tutorial Case method Group Discussion Role play Visit to bioinformatics lab Demonstration ICT Based teaching Learning Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: 6th Sem

Course Title: Bio-programming and Soft Computing Techniques

Course Outcome (Cos)	Program Outcomes (POs)										Program Specific Outcomes (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
98BT656 CO1. Understand about the biocomputing methods, principles and practices.	-	1	-	1	2	2	3	-	3	3	3	3	-	1	-
98BT656 CO2. Outline the advanced genomics, transcriptomics and proteomics methods	-	-	-	-	-	-	3	-	3	2	3	3	-	-	-
98BT656 CO3. Apply web-based methods and tools for simulation of biological problems	-	-	1	1	-	-	3	-	3	1	-	-	-	-	1
98BT656 CO4. Analyse vaccine designing and protein-ligand interactions for drug discovery	1	-	1	-	2	-	3	3	-	1	-	1	1	-	1
98BT656 CO5. Compare various databases and software's used in Bio- computing	1	1	1	-	-	2	3	3	1	2	3	3	1	1	1

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 2,4,5,6 7,9,10,11,12 PSO 2	98BT656 CO1. Understand about the biocomputing methods, principles and practices.	SO1.1 SO1.2 SO1.3 SO1.4,SO1.5, SO1.6, SO1.7, SO1.8,SO1.9 SP1.10	IL 1 IL 2	1.1,1.2,1.3,1.4 ,1.5,1.6, 1.7, 1.8, 1.9	1SL-1,2,3
PO 7,9,10,11,12	98BT656 CO2. Outline the advanced genomics, transcriptomics and proteomics methods	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5,SO2.6SO2.7 SO2.8 SO2.9	IL 1 IL 2	2.1, 2.2, 2.3, 2.4,2.5,2.6, 2.7, 2.8, 2.9	2SL-1,2,3
PO 3,4,5, 7,9,10 PSO 3	98BT656 CO3. Apply web-based methods and tools for simulation of biological problems	SO3.1 SO3.2 SO3.3 SO3.4 ,3.5,SO3.6,SO3.7, SO3.8 SO3.9	IL 1 IL 2	3.1,3.2,3.3,3.4.3.5,3.6,3.7, 3.8, 3.9	3SL-1,2,3
PO 1,3,5, 7,8,10,12 PSO 1,3	98BT656 CO4. Analyse vaccine designing and protein-ligand interactions for drug discovery	SO4.1 SO4.2 SO4.3 SO4.4 ,SO4.5,SO4.6,SO4.7 SO4.8 SO4.9	IL 1 IL 2	4.1,4.2,4.3,4.4,4.5,4.6,4.7, 4.8, 4.9	4SL-1
PO 1, 2,3,6 7,8,10,11,12 PSO 1,2, 3	98BT656 CO5. Compare various databases and software's used in Bio- computing	SO5.1 SO5.2 SO5.3 SO5.4 ,SO5.5,SO5.6,SO5.7 SO5.8 SO5.9	IL 1 IL 2	5.1,5.2,5.3,5.4,5.5,5.6,5.7, 5.8, 5.9	5SL-1,2

Program Name	Bachelor of Technology (B.Tech.)- Biotec	chnology
Semester	VI	
Course Code:	98BT602	
Course title:	Metabolic Engineering	Curriculum Developer: Er. Arpit Srivastava, Assistant Professor
Pre-requisite:	Students should have basic knowledge of bi	ochemistry and metabolism
Rationale:	(metabolic, gene regulatory, and signaling) j including pharmaceuticals, biofuels and bio	of biotechnology/bioprocess engineering which aims towards purposeful modification of cellular processes/networks to achieve desirable goals such as enhanced production of metabolites chemicals and other biotechnology products. This course aims to provide fundamental and microbial strain for bio production through metabolic engineering
Course Outcomes (COs):	CO2-98BT602.2. Discuss the role of compr CO3-98BT602.3. Design and describe meta	es and fundamentals of metabolic engineering rehensive cellular reaction models abolic flux analysis to determine metabolic pathway utilization s to implement metabolic flux to determine metabolic pathways
	CO5-98BT602.5. Describe combinatorial m	netabolic engineering strategies to illustrate metabolic control analysis

Scheme of Studies:

			Scheme	of studies (
Board of Study	CourseCode	Course Title	Cl	LI	SW	~ _		Total Credits(C) (L:T:P=2:0:1)
ProgramCommon (PC)	98BT602	Metabolic Engineering	2	2	1	3	8	3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

				Scheme of	Assessment (N	Aarks)				
			Progressive As	```	, 	1			End	Total Marks
Board of Study	Couse Code	Course Title	5 number	Class Test 2 (2 best out of 3) 10 marks	Seminar one	Class Activity (CAT)	Attendance	Total Marks (CA+CT+CAT+SA+AT)	Semester Assessment (ESA)	(PRA+ ESA
			5 number			(CAT)	(AT)	(CA+CT+CAT+SA+AT)	(LSA)	(PF

			(CA)							
РС	\mathbf{U} \mathbf{X} \mathbf{R} \mathbf{T} \mathbf{K} \mathbf{U} \mathbf{Y}	Metabolic Engineering	15	20	5	5	5	50	50	100

Scheme of Assessment: practical

			Scheme of Assessme	ent (Mar	ks)				
			Progressive Assessm	ent (PRA	.)				T - 4 - 1
Board of Study	Course Code	Course Title		Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
РС	MXKI657	Metabolic Engineering	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session	Approximate	Hours					
levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self		Item	Cl	LI	SW	SL	Total
Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the		Approx. Hrs	06	06	01	05	18
course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT602.1.	SO1.1	LI1.1	Unit-1	SL1.1
Explain the basic principles and fundamentals of metabolic engineering	Explain concept of metabolic engineering	Draw the steps followed in prokaryotic /eukaryotic glycolysis metabolic pathways	CI1.1 Metabolic Engineering and its importance	Find out some examples of metabolic engineering
	SO1.2	LI1.2	CI1.2	SL1.2
	Define Basic terminology, scope and application for ME	Draw the steps followed in prokaryotic /eukaryotic TCA metabolic pathways	Terminologies of Metabolic Engineering	Explore conventional papers on metabolic engineering
	SO1.3	LI1.3	CI1.3	SL1.3
	Elaborate the scientific Flux, Flux Split Ratio, flux analysis	To understand the production and consumption of ATPs involve in glycolysis and TCA cycle	Flux, Flux Split Ratio, flux analysis	Write down few points on applications of metabolic engineering
	SO1.4		CI1.4	SL1.4
	Define metabolism and types		Overview of Cellular Metabolism, Ana/Catabolism	Write down few points on flux
	SO1.5		CI1.5	SL1.5
	Describe types of cellular reactions		Polymerization, Fuel reactions, Assembling Reactions with examples	Collect information on career in metabolic engineering field
	SO5.6 Revision and Assessment		CI1.6 Revision and Assessment	

			Item	Cl	LI	SW	SL	Total
			Approx. Hrs	06	04	01	04	15
Suggested Sessional	SW1.1 Assignments	Describe in detail about the role of "Metabolic Engineering in synthesis of bioproduct"						
Work (SW): anyone	SW1.2 Mini Project	Elaborate the role of Flux and Fluxomics						
	SW1.3 Other Activities (Specify)	Draw a flowchart compiling all procedures used in performing metabolic engineering						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
СО2-98ВТ602.2.	SO2.1	LI2.1	Unit-2	SL2.1
	Explain concept of downstream processing	Demonstrate the working of Cell Disruption technique	CI2.1	Find out more conventional cell disruption techniques

Discuss the role of comprehensive cellular reaction models			Anapleoritic, Mixed Fermentation, Fermentative Metabolism of yeast	
	SO2.2	LI2.2	CI2.2	SL2.2
	Relate the concept of how physical and biological separation can be done	To perform the experiment of production of microbial biomass	Stoichiometry of Cellular Reactions, (Glucose to Acetate)	Read the latest research in bioseparations methods
	SO2.3		CI2.3	SL2.3
	Outline the steps of coverting glucose to ethanol		Glucose to Ethanol, Metabolic products	Write down few points on biological product's properties
	SO2.4		CI2.4	SL2.4
	Define the mechanism of biomass		Biomass Constituents, Intracellular Metabolites	Find out the different kinds of filter aids and their role
	SO2.5		CI2.5	
	Explain the role of Modelling Metabolism		Modelling Metabolism (Graph Theory)	
	SO2.6 Revision and assessment		CI2.6 Revision and assessment	

Suggested Sessional	SW2.1 Assignments	Describe the role of Biomass in metabolism
Work (SW): anyone	SW2.2 Mini Project	Make a project on bioconversion of Glucose to Ethanol
	SW2.3 Other Activities (Specify)	Make Power point presentation on Metabolism modelling

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	03	14

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
СОЗ-98ВТ602.3.	SO3.1	LI3.1	Unit-3	SL3.1
Design and describe metabolic flux analysis to determine metabolic pathway utilization	Define the Regulation of Enzymatic Activity, Models of Feedback inhibition	To perform the Centrifugation process as Unit Operation	CI3.1 Regulation of Enzymatic Activity, Models of Feedback inhibition	Find out the process of Enzyme inhibition in human metabolism
	SO3.2 Derive the mathematical expression for Enzyme Kinetics, Inhibition system	LI3.2 To do the enzyme assay using spectrophotometric method	CI3.2 Overview of Enzyme Kinetics, Inhibition system with slopes, Steady state approach, BH equation	SL3.2 Read the process of how Michalis Menten equation was derived
	SO3.3 Analyze the Substrates, Competitive Inhibition with slopes		CI3.3 Substrates, Competitive Inhibition with slopes	SL3.3 Write down the steps followed in Lac operon model
	SO3.4 Distinguish among the working mechanism of Regulation of Enzyme concentration & Operon		CI3.4 Regulation of Enzyme concentration; Transcription: Lac Operon Model	
	803.5		CI3.5	

		Item	Cl	LI	SW	SL	Total
		Approx. Hrs	06	02	01	04	13
Explain the role of Global control and Enzyme Substrate binding	Global Control at Whole Cell Level, Enzyme Substrate Binding theory						
SO3.6 Revision and assessment	CI3.6 Revision assessment	and					

Suggested Sessional Work (SW): anyone	SW3.1 Assignments	Derive the equations for Michalis Menten theory of Enzyme Substrate complex
work (Sw). unyone	SW3.2 Mini Project	Write an article on Global Control at whole Cell level
	SW3.3 Other Activities (Specify)	Prepare one Power point presentation on "Different types of Centrifuge and their applications"

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT602.4 Design effective strategies to implement metabolic flux to determine metabolic pathways	SO4.1 Distinguish among different nodes and branches in MFA	LI4.1 To perform the Column Chromatography process as Unit Operation for	Unit-4 CI4.1 Branch Point Classification, Nodes Analysis (Weak, Strong and Rigid),	SL4.1 Find out the the types of classifications of nodes in MFA

			Item	Cl	LI	SW	SL	Total
			Approx. Hrs	6	04	01	05	16
	extraction of different compounds	Introduction to Flux Analysis	Metabolic					
SO4.2 Distinguish among different theories of MFA		CI4.2 Theories of MI Dynamics, Sen Analysis	·		dow oles	/n some of Tiss		e
SO4.3 Analyze the working of isotopic labelling and fractional labelling		CI4.3 Isotope Labellin Label enrichmen		SL4.3 List do in met	own	the rol lism	e of N	⁄IFA
SO4.4 Derive the metabolism reaction for lysine biosynthesis and carbon balancing		CI4.4 Lysine Biosynt balancing	hesis; Carbon		own	the ste biosynt	.	
SO4.5 Derive the Atom mapping metrices based equations		CI4.5 Atom mapping						
SO4.6 Revision and assessment		CI4.6 Revision assessment	and					

Suggested Sessional Work (SW):	SW4.1 Assignments	Determine the working mechanism and applications of Tissue Dynamics
anyone	SW4.2 Mini Project	Derive the Qualitative and Quantitative data optimization and retrieval through MFA in
		isotopic labelling
	SW4.3 Other Activities	Make a presentation on Lysine biosynthesis and its importance in metabolism
	(Specify)	

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT602.5	SO5.1	LI5.1	Unit-5	SL5.1
Describe combinatorial	Elucidate Amino Acid	To determine the AA	CI5.1	Explore amino acid
metabolic engineering strategies	Metabolism	sequences comparison	Amino Acid Metabolism;	metabolism in eukaryotes
to illustrate metabolic control		on the basis of peptide	Metabolism types in	
analysis		mapping using	biomolecules	

SO5.2 Distinguish among different metabolic core carbon pathways with glycolysis	ProteoMapper (Server/tool) LI5.2 To determine the protein 3D structure, function and annotations using Protein Data Bank (PDB database)	CI5.2 Glycolysis and Core Carbon metabolism	SL5.2 Write down the enzymes associated in glycolysis
SO5.3 Analyze the metabolism of aromatic amino acids		CI5.3 Aromatic amino acid metabolism	SL5.3 List down various kinds of amino acids and their structures
SO5.4 Describe the entire role of CRISPR and its mechanism SO5.5 Describe metabolic reconstruction		CI5.4 CRISPR-CAS9; Introduction; fundamentals and mechanism CI5.5 Metabolic Reconstruction and Remodelling	SL5.4 List down the applications of CRISPR SL5.5 List down the various bioinformatics-based server/tool that assist in study of metabolism
SO5.6 Explain the mechanism of MCA and network modelling of MCA		CI5.6 MCA (metabolic Control analysis); fundamentals and mechanism; Metabolic networks	

Suggested Sessional	SW5.1 Assignments	Explain general mechanism of negative Charge Amino acids
Work (SW): anyone	SW5.2 Mini Project	Describe the applications of CRISP-Cas9 in detail
	SW5.3 Other	Prepare one article on the "Metabolic Control Analysis"
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Metabolic Engineering

eourse Thee metabolic Engineering						
Course Outcomes (COs)	Class lecture Laboratory		Self-Learning	Sessional work	Total Hours	
	(CI)	Instruction (LI)	(SL)	(SW)	(Li+CI+SL+SW)	
CO1-98BT602.1. Explain the basic principles and fundamentals of metabolic engineering	6	6	5	1	18	
CO2-98BT602.2. Discuss the role of comprehensive cellular reaction models	6	4	4	1	15	

CO3-98BT602.3. Design and describe metabolic flux analysis to determine metabolic pathway utilization	6	4	3	1	14
CO4-98BT602.4. Design effective strategies to implement metabolic flux to determine metabolic pathways	6	2	4	1	13
CO5-98BT602.5. Describe combinatorial metabolic engineering strategies to illustrate metabolic control analysis	6	4	5	1	16
Total Hours	30	20	21	05	76

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Metabolic Engineering

Course Code: 98BT602

Course Outcomes	Marks Distribution			Total Marks	
	Α	An	E	С	
CO1-98BT602.1. Explain the basic principles and fundamentals of metabolic engineering	2	1	1	1	5
CO2-98BT602.2. Discuss the role of comprehensive cellular reaction models	2	4	5	1	12
CO3-98BT602.3. Design and describe metabolic flux analysis to determine metabolic pathway utilization	3	5	5	1	14
CO4-98BT602.4. Design effective strategies to implement metabolic flux to determine metabolic pathways	2	3	5	1	11
CO5-98BT602.5. Describe combinatorial metabolic engineering strategies to illustrate metabolic control analysis	5	4	1	0	10
Total Marks	14	17	17	04	52

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

Books:

S.No.	Title/Author/Publisher details
1	Gregory N. Stephanopoulos, Aristos A. Aristidou, Jens Nielsen; Metabolic Engineering; Academic Press 1998
2	R.O. Jenkins, (Ed.) – Product Recovery in Bioprocess Technology – Biotechnology By Open Learning Series, Butterworth-Heinemann (1992).
3	J.C. Janson And L. Ryden, (Ed.) – Protein Purification – Principles, High Resolution Methods And Applications, VCH Pub. 1989.
4	Fundamentals of Biochemistry. Author, JL Jain et al. Edition, reprint. Publisher, S. Chand Publishing, 2004.
5	Nielsen, J., Eggeling, L., Dynesen, J., Gárdonyi, M., Gill, R. T., de Graaf, A. A., van Zyl, W. H. (Eds.). (2001). Metabolic Engineering. Advances in Biochemical Engineering/Biotechnology.

Online Resources:

Suggested instructions/Implementation strategies:

Improved lecture Tutorial Case method Group Discussion Role play Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants Demonstration ICT Based teaching Learning Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: VI Semester

Course Title: Metabolic Engineering

CO/PO Mapping															
Course Outcome Program Outcomes (POs)									Program Specific Outcomes (PSOs)						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT602.1. Explain the basic principles and fundamentals of metabolic engineering	-	1	-	1	2	2	3	-	3	2	2	3	1	2	1
CO2-98BT602.2. Discuss the role of comprehensive cellular reaction models	-	1	-	-	1	-	3	1	2	2	3	3	2	-	2
CO3-98BT602.3. Design and describe metabolic flux analysis to determine metabolic pathway utilization	-	1	1	1	-	-	1	-	2	1	1	2	3	2	-
CO4-98BT602.4. Design effective strategies to implement metabolic flux to determine metabolic pathways	-	-	1	-	2	2	3	3	-	1	3	3	2	1	3

CO5-98BT602.5. Describe combinatorial metabolic engineering strategies to illustrate metabolic control analysis1	-	1	2	-	2	3	3	1	2	2	2	1	1	2	
---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
	COL 09DT(02.1 Euglain the basis	SO1.1 SO1.2			191 1 2 2 4 5
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO1-98BT602.1. Explain the basic principles and fundamentals of metabolic engineering	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO1.6	LI I LI 2	1.1,1.2,1.3,1.4,1.5,1.6	1SL-1,2,3,4,5
			LI 3		
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO2-98BT602.2. Discuss the role of	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4, 2.5,	2SL-1,2,3,4
7,8,9,10,11,12	comprehensive cellular reaction models	SO2.3 SO2.4 SO2.5 SO2.6	LI 2	2.6	
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO3-98BT602.3. Design and describe	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,	3SL-1,2,3
7,8,9,10,11,12	metabolic flux analysis to determine metabolic pathway utilization	SO3.3 SO3.4 SO3.5 SO3.6	LI 2	3.6	
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO4-98BT602.4. Design effective	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4, 4.5,	4SL-1,2,3,4
7,8,9,10,11,12	strategies to implement metabolic flux to	SO4.3 SO4.4		4.6	
	determine metabolic pathways	SO4.5 SO4.6			
PSO 1,2, 3					

PO 1,2,3,4,5,6	CO5-98BT602.5. Describe combinatorial metabolic engineering strategies to illustrate	SO5.1 SO5.2 SO5.3 SO5.4	LI 1	5.1,5.2,5.3,5.4,5.5, 5.6	5SL-1,2,3,4,5
7,8,9,10,11,12	metabolic control analysis	SO5.5 SO5.6	LI 2	5.0	
PSO 1,2, 3					

ant Professor
ng their physical architecture, stries, biochemical engineers can find firms, pharmaceutical industry, research fungus, plants, and animals. However, ings for the benefit of both humans and
eering principles
le

Scheme of Studies:

			Scheme					
Board of Study	CourseCode	Course Title	C1	LI	SW	~1		Total Credits(C) (L:T:P=2:0:1)
ProgramCommon (PC)	98BT603	Bioreactor Design	2	2	1	3	8	3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

				Schen	ne of Asses	ssment (Marks)			
			Progressive Assess	sment (PRA)	I	1	1	1		Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	(2 best out of 3)		Class Activity (CAT)	Class Attendance (AT)	Total Marks	End Semester Assessment (ESA)	(PRA+ ESA)

РС	98BT603	Bioreactor Design	15	20	5	5	5	50	50	100

Scheme of Assessment: practical

			Scheme of Assessme	nt (Marks	s)				
			Progressive Assessme	ent (PRA)			-		Total
Board of Study	Course Code	Course Title				Attendance	lotal Marks	End Semester Assessment (ESA)	Marks (PRA+ ESA)
РС	98BT653	Bioreactor Design	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which	Approxima	te H	ours			
students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students	Item	Cl	LI	SW	SL	Total
should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Approx. Hrs	06	08	01	03	18

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
СО1-98ВТ603.1	SO1.1	LI1.1	CI1.1	SL1.1
Illustrate the terminologies associated with Bioreactor Design	Explain concept of Basic design and construction, materials of construction of reactor's vessels	To Demonstrate the working of a Bench Top bioreactor with all its parts	Basic design and construction, materials of construction	Find out some examples of bioprocess technique used in ancient India
	SO1.2 Determine the basic Vessel geometry, Bearing assemblies	LI1.2 To perform the isolation of microorganisms from different kinds of samples	CI1.2 Vessel geometry, Bearing assemblies	SL1.2 Search various reference books and study material to start the learning of microorganisms
	SO1.3 Elaborate the working mechanism of Motor drives, Aseptic seals, flow measuring device	LI1.3 To evaluate the theoretical and observable yield of biological products from fermentation process	CI1.3 Motor drives, Aseptic seals, flow measuring device	SL1.3 Draw a flow chart showing upstream and fermentation processing

			Item	Cl	LI	SW	SL	Total
			Approx. Hrs	06	06	01	03	16
SO1.4	LI1.4	CI1.4		1	1	l	1	
Define the Fundamental mechanism of Valves, Agitator, and Sparger Design	To evaluate the numerical data on overall mass transfer associated with bioprocessing in a given reactor	Valves, Agitato Numerical Prol						
SO1.5 Define Sparger Design & types		CI1.5 Sparger Design	& types					
SO1.6 Revision and assessment		CI1.6 Revision assessment	and					

Suggested Sessional	SW1.1 Assignments	Describe in detail "Applications of Microorganisms in various Sectors"				
Work (SW): anyone	SW1.2 Mini Project	Draw various types of Fermenters with specifications and parts				
	SW1.3 Other Activities (Specify)	Make a power point presentation on "Role of Fermentations in Ancient India"				

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
СО2-98ВТ603.2.	SO2.1	LI2.1	CI2.1	SL2.1

Explain the kinetics and mechanism of various types of reactors	Explain the Operational Mode of Reactors: Batch, Fed batch, Continuous cultivation	To perform the experiment on the microbial production of Acetic Acid	Operational Mode of Reactors: Batch, Fed batch, Continuous cultivation	Find out more conventional cell disruption techniques
	SO2.2	LI2.2	CI2.2	SL2.2
	Explain the working mechanism of Stirred Tank, Airlift Bioreactor, Airlift Pressure, cycle Bioreactor, Loop Bioreactor, Bubble column Bioreactor, Packed bed and hollow fibre membrane bioreactor	To perform the experiment of microbial production of Amino acids	Novel Bioreactor Stirred Tank, Airlift Bioreactor, Airlift Pressure, cycle Bioreactor, , Packed bed and hollow fibre membrane bioreactor	Read the latest research in bioseparations methods
	SO2.3	LI2.3	CI2.3	SL2.3
	Explain the working mechanism of CSTRs fermenter, Monod equation for chemostat, Monod Kinetics	To perform the cell disruption technique using physical, chemical and biological methods	Design equation for CSTRs fermenter	Write down few points on biological product's properties
	SO2.4 Explain Monod		CI2.4	
	equation for chemostat		Monod equation for chemostat	
	SO2.5 Explain Monod		CI2.5	
	Kinetics		Monod Kinetics	
	SO2.6 Explain Loop Bioreactor, Bubble column Bioreactor		CI2.6 Loop Bioreactor, Bubble column Bioreactor	

Suggested Sessional	SW2.1 Assignments	Describe Biosynthetic pathway for Acetone, Butanol and Ethanol derived fermentation				
Work (SW): anyone	SW2.2 Mini Project	Make a project on different kinds of Amino acids, their structure and functions				
	SW2.3 Other Activities (Specify)	Make Power point presentation on Distillation as Unit operations				

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	06	01	02	15

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
СО2-98ВТ603.3	SO3.1	LI3.1	CI3.1	SL3.1
Interpretate the different experimental data on reaction rate related to reactor engineering principles	Elucidate the application of various kinds of separation process	To perform the microbial production of Secondary metabolites using shake flask fermentation method	Law of mass action, Rate equation, elementary, non elementary reaction and their mechanism	Derive the numerical problems associated with Elementary and Non- Elementary reactions
	SO3.2	LI3.2	CI3.2	SL3.2
	Derive the mathematical expression for centrifugal sedimentation	To observe the growth of microbial biomass and calculate its kinetics using graph	Theories of reaction rate and temperature dependency	Derive the numerical problems associated with experimental reactor data
	SO3.3	LI3.3	CI3.3	
	Analyze the partition coefficient associated with phase extraction	To determine the production of weak organic acids through fermentation	Analysis of experimental reactor data	
	SO3.4		CI3.4	
	Evaluation of rate equation, Integral and differential analysis for constant and variable volume system		Evaluation of rate equation, Integral and differential analysis for constant and variable volume system	
	803.5		CI3.5	
	Evaluate Numerical problem associated with rate of reaction		Fitting of data to complex reaction mechanism, Numerical problems	

		Item	Cl	LI	SW	SL	Total
		Approx. Hrs	05	00	01	03	9
SO3.6 Revision and assessment	CI3.6 Revision assessment	and	•				

00	SW3.1 Assignments	Derive the equations for Rate of Reaction and 1 st Order, 2 nd Order reactions
Work (SW): anyone	SW3.2 Mini Project	Describe the role of mass and heat transfer and its kinetics
	SW3.3 Other	Prepare one Power point presentation on "Reaction Kinetics of Various Fermentation Operations"

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT603.4	SO4.1		CI4.1	SL4.1
Analyse the Transfer of Heat and Mass with its kinetics	Elucidate the Mechanism of heat transfer, Equipment of heat transfer		Mechanism of heat transfer, Equipment of heat transfer	List down the different kinds of equipment used in heat exchangers
	SO4.2		CI4.2	SL4.2
	Derive the Conduction, Heat transfer between fluids, Heat transfer coefficients, Overall Hear transfer coefficients		Conduction, Heat transfer between fluids, Heat transfer coefficients, Overall Hear transfer coefficients	Read the process of Heat transfer
	SO4.3		CI4.3	SL4.3

			Item	C1	LI	SW	SL	Total	
			Approx. Hrs	6	00	01	05	12	
for	halyze the Design equation r Heat transfer, Calculations Heat transfer coefficients	Design equation for Heat transfer, Calculations of Heat transfer coefficients		Find out the role of oxygen transfer in reactors					
De me De tra	94.4 escribe the Oxygen transfer ethodologies in fermenter, etermination of oxygen nsfer coefficient (Kla) quid –Liquid Mass transfer	CI4.4 Oxygen transfer methodologies in fermenter, Determination of oxygen transfer coefficient (Kla) Liquid –Liquid Mass transfer							
Int ma tra	04.5 Serpretate the Factor affecting ass transfer and oxygen nsfer	CI4.5 Factor affecting mass transfer and oxygen transfer							
	04.6 Revision and sessment	CI4.6 Revision a	nd assessment						

Suggested Sessional Work (SW): <i>anyone</i>	SW4.1 Assignments	Determine the working mechanism and applications of different kind of Vectors used in RDT
	SW4.2 Mini Project	Derive the Plant and Animal Cell Culture based metabolites having therapeutic applications
	SW4.3 Other Activities (Specify)	Make a Power point presentation for description of "Role of Host-vector system" in RDT for Bioprocessing

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-98BT603.5.	SO5.1		CI5.1	SL5.1
Evaluate & Design numerical values for development of homogeneous reaction	Elucidate the Internal mass transfer and steady state shell mass balance (assumption and derivation)		Internal mass transfer and steady state shell mass balance (assumption and derivation)	Find out the industrial applications of Chromatography
	805.2		CI5.2	SL5.2
	Describe the Concentration profile for first order kinetics and spherical geometry		Concentration profile for first order kinetics and spherical geometry	Solve the numerical problems associated with Thiele Modulus
	805.3		CI5.3	SL5.3
	Analyze the Concentration profile for zero order kinetics and spherical geometry		Concentration profile for zero order kinetics and spherical geometry	Solve the numerical problems associated with rate of reactions
	SO5.4		CI5.4	SL5.4
	Analyze the Concentration profile for Michles-menten kinetics and spherical geometry		Concentration profile for Michles-menten kinetics and spherical geometry	Solve the numerical problems associated with Michalis-Menton kinetics
	SO5.5		CI5.5	SL5.5
	Evaluate the Thiele modulus and effectiveness factor for first order, Zero order		Thiele modulus and effectiveness factor for first order, Zero order	Solve the numerical problems associated with heterogeneous reactions
	SO5.6		CI5.6	
	Evaluate the Michles- menten Kinetics, External mass transfer, Minimizing		, External mass transfer, Minimizing mass transfer effect (internal and external	

mass transfer effect (internal and external		

00	SW5.1 Assignments	Derive the numerical problems for Thiele modulus
Work (SW): anyone	SW5.2 Mini Project	Describe the Michalis-Menton kinetics
	SW5.3 Other Activities (Specify)	Prepare one article on the "Heterogeneous Reactions and its Significance"

Course duration (in hours) to attain Course Outcomes:

Course Title: Bioreactor Design	Course Code: 98BT603								
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)				
CO1-98BT603. Illustrate the terminologies associated with Bioreactor Design	6	8	3	1	18				
CO2-98BT603. Explain the kinetics and mechanism of various types of reactors	6	6	3	1	16				
CO3-98BT603.3. Interpretate the different experimental data on reaction rate related to reactor engineering principles	6	6	2	1	15				
CO4-98BT603.4. Analyse the Transfer of Heat and Mass with its kinetics	6	0	3	1	10				
CO5-98BT603.5. Evaluate & Design numerical values for development of heterogenous reaction	6	0	5	1	12				
Total Hours	39	20	16	05	71				

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome: Course Title: Bioreactor Design Course Code: 98BT603

661

Course Outcomes	Marks Distribution					
	Α	An	Е	С	Total Marks	
CO1-98BT603.1. Illustrate the terminologies associated with Bioreactor Design	2	1	1	1	5	
CO2-98BT603.2. Explain the kinetics and mechanism of various types of reactors	2	4	5	1	12	
CO3-98BT603.3. Interpretate the different experimental data on reaction rate related to reactor engineering principles	3	5	5	1	14	
CO4-98BT603.4. Analyse the Transfer of Heat and Mass with its kinetics	2	3	5	1	11	
CO5-98BT603.5. Evaluate & Design numerical values for development of heterogenous reaction	2	4	1	1	10	
Total Marks	11	17	17	05	50	

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

Books:

S.No.	Title/Author/Publisher details
1	Pauline M. Doran, "Bioprocess engineering principles" : Acedemic press
2	James E. Bailey & David F. Ollis- Biochemical engineering fundamentals
3	J.C. Janson And L. Ryden, (Ed.) – Protein Purification – Principles, High Resolution Methods and Applications, VCH Pub. 1989.
4	Peter F. Stanbury, Allan Whitekar, "Principles for fermentation technology"

Online Resources: Suggested instructions/Implementation strategies:

Improved lecture

Tutorial Case method Group Discussion Role play Visit to Beverage producing plants & Distillery/Fermenter units Demonstration ICT Based teaching Learning Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: 6th Semester

Course Title: Bioreactor Design

CO/PO/PSO Mapping		
Course Outcome (Cos)	Program Outcomes (POs)	Program Specific Outcomes (PSOs)

	PO1	PO2	PO3	PO4	PO5	PO6	PSO1	PSO2	PSO3
CO1-56MB303.1: Describe the fundamentals of Industrial Microbiology and Fermentation Technology	2	-	-	1	2	1	2	2	1
CO2-56MB303.2: Define the role of microbiology for the production of desired bioproducts	-	-	1	1	-	1	1	1	2
CO3-56MB303.3: Elaborate the working mechanism of upstream and downstream processing	1	1	1	1	-	1	1	1	1
CO4-56MB303.4: Interpretate the mechanism of fermentation process in industry	-	1	1	-	2	1	1	1	3
CO5-56MB303.5: Examine the mechanism of biological product development using microbes	1	1	1	-	-	1	1	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)	
PO 1,2,3,4,5,6	COI-98B1603.1. Illustrate the terminologies associated with Bioreactor Design	SO1.1 SO1.2	LI 1 LI 2	1.1,1.2,1.3,1.4,1.5,		
PSO 1,2, 3		SO1.3 SO1.4 SO1.5 SO1.6	LI 3 LI 4	1.6	1SL-1,2,3	

PO 1,2,3,4,5,6 PSO 1,2, 3	CO2-98BT603.2. Explain the kinetics and mechanism of various types of reactors	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5 SO2.6	LI 1 LI 2 LI 3	2.1, 2.2, 2.3,2.4,2.5,2.6	2SL-1,2,3
PO 1,2,3,4,5,6 PSO 1,2, 3	CO3-98BT603.3. Interpretate the different experimental data on reaction rate related to reactor engineering principles	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6	LI 1 LI 2 LI 3	3.1,3.2,3.3,3.4,3.5, 3.6	3SL-1,2
PO 1,2,3,4,5,6 PSO 1,2, 3	CO4-98BT603.4. Analyse the Transfer of Heat and Mass with its kinetics	SO4.1 SO4.2 SO4.3 SO4.4 SO5.5 SO5.6		4.1,4.2,4.3,4.4, 4.5, 4.6	4SL-1,2,3
PO 1,2,3,4,5,6 PSO 1,2, 3	CO5-98BT603.5. Evaluate & Design numerical values for development of heterogenous reaction	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6		5.1,5.2,5.3,5.4,5.5, 5.6	5SL-1,2,3,4,5

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology							
Semester	VI	VI						
Course Code:	98BT604	98BT604						
Course title:	Waste Treatment	Waste Treatment Curriculum Developer: Er. Arpit Srivastava, Assistant Professor						
Pre-requisite:	Students should have basi	Students should have basic knowledge of environmental science						
Rationale:	an understanding of new the harmful impact of polluta	The course content aims to make the student understand how biotechnology can help in monitoring or removing the pollutants and developing an understanding of new trends such as biofuels, renewable energy sources, or development of stress-tolerant plants which can minimize the harmful impact of pollutants thereby making the planet earth a better dwelling place. Students will gain knowledge about how to maintain the environment. They will also gain the knowledge to use biotechnology for waste management, bioremediation, and green energy.						
Course	CO1-98BT604.1. Identif							

Scheme of Studies:

			Scheme	of studies (
Board of Study	CourseCode		Cl	LI	SW	~ _		Total Credits(C) (L: T: P=2:0:1)
ProgramCommon (PC)	98BT604	Waste Treatment	2	2	1	3	8	3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

				Schen	ne of Asses	sment (Marks)				
			Progressive Assess		I					Total Marks
Board of	Couse	Course Title		Class Test 2 (2 best out	Seminar		Class Attendance	Total Marks	End Semester Assessment	
Study	Code		Assignment 5 number	of 3)	0110	Class Activity (CAT)			(ESA)	(PRA+
				10 marks each (CT)	(SA)		(AT)	(CA+CT+CAT+SA+AT)		ESA)

			(CA)							
РС	98BT604	Waste Treatment	15	20	5	5	5	50	50	100

Scheme of Assessment: practical

			Scheme of Assessme Progressive Assessme						Total
Board of Study	Course Code	Course Title		Viva Voce I		Attendance	lotal Marks	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
РС	98BT654	Waste Treatment	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session A	Approximate Hours					
levels, which students are anticipated to accomplish through various modes of instruction	Iterre	Cl	тт	CW	OI.	T - 4-1
including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self	Item	Cl	LI	5 W	SL	Total
Learning (SL). As the course progresses, students should showcase their mastery of Session	Approx. Hrs	6	06	01	05	18
Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the	rr					-
course's conclusion.						

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT604.1.	SO1.1	LI1.1	Unit-1	SL1.1
Identify different strategies of Waste treatment and its management	Explain concept of waste treatment	To make a report on Waste treatment and management plan for any district of your choice	CI1.1 Waste; Treatment of waste and its importance	Find out some examples of waste
	SO1.2 Define Basic terminology, scope and application for waste	LI1.2 Identify the types of pollutants present in drinking water	CI1.2 Types and Sources of solid and hazardous wastes	SL1.2 Explore conventional papers on waste management
	SO1.3 Elaborate the scientific applications of hazardous waste	LI1.3 Prepare a report on different types of agricultural waste produces in your surrounding	CI1.3 hazardous wastes, and biomedical wastes; other types of waste	SL1.3 Write down few points on applications of waste treatment
	SO1.4		CI1.4	SL1.4

		Item	Cl	LI	SW	SL	Total			
		Approx. Hrs	06	04	01	04	15			
Define waste generation rates	Waste generation rates, Composition; Characteristics			Write down few points on recycle						
SO1.5	CI1.5			SL1.5						
Elaborate the process of waste generation in food industries	Waste generation from food industries		Collect information on career in waste treatment							
SO1.6 Revision and assessment	CI1.6 Revision assessment	and								

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	Describe in detail about the role of "Generation of Waste in India"
work (Sw). unyone	SW1.2 Mini Project	Elaborate the role of 3Rs
	SW1.3 Other Activities (Specify)	Draw a flowchart compiling all procedures used in waste management

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT604.2. Apply technical methods to get best out of waste	SO2.1 Explain concept of downstream processing	LI2.1 Demonstrate the working of waste segregation and handling	Unit-2 CI2.1 Handling, Segregation, Storage and collection of waste	SL2.1 Find out the process followed in your district for waste handling and segregation
	SO2.2	LI2.2	CI2.2	SL2.2

Relate the concept of how physical and biological separation can be done	To perform the experiment of production of microbial biomass	Treatment of biomedical waste	Read the latest research in innovations in composting
SO2.3 Outline the steps of converting glucose to ethanol		CI2.3 Composting, thermal conversion technologies, energy recovery	SL2.3 Write down few points on energy recovery from waste
SO2.4 Define the mechanism of biomass		CI2.4 Incineration, solidification and stabilization of hazardous wastes	SL2.4 Find out the different kinds of incinerators and write about them
SO2.5 Explain the role of Modelling Metabolism		CI2.5 Biological and chemical conversion technologies	
SO2.6 Revision and assessment		CI2.6 Revision and assessment	

Suggested Sessional Work (SW): anyone	SW2.1 Assignments	Describe the role of agricultural Biomass in Energy recovery
work (Sw). unyone	SW2.2 Mini Project	Make a project on bioconversion of agricultural waste for the production of waste
	SW2.3 Other Activities (Specify)	Make a Power point presentation on Composting and Thermal conversion of waste

				Item	Cl	LI	SW	SL	Total	
				Approx. Hrs	06	04	01	03	14	
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room In (CI)	struction	Self-I	Lear	ning (S	SL)		
СОЗ-98ВТ604.3.	SO3.1	LI3.1	Unit-3		SL3.1	SL3.1				
Analyz various equipment used in anaerobic waste treatment	Define the the role of landfills	To design a landfill with all details and labelling	CI3.1 Design and oper sanitary landfil landfills and lan bioreactors	ls, secure	Find out how many landfills are present in your district and of which type they are					
	SO3.2	LI3.2	CI3.2	SL3.2						
	Derive the process of landfill monitoring	To determine the BOD of various water samples	Landfill closure environmental remediation	Read the process of BOD is calculated for a given sample						
	SO3.3		CI3.3		SL3.3					
	Distinguishes the types of landfills and its working		Landfills; types; site selection	mechanism;	Write down the steps followed in Effluent Treatment Plant					
	SO3.4		CI3.4							
	Derive the mathematical modelling of BOD		Mathematical modelling of BOD & kinetics							
	SO3.5		CI3.5							
	Explain the treatment process in ETP		Waste Water Treatment (ETP)							
	SO3.6 Revision and assessment		CI3.6 Revision assessment							

			Item	Cl	LI	SW	SL	Total
			Approx. Hrs	06	02	01	04	13
Suggested Sessional Work (SW): anyone	SW3.1 Assignments	Derive the equations for Michalis Menten theory of Enzym	e Substrate com	olex				
work (Sw). unyone	SW3.2 Mini Project	Write an article on Global Control at whole Cell level						
	SW3.3 Other Activities (Specify)	Prepare one Power point presentation on "Effluent Treatme	nt Plant"					

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-98BT604.4 Design effective strategies to implement waste management	SO4.1 Distinguish among different types of waste water	LI4.1 To perform the Oil separation method using aqueous two-phase extraction method	Unit-4 CI4.1 Sources and types of industrial wastewater, Environmental impacts	SL4.1 Find out the methods to separate oil from water
	SO4.2 Distinguish among different methodologies used in waste treatment SO4.3		CI4.2 Neutralization, Oil separation, Flotation, Precipitation CI4.3 Heavy metal Removal, adsorption, Chemical oxidation	SL4.2 Write down some more examples of Heavy metals contamination SL4.3

		Item	Cl	LI	SW	SL	Total
		Approx. Hrs	6	04	01	05	16
Analyze the working of			List d	own	the diff	erent	
Heavy metal Removal,			organ	ic pol	llutants	prese	ent in
adsorption, Chemical oxidation			natura	ıl sub	stances	5	
SO4.4	CI4.4		SL4.4				
Derive the process of	Ozonation, Pho	tocatalysis,	List d	own	the step	os inv	olve
ozonation, evaporation and	Wet Air Oxidation –		in membrane sep		ne sepa	ratio	ns
other methods	Evaporation						
SO4.5	CI4.5						
Derive the mechanism of	Ion Exchange, I	Membrane					
ion exchange, membrane	Technologies						
processing							
SO4.6 Revision and	CI4.6 Revision	and					
assessment	assessment						

Suggested Sessional	SW4.1 Assignments	Determine the working mechanism and applications of Photocatalysis
Work (SW): anyone	SW4.2 Mini Project	Derive the working mechanism of membrane separation technologies
	SW4.3 Other	Make a presentation on heavy metal contamination and its bioremediation processing
	Activities (Specify)	

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-98BT604.5.	SO5.1	LI5.1	Unit-5	SL5.1
Describe, design and develop	Elucidate Anaerobic process	To perform the process	CI5.1	Explore Anaerobic digestion
systematic approach to	of digestion	of anaerobic digestion	Fundamentals of anaerobic	
remediate waste using technical		_	treatments; Anaerobic digestion	
advancement				
	SO5.2	LI5.2	CI5.2	SL5.2
	Distinguish among	To remediate the	Sedimentation and Thickening	Write a report on gravity-
	Sedimentation and	contaminations from		based separation of waste
	thickening in waste	water sample using		
	treatment	natural adsorbents		
	SO5.3		CI5.3	SL5.3

Analyz the working of	Anaerobic lagoons	Prepare a report on air
anaerobic lagoons		pollution in your locality and
		the air quality index
SO5.4	CI5.4	SL5.4
Describe the Waste	Waste generation from different	List down the surrounding
generation from different	industries	industries and type of waste
industries		they generate
SO5.5	CI5.5	SL5.5
Interpret design	General design considerations,	List down the various types
considerations of Anaerobic	of Anaerobic reactors	of anaerobic lagoons found
reactors		in India
SO5.6 Revision and	CI5.6 Revision and assessment	
assessment		

Suggested Sessional	SW5.1 Assignments	Explain general mechanism of Anaerobic digestion and products associated with it
Work (SW): anyone	SW5.2 Mini Project	Describe the applications of Anaerobic reactors and its design
	SW5.3 Other	Prepare one article on the "Biogas Production mechanism and its distribution in India"
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Waste Treatment

Course Outcomes (COs)	Class lecture	Laboratory	Self-Learning	Sessional work	Total Hours
	(CI)	Instruction (LI)	(SL)	(SW)	(Li+CI+SL+SW)
CO1-98BT604.1. Identify different strategies of	6	6	5	1	18
Waste treatment and its management					
CO2-98BT604.2. Apply technical methods to get best out of waste	6	4	4	1	15
CO3-98BT604.3. Analyze various equipment used in anaerobic waste treatment	6	4	3	1	14
CO4-98BT604.4. Design effective strategies to implement waste management	6	2	4	1	13

CO5-98BT604.5. Describe, design and develop systematic approach to remediate waste using technical advancement	6	4	5	1	16
Total Hours	30	20	21	05	76

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome: Course Title: Waste Treatment Course Code: 98BT604

Course Outcomes	Marks Distribution						
	Α	An	E	С	Total Marks		
CO1-98BT604.1. Identify different strategies of Waste treatment and its management	2	1	1	1	5		
CO2-98BT604.2. Apply technical methods to get best out of waste	2	4	5	1	12		
CO3-98BT604.3. Analyze various equipment used in anaerobic waste treatment	3	5	5	1	14		
CO4-98BT604.4. Design effective strategies to implement waste management	2	3	5	1	11		
CO5-98BT604.5. Describe, design and develop systematic approach to remediate waste using technical advancement	5	4	1	0	10		
Total Marks	14	17	17	04	52		

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

Books:

S.No.	Title/Author/Publisher details
1	S.K.Garg (2004) Environmental Engineering (Vol I & II) Khanna publishers
2	Marcos Von Sperling (2007), Waste Water Characteristics, Treatment and Disposal, Biological Waste Water Treatment, Serie I, Iwa
	Publishing (Intl water Association).
3	Eckenfelder, W.W., (1999). Industrial Water Pollution Control, (3rd Ed) McGraw-Hill.

Online Resources:

Suggested instructions/Implementation strategies:

Improved lecture Tutorial Case method Group Discussion Role play Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants Demonstration ICT Based teaching Learning Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: VI Semester

Course Title: Waste Treatment

CO/PO Mapping															
Course Outcome Program Outcomes (POs)									Program Specific Outcomes (PSOs)						
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT604.1. Identify different strategies of Waste treatment and its management	-	1	-	1	2	2	3	-	3	2	2	3	1	1	2
CO2-98BT604.2. Apply technical methods to get best out of waste	-	1	-	-	1	-	3	1	2	2	3	3	2	-	2
CO3-98BT604.3. Analyze various equipment used in anaerobic waste treatment	-	1	1	1	-	1	1	-	2	1	1	2	3	2	-
CO4-98BT604.4. Design effective strategies to implement waste management	1	-	1	-	2	2	2	3	-	1	3	3	2	1	3
CO5-98BT604.5. Describe, design and develop systematic approach to remediate waste using technical advancement	1	-	1	2	-	2	3	2	1	2	2	2	1	2	1

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No. C	COs	SOs No.	Laboratory	Classroom	Self-Learning (SL)
			Instruction (LI)	Instruction (CI)	

PO 1,2,3,4,5,6	CO1-98BT604.1. Identify different	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5,	1SL-1,2,3,4,5
7,8,9,10,11,12	strategies of Waste treatment and its	SO1.3 SO1.4	LI 2	1.6	
	management	SO1.5 SO1.6			
			LI 3		
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO2-98BT604.2. Apply technical methods	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4, 2.5,	2SL-1,2,3,4
7,8,9,10,11,12	to get best out of waste	SO2.3 SO2.4	112	2.6	
		SO2.5 SO2.6	LI 2		
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO3-98BT604.3. Analyze various	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,	38L-1,2,3
7,8,9,10,11,12	equipment used in anaerobic waste	SO3.3 SO3.4	LI 2	3.6	
	treatment	SO3.5 SO3.6			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO4-98BT604.4. Design effective	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,	4SL-1,2,3,4
7,8,9,10,11,12	strategies to implement waste management	SO4.3 SO4.4		4.5,4.6	
		SO4.5,SO4.6			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO5-98BT604.5. Describe, design and	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,5.6	5SL-1,2,3,4,5
7,8,9,10,11,12	develop systematic approach to remediate	SO5.3 SO5.4	LI 2		
	waste using technical advancement	SO5.5 SO5.6			
PSO 1,2, 3					
r 30 1,2, 3					

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology					
Semester	VI					
Course Code:	98BT605					
Course title:	Genomics and Proteomics	Curriculum Developer: Sonal Gupta, Assistant Professor				
Pre-requisite:	Students should have basic knowledge of biochemistry, molecular biology and bioinformatics					
Rationale:	Genomics is an entry point for looking at the other 'omics' sciences. Genomics provides an overview of the complete set of genetic instructions provided by the DNA, while transcriptomics looks into gene expression patterns. Proteomics studies dynamic protein products and their interactions. An application of proteomics is known as protein "expression profiling" where proteins are identified at a certain time in an organism as a result of the expression to a stimulus. Proteomics can also be used to develop a protein-network map where interaction among proteins can be determined for a particular living system.					
Course Outcomes (COs):	CO1 98BT605. Understand about the fundamentals of genomics and proteomics CO2 98BT605 Outline the next-generation sequencing techniques CO3 98BT605. Apply analytical approach to identify protein structures CO4 98BT605. Analyse vaccine designing and protein-ligand interactions for drug discovery CO5 98BT605. Compare various databases and software used in proteomics					

Scheme of Studies:

Board of Study	CourseCode		Scheme	of studies ((Hours/We	ek)		Total Credits(C) (L:T:P=3:0:1)
		Course Title	Cl	LI	SW	S L	Lata Study Lawra	
ProgramCommon (PC)	98BT605	Genomics and Proteomics	3	2	1	3	9	4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

				Schen	ne of Asses	ssment (Mark	s)			
			Progressive Assessment (PRA)							Fotal
Board of Study	Couse Code	Course Title	3 marks each	(2 best out of 3)	one	Class Activity (CAT)	Attendance	Total Marks	End Semester Assessment (ESA)	Marks (PRA+ ESA)

РС	98BT605	Genomics and Proteomics	15	20	5	5	5	50	50	100	
----	---------	----------------------------	----	----	---	---	---	----	----	-----	--

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which			Approximate Hours					
students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students	Item	Cl	LI	SW	SL	Total		
should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Approx. Hrs	09	04	01	05	19		

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT605.1	SO1.1	LI1.1	Unit-1	SL1.1
Understand about the fundamentals of genomics	An introduction of genomics	List the basic software used for genomic study	Introduction of genomics CI1.1 Genomics: History, types and scope in modern biotechnology	Find out some examples softwares used for genome assembly
	SO1.2 Describe various DNA sequencing methods: Manual methods	LI1.2 Make a comparative chart of various DNA sequencing methods	CI1.2 Elaborate Sanger and Maxam Gilbert method of DNA sequencing	SL1.2 Explain the manual methods of DNA sequencing
	\$01.3		CI1.3 Study pyrosequencing and other next generation	SL1.3 Write down stepwise methodology of shotgun

Elaborate the automated	platforms of automated	sequencing method of
methods of DNA sequencing	DNA sequencing	genome sequencing
SO1.4	CI1.4	SL1.4
Define the shot gun method of genome sequencing	Explain the detailed principle and methodology of shot gen method of whole genome sequencing	Write an overview on genomics and its types
SO1.5	CI1.5	SL1.5
Describe hierarchical method of genome sequencing	Explain the principle and stepwise methodology of hierarchical method of genome sequencing	Collect information on next generation sequencing methods
SO1.6	CI1.6	
Elaborate various computational tool used for genome sequencing	Study the software or computational platform used for genome sequencing	
SO1.7	CI1.7	
Explain Genome sequence assembly software	Study various software used for alignment of genome sequences during whole genome projects	
SO1.8 Revision	CI1.8 Revision	
SO1.9 Assessment	CI1.9 Assessment	
	methods of DNA sequencingSO1.4Define the shot gun method of genome sequencingSO1.5Describe hierarchical method of genome sequencingSO1.6Elaborate various computational tool used for genome sequencingSO1.7Explain Genome sequence assembly softwareSO1.8 Revision	methods of DNA sequencingDNA sequencingSO1.4CI1.4Define the shot gun method of genome sequencingExplain the detailed principle and methodology of shot gen method of whole genome sequencingSO1.5CI1.5Describe hierarchical method of genome sequencingCI1.6SO1.6CI1.6Elaborate various computational tool used for genome sequencingStudy the software or computational platform used for genome sequencingSO1.7CI1.7Explain Genome sequence assembly softwareStudy various software used for alignment of genome sequences during whole genome projectsSO1.8 RevisionCI1.8 Revision

SW1.1 Assignments	Describe the role of bioinformatics and computational biology in genomics
-------------------	---

Suggested Sessional	SW1.2 Mini Project	Differentiate between shot gun and hierarchical method of genome sequencing
Work (SW): anyone	SW1.3 Other Activities (Specify)	Draw a flowchart compiling all steps of Sanger and Maxam Gilbert methods of DNA sequencing

				Item	Cl	LI	SW	SL	Total
				Approx. Hrs	09	04	01	04	18
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)		Self-I	learn	ing (S	L)	
СО2-98ВТ605.2.	SO2.1	LI2.1	Unit-2		SL2.1				
Outline the next-generation sequencing techniques	Explain web-based server	Make a list of various browsers used for genome analysis	Managing and Distributing Genome Data		Find c to sea				

		CI2.1	
		Describe web-based servers and softwares used for genome analysis: ENSEMBL, VISTA, UCSC	
SO2.2	LI2.2	CI2.2	SL2.2
Describe various browser used for genome analysis	Make a chart of first, second and next generation sequencing platforms	Explain different Genome Browser, NCBI genome	Read the latest research in genome sequencing
SO2.3		CI2.3	SL2.3
Describe various genomic database		Biological database: definition, types, databases for genomic studies	Write down a note on genome database
SO2.4		CI2.4	SL2.4
Define the model organisms used for genomic studies		Elaborate various model organisms	Find out the different kinds of platforms used for genome sequencing projects
SO2.5		CI2.5	
Explain the first-generation sequencing platforms		Describe different platforms used for first generation sequencing: Sanger DNA sequencing	
SO2.6		CI2.6	
Explain second generation sequencing platforms		Elaborate second generation sequencing platform: Roche 454 FLX system – Illumina Solexa and SoLiD	
SO2.7		CI2.7	

		Item	Cl	LI	SW	SL	Total
		Approx. Hrs	09	04	01	03	17
Describe Next generation sequencing platforms	Explain next gene sequencing and v platforms used fo	arious					
SO2.8 different types of NGS platforms	CI2.8 different ty NGS platforms	pes of					
SO2.9 Revision and assessment	CI2.9 Revision as assessment	nd					

Suggested Sessional	SW2.1 Assignments	Describe browsers and servers used for genomic studies		
Work (SW): anyone	SW2.2 Mini Project	Make a comparative chart on genomic databases		
	SW2.3 Other Activities (Specify)	Make a power point presentation on "Next Generation Sequencing".		

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO3-98BT505.3 Apply analytical approach to identify protein structures	SO3.1: Understand the basic structure of proteins	LI3.1: SDS-PAGE for Protein Size Determination	CI3.1: Introduction to Protein Structure	SL3.1: Study of protein structures
	SO3.2: Learn about the chemical properties of proteins	LI3.2: Native PAGE for Protein Structure Analysis	Cl3.2: Chemical Properties of Proteins	SL3.2: Research on chemical properties of proteins

SO3.3: Understand the role of physical interactions in proteins	CI3.3: Physical Interactions in Proteins	SL3.3: Study of protein physical interactions
SO3.4: Learn about short- range interactions in proteins	CI3.4: Short-Range Interactions in Proteins	
SO3.5: Understand electrostatic forces in proteins	CI3.5: Electrostatic Forces in Proteins	
SO3.6: Study Van der Waals interactions in proteins	Cl3.6: Van der Waals Interactions in Proteins	
SO3.7: Learn about hydrogen bonds in proteins	CI3.7: Hydrogen Bonds in Proteins	
SO3.8: Understand hydrophobic interactions in proteins	CI3.8: Hydrophobic Interactions in Proteins	
SO3.9: Learn methods for determining protein sizes	CI3.9: Methods for Determining Protein Sizes	

Suggested Sessional Work (SW): anyone	SW3.1 Assignments	Describe the properties of proteins
work (Sw). unyone	SW3.2 Mini Project	Describe the role of SDS PAGE in proteomic studies
	SW3.3 Other Activities (Specify)	Prepare one Power point presentation on "Proteomics"

				Item	Cl	LI	SW	SL	Total										
				Approx. Hrs	09	04	01	03	17										
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room In (CI)	struction	Self-Learning (SL)														
CO4-98BT605.4 Compare various databases and software used in	SO4.1: Understand the introduction and scope of proteomics	LI4.1: Two-dimensional PAGE for Proteome Analysis	Cl4.1: Introduc Scope of Prote		SL4.1: Study of various applications of proteomics														
proteomics	SO4.2: Learn about ion- exchange chromatography	LI4.2: Isoelectric Focusing (IEF) of Proteins	Cl4.2: Protein S Techniques: lo Chromatograp	n-Exchange															
	SO4.3: Understand size- exclusion chromatography		Cl4.3: Protein S Techniques: Siz Chromatograp	ze-Exclusion	SL4.3: Study of size- exclusion chromatography														
	SO4.4: Learn about affinity chromatography techniques		Cl4.4: Protein S Techniques: Af Chromatograp	finity															
	SO4.5: Understand polyacrylamide gel electrophoresis		CI4.5: Polyacry Electrophoresi																
	SO4.6: Learn about isoelectric focusing (IEF)		CI4.6: Isoelectr (IEF)	ic Focusing															
	SO4.7: Study two- dimensional PAGE for proteome analysis		CI4.7: Two-Dim PAGE for Prote																
	SO4.8: Understand image analysis of 2D gels		CI4.8: Image A Gels	nalysis of 2D															

SO4.9: Learn about in-silico	CI4.9: In-Silico Analysis of	
analysis of proteins	Proteins	

			Item	Cl	LI	SW	SL	Total					
			Approx. Hrs	9	04	01	05	19					
Suggested Sessional Work (SW): anyone	SW4.1 Assignments	Describe the working principle of chromatographic techniques and their applications in protein studies											
work (Sw). unyone	SW4.2 Mini Project	Read research articles on recent advancements in proteomics											
	SW4.3 Other Activities (Specify)	Make a presentation on 2D PAGE											

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-98BT605.5	SO5.1	LI5.1	Unit-5	SL5.1
Design novel proteins and	Introduction to mass	Make a list of protein	CI5.1	Find out the industrial
predict their annotative	spectrometry.	databases used for	Mass spectrometery: principle,	applications of functional
functionality through NMR		proteomic studies	instrumentation and application in proteome study	proteomics
	805.2	LI5.2 To perform the	CI5.2	SL5.2
	Explain strategies for	SDS-PAGE analysis of	Describe various techniques	List down various steps of
	protein identification	the given protein	used for protein identification	protein engineering
	SO5.3		CI5.3	SL5.3
	Explain Protein sequencing		Describe different methods of	An overview on Mass
			protein sequencing	spectrometery
	SO5.4		CI5.4	SL5.4
	Elaborate Protein			Explain different kinds of
	modifications			protein modifications
	SO5.5		CI5.5	SL5.5
	Elaborate Protein-protein		Describe protein-protein	List down the various
	interaction (Two hybrid		interaction and two hybrid	bioinformatics-based
	interaction screening)		method to detect protein-protein	server/tool and databases
			interaction	

		that assist in study of protein/proteomics
SO5.6 Proteomics and Applications of proteomics	C15.6 Define functional proteomics; Clinical and biomedical application of proteomics, proteome analysis for drug designing	
SO5.7 Describe different proteome database	CI5.8 Study the various databases used for proteomic studies	
SO5.8 Describe Protein engineering	CI5.8 Elaborate detailed strategy of protein engineering	
SO5.9 What is protein chip and its role in proteomic studies	CI5.9 Explain Protein chips	

Suggested Sessional Work (SW): anyone	SW5.1 Assignments	Explain general strategy of protein engineering					
	SW5.2 Mini Project	Describe various applications of proteomic studies					
	SW5.3 Other Activities (Specify)	Prepare one article on the "Mass spectrometery"					

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1 98BT605 . Understand about the fundamentals of genomics and proteomics	9	04	05	01	19
CO2 98BT605 Outline the next-generation sequencing techniques	9	04	04	01	18
CO3 98BT605 . Apply analytical approach to identify protein structures	9	04	03	01	17
CO4 98BT605 . Analyse vaccine designing and protein-ligand interactions for drug discovery	9	04	03	01	17
CO5 98BT605 . Compare various databases and software used in proteomics	9	04	03	01	17
Total Hours	45	20	18	5	88

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Genomics and Proteomics

Course Code: 98BT605

Course Outcomes	Marks	Total Marks			
	Α	An	E	С	
CO1 98BT605. Understand about the fundamentals of genomics and proteomics	2	1	1	1	5
CO2 98BT605 Outline the next-generation sequencing techniques	2	4	5	1	12
CO3 98BT605. Apply analytical approach to identify protein structures	3	5	5	1	14
CO4 98BT605 . Analyse vaccine designing and protein-ligand interactions for drug discovery	2	3	5	1	11
CO5 98BT605. Compare various databases and software used in proteomics	5	4	1	0	10
Total Marks	14	17	17	04	52

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

Books:

S.No.	Title/Author/Publisher details
1	Genes IX by Benjamin Lewin, Johns and Bartlett Publisher, 2006.
2	Modern Biotechnology, 2nd Edition, S.B. Primrose, Blackwell Publishing, 1987.
3	Molecular Biotechnology: Principles and Applications of Recombinant DNA, 4th Edition, B.R. Glick, J.J. Pasternak and
	C.L. Patten, 2010.
4	Molecular Cloning: A Laboratory Manual (3rd Edition) Sambrook and Russell Vol. I to III, 1989.
5	Principles of Gene Manipulation 6th Edition, S.B.Primrose, R.M.Twyman and R.W. Old. Blackwell Science, 2001.
6	Snustad, D.P., Simmons, M.J. (2009). Principles of Genetics. V Edition. John Wiley and Sons Inc.
7	Klug, W.S., Cummings, M.R., Spencer, C.A. (2009). Concepts of Genetics. IX Edition. Benjamin Cummings.

Online Resources: Suggested instructions/Implementation strategies:

Improved lecture Tutorial Case method Group Discussion Role play Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants Demonstration ICT Based teaching Learning Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: VI Semester

Course Title: Genomics and Proteomics

Course Code: 98BT605

CO/PO Mapping																
Course Outcome	Progr	Program Outcomes (POs)											Program (PSOs)	ogram Specific Outcomes SOs)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	
CO1 98BT605 . Understand about the fundamentals of genomics and proteomics	-	1	-	1	2	2	3	-	3	3	3	3	1	2	1	
CO2 98BT605 Outline the next- generation sequencing techniques	-	-	-	-	-	-	2	-	3	2	3	3	3	-	2	

CO3 98BT605 . Apply analytical approach to identify protein structures	-	-	1	1	-	-	3	-	3	1	-	-	1	2	-
CO4 98BT605 . Analyse vaccine designing and protein-ligand interactions for drug discovery	1	-	1	-	2	-	2	3	-	1	-	1	2	1	3
CO5 98BT605 . Compare various databases and software used in proteomics	1	1	1	-	-	2	3	3	1	2	3	3	1	1	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6	CO1 98BT605. Understand about the	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5	1SL-1,2,3,4,5
7,8,9,10,11,12 PSO 1,2, 3	fundamentals of genomics and proteomics	SO1.3 SO1.4 SO1.5 SO1.6 SO1.7 SO1.8 SO1.9	LI 2	1.6, 1.7, 1.8, 1.9	
PO 1,2,3,4,5,6	CO2 98BT605 Outline the next-generation	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4
7,8,9,10,11,12	sequencing techniques	SO2.3 SO2.4 SO2.5 SO2.6	LI2	2.5, 2.6, 2.7, 2.8, 2.9	
PSO 1,2, 3		SO2.7 SO2.8 SO2.9			

PO 1,2,3,4,5,6	CO3 98BT605. Apply analytical approach	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,	3SL-1,2,3
7,8,9,10,11,12	to identify protein structures	SO3.3 SO3.4	112	3.6, 3.7, 3.8, 3.9	
		SO3.5 SO3.6	LI 2		
		SO2.7 SO3.8			
PSO 1,2, 3		SO3.9			
PO 1,2,3,4,5,6	CO4 98BT605 . Analyse vaccine designing	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,	4SL-1,2,3
7,8,9,10,11,12	and protein-ligand interactions for drug	SO4.3 SO4.4	110	4.5, 4.6, 4.7,	
	discovery	50455046	LI 2	4.8,4.9	
		SO 4.5 SO4,6 SO4.7 SO4.8			
PSO 1,2, 3		SO4.7 SO4.8 SO4.9			
1 30 1,2, 3		304.9			
PO 1,2,3,4,5,6	CO5 98BT605. Compare various	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,	58L-1,2,3,4,5
7,8,9,10,11,12	databases and software used in	SO5.3 SO5.4	110	5.6, 5.7, 5.8, 5.9	
	proteomics	SO5.5 SO5.6	LI 2		
	r	SO5.7 SO5.8			
PSO 1,2, 3		SO5.9			

Program Name	Bachelor of Technology (B.Tech.)- E	Bachelor of Technology (B.Tech.)- Biotechnology					
Semester	VI						
Course Code:	8BT606-B						
Course title:	Vaccine Technology Curriculum Developer: Er. Arpit Srivastava, Assistant Professor						
Pre-requisite:	Students should have basic knowledge of immunology and vaccines						

Rationale:	Vaccines are one of the most important discoveries in the history of Medicine. These biological preparations have been highly successful in preventing infectious diseases, significantly reducing the incidence of childhood diseases and mortality. Importance of Designing New Vaccine - Vaccine "teach" your body to defend itself from pathogens like viruses and bacteria. There are numerous viruses and bacteria discovered which can be potential disease-causing agents to Humans. To tackle these potential threats effective vaccines are required. This course will help students to explore new horizons of innovations in Vaccine designing domain.					
Course	CO1-98BT606-B.1. Explain fundamental principles of vaccine science and its role in biotechnology					
Outcomes (COs):	CO2-98BT606-B.2. Outline the effects of Vaccine over immunity					
	CO3-98BT606-B.3. Identify novel strategies for vaccine design and preservation					
	CO4-98BT606-B.4. Examine methods to test the concentration of vaccine					
	CO5-98BT606-B.5. Predict, Design and Compare different vaccines the basis of its production					

Scheme of Studies:

			Scheme	of studies (s (Hours/Week)				
Board of Study	CourseCode	Course Title	Cl	LI	SW	~		Total Credits(C) (L: T:P=3:0:1)	
ProgramElective (PE)	98BT606-B	Vaccine Technology	3	2	1	3	9	4	

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

				Schen	ne of Asses	sment (Marks	s)			
Board of Study	Couse Code	Course Title	Assignment	Class Test 2 (2 best out of 3)	Seminar one		Attendance	Total Marks	End Semester Assessment (ESA)	Total Marks (PRA+
				10 marks each (CT)	(SA)		(AT)			ESA)

			(CA)							
РЕ	98BT606- B	Vaccine Technology	15	20	5	5	5	50	50	100

Scheme of Assessment: Practical

			Scheme of Assessme	ent (Mark	(8)				
			Progressive Assessm	ent (PRA)					Total
Board of Study	Course Code	Course Title			Viva Voce II	Attendance	lotal Marks	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PE	98BT656-B	Vaccine Technology	35	5	5	5	50	50	50

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	06	01	05	21

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT606-B.1. Explain	SO1.1	LI1.1	Unit-1	SL1.1
fundamental principles of vaccine science and its role in biotechnology	Explain the concept of Vaccines	Draw the steps followed in prokaryotic /eukaryotic glycolysis pathways	CI1.1 Introduction to Vaccines	Find out some conventional examples of Indian vaccines
	SO1.2	LI1.2	CI1.2	SL1.2
	Define Basic terminology, scope and application for Vaccines	Draw the steps followed in prokaryotic /eukaryotic TCA pathway	Terminologies associated with Vaccines	Explore conventional papers on Vaccines
	SO1.3	LI1.3	CI1.3	SL1.3
	Elaborate the Historical Aspects of Vaccines	To understand the production and consumption of ATPs involve in glycolysis and TCA cycle	Historical Aspects of Vaccine	Write down few points on applications of Vaccine deign
	SO1.4		CI1.4	SL1.4
	Observe the Applications associated with vaccines		Importance and Applications: Vaccines	Write down few points on Applications of Vaccines
	SO1.5		CI1.5	SL1.5
	Describe types of VAccines		Vaccines and its types	Collect information on career in "Vaccinomics"
	SO1.6		CI1.6	
	Discuss Role of Vaccines in today's medical world		Role of Vaccines in today's medical world	
	SO1.7		CI1.7	

		Item	Cl	LI	SW	SL	Total
		Approx. Hrs	09	04	01	05	19
Illustrate the Improvisations in Vaccines development	Improvisations in development	n Vaccines	I <u> </u>	I	1	I	1
SO1.8 Discuss the Indian scenario with respect to Vaccines	CI1.8 Vaccines – India	n Scenario					
SO1.9 Revision and assessment	CI1.9 Revision a assessment	nd					

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	Describe in detail about "Significance of Indian Vaccines"
	SW1.2 Mini Project	Elaborate the role of Innate Immunity
	SW1.3 Other Activities (Specify)	Draw a flowchart of Adaptive immunity

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
СО2-98ВТ606-В.2.	SO2.1	LI2.1	Unit-2	SL2.1
Outline the effects of Vaccine over immunity	Explain concept of Bacterial and Viral vaccines	Demonstrate the working of Cell Disruption technique	CI2.1	Find out more conventional cell disruption techniques

		Overview of bacterial and viral vaccines and their importance to public health	
SO2.2	LI2.2	CI2.2	SL2.2
Illustrate the mechanism behind Diphtheria based Vaccines	To perform the experiment of production of microbial biomass	Epidemiology and pathophysiology of vaccine preventable diseases with special emphasis on Diphtheria	Read the latest research in bioseparations methods
SO2.3		CI2.3	SL2.3
Illustrate the mechanism behind Titanus based Vaccines		Epidemiology and pathophysiology of vaccine preventable	Write down few points on biological product's properties
		diseases with special emphasis on Titanus	
SO2.4		CI2.4	SL2.4
Illustrate the mechanism behind Pertussis based Vaccines		Epidemiology and pathophysiology of vaccine preventable	Find out the different kinds of filter aids and their role
		diseases with special emphasis on Pertussis	
802.5		CI2.5	
Explain the role of QC in Vaccine design		Consistency approach for vaccine quality improvement	
SO2.6		CI2.6	
Discuss Role Antigens in Vaccine development		Antigens used for immunizations of	
		Equines and storage of antigens	
SO2.7		CI2.7	

in	lustrate the Improvisations a Vaccines development by djuvants	Adjuvants used in immunization of Equines. Storage of adjuvants
D	O2.8 viscuss dose preparation nechanisms	CI2.8 Dose preparation for immunization of equines and immunization of equines for production of antisera
	O2.9 Revision and ssessment	CI2.9 Revision and assessment

Suggested Sessional Work (SW): anyone	SW2.1 Assignments	Describe the role of Macrophages and Autophagy		
work (Sw): anyone	SW2.2 Mini Project	Make a project on Indian Vaccines		
	SW2.3 Other Activities (Specify)	Make Power point presentation on Immunoinformatic		

Item	Cl	LI	SW	SL	Total
Approx. Hrs	09	04	01	03	17

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
СОЗ-98ВТ606-В.З.	803.1	LI3.1	Unit-3	SL3.1
Identify novel strategies for vaccine design and preservation	Define the Regulation of Enzymatic Activity, Models of Feedback inhibition	To perform the Centrifugation process as Unit Operation	CI3.1 Manufacturing bleeding of equines for production therapeutic antisera, collection and separation of plasma	Find out the process of Enzyme inhibition in human metabolism
	SO3.2 Derive the mechanism for Reinfusion of RBC's in equines	Li3.2 To prepare the RBC plate for CFU	CI3.2 Reinfusion of RBC's in equines	SL3.2 Read the process of how Michalis Menten equation was derived
	SO3.3 Analyze the Processing of plasma for the production of therapeutic antisera		CI3.3 Processing of plasma for the production of therapeutic antisera	SL3.3 Write down the steps followed in Lac operon model
	SO3.4 Distinguish among the working mechanism of		CI3.4 Antiserum Filtration: Important in Vaccine Development	

	different Antiserum Filtration techniques		
	SO3.5	CI3.5	
	Explain the role of Testing of venoms (in vivo & in vitro)	Testing of venoms (in vivo & in vitro)	
	803.6	CI3.6	
	Discuss Testing of toxoid (in vivo & in vitro)	Testing of toxoid (in vivo & in vitro)	
	803.7	CI3.7	
	Illustrate the Abnormal Toxicity testing mechanism	Abnormal Toxicity testing: Important factor in vaccine development	
	SO3.8	CI3.8	
	Illustrate the Abnormal Sterility testing mechanism	Sterility testing: Important factor in vaccine development	
	SO3.9 Revision and assessment	CI3.9 Revision and assessment	
Suggested Sessional	SW3.1 Assignments	Describe the role of Adjuvants in Vaccines	
Work (SW): anyone	SW3.2 Mini Project	Make a project on RBC Infusion Protocol: Vaccine Development	
SW3.3 Other Activities (Specify) Make Power point Different Testings used in Vaccine Development			

				Item	Cl]	LISV	N	SL	Total	
				Approx. Hrs	09	(04 01		04	18	
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)		Self-Learning (SL)						
CO4-98BT606-B.4. Examine methods to test the concentration of vaccine	SO4.1 Distinguish among different nodes and branches in MFA	LI4.1 To perform the Column Chromatography & Filtration process as Unit Operation for extraction of different compounds	Unit-4 CI4.1 Production of Proteus agglutinating suspension for Weil Felix Test		SL4.1 Find out the types of classifications of nodes in MFA					s in	
	SO4.2 Distinguish among different theories of MFA	LI4.2 to perform Weil Felix test	CI4.2 Production of Vil antisera	brio cholera	SL4.2 Write down some more examples of Tissue dynamics					e	
	SO4.3 Analyze the Preparation of absorbing suspension of V. Cholera		CI4.3 Preparation of absorbing suspension of V. Cholera CI4.4 Filtration, preservation, labelling and storage of antisera CI4.5		SL4.3 List down the role of MFA in metabolism					ſFA	
	SO4.4 Discuss the Filtration, preservation, labelling and storage of antisera SO4.5				SL4.4 List down the steps involve in Lysine biosynthesis				rolve		
	Interpret the mechanism for Immunization of rabbits SO4.6 Discuss Typhoid Antigen preparation		Immunization of CI4.6 Typhoid Antigen								

SO4.7 Illustrate the Production of <i>Salmonella</i> antisera	CI4.7 Production of Salmonella
Source SO4.8 Illustrate the Preparation of absorbing suspension of Salmonella	antisera CI4.8 Preparation of absorbing suspension of Salmonella
SO4.9 Revision and assessment	CI4.9 Revision and assessment

Suggested Sessional	SW4.1 Assignments	Determine the working mechanism and applications of Tissue Dynamics
Work (SW): anyone	SW4.2 Mini Project	Derive the Qualitative and Quantitative data optimization and retrieval through MFA in isotopic labelling
	SW4.3 Other	Make a presentation on Lysine biosynthesis and its importance in metabolism
	Activities (Specify)	

			Item Approx. H	Cl LI SW SL Total rs 9 02 01 05 17
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-98BT606-B.5. Predict, Design and Compare different vaccines the basis of its production	SO5.1 Elucidate the protocol for testing of Vaccines	LI5.1 To determine the AA sequences comparison on the basis of peptide mapping using ProteoMapper (Server/tool)	Unit-5 CI5.1 Maintenance and use of national reference standards for testing of vaccines	SL5.1 Explore amino acid metabolism in eukaryotes
	SO5.2 Interpret the role of animals in the quality control testing of vaccines		CI5.2 Role of animals in the quality control testing of vaccines	SL5.2 Write down the enzymes associated in glycolysis
	SO5.3 Describe the maintenance and handling of small laboratory animals during quality control testing		CI5.3 Maintenance and handling of small laboratory animals during quality control testing	SL5.3 List down various kinds of amino acids and their structures
	SO5.4		CI5.4	SL5.4

Describe the Ethical Aspects and Issues in vaccine Design and Development	Ethical Aspects and Issues in vaccine Design and Development	List down the applications of CRISPR
SO5.5 Describe Active viable air sampling of classified areas	CI5.5 Active viable air sampling of classified areas by HI-AIR PETRITM AIR SAMPLING SYSTEM	SL5.5 List down the various bioinformatics-based server/tool that assist in study of metabolism
SO5.6 Explain the different types of reporting methods	CI5.6 Preparation of results, documentation, reporting and maintenance of records	
SO5.7 Discuss Quality control tests of antisera: Potency test.	CI5.7 Quality control tests of antisera: Potency test.	
SO5.8 Illustrate the Production of <i>COVID-19 Vaccine</i>	CI5.8 Production of <i>COVID-19</i> Vaccine	
SO5.9 Illustrate the Preparation COVID-19 Vaccines – Indian Scenario. Discuss Immunoinformatics and Epitope Design	CI5.9 COVID-19 Vaccines – Indian Scenario Immunoinformatics and Epitope Design: Dry Lab method in Vaccine designing	

Suggested Sessional	SW5.1 Assignments	Explain general mechanism behind Preparation of COVID-19 Vaccines
Work (SW): anyone	SW5.2 Mini Project	Describe the applications of Vaccines
	SW5.3 Other	Prepare one article on the "Immunological Response of COVID-19 Vaccines"
	Activities (Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Vaccine Technology		Cours	se Code: 98BT606-1	8	
Course Outcomes (COs)	Class lecture	Laboratory	Self-Learning	Sessional work	Total Hours
	(CI)	Instruction (LI)	(SL)	(SW)	(Li+CI+SL+SW)

CO1-98BT606-B.1. Explain fundamental principles of vaccine science and its role in biotechnology	9	6	5	1	21
CO2-98BT606-B.2. Outline the effects of Vaccine over immunity	9	4	5	1	19
CO3-98BT606-B.3. Identify novel strategies for vaccine design and preservation	9	4	3	1	17
CO4-98BT606-B.4. Examine methods to test the concentration of vaccine	9	4	4	1	18
CO5-98BT606-B.5. Predict, Design and Compare different vaccines the basis of its production	9	2	5	1	19
Total Hours	45	20	22	05	94

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Vaccine Technology

Course Code: 98BT606-B

Course Outcomes	Marks Distribution						
	A	An	Ε	С	Total Marks		
CO1-98BT606-B.1. Explain fundamental principles of vaccine science and its role in biotechnology	2	1	1	1	5		
CO2-98BT606-B.2. Outline the effects of Vaccine over immunity	2	4	5	1	12		
CO3-98BT606-B.3. Identify novel strategies for vaccine design and preservation	3	5	5	1	14		
CO4-98BT606-B.4. Examine methods to test the concentration of vaccine	2	3	5	1	11		
CO5-98BT606-B.5. Predict, Design and Compare different vaccines the basis of its production	5	4	1	0	10		
Total Marks	14	17	17	04	52		

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

Books:

S.No.	Title/Author/Publisher details
1	Vaccines. 6th Edition, Stanley Plotkin Walter Orenstein Paul Offit.
2	New Generation Vaccines. Fourth Edition, Myrone M. Levine, Myron M. Levine, Gordon Dougan, Michael F. Good, Margaret A. Liu,
	Gary J. Nabel, James P. Nataro, Rino Rappuoli.
3	J.C. Janson And L. Ryden, (Ed.) – Protein Purification – Principles, High Resolution Methods And Applications, VCH Pub. 1989.
4	Fundamentals of Biochemistry. Author, JL Jain et al. Edition, reprint. Publisher, S. Chand Publishing, 2004.
5	Kuby Immunology. Thomas J. Kindt, Richard A. Goldsby, Barbara A. Osborne, Janis Kuby
6	"Biotechnology – Questioning The Reasons" – 2 nd Edition, Arpit Srivastava, (2024), Book Rivers Publication - India

Online Resources:

Suggested instructions/Implementation strategies:

Improved lecture Tutorial Case method Group Discussion Role play Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants Demonstration ICT Based teaching Learning Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: VI Semester

Course Title: Vaccine Technology

Course Code: 98BT606-B

CO/PO Mapping															
Course Outcome	Progr	rogram Outcomes (POs)											Program Specific Outcomes (PSOs)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT606-B.1. Explain fundamental principles of vaccine science and its role in biotechnology	-	1	-	1	2	2	3	-	3	2	2	3	1	2	1
CO2-98BT606-B.2. Outline the effects of Vaccine over immunity	-	1	-	-	1	-	3	1	2	2	3	3	2	-	2
CO3-98BT606-B.3. Identify novel strategies for vaccine design and preservation	-	1	1	1	-	-	1	-	2	1	1	2	3	2	-
CO4-98BT606-B.4. Examine methods to test the concentration of vaccine	-	-	1	-	2	2	3	3	-	1	3	3	2	1	3

CO5-98BT606-B.5. Predict,															
Design and Compare different vaccines the basis of its production	1	-	1	2	-	2	3	3	1	2	2	2	1	1	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6	CO1-98BT606-B.1. Explain fundamental	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5,	1SL-1,2,3,4,5
7,8,9,10,11,12	principles of vaccine science and its role in biotechnology	SO1.3 SO1.4 SO1.5 SO1.6	LI 2	1.6, 1.7, 1.8	
		SO1.7 SO1.8	LI 3		
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO2-98BT606-B.2. Outline the effects of	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4
7,8,9,10,11,12	Vaccine over immunity	SO2.3 SO2.4 SO2.5 SO2.6	LI 2	2.5, 2.6, 2.7, 2.8	
		SO2.7 SO2.8			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO3-98BT606-B.3. Identify novel strategies	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,	3SL-1,2,3
7,8,9,10,11,12	for vaccine design and preservation	SO3.3 SO3.4		3.6, 3.7, 3.8	
		SO3.5 SO3.6			
		SO3.7 SO3.8			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO4-98BT606-B.4. Examine methods to test	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,	4SL-1,2,3,4
7,8,9,10,11,12	the concentration of vaccine	SO4.3 SO4.4		4.5, 4.6, 4.7, 4.8	
		SO4.5 SO4.6			
		SO1.7 SO1.8			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO5-98BT606-B.5. Predict, Design and	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,	5SL-1,2,3,4,5
7,8,9,10,11,12	Compare different vaccines the basis of its production	SO5.3 SO5.4 SO5.5 SO5.6	LI 2	5.6, 5.7, 5.8, 5.8, 5.9, 5.10	

	SO5.7 SO5.8		
	SO5.9 SO5.10		
PSO 1,2, 3			

Program Name	Bachelor of Technology (B. Tech)- Bio	technology							
Semester	VI								
Course Code:	98BT607								
Course title:	Advance Bioanalytical Techniques	Curriculum Developer: Dr. Ashwini A. Waoo, Professor							
Pre-requisite:	Student should have foundational knowled bioanalytical methods	dge in biology, chemistry, and analytical instrumentation. Additionally, familiarity with basic							
Rationale:	Students have acquired fundamental knowledge in biotechnology and related sciences. Introducing advanced bioanalytical techniques in the 6th semester allows students to deepen their understanding of analytical methods crucial for biotechnological research and industry applications. It equips them with practical skills necessary for addressing complex biological challenges and fosters their readiness for professional roles in biotechnology, pharmaceuticals, and research.								
Course Outcomes (COs):	98BT607CO11: Students will be proficient in employing various microscopy techniques for detailed sample analysis and understand the principles behind high-throughput screening methods,								
	98BT607CO12: Students will grasp seq	uencing technology evolution and gain proficiency in diverse genomics research applications.							
	98BT607CO13: Students will master a disciplines.	diverse range of spectroscopic techniques, enhancing their analytical capabilities across scientific							
	98BT607CO14: Students will develop e separation and analysis of complex mixtu	expertise in chromatographic techniques, specifically GCMS and LCMS, enabling precise res in various fields							

Scheme of Studies:

	CourseCode	Course Title	Scheme	of studies (
Board of Study			Cl	LI	SW	5 L		Total Credits(C) (L:T:P=3:0:1)
ProgramCore (PCC)	98BT607	Advance Bioanalytical Techniques	3	2	1	1	7	4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

			Scheme of Assessm	ent (Marks)					
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number		Seminar one (SA)	Class Attendance (AT)	Total Marks	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)

ProgramCore (PCC)	98BT607	Advance Bioanalytical Techniques			10				
			15	20	10	5	50	50	100

Scheme of Assessment: Practical

			Scheme of Assessm	nent (Ma	rks)				
			Progressive Assessr		Tatal				
Board of Study	Course Code	Course Title		Viva Voce I	Viva Voce II	Class Attendance (AT)	lotal Marks	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
ProgramCore (PCC)	98BT657	Advance Bioanalytical Techniques lab	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

LI	SW	SL	Total
04	01	05	19
	04	04 01	04 01 05

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO11: Students will be proficient in employing various microscopy techniques for detailed sample analysis and understand the principles behind high-throughput screening methods,	Understand working of live cell imaging		Unit-1 CI1.1 Live cell imaging,	Study videos on live cell imaging
	Illustrate the mechanism of confocal microscopy		CI1.2 Confocal microscopy and	What are various components of confocal Microscope
	Understand fluorescence microscopy		CI1.3 sample preparation for fluorescence microscopy	Write applications of fluorescence microscopy
	content/throughput		CI1.4 High content/throughput screening -	Study videos of High content/throughput screening
	Describe basics of SEM	LI1.1 Virtual demonstration of SEM	CI1.5 Basics of SEM &	
	Illustrate the technique of Specimen preparation for SEM		CI1.6 Specimen preparation for SEM -	

	LI1.2 Virtual demonstration of TEM	CI1.7 Basics of TEM &	
Knowledge about Specimen preparation for TEM		CI1.8 Specimen preparation for TEM.	
Revision and assessment		CI1.9 Revision and assessment	

Suggested Sessional Work (SW): anyone	SW1.1 Assignments	Enlist differences between SEM and TEM							
(Sw). unyone	SW1.2 Mini Project	Describe mode of action of High content/throughput screening .							
	SW1.3 Other Activities (Specify)	Find out DNA extraction protocol for insect cell.	Item	Cl	LI	SW	SL	Total	
			Approx. Hrs	09	04	01	05	19	

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)	
CO12: Students will grasp sequencing technology evolution and gain proficiency in diverse genomics research applications.	SO2.1 Illustration of High- Throughput Next generation sequencing (HT-NGS) platforms	hroughput Next generation DNA sequencing and		SL2.1 Learn High-Throughput Next generation sequencing (HT-NGS) platforms	
	SO2.2 Illustration of DNA Sequencing	LI2.2 To demonstrate Illumina Solexa sequencing and analyze the output.	CI2.2 First generation sequencing platform:	SL2.2 Explain Sanger DNA sequencing	
	SO2.3 Understand working of Sanger DNA sequencing		CI2.3 Sanger DNA sequencing-	SL2.3 Learn mechanism and applications of Roche 454	

SO2.4 Acquire knowledge about Illumina Solex	CI2.4 Illumina Solexa and	SL2.4 Discuss the Illumina Solex
SO2.5 Assessing the need of Solid next generation genome sequencing	CI2.5 SoLiD next generation genome sequencing	
SO2.6 Explaining he Third generation sequencing platforms	CI2.6 Third generation sequencing platforms: Single molecular sequencing:	
SO2.7 Explaining Helico high speed genome sequencing	CI2.7 Helico high speed genome sequencing	SL2.5 Give Helico high speed genome sequencing -
SO2.8 high speed sequencing platform	CI2.8 high speed sequencing platform	
SO2.9 Revision and assessment	CI2.9 Revision and assessment	

Suggested Sessional Work (SW): anyone	SW2.1 Assignments	Describe High-Throughput Next generation sequencing (HT-NGS) platforms
work (Sw). unyone	SW2.2 Mini Project	Explain the Sanger DNA sequencing.
	SW2.3 Other Activities (Specify)	Prepare chart on Helico high speed genome sequencing

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction	Self-Learning (SL)
			(CI)	
CO13: Students will master a diverse range of spectroscopic techniques, enhancing their analytical capabilities across scientific disciplines.	Demonstrate the UV-Visible light spectroscopy	LI3.1 Demonstration of Beer Lambert Law	Unit-III Introduction to UV, Visible light spectroscopy,	Read about types of spectroscopy
	SO3.2 Illustration of Fluorescence spectroscopy,	LI 3.2 Demonstration of UV visible spectrophotometer	Flouroscence spectroscopy,	Draw a fluorescence spectroscopy
	SO3.3 Apply and analyze CD spectroscopy and luminometry		luminometry, CD spectroscopy,	Explain luminometry and CD spectroscopy
	SO3.4 Evaluate Light scattering, Atomic spectroscopy,		Light scattering, Atomic spectroscopy,	
	SO3.5 Describe IR and Raman spectroscopy,		IR and Raman spectroscopy,	
	SO3.6 Demonstrate the use of surface plasmone resonance,		surface plasmone resonance ,	Write a note on Cl3.6 surface plasmone resonance
	SO3.7 Describe Electron paramagnetic resonance,		Electron paramagnetic resonance,	
	SO3.8 Describe		X-ray diffraction	Diagrammatically explain X ray

		X-ray diffraction techniques			tec	hni	ques.	dif	fracti	on			
	so	3.9 Revision and assessment			Revisio ass		and ment						
					Item	It	emîl	LI	SCW	ISIL	SMøt	alSL	Total
					Approx. H	r s }	p p Øox	. HØs	019	0045	021	05	19
Suggested Sessional Work (SW): anyone	SW3.1 Assignments	Describe princ	ciples and types of spectrosco	opies				•					
work (Sw). unyone	SW3.2 Mini Project	Describe the s	significance of UV visible spe	ectrosc	сору								
	SW3.3 Other Activities (Specify)	Prepare list of	compounds analysed by NM	IR, IR	and UV Visi	ble	spectr	ropho	tomete	er			

Course Outcome (CO)	Session Outc	omes (SOs)	Laboratory	Classroom Instruction (CI)	Self-Learning (SL)
Suggested Sessional Work (SW):	anyone	SW4.1 Assignments	Instruction (LI)	Describe principles and strategies of GC I	VIS and LC MS
CO14: Students will develop expertise in chromatographic techniques,	Develop unde	e	LI 4.1 Virtual Demonstration of	Describe the technomes of heavy the tal a mass spectrometric	nalysis Learn about GC MS
specifically GCMS and LCMS, enabling precise separation and analysis of complex mixtures in various fields		SW4.3 Other Activities (Specify)	Prepare list of santplesoar(@theWS)ate for ICP MS	analysis in GC MS, LC MS,
		Illustrate mechanism of LC MS	LI4.2 Virtual Demonstration of LCMS	liquid chromatography with mass spectrometric detection (LC-MS),	Discuss challenges LC MS
		Ananlyze key features ICPMS	LI4.3 Virtual Demonstration of ICPMS	inductively coupled plasma with mass spectrometric detection (ICP-MS).	Video for ICPMS
		Evaluate strategies and analysis of HPLC data		Metal analysis by ICP-MS; Analysis of data: HPLC chromatograms,	SL4.4 Study heavy metals and its Metal analysis
		Evaluate the need of Adsorption Chromatography, partition chromatography		Chromatographic performance parameters, Adsorption Chromatography,	
		Evaluate the need of partition chromatography		partition chromatography,	SL4.5 Evaluate the technique of adsorption and partition chromatography
		Apply Ion exchange chromatography in appropriate samples		Ion exchange chromatography,	
		Explain Molecular exclusion chromatography		Molecular exclusion chromatography	
		Revision and assessment		Revision and assessment	

				Item Cl LI		SW	SL	Total		
				Approx. Hrs	09	2	01	05	18	
Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Clas	sroom Instructio	on (C	I)	Sel	f-Lea	rning (Sl	L)
CO15: Students will grasp flow cytometry fundamentals, including fluorochromes, experimental design, and fluorescence quantitation. They will also learn electrophoresis techniques	Demonstrate working of flow cytometer		Unit	Flow Cyt Intro flow	low Cytometer: Introduction to flow cytometry-		prin		urn about of flow r	
	Illustrate the basics of Fluorochromes and fluorescence			Fluoroch fluor	romes escen				urn about Fluoroch escence	
	Evaluate the need of fluorescence quantitation			desig fluor	Experimental design and fluorescence quantitation-		SL5.3 Give role of fluorescence quantitation in resear			
	Illustrate Compensation and gating, Normalization Probability Binning			quantitation- Compensation and gating, Normalization Probability Binning -		gating, Compo Normalization and gating, Probability Normalization		Compens g, ation	sation	
	Analyze the advantages of electrophoresis of proteins	LI5.1 Electrophoresis of DNA		1	oresis eins ar eic aci	nd		ing el	ve precat ectrophot	
	Describe capillary electrophoresis,			capillary elect	ropho	oresis,				
	Evaluate the need of Microchip electrophoresis.			Microchij elect	p ropho	oresis				

Types of microchips	Types of microchips	
Revision and assessment	Revision and assessment	

Suggested Sessional Work (SW): anyone	SW5.1 Assignments	Describe principles and mechanism of flow cytometry
work (Sw). unyone	SW5.2 Mini Project	Describe the applications of electrophoresis
	SW5.3 Other Activities (Specify)	Describe PAGE and SDS PAGE

Course duration (in hours) to attain Course Outcomes:

Course Title: Advance Bioanalytical Techniqu	es
---	----

Course Title: Advance Bioanalytical Techniques				Course Code	e: 98BT607
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO11: Students will be proficient in employing various microscopy techniques for detailed sample analysis and understand the principles behind high-throughput screening methods,	9	4	5	1	19
CO12: Students will grasp sequencing technology evolution and gain proficiency in diverse genomics research applications.	9	4	5	1	19
CO13: Students will master a diverse range of spectroscopic techniques, enhancing their analytical capabilities across scientific disciplines.	9	4	5	1	19
CO14: Students will develop expertise in chromatographic techniques, specifically GCMS and LCMS, enabling precise separation and analysis of complex mixtures in various fields	9	6	5	1	21
CO15: Students will grasp flow cytometry fundamentals, including fluorochromes, experimental design, and fluorescence quantitation. They will also learn electrophoresis techniques	9	2	5	1	17

Total Hours	45	20	25	05	83	
					i	

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:
Course Title: Advance Bioanalytical TechniquesCourse Code:98BT607

Course Outcomes					
	Α	Α	Е	С	Total Marks
98BT607CO11: Students will be proficient in employing various microscopy techniques for detailed sample analysis and understand the principles behind high-throughput screening methods,	03	01	01	01	06
98BT607CO12: Students will grasp sequencing technology evolution and gain proficiency in diverse genomics research applications.	02	04	02	02	10
98BT607CO13: Students will master a diverse range of spectroscopic techniques, enhancing their analytical capabilities across scientific disciplines.	03	05	05	01	14
98BT607CO14: Students will develop expertise in chromatographic techniques, specifically GCMS and LCMS, enabling precise separation and analysis of complex mixtures in various fields	02	03	05	00	10
98BT607CO15: Students will grasp flow cytometry fundamentals, including fluorochromes, experimental design, and fluorescence quantitation. They will also learn electrophoresis techniques	05	04	00	01	10
Total Marks	15	17	13	05	50

Legend: A: Apply, A: Analyze E: Evaluate, C: Create

Suggested learning Resources:

Books:

	S	Title
I	No.	
1		Skoog, D.A., Crouch, S.R., and Holler, F.J. "Principles of Instrumental Analysis", 6th edition, Brooks/Cole,
		USA, 2006.
2		Williams, D. and Fleming, I. "Spectroscopic Methods in Organic Chemistry", 6th edition, McGraw-Hill Higher
		Education, Maidenhead, UK, 2008.

Freifelder D., Physical Biochemistry, " <i>Application to Biochemistry and Molecular Biology</i> ", 2nd Edition, W.H. Freeman & Company, San Fransisco, 1982.
Keith Wilson and John Walker, "Principles and Techniques of Practical Biochemistry", 5th Edition, Cambridge University Press, 2000.

Online Resources:

Suggested instructions/Implementation strategies:

Improved lecture Tutorial Case method Group Discussion Role play Visit to virology lab (BSL-3) Demonstration ICT Based teaching Learning Brainstorming

CO, PO and PSO Mapping

Program Title: B. Tech. Biotechnology

Semester: VI

Course Code: 98BT607

Course Title: Advance Bioanalytical Techniques

CO/PO Mapping		
Course Outcome	Program Outcomes (POs)	Program Specific Outcomes (PSOs)

COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
COI1: Students will be proficient in employing various microscopy techniques for detailed sample analysis and understand the principles behind high- throughput screening methods,	-	-	1	2	2	2	2	-	2	2	2	3	3	-	-
CO12: Students will grasp sequencing technology evolution and gain proficiency in diverse genomics research applications.	-	-	-	-	-	-	-	-	2	2	3	3	2	-	1
CO13: Students will master a diverse range of spectroscopic techniques, enhancing their analytical capabilities across scientific disciplines.	-	1	2	2	-	2	2	-	3	3	3	1	2	2	1
CO14: Students will develop expertise in chromatographic techniques, specifically GCMS and LCMS, enabling precise separation and analysis of complex mixtures in various fields	-	1	2	2	2	2	2	3	-	2	2	2	2	2	2
CO15: Students will grasp flow cytometry fundamentals, including fluorochromes, experimental design, and fluorescence quantitation. They will also learn electrophoresis techniques	1	1	1	-	-	3	3	3	1	2	3	2	2	2	1

Legend: (1) Low (2) Medium (3) High

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2,3	CO11: Students will be proficient in employing various microscopy techniques for detailed sample analysis and understand the principles behind high-throughput screening methods,	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO1.6	LI 1, LI 2	1.1,1.2,1.3,1.4,1.5, 1.6, 1.7, 1.8,1.9	1SL-1,2,3,4,5

PO 1,2,3,4,5,6,7,8,9,10,11,12	CO12: Students will grasp sequencing technology evolution and gain proficiency in diverse genomics research applications.	SO1.7 SO1.8 SO1.9 SO2.1 SO2.2 SO2.3 SO2.4	LI 1, LI 2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,2.8,	2SL-1,2,3,4,5
PSO 1,2,3		SO2.5 SO2.6 SO2.7 SO2.8 SO2.9		2.9	
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2,3	CO13: Students will master a diverse range of spectroscopic techniques, enhancing their analytical capabilities across scientific disciplines.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5 SO3.6 SO3.7 SO3.8 SO3.9	LI 1, LI 2	3.1,3.2,3.3,3.4,3.5, 3.6, 3.7, 3.8, 3.9	3SL-1,2,3,4,5
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2,3	CO14: Students will develop expertise in chromatographic techniques, specifically GCMS and LCMS, enabling precise separation and analysis of complex mixtures in various fields	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6 SO4.7 SO4.8 SO4.9	LI 1, LI 2, LI 3	4.1,4.2,4.3,4.4, 4.5, 4.6, 4.7, 4.8, 4.9	4SL-1,2,3,4,5
PO 1,2,3,4,5,6,7,8,9,10,11,12 PSO 1,2,3	CO15: Students will grasp flow cytometry fundamentals, including fluorochromes, experimental design, and fluorescence quantitation. They will also learn electrophoresis techniques	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6 SO5.7 SO5.8	LI1	5.1,5.2,5.3,5.4,5.5, 5.6, 5.7, 5.8, 5.9	5SL-1,2,3,4,5

Curriculum Development Team

Prof. Kamlesh Choure Prof Ashwini A. Waoo Prof. Deepak Mishra Er. Arpit Srivastava

Program Name	B. Tech. Biotech Semester-								
Semester	VI th								
Course Code:	98BT606-A								
Course title:	e title: Food Biotechnology Curriculum Developer: Mrs. Maahi choure								
Pre-requisite:	A foundational knowledge of molecular biology, microbiology, and biochemistry is necessary to understand and apply biotechnologi techniques in food science.								
Rationale:	• •	for enhancing food quality, safety, and nutritional value, while also increasing agricultural o meet the demands of a growing global population.							
Course Outcomes (COs):		ental principles of food science and chemistry I and harmful effects of microorganisms.							
	98BT656CO3. Identify microbes	s for development of functional food							
	98BT656CO4. Examine method	s that increase shelf life and food quality							
	98BT656CO5. Compare the mic	robes on the basis of their morphological characteristics							

Scheme of Studies:

			Scheme	of studies (Hours/We	ek)		
Board of Study	CourseCode	Course Title	Cl	LI	SW	21	Lata Study Laws	Total Credits(C) (L:T:P=3:0:1)
Program elective (PE)	98BT606-A	Food Biotechnology	3	2	1	1	7	4

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome

Scheme of Assessment: Theory

			Scheme of A	Assessment	t (Marks)				
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each	Class Test 2 (2 best out	Seminar one	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)

Program	98BT606-A	Food Biotechnology							
elective (PF)			16	19	5	5	5	50	50
(1 E)									

Scheme of Assessment: practical

			Scheme of Assessm	ent (Mar	·ks)				
			Progressive Assessm	nent (PRA	A)				Total
Roard of Study	Course Code	Course Title			Viva Voce II	Class Attendance (AT)	lotal Marks	End Semester Assessment (ESA)	Marks (PRA+ ESA)
Program elective (PE)	98BT656- A	Food Biotechnology	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction, including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Item	C1	LI	SW	SL	Total
Approx. Hrs	09	04	01	02	16

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
98BT656 CO1. Explain the fundamental principles of food science and chemistry	SO1.1 Factors Affecting Microbial Growth	LI1.1 Observe effects of temperature, pH, and moisture on microbial growth in food samples.	CI1.1 Introduction to factors affecting microbial growth in food.	SL1.1 Research on intrinsic and extrinsic factors influencing microbial growth in food.
	SO1.2 Microbial Spoilage of Milk	LI1.2 Identify microorganisms involved in spoilage of milk through culture techniques.	CI1.2 Study microbial spoilage mechanisms in milk.	SL1.2 Read articles on microbial spoilage of milk and its prevention.
	SO1.3 Microbial Spoilage of Meat		CI1.3 Analyze microbial spoilage processes in meat.	
	SO1.4 Microbial Spoilage of Plant Products		CI1.4 Understand microbial spoilage in plant products.	
	SO1.5 Methods to Prevent Microbial Spoilage		CI1.5 Discuss methods to prevent microbial spoilage in food.	

SO1.6 Comparison of Spoilage in Different Foods	CI1.6 Compare microbial spoilage across different food types.	
SO1.7 Review of Key Concepts	Cl1.7 Recap on key factors and methods for preventing spoilage.	
SO1.8 Case Studies Spoilage	Cl1.8 Analyze real-world cases of food spoilage.	
SO1.9 Advances in Spoilage Prevention	Cl1.9 Study recent advancements in food preservation.	

SW1.2 Mini Project Group Assignment – microbial spoilage Item Cl LI SW SL Total SW1.3 Other Activities (Specify) Evaluate students based on their technique, accuracy, and lab equipment skills. 0 16	Suggested Sessional Work (SW): anyone	SW1.1 Assignments	Design mini-project research a specific microbial spoilage problem in a food product of choice and present findings, including the microorganism involved, spoilage mechanisms, and prevention strategies.						
SW1.3 Other Activities (Specify) Evaluate students based on their technique, acquracy, and lab equipment skills		SW1.2 Mini Project	Group Assignment – microbial spoilage	Item	Cl	LI	SW	SL	Total
Approx. Hrs 09 4 1 2 16		SW1.3 Other Activities (Specify)	Evaluate students based on their technique, acc	uracy, and lab e Approx. Hrs	quipm 09	ent sl 4	cills. 1	2	16

Course	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
Outcome (CO)				

98Bt606CO2.	SO2.1 Bacterial Agents of	LI2.1 Isolate and identify	CI2.1 Overview of bacterial	SL2.1 Study the characteristics of
Outline the	Foodborne Illness	bacterial pathogens from food	pathogens causing foodborne	major bacterial foodborne
beneficial and		samples.	illnesses.	pathogens.
harmful effects of	SO2.2 Clostridium and Listeria	LI2.2 Perform tests to detect	CI2 2 Detailed study of	SL2.2 Read about outbreaks and
microorganisms.	SO2.2 Clostrialum and Listeria	Clostridium and Listeria in food samples.	CI2.2 Detailed study of Clostridium and Listeria- related foodborne illnesses.	case studies involving Clostridium and Listeria.
	SO2.3 Salmonella and Shigella		CI2.3 Explore Salmonella and Shigella in foodborne illness cases.	
	SO2.4 Staphylococcus and Vibrio		CI2.4 Study the effects of Staphylococcus and Vibrio on food safety.	
	SO2.5 Yersinia and Non-Bacterial Agents		Cl2.5 Investigate Yersinia and non-bacterial agents affecting foodborne illnesses.	
	SO2.6 Toxigenic Algae and Fungi		CI2.6 Study the role of toxigenic algae and fungi in foodborne illnesses.	
	SO2.7 Foodborne Viruses		CI2.7 Explore the impact of foodborne viruses on health and safety.	
	SO2.8 Review of Foodborne Pathogens		CI2.8 Summarize key concepts related to foodborne pathogens.	
	SO2.9 Case Studies on Foodborne Illnesses		CI2.9 Discuss real-world cases of foodborne illnesses.	

Suggested Sessional	SW2.1 Assignments	Write about the Staphylococcus: Characteristics, toxins (enterotoxins), diseases	
Work (SW): anyone		(staphylococcal food poisoning), sources, and prevention.	

	Item	Cl	LI	SW	SL	Total
	Approx. Hrs	09	4	1	2	16
SW2.2 Mini Project	Prepare a case studies on food borne pathogen					
SW2.3 Other Activities (Specify)) Find out some you tube videos based on the pathogens, clinical manifestations,.					

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
98BT606CO3. Identify microbes for development of	SO3.1 Fermented Milk Products	LI3.1 Prepare and analyze fermented milk samples.	CI3.1 Study the fermentation processes in milk products.	SL3.1 Learn about the health benefits and production methods of fermented milk.
functional food	SO3.2 Cheese and Sauerkraut	LI3.2 Produce cheese and sauerkraut and test for microbial activity.	CI3.2 Explore the production processes of cheese and sauerkraut.	SL3.2 Research the microbial cultures used in cheese and sauerkraut production.
	SO3.3 Fermented Meat Products		CI3.3 Analyze the role of fermentation in meat preservation.	
	SO3.4 Beer and Vinegar Production	70.5	CI3.4 Understand the microbial processes involved	

	in beer and vinegar production.	
SO3.5 Mold Fermentation	CI3.5 Study the role of molds in fermentation processes.	
SO3.6 Benefits of Fermented Foods	CI3.6 Discuss the nutritional and health benefits of fermented foods.	
SO3.7 Microbial Cultures in Fermentation	CI3.7 Examine the role of specific microbial cultures in fermentation.	
SO3.8 Review of Fermentation Processes	CI3.8 Summarize the key concepts of fermentation in food production.	
SO3.9 Case Studies on Fermented Foods	Cl3.9 Discuss real-world applications of fermentation in food industry.	

Suggested Sessional Work (SW): anyone	SW3.1 Assignments	Remember fermentation
WORK (SW). unyone	SW3.2 Mini Project	To do the case studies on fermented foods
	SW3.3 Other Activities (Specify)	Explore online tutorials and resources on meat processing.

				Item	Cl	LI	SW	SL	Total
				Approx. Hrs	09	4	1	2	16
Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Ins	truction (CI)	\$	Self-L	earnin	g (SL)
98BT606CO4. Examine methods that increase shelf life and food quality	SO4.1 Direct Microscopic Examination	LI4.1 Perform direct microscopic examination of food samples.		oscopic techniques for food of the formation.			SL4.1 Review methods for direct microscopic examination in food microbiology.		
	SO4.2 Culture Techniques	LI4.2 Apply various culture techniques to isolate microorganisms from food.	CI4.2 Study the principles of culture techniques in food microbiology.		c	SL4.2 Learn about different culture mec and their application			
SO4.3 MPN Count			CI4.3 Understar method for mic quantification.						
	SO4.4 Dye Reduction Assay		Cl4.4 Discuss the use of dye reduction assays in evaluating microbial growth.						
	SO4.5 Immunological Methods		CI4.5 Explore immunological techniques for foodborne pathogen detection.						

SO4.6 Advanced Techniques	CI4.6 Introduction to advanced microbiological techniques for food testing.
SO4.7 Review of Examination Methods	CI4.7 Summarize key methods for microbiological examination of foods.
SO4.8 Case Studies in Microbiological Testing	CI4.8 Discuss real-world applications and challenges in microbiological testing.
SO4.9 Innovations in Microbiological Techniques	CI4.9 Study recent advancements in microbiological techniques for food analysis.

Suggested Sessional Work (SW): anyone	SW4.1 Assignments	Various culture techniques
work (Sw). unyone	SW4.2 Mini Project	To list out the various microbial examination
	SW4.3 Other Activities (Specify)	Understand dye reduction assay

				Item	Cl	LI	SW	SL	Total		
				Approx. Hrs	09	4	1	2	16		
Course Outcome (CO)	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Classroom Instr	uction (CI)	Self-Learning (SL)						
CO5. Compare the microbes on the basis of their morphological characteristics	SO5.1 Physical Preservation Methods	LI5.1 Test the effectiveness of physical preservation methods (e.g., heat, freezing).	CI5.1 Overview of methods for food preservation.		SL5.1 Research different physical preservation techniques and their impacts.				n		
	SO5.2 Chemical Preservation Methods	LI5.2 Apply chemical preservatives to food samples and assess their effectiveness.	CI5.2 Study chen preservation me their safety impli	thods and	and	regu mical	arn ab llation: l prese	s of	ne use ves in		
	SO5.3 Biological Preservation Methods		CI5.3 Discuss bio preservation me their mechanism	thods and							
	SO5.4 Quality Control in Preservation		CI5.4 Introductio control and micro criteria for food	obiological							
	SO5.5 Cleaning and Disinfection Practices		CI5.5 Discuss the of cleaning and c food safety.	•							
	SO5.6 Good Manufacturing Practices (GMP)		CI5.6 Study the p applications of G production.								
	SO5.7 Hazard Analysis and Critical Control Points (HACCP)		CI5.7 Introductio and its role in for								

SO5.8 Record Keeping in Food Safety	CI5.8 Discuss the importance of record keeping in food safety management.
SO5.9 Review and Innovations in Preservation	CI5.9 Summarize key preservation methods and discuss innovations.

Suggested Sessional Work (SW): anyone	SW5.1 Assignments	illustrate the role of quality control for Industrial Bioproducts
	SW5.2 Mini Project	Prepare a list of innovations of preservation
	SW5.3 Other Activities (Specify)	Rewrite the HACCP rule

Course duration (in hours) to attain Course Outcomes:

Course Title: Food Biotechnology

Course Code: 98BT606

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
98BT606CO1. Explain fundamental principles of food science and chemistry	9	4	2	1	16
98BT606CO2. Outline beneficial and harmful effects of microorganisms.	9	4	2	1	16
98BT606CO3. Identify microbes for development of functional food	9	4	2	1	16
98BT606CO4. Examine methods that increase shelf life and food quality	9	4	2	1	16
98BT606CO5. Compare the microbes on the basis of their morphological characteristics	9	4	2	1	16
Total Hours	45	20	10	5	80

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome: Course Title: Food Biotechnology Course Code: 98BT606

Course Outcomes	Marks	Distributi	Total Marks		
	Α		E	С	
98BT606CO1. Explain fundamental principles of food science and chemistry	02	03	04	1	10
98BT606CO2. Outline beneficial and harmful effects of microorganisms.	02	05	02	1	10
98BT606CO3. Identify microbes for development of functional food	04	04	01	1	10
98BT606CO4. Examine methods that increase shelf life and food quality	03	04	02	1	10
98BT606CO5. Compare the microbes on the basis of their morphological characteristics	04	03	02	1	11
Total Marks	15	19	11	05	51

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

Books:

S.No.	Title/Author/Publisher details
1	Prescott, Harley and Klein, ' Microbiology', MC Graw Hill, International Edition.
2	Willian C. Fraizier and Dennis C. Westhoff, 'Food Microbiology', Tata McGraw Hill Publishing Company, New Delhi.
3	Willian C. Fraizier and Dennis C. Westhoff, 'Food Microbiology', Tata McGraw Hill Publishing Company, New Delhi.

Online Resources: Suggested instructions/Implementation strategies:

Improved lecture Tutorial Case method Group Discussion Role play Visit to Research lab (BSL-1) Demonstration ICT Based teaching Learning Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: 6th Sem

Course Title: Food Biotechnology

Course Code: 98BT606

Course Outcome (Cos)	Program Outcomes (POs)												Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1. Explain fundamental principles of food science and chemistry	-	1	-	1	1	2	1	-	3	1	3	1	-	1	-
CO2. Outline beneficial and harmful effects of microorganisms.	-	1	-	-	-	-	3	-	3	2	3	3	-	1	-
CO3. Identify microbes for development of functional food	-	2	1	1	-	-	3	-	3	1	3	3	-	2	1
CO4. Examine methods that increase shelf life and food quality	1	1	1	-	2	2	2	3	-	1	3	3	1	1	1

CO5. Compare the microbes on the	1	1											1	1	
basis of their morphological			2	-	-	2	3	3	-	2	3	3			2
characteristics															

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
РО	CO1. Explain fundamental	SO1.1 SO1.2		1.1,1.2,1.3,1.4,1.5,1.6, 1.7,	
2,4,5,6,7,9,10,11,12	principles of food science and	SO1.3	IL 1	1.8, 1.9	
	chemistry	SO1.4,SO1.5,			1SL-1,2
		SO1.6 SO1.7,	IL 2		
PSO 2		SO1.8, SO1.9			
PO 2,7,9,10,11,12	CO2. Outline beneficial and	SO2.1 SO2.2		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
	harmful effects of	SO2.3 SO2.4	IL 1	2.8, 2.9	2SL-1,2
	microorganisms.	SO2.5,SO2.6	IL 2		231-1,2
PSO 2,		SO2.7 SO2.8 So2.9			
PO 2,3,4,	CO3. Identify microbes for	SO3.1 SO3.2		3.1,3.2,3.3,3.4.3.5,3.6,3.7, 3.8	
7,9,10,11,12	development of functional food	SO3.1 SO3.2 SO3.3 SO3.4	IL 1	,3.9	
		,3.5,503.6 \$03.7			3SL-1,2
		SO3.8 SO3.9	IL 2		
PSO 2, 3		303.0303.3			
PO 1,2,3,5,6	CO4. Examine methods that	SO4.1 SO4.2	IL 1	4.1,4.2,4.3,4.4,4.5,4.6, 4.7,	
7,8,10,11,12	increase shelf life and food quality	SO4.3 SO4.4	IL 2	4.8, 4.9	4SL-1,2
, ,		,SO4.5,SO4.6			

PSO 1,2, 3		SO4.7 SO4.8 SO4.9			
PO 1,2,3,4,5,6 7,9,10,11,12	CO5. Compare the microbes on the basis of their morphological characteristics	SO5.1 SO5.2 SO5.3 SO5.4 ,SO5.5,SO5.6 SO5.7 SO5.8	IL 1 IL 2	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8, 5.9	5SL-1,2
PSO 1,2, 3		SO5.9			

B. Tech. Biotechnology 7th Semester

Program name	Bachelor of Technology (B. Tech.)- Biotechnology					
Semester	VII th					
Course Code:	98BT701					
Course title:	Stem Cell & Tissue Engineering	Curriculum Developer: Dr. Monika Soni, Assistant Professor				
Pre-requisite:	Students should have basic knowledge of stem cell & tissue engineering					
Rationale:	The subject aims to provide an overview of stem cells & tissue engineering, and describe the current progress with stem cell research in tissue engineering, and the potential implications on medical treatment.					
Course Outcomes (COs):	CO2-98BT701.2: To study about the bit CO3-98BT701.3: To understand the bit CO4-98BT701.4: To understand the pri	plogical study of different cell types.				

Scheme of Studies:

			Scheme of studies (Hours/Week)					
Board of Study	Course Code	Course Title	CI	LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L:T:P=3:0:1)
Program Common(PC)	98BT701	Stem Cell & Tissue Engineering	3	2	1	2	8	3+1=4

 Legends:
 CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

 SW: Sessional Work (includes assignment, seminar, mini project etc.);

 SL: Self Learning;

 C: Credits.

 Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

						Scher	ne of Assessm	ent (Marks)		
					Progres	sive Assess	ment (PRA)			
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	one	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PE	98BT701	Stem Cell & Tissue Engineering	15	20	5	5	5	50	50	100

					Schen	ne of Assessm	ent (Marks)		
				Progressi	ive Assessi	ment (PRA)			
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	one	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PE	98BT751	Stem Cell & Tissue Engineering-lab	15	20	10	5	50	50	100

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session						
levels, which students are anticipated to accomplish through various modes of instruction	Item	CI	LI	SW	SL	Total
including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the	Approx. Hours	9	4	1	5	19
course's conclusion.						

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
СО1-98ВТ701.1: То			Unit-1	
explain about fundamentals of tissue engineering and define the role in stem cell research.	SO1.1 Explain in detail about introduction to tissue engineering.		CI1.1 Brief details of introduction to tissue engineering.	SL1.1 Search various reference books and other study material to start the learning about stem cell & tissue engineering.
	SO1.2 Explain in detail to sources of cells for tissue engineering.		CI1.2 Describe the sources of cells for tissue engineering.	
	SO1.3 Describe & define the culture methods in tissue engineering.		CI1.3 Study the culture methods in tissue engineering.	SL1.2 Learn about the cell therapies in stem cell & tissue engineering.
	SO1.4 Explain in detail to the maturation of tissue constructs.	LI1.1 To understand the basics of tissue engineering and practice cell culture techniques for tissue construct formation.	CI1.4 Study the maturation of tissue constructs.	SL1.3 Learn about the tissue construction & creation.
	SO1.5 Explain in detail to the musculoskeletal tissue engineering.		CI1.5 Study the musculoskeletal tissue engineering.	
	SO1.6 Describe the modifications of tissue rings.		CI1.6 Understand the modifications of tissue rings.	
	SO1.7 Explain in detail to the receptor-ligand interactions in tissue engineering.	LI1.2 To investigate receptor- ligand interactions using a biochemical assay.	CI1.7 Understand the receptor-ligand interactions in tissue engineering.	SL1.4 Learn about different receptors & their ligand interaction in tissue engineering.
	SO1.8 Describe the receptor engineering in tissue engineering.		CI1.8 Study the receptor engineering in tissue engineering.	
	SO1.9 Describe the cosmetics measures in tissue engineering. Explain in detail		CI1.9 Study the cosmetics measures in tissue engineering. Study the future directions in tissue	SL1.5 Learn about advanced topics in tissue engineering.

to the future directions in tissue engineering. Describe		the organ modules ering. Study the
the regulatory considerations	e	erations in tissue
in tissue engineering. Explain in detail to the organ modules	engineering.	
in tissue engineering.		

Suggested Sessional	SW1.1 Assignment	Describe in detail to tissue creation & construction.
Work (SW): anyone	SW1.2 Mini Project	Describe the receptors & their ligand interaction in tissue engineering.
	SW1.3 Other Activities (Specify)	Explain the cell therapies in stem cell & tissue engineering.

	Item	CI	LI	SW	SL	Total
ſ	Approx. Hours	9	4	1	5	19

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
СО2-98ВТ701.2: То			Unit-2	
study about the biomaterials for tissue engineering.	SO2.1 Explain in detail introduction to tissue engineering related to biomaterials and bioreactors.		CI2.1 Brief details of introduction to tissue engineering related to biomaterials and bioreactors.	SL2.1 Search various reference books and other study material to start the learning about biomaterials.
	SO2.2 Explain in detail the biomaterials in tissue engineering.		CI2.2 Study the biomaterials in tissue engineering.	
	SO2.3 Describe & define the polymeric scaffolds and cell seeding.	L12.1Tofabricatedegradablepolymericscaffoldsandseedcells	and cell seeding.	SL2.2 Understanding of degradable polymeric scaffolds in tissue engineering.

	onto the fabricated scaffolds.		
SO2.4 Explain in detail to cell sources in tissue engineering.		CI2.4 Brief details to cell sources in tissue engineering.	SL2.3 Explore the role of acellular bio-matrices in tissue engineering.
SO2.5 Explain in detail to the stem cells in tissue engineering.		CI2.5 Study the stem cells in tissue engineering.	SL2.4 Explore the role of stem cells as cell sources in tissue engineering.
SO2.6 Explain in detail to bioreactors in tissue engineering.		Cl2.6 Brief details to bioreactors in tissue engineering.	
SO2.7 Describe the nail naughton's bioreactor.	LI2.2 To operate Nail Naughton's bioreactor and culture cells within the bioreactor under controlled conditions.	CI2.7 Brief details to nail naughton's bioreactor.	
SO2.8 Describe the pulsatile bioreactors.		CI2.8 Brief details to pulsatile bioreactors.	
SO2.9 Describe the scaffold fabrication techniques. Explain in detail on emerging trends and future directions. Explain in detail the tissue engineering applications. Describe the regulatory considerations		CI2.9 Study the scaffold fabrication techniques. Study the regulatory considerations. Understand the tissue engineering applications. Discussion on emerging trends and future directions.	SL2.5 Learn about natural and synthetic biological-derived polymers used in tissue engineering.

Suggested Sessional	SW1.1 Assignment	Describe in detail about biomaterials used in tissue engineering.
Work (SW): anyone	SW1.2 Mini Project	Describe the biological derived polymers & their function & mechanism.
	SW1.3 Other Activities (Specify)	Explain the parts of bioreactors.

Item	CI	LI	SW	SL	Total
Approx. Hours	9	4	1	2	16

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
CO3-98BT701.3 : To understand the biological study of different cell types.			Unit-3	
	SO3.1 Explain in details to cell lines and cell culture.		CI3.1 Brief details of cell lines and cell culture.	SL3.1 Search various reference books and other study material to start the learning about cell lines.
	SO3.2 Explain in details to establishment of cell lines.		CI3.2 Brief details to establishment of cell lines.	SL3.2 Understand the process of establishing cell lines and its importance in research and medicine.
	SO3.3 Explain in detail to endothelial cells.	LI3.1 To learn the techniques for establishing primary cell cultures from different cell types.	CI3.3 Study the endothelial cells.	
	SO3.4 Explain in detail to fibroblast cells.	LI3.1 To identify and characterize different cell types in primary cell cultures.	CI3.4 Study the fibroblast cells.	
	SO3.5 Explain in detail to epithelial cells.		CI3.5 Study the epithelial cells.	
	SO3.6 Explain in detail to myoblast cells.		CI3.6 Study the myoblast cells.	
	SO3.7 Explain in detail to chromaffin cells.		CI3.7 Study the chromaffin cells.	

SO3.8 Explain in detail to smooth muscle cells.	CI3.8 Study the smooth muscle cells.	
SO3.9 Explain in detail to plasma cells. Explain in detail the applications of cell lines. Explain in detail the pros & cons to cell lines. Discussion on findings of specific cell types.	CI3.9 Study the plasma cells. Study the applications of cell lines. Study the pros & cons to cell lines. Study the findings of specific cell types.	

Suggested Sessional	SW3.1 Assignment	Describe in details to cell lines.
Work (SW): anyone	SW3.2 Mini Project	Explain in details of different cell types & its function, and application.
	SW3.3 Other Activities (Specify)	Prepare one review article on cell lines.

Item	CI	LI	SW	SL	Total
Approx. Hours	9	4	1	5	19

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
CO4-98BT701.4 : To understand the principle and practice of gene therapy.	SO4.1 Describe and define the gene therapy.		Unit-4 CI4.1 Brief details to introduction to gene therapy.	SL4.1 Search various reference books and other study material to start the learning about transgenic animals.
	SO4.2 Explain in detail to requirements of gene therapy.		CI4.2 Study the requirements of gene therapy.	SL4.2 Understand the essential components and considerations for successful gene therapy interventions.

SO4.3 Describe the genetic defects.		CI4.3 Study the genetic defects.	SL4.3 Study the genetic diseases on the basis of molecular level and their implications for gene therapy.
SO4.4 Explain in detail to targeted cells for gene therapy.	LI4.1 To understand gene delivery methods and evaluate transduction efficiency in target cells.	CI4.4 Study the targeted cells for gene therapy.	
SO4.5 Explain in detail to process of gene therapy.	LI4.2 To investigate target cell specificity and regulate gene expression in vitro.	CI4.5 Study the process of gene therapy.	
SO4.6 Describe in detail to the factors responsible for effective gene therapy.		CI4.6 Brief in details the factors responsible for effective gene therapy.	
SO4.7 Describe the recent developments in gene therapy research.		CI4.7 Study the recent developments in gene therapy research.	SL4.4 Stay updated on the latest advancements and breakthroughs in the field of gene therapy.
SO4.8 Explain in detail ethical considerations of gene therapy.		CI4.8 Study the ethical considerations of gene therapy.	SL4.5 Explore the ethical implications surrounding the development and application of gene therapy.
SO4.9 Explain in detail the applications of gene therapy. gene therapy. concepts and their implications for healthcare and society.		CI4.9 Study the applications of gene therapy. the gene therapy concepts and their implications for healthcare and society.	

Suggested Sessional	SW4.1 Assignments	Describe the genetic defects.
Work (SW): anyone	SW4.2 Mini Project	Describe in the detail of gene therapy and its application.
	SW4.3 Other Activities (Specify)	Study one research article on gene therapy.

Item	CI	LI	SW	SL	Total
Approx. Hours	9	4	1	1	15

Course outcomes (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CIs)	Self-Learning (SL)
СО5-98ВТ701.5: То			Unit-5	
study about the development of artificial tissues by tissue engineering.	SO5.1 Describe in details to tissue engineering and artificial tissues.		CI5.1 Brief details of introduction to tissue engineering and artificial tissues.	SL5.1 Search various reference books and other study material to start the learning about tissue engineering & transplantation biology.
	SO5.2 Explain in detail the basic concepts in transplantation biology.		CI5.2 Study the basic concepts in transplantation biology.	
	SO5.3 Explain in detail the tissue typing.		CI5.3 Brief in details the tissue typing.	
	SO5.4 Explain in detail the techniques of tissue typing.	LI5.1 To familiarize students with the techniques used in tissue typing for transplantation.	CI5.4 Brief in details the techniques of tissue typing.	
	SO5.5 Explain in detail the minor histocompatibility antigens.		CI5.5 Study the minor histocompatibility antigens.	
	SO5.6 Explain in detail the immunosuppression in transplantation.	LI5.2 To investigate the effects of immunosuppressive drugs on immune cell function.	CI5.6 Study the immunosuppression in transplantation.	
	SO5.7 Explain in detail to types of immunosuppression.		CI5.7 Study the types of immunosuppression.	

SO5.8 Describe in detail the side effects of immunosuppression.	CI5.8 Study the side effects of immunosuppression.	
SO5.9 Describe in detail the alternative approaches to immunosuppression. clinical applications of tissue engineering.	CI5.9 Study the alternative approaches to immunosuppression. clinical applications of tissue engineering.	

Suggested Sessional	SW5.1 Assignments	Explain in detail about transplantation biology.
Work (SW): anyone	SW5.2 Mini Project	Describe in the detail of tissue typing & its techniques.
	SW5.3 Other Activities (Specify)	Study review articles on the minor histocompatibility antigens.

Course duration (in hours) to attain Course Outcomes:

Course Title: Stem cell & tissue engineering

Course Code: 98BT701

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98BT701.1: To explain about fundamentals of tissue engineering and define the role in stem cell research.	9	4	5	1	19
CO2-98BT701.2 : To study about the biomaterials for tissue engineering.	9	4	5	1	19
CO3-98BT701.3 : To understand the biological study of different cell types.	9	4	2	1	16
CO4-98BT701.4 : To understand the principle and practice of gene therapy.	9	4	5	1	19
CO5-98BT701.5 : To study about the development of artificial tissues by tissue engineering.	9	4	1	1	15
Total Hours	45	20	18	05	88

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcomes:

Course Title: Stem cell & tissue engineering

Course Code: 98701

Legend: R, Remember; U, Understand; A, Apply; A, Analyze

Course Outcomes	M	larks Di	Total Marks		
	R	U	Α	A	
CO1-98BT701.1: To explain about fundamentals of tissue engineering and define the role in stem cell research.	2	2	3	2	9
CO2-98BT701.2: To study about the biomaterials for tissue engineering.	2	3	3	3	11
CO3-98BT701.3: To understand the biological study of different cell types.	2	3	3	2	10
CO4-98BT701.4 : To understand the principle and practice of gene therapy.	2	3	3	2	10
CO5-98BT701.5 : To study about the development of artificial tissues by tissue engineering.	2	2	3	3	10
Total Marks	10	13	15	12	50

Suggested learning Resources:

(a) Books:

S.No.	Title/Author/Publisher details
1.	Robert Lanza, Robert Langer, Joseph P. Vacanti, and Antonios G. Mikos., Principles of Tissue Engineering. Academic
	Press.
2.	Jonathan Slack., Stem Cells: A Very Short Introduction. New York Oxford University Press, 2016.
3.	Robert Lanza, Anthony Atala, and Helen M. Blau., Essentials of Stem Cell Biology. Academic Press, 2014
4.	Eapen Cherian, G Nandhini, Anil Kurian., Stem Cells. Jaypee Brothers Medical Publishers (P) Ltd. 2011.

(b) Online Resources: Suggested instructions/Implementation strategies:

- 1. Improved lecture
- 2. Tutorial
- 3. Case method
- 4. Group Discussion
- 5. Role play
- 6. Visit to stem cell biology lab
- 7. Demonstration
- 8. ICT Based teaching Learning
- 9. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: VIIth Semester

Course Title: Stem cell & tissue engineering

Course Code: 98BT701

	CO/PO/PSO Mapping														
Course Outcome (Cos)					Prog	gram O	utcom	es (POs	5)				Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT701.1: To explain about fundamentals of tissue engineering and define the role in stem cell research.	-	1	-	1	2	2	2	-	3	1	3	-	2	2	1
CO2-98BT701.2 : To study about the biomaterials for tissue engineering.	-	1	-	-	-	-	3	-	3	2	3	2	1	1	2
CO3-98BT701.3 : To understand the biological study of different cell types.	1	1	1	1	-	-	2	-	3	1	2	3	1	1	1
CO4-98BT701.4 : To understand the principle and practice of gene therapy.	1	-	1	-	2	2	3	3	-	1	3	2	1	1	3
CO5-98BT701.5 : To study about the development of artificial tissues by tissue engineering.	1	- -	1	-	-	2	2	3	-	2	2	3	1	3	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory	Classroom	Self-Learning (SL)
PO1,2,3,4,5,6,7,8,9,	CO1-98BT701.1: To explain about	SO1.1 SO1.2	Instruction (LI)	Instruction (CI) 1.1,1.2,1.3,1.4,1.5	1SL-1,2,3,4,5
10,11,12	fundamentals of tissue engineering and define	SO1.3 SO1.4		1.6,1.7,1.8,1.9	15L-1,2,3,4,5
10,11,12	the role in stem cell research.	SO1.5 SO1.4 SO1.5 SO1.6		1.0,1.7,1.0,1.9	
DCO 1 2 2	the role in stem cen research.	SO1.3 SO1.8 SO1.7 SO1.8			
PSO 1,2,3		SO1.7 SO1.8 SO1.9			
DO122456780	CO2 09DT701 2. To study shout the	-	TT1	2122224	201 1 2 2 4 5
PO1,2,3,4,5,6,7,8,9,	CO2-98BT701.2: To study about the	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4,5
10,11,12	biomaterials for tissue engineering.	SO2.3 SO2.4	LI 2	2.5,2.6,2.7,2.8,2.9,	
D CO 1 2 2		SO2.5 SO2.6			
PSO 1,2,3		SO2.7 SO2.8			
		SO2.9			
PO1,2,3,4,5,6,7,8,9,	CO3-98BT701.3: To understand the	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,3.5,	3SL-1,2
10,11,12	biological study of different cell types.	SO3.3 SO3.4	LI 2	3.6,3.7,3.8,3.9	
		SO3.5 SO3.6			
PSO 1,2,3		SO3.7 SO3.8			
		SO3.9			
PO1,2,3,4,5,6,7,8,9,	CO4-98BT701.4 : To understand the principle	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,4.5,	4SL-1,2,3,4,5
10,11,12	and practice of gene therapy.	SO4.3 SO4.4	LI 2	4.6,4.7,4.8,4.9	
		SO4.5 SO4.6			
PSO 1,2,3		SO4.7 SO4.8			
		SO4.9			
PO1,2,3,4,5,6,7,8,9,	CO5-98BT701.5: To study about the	SO5.1 SO5.2	LI1	5.1,5.2,5.3,5.4,5.5,	5SL-1
10,11,12	development of artificial tissues by tissue	SO5.3 SO5.4	LI2	5.6,5.7,5.8,5.9	
· ·	engineering.	SO5.5 SO5.6			
PSO 1,2,3		SO5.7 SO5.8			
, ,-		SO5.9			

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology					
Semester	VII					
Course Code:	98BT704					
Course title:	Proteomics & Protein Engineering	Curriculum Developer: Sonal Gupta, Assistant Professor				
Pre-requisite:	Students should have basic knowledge of biochemistry and bioanalytical techniques.					
Rationale:	Proteomics is the large-scale study of the structure and function of proteins in complex biological sample. Such an approach has the potential value to understand the complex nature of the organism. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. Protein engineering is the process by which a researcher modifies a protein sequence through substitution, insertion, or deletion of nucleotides in the encoding gene, with the goal of obtaining a modified protein that is more suitable for a particular application or purpose than the unmodified protein.					

Course Outcomes	CO1 98BT704. Explain the classification and construction of proteins
(COs):	CO2 98BT704. Analyse and compare the amino acid sequences and structures of proteins and relate this information to function
	CO3 98BT704. Modify a protein purification scheme to a specific application.
	CO4 98BT704 . Understand the different systems of recombinant protein expression with advantages and disadvantages of each one.
	CO5 98BT704. Comprehend the difficulties in working with proteomics compare to genomics.
	CO6 98BT704 . Gain thinking and analysis skills in protein biochemistry, Protein 3-D Structure and Protein folding.

Scheme of Studies:

				S				
Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:1)
Program Common (PC)	98BT703	Proteomics & Protein Engineering	2	2	1	3	8	3

Legends:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);SW: Sessional Work (includes assignment, seminar, mini project etc.);SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

						Scher	ne of Assessm	ent (Marks)		
					Progress	ive Assessmen	t (PRA)			Total Marks
Board of Study	Couse Code		Class/Home Assignment 5 number 3 marks each (CA)	of 3)	Seminar one (SA)	Class Activity (CAT)		Total Marks (CA+CT+CAT+SA+AT)	End Semester Assessmen t (ESA)	(PRA+ ESA)
РС	98BT703	Proteomics & Protein Engineering	15	20	5	5	5	50	50	100

Scheme of Assessment: Practical

						Scheme of A	ssessment (Marks)		
				Pro	gressive	Assessment (l	PRA)		Total
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II		Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	(PRA+ ESA)
PE	98BT753	Proteomics & Protein Engineering	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session		te H	ours			
levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning				SW		Total
(SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs),	Approx.	06	04	01	04	15
culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.	Hrs					

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT704.1 Architecture of Proteins	SO1.1 Introduction of amino acids	LI1.1 Basic instruments used for the study of proteomics.	Unit-1 Introduction and Overview CI1.1 Basic structure, classification and properties of amino acids.	SL1.1 Classification of amino acids and proteins
	SO1.2 Basic classification of proteins	LI1.2 To Demonstrate various qualitative and quantitative analysis used for proteins.	CI1.2 Classify protein on various basis and their biological significance.	SL1.2 Explore mechanism of protein folding
	SO1.3 Explain the structural organization of proteins		CI1.3 Overview on various levels (primary, secondary, tertiary and quaternary) levels of the protein structure.	SL1.3 Write a note on protein structural organization
	SO1.4 Define the kinetics and thermodynamics of protein folding.		CI1.4 Mechanism of protein folding. Kinetics and thermodynamic behind the protein folding process.	SL1.4 Write down an overview on proteomics
	SO1.5 Describe the stability of proteins		CI1.5 Explain the various factors affect the stability of proteins	
	SO1.6 Identification and quantification of amino acids and proteins and Explain In-silico protein modelling		CI1.6 Describe the various methods to analyse amino acids and protein qualitatively and quantitatively and various computational methods to	

	study protein 3D structure.	

Suggested Sessional	SW1.1 Assignments	Describe the structural organization of protein in detail.
Work (SW): anyone	SW1.2 Mini Project	Explain protein folding and its biological significance.
	SW1.3 Other Activities	Elaborate in silico methods of protein modelling
	(Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	6	04	01	04	15

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
СО2-98ВТ704.2.	SO2.1	LI2.1	CI2.1	SL2.1
Control of Protein Function	Explain various	Demonstrate the denaturation	Describe protein	Find out various
	mechanism of protein	of protein by using	interaction domains	mechanism to regulate
	regulation	temperature		protein functions.
	SO2.2		CI2.2	SL2.2
	Describe the regulation	LI2.2 То	How proteins regulate	Read the latest research
	of protein function by its	perform the	their functions by	articles on regulatory
	location	cell	intracellular location.	mechanisms of protein
		transformation		functions.
		experiment		
	SO2.3		CI2.3	SL2.3
	Regulation of proteins by conformational change: Allostery		Allostery: Effector ligand and Cooperativity	Write down a note on protein kinase and its significance in cell signaling
	SO2.4		CI2.4	SL2.4

Protein switches based		An overview on protein
on nucleotide hydrolysis	mechanism of action	trafficking
SO2.5	CI2.5	
Explain the motor	Describe various	
protein switches	switches to regulate	
	motor proteins.	
SO2.6	CI2.6	
Explain protein synthesis	Various steps of protei9n	
And Various mechanisms	synthesis: Transcription	
of protein degradation to	and Translation and	
control its activity,	Various mechanisms of	
Protein kinase and their	protein degradation to	
role in regulation of	control its activity,	
various biological	Protein kinase and their	
activities like cell	role in regulation of	
signaling, cell cycle, two	various biological	
components signaling	activities like cell	
system, mechanisms of	signaling, cell cycle, two	
protein trafficking	components signaling	
	system, mechanisms of	
	protein trafficking	

Suggested Sessional	SW2.1 Assignments	Make a diagrammatic presentation on two components signaling
Work (SW): anyone	SW2.2 Mini Project	Make a project on role of protein kinase in cell signaling
	SW2.3 Other Activities	Make Power point presentation on protein synthesis
	(Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	4	01	03	14

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-	SO3.1	LI3.1: To use string	Unit-3	SL3.1
98BT704.3	Describe protein-protein	database for the given	CI3.1	Study the protein-protein
Protein-Protein	interactions	protein	Study the protein-protein interactions	interaction and its
Interactions		^		significance
	SO3.2	LI3.2: To use ensemble	CI3.2	SL3.2
	Elaborate Topoisomerase	genome browser for	Describe single step gene cloning	Read the various advanced
	based gene cloning	gene ontology	method: TOPO Cloning	methods of single step
			(Topoisomerase based gene cloning).	gene cloning.
	SO3.3		CI3.3	SL3.3
	Explain Univector plasmid		Elaborate single step gene cloning methos:	Explain the various
	fusion system		UPS (Univector plasmid fusion system).	methods to find out
				protein-protein interactions
	SO3.4		CI3.4	
	Study two hybrid analysis		How to study protein-protein	
	in yeast, bacteria and virus		interaction by two hybrid analysis.	
	SO3.5		CI3.5	
	Explain the Phage display		Describe phage display method to	
	method		study protein-protein interactions.	
	SO3.6		CI3.6	
	Elaborate protein fragment		Protein fragment complementation	
	complementation assay		assay to explain protein- protein	
			interaction.	

Suggested Sessional Work (SW):	SW3.1 Assignments Make a chart of various methods to study protein-prot			
anyone	interactions.			
	SW3.2 Mini Project	Describe the Univector plasmid fusion system in detail.		
	SW3.3 Other Activities	Prepare one Power point presentation on "phage display metho		
	(Specify)			

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	04	15

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT704.4	SO4.1	LI4.1	Unit-4 Protein	SL4.1
Protein Engineering &	Bioengineering of	Make a chart of various	Engineering & Protein	Find out the industrial
Protein Design	macromolecules	steps involved in protein	Design	significance of protein
		engineering	CI4.1	engineering
			Explain biomolecular	
			engineering as a	
			multidisciplinary science	
	SO4.2	LI4.2 to use the	CI4.2	SL4.2
	Describe the methods	homology modelling	Study the detailed	List down various steps
	used to alter the primary	using modeller	mechanism of site directed	of protein designing and
	structure of proteins		mutagenesis and its role in	engineering.
			protein alteration	
	SO4.3		CI4.3	SL4.3
	Principle of protein		Describe the principle behind	An overview on various
	designing		protein design and modelling	methods used to
				characterize a protein
	SO4.4		CI4.4	SL4.4
	Elaborate various steps of		Elaborate the multistep	Describe site directed
	protein engineering		process of protein	mutagenesis
			engineering to create	
			protein with desired needs	

SO4.5 Various methods of protein characterization: Amino acid sequencing	CI4.5 Explain various methods of amino acid sequencing
SO4.6	CI4.6
Various methods of	Elaborate Mass peptide
protein characterization:	fingerprinting and Mass
Mass peptide	intact protein techniques
fingerprinting and Mass	of protein identification.
intact protein. Define	glycan analysis of proteins
glycan analysis	in detail

Suggested Sessional	SW4.1 Assignments	Make a flow chart of various steps of protein engineering
Work (SW): anyone	SW4.2 Mini Project	Write an overview on Mass peptide fingerprinting.
	SW4.3 Other	Prepare a PowerPoint presentation on site directed mutagenesis
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	6	04	01	04	15

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT704.5	SO5.1	LI5.1	Unit-5 Techniques used in	SL5.1
Techniques used in Protein	Physical methods of	To perform SDS	Protein engineering	Find out the principles of
engineering	determining the three- dimensional structure of proteins by various optical spectroscopic techniques: i) X-ray crystallography	PAGE to separate given mixture of proteins.	CI5.1 How to elaborate protein structure by X-ray crystallography.	various spectroscopic methods used in proteomics.

805.2		LI5.2 To perform the	CI5.2	SL5.2
ii)	Nuclear	spectroscopy method	Describe NMR: Principle,	Write down various steps
	magnetic	of protein detection	instrumentation and	of 2D PAGE.
	resonance	_	mechanism.	
	spectroscopy,			
SO5.3			CI5.3	SL5.3
iii)	Neutron		Describe Neutron	Explain principle of cryo
	diffraction		diffraction: principles,	electron microscopy and
			instrumentation and	its sample preparation.
			mechanism.	
SO5.4			CI5.4	SL5.4
iv)	Vibrational		Explain principle,	Explain mechanism of X-
	spectroscopy,		instrumentation and	ray crystallography
	(Raman		mechanism of Raman	
	spectroscopy)		spectroscopy.	
SO5.5			CI5.5	
v)	Circular		Explain Circular dichroism	
	dichroism		in detail.	
SO5.6			CI5.6	
Describe	2D PAGE, Cryo		Describe 2D PAGE:	
electron n	nicroscopy		Sensitivity, resolution and	
			representation 2D PAGE.	
			Cryo electron microscopy	

Suggested Sessional Work (SW):	SW5.1 Assignments	Explain general mechanism of NMR (Nuclear Magnetic
anyone		Resonance)
	SW5.2 Mini Project	Describe the circular dichroism and its role in protein study
	SW5.3 Other Activities	Prepare one article on the "Raman Spectroscopy"
	(Specify)	

Course duration (in hours) to attain Course Outcomes:

Course Title: Proteomics and Protein	Engineering			Course Code: 98BT505		
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)	
CO198BT704 . Explain the classification and construction of proteins	6	2	4	1	13	
CO2 98BT704 . Analyse and compare the amino acid sequences and structures of proteins and relate this information to function	6	2	4	1	13	
CO3 98BT704 . Modify a protein purification scheme to a specific application.	6	2	3	1	12	
CO4 98BT704 . Understand the different systems of recombinant protein expression with advantages and disadvantages of each one.	6	2	4	1	13	
CO5 98BT704 . Comprehend the difficulties in working with proteomics compare to genomics.	6	2	4	1	13	
Total Hours	30	20	19	05	66	

e Title. Proteomics and Protein Engineerin 0

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Proteomics and Protein Engineering

Course Code: 98BT507

Course Outcomes]	Total Marks			
	Α	An	Ε	С	
CO1 98BT704. Explain the classification and construction of proteins	2	1	1	1	5
CO2 98BT704. Analyse and compare the amino acid sequences and structures of proteins and relate this information to function	2	4	5	1	12
CO3 98BT704 . Modify a protein purification scheme to a specific application.	3	5	5	1	14

CO4 98BT704 . Understand the different systems of recombinant protein expression with advantages and disadvantages of each one.	2	3	5	1	11
CO5 98BT704 . Comprehend the difficulties in working with proteomics compare to genomics.	5	4	1	0	10
Total Marks	14	17	17	04	52

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(c) Books:

(d)

S.No.	Title/Author/Publisher details
1	TE Creighton. Protein Function A Practical Approach, 2005. W.H. Freeman & Company. New Edition.
2	Thomas E Creighton, Creighton. Proteins: Structures and Molecular Properties, W.H. Freeman & Company. New Edition
3	N J Darby, T E Creighton. Protein Structure (In Focus), W.H. Freeman & Company. New Edition.
4	TE Creighton. Protein Function A Practical Approach, 2005. W.H. Freeman & Company. New Edition.
5	Thomas E Creighton, Creighton. Proteins: Structures and Molecular Properties, W.H. Freeman & Company. New Edition

(e) Online Resources:

Suggested instructions/Implementation strategies:

- 10. Improved lecture
- 11. Tutorial
- 12. Case method
- 13. Group Discussion
- 14. Role play
- 15. Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants
- 16. Demonstration
- 17. ICT Based teaching Learning
- 18. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: V Semester

Course Title: Bioseparations

Course Code: 98BT505

	CO/PO Mapping														
Course Outcome		Program Outcomes (POs)											Program Specific Outcomes (PSOs)		
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1 98BT704. Explain the classification and construction of proteins	-	-	-	1	2	2	1	-	3	1	3	1	-	-	-
CO2 98BT704 . Analyse and compare the amino acid sequences and structures of proteins and relate this information to function	-	1	-	-	1	-	3	-	3	2	3	3	-	1	-
CO3 98BT704 . Modify a protein purification scheme to a specific application.	-	2	1	1	-	-	3	-	3	1	2	3	-	2	1
CO4 98BT704 . Understand the different systems of recombinant protein expression with advantages and disadvantages of each one.	1	1	1	-	2	2	2	3	_	1	2	3	1	1	1
CO5 98BT704 . Comprehend the difficulties in working	1	-	2	1	-	2	3	3	-	2	2	3	1	-	2

with proteomics								
compare to genomics.								

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6	CO1 98BT704. Explain the	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,1.5,	1SL-1,2,3,4,
7,8,9,10,11,12	classification and construction of	SO1.3 SO1.4	LI 2	1.6	
.,_,_,_,,	proteins	SO1.5 SO1.6			
PSO 1,2, 3	proteins				
PO 1,2,3,4,5,6	CO2 98BT704. Analyse and	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4
7,8,9,10,11,12	compare the amino acid sequences	SO2.3 SO2.4	LI 2	2.5, 2.6	
, -, -, -, ,	and structures of proteins and relate	SO2.5 SO2.6			
PSO 1,2, 3	this information to function				
PO 1,2,3,4,5,6	CO3 98BT704. Modify a protein	SO3.1 SO3.2		3.1,3.2,3.3,3.4,3.5,	3SL-1,2,3
7,8,9,10,11,12	purification scheme to a specific	SO3.3 SO3.4	LI 1	3.6	
	application.	SO3.5 SO3.6	LI 2		
PSO 1,2, 3	11				
PO 1,2,3,4,5,6	CO4 98BT704. Understand the	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,	4SL-1,2,3,4
7,8,9,10,11,12	different systems of recombinant	SO4.3 SO4.4	LI 2	4.5, 4.6	
	protein expression with advantages	SO2.5 SO2.6			
PSO 1,2, 3	and disadvantages of each one.				
PO 1,2,3,4,5,6	CO5 98BT704. Comprehend the	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,	5SL-1,2,3,4,
7,8,9,10,11,12	difficulties in working with	SO5.3 SO5.4	LI 2	5.6	
	proteomics compare to genomics.	SO5.5 SO5.6			
PSO 1,2, 3					

Program Name	Bachelor of Technology (B.Tech.)- Bio	Bachelor of Technology (B.Tech.)- Biotechnology							
Semester	VII								
Course Code:	98BT704-B	8BT704-B							
Course title:	Bioremediation	Curriculum Developer: Dr. Ashwini A. Waoo, Professor							
Pre-requisite:	tudent should have basic knowledge of environmental factors and pollution								
Rationale:	environmental pollution. Its inclusion cu	Bioremediation, integral to a BTech Biotechnology curriculum, offers a crucial understanding of eco-friendly solutions to environmental pollution. Its inclusion cultivates interdisciplinary skills, aligning students with sustainable practices and equipping them with applied biotechnological expertise for addressing real-world environmental challenges effectively.							
Course Outcomes (COs):	CO2-98BT704-B.2: Differentiate criteria CO3-98BT704-B.3: Evaluate the roles Bi	 CO1-98BT704-B.1: Identify the different types of bioremediation techniques, mechanism and microbes for bioremediation CO2-98BT704-B.2: Differentiate criteria of types of bioremediations and its detail process. CO3-98BT704-B.3: Evaluate the roles Bio sorption & Bioleaching and phytoremediation. CO4-98BT704-B.4: Use of Bioremediation of phenols, cyanides, dyes, understand biodegradation through pathway engineering. 							

Scheme of Studies:

Board of Study	CourseCode	Course Title		LI	SV	/ SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:1)
ProgramElective (PE)	98BT704-B	Bioremediation	2	2	1	5	10	3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

					Sche	me of Assessme	ent (Marks)		
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each	Class Test 2 (2 best out of 3)	Progressive Asse Seminar one (SA)	Class Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	End Semester Assessmen t (ESA)	Total Marks (PRA+ ESA)
			(CA)						

				10 marks each (CT)					
PE	98BT704-B	Bioremediation							
			15	20	10	5	50	50	100

Scheme of Assessment: Practical

	Scheme of Assessment (Marks)	
	Progressive Assessment (PRA)	

Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II		Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
PE	98BT754- B	Bioremediation- lab	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course	Аррі	roximat	e Hou	rs			
and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI),		n	Cl	LI	SW	SL	Total
Sessional Work (SW), and Self Learning (SL). As the course progresses, students should		prox.	06	00	01	05	14
showcase their mastery of Session Outcomes (SOs), culminating in the overall	Hrs	5					
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT704-B.1: Identify the different types of bioremediation techniques, mechanism and microbes for bioremediation		LI1.1: To demonstrate the process of bioremediation using microbial cultures.		SL1.1 Study of biotic and abiotic factors of environment
		LI1.2: To evaluate the factors affecting bioremediation efficiency in controlled environments.	CI1.2 Factors affecting Bioremediation.	SL1.2 Factors affecting growth of microbes
	SO1.3 Illustration of and mechanism of bioremediation		CI1.3 Bioremediation Mechanisms,	SL1.3 Mechanism of Bioremediation in algae, fungi, bacteria
	SO1.4 Evaluate limitations of bioremediation		CI1.4 Limitations of Bioremediations	
	SO1.5 Analyze microbial diversity for use in bioremediation experiment.		CI1.5 Microbes for Bioremediation	SL1.4 List out microorganisms used for bioremediation
	SO1.6 Study characteristics of microbes for bioremediation. adptations for bioremediation		CI1.6EssentialCharacteristicsofMicrobesforBioremediation.adptationsadptationsforbioremediationfor	SL1.5 List out adaptations for bioremediation

L	 1	

Suggested Sessional Work (SW):	SW1.1 Assignments	Enlist types of Bioremediation techniques.
anyone	SW1.2 Mini Project	Prepare list of microorganisms and respective pollutants used for
		bioremediation
	SW1.3 Other Activities	Prepare chart on mechanism of bioremediation.
	(Specify)	

Ite	m	Cl	LI	SW	SL	Total
Ар	prox. Hrs	06	04	01	05	16

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT704-B.2: Differentiate criteria of types of bioremediations and its detail process.	SO2.1 Explore types of bioremediation technique	LI 1 Isolation of pollutant degrading bacteria from various contaminated sits	Unit-II CI2.1 Insitu & Exsitu bioremediation techniques	SL2.1 Search various techniques of bioremediation
	SO2.2 Describe the Land farming technique	LI 2 Strain improvement for bioremediation	CI2.2 Application, specific advantages and disadvantages of bioremediation technologies - land farming	SL2.2 Write a note on land farming
	SO2.3 Study advantages, disadvantages and applications of Biopiles		CI2.3 prepared beds, biopiles	SL2.3 Learn about contents prepared bed and biopiles

SO2.4 Explain Study advantages, disadvantages and applications of composting	CI2.4 composting	SL2.3 Searching online about ongoing composting plants
SO2.5 Assessing advantages, disadvantages and applications of Bioventing	CI2.5 Bioventing	
SO2.6 Explaining the steps of Biosparging	CI2.6 Biosparging	SL2.5 Prepare design of biosparging implementation plan
SO2.7 Explaining the stages of execution of constructed wet land	CI2.7 constructed wet lands,	
1	CI2.8 use of bioreactors for bioremediation.	

Suggested Sessional Work (SW):	SW2.1 Assignments	Describe principles of types of bioremediation techniques
anyone	SW2.2 Mini Project	Prepare complete draft on mechanism, advantages and disadvantages of
		each type
	SW2.3 Other Activities	Prepare a bioremediation plan using bioreactor for industry waste.
	(Specify)	

				Item	Cl	LI	SW	SL	Total		
				Approx. Hr	s 06	04	01	04	15		
Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Class room Inst	ruction	Self-Learning (SL)						
		(LI)	(CI)								
CO3-98BT704-B.3: Evaluate the roles Bio sorption & Bioleaching and phytoremediation.	SO3.1 Explain the role of Bioleaching in bioremediation	LI3.1 To perform the phytostablization	Unit-III CI3.1 Microorg involved in Bio ores	-	SL3. Biole			applic	about cations		
	SO3.2Assessingefficiency of MechanismSO3.3Understand metalrecovery in mines		CI3.2 mechanis bioleaching CI3.3 metal rec		resea SL3 differ	rch d 3 Il rent 1	ollectio lata on lustrati techniq	biolea on	of aching about f metal		
	SO3.4StudymicrobialtransformationSO3.5Describe	LI3.2 Demonstration	CI3.4 Microbia transformation CI3.5 Phytoren		recov	<u>ery</u>					
	phytoremediation	of phytoremediation of waste water	•								
	SO3.6 Assessing the role of phytoextraction, phytostabilization, phytovolatilaztion, rhizodegradation, rhizofiltration, Phytoremediation of contaminated sites		CI3.6 phytoext phytostabilization phytovolatilaztion rhizodegradation rhizofiltration, Phytoremediation contaminated site	n, n, , 1 of			/rite action	a no	te on		

Suggested Sessional Work	SW3.1 Assignments	Describe principles of biosorption, bioleaching and phytoremediation			
(SW): anyone	SW3.2 Mini Project	Prepare complete draft on mechanism, advantages and disadvantages of			
		each type of phytoremediation			

SW3.3 Other Activities	Prepare a phytoremediation plan for industry waste.
(Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	05	16

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO4-98BT704-B.4: Use of Bioremediation of phenols, cyanides, dyes, understand biodegradation through pathway engineering.	SO4.1 Understand process of bioremediation of phenols dyes and cynaides	Li4.1To demonstrate the process of bioremediation using microbial cultures.	Unit-IV CI4.1 Bioremediation of phenols	SL4.1 Learn about phenol health hazards
	SO4.2 Assessing the bioremediation of cyanides		CI4.2 cyanides,	SL4.2 Discuss health hazards and sources of Cyanide pollution
	SO4.3 Illustration of Dye bioremediation	LI 4.2 Isolation of dye degrading bacteria and dye degradation.	CI4.3 dyes;	SL4.3 Learn about various types of dyes in textile industry
	SO4.4IllustratemechanismandapplicationsofRhizoremediationSO4.5UnderstandEnhancedbiodegradationthrough		 CI4.4 Rhizoremediation: a beneficial plant-microbe interaction; CI4.5 Molecular techniques in bioremediation 	SL4.4 Case studies related to rhizoremediation
	source pathway engineering source pathway engineering strategies. pathway		CI4.6 Enhanced biodegradation through pathway engineering;	SL4.5 Evaluate the need of GMOs for bioremediation

Suggested	SW4.1	Describe health effects of cyanides, dyes and phenols and their need for remediation.
Sessional Work	Assignments	
(SW): anyone	SW4.2 Mini Project	Describe the rhizoremediation detail and its applications
	SW4.3 Other	Prepare list of experiments done for pathway engineering for bioremediation
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	05	16

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
CO5-98BT704-B.5: Case study and demonstration of bioremediation plan for industrial waste.	SO5.1 Illustrate technique of Bioremediation of industrial wastes.	LI5.1: To demonstrate the process of bioremediation using microbial cultures.	Unit-V CI5.1 Bioremediation of industrial wastes.	SL5.1 learn about basic concept of Bioremediation of industrial wastes.
	SO5.2 Illustrate the use of bioindicators,	L15.2: To evaluate the factors affecting bioremediation efficiency in controlled environments.	CI5.2 Bioindicators	SL5.2 Review different bioindicators
	SO5.3 Apply the biomarkers for bioremediation		CI5.3 Biomarkers	SL5.3 learn how biomarkers help in

		bioremediation
SO5.4 Understand the mechanism and types of biosensors	CI5.4 Biosensors in waste treatment.	SL5.4 Learn about types of biosensors and give examples
SO5.5 Understand the process of Bioconversion of agricultural, Sewage	CI5.5 Bioconversion of agricultural	
SO5.6 Describe sewage sludge treatment, waste bioremediation, conversion of sugar waste to fertilizers	CI5.6 Sewage sludge, waste bioremediation., conversion of sugar waste to fertilizers	

Suggested Sessional Work (SW):	SW5.1 Assignments	Describe short term plan for bioremediation of industry.		
anyone	SW5.2 Mini Project	Describe the applications of bioremediation.		
	SW5.3 Other Activities	Prepare a detail document on biosensors available		
	(Specify)	commercially.		

Course duration (in hours) to attain Course Outcomes:

Course Title: Bioremediation

Course Code: 98BT704-B

			course cou		
Course Outcomes (COs)	Class	Laboratory	Self-Learning	Sessional	Total Hours
	lecture	Instruction (LI)	(SL)	work	(Li+CI+SL+SW)
	(CI)			(SW)	
CO1-98BT704-B.1: Identify the different types of	6	4	5	1	16
bioremediation techniques, mechanism and microbes					
for bioremediation					
CO2-98BT704-B.2: Differentiate criteria of types of	6	4	5	1	16
bioremediations and its detail process.					

CO3-98BT704-B.3: Evaluate the roles Bio sorption	6	4	4	1	15
& Bioleaching and phytoremediation.					
CO4-98BT704-B.4: Use of Bioremediation of	6	4	5	1	16
phenols, cyanides, dyes, understand biodegradation					
through pathway engineering.					
CO5-98BT704-B.5: Case study and demonstration	6	4	5	1	16
of bioremediation plan for industrial waste.					
Total Hours	30	20	24	05	79

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Bioremediation

Course Code: 98BT704-B

Course Outcomes				
	А	An	E	Total Marks
CO1-98BT704-B.1: Identify the different types of bioremediation techniques, mechanism and microbes for bioremediation	02	02	01	05
CO2-98BT704-B.2: Differentiate criteria of types of bioremediations and its detail process.	03	05	02	10
CO3-98BT704-B.3: Evaluate the roles Bio sorption & Bioleaching and phytoremediation.	05	05	05	15
CO4-98BT704-B.4: Use of Bioremediation of phenols, cyanides, dyes, understand biodegradation through pathway engineering.	04	03	03	10
CO5-98BT704-B.5: Case study and demonstration of bioremediation plan for industrial waste.	05	04	01	10
Total Marks	19	19	12	50

Legend: A, Apply; An, Analyze; E, Evaluate;

Suggested learning Resources:

(f) Books:

(1)	DUUK
(g)	

S. No.	Title	Author	Publisher	Edition & Year
1	Microbial Biodegradation and Bioremediation,	Surajit Das,	Elsevier,	2017
2	Bioremediation Technology: Recent Advances,	M. H. Fulekar,	Springer Science & Business Media	2012
3	Biodegradation and Bioremediation, , ,	Martin Alexander		1994,
4	Bioremediation: Principles and Applications	Ronald L. Crawford, Don L. Crawford	Cambridge University Press	2005
5	Applied Bioremediation and Phytoremediation, ,	Ajay Singh, Owen P. Ward	Springer Berlin Heidelberg,	2011

(h) Online Resources:

Suggested instructions/Implementation strategies:

- 19. Improved lecture
- 20. Tutorial

Case method
 Group Discussion
 Role play
 Visit to virology lab (BSL-3)
 Demonstration
 ICT Based teaching Learning
 Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: VII

Course Title: Bioremediation

Course Code: 98BT704-B

CO/PO Mapping															
Course Outcome		Program Outcomes (POs)										Pro Out	gram Spe comes (PS	cific SOs)	
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3

CO1-98BT704-B.1: Identify the different types of bioremediation techniques, mechanism and microbes for bioremediation	-	-	1	2	2	2	2	-	1	2	2	3	3	-	-
CO2-98BT704-B.2: Differentiate criteria of types of bioremediations and its detail process.	-	-	-	-	-	-	-	-	2	2	3	3	2	-	1
CO3-98BT704-B.3: Evaluate the roles Bio sorption & Bioleaching and phytoremediation.	-	1	1	1	-	2	2	-	3	3	3	2	2	2	1
CO4-98BT704-B.4: Use of Bioremediation of phenols, cyanides, dyes, understand biodegradation through pathway engineering.	-	1	1	2	2	2	2	3	-	1	2	2	2	2	2
CO5-98BT704-B.5: Case study and demonstration of bioremediation plan for industrial waste.	1	1	1	-	-	3	3	3	1	2	3	2	2	2	1

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory	Classroom	Self-Learning
			Instruction (LI)	Instruction (CI)	(SL)
PO	CO1-98BT704-B.1: Identify the	SO1.1 SO1.2	Li 1, LI 2	1.1,1.2,1.3,1.4,1.5,	1SL-1,2,3,4,5
1,2,3,4,5,6,7,8,9,10,11,12	different types of bioremediation	SO1.3 SO1.4		1.6	
PSO 1,2,3	techniques, mechanism and	SO1.5 SO1.6			
	microbes for bioremediation				
PO	CO2-98BT704-B.2: Differentiate	SO2.1 SO2.2	Li 1, LI 2	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3,4,5
1,2,3,4,5,6,7,8,9,10,11,12	criteria of types of bioremediations	SO2.3 SO2.4		2.5, 2.6	
	and its detail process.	SO2.5 SO2.6			
PSO 1,2,3	_				

РО	CO3-98BT704-B.3: Evaluate the	SO3.1 SO3.2	Li 1, LI 2	3.1,3.2,3.3,3.4,3.5,	3SL-1,2,3,4
1,2,3,4,5,6,7,8,9,10,11,12	roles Bio sorption & Bioleaching	SO3.3 SO3.4		3.6	
PSO 1,2,3	and phytoremediation.	SO3.5 SO3.6			
PO	CO4-98BT704-B.4: Use of	SO4.1 SO4.2	Li 1, LI 2	4.1,4.2,4.3,4.4, 4.5,	4SL-1,2,3,4,5
1,2,3,4,5,6,7,8,9,10,11,12	Bioremediation of phenols,	SO4.3 SO4.4		4.6	
PSO 1,2,3	cyanides, dyes, understand	SO4.5 SO4.6			
	biodegradation through pathway				
	engineering.				
PO	CO5-98BT704-B.5: Case study and	SO5.1 SO5.2	Li 1, LI 2	5.1,5.2,5.3,5.4,5.5,	5SL-1,2,3,4,5
1,2,3,4,5,6,7,8,9,10,11,12	demonstration of bioremediation	SO5.3 SO5.4		5.6	
	plan for industrial waste.	SO5.5 SO5.6			
PSO 1,2,3					

Program Name	B. Tech. Biotech Semester-									
Semester	VII th									
Course Code:	98BT704-C									
Course title:	Metagenomics	Curriculum Developer: Mr. Piyush Kant Rai, Assistant professor								
Pre-requisite:	Proficiency in bioinformatics and molecular bi	oficiency in bioinformatics and molecular biology techniques.								
Rationale:	Equipping students with skills to analyze and manage metagenomic data, interpret phylogenetic trees, utilize protein databases, and contribute to scientific knowledge sharing and collaboration.									
Course Outcomes (COs):	98BT704-C-CO2. Discuss and interpret phy 98BT704-C-CO3. Utilize protein databases 98BT704-C-CO4. Apply relevant tools in th	and tools for analysis of annotated structures and functions								

Scheme of Studies:

Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:1)
Program elective (PE)	98BT704-C	Metagenomics	2	2	1	1	6	3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)		
Board of Study	Couse Code	Course Title	Progressive Assessment (PRA)	End Semester Assessment	Total Marks

			Class/Home Assignment 5 number 3 marks each	4	Seminar one (SA)	Class Attendance (AT)	Total Marks (CA+CT+SA+AT)	(ESA)	(PRA+ESA)
Program elective (PE)	98BT704-C	Metagenomics	16	19	5	5	5	50	50

Scheme of Assessment: Practical

						Scheme of As	sessment (Marks)		
					Total				
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II		Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	(PRA+ ESA)
Program elective (PE)	98BT754-C	Metagenomics	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the	Approximate Hours						
course and session levels, which students are anticipated to accomplish through		T .	C1	T T	CILL	CT.	m . 1
various modes of instruction, including Classroom Instruction (CI), Laboratory		Item	Cl	LI	SW		Total
Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Approx. Hrs	06	04	01	03	14
progresses, students should showcase their mastery of Session Outcomes (SOs),							
culminating in the overall achievement of Course Outcomes (COs) upon the							
course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
98BT704-C-CO1. Conduct appropriate quality control and decontamination of metagenomic data	SO5.1 Metagenomic Analysis of Soil Microbial Communities	LI1.1 Introduction to Experimental Setup of DNA Isolation	CI1.1 Metagenomic Analysis of Soil Microbial Communities	SL1.1 Independent research on soil microbial community
	SO5.2 Metagenomic Analysis of Marine Microbial Communities	LI1.2 to isolate the genomic DNA from environmental sample	CI1.2 Metagenomic Analysis of Marine Microbial Communities	SL1.2 Self-paced learning to understand the workflow and differences between these sequencing approaches.
	SO5.3 Metagenome of the Microbial Community in Acid Mine Drainage		CI1.3 Metagenome of the Microbial Community in Acid Mine Drainage	SL1.3 Revise Microbial Community in Acid Mine Drainage
	SO5.4 Understand Metagenomic Analysis of Bacteriophages		CI1.4 Metagenomic Analysis of Bacteriophages	

SO5.5 Metage and Its App to the Stud Human Mid	plications y of the	CI1.5 Metagenomics and Its Applications to the Study of the Human Microbiome	
SO5.6 Archae Metagenon Bioprospec Novel Gene Exploring I Concepts	nics: ting es and	CI1.6 Archaeal Metagenomics: Bioprospecting Novel Genes and Exploring New Concepts	

Suggested Sessional	SW1.1 Assignments	Design a mini-project comparing different metagenomics approaches
Work (SW): anyone	SW1.2 Mini Project	Group Assignment - Genome Sequencing Project
	SW1.3 Other Activities (Specify)	Evaluate students based on their technique, accuracy, and data interpretation skills.

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	4	1	3	14

Course	Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction	Self-Learning (SL)
Outcome			(CI)	
(CO)				
98BT704-C-CO2.	SO2.1 Overview of Phylogenetic	LI2.1 To learn Basics of	CI2.1 Phylogenetic Tree	SL2.1 Practice phylogenetic tree
Discuss and	Tree Construction	analysis platforms	Construction	reconstruction method
interpret	SO2.2 What are Web-based	LI2.2 To search and	CI2.2 Construction of a	SL2.2 Explore Phylip
phylogenetic tree	Servers and Software	explore various	Metagenomic Library	
construction models		genomes using metagenome analysis		
			CI2.3 Analysis of	SL2.3 Remember steps of
			Metagenomic Libraries	metagenome analysis
	SO2.3 Analysis of Metagenomic		č	
	Libraries			

SO2.4 Sequence-based Metagenomics Analysis	CI2.4 Sequence-based Metagenomics Analysis	
SO2.5 Function-based Metagenomics Analysis.	CI2.5 Function-based Metagenomics Analysis	
SO2.6 Phylogenetic Analysis and Comparative Genomics	CI2.6 Phylogenetic Analysis and Comparative Genomics	

			Item	Cl	LI	SW	SL	Total
			Approx. Hrs	06	4	1	3	14
Suggested Sessional	SW2.1 Assignments	Write about the comparative genomics						
Work (SW): anyone	SW2.2 Mini Project	Write about web-based tools.						
	SW2.3 Other Activities (Specify)	Find out some you tube videos based on how to do genome analysis.						

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction	Self-Learning (SL)
		(LI)	(CI)	
98BT704-C-CO3. Utilize protein databases and tools for analysis of annotated	Before Digestion	LI3.1 Apply ADMET properties to any lead compound	CI3.1 Protein Separations Before Digestion	SL3.1Remember HPLC process
structures and functions	SO3.2 High-Performance Liquid Chromatography (HPLC)	LI3.2 to perform the HPLC for the given sample	CI3.2 High- Performance Liquid Chromatography (HPLC)	SL3.2 Understand the role of protein-protein interactions using SDS
	SO3.3 Protein Separations After Digestion		CI3.3 Protein Separations After	SL3.3 Write Develop an experimental design for

	Digestion	protein separation
SO3.4 MALDI-TOF-MS: The TOF Mass Analyzer	CI3.4 MALDI- TOF-MS: The TOF Mass Analyzer	
SO3.5 Problems with 2D- SDS-PAGE	CI3.5 Problems with 2D-SDS-PAGE	
SO3.6 Pros and Cons of MALDI	CI3.6 Pros and Cons of MALDI.	
	The TOF Mass Analyzer SO3.5 Problems with 2D- SDS-PAGE SO3.6 Pros and Cons of	SO3.4 MALDI-TOF-MS: The TOF Mass AnalyzerCI3.4 MALDI- TOF-MS: The TOF Mass AnalyzerSO3.5 Problems with 2D- SDS-PAGECI3.5 Problems with 2D-SDS-PAGESO3.6 Pros and Cons ofCI3.6 Pros and

			Item	Cl	LI	SW	SL	Total
			Approx. Hrs	06	4	1	1	12
Suggested Sessional	SW3.1 Assignments	Remember MALDI TOF						
Work (SW): anyone	SW3.2 Mini Project							
	SW3.3 Other	Explore online tutorials and resources on SDS PAGE.						
	Activities (Specify)							

Course Outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
relevant tools in the analysis of metagenomic data	 SO4.1 Answer Introduction to Environmental Metagenomics SO4.2 Pure Culture and Consortium in Environmental Metagenomics SO4.3 Cultivable and Non- Cultivable Microbial Analysis 	 LI4.1 Safety instructions and laboratory protocols for handling Raw data of metagenome LI4.2 To prepare the recombinant DNA using E.coli 	 CI4.1 Introduction to Environmental Metagenomics CI4.2 Pure Culture and Consortium in Environmental Metagenomics CI4.3 Cultivable and Non- Cultivable Microbial Analysis 	Metagenomics

	SO4.4 Recombi	nant DNA		CI4.4 Recom	binant DNA					
	Technology an			Technology and DNA						
	Cloning			Cloning						
	SO4.5 Molecula	r		CI4.5 Molecu	ılar Fingerprinti	ng				
	Fingerprintin	g Techniques		Techniques	5					
	SO4.6 Stable Is			CI4.6 Stable Isotope Probing						
	(SIP) and			(SIP) and Suppressive						
	Subtractive H	lybridization		Subtractive	Hybridization					
					Item	Cl	LI	SW	SL	Total
					Approx. Hrs	06	4	1	3	14
Suggested Sessional	SW4.1 Assignments	Stable Isotope Prob	bing (SIP) and Suppressiv	e Subtractive Hy	/bridization.					
Work (SW): anyone	SW4.2 Mini Project									
	SW4.3 Other	Relate the Molecul	elate the Molecular finger printing							
	Activities (Specify)									

Course Outcome	Session Outcomes (SOs)	Laboratory	Classroom Instruction	Self-
(CO)		Instruction (LI)	(CI)	Learning
				(SL)
98BT704-C-CO5. Submit	SO5.1 What is Application of	LI5.1 How to do the	CI5.1 Application of	SL5.1 Revise
metagenomic data to online	Metagenomics to	DNA sequencing of	Metagenomics to	Application of
repositories for sharing and	Bioremediation	uncultured microbes	Bioremediation.	Metagenomics
future analysis				to
				Bioremediation
	SO5.2 Able to apply	LI5.2 to understand the	CI5.2 Applications of	SL5.2 Recall
	Applications of	Raw data came from	Metagenomics for	Metagenomic
	Metagenomics for Industrial	NGS	Industrial Bioproducts.	Enzyme
	Bioproducts.			Discovery.
	SO5.3 Escherichia coli Host		CI5.3 Escherichia coli Host	SL5.3 Remember
	Engineering for Efficient		Engineering for Efficient	Next-Generation
	Metagenomic Enzyme		Metagenomic Enzyme	Sequencing
	Discovery		Discovery	Approaches to
				Metagenomics
	SO5.4 Next-Generation		CI5.4 Next-Generation	
		000		

Sequencing Approaches to	Sequencing Approaches
Metagenomics	to Metagenomics
SO5.5 Stable Isotope Probing:	CI5.5 Stable Isotope
Uses in Metagenomics	Probing: Uses in
	Metagenomics
SO5.6 DNA Sequencing of	CI5.6 DNA Sequencing of
Uncultured Microbes from	Uncultured Microbes
Single Cells	from Single Cells

Suggested Sessional	SW5.1 Assignments	illustrate the Applications of Metagenomics for Industrial Bioproducts						
Work (SW): anyone	SW5.2 Mini Project	Make a flow chart of approaches to metagenomics						
	SW5.3 Other	Rewrite the Next-Generation Sequencing Approaches to Metagenomics						
	Activities (Specify)							

Course duration (in hours) to attain Course Outcomes:

Course Title: Metagenomics

Course Code: 98BT704-C

Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
98BT704-C-CO1. Conduct appropriate quality control and decontamination of metagenomic data	6	4	3	1	14
98BT704-C-CO2. Discuss and interpret phylogenetic tree construction models	6	4	3	1	14
98BT704-C-CO3. Utilize protein databases and tools for analysis of annotated structures and functions	6	4	3	1	14
98BT704-C-CO4. Apply relevant tools in the analysis of metagenomic data	6	4	1	1	12
98BT704-C-CO5. Submit metagenomic data to online repositories for sharing and future analysis	6	4	3	1	14
Total Hours	30	20	13	5	68

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome: 803

Course Title: Metagenomics

Course Code: 98BT704-C

Course Outcomes		n	Total Marks		
	А	An	E	С	
98BT704-C-CO1. Conduct appropriate quality control and decontamination of metagenomic data	02	03	04	1	10
98BT704-C-CO2. Discuss and interpret phylogenetic tree construction models	02	05	02	1	10
98BT704-C-CO3. Utilize protein databases and tools for analysis of annotated structures and functions	04	04	01	1	10
98BT704-C-CO4. Apply relevant tools in the analysis of metagenomic data	03	04	02	1	10
98BT704-C-CO5. Submit metagenomic data to online repositories for sharing and future analysis	04	03	02	1	11
Total Marks	15	19	11	05	51

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(i) Books:

(j)

S.No.	Title/Author/Publisher details
1	Genes IX by Benjamin Lewin, Johns and Bartlett Publisher, 2016
2	Metagenomics: Methods and Protocols, Wolfgang R. Streit, Rolf Daniel, Springer New York, 2016
3	Metagenomics: Perspectives, Methods, and Applications, Muniyandi Nagarajan, ACADEMIC PRESS, 2017

(k) Online Resources:

Suggested instructions/Implementation strategies:

- 28. Improved lecture
- 29. Tutorial
- 30. Case method
- 31. Group Discussion

32. Role play

- 33. Visit to Research lab (BSL-1)
- 34. Demonstration
- 35. ICT Based teaching Learning
- 36. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: 7th Sem

Course Title: Metagenomics

Course Code: 98BT704-C

	CO/PO/PSO Mapping														
Course Outcome (Cos)		Program Outcomes (POs)											Program Specific		
													Outcomes (PSOs)		
	PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12									PSO1	PSO2	PSO3			
98BT704-C-CO1. Conduct appropriate	-												-		
quality control and decontamination		1	-	1	1	2	1	-	3	1	3	1		1	-
of metagenomic data															
98BT704-C-CO2. Discuss and interpret	-												-		
phylogenetic tree construction		1	-	-	-	-	3	-	3	2	3	3		1	-
models															

98BT704-C-CO3. Utilize protein	-												-		
databases and tools for analysis of		2	1	1	-	-	3	-	3	1	3	3		2	1
annotated structures and functions															
98BT704-C-CO4. Apply relevant tools	1	1	1		n	n	2	2		1	2	2	1	1	1
in the analysis of metagenomic data			1	-	2	2	2	3	-	1	3	3			1
98BT704-C-CO5. Submit	1	1											1	1	
metagenomic data to online repositories for sharing and future			2	-	-	2	3	3	-	2	3	3			2
analysis															

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)	
PO 2,4,5,6,7,9,10,11,12 PSO 2	,5,6,7,9,10,11,12 fundamentals of genomics and proteomics		IL 1 IL 2	1.1,1.2,1.3,1.4 ,1.5,1.6	1SL-1,2,3	
PO 2,7,9,10,11,12 PSO 2,	98BT605-CO2. Outline the next- generation sequencing techniques	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5,SO2.6	IL 1 IL 2	2.1, 2.2, 2.3, 2.4, 2.5, 2.6	2SL-1,2,3	
PO 2,3,4, 7,9,10,11,12 PSO 2, 3	98BT605-CO3. Apply analytical approach to identify protein structures	SO3.1 SO3.2 SO3.3 SO3.4 ,3.5,SO3.6	IL 1 IL 2	3.1,3.2,3.3,3.4.3.5,3.6	3SL-1,2,3	
PO 1,2,3,5,6 7,8,10,11,12 PSO 1,2, 3	98BT605-CO4. Analyse vaccine designing and protein-ligand interactions for drug discovery	SO4.1 SO4.2 SO4.3 SO4.4 ,SO4.5,SO4.6	IL 1 IL 2	4.1,4.2,4.3,4.4,4.5,4.6	4SL-1	
PO 1,2,3,4,5,6 7,9,10,11,1298BT605-CO5. Compare various databases and software used in proteomicsPSO 1,2, 398BT605-CO5. Compare various		SO5.1 SO5.2 SO5.3 SO5.4 ,SO5.5,SO5.6	IL 1 IL 2	5.1,5.2,5.3,5.4,5.5,5.6	5SL-1,2,3	

Program Name	B.Tech. in Biotechnology										
Semester	VII										
CourseCode:	98BT706										
Coursetitle:	Research Methodology	Curriculum Developer: Dr. Deepak Mishra, Professor									
Pre-requisite:	Student should have basic and advanced knowledge of Biotechnology and practical as well as research skills.										
Rationale:	tools in analyzing Biotechnological research. development of research skills and scientific a	Tech Biotechnology program explores the critical role of specialized research and scientific It delves into the use of precise instruments for monitoring and analyzing data and literature, aptitudes. This study enables students to understand how systematic research process helps us along with data publication. It also explore the publication ethics and plagiarism knowledge.									
Course Outcomes (COs):	for doing any research in a systematic manner along with data publication. It also explore the publication ethics and plagiarism knowledge.										

Scheme of Studies:

Γ									
	Board of Study	Course Code	Course Title		LI	SW	SL	Total Study Hours(CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:0)
	Program Common(PC)	98BT706	Research Methodology	2 -	-	1	5	8	2

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)								
				End	Total Marks						
	~			Semester							
Board of	Couse	Course Title		Assessmen							
Study	Code		Progressive Assessment (PRA)	t							

				Class Test 2				(ESA)	(PRA+ ESA)
			Class/Home Assignment	(2 best out	Seminar one	Class Attendance	Total Marks		
			5 number	of 3)	(SA)				
			3 marks each			(AT)	(CA+CT+SA+AT)		
			(CA)	each (CT)					
РС	98BT706	Research Methodology	15	20	10	5	50	50	100

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both	Approximate Hours						
at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom		Item	Cl	LI	SW	SL	Total
Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and		Approx.Hrs	06	00	01	05	12
Self Learning (SL). As the course progresses, students should showcase							
their mastery of Session Outcomes (SOs), culminating in the overall							
achievement of Course Outcomes (COs) upon the course's conclusion.							

Course outcome (CO)	Session Outcomes(SOs)	Laboratory Instruction(LI)	Class room Instruction(CI)	Self-Learning(SL)		
CO1-98BT706.1: Students are being knowledge-able with essentials of research methodology through various tools available	• • • • • • •		Unit-1 CI1.1 Scientific Writing & Research- meaning, types,	SL1.1 Search various refer books and study materi start the learning research and scier writing		
	SO1.2 Describe about objectives and approaches of research		CI1.2 objectives, and approaches	SL1.2 Differentiation of resear problems based objective		
	SO1.3 Explain about methods and sources of literature		CI1.3 Literature collection: Different sources,	SL1.3 Searching and literature different online resources		
	SO1.4 Describe about biological online database		CI1.4 Biological online databases,			
	SO1.5 Study of sampling techniques		CI1.5 Determining sample design,	SL1.4 Use of sampling methor for collection of scienti data related to difference research problems		
	SO1.6 Study of data collection methods, hypothesis testing		CI1.6 collecting data, hypothesis testing	SL1.5 Setting up the Hypothe and their application research		

Suggested Sessional	SW1.1 Assignments	Describe in detail research and its types
Work (SW):anyone	SW1.2Mini Project	Collection of data and literature related to any biotechnological research problem
	SW1.3 Other Activities	Searching of online database available on internet and their application in research
	(Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	00	01	05	12

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)		
CO2- 98BT706.2:Development of critical thinking skills for evaluating scientific literature and identifying research problems	techniques of writing reviews		Unit-II CI2.1 Writing review articles,	SL2.1 Search various contents for writing a review article		
	SO2.2 Describe the contents of research article		CI2.2 Writing Journal articles, bibliography	SL2.2 designing of a research article		
	SO2.3 Reflecting about the concept and contents of books and monograph		CI2.3 books, and monographs-	SL2.3 Learn about contents of an ideal book		
	SO2.4 Explain about contents of an ideal thesis		CI2.4 Structure of thesis;	SL2.3 Searching and literature on different online resources.		
	SO2.5 Assessing the role of manuscript and proof correction in research		CI2.5 Manuscript and proof correction,			

SO2.6 Explaining the steps of research process, execution of research, types of research designs.	SL2.5 Use of research process to solve different research problems

Suggested Sessional Work (SW):anyone	SW2.1 Assignments	Describe in detail about different stages of execution of research by using research process.				
	SW2.2Mini Project	Designing of a research thesis.				
	SW2.3 Other Activities	Take a research problem a select a specific research design for solving it.				
	(Specify)					

Item	Cl	LI	SW	SL	Total
Approx.Hrs	06	00	01	05	12

Course Outcome (CO)	Session Outcomes(SOs)	Laboratory Instruction(LI)	Class (CI)	room Instruction	Self-Lo	earning(SL)
CO3-98BT706.3: Proficiency in communicating research findings through various written forms.			CI3.1	Data Collection: Secondary Data, Primary Data	SL3.1	Read about various types of data and their applications in research
	SO3.2 Assessing different methods used in data collection		CI3.2	Methods of collection	SL3.2	Collection of research data using different tools

SO3.3	Explaining concept and types of scales	CI3.3	Scaling Techniques Concepts and	SL3.3	Illustration about different scaling techniques
			types,		
SO3.4	Assessing different scaling methods used in research	CI3.4	Rating scales and Ranking scales, Scale Construction techniques		
SO3.5	Describe about multi- dimensional scaling	CI3.5	Multi-Dimensional Scaling.	SL3.4	Collection of different research journals
SO3.6	Assessing the role of research journals in research and their standards, concept of impact factor and citation index	CI3.6	Journals: Standard of research Journals, Impact factor, citation index	SL3.5	Assess role of impact factor and citation index in research

Suggested Sessional	SW3.1 Assignments	Describe in detail different categories of data and its collection methods.
Work (SW): anyone	SW3.2 Mini Project	Describe the role of scaling methods in research and their application for data validation
	SW3.3 Other	Prepare a list of research journal and checking their standard parameters.
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hr	·s 06	00	01	05	12

Course Outcome (CO)	Session	Outcomes (SOs)	Laboratory Instruction (LI)	Classr	oom Instruction (CI)	Self-Learning (SL)			
	SO4.1	Exploring the concept of data processing		CI4.1	Data processing	SL4.1	Learn about data processing approaches and its implementation.		
	SO4.2	Explaining the analytical/ statistical methods involved in research		CI4.2	Qualitative and Quantitative analytical / statistical methods involved in research.	SL4.2	Learn about analytical and scientific methods of research.		
	SO4.3	Assessing the sources of ethical issues in science and biotechnology		CI4.3	Research Ethics- The source of ethical issues in science and biotechnology	SL4.3	Discuss ethical concern of research in science and biotechnology		
	SO4.4	Explaining the concept of objectivity and integrity		CI4.4	research and reporting objectivity and integrity,	SL4.4	Learn about various types of reports		
		Explaining the plagiarism and related issues		CI4.5	the problem of plagiarism and related issues	SL4.5	SL4.4 Case studies related to plagiarism		
	SO4.6	Evaluate impact of international norms and standards.		CI4.6	international norms and standards, the impact of scientific temper and virtues ethical issues and environmental impact and commercializing research.				

Suggested Sessional Work (SW): anyone	SW4.1 Assignments	Explain about Qualitative and Quantitative analytical / statistical methods involved in research.
	SW4.2 Mini Project	Describe the various ethical issues related to biotechnological research.
	SW4.3 Other Activities	Prepare one article on commercialization of research
	(Specify)	-

Item	Cl	LI	SW	SL	Total
Approx.Hrs	6	00	01	05	12

Course Outcome (CO)	Sessi	ion Outcomes (SOs)	Laboratory Instruction (LI)		Classroom truction (CI)	Self- Learning (SL)
CO5-98BT706.5: Proficiency in report writing, plagiarism rectification, making deliberations and presentation		Define the concept and types and components of scientific reports		CI5.1	Structure, Types and components of scientific reports	SL5.1 learn abou basic concept & requirement o research report
	SO5.2	Able to execute steps layout and structure of research.		CI5.2	Steps, Layout and structure; Illustrations and tables	SL5.2 Review different layouts of report
	805.3	Apply the role of Bibliography, referencing and footnotes		CI5.3	Bibliography, referencing and footnotes	SL5.3learn how prepare a report
	SO5.4	Evaluate the concept of plagiarism in research		CI5.4	Reproduction of published material Plagiarism,	SL5.4 Learn abou plagiarism checking
	SO5.5	Evaluate the citation and bibliography, reproducibility and accountability		CI5.5	Citation and acknowledgement, Reproducibility and accountability	
	SO5.6	Describe about Seminars; Symposia;		CI5.6	General idea about: Seminars;	SL5.5 Learn abou role of deliberation.

Workshops,	Symposia;
Conferences and	Workshops,
Elaborate the role of	Conferences
deliberations in	Making
research methods of	deliberations (Oral
presentation	presentation)
preparation, visual aids	Planning -
in effective	Preparation and
communication	Making
	presentation, visual
	aids in effective
	communication

Suggested	SW5.1 Assignments	Explain general characteristics and components of research report
Sessional Work	SW5.2 Mini Project	Describe the role of deliberation in research
(SW): anyone	SW5.3 Other Activities (Specify)	Prepare a detail document on Use of visual aids- Importance of effective
		communication

Course duration (in hours)to attain Course Outcomes:

Course Title: Research Methodology			Course Code:98BT706			
Course Outcomes(COs)	Class lecture (CI)	Laboratory Instruction(LI)	Self- Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)	
CO1-98BT706.1: Students are being knowledgeable with essentials of research methodology through various tools available.	6	0	5	1	12	
CO2-98BT706.2: Development of critical thinking skills for evaluating scientific literature and identifying research problems.		0	5	1	12	

CO3-98BT706.3: Proficiency in communicating research	6	0	5	1	12
findings through various written forms.					
CO4-98BT706.4: Recognize various issues related to	6	0	5	1	12
research ethics, data processing and integrity, research					
commercialization.					
CO5-98BT706.5: Proficiency in report writing, plagiarism	6	0	5	1	12
rectification, making deliberations and presentation.					
Total Hours	30	00	25	05	60

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Research Methodology

Course Code:98BT706

Course Outcomes		Marks I	on	Total Marks	
	A	An	E	С	
CO1-98BT706.1: Students are being knowledgeable with essentials of research methodology through various tools available.	2	1	1	1	5
CO2-98BT706.2: Development of critical thinking skills for evaluating scientific literature and identifying research problems.	2	4	2	2	10
CO3-98BT706.3: Proficiency in communicating research findings through various written forms.	2	3	3	2	10
CO4-98BT706.4: Recognize various issues related to research ethics, data processing and integrity, research commercialization.	3	5	5	2	15
CO5-98BT706.5: Proficiency in report writing, plagiarism rectification, making deliberations and presentation.	5	4	1	0	10
Total Marks	14	17	12	07	50

Legend:A, Apply;An, Analyze;E, Evaluate;C, Create

Suggested learning Resources:

(l) Books:

(m)

S.No.	Title/Author/Publisher details
1	Beier, F.K., Crespi, R.S. and Straus, T. Biotechnology and Patent protection-Oxford and IBH Publishing Co. New Delhi.
2	Singh K, Intellectual Property rights on Biotechnology, BCIL, New Delhi
3	Writing the doctoral dissertation. Barrons Educational series, 2nd edition, Davis, G.B. and C.A. Parker, 1997. pp 160.
4	Authoring a PhD, thesis: how to plan, draft, write and finish a doctoral dissertation, Duncary, P. 2003.
5	Beier, F.K., Crespi, R.S. and Straus, T. Biotechnology and Patent protection-Oxford and IBH Publishing Co. New Delhi.

(n) Online Resources:

Suggested instructions/Implementation strategies:

- 37. Improved lecture
- 38. Tutorial
- 39. Case method
- 40. Group Discussion
- 41. Role play
- 42. Visit to virology lab (BSL-3)
- 43. Demonstration
- 44. ICT Based teaching Learning
- 45. Brainstorming

CO, PO and PSO Mapping

Program Name: B.Tech. Microbiology

Semester: VII Semester

Course Title: Research Methodology

Course Code: 98BT706

Course Outcome (Cos)		Program Outcomes (POs)										-	Program Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT706.1: Students	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3
are being knowledgeable															
with essentials of research															
methodology through															
various tools available.															
CO2-98BT706.2:	2	2	3	2	3	2	2	3	2	2	3	2	2	3	3
Development of critical															
thinking skills for evaluating															
scientific literature and															
identifying research															
problems.															
CO3-98BT706.3:	2	2	3	2	3	2	2	3	2	2	3	2	2	3	3
Proficiency in															
communicating research															
findings through various															
written forms.															
CO4-98BT706.4:	3	3	3	3	2	3	3	3	3	3	3	3	3	3	3
Recognize various issues															
related to research ethics,															
data processing and															

integrity, research commercialization.															
CO5-98BT706.5:	3	3	3	3	2	3	3	3	3	3	3	3	3	3	2
Proficiency in report															
writing, plagiarism															
rectification, making															
deliberations and															
presentation.															

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning
					(SL)
РО	CO1-98BT706.1: Students are being knowledgeable	SO1.1 SO1.2		1.1,1.2,1.3,1.4,1.5,	1SL-
1,2,3,4,5	with essentials of research methodology through	SO1.3 SO1.4		1.6	1,2,3,4,5
	various tools available.	SO1.5 SO1.6			
PSO 1,2,3					
РО	CO2-98BT706.2: Development of critical thinking	SO2.1 SO2.2		2.1, 2.2, 2.3, 2.4, 2.5,	2SL-
1,2,3,4,5	skills for evaluating scientific literature and	SO2.3 SO2.4		2.6	1,2,3,4,5
	identifying research problems.	SO2.5 SO2.6			
PSO 1,2,3	, , , , , , , , , , , , , , , , , , , ,				
РО	CO3-98BT706.3: Proficiency in communicating	SO3.1 SO3.2		3.1,3.2,3.3,3.4,3.5,	3SL-
1,2,3,4,5	research findings through various written forms.	SO3.3 SO3.4		3.6	1,2,3,4,5
		SO3.5 SO3.6			
PSO 1,2,3					

PO 1,2,3,4,5 PSO 1,2,3	CO4-98BT706.4: Recognize various issues related to research ethics, data processing and integrity, research commercialization.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5 SO4.6	4.1,4.2,4.3,4.4, 4.5, 4.6	4SL- 1,2,3,4,5
PO 1,2,3,4,5 PSO 1,2,3	CO5-98BT706.5: Proficiency in report writing, plagiarism rectification, making deliberations and presentation.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6	5.1,5.2,5.3,5.4,5.5, 5.6	5SL- 1,2,3,4,5

Program Name	Bachelor of Technology (B.Tech.)- Biotechnology							
Semester	VII							
Course Code:	98BT702							
Course title:	process Engineering and Unit Operation Curriculum Developer: Er. Arpit Srivastava, Assistant Professor							
Pre-requisite:	Students should have basic knowledge of fermentation and biochemical engineering							
Rationale:	Bioprocess engineering is a conglomerate of mathematics, biology and industrial design, and consists of various spectrums like the design and study of bioreactors (operational mode, instrumentation, and physical layout) to the creation of kinetic models. Biochemical engineers find employment opportunities in various industries. They provide their services in the food sector, nuclear sector, healthcare industry, pharmaceuticals, chemical manufacturing companies, research laboratories and other areas. This course provides us about the knowledge about the living organisms such as plants, animals, bacteria and fungi but the bioprocess engineering helps in development of the essential skills required to utilize the living organisms for the betterment of the human beings and the nature itself.							
Course Outcomes (COs):	CO1-98BT702.1. Recall the basic fundamentals of bioprocess engineering CO2-98BT702.2. Explain the production process of industrial fermented products CO3-98BT702.3. Apply unit operations to isolate biological products							
	CO4-98BT702.4. Analyse the purity of products isolated through unit operations CO5-98BT702.5. Evaluate & Design numerical values for development of biomass and product formation by downstream processing							

Scheme of Studies:

Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:1)
Program Common (PC)	98BT702	Bioprocess Engineering and Unit Operation	2	2	1	3	8	3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

						Sche	eme of Assessm	ent (Marks)		
					Progress	sive Assessment	(PRA)		End	Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment	Class Test 2 (2 best out		Class Activity (CAT)	Class Attendance	Total Marks	Semester Assessment (ESA)	(PRA+ ESA)
			5 number	of 3)		000	(AT)	(CA+CT+CAT+SA+AT)		

			3 marks each (CA)	10 marks each (CT)	(SA)					
РС	98BT702	Bioprocess Engineering and Unit Operation	15	20	5	5	5	50	50	100

Scheme of Assessment: practical

						Scheme of A	ssessment (Marks)		
					Total				
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II	Class Attendance (AT)	Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	(PRA+ ESA)
РС	98BT752	Bioprocess Engineering and Unit Operation	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the	Approximate Hours						
course and session levels, which students are anticipated to accomplish through		.	<u></u>	.	0111	CT.	
various modes of instruction including Classroom Instruction (CI), Laboratory		Item	Cl	LI	SW	SL	Total
Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course		Approx. Hrs	06	04	01	03	14
progresses, students should showcase their mastery of Session Outcomes (SOs),							
culminating in the overall achievement of Course Outcomes (COs) upon the							
course's conclusion.							

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
CO1-98BT505.1 Illustrate the basic mechanism of Bioprocess engineering	SO1.1 Explain concept of Bioprocess engineering	LI1.1 To Demonstrate the working of a Bench Top bioreactor with all its parts	Unit-1 Introduction and Overview CI1.1 A historical overview of industrial fermentation process - traditional and modern biotechnology	SL1.1 Find out some examples of bioprocess technique used in ancient India
	SO1.2 Determine the basic and advanced terminology, scope and application	LI1.2 To perform the isolation of microorganisms from different kinds of samples	CI1.2 Brief survey of organisms, processes, products relating to modern biotechnology	SL1.2 Search various reference books and study material to start the learning of microorganisms
	SO1.3 Elaborate the scientific applications of Bioseparation		CI1.3 Process flow sheeting – block diagrams, pictorial representation	SL1.3 Draw a flow chart showing upstream and fermentation processing
	SO1.4 Define the Fundamental		CI1.4 Fundamental mechanism of Fermentation	
	SO1.5 mechanism of FermentationSO1.6 Revision and assessment		CI1.5 mechanism of Fermentation CI1.6 Revision and assessment	

Suggested Sessional	SW1.1 Assignments	Describe in detail "Applications of Microorganisms in various Sectors"				
Work (SW): anyone	SW1.2 Mini Project	Draw various types of Fermenters with specifications and parts				
	SW1.3 Other Activities (Specify)	Make a power point presentation on "Role of Fermentations in Ancient India"				

			Item	Cl LI SW SL Total
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Approx. 1 Class room Instruction (CI)	Irs 06 06 01 03 16 Self-Learning (SL)
CO2-98BT752.2. Explain the production process of industrial fermented products	SO2.1 Explain the production mechanism of multiple weak organic acids	LI2.1 To perform the experiment on the microbial production of Acetic Acid	CI2.1 Production of some commercially important organic acids (e.g. citric acid, lactic acid, acetic acid	SL2.1 Find out more conventional cell disruption techniques
	SO2.2 Explain the production mechanism of Amino acids	LI2.2 To perform the experiment of microbial production of Amino acids	SL2.2 Read the latest research in bioseparations methods	
	SO2.3 Explain the production mechanism of ABE fermentation	L12.3 To perform the cell disruption technique using physical, chemical and biological methods	CI2.3 ABE Fermentation (Acetone, Butanol and Ethanol)	SL2.3 Write down few points on biological product's properties
	SO2.4: Study the commercial importance of these compounds		CI2.4 : Commercial Importance of Organic Acids, Amino Acids, and Alcohols	
	SO2.5: Learn about the fermentation conditions for these products		CI2.5: Fermentation Conditions for Bioproducts	
	SO2.6: Explore the role of microorganisms in these processes		CI2.6: Microorganisms in Production Processes	

Suggested Sessional	SW2.1 Assignments	Describe Biosynthetic pathway for Acetone, Butanol and Ethanol derived fermentation
Work (SW): anyone	SW2.2 Mini Project	Make a project on different kinds of Amino acids, their structure and functions
	SW2.3 Other Activities (Specify)	Make Power point presentation on Distillation as Unit operations

			Item	Cl LI SW SL Total				
			Approx. Hrs	06 06 01 03 16				
Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)				
CO2-98BT505.3	SO3.1	LI3.1	Unit-3	SL3.1				
Apply unit operations to isolate	Elucidate the application of	To perform the microbial	CI3.1	Find out the process of				
biological products using	various kinds of separation	production of Secondary	Study of production	Aqueous two-phase				
bioprocessing	process	metabolites using shake	processes for various classes	extraction, instrument setup				
		flask fermentation method	of secondary metabolites					
	SO3.2	LI3.2	CI3.2	SL3.2				
	Derive the mathematical	To observe the growth of	Production processes for	Read the process of protein				
	expression for centrifugal	microbial biomass and	Beta-lactams (penicillin,	precipitation and its				
	sedimentation	calculate its kinetics using	cephalosporin etc.),	application in healthcare				
		graph						
	SO3.3	LI3.3	CI3.3	SL3.3				
	Analyze the partition	To determine the production	Production processes for	Find out the process of				
	coefficient associated with	of weak organic acids	aminoglycosides (streptomycin	Ultracentrifugation and its				
	phase extraction	through fermentation	etc.,) macrolides (erythromycin	application				
	SO3.4		CI3.4					
	Distinguish among the		Microbial production of					
	working mechanism of		vitamins and Steroids					
	Precipitation of proteins by							
	different methods							
	sedimentation							
	SO3.5 Examine the role of		CI3.5: Microorganisms in					
	microorganisms in		Secondary Metabolite					
	secondary metabolite		Production					
	production							
	SO3.6: Discuss the		CI3.6: Commercial					
	commercial significance of		Significance of Secondary					
	secondary metabolites		Metabolites					

Suggested Sessional	SW3.1 Assignments	Derive the equations for Centrifugation using sedimentation, terminal velocity and gravity
Work (SW): anyone	SW3.2 Mini Project	Describe the role of Ultracentrifuge in industries
	SW3.3 Other	Prepare one Power point presentation on "Different types of Centrifuge and their applications"
	Activities (Specify)	

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	02	01	03	12

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT505.4	SO4.1	LI4.1	Unit-4 Role of RDT in	SL4.1
Analyse the purity of products	Elucidate the application of	To perform the production of	Bioprocessing	List down the different kinds of
isolated through unit operations	various kinds of separation	Antibiotics using fungi in a	CI4.1	vaccine produced through RDT
	process	Shake Flask reactor.	Production of recombinant	process in India
			proteins having therapeutic and	
			diagnostic applications	
	SO4.2		CI4.2	SL4.2
	Derive the mathematical		Production of vaccines	Read the process of MoAb
	expression for centrifugal		(Recombinant)	production and its application in
	sedimentation			healthcare
	SO4.3		CI4.3	SL4.3
	Analyze the partition		Production of monoclonal	Find out the size of genome of
	coefficient associated with		antibodies (MoAb), types and	various important
	phase extraction		mechanism	microorganisms
	SO4.4		CI4.4	
	Distinguish among the working		Products of plant and animal	
	mechanism of Precipitation of		cell culture which can be	
	proteins by different methods		produced through Bioprocess	
	sedimentation			
	SO4.5		CI4.5	
	Interpretate and analyze		Different host vector system for	
	various host vector system for		recombinant cell cultivation	
	recombinant cell cultivation		strategies and advantages	
	SO4.6		CI4.6	
	Interpretate and analyze E.		Recombinant cell cultivation	
	coli, yeast, Pichia pastoris /		strategies using E. coli, yeast,	
	Saccharomyces cereviseae		Pichia pastoris / Saccharomyces	
			cereviseae	

Suggested Sessional	SW4.1 Assignments	Determine the working mechanism and applications of different kind of Vectors used in RDT
Work (SW): anyone	SW4.2 Mini Project	Derive the Plant and Animal Cell Culture based metabolites having therapeutic applications
	SW4.3 Other Activities	Make a Power point presentation for description of "Role of Host-vector system" in RDT for
	(Specify)	Bioprocessing

Item	Cl	LI	SW	SL	Total
Approx. Hrs	6	02	01	05	14

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-98BT752.5.	SO5.1	LI5.1	Unit-5 Chromatography and	SL5.1
Evaluate & Design numerical	Elucidate the application &	To perform the Column	Electrophoresis	Find out the industrial
values for development of	working mechanism of	Chromatography	CI5.1	applications of
biomass and product formation	Chromatography	process as Unit	Introduction, Principle and	Chromatography
by downstream processing		Operation for extraction	Working fundamentals of	
		of different compounds	Chromatography	
	SO5.2		CI5.2	SL5.2
	Distinguish among Ion-		Types of Chromatography (Gel	List down various kinds of
	exchange, size exclusion,		filtration, Reversed-phase,	Chromatographic columns
	hydrophobic interactions		Hydrophobic interaction, Ion	used in analysis
			exchange; IEC)	
	SO5.3		CI5.3	SL5.3
	Analyze the working of		IMAC and bio-affinity	List down various kinds of
	Bioaffinity chromatography		chromatography	Solvents used in
				Chromatographic technique
	SO5.4		CI5.4	SL5.4
	Distinguish among the		Design and selection of	List down the various kinds
	working mechanism of		chromatographic matrices	of Detectors associated with
	Pseudo affinity		modes of operation	chromatography
	Chromatographic techniques			
	SO5.5		CI5.5	SL5.5
	Describe and draw Amnio		Introduction, Principle and	Find out the role of different
	acid's structure and		Working fundamentals of	tracking dyes used in
	functions		Electrophoresis; Electrophoretic	Electrophoresis
			Mobility and equations	
	SO5.6		CI5.6	
	Explain the process of		Agarose Gel Electrophoresis,	
	Protein sequencing		Working mechanisms. Capillary	
			Gel Electrophoresiws and	
			application of Gel	
			Electrophoresis	

Suggested Sessional	SW5.1 Assignments	Explain the working and Application of Ion Exchange Chromatography
Work (SW): anyone	SW5.2 Mini Project	Describe the working mechanism and role of Agarose in Gel Electrophoresis
	SW5.3 Other Activities (Specify)	Prepare one article on the "Types of Bioinstrumentation and their applications in Bioprcess Engineeirng"

Course duration (in hours) to attain Course Outcomes:

Course Title: Bioprocess Engineering and Unit Operations

Course Code: 98BT702

Course Thee Disprocess Engineering and On		Course Coue. 50b1702			
Course Outcomes (COs)	Class lecture (CI)	Laboratory Instruction (LI)	Self-Learning (SL)	Sessional work (SW)	Total Hours (Li+CI+SL+SW)
CO1-98BT702.1. Recall the basic fundamentals of bioprocess engineering	6	4	3	1	14
CO2-98BT702.2. Explain the production process of industrial fermented products	6	6	3	1	16
CO3-98BT702.3. Apply unit operations to isolate biological products	6	6	3	1	16
CO4-98BT702.4. Analyse the purity of products isolated through unit operations	6	2	3	1	12
CO5-98BT702.5. Evaluate & Design numerical values for development of biomass and product formation by downstream processing	6	2	5	1	14
Total Hours	30	20	17	05	72

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome:

Course Title: Bioprocess Engineering and Unit Operations

Course Code: 98BT702

Course Outcomes		Marks I	Distributio	n	Total Marks	
	Α	An	E	С		
CO1-98BT702.1. Recall the basic fundamentals of bioprocess engineering	2	1	1	1	5	
CO2-98BT702.2. Explain the production process of industrial fermented products	2	4	5	1	12	
CO3-98BT702.3. Apply unit operations to isolate biological products	3	5	5	1	14	
CO4-98BT702.4. Analyse the purity of products isolated through unit operations	2	3	5	1	11	

CO5-98BT702.5. Evaluate & Design numerical values for development of biomass and product formation by downstream processing	2	4	1	1	10
Total Marks	11	17	17	05	50

Legend: A, Apply; An, Analyze; E, Evaluate; C, Create

Suggested learning Resources:

(a) Books:

(b)

S.No.	Title/Author/Publisher details
1	Pauline M. Doran, "Bioprocess engineering principles" : Acedemic press
2	James E. Bailey & David F. Ollis- Biochemical engineering fundamentals
3	J.C. Janson And L. Ryden, (Ed.) – Protein Purification – Principles, High Resolution Methods and Applications, VCH Pub. 1989.
4	Peter F. Stanbury, Allan Whitekar "Principles fo fermentation technology"
5	Bioseparations: Principles and Techniques; Sivasankar, B; PHI Publications, 2009

(c) Online Resources:

Suggested instructions/Implementation strategies:

- 46. Improved lecture
- 47. Tutorial
- 48. Case method
- 49. Group Discussion
- 50. Role play
- 51. Visit to Beverage producing plants & Distillery/Fermenter units
- 52. Demonstration
- 53. ICT Based teaching Learning
- 54. Brainstorming

CO, PO and PSO Mapping

Program Name: B. Tech. Biotechnology

Semester: VII Semester

Course Title: Bioprocess Engineering and Unit Operations

Course Code: 98BT702

			CO/	/PO Ma	pping										
Course Outcome					P	rogram C	outcome	s (POs)					Progra	m Specifio (PSOs	c Outcomes)
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT702.1. Recall the basic fundamentals of bioprocess engineering	-	1	-	1	2	2	1	-	3	1	3	1	1	2	1
CO2-98BT702.2. Explain the production process of industrial fermented products	-	1	-	-	-	-	3	-	3	2	3	3	3	-	2
CO3-98BT702.3. Apply unit operations to isolate biological products	-	2	1	1	-	-	3	-	3	1	3	3	1	1	1

CO4-98BT702.4. Analyse the purity of products isolated through unit operations	1	_	1	_	2	2	2	3	-	1	3	3	2	2	3
CO5-98BT702.5. Evaluate & Design numerical values for development of biomass and product formation by downstream processing	1	-	2	-	-	2	3	3	-	2	3	3	1	1	2

Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6	CO1-98BT702.1. Recall the basic	SO1.1 SO1.2	LI 1	1.1,1.2,1.3,1.4,	1SL-1,2,3
7,8,9,10,11,12	fundamentals of bioprocess engineering	SO1.3 SO1.4 So1.5 SO1.6	LI 2	1.5, 1.6	
PSO 1,2, 3		501.5 501.0			
PO 1,2,3,4,5,6	CO2-98BT702.2. Explain the production	SO2.1 SO2.2	LI 1	2.1, 2.2, 2.3, 2.4,	2SL-1,2,3
7,8,9,10,11,12	process of industrial fermented products	SO2.3 SO2.4	LI 2	2.5, 2.6	
		SO2.5 SO2.6	LI 3		
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO3-98BT702.3. Apply unit operations to	SO3.1 SO3.2	LI 1	3.1,3.2,3.3,3.4,	3SL-1,2,3
7,8,9,10,11,12	isolate biological products	SO3.3 SO3.4	LI 2	3.5, 3.6	
		SO3.5 SO3.6	LI 3		
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO4-98BT702.4. Analyse the purity of	SO4.1 SO4.2	LI 1	4.1,4.2,4.3,4.4,	4SL-1,2,3
7,8,9,10,11,12	products isolated through unit operations	SO4.3 SO4.4		4.5, 4.6	
		SO5.5 SO5.6			
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO5-98BT702.5. Evaluate & Design	SO5.1 SO5.2	LI 1	5.1,5.2,5.3,5.4,5.5,	58L-1,2,3,4,5
7,8,9,10,11,12	numerical values for development of biomass	SO5.3 SO5.4		5.6	
	and product formation by downstream	SO5.5 SO5.6			
PSO 1,2, 3	processing				

Program Name	Bachelor of Technology (B.Tech.)- Biotechnolog	y
Semester	V	
Course Code:	98BT704-A	
Course title:	Biofuels and Bioenergy	Curriculum Developer: Kamlesh Kumar Soni
Pre-requisite:	Student should have basic knowledge of life science	es and Biotechnology
Rationale:	Nevertheless, Biofuels has gained so much importa Biofuels and Bioenergy teaching programs. Prediction and electricity have done together. The course will p	Biotech Semester-VII program, Biofuels is a rather young discipline, which came up in the nineties. ance within the last years that universities at all rankings have introduced or are going to introduce ons say that Biofuels and Bioenergy will change our lives and society more than computer technology provide an overview over Biofuels and Bioenergy. Biofuels and Bioenergy is a highly interdisciplinary king reference to chemistry, physics, biology, pharmacy, and engineering. Applications of biosensors, ed for the future, will be discussed
Course Outcomes (COs):	98BT704-A.1. Understand the different generations 98BT704-A.2. Compare different energy based, star 98BT704-A.3. Explain the role of bioleaching in me 98BT704-A.4. Identify the types of resources and th 98BT704-A.5. Develop the prototype of the Microb	etallurgy heir application in day-to-day life

Scheme of Studies:

					Scheme o	f studies (Hou	rs/Week)	
Board of Study	CourseCode	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C) (L:T:P=2:0:1)
Program Common (PC)	98BT704-A	Biofuels and Bioenergy	2	2	1	3	8	3

Legends: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others);

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other instructional strategies);

SW: Sessional Work (includes assignment, seminar, mini project etc.);

SL: Self Learning;

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to achieve course outcome.

Scheme of Assessment: Theory

						Sch	neme of Assessme	ent (Marks)		
					Progres	sive Assessment	(PRA)		End	Total Marks
Board of Study	Couse Code	Course Title	Class/Home	Class Test 2	Seminar one	Class Activity	Class Attendance	Total Marks	Semester Assessment	
			Assignment 5 number	(2 best out of 3)	(SA)	(CAT)	(AT)	(CA+CT+CAT+SA+AT)	(ESA)	(PRA+ ESA)

			3 marks each (CA)	10 marks each (CT)						
РС	98BT704-A	Biofuels and Bioenergy	15	20	5	5	5	50	50	100

Scheme of Assessment: Practical

						Scheme of As	sessment (Marks)		
				Prog	gressive As	sessment (PRA))		Total
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 7 marks each (CA)	Viva Voce I	Viva Voce II		Total Marks (CA+VV1+VV2+SA+AT)	End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
РС	98BT752-A	Biofuels and Bioenergy	35	5	5	5	50	50	50

Course-Curriculum:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are	A	pproximate Ho	urs				
anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction	_						
(LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of							Total
Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.		Approx. Hrs	06	04	01	02	13

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO1-98BT704-A Understand the different generations of biofuels and discuss the steps involve in their production.	SO1.1: Understand the production mechanisms of bioethanol by microbes	LI1.1: To demonstrate the fermentation process for bioethanol production.	Cl1.1: Production Mechanisms of Bioethanol	SL1.1: Study the microbial pathways involved in bioethanol production
	SO1.2: Learn about the production mechanisms of methane and hydrogen as second-generation biofuels	LI1.2: To set up a bioreactor for methane and hydrogen production.	Cl1.2: Production Mechanisms of Methane and Hydrogen	SL1.2: Research on the microbial processes involved in methane and hydrogen production
	SO1.3: Study the factors affecting biogas yields		Cl1.3: Factors Affecting Biogas Yields	
	SO1.4: Understand the production mechanisms of biobutanol		Cl1.4: Production Mechanisms of Biobutanol	
	SO1.5: Learn about biodiesel production from algae		Cl1.5: Biodiesel Production from Algae	
	SO1.6: Explore the differences between first, second, and third- generation biofuels		Cl1.6: Comparison of Biofuel Generations	

Suggested Sessional Work	SW1.1 Assignments	Write the difference in the aerobic respiration and anaerobic respiration
(SW): anyone	SW1.2 Mini Project	Case study: algae being utilize for the production of biodiesel
	SW1.3 Other Activities (Specify)	Find the interesting videos explaining the pathways involve in ethanol production from yeast

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	02	13

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO2-98BT704-A.2: Compare different energy based, starch-based crops for the production of biofuel	SO2.1: Understand the degradation of lignocellulose by microorganisms	LI2.1: To isolate and characterize microorganisms involved in lignocellulose degradation.	Cl2.1: Degradation of Lignocellulose by Microorganisms	SL2.1: Study the microbial pathways for lignocellulose degradation
	SO2.2: Learn about the degradation of sugar and starch crops by microorganisms	LI2.2: To set up an experiment to study the microbial degradation of sugar and starch crops.	Cl2.2: Degradation of Sugar and Starch Crops by Microorganisms	SL2.2: Research on the biochemical pathways involved in sugar and starch degradation
	SO2.3: Study the degradation of oilseed crops by microorganisms		Cl2.3: Degradation of Oilseed Crops by Microorganisms	
	SO2.4: Understand the degradation of hydrocarbon-producing crops by microorganisms		Cl2.4: Degradation of Hydrocarbon- Producing Crops by Microorganisms	
	SO2.5: Explore the microbial pathways involved in the degradation of various energy crops		Cl2.5: Microbial Pathways for Energy Crop Degradation	
	SO2.6: Learn about the commercial significance of microbial degradation of energy crops		Cl2.6: Commercial Significance of Microbial Degradation	

ggested Sessional Work	SW1.1 Assignments	List the oil seed crops and their processing for the fuel production
W): anyone	SW1.2 Mini Project	Hydrocarbon: is it a better energy than others? How?
	SW1.3 Other Activities (Specify)	Read into details about the recombinant microbe to enhance the degradation of lignocellulosic crop: a case
		study

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	04	01	02	13

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO3-98BT704-A.3: Explain the role of bioleaching in metallurgy	SO3.1: Understand the principles of microbial metal leaching	LI3.1: To demonstrate the basic principles of microbial metal leaching.	CI3.1: Principles of Microbial Metal Leaching	SL3.1: Study the theoretical background of microbial metal leaching
	SO3.2: Learn about leaching mechanisms and models	LI3.2: To analyze different models of leaching mechanisms.	CI3.2: Leaching Mechanisms and Models	SL3.2: Research on the various models of leaching mechanisms
	SO3.3: Study the factors influencing bioleaching		CI3.3: Factors Influencing Bioleaching	
	SO3.4: Understand bacterial attachment on mineral surfaces		Cl3.4: Bacterial Attachment on Mineral Surfaces	
	SO3.5: Learn about microbial diversity in bioleaching environments		CI3.5: Microbial Diversity in Bioleaching Environments	
	SO3.6: Understand the principles of microbial metal leaching		Cl3.6: Principles of Microbial Metal Leaching	

Suggested Sessional Work	SW1.1 Assignments	Bacterial attachment for the bioleaching
(SW): anyone	SW1.2 Mini Project	A short report on the application of bioleaching at commercial scale
	SW1.3 Other Activities (Specify)	NA

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	4	01	02	13

Course outcome (CO)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO4-98BT704-A.4: Identify the types of resources and their application in day-to-day life	O4.1: Understand the classification of resources	LI4.1: To categorize and classify various resources in a lab setting.	CI4.1: Classification of Resources	SL4.1: Study the different types of resources and their classification
	SO4.2: Learn about renewable and non- renewable resources	LI4.2: To analyze the properties and uses of renewable and non-renewable resources.	CI4.2: Renewable and Non- Renewable Resources	SL4.2: Research on the characteristics of renewable and non-renewable resources
	SO4.3: Study the use and overexploitation of resources		CI4.3: Use and Overexploitation of Resources	
	SO4.4: Understand the classification and sources of energy		Cl4.4: Classification and Sources of Energy	
	SO4.5: Learn about the problems relating to the demand and supply of energy		Cl4.5: Problems Relating to Demand and Supply of Energy	
	SO4.6: Explore the energy sources like coal and petroleum		Cl4.6: Energy Sources: Coal and Petroleum	

Suggested Sessional Work	SW1.1 Assignments	How overexploitation can affect the future; Make detail report on it
(SW): anyone	SW1.2 Mini Project	A short report on the fossil fuels and their availability
	SW1.3 Other Activities (Specify)	Find the recent discovery of green technology

Suggested Sessional Work	SW1.1 Assignments	What is nanocarbon and its application
(SW): anyone	SW1.2 Mini Project	How Biosensors are playing important role in biotechnology, write an article for the same
	SW1.3 Other Activities (Specify)	Find out some you tube videos explaining Nano-aerosols for waste water treatments

Item	Cl	LI	SW	SL	Total
Approx. Hrs	06	4	01	02	13

Course outcome (COs)	Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
CO5-98BT704-A.5: Develop the prototype of the Microbial Fuel Cell and demonstrate its working principle	SO5.1: Understand the types and working principles of microbial fuel cells	LI5.1: To construct and evaluate a microbial fuel cell.	CI5.1: Types and Working Principles of Microbial Fuel Cells	SL5.1: Study the different types of microbial fuel cells and their principles
	SO5.2: Learn about the applications of microbial fuel cells	LI5.2: To demonstrate the applications of microbial fuel cells in a lab setting.	CI5.2: Applications of Microbial Fuel Cells	SL5.2: Research on the various applications of microbial fuel cells
	SO5.3: Study the theory and applications of biofilms		CI5.3: Theory and Applications of Biofilms	
	SO5.4: Understand the theory and applications of biosensors		CI5.4: Theory and Applications of Biosensors	
	SO5.5: Learn about environmental nanobiotechnology applications		CI5.5: Environmental Nanobiotechnology Applications	
	SO5.6: Understand the significance of nanobiotechnology in waste management		CI5.6: Nanobiotechnology in Waste Management	

Course duration (in hours) to attain Course Outcomes (Course Title: Biofuels & Bioenergy) (Course Code: 98B) Course Outcomes (COs)	Class lecture	Laboratory	Self-Learning	Sessional work	Total Hours
	(CI)	Instruction (LI)	(SL)	(SW)	(Li+CI+SL+SW)
CO1-98BT704-A.1: Understand the different generations of biofuels and discuss the steps involve in their production	6	4	2	1	13
CO2-98BT704-A.2: Compare different energy based, starch- based crops for the production of biofuel	6	4	2	1	13
CO3-98BT704-A.3: Explain the role of bioleaching in metallurgy	6	4	2	1	13
CO4-98BT704-A.4: Identify the types of resources and their application in day-to-day life	6	4	2	1	13
CO5-98BT704-A.5. Examine and demonstrate the mechanism of product purification	6	4	2	1	13
Total Hours	30	20	10	05	65

End semester Assessment Scheme for setting up question paper and assessment to evaluate the Course Outcome: (Course Title: Biofuels & Bioenergy) (Course Code: 98BT704-A)

Course Outcomes		Total Marks				
	А	An	Е	С		
CO1-98BT704-A.1: Understand the different generations of biofuels and discuss the steps involve in their production	2	1	1	1	5	
CO2-98BT704-A.2: Compare different energy based, starch-based crops for the production of biofuel	2	4	5	1	12	
CO3-98BT704-A.3: Explain the role of bioleaching in metallurgy	3	5	5	1	14	
CO4-98BT704-A.4: Identify the types of resources and their application in day-to-day life	2	3	5	1	11	
CO5-98BT704-A.5. Examine and demonstrate the mechanism of product purification	5	4	1	0	10	
Total Marks	14	17	17	04	52	

Suggested learning Resources:

(a) Books:

S.no.	Title	Author	Publisher	Edition & Year	
1	Biofuels and Bioenergy	John Love, John A. Bryant John	Wiley & Sons	1 & 2017	
2	Biofuels and Bioenergy: Processes and Technologies	Sunggyu Lee, Y.T. Shah	CRC Press	1 & 2012	
3	Bioenergy and Biofuels	Ozcan Konur	CRC Press	1 & 2018	
4	Bioenergy: Biomass to Biofuels	Anju Dahiya	Academic Press	1 & 2014	
5	Biofuels and Bioenergy	Robbie Larkin	Syrawood Publishing House	1 & 2016	

(b) Online Resources:

Suggested instructions/Implementation strategies:

- 55. Improved lecture
- 56. Tutorial
- 57. Case method
- 58. Group Discussion
- 59. Role play
- 60. Visit to Waste water/Effluent Treatment plant and downstream pharmaceutical plants
- 61. Demonstration
- 62. ICT Based teaching Learning
- 63. Brainstorming

Program Name: B. Tech. Biotechnology

Semester: VII Semester

Course Title: Biofuels and Bioenergy

Course Code: 98BT704-A

CO/PO Mapping															
Course Outcome	Program Outcomes (POs)							Program Specific Outcomes (PSOs)							
COs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1-98BT704-A.1: Understand the different generations of biofuels and discuss the steps involve in their production	1	1	1	-	2	2	2	-	1	2	2	2	2	3	2
CO2-98BT704-A.2: Compare different energy based, starch-based crops for the production of biofuel	-	-	-	2	-	-	2	-	2	2	3	1	2	2	2
CO3-98BT704-A.3: Explain the role of bioleaching in metallurgy	-	2	1	-	1	-	2	-	2	1	1	2	2	1	1
CO4-98BT704-A.4: Identify the types of resources and their application in day-to-day life	-	1	-	1	2	2	2	3	-	1	-	-	1	2	3
CO5-98BT704-A.5. Examine and demonstrate the mechanism of product purification	-	-	1	1	-	2	2	2	1	2	2	2	1	-	2
Legends: CO/PO/PSO Mapping Range: Low, 1; Medium, 2; High, 3															

Course Curriculum:

POs & PSOs No.	COs	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6	CO1-98BT704-A.1: Explain fundamentals of	SO1.1 SO1.2 SO1.3		1.1,1.2,1.3,1.4, 1.5,	1SL-1,2
	1				15L-1,2
7,8,9,10,11,12	Plant Biotechnology	SO1.4 SO1.5 SO1.6	LI2	1.6	
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO2-98BT704-A.2: Define the role of tissue	SO2.1 SO2.2 SO2.3	LI 1	2.1, 2.2, 2.3, 2.4, 2.5,	2SL-1,2
7,8,9,10,11,12	culture media and its constituents in micropropagation of ex-plants	SO2.4 SO25 SO2.6	LI2	2.6	
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO3-98BT704-A.3: Understand the working	SO3.1 SO3.2 SO3.3	LI 1	3.1,3.23.3,3.4, 3.5,	3SL-1,2
7,8,9,10,11,12	mechanism of callus culture	SO3.4 SO3.5 SO3.6	LI2	3.6	
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO4-98BT704-A.4: Interpretate the mechanism	SO4.1 SO4.2 SO4.3	LI 1	4.1,4.2,4.3,4.4, 4.5,	4SL-1,2
7,8,9,10,11,12	of plant-based vector and plasmids	SO4.4 SO4.5 SO4.6	LI2	4.6	
PSO 1,2, 3					
PO 1,2,3,4,5,6	CO5-98BT704-A.5. Examine and demonstrate	SO5.1 SO5.2 SO5.3	LI 1	5.1,5.2,5.3,5.4, 5.5,	5SL-1,2
7,8,9,10,11,12	the mechanism of product purification	SO5.4 SO5.5 SO5.6	LI2	5.6	
PSO 1,2, 3					

B. Tech. Biotechnology 8th Semester AKS UNIVERSITY DEPARTMENT OF BIOTECHNOLOGY

Guidelines for BSc/MSC/BTECH/MTECH Thesis Preparation

For internal use only April, 2022

TABLE OF CONTENT

Content	Page
Part 1: Must – know issues	3
Part 2: Thesis content	6
Part 3: Thesis format	9
Part 4: Thesis defence	16
Appendix 1: Format of thesis cover page	17
Appendix 2: Relevant forms	18
Appendix 3: Sample papers	28

PART 1: MUST-KNOW ISSUES

1. Enrolment and Pre-requisites

Your research project begins in your last semester. The project is considered as a credit course which must be completed within the same semester to qualify for graduation/post graduation. Other important courses such as Biostatistics, Scientific Writing Workshop and Research Methodology should be taken prior to the start of your thesis project.

2. Goals and Objectives

The aim of the research project is to provide students with practice on how to undertake an original research in the major fields of biotechnology. The results will be presented to examiners set up by the University. By the end of the research project students will have gained experience in conducting an independent research and should be capable in it.

3. Duration and workload

The research project comprises a credit module equivalent to <u>45 days-six</u> <u>months working</u> <u>months.</u> Students are expected to devote regular time in preparing the research proposal, commencing the research project, writing the thesis and presenting it before an Evaluation Committee.

4. Scope

Projects should be original laboratory, field-based or survey research on a topic proposed a internal adviser at University or any outside relevant organization/research lab or industry. You could also conduct their thesis project outside the University given that your proposal is approved with adequate supervision by external supervisor.

5. Choice of projects

Department of Biotechnology and its faculty members will offer a list of possible projects for students' consideration. The proposed projects are closely related to the supervisor's expertise

851

and considered feasible given the current conditions of the University laboratory system or alternatives elsewhere. Students can select the project they are most interested in and discuss with the faculty member proposing the project. Competition may exist when more than one student are interested in the same project. The supervisor has the right to select the most suitable student but criteria for selection should be publicized.

It is possible for students to propose and arrange these projects themselves, but the topic and scientific content must be endorsed by an Advisor of the Department of the University. For project that will be conducted outside the University and supervised by non-University employer, students are requested to provide evidence for such an arrangement by completing <u>Form BT01</u> along with a CV of your supervisor.

6. Assessment

The thesis will be evaluated by an anonymous examiner assigned by the University. Students are allowed to present his/her thesis only if the examiner approved the same.

8. Progress report

About four weeks after the start of your research you are required to submit a progress report to the Department using <u>Form BT02</u>. This progress report must becertified by the supervisor. Change of the initial research title and/or objectives, if

well justified, are possible and should be officially approved by the Department.

9. Thesis submission and revision

- □ The date for submission of completed theses is set by the Department (i.e. 45 days to six months depending on the course scheme and commencement of the research) and will be confirmed before the beginning of the semester.
- □ Two copies of thesis (soft-bounded) should be submitted to the Department <u>two weeks</u> before the date set for thesis defence.
- □ After a successful defence, the student revises his/her thesis according to the comments and amendments required by the Examiner. The adviser should make sure that all corrections are followed by the student by approving the revised thesis using Form BT03.
- □ The revised thesis is finally checked and approved by the Department.
- □ Students are required to submit two copies of thesis (no binding is required) and a and the electronic versions of the thesis (in both .doc and /pdf formats) and the presentation in PowerPoint. The Pen Drive should be labelled with student name, ID and year of graduation/post graduation.

PART 2: THESIS CONTENT

From 2022 onwards students are required to write theses in the form of an extended paper. This new requirement is not only to train students with manuscript preparation, but also to facilitate later publication of good research by the Department. For your thesis the following sections are required in the order shown below. Start each section on a new page.

- □ Cover page: use the format issued by the Department
- Acknowledgment
- □ Main body: paper-styled, including
 - □ Title, author name(s) and affiliation
 - Abstract
 - Introduction
 - Materials and Methods
 - Results
 - Discussion
 - Conclusion
 - References
- □ Appendix (if needed only)

ACKNOWLEDGMENT

This section is to recognize the people, and institutions who have helped you in completing your research project. The page is very informal and you can write in any style that you want. It is best to keep this section short. List here those individuals who provided help during the research (e.g., providing funding, language help, writing assistance or proof reading the article, etc.).

ABSTRACT

The abstract is a very brief overview of your entire study. It must come immediately after the title page. The abstract should briefly state the purpose of the research (introduction), how the problem was studied (methods), the important findings (results), and what the findings mean (conclusion). It is important to be descriptive but concise and to say only what are essential, using no more than 200 words. The author should also suggest some keywords that well represent the content of the research.

INTRODUCTION

This section is short (about 2 - 3 pages) and should be comprehensible to an informed lay person and give enough background to enable the reader to place the particular research problem in a context of common knowledge. It is important to state (i) the research problems (ii) a snap-shot literature review on what have been known or not known yet in

relation to relevant hypotheses or assumptions suggested by you, (iii) the purposes of your research, (iv) scope and limitation and (v) expected outcomes.

More specifically, all problem elements, including the variables to be studied, should be expressed in an orderly system of relationships. Research questions must be clear, consistent, and measurable. They guide the research design process. Indicate "why" the study is being proposed.

<u>Provide an adequate background (literature review) and clearly state the objectives of the</u> <u>work</u>, avoiding a detailed literature survey or a summary of the results. Try to answer the question: "what potential impact will the results of the study have on the current body of knowledge?

MATERIALS & METHODS

This section should provide an accurate description of all methods and materials used in your study. It should be written in the past tense in the passive voice. Provide sufficient detail to allow the work to be reproduced, with details of supplier and catalogue number when appropriate. Methods already published should be indicated by a reference: only relevant modifications should be described. See Appendix 2 for an example of this section.

Recommended structure of the section:

- 2.1 Research object and location (information about the object of your research and where it was conducted)
- 2.2 Experimental design: describe the experimental design, methods adopted or developed to collect data. Relevant instruments and materials should be mentioned along with their description. Do not just simply list all the chemicals, instruments or devices used in the research. If you use standard methods(published and used by many similar studies, for example Kjeldall method to determine crude protein concentration), just mention the name of the methods and cite the reference that describe the method. In case the method should be described but too long, detailed information can be presented in the Appendix.
- 2.3 Data analysis: describe statistical methods used for data analysis with enough details so that the reliability of your research can be assessed. Data should be analyzed using statistics, either descriptive or inferential or both. Raw data are never included in your thesis unless they are needed to give evidence for specific conclusions which cannot be obtained by looking at an analysis, or summation, of the data.

If your study includes more than one experiment, describe one by one.

RESULTS

<u>Summarize the findings without interpretation</u>. Results should be clear and concise. Only analyzed data should be presented in forms of figures, graphs, tables and/or text descriptions

of observations. When presenting statistically summarised data, you should state whether the number is a mean or median and clearly state how the data spread is expressed (\pm standard deviation, \pm standard error of the mean, or inter-quartile range). When claiming a statistically significant result, you must support such a statement with a

declaration of the probability (p) value and the test that was used to generate that value. Consult a statistician if you feel you need help in doing your statistical test and seek his advice in presenting your results.

All Figures and Tables should be numbered chronologically as they appear in your thesis. All Figures and Tables must be referred to in the text to facilitate reading. See furtherguidelines for constructing tables and figures in Part 3.

DISCUSSION

This should explore the significance of the results of the work, not repeat them. Discuss all the significant outcomes of your research; see how they fit with our current understanding of the research areas or what implications it implies for future studies or industrial application. Any limitation or weakness of the research should also be discussed and ended up with recommendations for possible improvement.

CONCLUSION

This section should state the conclusions and recommendations that you have drawn from your work (in relation to the research question or tested hypothesis) and relate the findings of your study to previously published work. Students should avoid to state the key results here instead of conclusions. Recommendations should be relevant to your research findings in order to provide the readers with tips, suggestions or modes of action so that they can follow if interested.

REFERENCES

This must contain complete list of **all** references cited in the text (see Section 5.2 on referencing).

APPENDIX

Any other relevant information that cannot be appropriately accommodated elsewhere can be placed in an Appendix (or Appendices) at the end of the dissertation. Try not to use them unless you absolutely have to. They are considered useful for listing raw data or details of experimental protocols if you feel it is necessary to do so

PART 3: THESIS FORMAT

From 2022 onwards students at the Department of Biotechnology are required to write their theses in the form of an extended paper. The format of your thesis is, therefore, a blended design of a traditional thesis, i.e. with the cover page, followed by Acknowledgment and ended up with an Appendix. The main body of the thesis is, however, a paper which is allowed to be a bit longer than the standard. In order to facilitate professional writing the format of Journal of Innovation in Applied Research (jiar.in). You are advised to strictly follow the instructions below.

THESIS LAYOUT

- □ The thesis must be word-processed in English (American or British usage is accepted, but not a mixture of these) using TIME NEW ROMAN font 12 point size with 1.5 line spacing. The text should be fully justified and leave 1 space between sentences. Content Font Size = 12; Heading = 14.
- □ Page set-up: use A4 paper with the left margin of 4.0 cm to allow binding. All the other margins are 2.5 cm.
- □ Each page of the main body must be numbered, starting with the page that has the title of your research and the abstract. Place the number in the centre of the bottom of the page. No header/footer is allowed.
- □ <u>Binding will be arranged by the Department</u> once you submit the final version of your thesis.

NUMBER OF PAGES

- □ Keep your writing short, informative and as concise as possible.
- □ No page number is required for the Cover page, Acknowledgment, References and Appendix.
- □ The length of the main body of your thesis should be <u>ideally between 15 and 20</u> <u>pages</u>. When needed the addition of few more pages are allowed, but the total number of pages of the main body should not exceed 25.
- □ Your supervisor will advise you on the length of each section and the level of details required.

COVER PAGE

- □ The cover page is designed to highlight your research title while providing important information such as the name of the educational provider, name of student and adviser(s) and year of publication.
- Use the standard format provided by the Department (see Appendix 1).

11

859

HEADINGS

The appropriate use of headings is a great assistance to the reader, breaking the text into logical blocks. Divide your thesis into clearly defined and numbered sections. Subsections should be numbered 1.1 (then 1.1.1, 1.1.2, ...), 1.2, etc. Any subsection may be given a brief heading. Each heading should appear on its own separate line. The recommended structure and headings of the main body is as follows:

Title

Author name(s) and affiliation

Abstract

Keywords

- 1. Introduction
- 2. Materials & Methods
 - 2.1 Research object and location
 - 2.2 Experimental design
 - 2.3 Data analysis
- 3. Results
 - 3.1 sub-headline 1
 - 3.2 sub-headline 2
 - 3.n sub-headline n
- 4. Discussion
- 5. Conclusion

References

 Constructed molecular sensor to enhance metal detection by bacterial ribosomal switch-ion channel protein interaction

Raul Cuero^{a,*}, J. Lilly^a, David S. McKay^b ^a Prairie View AGM University, CARC, Prairie View, TX 77446, USA ^a MASA Johnson Space Center, Houston, TX 77058, USA

TITLE PAGE INFORMATION (see the example above)

□ The title should be concise and informative as it will be used in information- retrieval systems. Avoid abbreviations and formulae where possible.

Author names and affiliations: where the family name may be ambiguous (e.g., a double name), please indicate this clearly. Your official affiliation address is "Department of Biotechnology, AKS University, Satna". Indicate all affiliations with a lower-case superscript letter immediately

after the author's name and in front of the appropriate address if your adviser/coworker is from another institution. Provide the e-mail address of the corresponding author, i.e. yours in most cases.

ABSTRACT

- □ Not more than 200 words and should be as a single paragraph.
- □ Keywords: immediately after the abstract. Provide a maximum of 6 keywords, using American spelling and avoiding general and plural terms and multiple concepts (avoid, for example, 'and', 'of'). Be sparing with abbreviations: only abbreviations firmly established in the field may be eligible. These keywords will be used for indexing purposes.

ABSTRACT

Molecular biosensors are useful tools that detect metal ions or other potentially toxic chemicals. However, the efficiency of conventional sensors is limited in mixed metals substrates, which is the common way they are found in nature. The use of biosensors constructed from genetically modified living microbial systems has the potential of providing sensitive detection systems for specific toxic targets. Consequently, our investigation was aimed at assembling different genetic building blocks to produce a focused microbial biosensor with the ability to detect specific metals. This objective was achieved by using a synthetic biology approach. Our genetic building blocks, including a synchronized ribosomal switch-iron ion channel, along with sequences of promoters, metal-binding proteins (Fe, Pb), ribosomal binding sites, yellow fluorescence reporter protein (YFRP), and terminators, were constructed within the same biobrick in *Escherichia coli*. We used an rpoS ribosomal switch containing an aptamer, which responds to the specific metal ligands, in synchronization with an iron ion channel, TonB. This switch significantly stimulates translation, as expressed by higher fluorescence, number of colonies, and concentration of RNA in *E. coli*. The positive results show the effectiveness of using genetically tailored synchronized ribosomal switch-ion channels to construct microbial biosensors to detect specific metals, as tested in iron solutions.

Keywords: Biosensor Ribosomal switch Ion channel

TABLES

- □ Number tables consecutively in accordance with their appearance in the text.
- □ Place footnotes to tables below the table body and indicate them with superscript lowercase letters. Avoid vertical rules.
- □ Be sparing in the use of tables and ensure that the data presented in tables do not duplicate results described elsewhere in the article.

Examples:

Assay	Variables			Conversion of :	ucrose into isomaltule	ose (%)
	pH	Enzyme (U/g of Celite)	Glutaraldehyde (%)	1° batch	2° batch	3º bat
1	-1 (5.6)	-1 (32.6)	-1 (0.10)	7.38	7.38	9.03
2	+1(7.4)	-1 (32.6)	-1 (0.10)	0.00	0.00	0.00
3	-1 (5.6)	+1(87.0)	-1 (0.10)	21.92	21.92	23.63
4	+1(7.4)	+1(87.0)	-1 (0.10)	1.34	1.34	1.59
5	-1 (5.6)	-1 (32.6)	+1(0.40)	1.51	0.00	1.59
6	+1(7A)	-1 (32.6)	+1(0.40)	0.00	0.00	0.00
7	-1 (5.6)	+1(87.0)	+1(0.40)	12.75	8.73	10.64
8	+1(7.4)	+1(87.0)	+1(0.40)	0.00	1.52	1.15
9	-1.68(5.0)	0(59.8)	0(0.25)	19.81	18.09	20.32
10	+1.68(8.0)	0(59.8)	0(0.25)	0.00	0.00	0.09
11	0(6.5)	-1.68(14.1)	0(0.25)	0.00	0.00	0.00
12	0(6.5)	+1.68 (105.5)	0(0.25)	7.23	8.00	7.19
13	0(6.5)	0(59.8)	-1.68 (0.00)	16.94	14.12	11.54
14	0(6.5)	0(59.8)	+1.68 (0.50)	3.25	2.87	3.77
15	0(6.5)	0(59.8)	0(0.25)	4.31	6.33	4.62
16	0(6.5)	0(59.8)	0(0.25)	6.18	5.96	4.29

FIGURE CAPTION

Ensure that each illustration has a caption. A caption should comprise a brief title and a description of the illustration. Keep text in the illustrations themselves to a minimum but explain all symbols and abbreviations used.

Example:

CITATION IN TEXT

Please ensure that every reference cited in the text is also present in the reference list and vice versa. Any references cited in the abstract must be given in full. Unpublished results and personal communications are not recommended in the reference list, but may be mentioned in the text. If these references are included in the reference list they should follow the standard reference style as follows and should include a substitution of the

15

863

publication date with either 'Unpublished results' or 'Personal communication'. Citation of a reference as 'in press' implies that the item has been accepted for publication.

All citations in the text should refer to:

- □ *Single author:* the author's name (without initials, unless there is ambiguity) and the year of publication;
- □ *Two authors:* both authors' names and the year of publication;
- □ *Three or more authors:* first author's name followed by 'et al.' and the year of publication.

Citations may be made directly (or parenthetically). Groups of references should be listed first alphabetically, then chronologically.

•	There are several works in the literature reporting bacterial cell immobilization in isomaltulose production (Kawaguti et al., 2000, Olive Note and Maria 2000). How studies are
	2006; Oliva-Neto and Menão, 2009). However, few studies are focused on the immobilization of extracted glucosyltransferase,
	which converts sucrose into isomaltulose. The immobilization of the enzyme presents some advantages compared to cell immo-
	bilization, such as lower risk of microbial contamination of the product, the former prevents the risk of unwanted catalytic activ-
	ity; whole cells bring along further resistance to mass transfer due to the presence of the cell wall, which drastically reduces reac-
	tion rates (Chen, 2007). Thus, this work aimed to immobilize the glucosyltransferase from <i>Erwinia</i> sp. D12, in two different supports by adsorption (Celite) and entrapment (low-methoxyl pectin

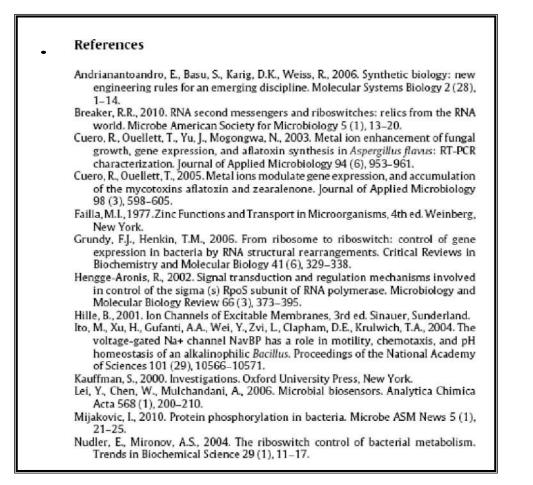
WEB REFERENCE

As a minimum, the full URL should be given and the date when the reference was last accessed. Any further information, if known (DOI, author names, dates, reference to a source publication, etc.), should also be given. Web references can be listed separately (e.g., after the reference list) under a different heading if desired, or can be included in the reference list. Avoid using websites as reference unless absolutely necessary.

REFERENCE LIST

References should be arranged first alphabetically and then further sorted chronologically if necessary. More than one reference from the same author(s) in the same year must be identified by the letters 'a', 'b', 'c', etc., placed after the year of publication. <u>Journal name must be written in full name.</u>

Examples:


Reference to a journal publication:

Van der Geer, J., Hanraads, J.A.J., Lupton, R.A., 2010. The art of writing a scientificarticle. Journal of Science Communication 163, 51–59.

Reference to a book:

Strunk Jr., W., White, E.B., 2000. The Elements of Style, fourth ed. Longman, New York. *Reference to a chapter in an edited book:*

Mettam, G.R., Adams, L.B., 2009. How to prepare an electronic version of your article, in: Jones, B.S., Smith , R.Z. (Eds.), Introduction to the Electronic Age. E-Publishin.

APPENDIX

All materials placed in the appendix must be directly relevant to the paper. The material must be cross-referenced to the development of the research in the text of the paper using an explanatory note or a parenthetical reference. Avoid the temptation to use the appendix to bulk up the paper.

LANGUAGE AND GRAMMAR

- Use simple but clear language
- □ Take time to check your work for misspelled words, typographical error, mislabelled figures, tables or photos.
- □ If you need help in grammar, seek the help of an editor before submitting your work to your adviser. Your adviser is not expected to correct errors in spelling, punctuation, grammar, and formatting.

ABBREVIATION

Define abbreviations that are not standard in this field in a footnote to be placed on the first page of the article. Such abbreviations that are unavoidable in the abstract must be defined at their first mention there, as well as in the footnote. Ensure consistency of abbreviations throughout the article.

ACKNOWLEDGING THE WORK OF OTHERS

Plagiarism

Plagiarism is copying another person's idea or written work and claiming it as your own. This is an academic offence and you are strictly prohibited from doing this. Make sure that all information, photos, figures and tables are properly acknowledged

Citations

You must always acknowledge your sources of factual information and diagrams you wish to use. This is known as a *citation*.

PART 4: THESIS DEFENCE

PRESENTATION

- Presentation should last up to 15 minutes with another 15 minutes for questions and answers
- Slides should be prepared using Microsoft PowerPoint and presented from a disk.
- □ Rehearse your presentation and anticipate questions that may be asked by the Evaluation Committee.
- □ If you are not sure about the pronunciation of certain terminologies, be sure to ask a knowledgeable person before your defence.
- □ Try not to read from your slides and maintain eye contact with your audience
- Use pointers or laser devices properly
- Ask your supervisor for advice on the content and structure of your presentation.
- Even a successful defense is generally followed by certain minor adjustments in your document, and a some final paperwork amendments. You should take notes during the Q&A session, and contact the Secretary of the Evaluation Committee for a detailed request for thesis improvement.

CONTENT OF PRESENTATION

- □ The presentation should be a brief introduction of your topic, purpose of your study; description of the methods used and the results.
- □ It is advisible that your presentation has enough important details in order to avoid misunderstanding or excessive questions. Also, keep it short as time is limited.
- □ Make sure your answers are relevant to the questions of the Evaluation Committee.

APPENDIX 1: FORMAT OF THESIS COVER PAGE

AKS University, Satna

(5 lines from logo)

TITLE OF THESIS

(3 lines)

A thesis submitted to

The Department of Biotechnology, AKS University In partial fulfillment of the requirements for the degree of

B.Sc. (Hons.) in

(6 lines)

21

869

Student name: Full name of student - ID No.

Supervisor: Title and full name of supervisor(s)

(7 lines)

Month/Year

APPENDIX 2: RELEVANT FORMS

(proposal development, proposal defense, midway progress report, evaluation, etc.)

Content	Page
Form No 1: Thesis registration	19
Form No 2: Thesis progress report	20
Form No 3: Academic Adviser	22
Form No 4: Thesis Reviewer	23
Form No 5: For Examiner Of The Scientific Committee	24
Form No 6: Thesis Evaluation Memo	25
Form No 7: Report on thesis revision	27

THESIS REGISTRATION

1.	(Student's name) (ID)
2.	(Department)
3.	(Thesis title)
4.	(Objectives)
5.	(Research content)
6.(I	Research location)
7.	(Duration) (from): (to):
8.	(Supervisor):
	(Full name)
	(Address)
	Email:

(Supervisor)

(Department)

THESIS PROGRESS REPORT

1.	Student name:
2.	Supervisor
	Thesis title
5.	

<u>SECTION A</u>: to be completed by student

Thesis processing management

Content	Status		Tentative	
Content	Complete	On going	completion time	
1.		•		
2.	•	•		
3.	•	•		
n.	•	•		

Presence of obstacles to thesis completion, if any,

Important note: Date to submit the completed thesis:	
	Date:

Signature of student

SEC	TION B: to be completed by the principal Supervisor		
Has	the student:	Yes	No
(i)	Shown relevant knowledge and understanding toward specific project field?	•	•
(ii)	Shown initiative consistent with the requirements of the research program?	•	•
(iii)	Made satisfactory progress in the research program?	•	•
(iv)	Shown the ability to complete the research program by the due date?	•	•
	If no, please recommend extension for completion or cut some parts of the pro-	posal	
			••
•••••			••
•••••			••
			••
•••••			••
			••
			••
•••••			••
•••••			••
•••••			••
•••••			••
•••••			••
•••••			••
•••••			••
•••••			••
•••••			••
•••••			••
•••••			••
	Date:	•••••	

Signature of supervisor

Evaluation Form

Academic Adviser

Name of Student ID:

Criteria	Maximum marks	Your mark
Independence in work	10	
Creativity	10	
Level of commitment	20	
Writing skill	20	
Overall quality of thesis *	40	
Total	100	

* The maximum mark should not exceed 30 unless the student produced a manuscript for possible publication. A hard copy of the manuscript should be enclosed with this evaluation form.

Name of Adviser

Date Signed

Evaluation Form

Thesis Reviewer

Name of Student	ID:	

Criteria	Maximum mark	Your mark
Project goal and objectives (clear, achievable)	15	
Quality of Literature Review	15	
(comprehensive, relevant) Materials and Methods	25	
(sound methods, appropriate materials and supporting equipment)		
Results and Significant contribution	30	
(please evaluated against the specific objectives of the project)		
Writing skill and format (including compliance do thesis guidelines)	15	
Total	100	

Comments and recommendations for improvement/ correction (blank section is not acceptable)

Name of Examiner (Signature and Date)

Date Signed

Form BT05

Evaluation Form

For examiner of the Scientific Committee

Name of Student ID:

Criteria	Maximum mark	Your mark
Introduction (research problem well stated, clear objectives)	10	
Good understanding of the research field	10	
Methodology (sound, appropriate or creative)	20	
Quality of results (evaluated against the research objectives)	20	
Presentation skills (quality of slides, speaking skills, timing)	20	
Quality of answers (relevant to questions, satisfied by the committee members)	20	
Total	100	

Additional comments/suggestions for improvement:

Name of Examiner

Date Signed