Curriculum Book

And

Assessment and Evaluation Scheme

Based on

Outcome Based Education (OBE)

and

Choice-Based Credit System (CBCS)

in Bachelor of Engineering

4 Year Degree Program

Revised as on 01 August 2023 Applicable w.e.f. Academic Session 2023-24

AKS University

Satna 485001, Madhya Pradesh, India

Faculty of Engineering and Technology Department of Mechanical Engineering

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum & Syllabus of B.Tech. (Mechanical Engineering) program (Revised as on 01 August 2023)

CONTENTS

SI No	Item	Page No
1	Forwarding	i
2	Vice Chancellor Message	ii
3	Preface	111
4	Introduction	1
5	Vision & Mission of the Mechanical Engineering Department	2
6	Programme Educational Objectives (PEO)	3
7	Programme Outcome (POs)	3-5
8	General Course Structure and theme	6
9	Component of Curriculum	6
10	General Course Structure and Credit Distribution	7-8
11	Course code and definition	8-9
12	Category-wise Courses	10-13
13	Semester wise Course Structure	14-17
13.1	Semester I	18-120
13.2	Semester -II	121-222
13.3	Semester - III	223-319
13.4	Semester -IV	320-383
13.5	Semester -V	384-469
13.6	Semester -VI	470-555
13.7	Semester -VII	556-693
13.8	Semester -VIII	694-708

H.O.D. (Mechanical Engg.) Faculty of Engg. & Tech. A.K.S. University, Satna (M.P.)

Dean,

Faculity of Engineering & Technology AKS University Sherganj, Satna (MP), 485001

Professor B.A. Chopade Vice - Chancellor AKS University Satna, 485001 (M.P.)

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Forwarding

I am thrilled to observe the updated curriculum of the Mechanical Engineering Department for B.Tech. Mechanical Engineering Program, which seamlessly integrates the most recent technological advancements and adheres to the guidelines set forthby AICTE. The revised curriculum also thoughtfully incorporates the directives of NEP-2020 and the Sustainable Development Goals.

The alignment of course outcomes (COs), Programme Outcome (POs) and Programme specific outcomes (PSOs) has been intricately executed, aligning perfectly with the requisites of NEP-2020 and NAAC standards. I hold the belief that this revised syllabus will significantly enhance the skills and employability of our students.

With immense satisfaction, I hereby present the revised curriculum for the B. Tech. in Mechanical Engineering program for implementation in the upcoming session.

> ER. Anant Soni Pro Chancellor & Chairman AKS University, Satna

01 August 2023

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

From the Desk of the Vice-Chancellor

AKS University is currently undergoing a process to revamp its curriculum into an outcome-based approach, with the aim of enhancing the teaching and learning process. The foundation of quality of quality education lies in the implementation of a curriculum that aligns with both societal and industrial needs, focusing on relevant outcomes. This entails dedicated and inspired

faculty members, as well as impactful industry internships.

Hence, it is of utmost importance to begin this endeavor by crafting an outcome-based curriculum in collaboration with academia and industry experts. This curriculum design should be informed by the latest technological advancements, market demands, the guidelines outlined in the National Education Policy (NEP) of 2020, and sustainable goals.

I'm delighted to learn that the revised curriculum has been meticulously crafted by the Mechanical Enginnering Department, in consultation with an array of experts from the cement industry, research institutes, and academia. This curriculum effectively integrates the principles outlined in the NEP-2020 guidelines, as well as sustainable goals.

Our B.Tech. Mechanical Engineering curriculum is meticulously crafted to provide students with a comprehensive understanding of the core principles, latest advancements, and practical applications in the field. We recognize the pivotal role that mechanical engineers play in shaping the future of technology, innovation, and sustainable development.

At the heart of our curriculum lies a commitment to excellence, innovation, and relevance. We continually strive to integrate emerging trends, cutting-edge technologies, and industry best practices into our courses, ensuring that our graduates are well-equipped to tackle the challenges of the modern world.

Furthermore, we place a strong emphasis on fostering critical thinking, problem-solving skills, and ethical leadership among our students. Our curriculum is designed not only to impart knowledge but also to nurture creativity, resilience, and a passion for lifelong learning.

I am confident that the updated curriculum for Mechanical Engineering will not only enhance students' technical skills but also contribute significantly to their employability. During the process of revising the curriculum, I am pleased to observe that the Mechanical Engineering department has diligently adhered to the guidelines provided by the AICTE. Additionally, they have maintained a total credit requirement of 166 for the B. Tech Mechanical Engineering program.

It's worth noting that curriculum revision is an ongoing and dynamic process, designed to address the continuous evolution of technological advancements and both local and global concerns. This ensures that the curriculum remains responsive and attuned to the changing landscape of education and industry.

AKS University warmly invites input and suggestions from industry experts and technocrats and Alumni students to enhance the curriculum and make it more student-centered. Your valuable insights will greatly contribute to shaping an education that best serves the needs and aspirations of our students.

AKS University, Satna 01 August 2023 Professor B. A. Chopade Vice- Chancellor

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Preface

As part of our commitment to ongoing enhancement, the Department of Mechanical Engineering consistently reviews and updates its B.Tech. Mechanical Engineering program curriculum every three years. Through this process, we ensure that the curriculum remains aligned with the latest technological advancements, as well as local and global industrial and social demands.

During this procedure, the existing curriculum for the B.Tech. Mechanical Engineering Program undergoes evaluation by a panel of technocrats, industry specialists, and academics. Following meticulous scrutiny, the revised curriculum has been formulated and is set to be implemented starting from August 01, 2023. This implementation is contingent upon the endorsement of the curriculum by the University's Board of Studies and Governing Body.

This curriculum closely adheres to the AICTE model syllabus distributed in May 2023. It seamlessly integrates the guidelines set forth by the Ministry of Higher Education, Government of India, through NEP- 2020, as well as the principles of Sustainable Development Goals. In order to foster the holistic skill development of students, a range of practical activities, including Hands-On Training, Industrial Visits, Project planning and execution, Report Writing, Seminars, and Industrial On-Job Training, have been incorporated. Furthermore, in alignment with AICTE's directives, the total credit allocation for the B. Tech Mechanical Engineering program is capped at 166 credits.

This curriculum is enriched with course components in alignment with AICTE guidelines, encompassing various disciplines such as Fundamental Science Concepts: 24 credits, Engineering Science: 34 credits, Humanities and Social Sciences: 12 credits, Core Program Courses: 62 credits, Elective Program Courses: 9 credits, Open Electives: 9 credits, Project and Practical Training: 14 credits, Seminars: 2 credits, Indian Knowledge System: 2 credits, Sustainable Development Goals: 2 credits.

To ensure a comprehensive learning experience, detailed evaluation schemes and rubrics have also been meticulously provided.

For each course, a thorough mapping of Course Outcomes, Program Outcomes, and Programme Specific Outcomes has been undertaken. As the course syllabus is being meticulously developed, various elements such as session outcomes, laboratory instruction, classroom instruction, self-learning activities, assignments, and mini projects are meticulously outlined.

We hold the belief that this dynamic curriculum will undoubtedly enhance independent thinking, skills, and overall employability of the students.

AKS University 01 August 2023 Mr. Shailendra Singh Parihar Head of the Department Mechanical Engineering

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Introduction:

AKS University, a trailblazing institution, initiated a comprehensive 4-year B. Tech program in Mechanical Engineering in 2012. The Mechanical Department owes its distinction to the dedicated contributions of its teaching and non-teaching staff, which have played an integral role in enhancing the teaching and learning processes. Recognizing the importance of equipping students with practical knowledge in mechanical engineering to meet industrial demands and establish a strong reputation in the field, the department has diligently provided hands-on training experiences, bridging the gap between conventional and modernized technology systems.

The curriculum has been thoughtfully designed to include cutting-edge technologies such as CNC Machineries, Wire cut EDM, Advanced Thermal Measurement Techniques, 3D Printing, and Advanced Casting Technologies. These elements have been seamlessly integrated to groom students into adept engineers well-prepared for contemporary technological challenges. Additionally, the department is committed to nurturing entrepreneurship in its students by offering industry-oriented training programs that complement their academic pursuits.

Every step in this educational journey has been carefully planned to introduce novelty into the lives of our students within the engineering environment. Our innovative curriculum is meticulously tailored to align with the evolving needs of industries and the latest technological advancements. Presently, a thriving community of aspiring students is actively enrolled in the B. Tech program in Mechanical Engineering within our department.

Vision:

To conduct its key programs and activities in a unique manner that promotes excellence and leadership in education, research, innovation in Mechanical Engineering and fosters an environment that is safe, highly productive, cooperative and collegial, and dedicated to sustainable improvement.

Mission:

- **M 01:** By employing advanced teaching-learning methods and fostering strong collaborations with industries, our aim is to provide comprehensive and high-quality education.
- **M 02:** To nurture the potential of young and dynamic minds, empowering them to become proficient professionals, and ultimately, to attain a prominent national ranking.
- **M 03:** To meet international standards, contributing to the realization of the Government's "Make In India" industrial policy through continuous innovation and research efforts.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

M 04: To empower students to address the demands of both individuals and industries involved in academic pursuits, applied research, and developmental endeavors associated with Mechanical Engineering.

PROGRAM EDUCATIONAL OBJECTIVES (PEO)

- **PEO 01:** Prepare with strong foundation in mathematical, scientific and engineering fundamentals that will enable them to have successful career in Mechanical and Interdisciplinary Industries. **(KNOWLEDGE).**
- **PEO 02:** Strengthen their knowledge and skills through self-learning abilities throughout their professional career or during higher education. **(SKILL & PROFESSIONALISM).**
- **PEO 03 :** Impart critical thinking skills and to develop innovative ideas for Research & Delopment (RESEARCH & INNOVATION).
- **PEO 04 :** Ability to understand the impact of professional engineering solutions in societal, economic and environmental contexts and demonstrate knowledge and need for sustainable development.

Program Outcomes (POs)

B Tech Mechanical Engineering Graduate will able to perform:

- **PO 1: Engineering knowledge**: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineeringproblems.
- **PO 2: Problem analysis**: Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO 3: Design/development of solutions**: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO 4: Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO 5**: Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

- **PO 6: The engineer and society**: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO 7: Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO 8**: **Ethics:** Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO 9: Individual and teamwork**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO 10: Communication**: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO 11: Project management and finance**: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO 12: Life-long learning**: Recognize the need for and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

Program Specific Outcomes (PSOs)

On completion of B. Tech. Mechanical Engineering program, the students will achieve the following programspecific outcomes: -

- **PSO 1: Mechanical System Design and Analysis:** Graduates will be able to apply engineering principles to design, analyze, and optimize mechanical systems and components, considering factors such as functionality, safety, manufacturability, and cost-effectiveness.
- **PSO 2:** Manufacturing Processes and Automation: Graduates will possess the skills to select, plan, and implement appropriate manufacturing processes, including automation and robotics, to efficiently produce mechanical components and products.
- **PSO 3: Computational Modeling and Simulation:** Graduates will have expertise in using computational tools and simulations to model and analyze complex mechanical phenomena, aiding in design and decision-making.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

PSO 4: Product Innovation and Development: Graduates will possess the skills to innovate and develop new mechanical products or systems, from concept to prototype, considering market needs and user requirements.

PEO	M 1	M 2	M 3	M 4
PEO 1	3	2	3	2
PEO 2	2	2	2	3
PEO 3	2	3	2	1
PEO 4	2	2	2	2

Consistency/Mapping of PEOs with Mission of the Department

1: Slight (Low) 2: Moderate (Medium) 3: Substantial (High) "-": No correlation

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

GENERAL COURSE STRUCTURE & THEME

1. Definition of Credit

1 Hr. Lecture (L) per week	1 Credit
1 Hr. Tutorial (T) per week	1 Credit
2 Hours Practical (P) per week	1 Credit

2. Range of Credits:

In the light of the fact that a typical Model Four-year Undergraduate degree program in Engineering has about 160 credits, the total number of credits proposed for the four-year B. Tech.in Mechanical Engineering is kept as 166 considering NEP-20 and NAAC guidelines.

3. Structure of UG Program in Mechanical Engineering:

The structure of UG program in Mechanical Engineering shall have essentially the following categories of courses with the breakup of credits as given:

SI No	Course Component	% of total number of credits of the Program	Total number of Credits
1	Basic Sciences (BSC)	14.04	24
2	Engineering Sciences (ESC)	19.88	34
3	Humanities and Social Sciences (HMSC)	7.02	12
4	Program Core (PCC)	36.84	58
5	Program Electives (PEC)	5.26	9
6	Open Electives (OEC)	5.26	9
7	Project work, seminar and internship in industry	9.36	16
8	Indian Knowledge System	1.17	2
9	Sustainable Development Goals	1.17	2
	Total	100.0	166

Components of the Curriculum

(Program curriculum grouping based on course components)

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

General Course Structure and Credit Distribution

Curriculum of B.Tech. Mechanical Engineering

	Curriculum of B. Jech. Miechanical Engineering						
Semester – 1	Credits	Semester – 2	Credits				
^{1.} Physics-1	3:1:2=5	1. Chemistry-1	3:0:2=4				
^{2.} Mathematics-1	3:1:0=4	^{2.} Mathematics-2	3:1:0=4				
^{3.} Biology for Engineers	3:0:0=3	3. Programming for	3:0:4=5				
4. Basic Electrical Engineering	2:1:2=4	Problem Solving					
^{5.} Engineering Graphics & Design	1:0:4=3	4. Manufacturing Practice	1:0:4=3				
^{6.} Design Thinking & Idea Lab	0:0:2=1	Workshop					
7. Basic Civil Engineering	3:0:0=3	5. Communication	2:1:0=3				
8. Sustainable Development Goals	2:0:0=2	^{6.} Sports and Yoga	2:0:0=0				
		7. Indian Knowledge System	2:0:0=2				
Total Credits	25	Total Credits	21				
Semester – 3	Credits	Semester – 4	Credits				
1. Mechanics of Deformable Solids	3:1:2=5	1. Heat Transfer	3:1:0=4				
^{2.} Mathematics-3	3:1:0=4	2. Fluid Mechanics & Hydraulic					
^{3.} Environment Science (Audit)	2:0:0=0	Machines	3:1:2=5				
4. Basic Electronics Engineering	3:1:2=5	3. Manufacturing Processes	3:1:0=4				
^{5.} Engineering Mechanics	3:1:2=5	^{4.} Kinematics & Dynamics of	5.1.0-4				
6. Applied Thermodynamics	3:1:2=5	Machines	3:1:2=5				
7. Universal Human Values	3:0:0=3	5. Engineering Materials &					
		Applications	3:1:0=4				
Total Credits	27	Total Credits	22				
Semester – 5	Credits	Semester – 6	Credits				
1. Machine Element & System	3:1:0=4	1. Computer Aided Design &	3:1:2=5				
Design		Analysis					
^{2.} Mechatronics	3:1:2=5	2. Manufacturing Automation	3:1:2=5				
		3. Production & Operation	3:1:0=4				
^{3.} HSS/Management Elective-1	3:0:0=3	Management					
^{4.} Measurements & Metrology	3:0:2=4	4. Product Innovation &	3:1:0=4				
		Entrepreneurship					
^{5.} HSS/Management Elective-2	3:0:0=3	5. Professional Elective-1	3:0:0=3				
		6. Engineering Project-1(Seminar)	0:0:4=2				
			0.0.4-2				
Total Credits	19	Total Credits	23				
	I	1	1				

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

	Semester – 7	Credits	Semester – 8	Credits
1.	Professional Elective-2	3:0:0=3	1. Engineering Project-3 (Prototype	0:0:16=8
2.	Professional Elective-3	3:0:0=3	& Testing)	
3.	Open Elective-1	3:0:0=3	2. Seminar	0:0:2=1
4.	Open Elective-2	3:0:0=3		
5.	Open Elective-3	3:0:0=3		
6.	Engineering Project-2 (Design &	0:0:10=5		
	Analysis)			
Tota	al Credits	20	Total Credits	9

- i. **Humanities & Social Sciences & Mgt. Electives (HSM):** Any 2 courses from the list of those offered.
- ii. **Open Electives (OEL)**: Any 3 courses (from any department), based on individual interest and project.
- iii. **Industry internship**: Internship in industry, start-up or R&D lab in 2nd/3rd year summer is compulsory (audit). Longer internship for 6-monthy (12 credits) can be taken in VIIIth semester, in lieu of Engineering Project. The internship must be properly evaluated.

Total Credit: 166

Course code and definition:

L	=	Lecture
Т	=	Tutorial
Ρ	=	Practical
С	=	Credit
BSC	=	Basic Science Courses
ESC	=	Engineering Science Courses
HSMC] =	Humanities and Social Sciences including Management courses
PCC	=	Professional core courses
PEC	=	Professional Elective courses
OEC	=	Open Elective courses
LC	=	Laboratory course
MC	=	Mandatory courses
IKS	=	Indian Knowledge System
SDGs	=	Sustainable Development Goals

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Course level coding scheme:

Three-digit number (odd numbers are for the odd semester courses and even numbers are for even semester courses) used as suffix with the Course Code for identifying the level of the course. Digit at hundred's place signifies the year in which course is offered. e.g.

- 101, 102 ... etc. for first year.
- 201, 202 Etc. for second year.
- 301, 302 ... for third year.
- 401. 402--- for Fourth year

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Category-wise Courses (Revised as on 01 August 2023)

HUMANITIES & SOCIAL SCIENCES COURSES [HS] & MANAGEMENT COURSES (2 compulsory + 2 others)

(i) Number of Humanities & Social Science Courses: 4, Credits: 12

Sl.	Code No.	Subject	Semester	Credits	
1	HSMC 101	Communication Skills / English (Compulsory	2	3:0:0 =3	
2	HSMC- 301	Universal Human Values (Compulsory course)	2	2:1:0 =3	
3	HSMC 301	Industrial Psychology	5	3:0:0 =3	
4	HSMC 302	Operations Research	5	3:0:0 =3	
5	HSMC 303	Project Management	5	3:0:0 =3	
6	HSMC 304	Finance & Accounting	5	3:0:0 =3	
	Total Credits				

BASIC SCIENCE COURSE [BSC] (TOTAL 7)

Sl.	Code No.	Subject	Semester	Credits	
1	BSC 101	Physics-1 (Electromagnetism)	1	3:1:2 =5	
2	BSC201	Mathematics-1 (Calculus & Linear Algebra)	1	3:1:0 =4	
3	BSC 104	Chemistry-1	2	3:0:2 =4	
4	BSC 105	Mathematics-2 (ODE, Complex variables)	2	3:1:0 =4	
5	BSC 206	Mathematics-3 (PDE, Prob/Stat)	3	3:1:0 =4	
6	BSC 107	Biology for Engineers	1	3:0:0 =3	
7	BSC106-AU	Environment Science (Audit)	3	2:0:0 =0	
	Total Credits				

ENGINEERING SCIENCE COURSE [ESC] (Total 9)

Sl.	Code No.	Subject	Semester	Credits
1	ESC 101	Basic Electrical Engineering	1	2:1:2 =4
2	ESC 102	Engineering Graphics & Design	1	1:0:4 =3
3	ESC 103	Design Thinking + Idea Lab (Audit)	1	0:0:2 =1
4	ESC 108	Basic Civil Engineering	1	3:0:0 =3
5	ESC 104	Programming for Problem Solving	2	3:0:4 =5
6	ESC 105	Manufacturing Practice Workshop	2	1:0:4 =3
7	ESC 206	Basic Electronic Engineering	3	3:1:2 =5
8	ESC202	Engineering Mechanics	3	3:1:2 =5
9	ESC203	Applied Thermodynamics	3	3:1:2 =5
		r	Fotal Credits:	34

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

PROFESSIONAL CORE COURSES [PCC] (Total 16)

Sl.	Code No.	Subject	Semester	Credits
1	PCC-ME 201	Mechanics of Deformable Solids	3	3:1:2 =5
2	PCC-ME 202	Heat Transfer	4	3:1:0 =4
3	PCC-ME 203	Fluid Mechanics & Hydraulic Machines	4	3:1:2 =5
4	PCC-ME 204	Manufacturing Processes	4	3:1:0 =4
5	PCC-ME 205	Kinematics & Dynamics of Machines	4	3:1:2 =5
6	PCC- ME 206	Engineering Materials & Applications	4	3:1:0 =4
7	PCC-ME 301	Machine Element & System Design	5	3:1:0 =4
8	PCC-ME 302	Mechatronics	5	3:1:2= 5
9	PCC-ME 303	Measurements & Metrology	5	3:0:2 =4
10	PCC-ME 305	Computer Aided Design &Analysis	6	3:1:2=5
11	PCC-ME 306	Manufacturing Automation	6	3:1:2 =5
12	PCC-ME 307	Production & Operation Management	6	3:1:0 =4
13	PCC- ME 308	Product Innovation & Entrepreneurship	6	3:1:0 =4
			Total Credits	58

PROFESSIONAL ELECTIVE [PEC]

Total 3 to be taken, at least one from each group – Technology and Industry Sector, based on Project topic and individual interest. Illustrative courses are listed here

SI.	Code No.	Subject	Semester	Credits			
	TECHNOLOGY GROUP						
1	PEC-ME 01	Refrigeration & Air Conditioning	6/7	3:0:0 =3			
2	PEC-ME 02	Power Plant Engineering	6/7	3:0:0 =3			
3	PEC-ME 03	Renewable Energy Engineering	6/7	3:0:0 =3			
4	PEC-ME 04	Finite Element Analysis	6/7	3:0:0 =3			
5	PEC-ME 05	Computational Fluid Dynamics	6/7	3:0:0 =3			
6	PEC-ME 06	Additive Manufacturing	6/7	3:0:0 =3			

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

		INDUSTRY SECTOR GROUP					
1	PEC-ME07	Automobile Engineering	6/7	3:0:0 =3			
2	PEC-ME 08	Agricultural Engineering	6/7	3:0:0 =3			
3	PEC-ME 09	Nuclear Engineering	6/7	3:0:0 =3			
4	PEC-ME 10	Food Technology	6/7	3:0:0 =3			
5	PEC-ME 11	Marine Engineering	6/7	3:0:0 =3			
6	PEC-ME 12	Textile Engineering	6/7	3:0:0 =3			
	Total Credit						

OPEN ELECTIVE

3 courses from any department in 7th semester = 9 credit

		OPEN ELECTIVE					
1	OEC01	Electronic Devices	6/7	3:0:0 =3			
2	OEC02	Data Structures and Algorithms	6/7	3:0:0 =3			
3	OEC04	Computer Network	6/7	3:0:0 =3			
4	OEC05	Embedded System	6/7	3:0:0 =3			
5	OEC11	Internet of Things.	6/7	3:0:0 =3			
6	OEC12	Big Data Analysis.	6/7	3:0:0 =3			
	Total Credit						

ENGINEERING PROJECT (3 Stages)

SI.	Code No.	Subject	Semester	Credits
1	ME 301	Engineering Project-1 (Literature Review)	6	0:0:4=2
2	ME 401	Engineering Project-2 (Design & Analysis)	7	0:0:10=5
3	ME 403	Seminar	8	0:0:2=1
4	ME 402	Engineering Project-3 (Prototype & Testing)/ On job plant Training	8	0:0:16=8
		Total Credit		16

Other

SI.	Code No.	Subject	Semester	Credits
1	SDGs 01	Sustainable Development Goals	2	2:0:0 =2
2	IKS 01	Indian Knowledge System	1	2:0:0= 2
		Total Credit		04

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Induction Program

Induction program for students to be offered right at the start of the first year. It is mandatory. AKS University has design an induction program for 1^{st} year student, details are below:

- i. Physical activity
- ii. Creative Arts
- iii. Universal Human Values
- iv. Literary
- v. Proficiency Modules
- vi. Lectures by Eminent People
- vii. Visits to local Areas
- viii. Familiarization to Dept./Branch & Innovations

Mandatory Visits/ Workshop/Expert Lectures:

- i. It is mandatory to arrange one industrial visit every semester for the students.
- ii. It is mandatory to conduct a One-week workshop during the winter break after fifth semester on professional/ industry/ entrepreneurial orientation.
- iii. It is mandatory to organize at least one expert lecture per semester for each branch by inviting resource persons from industry.

Evaluation Scheme:

1. For Theory Courses:

- i. The weightage of Internal assessment is 50% and
- End Semester Exam is 50%
 The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

2. For Practical Courses:

- i. The weightage of Internal assessment is 50% and
- ii. End Semester Exam is 50%

The student has to obtain at least 40% marks individually both in internal assessment and end semester exams to pass.

3. For Summer Internship / Projects / Seminar etc.

Evaluation is based on work done, quality of report, performance in viva-voce, presentation etc

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Semester wise Course Structure

Semester wise Brief of total Credits and Teaching Hours

Semester	L	Т	Р	Total Hour	Total Credit
Semester -I	17	03	10	30	25
Semester -II	19	02	10	31	24
Semester -III	17	05	08	30	24
Semester – IV	15	06	04	25	23
Semester -V	15	03	06	25	21
Semester -VI	15	05	10	30	25
Semester – VII	15	0	10	25	20
Semester -VIII	0	0	18	18	9
Total	113	24	76	214	166

Details of Semester Wise Course Structure

Semester – I

SN	Category	Code	Course Title	L	Т	Ρ	Total Hour	Credit
1	BSC	BSC 101	Physics-1	3	1	2	6	5
2	BSC	BSC 103	Mathematics-1	3	1	0	4	4
3	BSC	BSC 107	Biology for Engineers	3	0	0	3	3
4	ESC	ESC 101	Basic Electrical Engineering	2	1	2	5	4
5	ESC	ESC 102	Engineering Graphics & Design	1	0	4	5	3
6	ESC	ESC 103	Design Thinking & Idea Lab	0	0	2	2	1
7	ESC	ESC 108	Basic Civil Engineering	3	0	0	3	3
8	SDG	SDG 101	Sustainable Development Goal	2	0	0	2	2
			Total	17	3	10	30	25

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Semester-II

SN	Category	Code	Course Title	L	Т	Ρ	Total Hour	Credit
1	BSC	BSC 104	Chemistry-1	3	0	2	5	4
2	BSC	BSC 105	Mathematics-2	3	1	0	4	4
3	ESC	ESC 104	Programming for Problem Solving	3	0	4	7	5
4	ESC	ESC 105	Manufacturing Practice Workshop	1	0	4	5	3
5	HSMC	HSMC 101	Communication Skills (English)	3	0	0	3	3
7	IKS	IKS 101	Indian Knowledge System	2	0	0	2	2
8	AU	AU 101	Sports and Yoga	2	0	0	2	0
			Total	17	1	10	28	21

Semester – III

SN	Category	Code	Course Title	L	Т	Ρ	Total Hour	Credit
1	РСС	PCC- ME201/ PCC-ME201-	Mechanicsof DeformableSolids	3	1	2	6	5
		L						
2	BSC	BSC201	Engineering Mathematics III	3	1	0	4	4
3	BSC	BSC106-AU	Environment Science(Audit)	2	0	0	2	0
4	ESC	ESC201/ ESC201-L	Basic Electronics Engineering	3	1	2	6	5
5	ESC	ESC202/ ESC202-L	Engineering Mechanics	З	1	2	6	5
6	ESC	ESC203/ ESC203-L	Applied Thermodynamics	3	1	2	6	5
7	HSMC	HSMC- 301	Universal Human Values	2	1	0	3	3
			Total	19	6	8	33	27

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Semester – IV

SN	Category	Code	Course Title	L	т	Ρ	Total Hour	Credit
1	PCC	PCC- ME 202	Heat Transfer	3	1	0	4	4
2	PCC	PCC-ME 203	Fluid Mechanics & Hydraulic Machines	3	1	2	6	5
3	PCC	PCC-ME 204	Manufacturing Processes	3	1	0	4	4
4	РСС	PCC-ME 205	Kinematics & Dynamics of Machines	3	1	2	6	5
5	PCC	PCC-ME 206	Engineering Materials & Applications	3	1	0	4	4
	Total					4	24	22

Semester – V

SN	Category	Code	Course Title	L	Т	Ρ	Total Hour	Credit
1	PCC	PCC- ME 301	Machine Element & System Design	3	1	0	4	4
2	PCC	PCC-ME 302	Mechatronics	3	1	2	6	5
3	HSMC	HSMC 3XX	HSS/Management Elective-2	3	0	0	4	3
4	PCC	PCC-ME 303	Measurements & Metrology	3	0	2	5	4
5	HSMC	HSMC 3XX	HSS/Management Elective-1	3	0	0	3	3
	Total						25	19

Semester – VI

SN	Category	Code	Course Title	L	Т	Р	Total Hour	Credit
1	PCC	PCC-ME 305	Computer Aided Design & Analysis	3	1	2	6	5
2	PCC	PCC-ME 306	Manufacturing Automation	3	1	2	6	5
3	PCC	PCC-ME 307	Production & Operation Management	3	1	0	4	4
4	PCC	PCC-ME 308	Product Innovation & Entrepreneurship	3	1	0	4	4
5	PEC	PEC-ME XX	Professional Elective-1	3	0	0	3	3
6	PROJ	ME 301	Engineering Project-1(Literature Review)	0	0	4	4	2
	Total					10	30	23

Semester VII

SN	Category	Code	Course Title	L	Т	Ρ	Total Hour	Credit
1	PEC	PEC-ME XX	Professional Elective-2	3	0	0	3	3
2	PEC	PEC-ME XX	Professional Elective-3	3	0	0	3	3
3	OEC	OEC-ME XX	Open Elective-1	3	0	0	3	3
4	OEC	OEC-ME XX	Open Elective-2	3	0	0	3	3
5	OEC	OEC-ME XX	Open Elective-3	3	0	0	3	3
6	PROJ	ME 401	Engineering Project-2 (Design & Analysis)	0	0	10	10	5
	Total					10	25	20

Semester VIII

SN	Category	Code	Course Title	L	Т	Ρ	Total Hour	Credit
1	PROJ	ME 402	Engineering Project-3 (Prototype & Testing)	0	0	16	16	8
2.	SEM	ME 403	Seminar	0	0	2	2	1
	Total 0 0 18 16						9	

Total credit: 166

Semester-I Course Code: CE-101 Course Title : Introduction to Civil Engineering **Pre-requisite:** Student should have Basic knowledge of Cement, Concrete, Roads and Infrastructure. **Rationale:** The department of civil engineering has been constantly contributing high-quality technical manpower needed by the industry. The broad objective of the department is to achieve recognition for excellence in research and teaching in the country. The Department is well suited to meet the ever changing requirements of engineers with courses that combine the study of management, business skills and computers with engineering. The Department also encourages its students to engage in extracurricular and co-curricular activities, essential for development of team spirit and organizational skills.

Course Outcomes:

- **CE 101.1** Impart the knowledge on importance of Civil Engineering in the infrastructural development of society
- **CE 101.2:** Identify the types, uses and properties of various building materials.
- CE 101.3: Identify the type of construction for different components of a building
- **CE 101.4:** Establish an idea about the different types of masonry work

Scheme of Studies:

Board of Study	Cours e Code	Course Title	Scheme of studies(Hours/Week) Cl LI SW SL Total Study Hours(CI+LI+ SW+SL)		Total Credits (C)			
Progra m Core (PCC)	CE 101	Introduction to Civil Engineering	3	0	1	1	5	3

Legend: CI: Class room Instruction (Includes different instructional strategiesi.e. Lecture (L) and Tutorial (T)and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

					Scł	neme of	Assessme	nt (Marks)		
	Cour			Prog	ressive	Assessn	nent (PRA	.)	End Semester	Total Mark
OT I	se Cod	Course Title	Class/H ome Assignm ent 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Class Activ ity any one (CAT)	Class Attenda nce (AT)	Total Marks (CA+CT+SA+CA T+AT)	Assessm ent (ESA)	s (PRA+ ESA)
PCC	CE1 01	Introdu ction to Civil Enginee ring	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CE 101.1: Importance of Civil Engineering in the infrastructural development of society

Approximate Hours

ltem	APPROX Hrs
Cl	08
LI	0
SW	2
SL	2
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO1. Overview of Civil Engineering.SO1.2 types of infrastructures		Unit-1.0 Importance of Civil Engineering in the infrastructural development of society	 Advantages of Infrastructur e
SO1.3 public-private partnership (PPP)SO1.4 talent shortage and global trends in workshop mobilitySO1.5 skill demands.		 1.1 types of infrastructures. 1.2 Effect of infrastructure facilities on economy and environment. 1.3 Role of Civil Engineers in the infrastructural Development Introduction to sub domains of Civil Engineering. 1.4 Industry emerging trends in infra 	2. Public Private Partnership

•

	spending through public and public- private partnership (PPP) 1.5 global trends in workshop mobility Concise 1.6 Talent Shortage 1.7 Skill Demand 1.8 PPP	
--	--	--

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1.9 Industry emerging trends in infra spending through public and public-private partnership (PPP)
- i. Role of Civil Engineer for Infrastructure Development

b. Mini Project:

•

i. Affecting Factors of PPP.

c. Other Activities (Specify):

Note on Different fields of Civil Engineering.

CE 101.2: Acquire knowledge regarding Stages in the life of construction.

Approximate Hours

Item	APPROX Hrs
Cl	09
LI	0
SW	2
SL	2
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
SO2.1 To what extent you are able to Identify the types, uses and properties of various building		Unit- Stages in the life of construction	i.Construction Life Cycle
various building materials		2.1 Design 2.2 Construction.	ii.Unit Conversion
SO2.2 To learns about Design, Construction & Maintenance.		2.3 Maintenances	
SO2.3 To Learn About Demolition / Recycling.		2.4 Repair.	
SO4. To learn about overview of Indian standards		2.5 Recycling; an overview of Indian standards.	
SO5. 5 Interdisciplinary nature of civil engineering		 unit and conversion factors for lengths areas, volumes and 	
projects.		weights 2.8 Opportunities and	
		challenge of India's Infrastructure	
		2.9 Interdisciplinary nature of civil engineering projects.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Recycling of Building Materials
- ii. Prepare Detail project on Construction Life Cycle.

b. Mini Project:

Interdisciplinary nature of civil engineering projects.

c. Other Activities (Specify):

Challenges of Indian Infrastructure

CT 101.3: Gain an understanding of the various types of Road in India and their utilization in infrastructure development.

Арр	roximate Hours		
Item	APPROX Hrs		
Cl	10		
LI	0		
SW	2		
SL	2		
Total	14		

24

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
SO3.1 Types of Roads Used in India		Unit-3 : Types Of Roads Used In Construction	i. History Of Road Development in India
SO3.2Component and use of Roads		3.1 Types of Roads3.2 Types of Pavement flexible & Rigid,3.3 Road function & Component,3.4 Road Plan	ii. Advantages of Bridges & Dams
SO3. Analyze various types of bridges and Its parts.		 3.5 Bridges: important parts 3.6 classification of bridges 3.7 Component of Bridges 3.8 Types Of Dams 	
SO4. To what extent you are able to Analyze various types of Dams .		3.9 Function of Dams 3.10 uses Of Dams	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

iii. Road Plans in India.

iv. Different types of Bridges.

b. Mini Project:

Make Project Report on Dams In India

c. Other Activities (Specify): Make Report on Road Plans.

CT 101.4: Analyze the strength and properties of various building materials.

Approximate Hours

ltem	APPROX Hrs
Cl	11
LI	0

SW	2
SL	2
Total	15

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 To what extent you are able to Identify the type of construction for different components of a building.		Unit-4 :Building Materials 4.1 Properties of common building materials	i. Preparation of process flow chart of Portland
SO4. To what extent you are able to Establish an idea about the different types of masonry work		4.2 classification of building materials.4.3 Rocks	ii. Draw a typical lay out of a
SO4.3 Understanding the Building Material		4.4 Types Stones & its properties.	cement plant showing various
SO4.4 Understand the Different grades of Concrete & Steel		4.5 Types Bricks & its properties.	sections.
		4.6 Types Sand & its properties.	
		4.7 Types Lime & its properties.	

4.8 Types of Cement
1.9 Uses & Various types of Cement Test1.10 oncrete Uses & Properties
4.11.Various Grades used in Steel

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Identify masonry for the construction of a building
- ii. Describe briefly the dry process cement manufacture.

d. Mini Project:

i. Set out buildings using modern methods.

e. Other Activities(Specify):

Power Point Presentation of Portland cement manufacture.

CT 101.5: Overview of National Highway Authority of India (NHAI)

ltem	Approx Hrs
Cl	07
LI	0
SW	2
SL	1
Total	10

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(Cl)	Learning
	(LI)		

SO5.1 To what extent you are able to Impart the knowledge on importance of Civil Engineering in development of society	Unit 5: Indian Road Congress : 1.1 History of Indian Road Congress.	1.1 1. History of IRC.
SO5.2 Overview of Indian Road CongressSO5.3 Role of the new technologies in the field of civil engineering	 1.2 Advantages of IRC 5.3 Overview of National Highway Authority of India (NHAI) 5.4 Various Road Plan introduced in NHAI 5.5 Overview of American Society of Civil Engineers (ASCE) 5.6 Emerging areas anew technologies in the field of civil engineering 5.7 advance technology in Civil Engineering 	2. Role of ASCE for Civil Engineers.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Identify pavement components and design bituminous mixes Evaluate structural conditions of pavements.

b. Mini Project:

Prepare Project Report on Road Development in India.

c. Other Activities(Specify):

Advantages of ASCE for Civil Engineers.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self	Total hour
	Lecture	Work	Learning	(Cl+SW+Sl)
	(CI)	(SW)	(SI)	
CT 101.1: Importance of Civil				
Engineering in the infrastructural				
development of society	8	2	02	
				12
CT 101.2: Acquire knowledge regarding				
Stages in the life of construction.	09	2	02	
		_		13
CT 1012. Coin on understanding of the				15
CT 101.3: Gain an understanding of the	10	2	02	
various types of Road in India and their utilization in infrastructure development.	10	2	02	14
CT 101.4: Analyze the strength and				14
properties of various building				
materials.	11	2	2	
machais.				15
CT 101.5: Overview of National Highway				15
Authority of India (NHAI)				
	7	2	1	
	1	2	1	
				10
Total Hours				
	45	10	09	64

CO	Unit Titles	Marks Distribution			Total
		R	U	Α	Marks
CO-1	Importance of Civil Engineering in the infrastructural development of society	03	01	01	05
CO-2	Stages in the life of construction	02	06	02	10
CO-3	Types Of Roads Used In Construction	03	07	05	15
CO-4	Building Materials	-	10	05	15
CO-5	Indian Road Congress	03	02	-	05
	Total	11	26	13	50

Suggested Specification Table (For ESA)

Legend: R: Remember, U: Understand,

A: Apply

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method Group Discussion
- 4. Role Play
- 5. Visit to cement plant

- 6. Demonstration
- 7. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp,Mobi le,Onlinesources)

8. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition &Year
1	Basic Civil Engineering	Dr. R K Bansal	Laxmi Publication Pvt. Ltd.	Third Edition 2013
2	Legal Aspects of Building and Engineering Contract	W. H Duda	Laxmi Publication Pvt. Ltd.	Patil, B.S.(1974)

	Program Outcomes					P	rogram Specific	Outcome								
	PO1	PO 2	PO 3	PO 4	РО 5	PO 6	PO 7	PO8	РО 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engine ering knowle dge	Pro ble ma n alys is	Desig n/dev elop ment ofsolu tions	Cond uctin vesti gatio ns ofco mple x probl ems	Mod ento olusa ge	The engi nee ran dso ciet y	Envir onmen tandsu staina bility:	Ethics	Indi vidu alan dtea mwo rk:	Com muni catio n:	Projec tmana gemen tandfi nance:	Life- longlea rning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO1: Impart the knowledge on importance of Civil Engineering in the infrastructural development of society	3	2							2	2		2	2	2	1	-
CO 2 :: Identify the types, uses and properties of various building materials	1	3							2	3		2	2	2	2	1
CO3: Identify the type of construction for different components of a building	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2
C04: Building Materials	3	2		1		2		2		4			3	3	3	2
C05: Indian Road Congress	1	3							2	3		2	3	3	1	3

Pos &PSOs No.	Cos No. &Titles	SOs No.	Laboratory	Classroom Instruction	Self Learning(SL)
			Instruction(LI)	(CI)	
	CO1 Impart the knowledge on importance of		Unit-1. Importance of Civil Engineering in the		
PO1,2, 9,10,12	Civil Engineering in the infrastructural	SO1.1	infrastructural development of society		
	development of society	SO1.2	1.1,1.2,1.3,1.4,1.5.		
		SO1.3			
PSO1,2		SO1.4			
		SO1.5			
PO1 2 0 10 12	CO 2 : :: Identify the types, uses and properties of	SO2.1	Unit- Stages in the life of construction		
PO1,2, 9,10,12	various building materials				
		SO2.2	2.1,2.2,2.3,2.4,2.5.		
		SO2.3 SO2.4			
		SO2.4 SO2.5			
PSO2		302.5			
P302					
					As mentioned in
PO1,2,3,4,5,6	CO3: Identify the type of construction for different	SO3.1	Unit-3: Types Of Roads Used In Construction		page number
7,8,9,10,11,12	components of a building.	SO3.2			2 to 6
7,0,9,10,11,12		SO3.3			
PSO1,3		SO3.4			
			3.1. 3.2, 3.3, 3.4, 3.5.		
	C04: Building Materials		Unit- 4 Analyze the strength and properties of various building materials		
			4.1, 4.2,4.3,4.4, 4.5,4.6,4.7,4.8,4.9,4.10,4.11		
		SO2.1			
PO1,2, 9,10,12		SO2.2			
		SO2.2 SO2.3			
		SO2.4			
		SO2.5			
PO1,2, 9,10,12	C05: Indian Road Congress		Unit-5 Overview of National Highway Authority of India (NILAT)		
, , , , ,			Overview of National Highway Authority of India (NHAI) 5.1,5.2,5.3,5.4,5.5,5.6,5.7		
		502.1			
		SO2.1			
		SO2.2			
		SO2.3			
		SO2.4			
		SO2.5			

Legend:1-Low,2-Medium,3

Curriculum Development Team

- 1. Mr. Vishutosh Bajpai , Assistant Professor, Dept. of Civil Engineering
- 2. Mr. Aditya Budhadra , Assistant Professor, Dept. of Civil Engineering
- 3. Mrs. Richa Tripathi , Assistant Professor , Dept. of Civil Engineering
- 4. Mrs. Shraddha Panday, Teaching Associate, Dept. of Civil Engineering
- 5. Mrs. Garima Panday, Teaching Associate, Dept. of Civil Engineering
- 6. Mr. Satish Tiwari, Teaching Associate, Dept. of Civil Engineering

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

Semester-I

Course Code:	ESC 104
Course Title :	Basic Electrical Engineering
Pre-requisite:	Students should have basic knowledge of Basic Circuit Elements with brief information of AC, DC, and electromagnetic concepts.
Rationale:	A process of introducing formal knowledge of basic electrical elements and AC, DC, and magnetic circuit in electrical and electronic devices along with necessary knowledge about single-phase Transformer and DC machine.

Course Outcomes:

ESC 104.1: Apply network theorems to solve electrical DC circuits.
ESC 104.2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.
ESC 104.3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.
ESC 104.4: Understand the basic operating principle, types, efficiency of Transformers.
ESC 104.5: Understand the basic operating principle, types of machines.

SchemeofStudies:

Board	CourseC	CourseTitle		Scheme of studies(Hours/Week)				
ofStudy	ode		Cl	LI	SW		Total StudyHours(Cl+Ll +SW+SL)	(C)
Engineer ing Science Courses (ESC)	ESC 104	BASIC ELECTRICAL ENGINEERING	3	2	1	1	7	3+0+1=4

 Legend:
 CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)andTutorial (T)andothers),

 LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies)

 SW: Sessional Work(includesassignment, seminar, miniprojectetc.),

 SL:SelfLearning,

 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacherto ensureoutcomeofLearning.

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

Theory

					Sche	me of Asse	ssment (N	1arks)		
				Progressive Assessment (PRA)						
Board of Study	Couse Code	Course Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one (SA)	Class Activity any one (CAT)	Class Attenda nce (AT)	Total Marks (CA+CT+ SA+CAT +AT)	Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)
ESC	ESC 104	BASIC ELECTRICAL ENGINEERING	15	20	5	5	5	50	50	100

SchemeofAssessment: Practical

			Scheme of Assessment (Marks)						
				Progressiv	End	Total			
Board of Study	Couse Code	Course Title	Class/Ho me Assignme nt 7 marks each (CA)	VIVA	Class Attendance (AT)	Total Marks (CA+VV+AT)	Semester Assessment (ESA)	Marks (PRA+ ESA)	
		BASIC						LJAJ	
ESC	ESC 104_ L	ELECTRICAL ENGINEERING LAB	35	10	5	50	50	100	

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC 104.1: Apply network theorems to solve electrical DC circuits.

Faculty of Engineering and Technology Department of Mechanical | Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

Approximate Hours

Item	AppXHrs
Cl	07
LI	12
SW	2
SL	1
Total	22

SessionOutcomes (SOs)	LaboratoryInstruction (LI)	ClassroomInstruction (CI)	Self- Learning (SL)
 SO1.1Understand the Classification of electrical elements. SO1.2Understand the concept of voltage and current source. SO1.3Understand the concept of mathematical analysis based on KCL and KVL. SO1.4Analyze different network theorems. SO1.5 Understand the concept of star-delta transformation. 	 Verification of KVL. Verification of KCL. Identification of different electrical and electronic components. Calculation of Power, Impedance and P.F. in R-L-C Circuits. Verification of Superposition Theorem. Verification of Thevenin's Theorem. 	 Unit-1:DC Network 1.1 Classification of elements – active, passive, unilateral, bilateral, linear, nonlinear, lumped and distributed 1.2 classification of voltage & current sources 1.3 mesh and nodal analysis 1.4 Superposition theorem 1.5 Star-Delta Transformations (Numerical only). 1.6 Thevenin's theorem (Only independent sources). 1.7 Numerical 	 Learn the theoretical concept of circuit element.

SW-1 SuggestedSessionalWork(SW):

a. Assignments:

i. Numerical Problems on mesh and nodal analysis.

b. MiniProject:

i. Derive different network theorems.

ESC 104.2: Understand the concept of sinusoidal quantities and solve single phase AC circuits. Approximate Hours

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

Item	AppXHrs
Cl	7
LI	2
SW	2
SL	1
Total	12

SessionOutcomes (SOs)	LaboratoryInstruction (LI)	ClassroomInstruction (CI)	Self- Learning (SL)
 SO2.1 To Understand the concept of sinusoidal periodic waveforms. SO2.2 To understand the concept of phase difference. SO2.3To understand the different triangles. SO2.4 To understand the different connections. 	 Study about different types of connection in AC circuit. 	 Unit-2Single-Phase AC Circuits 2.1 Sinusoidal periodic waveforms: frequency, cycle, time period, peak value, root mean square value, average value, form factor and peak factor. 2.2 Phasor representation of alternating quantities. 2.3 Concept of phase difference, The j operator 2.4Rectangular and polar form 2.5 Power Triangle 2.6 Impedance Triangle, Power factor 2.7Solution of series, parallel, series-parallel network. 	1. Remember different concept related to the Sinusoidal Periodic Waveform.

SW-2 SuggestedSessionalWork(SW):

- a. Assignments:
 - i. Numerical Problems on Sinusoidal Network.
 - ii. Numerical Problems on Power Triangle and Impedance Triangle.
 - iii. Numerical Problems on Series and Parallel Circuit.
- b. MiniProject:
 - a. Draw the chart of Phasor Representation.

ESC 104.3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.

Approximate Hours

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

Item	AppXHrs
Cl	9
LI	4
SW	2
SL	1
Total	16

SessionOutcomes (SOs)	LaboratoryInstruction (LI)	ClassroomInstruction (CI)	Self- Learning (SL)
SO3.1 To Understand the	1. Study about the	Unit-3 :Three-Phase AC Circuit	1. Basic
basic concept of three-	different types of	3.1 Introduction	principle of
phase AC circuit.	three-phase AC circuits.	3.2 phase sequence, balanced load	three-phase AC Circuit.
SO3.2 To understand the different types of connection of three-phase winding.	 Study different concepts related with Magnetic Circuit. 	 3.3 Connection of Three- phase Windings (delta and star connection): line and phase quantities. 3.4 phasor diagrams, Three 	
SO3.3 To Understand the three-phase power equations.		phase power equations in balanced conditions (Elementary Numerical).	
SO3.4 To Understand the concepts of magnetic circuit.		3.5 Magnetic Circuits: Introduction3.6 magneto motive force (MMF)	
SO3.5 To understand the concept of leakage flux		3.7 magnetic field strength, magnetic flux,reluctance	
and fringing.		3.8 Comparison of the electric and magnetic circuits.	
		3.9 Solution of simple magnetic circuits (only for constant permeability materials).Leakage flux and fringing.	

SW-3 SuggestedSessionalWork(SW):

a. Assignments:

- i. Numerical Problems on three-phase load.
- ii. Numerical Problems on Magnetic circuit.

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

ESC 104.4:Understand the basic operating principle, types, efficiency of Transformers.

Approximate Hours								
Item	AppXHrs							
CI	10							
LI	8							
SW	2							
SL	2							
Total	22							

SessionOutcomes (SOs)	LaboratoryIns truction (LI)	ClassroomInstruction (CI)	Self- Learning (SL)
 SO4.1 To Understand the constructional and operational features of Single-phase Transformer. SO4.2 Understanding the classification of Transformer. SO4.3 Understand the different concept related with transformer SO4.4 Derive EMF equation of transformer. SO4.5 Understand the Phasor Diagram at different loads. SO4.6 Understand the different concepts related to efficiency for single-phase transformer. 	 Study the construction details of transformer. Perform open circuit and Short Circuit test on single- phase transformer. Study and Verification of Transformer Ratio Polarity. Perform Back to back Test on Transformer 	 4.1 Introduction 4.2 principles of operation 4.3 Construction 4.4 classification of transformers 4.5 Rating of transformer 4.6 EMF equation, ideal and practical transformer 4.7 phasor diagram under no load and loaded conditions 4.8 losses, efficiency calculations, Condition of Maximum Efficiency 4.9 All day efficiency 4.10 (Elementary Numerical) 	 i. Remember different parts of transformer. ii. Calculate Losses and Efficiency of transformer.

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

SW-4 SuggestedSessionalWork(SW):

a. Assignments:

i. Numerical Problems on transformer

b. MiniProject:

i. Draw phasor diagram of transformer at different loads.

ESC 104.5: Understand the basic operating principle, types of machines.

Approximate nours								
Item	AppXHrs							
Cl	12							
LI	4							
SW	2							
SL	1							
Total	19							

Approximate Hours

SessionOutcomes (SOs)	LaboratoryInstruction (LI)	ClassroomInstruction (CI)	Self- Learning (SL)
 SO5.1 Understand the constructional details of DC machines. SO5.2Derive EMF and Torque equations. SO5.3 Evaluate different types of dc machine. SO5.4 Understanding the Electrical Installation. 	 Study different components of DC Motor and Three Phase Starter. Study of different components of Induction Motor and Star-Delta Starter. 	Unit 5: DC Machines5.1 Common Construction features of DC Machines5.2 EMF equation5.3 types of DC machines (Separately & self- excited)5.4 Elementary numerical5.5 Components of LT Switchgear5.6 Switch fuse unit(SFU)5.7 MCB, ELCB, MCCB5.8 Types of wires5.9 Earthing5.10 Cables5.11 Torque equation5.12 Compound DC Machine	1. Remember the Constructional features of DC Machine.

Faculty of Engineering and Technology **Department of Mechanical | Engineering** Curriculum of B.Tech. (Mechanical Engineering) Program

SW-5 SuggestedSessionalWork(SW):

- a. Assignments:
 - i. Numerical Problem based on EMF and Torque equation of DC machine.
- b. MiniProject:

Draw the chart of different types of cable and earthing.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Laboratory	Sessional	Self-	Total hour
	Lecture	Lecture	Work	Learning	(Cl+SW+SI)
	(CI)	(LI)	(SW)	(SI)	
ESC 104.1: Apply network theorems to solve electrical DC circuits.	7	12	2	1	22
ESC 104.2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.	7	2	2	1	12
ESC 104.3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.	9	4	2	1	16
ESC 104.4: Understand the basic operating principle, types, efficiency of Transformers.	10	8	2	2	22
ESC 104.5 :Understand the basic operating principle, types of machines.	12	4	2	1	19
Total Hours	45	30	10	6	91

Suggestion for End Semester Assessment

СО	UnitTitles	Ma	ibution	Total	
		R	U	Α	Marks
CO-1	DC Network	03	01	01	05
CO-2	Single-Phase AC Circuit	02	03	02	07
CO-3	Three-Phase AC Circuit	02	04	04	10
CO-4	Single-Phase Transformer	03	07	05	15
CO-5	DC Machines	01	06	06	13
	Total	11	23	16	50

Faculty of Engineering and Technology **Department of Mechanical | Engineering** Curriculum of B.Tech. (Mechanical Engineering) Program

Legend: R:Remember, U:Understand, A:Apply

TheendofsemesterassessmentforProcess calculation willbeheldwith written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visit to electrical power plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Faceb ook,Twitter,Whatsapp,Mobile,Onlinesources)
- 9. Brainstorming

SuggestedLearningResources:

	(a) books:									
S.	Title	Author	Publisher	Edition&Yea						
No.				r						
1	Basic Electrical Engineering	Fitzrald and Higgonbothom	Tata McGraw-Hill	Fifth						
2	Theory and Problems of Basic Electrical Engineering	D.P. Kothari and I. J. Nagrath	Prentice Hall India Learning Private Limited	2016 - Second						
3	Basic Electrical Engineering	D. C. Kulshreshtha	McGraw Hill	2009						
4	Fundamentals of Electrical Engineering	Ashfaq Hussain	Dhanpat Rai and Co	Third						
5	Lecture note provided by Dept. of electrical engineering, AKS University, Satna.									

(a) Books

CurriculumDevelopmentTeam

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

Cos, POs and PSOs Mapping

Course Title: B. Tech. Electrical Engineering

Course Code: ESC 104

Course Title: Basic Electrical Engineering

		Program Outcomes												Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	
Course Outcomes	Engine ering knowle dge	Prob lem Solvi ng	Desig n Skills	Labor atory Skills	Team work	Com mun icati on Skill s	Ethical and Profess ional Behavi or	Lifelo ng Learni ng	Global and Societ al Impact	Project Manage ment	Adapta bility	Professi onal Develop ment	Mechanical System Design and Analysis	Manuf acturin g Proces ses and Autom ation	Computa tional Modelin g and Simulati on	Product Innovat ion and Develop ment	
CO1: Apply network theorems to solve electrical DC circuits.	2	2	3	2	2	1	1	1	2	1	1	2	2	1	2	1	
CO2: Understand the concept of sinusoidal quantities and solve single phase AC circuits.	2	2	1	3	1	2	1	1	1	1	2	2	2	1	2	1	
CO3: Analyze the three phase AC circuits and solve series and parallel magnetic circuits.	3	3	2	1	1	2	2	2	1	1	2	3	1	2	2	2	

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

CO 4: Understand the basic operating principle, types, efficiency of Transformers.	2	3	3	2	3	2	1	3	2	1	2	2	3	1	3	3
CO 5: Understand the basic operating principle, types of machines.	2	3	3	1	2	3	2	3	1	2	2	2	3	2	3	1

Legend:1–Low,2–Medium, 3–High

CourseCurriculumMap

POs &PSOsNo.	COsNo.&Titles	SOsNo.	LaboratoryInst ruction(LI)	Classroom Instruction(CI)	Self-Learning(SL)
PO:1,2,3,4,5,6,7,8, 9,10,11,12	CO-1: Apply network theorems to solve electrical DC circuits.	SO1.1S 01.2S 01.3	1, 2, 3, 4, 5, 6	Unit-1: DC Network 1.1, 1.2, 1.3, 1.4, 1.5, 1.6	
PSO 1, 2		SO1.4 SO1.5			

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

PO:1,2,3,4,5,6,7,8,	CO-2: Understand the concept of	SO2.1S	1	Unit-2: Single-Phase AC Circuit	
9,10,11,12	sinusoidal quantities and	O2.2S		2.1,2.2,2.3,2.4,2.5,2.6, 2.7, 2.8, 2.9	
	solve single phase AC circuits.	02.3			
PSO 1, 2		SO2.4			
PO:1,2,3,4,5,6,7,8,	CO-3: Analyze the three phase AC	SO3.1S		Unit-3 :Three-Phase AC Circuit	
9,10,11,12	circuits and solve series and	03.2	1, 2	3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8,	As mentionedin
	parallel magnetic circuits.	SO3.3		3.9, 3.10, 3.11, 3.12, 3.13, 3.14	pagenumber
PSO 1, 2		SO3.4			3to 10
,		SO3.5			0.00 10
PO:1,2,3,4,5,6,7,8,	CO-4: Understand the basic	SO4.1S		Unit-4:Single-Phase Transformer	
9,10,11,12	operating principle, types,	O4.2S	1, 2, 3, 4	4.1,	
	efficiency of Transformers.	O4.3S		4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,	
PSO 1, 2		04.4		4.11, 4.12, 4.13	
		SO4.5			
		SO4.6			
PO:1,2,3,4,5,6,7,8,	CO-5: Understand the basic	SO5.1S		Unit 5: DC Machines	
9,10,11,12	operating principle, types of	O5.2S	1,2	5.1,5.2,5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9	
	machines.	05.3			
PSO 1, 2		SO5.4			

Semester-I

Course Title: Biology for Engineers.

Pre-requisite: Student should have basic knowledge of biology

Rationale: Engineering combines scientific knowledge with creative activities to move beyond current knowledge and produce original solutions to important problems. Biological systems are subject to the laws of chemistry and physics, which are also the basis of engineering, biological systems can provide excellent examples of the applications of statics, dynamics, chemical affinities, energy relations, and other concepts taught in undergraduate engineering science courses.

Course Outcomes:

Course Code: BSC105

After completion of the course:

CO 1: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry

CO 2: To convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted.

CO 3: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and

Understand the molecular basis of coding and decoding genetic information is universal

CO 4: To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. To convey that without catalysis life would not have existed on earth

CO 5: To convey the concept of microbes and their role in environment.

Scheme of Studies:

			Sch						
Board of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits(C)	
Program Core (PCC)	BSC105	Biology for Engineers	3	0	1	1	5	3	

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T)and others),
LI: LaboratoryInstruction (IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using
different instructional strategies)
SW: Sessional Work(includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.Note:SW & SL has to be planned and performed under the continuous guidance and feed back of teacher to ensure
outcome of Learning.

Scheme of Assessment:

			SchemeofAssessment (Marks)							
Study	Code		ProgressiveAssessment(PRA)				sssment(E	A+ESA)		
BoardofStudy	CouseCode	CourseTitle	Class/HomeAssignment5number 3 marks each(CA)	ClassTest2(2 bestoutOf3)10	Seminarone (Presentation) (SA)	ClassActivityany	ClassAttendance	TotalMarks (CA+CT+SA+CAT	EndSemesterAssessment(E SA)	TotalMarks(PRA+ESA)
PCC	BSC105	Biology For Engineers	15	20	5	5	5	50	50	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and sessionlevels, which students are anticipated to accomplish through various modes of instruction includingClassroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes(COs) upon the course's conclusion.

CO1: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry Approximate Hours

Item	Appx. Hrs.
CI	9
LI	0
SW	1
SL	2
Total	12

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
1.1: Why we need to study biology	Unit1 .(2hours)-Introduction 1.1-Introduction to biology branches and scopes	1.1: Importance of Biology in engineering
1.2 To know the differences and similarities between human eye and camera.	1.2: comparison between eye and camera	1.2 Discuss how biological observations of 18 th Century that lead to major discoveries
1.3 Analyze the mechanism of birds flying with Aircraft	1.3: Comparison between Bird flying and aircraft.	
1.4 .Gain knowledge about the role of biology with discoveries in living world.	1.4 Important discoveries of biology.	
1.5 To understand the concept and amazing facts about living organisms.	1.5 Living organisms, characteristics of living organism	
1.6 Describe various criteria of classification of organism.	1.6 classification of living organisms	
1.7 In depth study about the cell and cell theory.	1.7 Cell theory	
1.8 Brief about the role of biological observations in major discoveries.	1.8 Discuss how biological observations of 18 th Century that lead to major discoveries.	
1.9 Understanding Binomial system of nomenclature	1.9 Understanding Binomial system of nomenclature	

Suggested Sessional	SW1.1 Assignments	1 Compare living and non living
Work (SW): anyone	SW1.2 Mini Project	Make a model of camera and try to make a flying object
	SW1.3 Other Activities	and try to make a flying object
	(Specify)	

CO2: To convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted

Approximate Hour	s	
	Item	Appx. Hrs.
	CI	9
	LI	0
	SW	1
	SL	2
	Total	12

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
	Unit2. Classification	2.1: Study different examples of unicellular and multicellular organisms.
2.1 Describe hierarchy of life forms at phenomenological level.2.2: Understand ultra structure of prokaryotic and eukaryotic organism,	2.1 Discuss classification based on(a) cellularity- Unicellular or multicellular2.2: Discuss classification based on(b)Ultra structure- prokaryotes or eukaryotes.	2.2: Gain knowledge about the basic structure of cell and functions of cell organelles
2.3 Study mode of nutrition in organism.	 2.3 classification based on .(c) energy and Carbon utilization – 2.4Autotrophs 	
2.4 Analyze the made of nutrition in Autotroph	2.5 heterotrophs,	
2.5 Explain the mechanism of of obtaining nutrition by Heterotrophs.		
2.6 Define lithotrophs and their occurrence.	2.6 Lithotrophs.	
2.7 Build up the concept of Molecular taxonomy and its uses in biology.	2.7 Molecular taxonomy-	
2.8 To understand the major types of kingdoms.	2.8 Three major kingdoms of life.	
2.9 : Able to define the Diversity of living organisms	2.9 Diversity of living organisms	

Suggested	SW1.1 Assignments	Differentiate between prokaryotic cell and eukaryotic cell.
Sessional Work	SW1.2 Mini Project	Prepare the poster explaining classification of organism
(SW): anyone	SW1.3 Other Activities	Grow yeast or fungus and observe the growth.
	(Specify)	

CO3: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences and Understand the molecular basis of coding and decoding genetic information is universal

•

Approximate HoursItemAppx.Hrs.CI9LI0SW1SL4Total14

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
	Unit3.Genetics& Information Transfer	3.1: Build-up the concept on the
		phenotype and genotype.
3.1 Illustrate how genetic material passes from parent to offspring? Concepts of recessiveness and dominance.	3.1: Mendel's laws, Concept of segregation and independent assortment.	Concepts of recessiveness and dominance
	3.2 Concept of allele.	
3.2 Describe the concept of allele.	r i i r	
-	3.3: cell cycle	
3.3 Understand the cell cycle and its importance.		3.2 basic knowledge of cell and cell theory
	3.4 Meiosis and Mitosis	
3.4 Discuss types of cell division		3.3: concepts of physical and genetic mapping.
	3.5 Genome mapping	
3.5 Able to realize concept of mapping of phenotype to genes.		3.4: Boost your knowledge on some genetic disorders in human.
	3.6 Gene disorders in humans	And mutation.
3.6 Discuss about the single gene disorders in humans.		
3.7 Analyze the molecular basis of information transfer and study the DNA structure and compacting of genome	3.7 DNA as a genetic material. Hierarchy of DNA structure-from single stranded to double helix to nucleosomes.	
3.8 Define concept of genetic code.	3.8 Concept of genetic code	
3.9 Gaining knowledge about the universality and degeneracy of genetic code.	3.9 Universality and degeneracy of genetic code	

Suggested Sessional	Assignments:	Differentiate between mitosis and meiosis
Work (SW): anyone	Mini Project:	Explain different types of crosses of Mendelian genetics
	Other Activities	Make a model of DNA and RNA and chart of cell cycle
	(Specify):	

CO.4 To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. To convey that without catalysis life would not have existed on earth

Approximate Hours		
Item	Approx	
	Hrs	
CI	9	
LI	0	
SW	1	
SL	3	
Total	13	

Session Outcomes (S	SOs)	Class room Instruction (CI)	Self-Learning (SL)	
		Unit 4- Biochemistry and metabolism and Enzymes	4.1: Study about the various disorders related to carbohydrate metabolism.	
4.1: In this context di units and polymeric s		4.1 Molecules of life		
4.2To know about the functions of carbohyd		4.2: Discuss about sugars,	4.2 Learn names of essential and non	
4.3 Define structure a	and function of starch.	4.3 starch	essential amino acids.	
4.4 Analyze the struc cellulose.	ture and properties of	4.4 cellulose.		
4.5 Able to know abo of proteins.	out the building blocks	4.5 Amino acids	4.3 To know about the important	
4.6 Understand prote function.	ins- structure and	4.6 Proteins	enzymes of human body and discuss ty examples.	
	y in protein structure. ertiary and quaternary	4.7Primary, secondary, tertiary and quaternary structure of proteins.		
4.8 Analyze the how catalyze reactions.	does an enzyme	4.8 Enzyme classification. Mechanism of enzyme action.		
4.9 Explain the chemical composition and types of Nucleotides.		4.9 Nucleotides and DNA/RNA.		
Suggested Assignments:		Write a detail note on Classification of Carbohydrate.		
Sessional Work Mini Project:		Make a chart explaining bio molecules.		
(SW): anyone Other Activities (Specify):		List out important enzymes of hun		

CO.5: To convey the concept of microbes and their role in environment.

Item	Appx. Hrs.
CI	9
LI	0
SW	1
SL	2
Total	12

Session Outcomes (SOs)	Class room Instruction (CI)	Self-Learning (SL)
	Unit 5. Microbiology	5.1: Concept of single celled organisms
5.1: Gain the knowledge of different microscopic techniques.	5.1 Microscopy	
5.2 To know the methods of identification of microorganism.	5.2 staining methods	5.2 Ecological aspects of single celled
5.3 Able to classify microorganism	5.3 classification of microorganisms(types)	organisms
5.4 Explain the Concept of single celled organisms.	5.4 Concept of single celled organisms	
5.5To gain knowledge about different bacterial species and strain.	5.5 Concept of species and strains	
5.6 Define the process of sterilization.	5.6 Sterilization	
5.7 Understand principle and types of sterilization used in microbiology.	5.7Types of sterilization.	
5.8 Study the different components used in media and preparation of medium	5.8media compositions.	
5.9 Analyze the microbial growth curve.	5.9 Growth kinetics.	

Suggested Sessional Work	Assignments:	 Draw and explain simple and compound microscope and their parts. Describe Bacterial growth curve.
(SW): Anyone	Mini Project:	Make a chart showing different sterilization techniques.
	Other Activities	Try to make a simple microscope model.
	(Specify):	

Brief of Hours suggested for the Course Outcome:-

Course Outcomes(COs)	Class lecture(CI)	Self- Learning (SL)	Sessional work (SW)	Total Hours (CI+SL+SW)
CO 1: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry.	9	2	1	12
CO 2: To convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted.	9	2	1	12
CO 3: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and Understand the molecular basis of coding and decoding genetic information is universal	9	4	1	14
CO 4 To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. To convey that without catalysis life would not have existed on earth	9	3	1	13
CO5: To convey the concept of microbes and their role in environment	9	2	1	12
Total Hours	45	13	05	63

Faculty of Engineering and Technology **Department of Mechanical l Engineering** Curriculum of B.Tech.(Mechanical Engineering) Program

Suggested Specification Table (For ESA)

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Role play
- 5. Presentations
- 6. Extempore
- 7. Speeches
- 8. Brainstorming

Suggested Learning Resources:

(a) Books:

S.no.	Title	Author	Publisher	Edition & Year
1	Biology for engineers	Artnur I jonanson	1 2	Second edition in 2019
2	Riology for engineers	Dr. Tanu Allen Dr. Sohini singh	vayu education of india	First edition in 2020
3	Biology for engineers	Tanushree Chakraborti	PHI Learning	First edition in 2022

Curriculum Development Team Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.

Faculty of Engineering and Technology Department of Mechanical l Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

Programme Title: B. Tech. Mechanical Engineering Course Code: BSC105 CourseTitle: Biology for Engineers.

										ProgramSpecific Outcome						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO1 2	PSO1	PSO2	PSO3	PS04
CourseOutcomes	Engineeri ng knowledg e	em	Desig n Skills	rator		Com muni cation Skills	Profe	Lifelo ng Lear ning	and	Proje ct Mana geme nt	Adap tabilit y	Profe ssiona l Devel opme nt	Mechanica l System Design and Analysis	Manufac turing Processe s and Automat ion	Com putati onal Mode ling and Simul ation	Pro duc t Inn ovat ion and Dev elop men t
CO 1: To convey that Biology	r															
is as important a scientific discipline as Mathematics, Physics and Chemistry	3	1	2	2	2	2	3	1	2	2	1	2	2	2	2	1
CO 2: To convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted	.2	2	3	2	1	2	2	1	1	1	2	3	2	2	2	1
CO 3: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and Understand the molecular basis of coding and decoding genetic information is universal	2	2	1	1	2	2	2	1	1	2	1	2	2	1	1	3
CO 4: To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. To convey that without catalysis life would not have existed on earth	3	2	2	2	3	1	3	1	2	1	2	2	3	3	3	2
CO5: To convey the concept of microbes and their role in environment.	2	2	2	2	1	1	3	1	1	1	2	2	3	3	1	2

Program Title: B. tech Course Code: BSC105 Course Title: Biology for engineers

Course Curriculum N	Лар:			
POs & PSOs No.	COs No	SOs No.	Classroom Instruction (CI)	Self-Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO 1: To convey that Biology is as important a scientific discipline as Mathematics, Physics and Chemistry	1.1, 1.2, 1.3, 1.4,1.5 1.6,1.7,1.8,1.9	1.1, 1.2, 1.3, 1.4, 1.51, 6, 1.7, 1.8, 1.9	1 SL-1,2,
PSO 1,2, 3 PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3	CO 2: To convey the classification of organism underlying criterion, such as morphological, biochemical or ecological be highlighted	2.1, 2.2,2.3,2.4,2.5 2.6,2.7,2.8,2.9	2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	2 SL-1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3	CO 3: To convey that "Genetics is to biology what Newton's laws are to Physical Sciences" and Understand the molecular basis of coding and decoding genetic information is universal	3.1, 3.2,3.3, 3.4,3.5 ,3.6,3.7,3.8,3.9	3.1, 3.2,3.3, 3.4,3.5 ,3.6,3.7,3.8,3.9	3 SL-1,2,3,4
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3	CO 4: To convey that all forms of life have the same building blocks and yet the manifestations are as diverse as one can imagine. To convey that without catalysis life would not have existed on earth	4.1,4.2, 4.3, 4.4 ,4.5,4.6,4.7,4.8,4.9	4.1,4.2,4.3, 4.4, 4.5, 4.6,4.7,4.8,4.9	4 SL-1,2,3,
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3	CO5: To convey the concept of microbes and their role in environment.	5.1, 5.2, 5.3,5.4,5.5,5.6,5.7,5.8,5.9	5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9	5 SL-1,2,

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Semester-I

CourseCode:	ESC 103
CourseTitle:	Design Thinking & Idea Lab
Pre-requisite:	There is no such pre requisite for Design Thinking and Idea. This course is intended for students from any discipline who require an understanding of designthinking for brand, product, and service development.
Rationale:	Students will learn a series of design thinking concepts, methods and techniques that are used to bring about innovation in business and in the social sector. The course will be a mix of lecture, case discussions, participative and immersive learning. It will be a predominantly student driven learning to acquire the requisite skills.

CourseOutcomes:

CO1: Identify the problems that fall under the purview of human centered design process for creative problem solving.

CO2: Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using

ideation techniques.

CO3: Build simple prototypes for problems using gathered user requirements.

SchemeofStudies:

Board			Total					
ofStud y	Course Code	CourseTitle	Cl	LI	SW	SL	Total Study Hours(CI+LI+SW +SL)	Credits C)
Program Core	ESC 103	Design Thinking & Idea Lab	0	2	1	1	4	1

 Legend:
 CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)andTutorial (T)andothers),

 LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop,fieldorothe rlocationsusingdifferentinstructional strategies)

 SW:SessionalWork(includesassignment,seminar,miniprojectetc.),

 SL:SelfLearning,

 C:Credits.

Note:

SW&SLhastobeplannedandperformedunderthecontinuousguidanceandfeedbackofteachertoens ureoutcomeof Learning.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Scheme of Assessment:

Theory

						SchemeofAssessment(Marks)						
				EndSemest erAssessme nt	Total Marks							
Board ofStudy	Couse Code	CourseTitle	Class/Home Assignment 5number 3	Class Test2 (2bestout of3)	Seminar one	ClassAc tivityan yone	ClassAtten dance	TotalMarks				
			marks each (CA)	10 marksea ch(CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)		
	ESC 103	Design Thinking & Idea Lab	35	NA	5	5	5	50	50	100		

A K S University Faculty of Engineering and Technology

Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program

(Revised as on 01 August 2023)

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and sessionlevels, which students are anticipated to accomplish through various modes of instruction includingClassroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL).

As the course progresses, students should show case their mastery of Session Outcomes (SOs), culminating inthe overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC 103.1: Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base usingideation techniques.

proximateHours
AppX Hrs
00
10
2
1
13

SessionOutcomes (SOs)	LaboratoryInstruction (LI)	ClassroomInstructi on (Cl)	SelfLearning (SL)
SO1.1 Identifying the problem that can be solved using Design Thinking approach. SO1.2 Obtain the insights into user's problems and make Problem statement. SO1.3 Carry out Brain storming between the groups and generate as many as ideas possible. SO1.4Obtain the insights to creativity and innovation.	Unit-1.0INTRODUCTION TO DESIGN THINKING 1.1 Definition of Design Thinking, 1.2.Need & Objective of Design Thinking. 1.3. Stages of Design Thinking Process. 1.4Brainstorming. 1.5 Innovative Triangle		 Develop ability to express their views.

Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of B.Tech. (Mech. Engg.) Program

(Revised as on 01 August 2023)

SW-1SuggestedSessionalWork(SW):

a. Assignments:

- Detail explanation of Stages of Design Thinking. i.
- **b.** MiniProject:
 - To create a prototypeof users need using Design Thinking Stages. i.

ESC 103.2: Identify the problems that fall under the purview of human centered design process for creative problem solving. **ApproximateHours**

			ltem	AppX Hrs	
			Cl	00	
			LI	10	
			SW	2	
			SL	1	
			Total	13	
SessionOutcomes	LaboratoryInstruction	Classro	omInstructi	SelfLearn	ning
(SOs)	(LI)		on	(SL)	
			(CI)		
SO2.1 Differentiate	Unit-2.0: Introduction to			1. Different	
between Design thinking	Creativity			Converge	nt and
and Creative thinking.				divergent	
				thinking t	ools.
SO2.2 Learn different	2.1 Introduction of Creative				
types of creative thinking	Thinking.				
techniques for generating	2.2 Creative Thinking Process				
creative ideas.	2.3 Creative Problem Solving.				
	2.4 Creative Thinking				
SO2.3 Be able to solve a	Techniques and Tools.				
problem using creativity.	2.5 Divergent and Convergent				
	Thinking.				
	5				

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-2 SuggestedSessionalWork(SW):

a. Assignments:

i. Presentation by students' team on their own creative work.

b. MiniProject:

To create a prototype of a product using their own creativity.

ESC 103.3: Build simple prototypes for problems using gathered user requirements.

ApproximateHours

ltem	AppX Hrs			
Cl	00			
LI	10			
SW	2			
SL	1			
Total	13			

SessionOutcomes (SOs)	LaboratoryInstruction (LI)	ClassroomInstructi on (Cl)	SelfLearning (SL)
SO3.1 Understanding of Prototyping.	Unit-3.0Introduction to Prototype		1.Solving Practical Engineering Problem through Innovative
SO3.2 Develop understanding of various prototype testing methods. SO3.3 Understanding of Product Design	 3.1 Prototyping as a mindset, prototype examples 3.2 Introduction to Rapid Prototyping. 3.3 Process of prototyping- Minimum Viable prototype 3.4Process of Engineering Product Design 3.5 Stages of Product Design 		Product Design & Creative Solution

SW-3SuggestedSessionalWork(SW):

a. Assignments:

i. Presentation by student teams on their own developed prototype.

b. MiniProject:

Make a prototype using stages of product design

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revised as on 01 August 2023)

BriefofHourssuggestedfortheCourseOutcome

CourseOutcomes	ClassLec	Lab	Sessional	SelfLearning	Total hour	
	ture	Lecture	Work	(SL)	(Cl+Ll+SW+SL)	
	(CI)	(LI)	(SW)			
1: Create empathy maps to visualize user						
attitudes and develop innovative products or					13	
services for a customer base using ideation	00	10	2	1	15	
techniques.				_		
2: Identify the problems that fall under the						
purview of human centered design process for	00				13	
creative problem solving.		10	2	1	-	
3: Build simple prototypes for problems						
using gathered user requirements.					13	
using gathered user requirements.	00	10	2	1	15	
TotalHours	00	30	06	03	39	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revised as on 01 August 2023)

SuggestionforEndSemesterAssessment

SuggestedSpecificationTable(ForESA)

СО	UnitTitles	Ma	Total		
		R	U	Α	Marks
CO-1	Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.	07	05	03	15
CO-2	Identify the problems that fall under the purview of human centered design process for creative problem solving.	06	06	03	15
CO-3	Build simple prototypes for problems using gathered user requirements.	07	07	06	20
	Total	20	18	12	50

Legend:	R:Remember,	U:Understand,	A:Apply
Legena.		o lonacistana,	/ (PP) /

TheendofsemesterassessmentforDesign Thinking & Idea Labwillbeheldwithpractical examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for ends emester assessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visittocement plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog, Facebook,Twitter,Whatsapp,Mobile,Onlinesources)
- 9. Brainstorming

SuggestedLearningResources:

(a) Books:

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

(Revised as on 01 August 2023)

S. No.	Title	Author	Publisher	Edition& Year
1	Paul Harris, Basics Design-Design Thinking	Gavin Ambrose	AVA Publishing	2010
2	Prototyping for Designers: Developing the best Digital and Physical Products	Kathryn McElroy	O'Reilly,	2017
3	"Design Thinking – New Product Essentials from PDMA	Michael G. Luchs, Scott Swan, Abbie Griffin	Wiley,	2015
4	Lecturenoteprovidedby Dept.ofMechanical Engin	eering,AKSUniversity	,Satna.	

CurriculumDevelopmentTeam

- 1. Mr.S.S. Parihar, Head of Deptt. Mech. Engg., AKSUniversity
- 2. Mr. Abhinav Shrivastava, Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey ,AssistantProfessor,Dept.ofMechanichal Engg
- 4. Mr., Keshav Pratap Singh, AssistantProfessor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, AssistantProfessor, Deptof Mechanichal Engg
- 6. Mr K.P Tiwari, AssistantProfessor,Dept.ofMechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, AssistantProfessor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal,AssistantProfessor,Dept.ofMechanichal Engg
- 10. Mr. Ram Narayan Shukla, AssistantProfessor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, AssistantProfessor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, AssistantProfessor, Dept. of Mechanichal Engg

Cos, Pos and PSOs Mapping

Course Title: B.Tech Mechanical Engineering

Course Code: ESC 103

Course Title: Design Thinking & Idea Lab

	Program Outcomes								Program Specific Outcome							
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engine eringkn owledg e	lema naly	Design/ develop mentofs olutions	Condu ctinve stigati ons ofcom plex proble ms	toolusa	The engi neer ands ocie ty	Environ mentan dsustai nability :	Ethics	Indivi duala ndtea mwor k:	Com munic ation:	Project manage mentan dfinanc e:	Life- longlear ning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO1:Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.	3	2							2	2		2	3	2	2	3
CO 2: Identify the problems that fall under the purview of human centered design process for creative problem solving.	1	3							2	3		2		2	2	3
CO3: Build simple prototypes for problems using gathered user requirements.	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2

Course Curriculum Map:

POs& PSOs No.	Cos No. & Titles	SOs No.	Laboratory Instruction(LI)	Class room Instruction (CI)	Self Learning (SL)
PO1,2, 9,10,12 PSO1,2	CO1:Create empathy maps to visualize user attitudes and develop innovative products or services for a customer base using ideation techniques.	SO1.1 SO1.2 SO1.3 SO1.4	Unit-1.0INTRODUCTION TO DESIGN THINKING 1.1,1.2,1.3,1.4,1.5.		
PO1,2, 9,10,12 PSO2	CO 2: Identify the problems that fall under the purview of human centered design process for creative problem solving.	SO2.1 SO2.2 SO2.3	Unit-2Introduction to Creativity 2.1,2.2,2.3,2.4,2.5.		As mentioned in
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,3	CO3: Build simple prototypes for problems using gathered user requirements.	SO3.1 SO3.2 SO3.3	Unit-3:Introduction to Prototype 3.1. 3.2, 3.3, 3.4, 3.5.		Page number 2to6

Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Semester-I

Course Code:	ESC 102
Course Title :	Engineering Graphics & Design
Pre- requisite:	Student should have basic knowledge of Geometry, Geometrical Shapes, basic knowledge of Computer, Mouse and keyboard use, navigating menus and dialogs, managing files and directories, etc.
Rationale:	The students studying Graphics are essential in mechanical engineering, allowing engineers to visualize and communicate complex ideas clearly and concisely. Using graphics, engineers can create detailed plans for construction projects, analyses structural components, and convey design concepts to clients and stakeholders.
Course Outcomes	

Course Outcomes:

ESC 102.1: Get introduced with Engineering Graphics and visual aspects of design.

ESC 102.2: Know and use common drafting tools with the knowledge of drafting standards.

ESC 102.3: Apply computer aided drafting techniques to represent line, surface or solid models in different Engineering

viewpoints.

ESC 102.4: Produce part models; carry out assembly operation and show working procedure of a designed project work using

animation.

ESC 102.5: To make the student understand the viewing perception of a solid object in Isometric and perspective Projection,

Design modulation and simulation by Auto CAD

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of					Scher	ne of studi	es(Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (ESC)	ESC 102	Engineering Graphics & Design	1	4	1	1	7	3

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial
(T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)					End Semester Assessment	Total Marks	
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3)	Semina r one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
ESC	FSC 102	Engineering Graphics & Design	15	20	5	5	5	50	50	100

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Practical

Board of	Couse	Course Title	Scheme	Scheme of Assessment (Marks)				
Study	Code		Progressive Ass	Progressive Assessment (PRA) End Second Int (E				Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)		
BSC		Engineering Graphics & Design lab	35	10	5	50	50	100

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC 102.1: Get introduced with Engineering Graphics and visual aspects of design.

Ар	Approximate Hours				
ltem	AppX Hrs				
Cl	03				
LI	12				
SW	2				
SL	2				
Total	19				

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO1.1 Proficiency in using plain scales for measurement and drawing and understanding of representative factors in scales. SO1.2 Construction of ellipses, parabolas, and hyperbolas using various methods SO1.3 Knowledge and construction of special curves like cycloids, epicycloids, hypocycloids, involutes, and Archimedean spirals. SO1.4 Application of these curves in various engineering and mathematical contexts.	 Unit-1.0 ENGINEERING CURVES & SCALE Practice of Following 1.1 Construction of ellipse by different methods; Normal and Tangent . 1.2. Construction of parabola by different methods; Normal and Tangent. 1.3Construction of involute such as polygons and circle 1.4 Construction of Cycloid, Epi- cycloid, Hypo-cycloid 1.5 Construction of Simple Scale, 1.6 Diagonal Scale & Scale of Chord 	 S Unit-1.0 ENGINEERING CURVE& SCALE 1.1 Introduction of Engineering Drawing, Drawing material and their uses Application of mini drafter, compass, divider, French curves, pencils grades and their uses. 1.2 Construction of ellipse by different methods; Normal and Tangent .Construction of parabola by different methods; Normal and Tangent. 1.3 Construction of Cycloid, Epi-cycloid, Hypo-cycloid. Construction of Simple Scale, Diagonal Scale & Scale of Chord 	 Construction of Involutes Construction of Archimean Spiral

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program

(Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Ellipes by concentric circle method, Cycloid, Involutes of Circle
- **b.** Mini Project:
 - i. Model of Hexagon, Pentagon, Square

ESC 102.2: Know and use common drafting tools with the knowledge of drafting standards. Approximate Hours

rippioximate riouis)					_
				ltem	AppX Hrs	
				Cl	03	
				LI	12	
				SW	1	
				SL	2	
				Total	18	
Session Outcomes	LaboratoryInstruction		Cla	ass room	Self Lear	ning
(SOs)	(LI)		Ins	truction	(SL)	U
				(CI)		
SO2.1 Differentiate	Unit-2.0 Projection of Point and	Unit-2	.0 Pro	ojection of Point	1.Point Projection	n in
between various types of	Line	and Li	ne		different co-ordin	ate
projections when and					2. Projection of St	traight
where each type of	Practice of Following	2.1 Intr			Line in different P	osition
projection is commonly		Pro	ojecti	on	w.t.r. H.P. & V.P.	
used in engineering and	2.1 Projection of Point					
technical design.	2.2 Projection of Point in	2.2	Proj	ection of Point		
	different co-ordinate		р.			
SO2.2 Be able to create	2.3 Projection of Straight Line	2.3		ection of		
orthographic projection	2.4 Projection of Straight Line in		Stra	ight Line		
views of objects,	different Position w.t.r. H.P. &					
including front view, top	V.P.					
view, and side views.	2.5 Projection of Straight Line in					
	different Position w.t.r. H.P. &					
SO2.3 Able to project	V.P.					
points and lines onto	2.6 Projection of Straight Line in					
different planes using	different Position w.t.r. H.P. &					
orthographic projection.	V.P.					
SO2.4 Learn how to find						
the traces of straight						
ines in orthographic						
projection and use these						
traces to determine the						
positions of lines in						
different planes.						

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Projection of point & Projection of Straight Line

ESC 102.3: Apply computer aided drafting techniques to represent line, surface or solid models in different Engineering viewpoints.

Approximate Hour				
ltem	AppX Hrs			
Cl	03			
LI	12			
SW	2			
SL	2			
Total	19			

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO3.1 Projection of Planes like circle and polygons in different positions. SO3.2 Projection of polyhedrons like prisms, pyramids, and solids of revolutions like cylinder, cones in different positions	Unit-3.0 Projection of Plane & Solid Practice of Following 3.1 Introduction ,Projection of plane 3.2 plane perpendicular to any one and parallel to other 3.3 plane perpendicular to any one and inclined to other 3.4 Introduction ,Projection of solid 3.5 Axis of solid perpendicular	(CI) Unit-3.0 Projection of Plane & Solid 3.1 Introduction of Projection Plane 3.2 Projection of Plane in different position 3.3 Introduction of projection of Solid Projection of solid in different position	 Preojection of Plane in different Position w.t.r. H.P. & V.P. Projection of solid in different Position w.t.r. H.P. & V.P.
	to any one and parallel to other 3.6 Axis of solid perpendicular to any one and inclined to other Axis of solid inclined to both the plane HP&VP		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Draw three problems of projection of plane
- ii. Draw three problems of projection of solid

b. Mini Project:

- Make models of plane and solid by thermocol
- ESC 102.4: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.

			Αρ	proximate Hours	
			Item	AppX Hrs	
			Cl	03	
			LI	12	
			SW	2	
			SL	2	
			Total	19	
Session Outcomes	LaboratoryInstruction	Cla	ss room	Self Lear	ning
(SOs)	(LI)	Ins	truction	(SL)	
			(CI)		
SO4.1 Learn the techniques for sectioning	Unit-4.0 Development of Solid & Section of Solid	Unit-4.0 De Solid & Sect	velopment of ion of Solid	1. Development as sectioning of cy	
right solids using both normal and inclined	Practice of Following		ion of Sectioning oning lines	2. Development as sectioning of pr	
planes.	4.1 Sectioning of Cone	4.2 Sectioni	ng of Cone		
SO4.2 solve practical problems related to the	4.2Sectioning of pyramid	4.3 Sectioni	e 1.		
section of solids and planes.	4.3Sectioning of Cylinder & Prism	Prism Devel cylinder and	prism		
SO4.3 Learn the parallel line method and radial- line method for	4.4 Development of cylinder and prism		nt and sectioning development and f cone		
developing surfaces in right solids including how to create accurate	4.5 Development and sectioning of pyramid				
representations.	4.6 development and sectioning of cone				

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Develop prism and cylinder
- ii. Develop pyramid and Cone

ESC 102.5: To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto

Ар	proximate	Hours
	AnnV	Urc

Item	AppX Hrs
Cl	03
LI	12
SW	2
SL	2
Total	19

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO5.1 - Students will learn about the scale and the specific axes used in isometric drawings. SO5.2 - Students will learn the process of converting two- dimensional orthographic (multi view) drawings into isometric projections. SO5.3 - Students will learn solving practical design and projection problems using CAD software and how to use CAD tools to create detailed drawings and projections of objects.	 Unit-5.0 Isometric projection and Auto CAD Practice of Following 5.1 Introduction of isometric scale and vies 5.2 Isometric view of circle, cylinder and cone 5.3 Isometric view of prism 5.4 Isometric view of pyramid 5.5 Isometric view by othographic view 5.6 Drawing of different orthographic view of planes and solid by Auto CAD commands 	 Unit-5.0 Isometric projection and Auto CAD 5.1 Introduction of Isometric Projection 5.2 Isometric view of circle, cylinder and cone 5.3 Isometric view of prism and pyramid Isometric view by othographic view Introduction of Auto CADDescription of Auto CAD commands Drawing of different orthographic view of planes and solid by Auto CAD commands 	 Draw Isometric view of plane and solid Draw Isometric view of plane and solid by using Auto CAD command

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Draw Isometric view of a cone resting centrally on a cube Explain five edit and draw commands

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Lecture (LI)	Sessio nal Work	Self Learni ng	Total hour (Cl+Ll+SW+SI)
			(SW)	(SI)	
ESC 102.1: Get introduced with Engineering Graphics and visual aspects of design.					19
	3	12	2	2	15
ESC 102.2: Know and use common drafting tools with the knowledge of drafting standards.					18
	3	12	1	2	10
ESC 102.3: Apply computer aided drafting technique to represent line, surface or solid models in different Engineering viewpoints.	3	12	2	2	19
ESC 102.4: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	3	12	2	2	19
ESC 102.5: To make the student understand the viewing perception of a solid object in Isometric and perspective Projection, Design modulation and simulation by Auto CAD	3	12	2	2	19
Total Hours	15	60	09	10	94

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	Α	Marks
CO-1	Get introduced with Engineering Graphics and visual aspects of design.	03	01	01	05
CO-2	Know and use common drafting tools with the knowledge of drafting standards.	02	06	02	10
CO-3	Apply computer aided drafting technique to represent line, surface or solid models in different Engineering viewpoints.	03	07	05	15
CO-4	Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	-	10	05	15
CO-5	Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Engineering Graphics & Design will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

9. Brainstorming

Suggested Learning Resources:

(a)	Books :					
S.	Title	Author	Publisher	Edition &		
No.				Year		
1	Computer Aided Engg drawing	VTU Belgaum	Visvesvar aya Tech. Universit Y	Revised edition 21 edition 2020		
2	Engineering Drawing	Bhatt N.D., Panchal V.M. & Ingle P.R.,	Charotar Publishing House	1999		
3	Engineering Drawing	R.K. Dawan	S. Chand Publication.	1985		
4	Engineering Drawing	Agrawal and Agrawal	ТМН	2018		
5	Training Manual					
6	Training Manual					
7	Lecture note provided by Dept. of Mechanical Engineering, AKS University, Satna .					

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- **11.** Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos,POs and PSOs Mapping

Course Title: B. Tech Mechanical Engineering

Course Code : ESC 102

Course Title: Engineering Graphics and Design

					Рі	rogran	n Outco	omes					Р	rogram Spec	cific Outcom	ie
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Design/ develop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Moden tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO1 : Get introduced with Engineering Graphics and visual aspects of design.	1	1	2	2	2	2	3	1	2	2	1	2	2	2	1	-
CO 2 : Know and use common drafting tools with the knowledge of drafting standards.	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1
CO3 : Apply computer aided drafting technique to represent line, surface or solid models in different Engineering viewpoints.	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2
CO 4: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
CO 5: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	1	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(L I)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO1 : Get introduced with Engineering Graphics and visual aspects of design.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	1.1,1.2,1.3,1.4, 1.5,1.6,	Unit-1.0 ENGINEERING CURVE& SCALE	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 2 : Know and use common drafting tools with the knowledge of drafting standards.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5	2.1, 2.2, 2.3, 2.4, 2.5, 2.6	Unit-2 Projection of Point and Line 2.1, 2.2, 2.3	As mentionedin
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO3 : Apply computer aided drafting technique to represent line, surface or solid models in different Engineering viewpoints.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	3.1, 3.2,3.3,3.4,3.5, 3.6	Unit-3 : Projection of Plane & Solid 3.1, 3.2,3.3	page number 2 to 6
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 4: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	4.1, 4.2,4.3,4.4,4.5, 4.6	Unit-4 : Development of Solid & Section of Solid 4.1, 4.2,4.3	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 5: Produce part models; carry out assembly operation and show working procedure of a designed project work using animation.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	5.1,5.2,5.3,5.4,5.5, 5.6	Unit 5: Isometric projection and Auto CAD 5.1,5.2,5.3	

<u>Semester-I</u>

Course Title: Engineering Mathematics –I Course Code: - BSC 102 Prerequisite: Students should review the fundamentals of calculus and basic knowadge of differential and integration. Rationale: The program aims to develop advanced problem-solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced mathematical expertise.

Course Outcomes (CO):

CO1- - BSC 102.1

Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions

CO2- - BSC 102.2

Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.

CO3- - BSC 102.3

Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable functions.

CO4- - BSC 102.4

Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena

CO5- - BSC 102.5

Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.

AKS University Faculty of Basic Science Department of Mathematics Curriculum & Syllabus of B.Tech program

Scheme of Studies:

Board of Study	Course Code	Course Title	Scheme of s	Scheme of studies (Hours/Week)				Total Credit
Study	code	The	CI	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	s (C)
Basic	BSC 102	Engineeri	4	0	1	1	6	4
Science		ng						
Course		Mathem						
(BSC)		atics -I						

Legend:

Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.)

SL: Self Learning,

C: Credits

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

Board of	Couse	Course Title		Schem	e of Assess	ment (M	arks)			
Study	Code		Prog	ressive As	sessment (PRA)			End Semester Assessm ent (ESA)	Total Marks (PRA+ ESA)
			Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+ SA +CAT+A T)		
BSC	BSC 102	Engineerin g Mathemati cs -l	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-- BSC 102.1

Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions

Approximate Hours					
Item	AppX Hrs				
Cl	12				
LI	0				
SW	1				
SL	1				
Total	14				

Approximate Hours	Арр	roximat	te Hours
-------------------	-----	---------	----------

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 Understand the concept of local and global extrema. SO1.2 Understand the geometric interpretation of the derivative as the slope of a tangent line SO1.3 Apply implicit differentiation to find derivatives of implicitly defined functions So1.4 Understand the hypothesis of L' Hospital's rule So1.5 Understand the concept of curvature.	-	Unit-1.0 1.1.Rolle's Theorem, 1.2. Mean value theorems 1.3. applications, extreme values of functions 1.4.linear approximation, Indeterminate forms 1.5.L' Hospital's rule 1.6 Tutorial-1 1.7. curvature, 1.8. Radius of curvature 1.9evolutes and involutes 1.10Expansion of functions by Maclaurin's series 1.11Expansion of functions by Taylor's series for one variable 1.12 Tutorial- 2	SL.1 Define the derivative of a function at a point using the limit definition.

a. Assignments:

- i. Analyze and sketch the graph of a function using information from its derivative.
- ii. Identify critical points, inflection points, and concavity.
- iii. Apply L'Hôpital's Rule to find limits involving indeterminate forms

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO2- BSC 102.2

Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.

Approximate Hours				
Item	AppX Hrs			
Cl	12			
LI	0			
SW	1			
SL	1			
Total	14			

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO2.1		Unit-2.0	SL.1
Define and		2.1.Rank of a Matrix	Explore more advanced
understand the		2.2. Determinant,	topics, such as linear
basic concepts of		2.3. Inverse of a matrix,	transformations, matrix
matrices,		2.4-Nullity	norms, and applications
determinant, etc	-	2.5. system of linear	in optimization and
SO2.2		equations,	computer graphics
Perform basic		2.6.Symmetric, skew-	
matrix operations,		symmetric	
including addition,		2.7. orthogonal matrices	
subtraction, and		2.8. Eigen values and Eigen	

scalar multiplication SO2.3 Understand the connection between matrix equations and systems of linear equations SO2.4 Define and compute the determinant of a	vectors,orthogonal transformation, 2.9. diagonalization of matrices, Cayley-Hamilton Theorem, 2.10. linear systems of equations, 2.11 linear independence and linear dependence 2.12 Tutorial-1	
Define and		
SO2.5		
Understand		
numerical		
techniques		

a. Assignments:

- i. Write the application of Matrices in Real Life.
- ii. Write the properties of Eigen values.
- iii. Write a short note on types of matrix with example.
- iv. Describe the method of calculation of rank with example

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO3- BSC 102.3

Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable functions.

Approximate nours				
Item	AppX Hrs			
Cl	12			
LI	0			
SW	1			
SL	1			
Total	14			

Approximate Hours

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO3.1		Unit-3.0	SL.1
Define and compute			Apply Lagrange
partial derivatives of		3.1. Limit and continuity	multipliers to solve
functions of several		3.2. total derivative,	constrained
variables SO3.2		3.3. Euler's theorem on	optimization problems
Understand the directional	-	Homogeneous function.	
derivative and its relation		3.4. Application of Euler's	
to the gradient vector		theorem in approximation	
SO3.3		and errors,	
Apply the chain rule to		3.5. Application of Euler's	
compute derivatives of		theorem in errors	
composite functions		3.6.Tangent plane and	
involving multiple variables		normal line.	
SO3.4		3.7. maxima, minima	
Understand mixed partial		3.8 saddle points,	
derivatives and Clairaut's		3.9. Method of Lagrange	
theorem		multipliers	
SO3.5		3.10. partial derivatives	
Identify critical points of		3.11 Questions of partial	
multivariable functions		differential.	
		3.12 Tutorial-1	

a. Assignments:

- i. Write the Application of Euler's theorem in real life.
- ii. Explain the difference between differential and partial differential
- iii. Write the properties of maxima, minima.
- iv. Define saddle points, point of inflection.

b. Mini Project:

Oral presentation,

- **c.** Other Activities (Specify):
 - Quiz, Class Test.

CO4- BSC 102.4

Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena

Approximate Hours

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO4.1 Understand the definition of a first-order ordinary differential equation SO4.2 Solve separable differential equations using the separation of variables technique SO4.3 Identify and use integrating factors to solve linear first-order ODEs SO4.4 Identify autonomous differential equations and their significance SO4.5 Recognize and solve exact differential equations		Unit-4.0 4.1.Order and degree of equation 4.2Exact equations. 4.3.Questions of Exact equations, 4.4. Linear equations 4.5 Tutorial-1 4.6. Bernoulli's equations. 4.7. Equations not of first degree: 4.8.Equations solvable for p, 4.9.Equations solvable for y, 4.10. Equations solvable for x 4.11 Equations Clairaut's type 4.12 Tutorial-2	SL.1 Apply first-order ODEs to model and analyze various phenomena, such as population growth, chemical reactions, and electrical circuits

SW-2 Suggested Sessional Work (SW):

a. Assignments:

I. Explain degree and order of differential equation with example.

b. Other Activities (Specify): Quiz, Class Test.

CO5- BSC 102.5

Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.

Approximate HoursItemAppX HrsCl12LI0SW1SL1Total14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1		Unit-5.0	SL.1
Understand and			Apply calculus
state the		5.1.Evaluation of definite	techniques to analyze
Fundamental		and improper integrals,	curves defined in polar
Theorem of		5.2. Beta and Gamma	form
Calculus	-	functions	
SO4.2		5.3. Properties of Beta and	
Find		Gamma functions,	
antiderivatives of		5.4 Relation between Beta	
elementary		and Gamma functions	
functions		5.5. Double integrals	
SO4.3		(cartesian),	
Understand the		5.6 questions of double	
concept of a		integrals	
definite integral as		5.7. Change of order of	
a limit of Riemann		integration in double	
sums		integrals,	
SO4.4		5.8 Change of order of	
Interpret definite		integration questions	
integrals as areas		5.9. Triple integrals	
under curves		(cartesian),	
SO4.5		5.10. simple applications	
Understand and		involving cubes and sphere	
evaluate improper		5.11 Rectangular	
integrals.		parallelepipeds	
		5.12 Tutorial-1	

a. Assignments:

- i. Write the application of double and tripal integration.
- ii. Write the Properties of Beta and Gamma functions.

b. Mini Project:

Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1- BSC102.1 Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions	12	1	1	14
CO1- BSC102.2 Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.	12	1	1	14
CO1- BSC102.3 Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable	12	1	1	14

functions.				
CO1- BSC102.4 Understand the definition of a first- order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena.	12	1	1	14
CO1- BSC102.5 Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.	12	1	1	14
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table	(For FSA)
Suggested Specification Table	

CO	Unit Titles	Marl	Marks Distribution			Total Marks
		R	U	Α		
CO-1		02	04	05		07
	Single-variable Calculus					
CO-2		03	07	04		14
	Matrices					
CO-3		02	06	02		10
	Multivariable Calculus					
CO-4		03	03	02		11
	First order ordinary differential					
	equations					
CO-5		03	02	02		08
	Integral Calculus.					
Total		13	22	15		50

Legend:	R: Remember.	U: Understand,	A: Apply
		er enaciotania,	

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6 .Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S. N o.	Title	Author	Publisher	Edition & Year
1	Engineering Mathematics-I,	D.K, Jain	Shree Ram Prakashan.	7th Edition 2015- 16
2	Higher Engineering Mathematics	B.S. Grewal	Khanna Publishers Shree Sai Prakashan	36th Edition, 2010
3	Engineering Mathematics-I	D.C.Agrawal		10th Edition 2018
4	Higher Engineering Mathematics	B.V. Ramana	Tata McGraw Hill	11th Reprint, 2010.

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs. Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.

8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

Programme Title: B. Tech. Mechanical Engineering Course Code: BSC102

CourseTitle: Mathematics-1

		ProgramOutcomes P					ProgramS	pecificOutc	ome							
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PS04
CourseOutcomes	Engineering knowledge	Problem Solving	Design Skills	Laborato ry Skills		Commun ication Skills	Profossi		Societa	Project Manage ment	Adaptab ility	Professio nal Develop ment	Mechanical System Design and Analysis	Manufacturin g Processes and Automation	Computat ional Modeling and Simulatio n	Product Innovat ion and Develop ment
CO1: Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions	3	1	2	2	2	2	3	1	2	2	1	2	2	2	2	1
CO 2: Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.	2	2	3	2	1	2	2	1	1	1	2	3	2	2	2	1
CO 3: Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable	2	2	1	1	2	2	2	1	1	2	1	2	2	1	1	3

functions.																
CO 4: Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena.	3	2	2	2	3	1	3	1	2	1	2	2	3	3	3	2
CO 5: Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.	2	2	2	2	1	1	3	1	1	1	2	2	3	3	1	2

Legend:1-Low,2-Medium,3-High

CourseCurriculumMap:

POs&PSOsNo.	COsNo.&Titles	SOsNo.	Laboratory Instruction (LI)	ClassroomInstruction(CI)	Self- Learning(SL)
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO1: Define and understand the concept of limits, Evaluate limits algebraically and graphically, Apply the basic rules of differentiation, including the power rule, product rule, quotient rule, and chain rule. Use linear approximation and differentials to estimate values of functions			Unit-1.Single-variable Calculus 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10, 1.11,1.12	1,2,3

PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4	CO 2: Define and understand the basic concepts of matrices, Differentiate between different types of matrices Perform basic matrix operations, Use matrices to represent and solve systems of linear equations. Explore more advanced topics, such as linear transformations, matrix norms, and applications in optimization and computer graphics.	SO2.1, SO2.2 SO2.3, SO2.4 SO2.5	Unit-2Matrices 2.1,2.2,2.3,2.4,2.5.2.6,2.7,2.8,2.9,2.10,2.11, 2.12	1,2,3
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO 3: Define and compute partial derivatives of functions of several variables, Define and compute the gradient vector of a scalar function, Apply the chain rule to compute derivatives of composite functions involving multiple variables, Identify critical points of multivariable functions.	SO3.1,SO3.2 SO3.3,SO3.4 SO3.5	Unit-3:Multivariable Calculus 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11, 3.12	1,2,3
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO 4: Understand the definition of a first-order ordinary differential equation, Solve separable differential equations using the separation of variables technique, Sketch direction fields to visualize the behavior of solutions, Apply first-order ODEs to model and analyze various phenomena.	SO4.1, SO4.2 SO4.3, SO4.4 SO4.5	Unit-4: First order ordinary differential equations 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9 ,4.10,4.11, 4.12	1,2,3
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO 5: Understand and state the Fundamental Theorem of Calculus, both parts and apply the Fundamental Theorem to evaluate definite integrals. Apply integration techniques, including substitution, integration by parts, and partial fractions.	SO5.1, SO5.2 SO5.3, SO5.4 SO5.5	Unit5:Integral Calculus. 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.95.10,5.11, 5.12	1,2,3

Semester-I

Course Title: Course Code:	Physics-01 BSC 101
Prerequisite:	Students should review the fundamentals of Electrostatics Magneto statics. Wave optics, and
_	Modern physics
Rationale:	The program aims to develop advanced problem-solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced physics expertise.

Course Outcomes (CO):

CO1- - BSC 101.1

Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems and to relate to applications to electron optic device and CRO.

CO2- - BSC 101.2

Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.

CO3- - BSC 101.3

Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem.

CO4- - BSC 101.4

Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure

CO5- - BSC 101.5

Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering.

AKS University Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum & Syllabus of B.Tech program

Scheme of Studies:

Board of Study	Course Code	Course Title	Scheme of st	Scheme of studies (Hours/Week)							
			Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)			
Basic Science Course (BSC)	BSC 101	Physics-1	4	2	1	1	8	5			

Legend:

- **CI:** Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others)
- **LI:** Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
- SW: Sessional Work (includes assignment, seminar, mini project etc.)
- SL: Self Learning,

C: Credits

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

	cory									
Board of	Couse	Course Title		Scheme	of Assessme	ent (Mark	s)			
Study	Code		Progre	essive Asse	essment (PR	(A)			End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)
			Class/ Home Assignmen t 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attenda nce (AT)	Total Marks (CA+CT +SA +CAT+A T)		
BSC	BSC 101	Physics -I	15	20	5	5	5	50	50	100

Practical

Board of	Couse	Course Title	Scheme	e of Assessment (Mark	ks)				
Study	Code		Progressive Ass	Progressive Assessment (PRA) End Semester Assessme nt (ESA)					
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)			
BSC		Physics –I LAB	35	10	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1- - BSC 101.1

Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems .

			Approxin	nate Hours	_
			Item	AppX Hrs	
			Cl	12	
			LI	6	
			SW	1	
			SL	2	
			Total	21	
Session Outcomes	Laboratory	Class room Instruct	tion	Self Learning	g
(SOs)	Instruction	(CI)		(SL)	_
	(LI)				
		Unit-1.0			
SO1.1	1. Measuring the	1.1 Electric charge el	lectric field	SL.1	
Understand the concept of	magnetic field for a	intensities		Define Electr	ric charge
Electric charge electric field	straight conductor	1.2 electrostatic pote	ntial,	electric field	intensities
intensities.	and on circular	Calculation of electri	ic field and		
	conductor loops	electrostatic potentia	l for a	SL.2	
SO1.2		charge distribution		Define Quant	ization &
Understand the electrostatic	2. Measuring the	1.3 Introduction to.		conservation	of charge
potential, Calculation of electric	magnetic field for a	Quantization & cons	ervation of		
field and electrostatic potential	straight conductor	charge			
for a charge distribution	and on circular	1.4 Coulomb's law, v	vector form		
	conductor loops at	of Coulomb's law			
SO1.3	small currents	1.5 superposition prin			
Understand the Dielectrics,		charge densities, elec			
Dielectric substance in an	3. Measuring the	1.6 Dielectrics, Diele			
electric field	magnetic field for a	substance in an electr	ric field,		

	straight conductor	1.7 V-I phase dependence for	
So1.4	and on Straight	ideal & real dielectrics	
Understand Biot Savart law &	Wire	1.8 Biot Savart law & its	
its application	-	application	
		1.9 current carrying conductor	
So1.5		moving charge in a magnetic	
Understand the magnetic		field	
materials.		1.10 comparison of electric	
		field and magnetic field	
		1.11 magnetic induction and	
		intensity, magnetization	
		1.12 classification of magnetic	
		materials.	

a. Assignments:

- i. Analyze and sketch the graph of a V-I phase dependence for ideal & real dielectrics
- ii. Calculation of electric field and electrostatic potential for a charge distribution
- iii. Apply Biot Savart law in different problems.

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

C. Other Activities (Specify):

Quiz, Class Test.

CO2- - BSC 101.2

Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.

Approximate Hours							
Item	AppX Hrs						
Cl	12						
LI	6						
SW	1						
SL	2						
Total	21						

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO2.1		Unit-2.0	
Define and understand	1. To determine the	2.1 coherent sources, principle	SL.1
the basic concepts of	Refractive Index of Prism	of superposition	Define coherent sources,
coherent sources, etc	by using spectrometer	2.2 Interference:-, definition	principle of superposition.
		and types of interference	
SO2.2	2To determine the	2.3 Interference from parallel	SL.2
Define and understand	wavelength of sodium	thin films	Define Fresnel diffraction,
the basic concepts of	light by using Newton's	2.4 wedge shaped films	Fraunhofer diffraction
Interference of light.	Ring apparatus	2.5 Newton's rings	from a single slit
		2.6 Michelson's Interferometer,	diffraction.
SO2.3	3. to determine the	experiments and their	
Understand the	wavelength of prominent	applications	
Michelson's	lines of mercury by plane	2.7 Michelson's Interferometer,	
Interferometer,	transmission diffraction	experiments and their	

experiments and their	grating	applications	
applications		2.8 Diffraction:- Fresnel	
		diffraction	
SO2.4		2.9 Fraunhofer diffraction from	
Define and understand		a single slit diffraction	
the basic concepts of		2.10 double slit diffraction	
diffraction of light.	-	2.11 N-Slit Diffraction grating	
		2.12 dispersive power of	
SO2.5		grating and, resolving power of	
Understand dispersive		grating.	
power of grating			
and, resolving power of			
grating.			

a. Assignments:

- i. Write the application of Interference of light in daily life.
- Write the application of diffraction of light in daily life. ii.
- iii. Write a short note on Newton's rings with example.iv. Describe the method of calculation of Michelson's Interferometer with example

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO3- - BSC 101.3

Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem

Approximate Hours		
Item	AppX Hrs	
Cl	12	
LI	6	
SW	1	
SL	2	
Total	21	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)	
		Unit-3.0	SL.1	
SO3.1	1. To determine	3.1 Introduction to Quantum	Define Wave particle	
Define Quantum mechanics.	Planck's Constant	mechanics	duality.	
	and work function	3.2 Wave particle duality		
SO3.2	using photo	3.3 de-Broglie's concept of	SL.2	
Understand the Wave particle	electric effect.	matter waves	Define operators in	
duality	2. Davisson–	3.4 Free-particle wave function	quantum mechanics.	
	Germer	and wave-packets		
SO3.3	experiment - this	3.5 Phase & Group velocities		
Explain operators in quantum	showed the	and their relationship		
mechanics.	existence of	3.6 Compton Effect		
	electron matter	3.7 Uncertainty principle with		
SO3.4	waves and that	elementary proof and		
Understand Uncertainty	they would be	applications		

principle with elementary	diffracted by a	3.8 Uncertainty principle with	
proof and applications	crystal	elementary proof and	
	3. Compton	applications	
SO3.5	effect - evidence	3.9 operators	
To Understand Time-	for particle nature	3.10 Time-dependent and time	
dependent and time	of light	independent Schrodinger	
independent Schrodinger		equation for wave function.	
equation for wave function.		3.11 Time-dependent	
		Schrodinger equation for wave	
	-	function.	
		3.12 time independent	
		Schrodinger equation for wave	
		function	

a. Assignments:

- i. Write the Application of Uncertainty principle with elementary proof in real life.
- ii. Explain the difference between Time-dependent and time independent Schrodinger equation for wave function.
- iii. Write the properties of wave-packets.
- iv. Define Phase & Group velocities .

b. Mini Project:

Oral presentation,

C. Other Activities (Specify):

Quiz, Class Test.

CO4- - BSC 101.4

Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure

Approximate Hours		
Item	AppX Hrs	
Cl	12	
LI	6	
SW	1	
SL	2	
Total	21	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1		Unit-4.0	SL.1
Understand the Free	1.To draw the	4.1 Free electron theory of	Define Free electron
electron theory of	characteristics curve of	metals	theory of metals
metals	p-n junction.	4.2 Fermi level of Intrinsic and	
		extrinsic	SL.2
SO4.2	2.To draw the	4.3 Kronig-Penney model (no	Define semiconductors
Understand the Fermi	characteristics curve of	derivation) and origin of energy	and it's classification.
level of Intrinsic and	zener diode	bands.	
extrinsic		4.4 classification of conductors,	
	3.Study the temperature	semiconductors and insulators	

SO4.3	dependence of resistivity	on the basis of energy band	
Understand the Kronig-	of a semiconductor (Four	theory	
Penney model and	probe method) and to	4.5 classification of conductors,	
origin of energy bands.	determine band gap of	semiconductors and insulators	
	experimental material	on the basis of energy band	
SO4.4	(Ge).	theory	
Understand the intrinsic		4.6 semiconductors and it's	
& extrinsic	-	classification	
semiconductor		4.7 semiconductors and it's	
		classification	
SO4.5		4.8 intrinsic & extrinsic	
Understand the tunnel		semiconductor	
diode, and it's		4.9 P-N junction	
applications		4.10 Zener diode	
		4.11 tunnel diode, and it's	
		applications	
		4.12 Hall effect	

a. Assignments:

- 1. Explain Kronig-Penney model and origin of energy bands.
- **2.** Explain Free electron theory of metals.
- **3.** Explain Hall effect with example.

b. Mini Project:

Oral presentation,

C. Other Activities (Specify):

Quiz, Class Test.

CO5- - BSC 101.5

Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering.

Approximate Hours		
Item	AppX Hrs	
Cl	12	
LI	6	
SW	1	
SL	2	
Total	21	

Session Outcomes Laboratory Instruction Class		Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO5.1		Unit-5.0	SL.1
Understand and state	1.To study the intensity	5.1 Absorption	Define Absorption,
the Fundamental	distribution due to	5.2 Stimulated and	Stimulated and
properties of laser	diffraction from single slit	Spontaneous emission	Spontaneous emission,
beam	and to determine the slit	5.3 coherence, pumping,	coherence, pumping,
	width.	population Inversion	population Inversion.
SO5.2		5.4 Principle & properties of	
Understand and state	2.Study the characteristics	laser beam	SL.2
the Einstein's theory of	of led and laser sources.	5.5 Einstein's theory of matter	Define Principle &

matter radiation		radiation interaction and A and	properties of laser beam.
interaction and A and	3.Energy gap of a	B coefficients	properties of fuser beam.
B coefficients			
B coefficients	material of p-n junction	5.6 different types of lasers: gas	
		laser (He-Ne),	
SO5.3		5.7 different types of lasers: gas	
Understand the		laser (He-Ne),	
different types of		5.8 Solid-State laser (Ruby &	
lasers		Nd-YAG)	
		5.9 solid-state laser (Ruby &	
SO5.4		Nd-YAG)	
Understand Solid-State		5.10 applications of lasers in	
laser (Ruby & Nd-		science, engineering and	
YAG)		medicine.	
,		5.11 applications of lasers in	
SO5.5		science	
Understand		5.12 applications of lasers in	
applications of lasers		engineering and medicine.	
		engineering and medicine.	
in science, engineering			
and medicine.			

a. Assignments:

- Write the Principle & properties of laser beam. i.
- ii. Write the applications of lasers in science, engineering and medicine.

b. Mini Project:

Power Point Presentation.

C. Other Activities (Specify): Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
CO1 BSC 101.1 Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems and to relate to applications to electron optic device and CRO.	12	6	1	2	21
CO2 BSC 101.2 Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.	12	6	1	2	21
CO3 BSC 101.3 Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem.	12	6	1	2	21
CO4BSC 101.4 Recall the basic concepts of crystal structure and apply them in solving	12	6	1	2	21

numerical problems based on them in relating to applications for determination of crystal structure					
CO5- BSC 101.5 Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering	12	6	1	2	21
Total Hours	60	30	5	10	105

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution			Total
		R	U	Α	Marks
CO-1	Electrostatics & Magnetostatics	02	04	05	11
CO-2	Wave optics	03	07	04	14
CO-3	Quantum mechanics	02	06	02	10
CO-4	Introduction to solids & semiconductors	03	03	02	08
CO-5	Lasers	03	02	02	07
Total		13	22	15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Physics-1 will be held with written examination of 50 marks **Note**. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6 .Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S. N	Title	Author	Publisher	Edition & Year
0.				
1	AICTE's Prescribed	Bhattacharya & Nag,	Khanna Book Publishing	2 nd Edition 2021
	Textbook: Physics	Engineering Physics	Company.	
	(Introduction to			
	Electromagnetic Theory)			
	with Lab Manual			
2	Introduction to	David Griffiths	Tata McGraw Hill	11th Reprint, 2010.
	Electrodynamics			-

3	Physics	Halliday and Resnick	Tata McGraw Hill	10th Edition 2018
4	Electricity, magnetism and light	W. Saslow	Academic Press	1 st Edition 2002
5	Engineering Physics	Malik, Singh	Tata McGraw Hill	10th Edition 2020

Curriculum Development Team

- 1. Dr. Omkar Prasad Tripathi HOD, Department of Physics.
- 2. Dr. Lovely Singh Gaharwar, Associate Professor, Department of Physics.
- 3. Dr.C.P. Singh , Assistant Professor, Department of Physics.
- 4. Mr. Saket Kumar, Assistant Professor, Department of Physics
- 5. Mr. Manish Agrawal, Assistant Professor, Department of Physics

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Mechanical Engineering Course Code: BSC101 Course Title: Physics-I

· · · · ·		I	T	r		gram			1	T			Program Specific Outcome			
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO3	PSO4
Course Outcomes	Eng inee ring kno wle dge	Pro ble m Sol ving	Des ign Skil ls	Lab orat ory Skil ls	Tea mw ork	Co mm unic atio n Skil ls	Ethi cal and Prof essi onal Beh avio r	Life long Lea rnin g	Glo bal and Soci etal Imp act	Proj ect Ma nag eme nt	Ada ptab ility	Prof essi onal Dev elop men t	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation	Product Innovation and Development
CO1: Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems and to relate to applications to electron optic device and CRO.	2	2	3	2	2	1	1	2	2	1	1	2	2	2	2	2
CO2: Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.	3	2	1	3	1	2	1	2	2	2	2	2	2	2	2	2
CO3: Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant	3	3	2	1	1	2	2	2	2	1	2	3	2	2	1	2

phenomenon and to solve related numerical problem.																
CO4: Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure	2	3	3	2	3	2	1	3	2	1	2	2	2	3	1	2
CO5: Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering	2	3	3	1	2	3	2	3	1	2	2	2	3	2	2	2

Legend:1-Low,2-Medium, 3-High

CourseCurriculumMap

POs &PSOsNo.	COsNo.&Titles	SOsNo.	LaboratoryInst ruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8,9 ,10,11,12 PSO 1, 2	CO1: Find how to extend the basic concepts of motion of charged particles in electric magnetic fields to solve numerical problems and to relate to applications to electron optic device and CRO.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	1,2,3	Unit-1: Electrostatics & Magneto statics 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,1.7,1.8,1.9,1.10,1.11,1.12	1, 2
PO:1,2,3,4,5,6,7,8,9 ,10,11,12 PSO 1, 2	CO2: Apply concepts in interference and diffraction to solve relevant numerical problems and to relate to relevant engineering applications.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5	1,2,3	Unit-2 : Wave optics 2.1,2.2,2.3,2.4,2.5,2.6, 2.7, 2.8, 2.9,2.10,2.11, 2.12	1, 2

PO:1,2,3,4,5,6,7,8,9 ,10,11,12 PSO 1, 2	CO3: Learn the basic concepts of dual nature of matter and wave packet and apply them to analyze various relevant phenomenon and to solve related numerical problem.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	123	Unit-3 :Quantum mechanics 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11,3.12	1, 2
PO:1,2,3,4,5,6,7,8,9 ,10,11,12 PSO 1, 2	CO4: Recall the basic concepts of crystal structure and apply them in solving numerical problems based on them in relating to applications for determination of crystal structure	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	1, 2, 3	Unit-4: Introduction to solids & semiconductors 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11,4.12	1,2
PO:1,2,3,4,5,6,7,8,9 ,10,11,12 PSO 1, 2	CO5: Relate the basic idea of total internal reflection to the propagation of light in an optical fiber and make use of the fiber concepts to solve numerical problems and relate to applications in engineering	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	1,2,3	Unit 5: Lasers 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9,5.10,5.11,5.12	1, 2

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

Course Code:	HSMC08
Course Title :	Sustainable Development Goals (SDGs)
Pre-requisite:	Student should have basic knowledge of Environment, Natural resources, Climate change and sustainability.
Rationale:	To inculcate the knowledge base on sustainable development with a view to balance our economic, environmental and social needs, allowing prosperity for now and future generations. To train students to undertake major initiatives in the efficient management of natural resources and the prevention of environmental pollution with focus on Sustainable Development. To use environmental management tools that help to improve the quality of environment, to assess local vulnerabilities with respect to climate, natural disasters and to achieve sustainable developmental needs.

Course Outcomes:

VAC101.1: Examine critically the 17 newly minted UN Sustainable Development Goals and understand the historical evolution, key theories, and concepts of sustainable development.

VAC101.2: Identify and apply methods for assessing the achievement of sustainable development and discover the science, technology, economics, and politics underlying the concepts of sustainability.

VAC101.3: Understand the implications of overuse of resources, population growth and economic growth and sustainabilityand explore the challenges the society faces in making transition to renewable resource use.

VAC101.4: Develop skills to understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and apply critical thinking skills to evaluate the quality, credibility and limitations of an argument for solution.

VAC101.5: Describe the steps of the design thinking methodology and how design thinking can accelerate effective SDG implementation.Deepen knowledge and pedagogical tools to incorporate values-based education for sustainable development in educational Programmes and processes.

Board ofStudy					s		heme of Hours/Week)	Total Credits
	CourseCode	CourseTitle	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL	(C)
Program Core VAC		Sustainable Development Goal	2	0	1	1	4	2

Scheme of Studies:

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Legend:	CI: Class room Instruction (Includes different instructional strategies i.e.Lecture (L) and
	Tutorial (T) and others),
	LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
	field or other locations using different instructional strategies)
	SW: Sessional Work (includes assignment, seminar, mini projectetc.),
	SL: Self Learning,
	C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory Scheme of Assessment (Marks) Semester Assessment (ESA) Progressive Assessment (PRA) **Board of Study** Couse Code **Total Marks Course Title** (PRA+ ESA) End (2 best out of 3) 10 marks each (CT) (CA+CT+SA+ CAT+AT) Attendance (AT) Assignment 5 3 marks each **Class Activity Fotal Marks** Seminar one Class/Home Class Test 2 number any one (CAT) Class (SA) (CA)HSMC08 Sustainable VAC 20 5 5 5 50 50 100 15 Development Goal

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

VAC101.1: Examine critically the 17 newly minted UN Sustainable Development Goals and understand the historical evolution, key theories, and concepts of sustainable development.

App	proximate Hours
Item	Appx Hrs.
Cl	06
LI	0
SW	1
SL	1
Total	8

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO1.1Understand about		Unit-1.0 Introduction to	
Sustainable Development		Sustainable Development	Different
			SDG goals
SO1.2 Understand the Need		1.1 Need and Importance of	details and
and Importance of SDGs		Sustainable Development	its
SO1.3 Understand the historical evolution of SDGs		1.2 Historical & Policy perspectives of Sustainable Development	importance
SO1.4 Gain knowledge of SDGs Different goals and their importance		1.3 Sustainable Development: World and India Perspective1.4 Introduction to 17 SDGs	
Importance		1.5 Specific learning objectives for	
SO1.5 Explain the Challenges &		different SDGs	
strategies of attaining SDGs in		1.6 Challenges & strategies of	
countries.		attaining SDGs in developed and	
		developing nations	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Overview of SDGs, Sustainable Consumption and Production, Details of 17 SDGs

b. Other Activities (Specify): Note down the different challenges in our state and district to achieve SDG.

VAC101.2: Identify and apply methods for assessing the achievement of sustainable development and discover the science, technology, economics, and politics underlying the concepts of sustainability and measuring.

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

Approximate	Hours
Item	Appx. Hrs.
Cl	06
LI	0
SW	1
SL	1
Total	8

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO2.1ExplainSustainable Development SO2.2 Understand the NEP-2020 and SDG SO2.3Discuss higher Education role to achieve SDGs SO2.4Explain how education for Sustainable Development SO2.5 Explain the measuring techniques for Sustainability 		 Unit-2.0 Special focus on SDG 4-Quality Education and Lifelong Learning 2.1 Focus of NEP-2020 on SDG 2.2 Education for Sustainable Development (ESD): 2.3 Berlin Declaration 2021 on ESD 2.4 Integration of ESD in curriculum and textbooks 2.5 Tools, Systems, and Innovation for Sustainability 2.6 Measuring Sustainability: How do we measure sustainability 	1 NEP2020 objectives and concept for SDGs

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Education role to achieve SDGs, the role of education in Sustainable Development, Measuring techniques of sustainability, Sustainability Indicators

- **b.** Other Activities (Specify): Seminar and group discussion on ESD and measuring sustainability Millennium Development Goals (MDGs)
- **VAC101.3:** Understand the implications of overuse of resources, population growth and economic growth and sustainability and explore the challenges the society faces in making transition to renewable resource use.

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

Item	Appx. Hrs.
Cl	06
LI	0
SW	1
SL	1
Total	8

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO3.1 Understand current economic issues in the context of the global sustainable development debate. SO3.2Outline of health, hygiene and water sanitation issues. SO3.3 Discuss the renewable energy resources and its importance in present scenario SO3.4 Explain the importance of sustainable production and consumption SO3.5 Explain the problems and solution in rural and urban areas. 		 Unit-3.0 Understanding the SDGs 3.1 Circular economy (basic model of reuse, recycle, and reduce) 3.2 Rural & urban Problems & Challenges 3.3 Sustainable production and consumption 3.4 Renewable energy 3.5 Health & Hygiene,water , sanitation& water management 3.6 Waste Management 	1. Water treatment and manageme nt practices.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Ecofriendly energy resources importance, types of waste and its management, Urban Problems & Challenges

b. Other Activities (Specify):

Visit of waste water treatment plant, Visit of water treatment process.

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

VAC101.4: Develop skills to understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and apply critical thinking skills to evaluate the quality, credibility and limitations of an argument for solution.

Approximate	Hours
Item	Appx. Hrs.
Cl	06
LI	0
SW	1
SL	1
Total	8

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO4.1 Understand environmental sustainability is crucial in reducing the impacts of climate change SO4.2Discuss causes of emission of GHGs and its consequences SO4.3Explain how climate change and sustainable development both play a role in shaping the human and environmental factors of the world. SO4.4 Explain the importance of sustainable production and consumption SO4.5 Climate change is disrupting national economies and affecting lives and livelihoods, especially for the most vulnerable and its mitigation.		 Unit-4.0 Climate Change, Energy and Sustainable Development 4.1 The greenhouse effect: Causes and Consequences 4.2 Climate Change: A Threat to Sustainable Development 4.3 Adaptation to Current and Future Climate Regimes 4.4 The consequences: crop failure 4.5 Solutions technology and lifestyle changes 4.6 Mitigating Climate Change 	1Agreement on Climate Change, Trade, and Sustainability Carbon Credit, carbon trading

SW-1 Suggested Sessional Work (SW):

a. Assignments:

.

Urban Sustainability and Climate Change, Sustainable Development Policies, Agreement on Climate

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

Change, Trade and Sustainability, Resilient cities - What makes a city sustainable, green, and resilient

b. Other Activities (Specify):

.

VAC101.5: Describe the steps of the design thinking methodology and how design thinking can accelerate effective SDG implementation. Deepen knowledge and pedagogical tools to incorporate values-based education for sustainable development in educational programme and processes.

Approximate	Hours
Item	Appx. Hrs.
Cl	06
LI	0
SW	1
SL	1
Total	8

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO4.1 Understand the relevance		Unit-5.0 Sustainable Business	
and the concept of sustainability and		Practices:	
the global initiatives in this		5.1 Corporate Social	Local to the
direction		Responsibility	Global: Can
SO4.2Understandrole of		5.2 Sustainable products and	Sustainable
Corporations and Ecological		services	Development
Sustainability.		5.3 Business and Environment	Work
SO4.3Explain role of CSR in		5.4 Corporations and	
Sustainability.		Ecological Sustainability	
SO4.4Understand the SD challenge		5.5 Life Cycle Assessment:	
for companies, their responsibility		LCA Overview and	
and their potentials for action		Application	
SO4.5 Discuss the role of world		5.6 World peace and justice:	
government for world justice and		• United nations goals	
peace		for peace and justice	
		World Government for	
		peace	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Consumption Patterns and Lifestyles, Company Perspectives for Environmental Sustainability, An Introduction to Economic Growth

b. Other Activities (Specify):

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (SI)	Total hour (Cl+SW+Sl)
VAC101.1: Examine critically the 17 newly minted UN Sustainable Development Goals and understand the historical evolution, key theories, and concepts of sustainable development.	6	1	1	8
VAC101.2: Identify and apply methods for assessing the achievement of sustainable development and discover the science, technology, economics, and politics underlying the concepts of sustainability.	6	1	1	8
VAC101.3: Understand the implications of overuse of resources, population growth and economic growth and sustainability and explore the challenges the society faces in making transition to renewable resource use.	6	1	1	8
VAC101.4: Develop skills to understand attitudes on individuals, society and their role regarding causes and solutions in the field of sustainable development and apply critical thinking skills to evaluate the quality, credibility and limitations of an argument for solution.	6	1	1	8
VAC101.5: Describe the steps of the design thinking methodology and how design thinking can accelerate effective SDG implementation. Deepen knowledge and pedagogical tools to incorporate values-based education for sustainable development in educational Programmes and processes.	6	1	1	8
Total Hours	30	5	5	40

Faculty of Engineering and Technology Department of Mechanical | Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

	SuggestedSpecificationTable(ForESA)											
СО	UnitTitles	Ma	Total									
		R	U	Α	Marks							
CO-1	Need and Importance of Sustainable Development	03	01	01	05							
CO-2	Education for Sustainable Development (ESD): Tools, Systems, and Innovation for Sustainability	02	06	02	10							
CO-3	Discuss the sustainable production and consumption	03	07	05	15							
CO-4	How Climate Change may be Threat to Sustainable Development	-	10	05	15							
CO-5	Role of Corporations and Ecological Sustainability	03	02	-	05							
	Total	11	26	13	50							

Legend:R:Remember,U:Understand, A:Apply A: Analyse E:Evaluate C:Create

Theendofsemesterassessmentfor Sustainable Development Goals will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visit to industry, water treatment plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Fac ebook,Twitter,Whatsapp,Mobile,Onlinesources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

SuggestedLearningResources: (a) Books:

	(a) Books:			
S. No.	Title	Author	Publisher	Edition&Year
1	The Economics of Sustainable Development: The Case of India (Natural Resource Management and Policy)"	Surender Kumar and Shunsuke Managi	Springer Switzerland	2009
2	Corporate Social Responsibility in Developing and Emerging Markets	<u>Onyeka Osuji</u>	Cambridge	New Edition June 2022
3	Smart Cities for Sustainable Development	<u>Ram Kumar</u> <u>Mishra, Ch</u> <u>Lakshmi</u> <u>Kumari, Sandeep</u> <u>Chachra, P.S.</u> Janaki Krishna	Springer Switzerland	March 2022
4	Sustainable Development: Linking Economy, Society, Environment	Tracey Strange and Anne Bayley		
5	Management Of Resources For Sustainable Devpt	Sushma Goyal	The Orient Blackswan	2016
6	Energy, Environment and Sustainable Development: Issues and Policies	S. Ramaswamy Sathis G. Kumar	Regal Publications	2009
7	The New Map: Energy, Climate, and the Clash of Nations	Daniel Yergin	Penguin Press	September 2015
8	Contributions of Education for Sustainable Development (ESD) to Quality Education:	Laurie, R., Nonoyama-Tarumi, Y., Mckeown, R., & Hopkins, C.	A Synthesis of Research. Journal of Education for Sustainable Development, 10(2), 226–242.	2016
9	Sustainable Results in Development: Using the SDGs for Shared Results and Impact	OECD	OECD Publishing, Paris	2019
10	Development Discourse and Global History from colonialism to the sustainable development goals	Ziai, Aram	Routledge, London & New York	2016

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

11	Sustainable Development Goals An Indian Perspective,	Hazra, Somnath., Bhukta, Anindya	Springer Switzerland	2020						
12	Environmental Ecology,Biodiversity and Climate Change	Rawat Publication	January 2021							
13	https://www.un.org/sustainabledevelopment/									
14	https://www.aiu.ac.in/documents/AIU_Publications/UN-SDG goals									
15	https://www.unesco.org/en/education-sustainable-development									
16	https://onlinecourses.nptel.ac.in/noc23_hs57/preview									
17	ttps://www.iau-hesd.net/news/5180-berlin-declaration-education-sustainable development- adopted-unesco-esd-conference-17-19									

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.

COs, POs and PSOs Mapping

Program: B. Tech. Computer Science & Engineering [Artificial Intelligence & Data Science] Course Code : VAC-101 Course Title: Sustainable Development Goals (SDGs

	ProgramOutcomes									ProgramSpe	cificOutcome					
CourseOutcomes	Engineering knowledge	Problem analysis PO2	Design/development of PO3 solutions	Conduct studies of PO4 difficult problems	Utilization of modern PO5	Engineers and society PO6	Environment and sustainability PO7	Ethics PO 8	Individual and team work PO9	Communication PO10	Project management and F011	Life-longlearning P012	PSO1 Mechanical System Design and Analysis	PSO2 Manufacturing Processes and Automation	PSO3 Computational Modeling and Simulation	PSO4 Product Innovation and Development
CO1. Need and Importance of Sustainable Development	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO2. Education for Sustainable Development (ESD):Tools, Systems, and Innovation for Sustainability	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO3.Discuss the sustainable production and consumption	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO4. How Climate Change may be Threat to Sustainable Development	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO5.RoleofCorporationsandEcological Sustainability	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map

POs&PSOsNo.	COsNo.&Titles	SOsNo.	LaboratoryInst ruction (LI)	Classroom Instruction(CI)	Self-Learning(SL)
PO1,2,3,4,5,6,7,8 ,9,10,11,12 PSO1,2,3,4,5	CO1. Need and Importance of Sustainable Development	SO1.1 SO1.2 SO1.3 SO1.4		Unit 1: Introduction to Sustainable Development 1.1,1.2,1.3,1.4,1.5,1.6	
PO1,2,3,4,5,6,7,8 ,9,10,11,12 PSO1,2,3,4,5	CO2. Education for Sustainable Development (ESD):Tools, Systems, and Innovation for Sustainability	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2Special focus on SDG 4-Quality Education and Lifelong Learning: 2.1,2.2,2.3,2.4,2.5,2.6	
PO1,2,3,4,5,6,7,8 ,9,10,11,12 PSO1,2,3,4,5	CO3.Discuss the sustainable production and consumption	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3.0 Understanding the SDGs 3.1,3.2,3.3,3.4,3.5,3.6	Asmentionedin pagenumber _to_
PO1,2,3,4,5,6,7,8 ,9,10,11,12 PSO1,2,3,4,5	CO4. How Climate Change may be Threat to Sustainable Development	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4.0 Climate Change, Energy and Sustainable Development 4.1,4.2,4.3,4.4,4.5,4.6	_
PO1,2,3,4,5,6,7,8 ,9,10,11,12 PSO1,2,3,4,5	CO5. Role of Corporations and Ecological Sustainability	SO5.1 SO5.2 SO5.3 SO5.4		Unit-5.0 Sustainable Business Practices 5.1,5.2,5.3,5.4,5.5,5.6	

Faculty of Engineering and Technology **Department of Mechanical l Engineering** Curriculum of B.Tech.(Mechanical Engineering) Program

Course Code:	BSC-103
Course Title:	Engineering Chemistry
Pre-requisite:	Students must have fundamental knowledge of mathematics, nature of molecule, valence shell electron pair repulsion theory, and different concentration terms tounderst and the concept of engineering chemistry.
Rationale:	The students studying engineering chemistry should possessfoundational understanding about basic mathematics, differentconcentration terms and valence shell electron pair repulsion theory tounderstandthebasicprincipleofchromatographyandspectroscopic analysis.

CourseOutcomes:

 $\label{eq:constraint} After the completion of this course, the learner will able to$

 $BSC-103.1 \mbox{ApplyVSEPR} theory to predict the three-dimensional shapes of molecules.$

BSC-103.2: Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug molecule. **BSC103.3**: Explain and apply the concept of Intermolecular forces, Hydrogenbond, and transition metal complexes.

BSC103.4Predict the concept of thermodynamics, free energy & entropy and apply Nernstequation, waterche mistry as well as explain concept of acid-base, metallurgy, Emf celland corrosion.

BSC-103.5: Collectively aim to equip students with a comprehensive understanding of thetheoretical principles, practical methodologies, and diverse applications of various spectroscopictechniques.

SchemeofStudies:

Board				Schemeofstudies(Hours/Week)				
ofStud y	Course Code	CourseTitle	Cl	LI	SW	SL	Total StudyHours (CI+LI+SW+SL)	redits(C)
Program Core(PCC)	BSC103	Engineering Chemistry	3	2	2	1	8	4

Legend:

CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.,Lecture(L)andTut orial(T)andothers), **LI:**LaboratoryInstruction (Includes Practicalperformances inlaboratoryworkshop,field

orother locationsusing differentinstructional strategies)

SW:SessionalWork (includesassignment, seminar, miniprojected.),

SL:Self-Learning,

C:Credits.

Faculty of Engineering and Technology **Department of Mechanical l Engineering** Curriculum of B.Tech.(Mechanical Engineering) Program

Note: SW&SLhastobeplannedandperformedunderthecontinuousguidanceandfeedbackteachers ensureoutcomeofLearning.

SchemeofAssessment:

Theory

				SchemeofAssessment(Marks)						
fStudy	Code	CourseTitle		ProgressiveAssessment(PRA)			(S A)			
Board ofStudy	CouseCode	CourseTitle	Class/HomeA ssignment 5number 3markseach Class Test2 (2 bestoutof 3) 10 marks each(CT) Seminar one(SA) Class Activityany one(CAT) ClassAtt endance endance Total Total Marks(CA+CT+ EndS		EndS Assessment (ESA)	Total Marks(P RA+ESA)				
BS	Bsc103	Engineering Chemistry	15	20	5	5	5	50	50	100

Practical

Board of	Couse	Course Title	Scheme	Scheme of Assessment (Marks)				
Study	Code		S A m				End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)		
BSC	Bsc103	Engineering Chemistry lab	35	10	5	50	50	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and sessionlevels, which students are anticipated to accomplish through various modes of instruction includingClassroomInstruction(CI),LaboratoryInstruction(LI),SessionalWork(SW),andSelfLearning(S L).Asthecourseprogresses,studentsshouldshowcasetheirmasteryofSessionOutcomes(SOs),culminatingi n theoverallachievementof CourseOutcomes(COs)uponthecourse's conclusion.

Faculty of Engineering and Technology Department of Mechanical l Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

ApproximateHours

11	
Item	AppXHrs.
Cl	9
LI	6
SW	2
SL	1
Total	18

Session Outcomes (SOs)	Laboratory Instructio n(LI)	Clas	ss room Instruction (CI)	Self Learning (SL)
SO1.Describethecla ssification of	L11.1.Determinatio nofspecificdensity ofgivenliquid	Unit re&	1: Atomic andMolecularStructu	1. History of development of
differenttypesoforbi torbitalsSO1.2Disc ussthefundamentalc onceptofwavefuncti on an dprobabilitydistribu tion curveSO1.3Explain andapply At omicSpectroscopy:	ofgivenliquid LI.1.2. Determinationofvis cosityofgivenliquid LI.1.3 Paperchroma tography,Thin layer chromatography.	 1.1. 1.2. 1.3. 	licproperties Introductionoforbit, orbitalsandelectronic configuration Schrodingerwaveeq uationanditsderivati on. Hybridizationandtyp es of lization.Intermixing oforbitals VSEPRtheory,bond pairand lonepairrepulsion, 1.5Determinationofg eometryofthemolecu	development of periodictable 2.Electronegativityandits application
bital's SO1.4		1.6.	les Molecularorbitalthe	
A pplyconcept of VSEPRin th e		1.7.	ory, Molecularenergylev eldiagramandbondor derforhomoandheter oatomicmolecules	
determinationofgeo metry of		1.8.	Periodicity ofatomicsizeandioni zationenergy	
various molecules.SO1.5Re statemolecularener		1.9.	Electron gainenthalpyandtype sofelectrongain	
gyleveldiagramofN 2F2andO2molecule s.		enthal	ру	

Faculty of Engineering and Technology **Department of Mechanical l Engineering Curriculum of B.Tech.(Mechanical Engineering) Program**

SW-1SuggestedSessionalWork(SW):

a. Assignments:

Applications of molecular orbital theory for the determination of bond order and magneticbehaviour.

- **b. MiniProject:** Hybridizationanditsapplication.
- c. OtherActivities(Specify): Writeanessayondifferenttypeofchemical bond.

BSC-103.2: Describe the concept of symmetry, chirality and optical activity and synthesize chiral drug molecule.

ApproximateHours				
Item	AppXHrs.			
Cl	9			
LI	6			
SW	2			
SL	1			
Total	18			

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO2.1 understand	LI.2.1.To	UNIT 2:	1. Planeof
theconcept	Synthesizedrug	Stereochemistry,Organic	polarized
ofrepresentations of	moleculesandd	reactions and synthesisof a	light
3 dimensional structure	etermineitsperc	drugmolecule	2. Types
S	entageyield	2.1 Representations of	ofsymmet
	LI.2.2.To	3dimensionalstructure	ry
SO2.2 explain	determine	S	
structuralisomers	the	2.2 Structural isomers	
andstereoisomers	acidvalueorsap	andstereoisomers	
	onificationvalu	2.3 Symmetry and	
SO2.3	e of oil/fat	chirality, optical activity and	
describesymmetry,	LI2.3.To	absoluteconfigurations	
chirality andoptical	determinepartit	2.4 enantiomers, diastereomers	
activity	ioncoefficiento	2.5 Isomerism in transitional	
	faorganicsubst	metalcompounds	
SO2.4 explain	ancebetween	2.6 Introduction to	
andidentify different	two	reactionsinvolvingsubstitution	
typesof reactions	immiscibleliqu	reaction	
withmechanisms	ids.	2.7 Addition,	
		elimination, oxidation, reduct	
SO2.5 apply		ionreaction	
theconcept of		2.8 cyclizationandringopenings	
mechanismstosynthesiz		2.9 Synthesis of a commonly	
e drug		useddrugmolecule	
molecules			

Faculty of Engineering and Technology Department of Mechanical l Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

SW-2SuggestedSessionalWork(SW):

Assignments: Conformational Isomerismand conformational analysis

BSC-103.3:understandtheconceptofIntermolecularforces,Hydrogenbond,Transitionmetalcomplexes by applying thisconcept

ApproximateHours				
Item AppXHrs.				
Cl	9			
LI	6			
SW	2			
SL	1			
Total	18			

		Total	18
Session	Laboratory	Class room	Self-
Outcomes(SOs)	Instruction	Instruction(CI)	Learning(SL)
	(LI)		
SO2.1 Describe	LI3.1.Synthesisainor	Unit-	1. Coordination
Ionic,	ganicmetalcomplex	3:IntermolecularforcesandTran	compoundsI
dipolar,L		sitionmetal complexes	UPACname
ondon	LI3.2.Determinethet	3.1. Ionic, dipolar,	andWernerth
dispersion	woacid	Londondispersionforce	eory
force,vanderWaalsint	andtwob	3.2. VanderWaalsinteractions	2. The
eraction	asics radical	3.3. Hydrogen bond, types	energyleveld
SO2.2exp		ofhydrogen bond.	iagramsfortr
lain	LI.2.3.Determination	3.4. Coordinationcompounds	ansitionmeta
Hydrogen	ofchloridecontentof	3.5. MetalligandbondingbyVBT	1 ions
bondandtypesofhydr	water	3.6. MetalligandbondingbyCFT	and
ogenbondSO2.3Coor		3.7. Theenergyleveldiagramsfortr	their
dinationcompounds		ansition metal ions and	magneticpro
SO2.4describeMetall		theirmagneticproperties.	perties
igandbondingbyVBT		3.8. Theenergyleveldiagramsfortr	_
SO2.5 explain		ansition metal ions and	
Metalligandbondingb		theirmagneticproperties	
yCFT		3.9. Theenergyleveldiagramsfortr	
		ansition metal ions and	
		theirmagneticproperties	

SW-3SuggestedSessionalWork(SW):

2.2Assignments:VBTtheory,CFTtheory,Theenergyleveldiagramsfortransitionmetalionsandtheirmagnet ic properties

 ${\bf MiniProject:} applications of transition metal complexes$

OtherActivities(Specify): BSC-

Faculty of Engineering and Technology **Department of Mechanical l Engineering** Curriculum of B.Tech.(Mechanical Engineering) Program

103.4Predict the concept of thermodynamics, free energy & entropy and apply Nernstequation, waterchemist ry as wellas explain concept of acid-base, metallurgy, Emfcelland corrosion.

ApproximateHours

Activity	Appx.Hrs.
Cl	9
LI	6
SW	2
SL	1
Total	18

Session	Laboratory	Class room	Self-
Outcomes (Instruction	Instruction(C	Learning
SOs)	(LI)	I)	(SL)
SO4.1Restate	LI.4.1.	Unit4:Useoffreeenergyinchemi	1-derivation
conceptof free energy,	Determination	cal	ofNernstequatio
Freeenergy,	of hardness	equilibrium4.1Introductionener	n.
EnthalpyEntropy and	ofwater	gy,EnthalpyEntropy,	
types	LI.4.2.	system	
ofdifferentthermodyna	Determination	andsurroundings	
micsystem	of	4.2Cellnotationofcell,Nernstequa	
SO4.2Discuss	alkalinityof	tionandits application	
thefundamentalconcept	water		
of			
cell	LI.4.3.	4.3 Waterchemistry, Hardnessof	
representationstandard	Chemicalanalys	water, Temporary and	
EMF of cellSO4.3	is of asalt.	permanenthardness	
Explain and apply		4.4 Watersofteningmethods	
different types		4.5 Introduction of	
ofconcepts used		Corrosion, Mechanismof	
insoftening of water		corrosion	
andpurification of		4.6 Factorsaffectingrateofcorr	
waterSO4.4 Understand		osion	
andapply concept		4.7 Variousacid-	
ofcorrosion for		baseconcepts,Arrheniusconcept,	
thedevelopment of		4.8 Lewisacid-	
greencorrosion		baseconcept,Bronsted Lowry	
inhibitorsSO4.5		concept	
Understanddifferent		4.9 Briefideaaboutionicandsolu	
acid-baseconcepts,		bilityequilibria	
ionic			
andsolubilityproduct of			
salts			

Faculty of Engineering and Technology **Department of Mechanical l Engineering Curriculum of B.Tech.(Mechanical Engineering) Program**

SW-4SuggestedSessionalWork(SW):

A.Assignments:

Applicationsofgreencorrosioninhibitors **b.Mini Project:**

Analysisofwaterqualityparameters. c.OtherActivities(Specify):

Writeanessayonacid-baseconcepts, ionicand solubility product of salts.

BSC-103.5: Collectively aim to equip students with a comprehensive understanding of thetheoretical principles, practical methodologies, and diverse applications of various spectroscopictechniques.

ApproximateHours

	Approximateriours
Item	Appx.Hrs.
Cl	9
LI	6
SW	2
SL	1
Total	18

Session Outcomes(SOs)	LaboratoryI	Class room	Self-
	nstruction	Instruction(CI	Learning(
	(LI))	SL)
SO5.1 UnderstandIdentifica tion andclassificationofdifferent typesof EMR and vibrational modes inmolecules.	LI.5.1. Verification ofBeer- Lambertlaw LI5.2. Determination	Unit 5:Spectroscopictechniquesandapplications5.1Introductionofspectroscopy,discovery,propertiesandtypesofelectromagneticradiation.	1. ApplicationsNuclear magneticresonance andmagnetic resonanceimaging

Faculty of Engineering and Technology **Department of Mechanical l Engineering** Curriculum of B.Tech.(Mechanical Engineering) Program

SO5.2 Understand thefundamental principles ofvibrational and rotationalspectroscopy, includingthe interaction of lightwith molecular vibrations,the concept of infrared(IR) SO5.3 Explain and applyAtomic	of absorptionma ximum of agiven organiccompo und. LI.5.3. Determination of cell	 5.2 Classification of differenttypes of vibrational modes inmolecules (stretching, bending,torsional,etc.).IRactivi ty. 5.3 Energies of atomic orbitalsand electronic transition, frankCondonprinciple. 5.4 Introductionof NMR, 	
SO5.4 Understand andapply concept of NMR,Nuclear spin, nuclearresonance. SO5.5 Understandintroduction	ofsolutions.	 5.6 Principle and instrumentationof NMR 5.7. Shieldingand deshieldingofmagneticnuclei. 5.8. surfacecharacterization techniques 	
of X- rayDiffractiondeterminat ioncrystallographicstruct ure ofmaterials. SW-5SuggestedSessionalW		5.9. Diffractionandscattering	

SW-5SuggestedSessionalWork (SW):

A.Assignments:

 $\label{eq:linear} Applications Nuclear magnetic resonance and magnetic resonance imaging$

b.Mini Project:

Fluorescenceandits applicationsinmedicine

c.OtherActivities(Specify):

Write an essay on surface characterization techniques. Diffraction and scattering.

Faculty of Engineering and Technology Department of Mechanical l Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

BriefofHourssuggestedfortheCourseOutcome

CourseOutcomes	Class Lecture (Cl)	Lab Instruction (LI)	Sessional Work(S W)	Self- Learning (SL)	Total hour(Cl+Li+S W+Sl)
BSC- 103.1: ApplyVSEPRtheorytopredictt hethree-dimensional shapesofmolecules.	09	06	02	01	18
BSC-103.2 : Describe the conceptof symmetry, chirality and opticalactivityandsynthesizechira ldrugmolecule	09	06	02	01	18
BSC-103.3: Explain and apply the concept of Intermolecular forces, Hydrogenbond, and transition metalc omplexes	09	06	02	01	18
BSC- 103.4:Predicttheconceptofthermod ynamics,freeenergy&entropy and apply Nernst equation,waterchemistryaswellasex plain conceptofacid- base,metallurgy,Emfcelland corrosion.	09	06	02	01	18
BSC- 103.5 :Collectivelyaimtoequipstude ntswithacomprehensiveunderstandi ngofthe theoretical principles, practicalmethodologies,anddiverse applications of various spectroscopictechniques.	09	06	02	01	18
TotalHours	45	30	10	05	90

Faculty of Engineering and Technology **Department of Mechanical l Engineering** Curriculum of B.Tech.(Mechanical Engineering) Program

SuggestionforEndSemesterAssessment

SuggestedSpecificationTable(ForESA)

СО	UnitTitles	N	Total		
		R	U	Α	Marks
CO-1	Atomic and Molecular Structure &Periodicproperties	03	01	01	05
CO-2	Stereochemistry, Organic reactions and synthesis of adrugmolecule	02	06	02	10
CO-3	IntermolecularforcesandTransition metalcomplexes	03	07	05	15
CO-4	Use of free energy in chemicalequilibrium	-	10	05	15
CO-5	Spectroscopic techniques andapplications	03	02	-	05
	Total	11	26	13	50

Faculty of Engineering and Technology Department of Mechanical l Engineering Curriculum of B.Tech.(Mechanical Engineering) Program

The end of semester assessment for Organic Chemistry I will be held with writtenexamination of 50marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for ends emester as sessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. VisittoNCL,CSIRlaboratories
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,B log,Facebook,Twitter,WhatsApp,Mobile,Online sources)
- 9. Brainstorming

SuggestedLearningResources:

(a) Books:

S. No.	Title	Author	Publisher	Edition &Year
1	A textbook of engineeringchemistry	ShyamalaSundara	S. Chand	Edition2008
2	ATextbook ofEngineering Chemistry	Shashi Chawla	Dhanpat RaiPrakasha n	Edition2020
3	ATextbook ofEngineering Chemistry	PC Jain andMonikaJ ain	Dhanpat RaiPrakasha n	Edition2018

SuggestedWebSources:

- 1. https://nptel.ac.in/course.html
- 2. https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=5
- 3. https://swayam.gov.in/explorer?category=Chemistry

ModeofDelivery:Lecture,demonstration,E-

tutoring, discussion, assignments, quizzes, casestudy, powerpoint;

LMS/ICTTools:DigitalClassrooms,DLMS,ZOOM,G-Suite,MSPower-

Point,OnlineResources.

Program: B.Tech. Mechanical Engineering

Course Title: Engineering Chemistry

Course Code:BSC103

		ProgramOutcomes									ProgramSp	ecificOutcome	2			
	PO 1	PO 2	P03	PO 1	PO 2	P06	PO 1	PO 2	909	PO 1	PO 2	P012	PSO1	PSO2	PSO3	PSO 4
CourseOutcomes	Engineeringknowledge	Problemanalysis	Design/developmentofsol utions	Conductstudiesofdifficultpro blems	Utilizationofmoderntool s	Engineersandsociety	Environmentandsus tainability	Ethics	Individualandteam work	Communication	Projectmanagementandfina nce	Life-longlearning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation	Product Innovation and Developme nt
CO1: Apply VSEPR theory to predict the three-dimensional shapes of molecules.	3	1	2	2	3	2	3	2	2	1	3	2	2	3	1	2
CO2Describetheconceptofsymmetry,c hiralityandopticalactivityandsynthesiz echiraldrugmolecule.	2	1	2	2	1	2	3	2	1	1	2	2	2	3	1	2
CO3 Explain and apply the concept of Intermolecular forces, Hydrogenbond, and transition metal complexes.	2	2	1	1	1	2	2	2	1	2	1	2	1	3	1	2
CO4:Predicttheconceptofthermodyna mics,freeenergy&entropyandapplyNer nstequation,waterchemistryaswellasex plainconceptofacid- base,metallurgy,Emf cellandcorrosion.	2	2	2	2	3	2	3	2	2	1	2	3	3	3	2	2
CO5Collectively aimtoequipstudentsw ithacomprehensiveunderstandingofthet heoreticalprinciples,practicalmethodol ogies,anddiverseapplicationsofvarious spectroscopictechniques	2	-	-	1	1	3	3	3	1	1	2	2	3	3	2	2

Legend:1-Low,2-Medium,3-High

POs &PS OsNo	Cos.No.&Titles	SOsNo.	Laborato ryinstruc tion (L I)	ClassroomInstru ction(CI)	Self-Learning(SL)
PO1, 2,3,4, 5,6, 7,8,9, 10,11 ,12 PSO 1,2,3 ,4	CO1: Apply VSEPR theory to predict the three-dimensional shapes of molecules.	SO1.1SO 1.2SO1.3, SO1.4 SO1.5	LI.1.1, LI.1 .2,L I.1. 3	Unit-1.0 Atomic and MolecularStruc ture & Periodic properties1.1,1. 2,1.3,1.4,1.5,1.6, 1.7,1.8,1.9	History of development ofperiodictable 2-Elecronegativity and itsapplica tion
PO1, 2,3,4 ,5,6 7,8,9, 10,11 ,12 PSO 1,2,3 ,4	CO2: Describe the concept ofsymmetry, chirality and optical activityandsynthesiz echiral drugmolecule.	SO2.1SO 2.2SO2.3 SO2.4SO 2.5	LI.2.1, LI.2 .2,L I.2. 3	Unit-2 Stereochemistry , Organicreaction s and synthesis of a drugmolecule 2.1,2.2,2.3,2.4,2. 5,2.6, 2.7,2.8,2.9	Resonance Rama nSpectroscopy,coherentanti- stokesRamanSpectroscopy(CA RS).
PO1, 2,3,4 ,5,6 7,8,9, 10,11 ,12 PSO	CO3 Explain and apply the concept ofIntermolecular forces, Hydrogen bond,andtransitionm etal complexes.	SO3.1SO 3.2SO3.3 SO3.4SO 3.5	LI.3 .1,L I.3. 2 LI.3.3	Unit- 3Intermolecular forcesandTrans ition metal complexes 3.1,3. 2,3.3,3.4,3.5,3.6, 3.7,3.8,3.9	NatureofM- Lbond,coordinationnumber,stru ctureanddetectionofoxidationsta te.

CourseCurriculumMap:

1,2,3 , 4	CO 4 Predict the	\$04.150		Unit-4:	Quadrupolenuclei,quadrupolem
PO1, 2,3,4 ,5,6 7,8,9, 10,11 ,12 PSO 1,2,3 ,4	concept ofthermodynamics, free energy & entropyand apply Nernst equation, waterchemistry as well as explain concept ofacid- base,metallurgy, Emfcelland corrosion	SO4.1SO 4.2SO4.3 SO4.4 SO4.5	LI.4.1, LI.4 .2,L I.4. 3	Unit-4: Useoffreeenergyin chemicalequilibrium 4.1,4.2,4.3,4.4,4.5,4.6,4.7, 4.8,4.9	oments, electric field gradient,couplingconstantsplitti ng.Applications
PO1, 2,3,4 ,5,6 7,8,9, 10,11 ,12 PSO 1,2,3 ,4	CO5 Collectivelyaimt oequipstudentswith a comprehensive understanding of the theoretical principles, practicalmethodologi es, and diverse applicationsof various spectroscopictechniq ues.	SO5.1SO 5.2SO5.3 SO5.4SO 5.5	LI.1.1, LI.1 .2,L I.1. 3	Unit5:Spectroscopictech niques andapplications 5.1,5.2,5.3,5.4,5.5,5.6,5.7	Lowenergyelectrondiffractionan dstructure of surfaces.

Semester-II

CourseCode:	HSMC01
CourseTitle:	Communication Skills
Pre-requisite:	Students must have basic knowledge of English language.
Rationale:	In order to compete in this fast growing world, LSWR skills of the students should be well developed and enhanced. Besides, they must have effective communication skills as it plays a vital role in shapingindividual'spersonalityandcareer.Italsobooststhe confidenceandpreparesthemtofacetheaudience fearlessly.

CourseOutcomes:

Aftercompletionofthecourse:

- 1) Studentswillbeabletospeakconfidentlyinpublicasallthetopicschosenemphasisonimproving speaking skills and developing self confidence amongst them.
- StudentswillbeabletointeractproperlywithimprovedLeadershipSkills,ProblemSolvingSkills, SocialskillsandCommunicationSkills.Studentswillalsobeable tounderstandthe Importance of Team Work.
- $\label{eq:studentswillbe} 3) Students will be able to communicate effectively in Hindiand English languages without hindrances.$
- 4) Studentswillbeabletoconveytheirmessagesaccuratelybyunderstandingthesignificanceof grammar as it plays a vital role in improving speaking and writing skills.
- 5) TheUnderstandingofIndianCultureandEnglishLanguagewillbedevelopedthroughthestudyof Dramas and Poems written by Indian Writers.

Schemeof Studies:

Boardof						Schemeofstudies(Hours/Week)			
Study	Course Code	CourseTitle	Cl	LI	SW	SL	Total Study Hours(CI+LI+SW +SL)	Credits(C)	
Program Core (PCC)		Communication Skills	3	0	1	1	5	3	

(T) andothers),

LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop,fieldorotherlocations using different instructional strategies)

SW:SessionalWork(includesassignment, seminar, miniprojectetc.),

SL:SelfLearning,

C: Credits.

Note: SW &SL hasto be planned and performed under the continuous guidance and feedback ofteacher to ensure outcome of Learning.

SchemeofAssessment:

Theory

Boardof Study	Couse Code	CourseTitle	SchemeofAssessment(Marks)							
			ProgressiveAssessment(PRA)					EndSemest erAssessme nt	Total Marks	
			Class/Home Assignment 5number 3	ClassTest 2 (2bestout Of3)	Seminaron e (Present ation)	ClassAc tivityan yone	ClassAttend ance	TotalMarks	(ESA)	
			markseach(CA)	10markse ach(CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)		(PRA+ ESA)
PCC		Commu nicatio nSkills	15	20	5	5	5	50	50	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As thecourseprogresses, students should show case their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO101.1: Students will be able to speak confidently in public as all the topics chosen emphasis on improving speaking skills and developing self confidence amongst them.

ApproximateHours

	• •
ltem	AppXHrs
Cl	9
LI	0
SW	1
SL	1
Total	11

SessionOutcomes (SOs)	Labor atory Instru ction (Ll)	ClassroomInstruction (Cl)	Self Learning (SL)
 SO1.1Studentswillbeableto introduce themselves SO1.2Understandtheconceptof Oral Presentation SO1.3Studentswillbeabletodress and present effectively SO1.4Understandtheimportanceof Body Language SO1.5 Students will be able to influence mass through skit and dramas. 		Unit 1.Self-grooming, Basic Etiquettes and Presentation Skill 1.1Self-introduction Practice Sessions OralPresentation Characteristicsofpresentation. Presentation topics (The importanceofEducation,The importanceofEnglishinToday's WorldandNecessityofuniforms in a college) Professionaldressingand grooming etiquettes.	 Preparea presentation onthegiven topics. Prepare a playonthe given topics.

BodyLanguagetipsand	
techniques.	
Role play sessions on	
followingtopics:Classroom	
interaction, Hospital Scene and	
Scene at Railway station	
PerformancebyStudents	

CO101.2: Students willbe ableto interact properlywith improved Leadership Skills, ProblemSolving Skills, SocialskillsandCommunicationSkills.StudentswillalsobeabletounderstandtheImportance of Team Work.

ApproximateHours

Item	AppXHrs
Cl	9
LI	0
SW	1
SL	1
Total	11

SessionOutcomes	Laboratory	ClassroomInstruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
		UNIT2–Confidencebuilding	
		skills, Interview Skills and	
		Resume Writing	
		2.1-GroupDiscussion	
SO2.1Understandthetechniquesof		Do'sandDontsofGD	
Group Discussion			
		Group Discussion sessionson	
		impact ofCovid 19 on mental	
		health, impact of social media on	
SO2.2Understandtheconceptof		lives, pros and cons oftechnology	
Debate		DifferencebetweenGDand	Preparedebateon given
			topics
O2.3 Studentswillbeabletodesign a		Debate	
professional resume and crack		Do'sandDon'tsofDebate	
interview			
		Debate topics on Should the	
		Use of Plastic Be Banned?,	PrepareaResume
SO2.4Explaintheconceptofhowto		Should Parents Decide Which	-
ace in an interview.		Career Their Children Will	
		Pursue?,IsArtificialIntelligence	
		Useful or Dangerous?	
		Interviewsandtheir Kinds	
		MockInterviewSession	
		Resume Writing.	

CO101.3:StudentswillbeabletocommunicateeffectivelyinHindiandEnglishlanguageswithout hindrances.

A	pproximateHours
Item	AppXHrs
Cl	10
LI	0
SW	1
SL	1
Total	12

SessionOutcomes	Laboratory	ClassroomInstruction	Self			
(SOs)	Instruction	(CI)	Learning			
	(LI)		(SL)			
		Unit-3 :Public Speaking				
		Skills&Conversational Skills				
SO3.1Studentswillbeableto						
organise and prepare		Speech	1 D			
speeches.		TypesofSpeech	1. Prepare a			
-		Speech /Anchoring on (National	speechon the			
SO3.2 Studentswillbeableto think		Science Day, ValedictorySpeech,Patriotic speech).	following			
and speak instantaneously.		Performanceintheclass.	topics.			
		i enformaticentiticettass.	I			
		Extempore				
SO3.3 Tomakethemunderstand		Extempore Topics on (Dros	2. Prepare on			
the inquiry procedure at		Extempore Topics on (Pros andConsofOnlineteaching,	the			
public places.		Environment Conservation and	following			
public places.		Education of a Girl Child)	conversatio			
SO3.4 To enable them to			nal topics.			
communicateeffectively		PracticeSession				
through phones.		Conversational Topics				
		(Inquiryatbank, Airport, Station				
		and Hospitals).				
		Telephonic Conversation				
		(Describing about Your College				
		Day to Your Parents from Hostel,				
		Talking withCustomerCareExecutiveofAnyE-				
		Commercecompany).				
		connereccompany).				
		3.10 Revision				

CO101.4:Studentswillbeabletoconveytheirmessagesaccuratelybyunderstandingthesignificanceof grammar as it plays a vital role in improving speaking and writing skills.

Aj	oproximateHours
Item	AppXHrs
Cl	9
LI	0
SW	1
SL	1
Total	11

SessionOutcomes (SOs)	Laboratory Instruction (LI)	ClassroomInstruction (Cl)	Self Learning (SL)				
SO4.1 Understandingaboutthe use		Unit-4:FunctionalGrammar and	Prepare the				
of Prepositions.		Vocabulary Building	structure of				
		Prepositions(Place,Time	Tenses and				
SO4.2Studentswillbeableto		and Direction)	Active Passive.				
understand the usage of		MCQbasedQuestionson					
Tenses		Prepositions. Gap filling using	Prepare 250 vocabularies.				
SO4.3Undesrtandtheconceptof		prepositions.					
Active and Passive Voice		Tenses					
		PresentTense					
SO4.4Tounderstandtheusage of		PastTense					
Modals		FutureTense					
		Voice(Activeand Passive)					
		Modals.					

CO101.5:TheUnderstandingofIndianCultureandEnglishLanguagewillbedevelopedthrough the study of Dramas and Poems written by Indian Writers.

ApproximateHours

Item	AppXHrs
Cl	8
LI	0
SW	1
SL	1
Total	10

SessionOutcomes	Laboratory	Class roomInstruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO5.1 Students will be		Unit5-	Prepare the
abletounderstandthe		IndianWritinginEnglish&Hindi	summaryofallthe
value of Indian			topics(The Axe,
Literature (R.K.		The Axe-R.K.Narayan	The Night of the
Narayan)		AbouttheAuthor-R.K.	Scorpion, The
SO5.2 Students will be		Narayan	Portraitof a Lady,
abletounderstandthe		TheNightoftheScorpion-	The Lost Child he
value of Indian		Nissim Ezekiel	Shroud).
Literature (Nissim		Aboutthe Poet-NissimEzekiel	
Ezekiel)		ThePortraitofaLady-	
SO5.3 Students will be		Khushwant Singh	
able to understand the		About the author-Khushwant	
value of Indian		Singh TheLostChild-MulkRaj	
Literature(Khushwant		Anand	
Singh)		TheShroud- Premchand	
SO5.4 Students will be			
abletounderstandthe			
value of Indian			
Literature (Mulk Raj			
Anand)			
SO5.5 Students will be			
abletounderstandthe			
value of Indian			
Literature(Premchand)			

BriefofHourssuggestedfortheCourseOutcome

CourseOutcomes	Class Lecture	Sessional Work	Self Learning	Total hour(Cl+S
	(CI)	(SW)	(SI)	W+SI)
CO101.1:Studentswillbeabletospeakconfidently in public as all the topics chosen emphasis on improvingspeakingskillsanddevelopingself confidenceamongstthem.	9	1	1	11
CO101.2: Studentswillbeabletointeractproperly with improved Leadership Skills, Problem Solving Skills, Social skills and Communication Skills. Students will also be able to understand the Importance of Team Work.	9	1	1	11
CO101.3: Students will be able to communicate effectivelyinHindiandEnglishlanguageswithout hindrances.	10	1	1	12
CO101.4Students will be able to convey their messagesaccuratelybyunderstandingthesignificance of grammar as it plays a vital role in improving speaking and writing skills.	9	1	1	11
CO101.5: The Understanding of Indian Culture and English Language will be developedthroughthestudyofDramasand Poems written by Indian Writers.	8	1	1	10
TotalHours	45	5	5	55

Suggestion forEndSemesterAssessment

Marks Distribution CO **Unit Titles** Total Marks R U Α SelfGrooming, BasicEtiquettesand CO-1 03 01 01 05 Presentation. CO-2 ConfidenceBuildingandInterviewSkills. 02 06 02 10 PublicSpeakingSkillsandConversational CO-3 03 07 05 15 Skills CO-4 FunctionalGrammarandVocabulary 15 _ 10 05 Building CO-5 IndianWritingsinEnglishandHindi 03 02 _ 05 Total 11 26 13 50

SuggestedSpecification Table(ForESA)

Legend: R:Remember, U:Understand, A:Apply

Theendofsemesterassessmentfor Communication Skills willbeheldwithwrittenexaminationof50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for ends emester assessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. GroupDiscussion
- 4. RolePlay
- 5. Presentations
- 6. Extempore
- 7. Speeches
- 8. Brainstorming

SuggestedLearningResources:

(a)]	Books:			
S. No.	Title	Author	Publisher	Edition &Year
1	Communication Skills	Dr.Meenu Pandey	NiraliPraksahan.	
2	APracticalGuideto English Grammar	K.P.Thakur	BhartiBhawan Publishers& Distributors.	
3	LivingEnglish Structure	W. Stannar d Allen	Dorling KindersleyIndia Pvt. Ltd.	FifthEdition,
4	Communication Skills for Engineers	Muralikrishna C., Sunita Mishra	Pearson,New Delhi.	Second edition(2010)
5.	Advanced Language Practice,	MichaelVince	Macmillan Education,Oxford	2003.
6.	English Conversation Practise	GrantTaylor	TataMcGrawHill Education Private Limited.	
7.	Six Weeks to WordsofPower	Wilfred Funk	W.R. Goyal Publishersand Distributors.	

Cos, Pos and PSOs Mapping

Programme Title: B.Tech. Mechanical Engineering

Course Code: HSMC01

Course Title: Communication English

		Program Outcomes												Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO 6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
Course Outcomes	Engineeri ng knowledg e	m	Design Skills	Labora tory Skills		munic ation Skills	। and	Lifelong Learning		Manag	ability	Professi onal Develop ment	Mechanical System Design and Analysis	Manufacturin g Processes and Automation	Computational Modeling and Simulation	Product Innovation and Development	
CO1: Studentswillbeabletospeakconfide ntlyinpublicasallthetopicschosenempha sisonimprovingspeakingskillsanddevelo pingself confidenceamongstthem.	-	-	-	-	3	3	2	2	1	1	-	-	-	-	-	-	
CO2: Students will be able to interact properlywith improved Leadership Skills, Problem SolvingSkills,SocialskillsandCommuni cationSkills.Studentswillalsobeabletoun derstandtheImportanceofTeamWork.	-	1	-	-	3	3	2	2	2	2	-	-	-	1	-	1	
CO 3: Students will be able to communicateeffectivelyinHindiandEn glishlanguageswithouthindrances.	-	-	-	-	2	3	-	2	-	1	-	-	-	-	1	2	
CO4Studentswillbeableto conveytheirmessagesaccuratelybyundersta	-	-	-	-	1	3	1	2	-	-	-	-	-	-	1	2	

ndingthesignificanceof grammar as it plays																
a vital role in																
improvingspeakingandwritingskills.																
CO5: The Understanding of																
IndianCulture and English																
Language will					1	3		2	1							
bedevelopedthroughthestudyofDra	-	-	-	-	1	5	-	2	1	-	-	-	-	1	1	3
masandPoemswrittenbyIndianWrit																
ers.																
Legendel Lew 2 Medium 2 High																

Legend:1–Low,2–Medium,3–High

Course Curriculum Map:

Pos & PSOs No.	Cos No. & Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO1: Studentswillbeabletospeak confidentlyinpublicasallthetopic schosenemphasisonimprovingsp eakingskillsanddevelopingself confidenceamongstthem.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1.0Self-Grooming, Basic Etiquettes andPresentation. 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	1,2
1001,2	CO2: Students will be able to interact properlywith improved Leadership Skills, Problem SolvingSkills,SocialskillsandCo mmunicationSkills.Studentswill alsobeabletounderstandtheImpor tanceofTeamWork.	SO2.1 SO2.2 SO2.3 SO2.4		Unit- 2ConfidenceBuildingandInterview Skills. 2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9	1,2

PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO 3: Students will be able to communicateeffectivelyinHind iandEnglishlanguageswithouthi ndrances.	SO3.1 SO3.2 SO3.3 SO3.4	Unit- 3:PublicSpeakingSkillsandConversational Skills 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10	1,2
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO4: Studentswillbeabletoconveytheirmes sagesaccuratelybyunderstandingthes ignificanceof grammar as it plays a vital role in improvingspeakingandwritingskills.	SO4.1 SO4.2 SO4.3 SO4.4	Unit- 4:FunctionalGrammarandVoc abularyBuilding 4.1,4.2,4.3,4.5,4.6,4.7,4.8,4.9	1,2
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2	CO5: The Understanding of IndianCulture and English Language will bedevelopedthroughthestud yofDramasandPoemswritte nbyIndianWriters.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	Unit5:IndianWritingsinEnglishan dHindi 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8	1

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

Semester-II

Course Code: Course Title: Pre- requisite: Rationale: HSMC07 Indian Knowledge System

e: Fundamentals of Indian Knowledge System

Creating awareness among the youths about the true history and past rich culture of India India has very rich and versatile knowledge system and cultural heritage since antiquity. The Indian Knowledge systems was developed on life science, medical science, literature, drama, art, music, dance, astronomy, mathematics, architecture (Sthapatyaveda), chemistry, aeronautics etc, during ancient period. In this basic course, a special attention is given to the ancient and historical perspective of ideas occurrence in the ancient society, and implication to the concept of material world and religious, social and cultural beliefs. On the closer examination, religion, culture and science have appeared epistemological very rigidly connected in the Indian Knowledge System. This land of Bharat Bhumi has provided invaluable knowledge stuff to the society and the world in all sphere of life.

Course Outcomes:

CO- IKS. 1: To understand the ancient civilization, Indian Knowledge Systems, Concept of Panch Mahabhuta, Origin of name Bharat Varsha, Ancient Rivers, Ancient Universities and ancient agriculture.

CO- IKS.II:Students will have the ability to learnabout ancient books, Religious places, basic concept of Indian dance, music and arts, and fundamental aspects of Sangeeta and Natyashashtra etc.

CO- IKS.III:Student will be able to gain knowledge on Vedic Science, Astronomy, Astrovastu, Vedic Mathematics, Aeronautics, Metallurgy, Nakhatras, Panchang, Concept of Zero, Pi and point etc.

CO- IKS. IV: Understanding onancient Engineering, Science and Technology, Town Planning, Temple architecture, Chemistry and Metallurgy, Metal manufacturing etc.

CO- IKS. V: Student will able to understand about the Life, Nature and Health through basic concept of Ayurveda andYoga, Traditional Medicinal Systems, Ethnomedicine, Nature conservation, World Heritage Sites etc.

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

Scheme of Studies:

Category	Cours	Course		Scheme of studies(Hours/Week)				Total
of Course	e	Title	CI	CI LI SW SL Total Study Hours				Credits
	Code						CI+LI+SW+SL	(C)
VAC	HSM	Indian	2	-	1	1	4	2
	C07	Knowledge						
		System						

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Session Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Proposed examination scheme (Marking) as per the recommendation of University Grant

Commission (UGC) for Under Graduate Coursesin Fundamentals of Indian Knowledge Systems 2022-23 onwards **Theory**

Couse	Course Title		Scheme	of Assessm	ent (Mark	as)			
Code		Progre	Progressive Assessment (PRA)				End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)	
		Class/ Home Assignmen t 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activit y any one (CAT)	Class Attenda nce (AT)	Total Marks (CA+CT +SA +CAT+A T)		
HSM C07	Indian Knowledg e System	15	20	5	5	5	50	50	100

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

IKS. 1.To understand Indian Civilization and Indian Knowledge Systems

	Approximate nours
Item	Approximate Hours
СІ	6
LI	0
SW	2
SL	1
Total	9

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self Learning
	Instruction		(SL)
	(LI)		
SO 1.1. Understand Overview		Unit-1. Indian Civilization	Golden era of
of Indian Knowledge		and Indian Knowledge	ancient India
Systems (IKS)		Systems	
SO1.2. Understand		1.1.Overview of Indian	
Classification of		Knowledge Systems	
Ancient IKS texts		(IKS)	
SO 1.3. Understand		1.2 Classification of Ancient	
Introduction to Panch		IKS texts	
Mahabhutas (Earth,		1.3 Introduction to Panch	
Water, Fire, Sky and		Mahabhutas (Earth,	
Air)		Water, Fire, Sky and Air)	
SO 1.4. Understand Origin of		1.4 Origin of the name	
the name Bharatvarsha:		Bharatvarsha: the Land of	
the Land of Natural		Natural Endowments	
Endowments		1.5 Rivers of ancient India	
SO 1.5. Understand Rivers of		(The Ganga, Yamuna,	

Approximate Hours

Faculty of Engineering and Technology Department of Mechanical | Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

ancient India (The Ganga, Yamuna, Godawari, Saraswati, Narmada, Sindhu and Kaveri) SO 1.6. Understand Ancient Agriculture and ancient Universities: Takshashila and Nalanda, Gurukul system	Godawari, Saraswati, Narmada, Sindhu and Kaveri) 1.6 Agriculture system in ancient India,Ancient Universities: Takshashila and Nalanda, Gurukul system	
---	---	--

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Concepts of Panch Mahabhuta, Classification of ancient texts, origin of ancient rivers
- b. Mini Project:
 - i. Ancient Universities: Takshashila and Nalanda,
- c. Other Activities (Specify):

IKS. 2: Students will have the ability to apply the knowledge gained about Indian Art, Literature and Religious Places

Approximate Hours

	Approximate mours
Item	Approximate Hours
CI	6
LI	0
SW	2
SL	1
Total	9

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO 2.1. Understand the Ancient		Unit-2. Indian Art,	1. Indian Art,
Indian Books: Vedas,		Literature and Religious	Music and
Puranas, Shastras,		Places	Dance
Upanishads, Mahakavyas		2.1. Ancient Indian	
(Ramayana &		Books: Vedas, Puranas,	
Mahabharata), Smrities,		Shastras, Upanishads,	
Samhitas		Mahakavyas (Ramayana &	
SO2.2. Understand the Religious		Mahabharata), Smrities,	
places: Puries, Dhams,		Samhitas	
Jyotiralinga, Shaktipeeths,		2.2. Religious places:	
Kumbha Mela		Puries, Dhams,	
SO 2.3. Understand the		Jyotiralinga, Shaktipeeths,	
Legendary places of		Kumbha Mela	
Madhya Pradesh: Ujjain,		2.3. Legendary places of	
Chitrakoot, Omkareshwar,		Madhya Pradesh: Ujjain,	
Bharhut, Maihar		Chitrakoot, Omkareshwar,	
SO 2.4. Understand the Basic		Bharhut, Maihar	
concept of Indian Art,		2.4. Basic concept of	
Music and Dance, Indian		Indian Art, Music and	
Musical Instruments		Dance, Indian Musical	
SO 2.5. Understand the		Instruments	
Fundamental aspects of		2.5. Fundamental aspects	
Sangeeta and Natya shastra		of Sangeeta and Natya	
SO 2.6. Understand the different		shastra	
schools of music, dance		2.6. Different schools of	
and painting in different		music, dance and painting	
regions of India		in different regions of	
		India	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Visit of Chitrakoot, Maihar and Bharhuta

b. Mini Project:

ii. Kumbhmela, Story of Ramayana and Mahabharata

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

c. Other Activities (Specify):

IKS. 3: Student will be able to understandAncient Science, Astronomy and Vedic Mathematics

	Approximate Hours
Item	Approximate Hours
CI	6
LI	0
SW	2
SL	1
Total	9

Session Outcomes (SOs)	Laboratory	Class room Instruction (CI)	Self Learning
	Instruction		(SL)
SO 2.1 Understand Vadia	(LI)	Unit 2 Anniant Salanga	1 Anniant
SO 3.1. Understand Vedic		Unit-3. Ancient Science,	1. Ancient
Cosmology		Astronomy, Mathematics	Science,
SO 3.2. Understand the		3.1. Vedic Cosmology	Astronomy
Astronomy, Astrovastu,		3.2. Astronomy, Astrovastu,	and Vedic
Vedang Jyotish,		Vedang Jyotish,	Mathematic
Nakshatras, Navagraha,		Nakshatras, Navagraha,	8
Rashis, Vastushastra and		Rashis, Vastushastra and	
their related plants		their related plants	
SO 3.3. Understand the Time		3.3. Time and Calendar,	
and Calendar, Panchang		Panchang	
SO 3.4. Understand the Concept		3.4. Concept of Zero, Point,	
of Zero, Point, Pi -number		Pi -number system,	
system, Pythagoras		Pythagoras	
SO 3.5. Understand the Vedic		3.5. Vedic Mathematics,	
Mathematics, Vimana-		Vimana-Aeronautics,	
Aeronautics, Basic idea of		Basic idea of planetary	
planetary model of		model of Aryabhatta	
Aryabhatta		3.6. Varanamala of Hindi	
SO 3.6. Understand the		language based on	
Varanamala of Hindi		classification of sounds	
language based on		on the basis of their	
classification of sounds on		origin, Basic purpose of	

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

the basis of their origin,	science of Vyakarana.
Basic purpose of science of	
Vyakarana	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

1. Varanamala of Hindi language based on classification of sounds on the basis of their origin

b. Mini Project:

- 1. Nakshatras, Navagraha and their related plants
- c. Other Activities (Specify):

IKS. 4: Understand the Engineering, Technology and Architecture

Approximate Hours

	reproximate mours
Item	Approximate Hours
CI	6
LI	0
SW	2
SL	1
Total	9

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO 4.1. Understand the		Unit-4. Engineering,	2. Ancient
Engineering Science and		Technology and	Science,
Technology in Vedic and		Architecture	Astronomy
Post Vedic Era		4.1.Engineering Science and	and Vedic
SO 4.2. Understand the Town		Technology in Vedic and	Mathematic
and Home planning,		Post Vedic Era	S
Sthapatyaveda		4.2.Town and Home	
SO 4.3. Understand the		planning, Sthapatyaveda	
Chemistry and Metallurgy		4.3.Chemistry and	
as gleaned from		Metallurgy as gleaned	
archeological artifacts		from archeological	

Faculty of Engineering and Technology Department of Mechanical | Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

SO 4.4. Understand the	artifacts
Chemistry of Dyes,	4.4 Chemistry of Dyes,
Pigments used in Paintings,	Pigments used in
Fabrics, Potteries and Glass	Paintings, Fabrics,
SO 4.5. Understand the Temple	Potteries and Glass
Architecture: Khajuraho,	4.5.Temple Architecture:
Sanchi Stupa, Chonsath	Khajuraho, Sanchi Stupa,
Yogini temple	Chonsath Yogini temple
SO 4.6. Understand the Mining	4.6.Mining and manufacture
and manufacture in India of	in India of Iron, Copper,
Iron, Copper, Gold from	Gold from ancient times
ancient times	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Varanamala of Hindi language based on classification of sounds on the basis of their origin

b. Mini Project:

i. Nakshatras, Navagraha and their related plants

c. Other Activities (Specify):

IKS. 5: Understand about the Life, Nature and Health

	Approximate Hours
Item	Approximate Hours
CI	6
LI	0
SW	2
SL	1
Total	9

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO 5.1. Understand the Fundamentals of Ayurveda (Charaka & Shushruta) and Yogic Science (Patanjali), Ritucharya and Dinacharya SO 5.2. Understand the Traditional system of Indian medicines (Ayurveda, Siddha, Unani and Homoeopathy) SO 5.3. Understand Fundamentals of Ethnobotany and Ethnomedicines of India SO 5.4. Understand the Nature Conservation in Indian ancient texts SO 5.5. Understand the Introduction to Plant Science in Vrikshayurveda SO 5.6. Understand the World Heritage Sites of Madhya Pradesh: Bhimbetka, Sanchi, Khajuraho 		Unit-5. Life, Nature and Health 5.1.Fundamentals of Ayurveda (Charaka & Shushruta) and Yogic Science (Patanjali), Ritucharya and Dinacharya 5.2. Traditional system of Indian medicines (Ayurveda, Siddha, Unani and Homoeopathy) 5.3.Fundamentals of Ethnobotany and Ethnomedicines of India 5.4.Nature Conservation in Indian ancient texts 5.5 Introduction to Plant Science in Vrikshayurveda 5.6.World Heritage Sites of Madhya Pradesh: Bhimbetka, Sanchi, Khajuraho	 Concept of Ayurveda and Yoga Traditional system of Indian medicines Ethnobotan y and Ethnomedic ines of India World Heritage Sites

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Visit to world Heritage Site Khajuraho
- b. Mini Project:
 - i. Ritucharya and Dincharya, Ethnomedicinal plants
- c. Other Activities (Specify):

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self	Total hour
	Lecture	Work (SW)	Learning	(Cl+SW+Sl)
	(Cl)		(SI)	
IKS. 1: To understand Indian Civilization	6	2	1	9
and Indian Knowledge Systems				
IKS. 2: Students will have the ability to	6	2	1	9
apply the knowledge gained about Indian				
Art, Literature and Religious Places				
IKS.3: Student will be able to	6	2	1	9
understandthe Ancient Science,				
Astronomy and Vedic Mathematics				
IKS.4: Understand the Engineering,	6	2	1	9
Technology and Architecture				
IKS. 5: Understand about the Life, Nature	6	2	1	9
and Health				
Total	30	10	5	45

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ма	arks Distribut	ion	Total
		R	U	Α	Marks
CO 1	Indian Civilization and Indian Knowledge	2	5	1	8
	Systems				
CO 2	Indian Art, Literature and Religious Places	2	6	2	8
CO 3	Ancient Science, Astronomy and Vedic	2	6	5	13
	Mathematics				
CO 4	Engineering, Technology and Architecture	2	4	4	10
CO 5	Life, Nature and Health	2	5	2	9
	Total	10	26	14	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Indian Knowledge Systems** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course teacher for above tasks. Teacher can also design different tasks as per requirement, for end semester assessment.

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to Religious places, World Heritage Sites
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources: (a) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	An Introduction of Indian	Mahadevan, B.;	Prentice Hall of India.	2022
	Knowledge Systems: Concept	Bhat V. R. and		
	and Applications	Pavana, Nagendra R.		
		N.		
2	Indian Knowledge Systems:	Kapoor, Kapil and	D.K. Print World Ltd	2005
	Vol. I and II.	Singh, A. K.		
3	Science of Ancient Hindus:	Kumar, Alok	Create pace	2014
	Unlocking Nature in Pursuit		Independent Publishing	
	of Salvation			
4	A History of Agriculture in	Randhava, M.S.	ICAR, New Delhi	1980
	India			
5	Panch Mahabhuta,	Yogcharya, Jnan	Yog Satsang Ashram	2021
		Dev		
6	The Indian Rivers	Singh, Dhruv Sen	Springer	2018
7	The Wonder That Was India	Basam, Arthue	Sidgwick & Jackson	1954
		Llewllyn		
8	Ancient Cities, Sacred Skies:	Malville, J.	IGNCA & Aryan	2000
	Cosmic Geometries and City	MacKim & Gujaral,	Books International,	
	Planning in Ancient India	Lalit M.	New Delhi	

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

9	The Natya Shastra of Bharat Muni	Jha, Narendra	Innovative Imprint, Delhi	2023
10	Astronomy in India: A Historical Perspective	Padmanabhan, Thanu	Indian National Science Academy, New Delhi & Springer (India).	2010
11	<i>History of Astronomy in India</i> 2 nd Ed.	Sen, S.N. and Shukla, K.S.	INSA New Delhi	2001
12	History of Indian Astronomy A Handbook	Ramasubramanian, K.; Sule, Aniket and Vahia, Mayank	Science and Heritage Initiative, I.I.T. Mumbai and Tata Institute of Fundamental Research, Mumbai	2016
13	Indian Mathematics and Astronomy: Some Landmarks	Rao, Balachandra S.	Jnana Deep Publications, Bangalore, 3 rd Edition	. 2004
14	Vedic Mathematics and Science in Vedas	Rao, Balachandra S.	Navakarnataka Publications, Bengaluru	2019
15	A History of Hindu Chemistry	Ray, Acharya Prafulla Chandra	Repbl Shaibya Prakashan Bibhag, Centenary Edition, Kolkata	1902
16	<i>Early Indian Architecture:</i> <i>Cities and City Gates</i>	Coomeraswamy, Anand	Munciram Manoharlal Publishers	2002
17	Theory and Practices of Temple Architecture in Medieval India: Bhojas samrangasutradhar and the Bhojpur Line Drawings	Hardy, Adams	Dev Publishers & Distributors.	2015
18	Indian Science and Technology in Eighteenth Century	Dharmpal	Academy of Gandhian Studies, Hyderabad.	1971
19	Science in India: A Historical Perspective	Subbarayappa, B.V.	Rupa New Delhi	2013
20	Fine Arts & Technical Sciences in Ancient India with special reference to	Mishra, Shiv Shankar	Krishnadas Academy, Varanasi	1982

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

	Someswvara's Manasollasa			
21	<i>Fundamental Principles of Ayurveda</i> , Volume One	Lad, Vasant D.	The Ayurvedic Press, Alboquerque, New Mexico.	2002
22	<i>Charak Samhita</i> , Chaukhamba	Pandey, Kashinath and Chaturvedi Gorakhnath	Vidya Bhawan, Varanasi	
23	Ayurveda: The Science of Self-Healing	Lad, Vasant D.	Lotus Press: Santa Fe	1984
24	Ayurveda: Life, Health and Longevit	Svoboda, Robert E	Penguin: London	1992
25	Plants in the Indian Puranas	Sensarma, P.	Naya Prokash, Calcutta	1989
26	Indian Cultural Heritage Perspective for Tourism	Singh, L. K.	Gyan Publishing House, Delhi	2008
27	Glimpses of Indian Ethnobotany	Jain, S.K.	Oxford & IBH Publishing Company Private Limited, New Delhi	1981
28	Manual of Ethnobotany	Jain, S.K.	Scientific Publishers, Jodhpur	2010

Curriculum Development Team:

- 1. Er. Anant Kumar Soni, Hon'ble Pro-Chancellor and Chairman, AKS University, Satna (M.P.).
- 2. Prof. B.A. Copade, Hon'ble Vice Chancellor, AKS University, Satna (M.P.).
- 3. Prof. G.C. Mishra, Director, IQAC, AKS University, Satna (M.P.).
- 4. Prof. R.L.S. Sikarwar, Director, Centre for Traditional Knowledge Research & Application, AKS University, Satna (M.P.).
- 5. Prof. Kamlesh Chaure, HOD, Department of Biotechnology, AKS University, Satna (M.P.).
- 6. Dr. Akhilesh Waoo, HoD, Department of Computer Science, AKS University, Satna (M.P.).
- 7. Dr. Shailendra Yadav, HoD, Department of Chemistry, AKS University, Satna (M.P.).
- 8. Dr. Kaushik Mukherji, HoD, Department of Management, AKS University, Satna (M.P.).
- 9. Dr. Neeraj Verma, PG Coordinator, Faculty of Agriculture Science and Technology, AKS University, Satna (M.P.)
- 10. Dr. Dilip Kumar Tiwari, HoD, Department of Yoga, AKS University, Satna (M.P.).
- 11. Shri Mirza Shamiullah Beg, Department of Arts, AKS University, Satna (M.P.).
- 12. Shri Vivek Shrivastava, Examination, AKS University, Satna (M.P.).
- 13. Shri Manish Agrawal, Department of Mining, AKS University, Satna (M.P.).

CO, PO and PSO Mapping Program: B. Tech. Computer Science & Engineering [Artificial Intelligence & Data Science] Course Code : ES-102 Course Title: Mathematics-II

					I	Program	Outcome	es					Program Specific Outcomes			
	P01	P02	P03	P04	PO5	P06	P07	P08	P09	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem Analysis	of solutions	Conduct studies of difficult problems	Utilization of modern tools	Engineers and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation	Product Innovation and Developmen t
IKS. 1:To understand Indian Civilization and Indian Knowledge Systems	2	2	3	1	1	1	1	1	1	1	1	2	2	2	2	2

IKS.2:Studentswillhavetheabilityto																
apply the knowledge gained about Indian Art, Literature and Religious Places	2	3	2	1	2	2	1	1	1	1	1	1	3	2	3	2
IKS.3: Student will be able to understandthe Ancient Science, Astronomy and Vedic Mathematics	2	2	2	2	2	2	1	1	1	1	1	2	1	2	1	2

IKS.4: Understand the Engineering, Technology and Architecture	3	2	3	3	2	3	1	2	2	1	2	3	3	3	2	1
IKS. 5: Understand about the Life, Nature and Health	3	2	3	2	3	2	1	2	1	1	2	3	2	3	2	1

Course Curriculum Map

POs&PSOsNo.	COsNo.&Titles	SOsNo.	LaboratoryIn struction (LI)	Classroom Instruction(CI)	Self-Learning(SL)
PO1,2,3,4,5,6,7,8,9,10,11,	IKS. 1: To understand Indian	SO1.1		Unit-1. Indian Civilization and Indian	
12	Civilization and Indian	SO1.2		Knowledge Systems	
PSO1,2,3,4,5	Knowledge Systems	SO1.3			
		SO1.4		1.1,1.2,1.3,1.4,1.5,1.6	
		SO1.5			
		SO1.6			
PO1,2,3,4,5,6,7,8,9,10,11,	IKS. 2: Students will have the	SO2.1		Unit-2. Indian Art, Literature and	
12	ability to apply the knowledge	SO2.2		Religious Places	
PSO1,2,3,4,5	gained about Indian Art,	SO2.3			
	Literature and Religious Places	SO2.4		2.1,2.2,2.3,2.4,2.5,2.6	
		SO2.5			
		SO2.6			Asmentionedin
PO1,2,3,4,5,6,7,8,9,10,11,	IKS.3: Student will be able to	SO3.1		Unit-3. Ancient Science, Astronomy,	pagenumber
12	understandthe Ancient Science,	SO3.2		Mathematics	_to_
PSO1,2,3,4,5	Astronomy and Vedic	SO3.3			
	Mathematics	SO3.4		3.1,3.2,3.3,3.4,3.5,3.6	
		SO3.5			
		SO3.6			
PO1,2,3,4,5,6,7,8,9,10,11,	IKS.4: Understand the	SO4.1		Unit-4. Engineering, Technology and	
12	Engineering, Technology and	SO4.2		Architecture	
PSO1,2,3,4,5	Architecture	SO4.3			
		SO4.4		4.1,4.2,4.3,4.4,4.5,4.6	
		SO4.5			
		SO4.6			

PO1,2,3,4,5,6,7,8,9,10,11,	IKS. 5: Understand about the	SO5.1	Unit-5. Life, Nature and Health
12	Life, Nature and Health	SO5.2	
PSO1,2,3,4,5		SO5.3	5.1,5.2,5.3,5.4,5.5,5.6
		SO5.4	
		SO5.5	
		SO5.6	

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revisedason01August2023)

Course Code:	Semester-II ESC-105
Course Title :	Manufacturing Practice Workshop
Pre- requisite:	Basic knowledge of mathematical skill with some scientific temperament.
Rationale:	It is a place of work for preparing variety of jobs/products by using different kinds of Instruments, hand tools and Machines. In order to prepare the products in workshop, the workshop is divided into many branches according to nature of work. Ex: 1.Fitting shop 2. Welding shop 3. Sheet metal shop 4. M/c Shop 5. Foundry & Forging shop etc
Course Outcomes:	

- **ESC 105.1:** Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.
- **ESC 105.2:** Acquired proficiency in using hand tools , understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques.
- **ESC 105.3:** Develop fundamental skills such as measuring , cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.
- **ESC 105.4:** Appreciate and access the use of casting processes in manufacturing and understand the working of various casting processes.
- **ESC 105.5:** Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revisedason01August2023)

Scheme of Studies:

Board of					Scher	Scheme of studies(Hours/Week)			
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
Engineering Science Core (ESC)		Manufacturing Practice Workshop	1	4	1	1	7	3	

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial
(T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Scheme of Assessment (Marks)						
			Progressive Assessment (PRA)					End Semester Assessment	Total Marks	
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
ESC	ESC105	Manufac turing Practice Worksh op	15	20	5	5	5	50	50	100

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Practical

(Revised as on 01 August 2023)

Board of	Couse	Course Title	Scheme	Scheme of Assessment (Marks)				
Study	Code						End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)		
BSC		Manufact uring Practice Worksho p lab	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC 105.1: Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.

Ар	Approximate Hours				
Item	AppX Hrs				
Cl	03				
LI	12				
SW	1				
SL	1				
Total	17				

Session Outcom es (SOs)	Laboratory Instruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO1.1 Understand various manufacturing processes, materials and technologies. SO1.2 Acquire knowledge in cost estimation resource	 1.1 Safety aspects pertaining to common manufacturing practices. 1.2 Introduction of tools and machines used in 	Unit-1.0 Manufacturing Methods-casting, forming,machining, joining,advanced manufacturing methods, CNC machining, Additive	 Introduction to additive manufacturi ng .

management and sustainable manufacturing practices. :a CeBartivierNorModelanical Engineering of different VorModelanical Engineering of different vorModelanical Engineering of different vorModelanical Engineering and Lower 2019 methods. 1.4 Drawing of a simple workpiece for carrying out various lathe Artifiling operations 1.2 Introduction to casting, joining and advanced manufacturing methods. 1.5 Demonstration of different operations during actual performance of work. 1.6 Fire Safety Instructions during the work.		AKS UN	versity	
practices. cdifficult/difficits. Tech?/(Metchanical Engineering) Programming And lathe and cdrilling on 0 August 2023)s methods. lathe and cdrilling workpiece for carrying out various lathe /drilling operations 1.2 Introduction to casting, forming, machining, joining and advanced manufacturing methods. 1.5 Demonstration of different operations during actual performance of work. 1.6 Fire Safety Instructions during	management and	each processes	a manufacturing.	
practices. cdifficult/difficits. Tech?/(Metchanical Engineering) Programming And lathe and cdrilling on 0 August 2023)s methods. lathe and cdrilling workpiece for carrying out various lathe /drilling operations 1.2 Introduction to casting, forming, machining, joining and advanced manufacturing methods. 1.5 Demonstration of different operations during actual performance of work. 1.6 Fire Safety Instructions during	sustainable manufacturing	1.3 DeBartmentruction	anical Engineering	
lathe and drilling or a simple workpiece for carrying out various lathe /drilling operations 1.5 Demonstration of different operations during actual performance of work. 1.6 Fire Safety Instructions during	practices.	and praced breadon weine	nical EDefinering And	
 1.4 Drawing of a simple workpiece for carrying out various lathe /drilling operations 1.5 Demonstration of different operations during actual performance of work. 1.6 Fire Safety Instructions during 		lathe and drilling on 0	August 25 methods.	
 1.4 Drawing of a simple workpiece for carrying out various lathe /drilling operations 1.5 Demonstration of different operations during actual performance of work. 1.6 Fire Safety Instructions during 		machine.	1.2 Introduction to casting,	
 workpiece for carrying out various lathe /drilling operations 1.5 Demonstration of different operations during actual performance of work. 1.6 Fire Safety Instructions during joining and advanced manufacturing methods. 1.3 Introduction to CNC machine. 				
carrying out various lathe /drilling operationsmanufacturing methods.1.5 Demonstration of different operations during actual performance of work.1.3 Introduction to CNC machine.1.6 Fire Safety Instructions during1.6 Fire Safety Instructions during				
lathe /drilling operations1.3 Introduction to CNC machine.1.5 Demonstration of different operations during actual performance of work.1.3 Introduction to CNC machine.1.6 Fire Safety Instructions during1.3 Introduction to CNC machine.		-	manufacturing methods.	
operations machine. 1.5 Demonstration of different operations during actual performance of work. 1.6 Fire Safety Instructions during			1.3 Introduction to CNC	
 1.5 Demonstration of different operations during actual performance of work. 1.6 Fire Safety Instructions during 			machine.	
different operations during actual performance of work. 1.6 Fire Safety Instructions during				
during actual performance of work. 1.6 Fire Safety Instructions during				
performance of work. 1.6 Fire Safety Instructions during		-		
work. 1.6 Fire Safety Instructions during				
1.6 Fire Safety Instructions during		-		
Instructions during				
		-		
		_		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

Mechanical properties of engineering materials. Explain advanced manufacturing methods

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

ESC 105.2: Acquired proficiency in using hand tools , understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques.

					Approximate H
			lte	m	АррХ
					Hrs
			(03
				.1	12
				5	1
				V	
				L	1
-			Tot	tal	17
ession	Laboratory	Class ro		_	Self
Outcom	Instruction	Instruc	tion	1	Learni
es	(LI)	(CI)			ng
(SOs)					(S
				·	L)
SO2.1 Understand	2.1 Safety instructions	Unit-2		tools a	of drilling
different	for using various	Fitting			ling tools.
cutting tools	fitting hand tools.	operations	5	uncac	ing tools.
like	2.2 Tools Introduction	& power			
hacksaw,	2.3 Instructions for	tools			
chisels etc.	using proper tools				
SO2.2 acquire knowledge of various fitting and assembly techniques.	 2.4 Drawing of a simple workpiece for carrying out different fitting operations. 2.5 Demonstration of different inspection , checking and measuring methods used for proper fitting work. 2.6 Actual performance of a small simple job. 	 2.1 Tools of fitting shop 2.2 type clamping marking cutting striking tools 2.3 operations performed o shop 	s of tools, tools, tools, Various		

Approximate Hours

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain different striking tools with neat sketch
- ii. Explain different types of vices used in fitting shop.

ESC 105.3:.Develop fundamental skills such as measuring , cutting and joining wood. Gain expertise in handling various carpentry tools and machinery Approximate Hours

Approximate Hours					
Item	AppX Hrs				
Cl	03				
LI	12				
SW	1				
SL	1				
Total	17				

Session	LaboratoryInstruction	Class room	Self
Outcomes	(LI)	Instruction	Learning
(SOs)		(CI)	(SL)
	3.1 Safety instructions for	Unit-3 : Carpentry shop	i. Defects in
measuring cutting and	using various carpentry		timber
assembling wood.		3.1 Introduction to carpentry shop	
SO3.2 acquire knowledge in		3.2 different methods of	
using various tools like	introduction.	seasoning of timber	
	3.3 Instructions for using		
SO3.3 understand joinery	proper tools in the	3.3 carpentry tools	
techniques, wood finishing	correct way		
and safety practices	3.4 Drawing of a simple		
	workpiece for		
	preparation of common		
	carpentry joinery work.		
	3.5 Demonstration of		
	different inspection,		
	checking and measuring		
	methods used for proper		
	carpentry work.		
	3.6 Production of any one		
	type of joints listed		
	below-		
	Dovetail Joint/Corner		
	Joint/Mortise and Tenon		
	Joint etc.		

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Explain the different operation performed in wood working

Faculty of Engineering and Technology

Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

(Revised as on 01 August 2023)

- ii. Sketch and describe the different joints made in carpentry shop.
- iii. Explain the different types of wood working machines used in modern wood work.

b. Mini Project:

i. Production of a simple utility item using different carpentry tools and methods

ESC 105.4: Appreciate and access the use of casting processes in manufacturing and understand the working of various casting processes.

Ар	Approximate Hours	
ltem	AppX Hrs	
Cl	03	
LI	12	
SW	1	
SL	1	
Total	17	

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO4.1 The production of cast metal component, quality control measures and adherence to manufacturing standards	 4.2 Foundry tools introduction. 4.3 Instructions for using proper tools in the correct way 4.4 Drawing of a simple work piece for preparation of a 	Unit-4 : Metal casting 4.1 Introduction to foundry shop. 4.2 Pattern, Mould , Casting , pattern allowances , moulding sand . 4.3 Casting procedure , core , gating system.	i. Types of moulding sand.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain different defects in casting.
- ii. Explain different casting terms like runner, riser, mould etc.

ESC 105.5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.

Item	AppX Hrs	
Cl	03	
LI	12	
SW	1	
SL	1	
Total	17	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

(Revised as on 01 August 2023)

Session	LaboratoryInstruction	Class room Instruction	Self
Outcomes	(LI)	(CI)	Learning
(SOs)		()	(SL)
adjustment of flame and gas pressure, and shutdown procedure for oxyacetylene welding and cutting equipment. SO5.2 Aquire knowledge about setting up and shutting down SMAW equipment.	5.2 Welding tools		1. study of TIG and MIG welding process

SW-5 Suggested Sessional Work (SW):

c. Assignments:

- i. What are different types of joints in welding shop?
- ii. What is the function of flux in gas welding?.

d. Mini Project:

Preparing lap joint using arc welding process

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture	Sessional Work	Laboratory Instruction	Self Learning	Total hour (Cl+SW+Sl)
	(CI)	(SW)	(LI)	(SI)	
ESC 105.1: Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing	3	1	12	1	
efficiency and ensuring product quality.					17
ESC 105.2: Acquired proficiency in using hand tools , understanding different types of fits and tolerances, interpreting engineering drawing and	3	1	12	1	17
precision measurement techniques.					17
ESC 105.3: Develop fundamental skills such as measuring , cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.	3	1	12	1	17
ESC 105.4: Appreciate and access the use of casting processes in manufacturing and	3	1	12	1	17
understand the working of various casting					
processes. ESC 105.5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process	3	1	12	1	
based on the type of industrial application.					17
Total Hours	15	5	60	5	85

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	Α	Marks
CO-1	Manufacturing Methods-casting, forming, machining, joining, advanced manufacturing methods, CNC machining, Additive manufacturing	04	05	01	10
CO-2	Fitting operations & power tools	05	04	01	10
CO-3	Carpentry shop	-	05	05	10
CO-4	Metal casting	04	04	02	10
CO-5	Welding shop	05	03	02	10
	Total	18	21	11	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Manufacturing Practice Workshop will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration

7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook,Twitter,

Whatsapp, Mobile, Online sources)

8. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books :					
S. No.	Title	Author	Publisher	Edition & Year		
1	Elements of Workshop Technology	Hajra Choudhury S.K., Hajra Choudhury A.K. and Nirjhar Roy S.K.	Media promoters and publishers private limited, Mumbai	Vol. I 2008 and Vol. II 2010		
2	Manufacturing Engineering and Technology		Pearson Education India	Edition, 2002		
3	Manufacturing Technology	Rao P.N	Tata McGraw Hill House	Vol. I and Vol. II 2007		
4	Processes and Materials of Manufacture	Roy A. Lindberg	Prentice Hall India,	4 th edition, 1998		
5	Lecture note provided by Dept. of Mechanical Engineering, AKS University, Satna.					

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos,POs and PSOs Mapping

Course Title: B. Tech. Mechanical Engineering

Course Code : ESC105

Course Title: Manufacturing Practice Workshop

					Ρ	rogra	m Outco	omes					Р	rogram Spec	ific Outcom	e
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igations of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
CO1 : Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.	2	1	2	2	3	2	2	2	2	1	3	2	2	2	1	2
CO 2 : Acquired proficiency in using hand tools , understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques.	1	1	1	1	3	2	2	2	2	1	2	2	1	2	1	2
CO3 : Develop fundamental skills such as measuring , cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.	2	2	1	1	3	1	2	2	2	1	1	2	1	2	1	1
CO 4: Appreciate and access the use of casting processes in manufacturing and understand the working of various casting processes.	2	2	2	1	3	2	2	2	2	1	2	2	1	2	1	2
CO 5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.	2	1	1	1	1	3	2	2	2	1	2	2	1	2	1	1

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO-1: Understand various production processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.	SO1.1 SO1.2	1.1 1.2 1.3 1.4 1.5 1.6	Unit-1.0 Manufacturing Methods- casting,forming,machining, joining,advanced manufacturing methods, CNC machining, Additive manufacturing 1.1,1.2,1.3	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 2 : Acquired proficiency in using hand tools , understanding different types of fits and tolerances, interpreting engineering drawing and precision measurement techniques.	SO2.1 SO2.2	2.1 2.2 2.3 2.4 2.5 2.6	Unit-2 Fitting operations & power tools 2.1, 2.2, 2.3	As mentioned in
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3 : Develop fundamental skills such as measuring , cutting and joining wood. Gain expertise in handling various carpentry tools and machinery.	SO3.1 SO3.2 SO3.3	3.1 3.2 3.3 3.4 3.5 3.6	Unit-3 : Carpentry shop 3.1, 3.2,3.3	page number 2 to 6
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 4: Appreciate and access the use of casting processes in manufacturing and understand the working of various casting processes.	SO4.1	4.1 4.2 4.3 4.4 4.5 4.6	Unit-4 : Metal casting 4.1, 4.2,4.3	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 5: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.	SO5.1 SO5.2	5.1 5.2 5.3 5.4 5.5 5.6	Unit 5: Welding Shop 5.1,5.2,5.3	4

Semester-II

Course Code: Course Title : Pre- requisite:

BSC104

Mathematics -II

Objective of this course is to familiarize the prospective engineers with techniques in Ordinary and partial differential equations and Laplace transform. It aims to equip the students to deal with advanced level of mathematics and applications that would be essential for their disciplines.

The program aims to develop the tool of power series and Fourier series for learning advanced engineering mathematics

CO1-BSC104.1

Understand the importance of Laplace transform and elementary properties of Laplace transform **CO2- BSC104.2**

To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions

CO3- BSC104.3 Demonstrate an understanding of the Vector Calculus

CO4- BSC104.4Define and recognize the method to solve Sequences and series

CO5- BSC104.5 Students will create the concept of a Partial Differential Equations

Scheme of Studies:

Board of Study	Course Code	Course Title	Scheme of	cheme of studies (Hours/Week)				Total Credit
otady			Cl	LI	sw	SL	Total Study Hours (CI+LI+SW+SL)	s (C)
Program Core (PCC)	BSC104	Engineering Mathematics-II	4	0	1	1	6	4

Legend:

Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Rationale:

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

	Theory									
Board of Couse Code Course Title	Scheme of Asse	Scheme of Assessment (Marks)								
Study			Progressi	ve Assessmei	nt (PRA)				End Semester Assessment (ESA)	Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendanc e (AT)	Total Marks (CA+CT+SA +CAT+AT)		
PCC	BSC104	Engineering Mathematics-II	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1-BSC104.1Understand the importance of Laplace transform and elementary properties of

Laplace transform

ltem	AppX Hrs
Cl	13
LI	0
SW	1
SL	1
Total	15

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1Understand		Unit-1.0	SL1.1 Change of scale
the concept		1.1 Introduction of Laplace	property
ofLaplace		transform	
transform of		1.2 Laplace transform of	
elementary		elementary functions	
functions			

SO1.2 Understand the Laplace transform of derivatives SO1.3 Understand the Inverse Laplace transform SO1.4 Understand the Application of Laplace transform	 1.3 Linearity property 1.4 Properties of Laplace transform, 1.5 Laplace transform of derivatives 1.6 Laplace transform of Integral 1.7 Multiplication by tⁿ 1.8 Division by t 1.9 Inverse Laplace transform 1.10 First shifting theorem 1.11 Second shifting Property 1.12 Convolution theorem 1.13 Application of Laplacetransform
---	--

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Example onProperties of Laplace transform
- 2. Example on Laplace transform of derivatives
- 3. Example on Laplace transform of Integral
- 4. Example on Multiplication by tⁿ
- 5. Example on First shifting theorem

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO2- BSC104.2To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions

Approximate Hours				
Item	AppXHrs			
Cl	11			
LI	0			
SW	1			
SL	1			
Total	13			

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	SL2.1Examples of
SO2.1Understand the		2.1 Linear differential	Frobenius method
concept Solving Second		Equation with	
order linear		constant	
differential,		coefficients	
SO2.2 Understand the		2.2 Complimentary	
Solution by variation of		Function and	
parameters		Particular integral	
SO2.3 Understand the		C C	
Power series solutions:		Second order linear	
SO2.4 Understand the		differential Equations	
Legendre's equations		with variable	
andLegendre		coefficients:	
polynomials			
		2.3 Solution by	
		Inspection Method	
		2.4 Solution by change	
		of dependent	
		variable	
		2.5 Solution by change	
		of Independent	
		variable	
		2.6 Solution by	
		, variation of	
		parameters	
		2.7 Power series	
		solutions(Frobenius	
		method):	
		2.8 Series for Ordinary	
		Point	
		2.9 Legendre's	
		equations and	
		2.10 Bessel's	
		equation and	
		2.11 Tutorial	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Example on Solution by variation of parameters
- 2. Example on Power series solutions:
- 3. Example on Legendre's equations and
- 4. Example on Legendre polynomials
- 5. Example on Frobenius method

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

CO3- BSC104.3 Demonstrate an understanding of the Vector Calculus

Approximate Hours

Item	AppXHrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO3.1 understand the		3.1 Differentiation of vector	SL.1Examples on
scalar and vector point		3.2 scalar and vector point	Stoke's theorems
function		function	
		3.3 Directional derivatives	
		3.4 Gradient	
SO3.2 Understand the		3.5 Curl	
Line integrals, Surface		3.6 Divergence	
integralsVolume		3.7 Line integrals,	
integrals		3.8 Surface integrals	
		3.9 Volume integrals	
SO3.3 Understand the		3.10 Green's	
Gradient		theorems	
,Curl,divergence		3.11 Gauss Divergence	
		theorems	
SO3.4Understand the		3.12 Stoke's theorems	
Gauss Divergence			
theorems, Stoke's			
theorems			

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Example on Directional derivatives
- 2.Example on Gradient
- 3.Example on Divergence
- 4. Example on Surface integrals
- 5.Stoke's theorems

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

- **c.** Other Activities (Specify): Quiz, Class Test.
- **CO4- BSC104.4**Define and recognize the method to solve Sequences and series

Approximate Hours

Item	AppXHrs
Cl	13
LI	0
SW	1
SL	1
Total	15

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO4.1 Understand		4.1 Limits of sequence of	SL4.1Some theorem
Convergence and		numbers	on sequence
Divergence of		4.2 Convergence and	
sequence		Divergence of sequence	
		4.3 Cauchy sequence	
SO4.2 Understand the		4.4 Calculation of limits	
Tests for convergence		4.5 Infinite series	
		4.6 Tests for convergence	
		4.7 Rabbe test and	
		logarithmic test	
SO4.3Understand		4.8 Comparison test	
Fourier series		4.9 Fourier series	
		4.10 Even and odd	
SO4.4 understand and		function	
Calculation of limits		4.11 Half range sine	
		andcosine series	
		4.12 Half range cosine	
		series	
		4.13 Parseval's theorem.	

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - 1. Example on Cauchy sequence

2.Example on Testsfor convergence

3. Example on Comparison test

4. Example on Fourier series

5.Example on Even and odd function

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO5- BSC104.5Students will create the concept of a Partial Differential Equations

Approximate Hours					
Item	Appx Hrs				
Cl	11				
LI	0				
SW	1				
SL	1				
Total	13				

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1 Understand the Solutions of first order linear PDE SO5.2 Understand the Solution tohomogenous and Non-homogenous linear PDE SO5.3 Understand the First order PDE SO5.4 Understand PDE of Second order by particular integral method		 5.1 Definition of Partial Differential Equations 5.2 First order PDE 5.3 Solutions of first order linear PDE 5.4 Solution to homogenous PDE 5.5 Non-homogenous linear PDE 5.6 PDE of Second order by complimentary function and 5.7 PDE of Second order by particular integral method. 5.8 Lagrange's Linear equation, 5.9 Charpit's method 5.10 Separation of variable method for the solution of heat equations 5.11 wave equations 	SL.1 Problems on PDE

SW-3 Suggested Sessional Work (SW):

a. Assignments

- 1. Example on linear PDE
- 2.Example on Solution to homogenous PDE
- 3. Example on Lagrange's Linear equation,
- 4.Example on PDE of Second order by complimentary function and 5.Example on
- Charpit's method

b. Mini Project:

Oral presentation, Poster presentation, Power Point Presentation.

c. Other Activities (Specify):

Quiz, Class Test.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-BSC104.1 Understand the importance of Laplace transform and elementary properties of Laplace transform	13	1	1	15
CO2- BSC104.2 To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions	11	1	1	13
CO3- BSC104.3 Demonstrate an understanding of the Vector Calculus	12	1	1	14
CO4- BSC104.4 Define and recognize the method to solve Sequences and series	13	1	1	15
CO5- BSC104.5 Students will create the concept of a Partial Differential Equations	11	1	1	13
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

СО	Unit Titles	Mark	s Distrib	ution		Total Marks	
		R	R U A				
CO-1	Understand the importance of Laplace transform and elementary properties of Laplace transform	03	01	01			05
CO-2	To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions	02	06	02			10
CO-3	Demonstrate an understanding of the Vector Calculus	03	07	05			15
CO-4	Define and recognize the method to solve Sequences and series	-	10	05			15
CO-5	Students will create the concept of a Partial Differential Equations	03	02		-		05
Total		11	26		13		50

Suggested Specification Table (For ESA)

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Mathematics -II will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

- 1. Improved Lecture
- 2. Tutorial
- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6 .Seminar
- 7. Works

Suggested Learning Resources:

a)	Books :			
S.	Title	Author	Publisher	Edition & Year
Ν				
0.				
1	Engineering Mathematics-II	D.K, Jain	Shree Ram Prakashan.	7th Edition 2015- 16
			Khanna Publishers	
	Higher Engineering	B.S. Grewal		36th Edition, 2010
2	Mathematics			
			Shree Sai Prakashan	
	Engineering	D.C.Agrawal		10th Edition 2018
3	Mathematics-II			
			Tata McGraw Hill	
4	Higher Engineering Mathematics	B.V. Ramana		11th Reprint, 2010.

Curriculum Development Team

- 1. Dr.Sudha Agrawal, HOD, Department of Mathematics.
- 2. Dr.Ekta Shrivastava , Assistant Professor, Department of Mathematics.
- 3. Mr.Neelkanth Napit, Assistant Professor, Department of Mathematics.
- 4. Mrs.Vandana Soni, Assistant Professor, Department of Mathematics.
- 5. Mr.Radhakrishna Shukla, Assistant Professor, Department of Mathematics.
- 6. Mr.Ghanhyam sen, Assistant Professor, Department of Mathematics.
- 7. Ms. Pushpa Kushwaha, Assistant Professor, Department of Mathematics.
- 8. Ms. Arpana Tripathi, Assistant Professor, Department of Mathematics.

COs,POs and PSOs Mapping

Programme Title: B. Tech. Mechanical Engineering Course Code: BSC104 Course Title: Mathematics-II

		Program Outcomes													Program Specific Outcome		
	PO1	PO 2	PO 3	PO 4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO1 1	PO12	PSO 1	PSO 2	PSO 3	PSO 4	
Course Outcomes	Engineering knowledge	Pro ble m Sol vin g	De sig n Ski Ils	La bor ato ry Ski lls	Tea m wor k	Com mun icati on Skill s	Ethi cal and Prof essio nal Beh avio r	Lifelo ng Learn ing	Global and Societal Impact	Proj ect Man age ment	Ada ptabi lity	Professi onal Develop ment	Mechanic al System Design and Analysis	Manufactu ring Processes and Automatio n	Computational Modeling and Simulation	Product Innovation and Developme nt	
CO1-UnderstandtheimportanceofLaplacetransformandelementarypropertiesofLaplacetransformLaplace	3	3	2	2	2	1	1	2	2	1	2	2	2	3	2	1	
CO2-To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions	3	3	3	3	2	2	1	3	2	2	2	3	3	2	2	2	
CO3-Demonstrate an understanding of the Vector Calculus	3	2	3	2	2	1	2	2	2	2	2	3	3	2	2	2	
CO4- Define and recognize the method to solve Sequences and series	3	3	2	2	2	2	2	3	2	2	2	2	2	3	2	2	
CO5- Students will create the concept of a Partial Differential Equations	3	3	3	3	2	3	2	3	2	2	2	2	3	3	2	2	

Legend:1–Low,2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction (CI)	Self- Learnin g (SL)
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO1-UnderstandtheimportanceofLaplacetransformandelementarypropertiesofLaplacetransform	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1.0 Laplace Transform1.1,1.2,1.3,1.4,1.5,1.6.1.7,1. 8,1.9,1.10,1.11,1.12,1.13	SL1.1
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO2-To introduce effective mathematical tools for the solutions of ordinary differential equations and solutions with Bessel functions and Legendre functions	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2 Ordinary differential equations of higher orders:2.1, 2.2, 2.3, 2.4,2.5,2.6,2.7,2.8,2.9,2.10,2.11	SL2.1
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO3- Demonstrate an understanding of the Vector Calculus	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3Vector Calculus 3.1, 3.2, 3.3, 3.4, 3.5 ,3.6,3.7,3.8,3.9,3.10,3.11,3.12	SL3.1
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO4- Define and recognize the method to solve Sequences and series	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4 Sequences and series 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8,4.9,4.10,4.11,4.12,4.13	SL4.1
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO5- Students will create the concept of a Partial Differential Equations	SO5.1 SO5.2 SO5.3 SO5.4		Unit-5Partial Differential Equations5.1, 5.2, 5.3, 5.4, 5.5, 5.6 ,5.7,5.8,5.9,5.10,5.11	SL5.1

Faculty of Engineering and Technology

Department of Mechanical I Engineering

_SEMESTER - II

Course Code:	ESC-104-L
Course Title:	Programming for Problem Solving
Pre-requisite:	Student should have basic knowledge programming.
Rationale:	Problem solving skills can help people develop more skills and build a promising career.

Course Outcomes:

- ES 104.1: Understand the basic concept of Programming languages, software, algorithm and flowchart.
- ES 104.2: Acquire knowledge regarding the building blocks of programming language.
- ES 104.3: Apply python for solving basic programming solutions.
- ES 104.4: Create algorithms using learnt programming skills.
- ES 1045: Understand real world problems and developing computer solutions for those.

Scheme of Studies:

Board of				Total Credits				
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (Cl+Ll+SW+SL)	(C)
Program Core (PCC)	ES 104	Programmingfor Problem Solving	3	4	2	1	10	5

Faculty of Engineering and Technology

Department of Mechanical | Engineering

Legend: CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.,Lecture(L)andTutorial (T)and others),

LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies)

SW: Sessional Work(includes assignment, seminar, mini projected.),

SL: Self-Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback teachers ensure outcome of Learning.

Faculty of Engineering and Technology

Department of Mechanical I Engineering

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)									
Board of Study Couse Code	Course Title		essment									
	Couse		number 3 marks each	(2 best out of 3) 10 marks each (CT)	Seminar one (SA)	any one (CAT)	Attendance (AT)	(CA+CT+SA+CAT +AT)	End Semester Assessment	(PRA+	ESA)	
ES	ES104	Program mingfor Problem Solving	15	20	5	5	5	50	50	100		

Scheme of Assessment:

Practical

e Idv		Scheme of Assessment (Marks)								
Board of Stu	Couse Code	Course Title	Progressive Assessment (PRA)	End	Semester	Assessme	nt	Marks	(PRA+	ESA)

Faculty of Engineering and Technology

Department of Mechanical | Engineering

			Assignment 5 number	3 marks each	(CA)	Viva1 (5)	Viva2 (5)	(SA)	Attendance	(АТ)	(СА+СТ+SА+САТ +АТ)		
ES	ES104	Programmin gfor Problem Solving		35		5		5	5		50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC-104.1: Understand the basic concept of Programming languages, software, algorithm and flowchart.

ltem	Appx. Hrs.
Cl	7
LI	12
SW	2
SL	1
Total	22

Faculty of Engineering and Technology

Department of Mechanical | Engineering

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO1.1.Understand types of programming languages. SO1.2.Utilize Operating System SO1.3.Compare compiler, linker, loader SO1.4.Create algorithm and flow charts for problem	LI.1.1. Running instructions in Interactive interpreter and a Python Script. LI.1.2. Write a program to purposefully raise Indentation Error and Correct it. LI.1.3. Create Flow chart for an organisation LI.1.4. Create Flow chart for an education system LI.1.5. Compare various operating systems LI.1.6. Write five features of Notepad	 Unit-1 Introduction to Programming 1.1 Evolution of languages: Machine languages: Machine languages, Assembly languages, High- level languages construction eras. 1.2 Software requirements for programming 1.3 System software like operating system 1.4 compiler, linker, loader 1.5 Application programs like editor. 1.6 Algorithm specification of algorithm 1.7 . Flowcharts 	 Different types of programming languages examples. Learn about various operating systems.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Create algorithms for some real-life problems.
- 2. Create flowcharts for problems.

b. Mini Project:

- i. Flow diagram of working of a university.
- c. Other Activities (Specify):

NA

Faculty of Engineering and Technology

Department of Mechanical I Engineering

ESC-104.2: Acquire knowledge regarding the building blocks of programming language.

Item	Appx. Hrs.
Cl	12
LI	12
SW	2
SL	1
Total	27

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO2.1.ToUnderstand the datatypes SO2.2.Identify Expressions SO2.3.Apply operators SO2.4.Use list, string tuples	LI.2.1. Write a program to demonstrate basic data type in python. LI.2.2. Write a program to compute distance between two points taking input from the user LI.2.3. Write a program add.py that takes 2 numbers as command line arguments and prints its sum.	 Unit-2 Datatypes and Operators, Variables, Sequences and Iteration 2.1. Data Types 2.2. Different types of Data types 2.3. Expressions, Precedence Rules 2.4. Operators 2.5. Types of Operators 2.6. Local Variables 2.7. Global Variables 2.8. List 2.9. String 2.10. Tuples 2.11. Sequence Mutations 2.12. Accumulation Patterns. 	 Operator precedence Scope of variables

Faculty of Engineering and Technology

Department of Mechanical I Engineering

II 2 A Haina
LI.2.4. Using
a for loop,
write a
program that
prints out the
decimal
equivalents
of 1/2, 1/3,
1/4, . 1/10.
LI.2.5. Write
a program
using a for
loop that
loops over a
sequence.
What is
sequence?
LI.2.6. Write
a program
using a while
loop that
asks the user
for a
number, and
prints a
countdown
from that
number to
zero.
2010.

SW-2 Suggested Sessional Work(SW):

a. Assignments:

- 1. Compare List and Tuples.
- **2.** String functions with example.

b. Mini Project:

Create a Calculator.

Faculty of Engineering and Technology

Department of Mechanical | Engineering

c. Other Activities(Specify):

NA

ESC-104.3: Gain an understanding of the various types of Conditional Statements, Loops, Arrays and Strings.

ltem	Appx. Hrs.
Cl	10
LI	12
SW	2
SL	1
Total	25

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO2.1. To Understand the loop types SO2.2.Identify the looping Expressions SO2.3.Apply arrays SO2.4. Use of user defined datatype 	LI.3.1. Write a Program for checking whether the given number is an even number or not. Using a for loop. LI.3.2. Write a program using a while loop that asks the user for a number, and LI.3.3. prints a countdown from that number to zero. LI.3.4. Write function to compute	Unit-3 : ConditionalStatements,Loops, ArraysandStrings,UserDefine dDataTypes 3.1 If-else statement, 3.2 For loop, 3.3 While Loop, 3.4 Nested Iteration, 3.5 Concept and use of arrays 3.6 Declaration and usage of arrays, 3.7 , 2-dimensionalarrays, 3.8 Different types of user	i. Loops to access array elements ii. Member access in user defined data type .
	gcd, lcm of two	defined datatypes	

Faculty of Engineering and Technology

Department of Mechanical | Engineering

numbers.	3.9 Structure	
LI.3.5. Write a	3.10Union	
program to		
implement Merge		
sort.		
LI.3.6. Write a		
program to		
implement Selection		
sort, Insertion sort		

SW-3 Suggested Sessional Work(SW):

a. Assignments:

- 1. Compare the looping statements
- 2. Use of user defined data type with example.

b. Mini Project:

Create a stopwatch.

c. Other Activities(Specify):

NA

ESC-104.4: Familiarize with a concise overview of the Dictionaries and methods.

ltem	Appx. Hrs.
Cl	10
LI	12
SW	2
SL	1
Total	25

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)

Faculty of Engineering and Technology

Department of Mechanical | Engineering

SO2.1.Understand the concepts of Dictionaries and Dictionary Accumulation SO2.2.Identify theFunctions/Meth ods SO2.3.Apply functions SO2.4.Use of Functions/Methods	 LI.4.1. Write a program to count the numbersof characters in the string and LI.4.2.store them in a dictionary data structure. LI.4.3.Write a program to use split and join methods in the string and LI.4.4. trace a birthday of a person with a dictionary data structure. LI.4.5 Write a program for user define function. LI.4.6. Write a program to user demonstrate the use of Array. 	 Unit-4 :Dictionaries and Dictionary Accumulation, Functions/Methods 4.1 Dictionary Basics 4.2 Operations 4.3 Methods, accumulation. 4.4 Advantage of modularizingprogra m into functions. 4.5 Functiondefinition. 4.6 Function invocation. 4.7 Positional Parameter Passing 4.8 Passing arrays to functions 4.9 Recursion 4.10 Library Functions 	 i. Preparation of process Dictionary ii. A typical Positional Parameter Passing .
---	---	--	--

SW-4 Suggested Sessional Work(SW):

a. Assignments:

- 1. Write a program that reads a string from keyboard and prints the unique words
- 2. Use of user defined function with example.

b. Mini Project:

Map Two Lists into A Dictionary.

c. Other Activities(Specify):

NA.

Faculty of Engineering and Technology

Department of Mechanical I Engineering

ESC-104.5: Comprehend the functions of different File Handling and Memory Management.

Item	Appx. Hrs.
Cl	6
LI	12
SW	2
SL	1
Total	21

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO2.1 Understanding the file handling task SO2.2 know thefunctions of file handling SO2.3 Importance of .csv file SO2.4 Use of Memory Management	 LI.5.1. Write a programto countfrequency of characters in a given file. LI.5.2.Can you use character frequency to tell whether the given file is a Python program file, C program file or a text file? LI.5.3Write a program to read data from a file. LI.5.4. Write a program to write data into a file. LI.5.5.Write a program to copy data from one 	 Unit 5: File Handling and Memory Management 5.1 File Handling 5.2 Memory Management 5.3 Concepts of files and basic file operations. 5.4 Writing Data to a .csv File. 5.5 Reading Data to from a .csv File. 5.6 Memory Management Operations. 	 Role of file handling. Working of .csv file

Faculty of Engineering and Technology

Department of Mechanical | Engineering

file to another.	
LI.5.6.Write a	
program for memory	
management	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

List the different file handling functions.

b. Mini Project:

Data base management of any fields by using file handling.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture(Cl)	Ll(Laborator y Instruction)	Sessional Work(SW)	Self- Learning(Sl)	Total hour(Cl+SW+Sl)
ES 104.1: At the end of this chapter the student will know the basic concept of programming.	7	12	2	1	22
ES 104.2:At the end of this chapter the student will useOperatorsi n programs.	12	12	2	1	27
ES 104.3: At the end of this	10	12	2	1	25

Faculty of Engineering and Technology

Department of Mechanical I Engineering

chapter the student will describe the control flow statements.					
ES 104.4:At the end of this chapter the student will make function and dictionary	10	12	2	1	25
ES104.5: Comprehend the functions of .csv and filehandling functions.	6	12	2	1	21
Total Hours	45	60	10	5	120

Suggestion for End Semester Assessment

Suggested Specification Table(ForESA)

СО	Unit Titles	Marks Distribution		ribution	Total
		R	U	Α	Marks
ESC- 104.1	Understand the basic concept of Programming languages, software, algorithm and flowchart.	02	08	01	11
ESC- 104.2	Acquire knowledge regarding the building blocks of programming language.	02	06	01	09

Faculty of Engineering and Technology

Department of Mechanical | Engineering

	Legend: R:Remember, U:U	Inderstand	l,	A:Apply	
	Total	11	26	13	50
ESC- 104.5	Understand real world problems and developing computer solutions for those.	3	05	03	11
ESC- 104.4	Create algorithm using learnt programming skills.	2	04	04	10
ESC- 104.3	Apply python for solving basic programming solutions.	02	03	04	09

The end of semester assessment for Problem Solving and Programming will be held with written examination of 50 marks.

Suggested Learning Resources:

a. Books:

S.	Title	Author	Publisher	Edition
No.				&Year
1	Programming for Problem Solving	R.S. Salaria, Khanna	Khanna Publishing House	2021, 4 th Edition
2	Taming Python by Programming	Jeeva Jose	Khanna Publishing House	2019, 3 rd Edition
3	Learning Python	Mark Lutz	O'Reilly Media	2013, 5 th Edition

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.

Faculty of Engineering and Technology

Department of Mechanical I Engineering

- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

COs, POs and PSOs Mapping

Program: B. Tech. Computer Science & Engineering (CSE)

Course Code : ESC-104

Course Title: Programming for Problem Solving

CourseOutcomes	ProgramOutcomes										ProgramSpecificOutcome					
	PO1	P02	PO3	P04	POS	PO6	P07	PO 8	60d	P010	P011	P012	PSO1	PSO2	PSO3	PSO4
	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct studies of difficult problems	Utilization of modern tools	Engineers and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-longlearning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation.	Product Innovation and Development
CO 1: Understand the basic concept of Programming languages, software, algorithm and flowchart.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO 2 : Acquire knowledge regarding the building blocks of programming language	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO 3: Apply python for solving basic programming solutions.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO 4: Create algorithms using learnt programming skills	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO5:Understand real world problems and developing computer solutions for those.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map

POs&PSOsNo.	COsNo.&Titles	SOsNo.	LaboratoryInst ruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)	
PO1,2,3,4,5,6,7,8 ,9,10,11,12 PSO1,2,3,4,5	CO 1: Understand the basic concept of Programming languages, software, algorithm and flowchart.	SO1.1 SO1.2 SO1.3 SO1.4	LI.1.1, LI1.2,LI1.3,LI1.4 ,LI1.5,LI1.6	Unit-1Introduction to Programming 1.1,1.2,1.3,1.4,1.5,1.6,1.7		
PO1,2,3,4,5,6,7,8 ,9,10,11,12 PSO1,2,3,4,5	CO 2 : Acquire knowledge regarding the building blocks of programming language.	SO2.1 SO2.2 SO2.3 SO2.4	LI.2.1,LI2.2,LI2. 3,LI.2.4,LI.2.5,LI 2.6	Unit-2Datatypes and Operators, Variables, Sequences and Iteration 2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9,2.10,2. 11,2.12	Asmentionedin pagenumber	
PO1,2,3,4,5,6,7,8 ,9,10,11,12 PSO1,2,3,4,5	CO 3: Apply python for solving basic programming solutions.	SO3.1 SO3.2 SO3.3 SO3.4	LI3.1,LI3.2,LI3.3 ,LI.3.4,LI3.5,LI3. 6	Unit-3Conditional Statements, Loops, Arrays and Strings, User Defined Data Types 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,	above	
PO1,2,3,4,5,6,7,8 ,9,10,11,12 PSO1,2,3,4,5	CO 4: Create algorithms using learnt programming skills.	SO4.1 SO4.2	LI4.1,LI.4.2,LI4. 3,LI4.4,LI4.5,LI4 .6	Unit-4Dictionaries and Dictionary Accumulation, Functions/Methods:		

		SO4.3 SO4.4		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,
PO1,2,3,4,5,6,7,8 ,9,10,11,12 PSO1,2,3,4,5	CO 5: Understand real world problems and developing computer solutions for those.	SO5.1 SO5.2 SO5.3 SO5.4	LI.5.1,LI5.2,LI5. 3,LI5.4,LI5.5,LI5 .6	

Semester-II

Course Code:	HSMC09
Course Title:	Sports and Yoga
Pre- requisite:	Student should have basic knowledge of Sports And Yoga concepts
Rationale:	Students of Yoga should have a legal understanding of Yoga and its original text Yoga. At the same time, they should also have adequate knowledge Yoga practices in which they should have knowledge of its basic principles and elements.

Course Outcomes:

CO 201.1: To make the students understand the importance of Introduction of Yoga.

CO201.2: To make the students understand the importance of Fundamentals of Yog.

CO201.3: To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.

CO201.4: To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury and Yoga & Lifestyle.

CO201.5 To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health

Board of	Board of		Scheme ofstudies(Hours/Week)			Total		
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours(CI+LI+SW +SL)	Credits(C)
Program Core	HSMC09	Sports and Yoga	2	0	0	0	2	NC

Legend: Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 L1: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, miniproject etc.),
 SL: Self Learning,
 C:Credits. 2

Theory

			Scheme of Assessment (Marks)							
			Progressive Assessment (PRA)					End Semester Assessmen t	Total Marks	
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test2 (2 best out Of 3) 10 marks each(CT)	Semin ar one (SA)	Class Activity anyone (CAT)	Class Attendan ce	Total Marks (CA+CT+SA+CAT+AT)	(ESA)	(PRA+ES A)
		Sports					(AT)	(,		
PC C	HSMC09	And Yoga	20	20	5	5	0	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should show case the of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO. 1: To make the students understand the importance of **Introduction of Yoga**.

Approximate Hours

Ар	proximate Hours
ltem	AppXHrs
Cl	06
LI	0
SW	0
SL	3
Total	09

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
SO1.1 Student will able to Understand the Meaning & Importance of Yoga SO1.2 Student will able to Describe the Elements of Yoga, as tang yoga SO1.3Student will able to Describe Introduction - Asanas, Pranayama, Meditation & Yogic Kriyas SO1.4Student will able to Understand the Concept of Yoga for concentration & related Asanas SO1.5Student will able to Understand the Concept of Relaxation Techniques for improving concentration - Yog-nidra		Asanas (Sukhasana; Tadasana; Padmasana&Shashankasana)	

CO. 2: To make the students understand the importance of Fundamentals of Yoga

•

Approximate Hou				
ltem	AppX Hrs			
Cl	06			
11	0			

Cl	06
LI	0
SW	0
SL	2
Total	08

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)		
SO2.1 Student will able to Understand Fundamentals of Yoga SO2.2Student will able to Understand the Effect of yoga on the functioning of Various Body Systems		 Unit-2. Fundamentals of Yoga 2.1 Purpose yoga , definition of yoga , need and use of yoga for students. 2.2 Effect of yoga on the functioning of Various Body Systems. 2.3 Effect of yoga on the functioning of Various Body Systems 2.4 Circulatory System, 2.5 Respiratory System, 2.6 Neuro- System , Muscular System etc. 	1.	Effect of yoga on the functioning of Various Body Systems Fundamentals of Yoga

CO. 3: To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.

Ap	proximate Hours
ltem	AppX Hrs
Cl	06
LI	0
SW	0
SL	2
Total	08

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)		Self Learning (SL)
SO3.1 Student will able to Understand Meaning & Importance Physical Fitness, Wellness & Lifestyle SO3.2 Student will able to Understand the Components of Physical fitness SO3.3 Student will able to Describe SO3.4 Student will able to Understand of Health related fitness SO3.5 Student will able to Understand of Preventing Health SO3.6 Student will able to Describe Concept of Positive Life		Unit-3. Physical Fitness, Wellness & Lifestyle 3.1 o Meaning & Importance of Physical Fitness & Wellness 3.2 Components of Physical fitness 3.3 Components of Health related fitness 3.4 Components of wellness 3.5 Preventing Health Threats through Lifestyle Change 3.6 Concept of Positive Lifestyle	1. 2.	Physical Fitness Wellness & Lifestyle

CO. 4: To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury and **Yoga & Lifestyle**

Approximate Hours

Item	AppX Hrs
Cl	06
LI	0
SW	0
SL	1
Total	7

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
SO4.1 Student will able to Understand Asanas as preventive measures SO4.2 Student will able to Understand the Hypertension, Obesity, Back Pain, Diabetes, Asthema,		 Unit-4. Yoga & Lifestyle 4.1 Asanas as preventive measures. 4.2 Hypertension: Tadasana, Vajrasana, PavanMuktasana, ArdhaChakrasana, Bhujangasana, Sharasana. 4.3 Obesity: Procedure, Benefits & contraindications for Vajrasana, Hastasana, Trikonasana, ArdhMatsyendrasana. 4.4 Back Pain: Tadasana, ArdhMatsyendrasana, Vakrasana, Shalabhasana, Bhujangasana. 4.5 Diabetes: Procedure, Benefits & contraindications for Bhujangasana, Paschimottasana,PavanMuktasana, ArdhMatsyendrasana. 4.5 Diabetes: Procedure, Benefits & contraindications for Bhujangasana, Paschimottasana,PavanMuktasana, ArdhMatsyendrasana. 4.6 Asthema: Procedure, Benefits & contraindications for Sukhasana, Chakrasana, Gomukhasana, Parvatasana, Bhujangasana, Paschimottasana, Matsyasana. 	 Asanas as preventive measures

CO. 5: To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health **& Postures.**

Approximate Hours

App. Hrs
6
0
0
1
7

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
SO5.1 Student will able to Understand the Meaning and Concept of Postures SO5.2 Student will able to Understand the Causes of Bad Posture SO5.3 Student will able to Describe Concept & advantages of Correct Posture		Unit-5. Postures 5.1 Meaning and Concept of Postures. 5.2 Causes of Bad Posture. 5.3 Advantages& disadvantages of weight training. 5.4 Concept& advantages of Correct Posture. 5.5 Common Postural Deformities – Knock Knee; Flat Foot; Round Shoulders; 5.6 Lordosis,Kyphosis, Bow Legs and Scoliosis.	1.Meaning and Concept of Postures

SW-4SuggestedSessionalWork(SW):

- a. Assignments:
 - i. Yoga & Lifestyle
 - ii. Physical Fitness, Wellness & Lifestyle

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour(Cl+S W+SI)
C0101.1:To make the students understand the importance of Introduction of Yoga	6	0	3	9
CO 101.2: To make the students understand the importance of Fundamentals of Yoga	6	0	2	8
C0101.3:To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.	6	0	2	8
C0101.4: To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury and Yoga & Lifestyle	6	0	1	7
CO 201.5 To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health & Postures	6	1	1	8
Total Hours	30	1	9	40

Suggestion for End Semester Assessment

СО	CO Unit Titles		Marks Distribution						
		R	U	Α	Marks				
CO-1	Introduction of Yoga	10	10	00	20				
CO-2	Fundamentals of Yoga	10	10	00	20				
CO-3	Physical Fitness, Wellness & Lifestyle	05	05	00	20				
CO-4	Yoga & Lifestyle	05	05	00	20				
CO-5	Postures	05	05	00	20				
	Total	25	25	00	100				

Suggested Specification Table (For ESA)

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment for Introduction to yoga will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration
- 7. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog, Facebook,Twitter,Whatsapp,Mobile,Onlinesources)
- 8. Brainstorming

Suggested Learning Resources:

(a) Books:

TEXT BOOKS

Text Books/References:

1. Modern Trends and Physical Education by Prof. Ajmer Singh.

- 2. Light On Yoga by B.K.S. Iyengar.
- 3. Health and Physical Education NCERT (11th and 12th Classes)

COs,POs and PSOs Mapping

Programme Title: B. Tech. Mechanical Engineering Course Code: HSMC09 Course Title: Sports and Yoga

	Program Outcomes								Program Spe	cific Outcome						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engi neeri ng kno wled ge	Prob lem Solv ing	Desi gn Skill s	Lab orat ory Skill s	Tea m wor k	Com mun icati on Skill s	Ethi cal and Prof essio nal Beh avio r	Lifelo ng Learn ing	Globa l and Societ al Impac t	Projec t Mana geme nt	Adapt ability	Profess ional Develo pment	Mechanical System Design and Analysis	Manufacturin g Processes and Automation	Computational Modeling and Simulation.	Product Innovatio n and Develop ment
CO1:To make the students understand the importance of of Yoga	-	2	-	-	1	-	1	-	2	1	-	-	-	-	-	-
CO2: To make the students understand the Fundamentals of Yoga	-	2	-	-	1	-	1	-	2	1	-	-	-	-	-	-
CO3:To expose the students to a variety of physical and yogic activities aimed at stimulating their continued inquiry about Yoga, physical education, health and fitness.	-	2	-	-	2	-	2	-	2	2	-	2	-	-	-	-
CO 4: To create a safe, progressive, methodical and efficient activity based plan to enhance improvement and minimize risk of injury and Yoga & Lifestyle	-	2	-	-	1	-	1	-	2	1	-	1	-	-	-	-
CO5: To develop among students an appreciation of physical activity as a lifetime pursuit and a means to better health&Postures.	-	2	-	-	2	-	3	-	2	1	2	2	-	-	-	-

Legend:1–Low,2–Medium, 3–High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learnin g (SL)
PO:1,2,3,4,5,6,7,8,9,1 0,11,12	CO1:To make the students	SO1.1 SO1.2			1,2,3
	understand the importance of	SO1.2 SO1.3		Unit-1.0 Introduction of Yoga	1,2,5
PSO 1,2	Yoga	SO1.4		1.1,1.2,1.3,1.4,1.5,1.6	
		SO1.5			
PO:1,2,3,4,5,6,7,8,9,1	CO 2 : To make the students	SO2.1			1,2
0,11,12	understand the Fundamentals	SO2.2		Unit-2 Fundamentals of Yoga 2.1, 2.2, 2.3, 2.4,2.5,2.6	,
PSO 1,2	of Yoga			2.1, 2.2, 2.3, 2.4,2.3,2.0	
PO:1,2,3,4,5,6,7,8,9,1	CO3:To expose the students	SO3.1			
0,11,12	to a variety of physical and	SO3.2		Unit-3:Physical Fitness, Wellness &	
	yogic activities aimed at	SO3.3		Lifestyle	1,2
PSO 1,2	stimulating their continued	SO3.4		3.1, 3.2, 3.3, 3.4, 3.5	
	inquiry about Yoga, physical education, health and fitness.	SO3.5		,3.6,3.7,3.8,3.9,3.10,3.11,3.12	
DO 10245(7001		SO3.6			
PO:1,2,3,4,5,6,7,8,9,1 0,11,12	CO 4: To create a safe, progressive, methodical and				
0,11,12	efficient activity based plan to	SO4.1		Unit-4: Yoga & Lifestyle	1
PSO 1,2	enhance improvement and	SO4.2		4.1, 4.2, 4.3, 4.4, 4.5, 4.6	1
150 1,2	minimize risk of injury and				
	Yoga & Lifestyle				
PO:1,2,3,4,5,6,7,8,9,1	CO5: To develop among	SO5.1			
0,11,12	students an appreciation of physical activity as a lifetime	SO5.2		Unit-5: Postures	1
PSO 1,2	pursuit and a means to better health&Postures.	SO5.3		Equations5.1, 5.2, 5.3, 5.4, 5.5, 5.6	

Third Semester

Course Code: Course Title: Pre- requisite: Rationale:

Universal Human Values

HSMC-301

equisite:Creating awareness among the studentsona holistic perspective about lifehale:The purpose is to help develop a holistic perspective about life. A self-
reflective methodology of teaching is adopted. It opens the space for the
student to explore his/her role (value) in all aspects of living – as an
individual, as a member of a family, as a part of the society and as an unit
in nature. Through this process of self exploration, students are able to
discover the values intrinsic in them.

Course Outcomes:

CO- UHV ModuleI: To understanding Value Education

- **CO- UHVModule II:**Students will have the ability to learnabout Harmony in the Human Being.
- **CO- UHV Module III:**Student will be able to gain knowledge on Harmony in the Family and Society.
- CO- UHV Module IV: Understanding Harmony in the Nature/Existence.
- **CO- UHV Module V:** Student will able to understand about Implications of Holistic Understanding- A Look at Professional Ethics.

Scheme of Studies:

Category	Cours	Course		Scheme of studies(Hours/Week)				
of Course	e	Title	CI	LI	SW	SL	Total Study Hours	Credits
	Code						CI+LI+SW+SL	(C)
VAC	UHV	Universal	3		1	1	5	3
		Human						
		Values						

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Session Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

C: Credits.

Proposed examination scheme (Marking) as per the recommendation of University Grant Commission (UGC) for Under Graduate Coursesin Fundamentals of Univarsal Human Values 2022-23 onwards

S.	Category of		Components of Marks				
No.	Course/Subject	Semester End Examination (External	Mid Term exam (Internal)	Assignment (Internal)	Practical Exam (Internal)		
1	Only Theory						
	Subject Course						
2	Subject/ Course						
	with theory and						
	Practical						
3	Subject/ Course						
	only Practical						

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

UHV Module I.Student will be able toUnderstand the Value Education

	Approximate Hours
Item	Approximate Hours
CI	9
LI	0
SW	2
SL	1
Total	12

Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO 1.1. Understand Self- exploration as the Process for Value Education SO1.2. Understand Continuous Happiness and Prosperity – the Basic Human Aspirations SO 1.3. Understand Right Understanding SO1.4. Understand Relationship and Physical Facility SO 1.5. Understand Happiness and Prosperity – Current Scenario SO 1.6. Understand Method to Fulfill the Basic Human Aspirations		 Module-I Understanding Value Education 1.1 Self-exploration as the Process for Value Education 1.2 Continuous Happiness and Prosperity – the Basic Human Aspirations 1.3 Right Understanding 1.4 Relationship and Physical Facility 1.5 Happiness and Prosperity – Current Scenario 1.6 Method to Fulfill the Basic Human Aspirations 1.7 Tutorial 1 1.8 Tutorial 2 1.9 Tutorial 3 	Human values to become a good man

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Continuous Happiness and Prosperity the Basic Human Aspirations
- b. Mini Project:
 - ii. Relationship and Physical Facility
- c. Other Activities (Specify):

UHV Module II: Students will have the ability to apply the gained knowledge onHarmony in the Human Being

Approximate Hours

			Item	Approx	ximate Hours
			CI		9
			LI		0
			SW		2
			SL		1
			Total		12
Session Outcomes (SOs)		ratory	Class room Instruc	ction (CI)	Self Learning
	Instru	iction			(SL)
	(L	J)			
SO 2.1. Understanding Human			Module-II Harmon	ny in the	1. Harmony in
being as the Co-existence			Human Being		and among
of the Self and the Body			2.1. Human being a	is the Co-	human
SO2.2. Understand the			existence of the	e Self and	being
Distinguishing between the			the Body		
Needs of the Selfand Body			2.2. Distinguishing	between	
SO 2.3. Understand the Body as			the Needs of th	e Selfand	
an Instrument of the Self			Body		
SO 2.4. Understanding Harmony			2.3. Body as an Inst	rument of	
in the Self			the Self		
SO 2.5. Understanding			2.4 Harmony in the	Self	
Harmony of the Self with			2.5 Harmony of the	Self with	
the Body			the Body		
SO2.6. Understand Programme			2.6 Programme to er	nsure self-	
to ensure self-regulation and			regulation and H	Iealth.	
Health			2.7 Tutorial 1		
			2.8 Tutorial 2		
			2.9 Tutorial 3		

- SW-2 Suggested Sessional Work (SW):
- a. Assignments:

i. Harmony in the self

b. Mini Project:

ii. Body an an instrument

c. Other Activities (Specify):

N/A

Curriculum of B.Tech. (Mech. Engg.) Program

(Revised as on 01 August 2023)

UHV Module III: Student will be able to understandHarmony in the Family and Society

Approximate Hours

Item	Approximate Hours
CI	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO 3.1. Understand Harmony in		Module III. Harmony in	1. Harmony in
the Family – the Basic Unit		the Family and Society	the society
of Human Interaction		3.1 Harmony in the Family –	_
SO 3.2. Understand the Values		the Basic Unit of	
in Human-to-Human		Human Interaction	
Relationship		3.2 Values in Human-to-	
SO 3.3. Understand the 'Trust' –		Human Relationship	
the Foundational Value in		3.3 'Trust' – the	
Relationship		Foundational Value in	
SO 3.4. Understand the 'Respect'		Relationship	
 as the Right Evaluation 		3.4 'Respect' – as the Right	
SO 3.5. Understanding Harmony		Evaluation	
in the Society		3.5 Understanding Harmony	
SO 3.6. Understand the Vision		in the Society	
for the Universal Human		3.6 Vision for the Universal	
Order		Human Order.	
		3.7 Tutorial 1	
		3.8 Tutorial 2	
		3.9 Tutorial 3	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

1. Respect the right evaluation

b. Mini Project:

- 1. Trust is the fundamental value of relationships
- c. Other Activities (Specify):

N/A

UHV Module IV: Student will be able to understandHarmony in the Nature/Existence

Approximate Hours

	reperoximate mours
Item	Approximate Hours
CI	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO 4.1. Understanding Harmony in the Nature, Interconnectedness SO 4.2. Understand self regulation and Mutual Fulfillment among 4 orders of Nature SO 4.3. Understand the Exploring Four Orders of Nature SO 4.4. Understand the Realizing Existence as Co- existence at All Levels SO 4.5. Understand the holistic Perceptions of Harmony in Existence SO 4.6. Understand the Exploring Co-Existence in Existence 		 Module-IV Harmony in the Nature/Existence 4.1 Harmony in the Nature, Interconnectedness 4.2 Self regulation and Mutual Fulfillment among 4 orders of Nature 4.3 Exploring Four Orders of Nature 4.4Realizing Existence as Co-existence at All Levels 4.5 The holistic Perceptions of Harmony in Existence 4.6The Exploring Co-Existence in Existence 4.7 Tutorial 1 4.8 Tutorial 2 4.9 Tutorial 3 	i. Harmony in the nature

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Harmony in nature
- b. Mini Project:
 - i. Exploring 4 orders of nature
- c. Other Activities (Specify)

N/A

UHV Module V: Students will have the ability to apply the gained knowledge in Implications of Holistic Understanding- A Look at Professional Ethics

Approximate Hours

	i ppi omnate nouis
Item	Approximate Hours
CI	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning (SL)
CO 5.1 Un de metere d'Netere el	(LI)		II-1:
SO 5.1. Understand Natural		Module V. Implications of	Holistic
acceptance of Human		Holistic Understanding- A	understandi
Values		Look at Professional Ethics	ng of
SO 5.2 Understand		5.1 Natural acceptance of	human
Definitiveness of (Ethical)		Human Values	values
Human Conduct		5.2.Definitiveness of	
SO5.3. Understand A Basis for		(Ethical) Human	
Humanistic Education		Conduct	
SO 5.4. Understand the		5.3 A Basis for Humanistic	
Humanistic Constitution		Education	
and Universal Human		5.4 Humanistic Constitution	
Order		and Universal Human	
SO 5.5. Understand Competence		Order	
in Professional Ethics		5.5Competence in	

SO 5.6. Understand Strategies **Professional Ethics** for Transition towards 5.6 Strategies for Transition value based Life towards value based Life and and Profession. Profession 5.7 Tutorial 1 5.8 Tutorial 2 5.9 Tutorial 3

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Human conduct
- b. Mini Project:
 - i. Humanistic constitution
- c. Other Activities (Specify):

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture	Sessional Work (SW)	Self Learning	Total hour (Cl+SW+Sl)
	(Cl)		(SI)	
UHV Module. I:Student will be able to	9	2	1	12
understand The Value Education				
UHV Module. II: Students will have the	9	2	1	12
ability to apply the knowledge gained				
about Harmony in the Human Being				
UHV Module. III: Student will be able to	9	2	1	12
understandthe Harmony in the Family and				
Society				
UHV Module. IV: Understand the	9	2	1	12
Harmony in the Nature/Existence				
UHV Module. V: Understand about the	9	2	1	12
Implications of Holistic Understanding- A				
Look at Professional Ethics				
Total	45	10	5	60

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO 1	The Value Education	2	5	1	8
CO 2	Harmony in the Human Being	2	6	2	8
CO 3	Harmony in the Family and Society	2	6	5	13
CO 4	Harmony in the Nature/Existence	2	4	4	10
CO 5	Implications of Holistic Understanding- A	2	5	2	9
	Look at Professional Ethics				
	Total	10	26	14	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Universal Human Values** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course teacher for above tasks. Teacher can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to Religious places, World Heritage Sites
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition & Year
1	JeevanVidya: EkParichaya	A Nagaraj	JeevanVidyaPrakashan, Amarkantak	1998
2	Human Values	A.N. Tripath	New Age Intl. Publishers, New Delhi,	2004
3	Universal Human Values		AICTE	2021
	Human Values and Professional Ethics	R.R. Gaur, R Sangal and G P Bagaria	Excel Book Publisher	2009
	Vyavaharvadï. Samajshastra	A Nagaraj	JeevanVidyaPrakashan, Amarkantak	1999
	Manava Vyavahara Darsana	A Nagaraj	JeevanVidyaPrakashan, Amarkantak	2003
	Foundations of Ethics and Management,	B P Banerjee	Excel Book	2005
	Fundamentals of Ethics for Scientists & Engineers	E G Seebauer& Robert L. Berry	Oxford University Press.	2000
	Engineering Ethichs (including Human Values)	M Govindrajran, S Natrajan and V.S. Senthil Kumar	Eastern Economy Edition, Prentice Hall of India Ltd.	-

Curriculum Development Team:

- 1. Er. Anant Kumar Soni, Hon'ble Pro-Chancellor and Chairman, AKS University, Satna (M.P.).
- 2. Prof. B.A. Chopde, Hon'ble Vice Chancellor, AKS University, Satna (M.P.).
- 3. Dr. Sudhir Rawat, AKS University, Satna (M.P.).
- 4. Prof. G.C. Mishra, Director, IQAC, AKS University, Satna (M.P.).
- 5. Prof. R.L.S. Sikarwar, Director, Centre for Traditional Knowledge Research & Application, AKS University, Satna (M.P.).

COs, POs and PSOs Mapping

Program: B. Tech. Mechanical Engineering Course Code : HSMC-301 Course Title: Universal Human Values

	ProgramOutcomes								ProgramSpecificOutcome							
	POI	P02	PO3	P04	PO5	P06	P07	PO 8	P09	PO10	P011	P012	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct studies of difficult problems	Utilization of modern tools	Engineers and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-longlearning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation.	Product Innovation and development
UHV Module. I: Student will be able to understand The Value Education	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
UHV Module. II: Students will have the ability to apply the knowledge gained about Harmony in the Human Being	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
UHV Module. III: Student will be able to understand the Harmony in the Family and Society	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
UHVModule.IV:UnderstandtheHarmonyinthetheNature/Existence	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
UHV Module. V: Understand about the Implications of Holistic Understanding- A Look at Professional Ethics	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Course Curriculum Map

POs&PSOsNo.	COsNo.&Titles	SOsNo.	LaboratoryInstruction (LI)	Classroom Instruction(CI)	Self-Learning(SL)
PO1,2,3,4,5,6,7,8,9,10,11,12	UHV Module. I:Student	SO1.1		Unit-1 Understanding Value	
PSO1,2,3,4,5	will be able to understand	SO1.2		Education	
	The Value Education	SO1.3		1.1,1.2,1.3,1.4,1.5,1.6	
		SO1.4			
		SO1.5			
		SO1.6			
PO1,2,3,4,5,6,7,8,9,10,11,12	UHV Module. II: Students	SO2.1		Unit-2Harmony in the Human Being	
PSO1,2,3,4,5	will have the ability to apply	SO2.2		2.1,2.2,2.3,2.4,2.5,2.6	
	the knowledge gained about	SO2.3			
	Harmony in the Human	SO2.4			
	Being	SO2.5			
		SO2.6			
PO1,2,3,4,5,6,7,8,9,10,11,12	UHV Module. III: Student	SO3.1SO3.2		Unit-3Harmony in the Family and	
PSO1,2,3,4,5	will be able to understandthe	SO3.3		Society	Asmentionedin
	Harmony in the Family and	SO3.4			
	Society	SO3.5		3.1,3.2,3.3,3.4,3.5,3.6	pagenumber _to_
		SO3.6			
PO1,2,3,4,5,6,7,8,9,10,11,12	UHV Module. IV:	SO4.1		Unit-4 Harmony in the	
PSO1,2,3,4,5	Understand the Harmony in	SO4.2		Nature/Existence	
	the Nature/Existence	SO4.3		4.1,4.2,4.3,4.4,4.5,4.6	
		SO4.4		1,2,3,,3,0	
		SO4.5			
		SO4.6			
PO1,2,3,4,5,6,7,8,9,10,11,12	UHV Module. V:	SO5.1		Unit-5 Implications of Holistic	
PSO1,2,3,4,5	Understand about the	SO5.2		Understanding- A Look at	
	Implications of Holistic	SO5.3		Professional Ethics	
	Understanding- A Look at	SO5.4		5.1,5.2,5.3,5.4,5.5,5.6	
	Professional Ethics	SO5.5			
		SO5.6			

A K S University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Semester-III

Course Code:	ESC-ME203
Course Title :	Engineering Thermodynamics
Pre-requisite:	Student should have basic knowledge of physics and basic laws. Understanding concepts such as energy, heat and basic principles of chemical reactions is crucial.
Rationale:	The rationale of Engineering Thermodynamics primarily revolves around enhancing efficiency in engineering systems. By understanding energy transfer, conversion, and limitations through thermodynamic principles, engineers can optimize designs, reduce energy losses, and create more efficient systems. This focus on efficiency drives innovation and ensures sustainable practices in various industries, ultimately aiming for better resource utilization and cost-effectiveness in engineering applications.

Course Outcomes:

- ME203.1: Grasp fundamental thermodynamic concepts, systems, energy forms, and basic processes.
- ME203.2: Apply energy conservation principles to closed and open systems, understanding their significance in various devices.
- ME203.3: Comprehend entropy and the limitations it imposes on energy conversion processes.
- ME203.4: Understand gas equations, pure substance properties, and phase change diagrams.
- ME203.5: Analyze different power cycles, evaluating efficiency and practical limitations.

A K S University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of					Sche	Scheme of studies(Hours/Week)				
Study	Course Code	Course Title	Cl	LI	SW		Total Study Hours(CI+LI+SW+SL)	(C)		
Program Core (ESC)	ME203	Engineering Thermodynamics	4	2	1	1	8	5		

 Legend:
 CI: Class room Instruction (Includes differentinstructionalstrategiesi.e.Lecture(L)andTutorial (T)andothers),

 LI:Laboratory Instruction(Includes Practical performancesinlaboratoryworkshop, field or other locations using different instructional strategies)

 SW: Sessional Work (includesassignment, seminar, mini project etc.),

 SL: Self Learning,

 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
Board of	Couse	Course			Progressiv	e Assessme	ent (PRA)		End Semester Assessment	Total Marks
Study	Code	Title	Class/Home Assignment 5 number 3 marks each	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activit y any one	Class Attendanc e	Total Marks (CA+CT+SA+CAT+AT	(ESA)	
			(CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+C1+SA+CA1+A1)	(2012)	(PRA+ ESA)
ESC	ME 203	Engineeri ng Thermody namics	15	20	5	5	5	50	50	100

AKS University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Practical

Board of	Couse	Course Title	Scheme	Scheme of Assessment (Marks)				
Study	Code		Progressive Assessment (PRA) E So A nu (H					Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)		
ESC	ME203-L	Applied thermody namics-L	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC-ME203.1: To understand the thermodynamic fundamentals before studying their application in applied thermodynamics.

Approximate Hours

11				
Item	AppX Hrs			
Cl	11			
LI	4			
SW	2			
SL	1			
Total	18			

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)

A K S University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

SO1. 1 Grasp macroscopic and	1.1 To verify	Unit-1: Basic	i. Different
microscopic viewpoints, the	the Boyle's	Concepts &	conditions of
continuum concept, and	law.	definitions	equilibrium
distinctions among system,	1.2 To determine		
surrounding, and boundary.	Joule	1.1 Introduction of	ii. Thermodynamic
	Thomson	Thermodynamics and	System,
SO1.2 Identify thermal, chemical,	coefficient of	its importance	Surrounding and
mechanical, and thermodynamic equilibrium, differentiating	Carbon	1.2 Macroscopic and	Boundary, Control
control volume and systems	dioxide	Microscopic view point,	Volume approach
approaches		Concept of Continuum	and Systems
		1.3 Thermodynamic	approach
		System, Surrounding	
		and Boundary, Control	
SO1.3 Differentiate intensive and		Volume approach and	
extensive properties, understand		Systems approach	
state-path-process-cycle concepts,		1.4 Equilibrium – Thermal	
and distinguish point and path		,Chemical, Mechanical	
functions		and thermodynamic	
		1.5 Pure Substance,	
SO1.4 Explore energy fundamentals, sources, forms, and		Property – Intensive	
mechanisms like work and heat		and Extensive, State,	
transfer		Path, Process and Cycle	
		Point Function and Path	
SO1.5 Understand the Zeroth Law,		Function	
temperature scales, and equations		1.6 Quasi Static Process	
of state, focusing on the ideal gas		and processes like	
equation and gas constants.		Isobaric, Isochoric,	
		Isothermal	
		1.7 Polytropic Process,	
		Temperature and	
		different scales	
		1.8 Zeroth Law of	
		Thermodynamics,	
		Energy, sources of	
		energy forms of energy,	
		Energy transfer by work	
		and forms of work	
		1.9 Free Expansion, Energy	
		transfer by heat	

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Adiabatic Process, Equations of state 1.10Ideal gas Equation 1.11Specific gas constant and Universal Gas Constant

SW-1 Suggested Sessional Work (SW):

- a. Assignments:
 - i) Equilibrium Thermal, Chemical, Mechanical and thermodynamic
 - ii) Zeroth Law of Thermodynamics, Energy, sources of energy forms of energy, Energy transfer by work and forms of work
- b. Mini Project:
- c. Other Activities (Specify):

Difference between state function and path function.

ESC-ME203.2: To determine the thermodynamic efficiency of different energy related processes.

Ap	proximate Hours
Item	AppX Hrs
Cl	12
LI	6
SW	2
SL	1
Total	21

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO2.1 Explore heat-work relation, cyclic processes, conservation principle, and	1. To study Mountings &	Unit-2: First Law of Thermodynamics	 i) First Law of Thermodynamics applied to open

A K S University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

applications in closed and open systems.	Accessories of a Boiler.	2.1 Relation between Heat and Work- Joules	system
		 and Work- Joules Constant 2.2 First law of thermodynamics for a cyclic process 2.3 First law of thermodynamics for a closed system undergoing a process Conservation principle 2.4 First Law of Thermodynamics 2.5 applied to open system Steady Flow Energy Equation 2.6 Perpetual motion 	ii) Application of first law of thermodynamics to Open Systems like Steam Nozzle, Boiler, Steam Turbine,
SO2.5 Apply thermodynamics to real systems, addressing ideal gas limitations and evaluating constants for non-ideal gases.		Machine of First kind, Application of first law of thermodynamics to closed system 2.7 Application of first law of thermodynamics to Non flow Process	
		2.8 Application of first law of thermodynamics to Open Systems like Steam Nozzle, Boiler, Steam Turbine,	
		2.9 Application of first law of thermodynamics to Open Systems like Pump, Heat Exchanger, Throttling Process	
		2.10 Equation of state: Idealgas equation of	

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

state, Real gas deviation with ideal
gas
2.11Vanderwaals equation,
Evaluation of its
constants,
2.12 Virial expansions,
Limitations of the
equation. The law of
corresponding states

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
 - i) First law of thermodynamics for a cyclic process.
 - ii) First law of thermodynamics for a closed system undergoing a process Conservation principle

b. Mini Project:

Discuss the application of First law of thermodynamics for different processes used in power plant.

c. Other Activities (Specify):

Application of first law of thermodynamics to Open Systems like Pump, Heat Exchanger.

ESC-ME203.3: To learn the device a technically feasible refrigerator for wide applications.

Ар	proximate Hours
Item	AppXHrs
Cl	12
LI	6
SW	3
SL	2
Total	23

SessionOutcomes (SOs)	LaboratoryInstruction (LI)	ClassroomInstruction (CI)	SelfLearning (SL)
SO3.1 Grasp limitations of	1. study the Babcock	Unit-3 : Second Law of	i)Limitation of
the first law, thermal	Wilcox and it's	Thermodynamics	first law of
reservoirs, and the	Accessories and		

A K S University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

concepts of heat engine,	Mountings		thermodynamics,
heat pump, and	2. To study a Simple	3.1 Limitation of first law	Thermal
refrigerator.	Steam Engine.	of thermodynamics,	Reservoir –
SO3.2 Understand Kelvin-		Thermal Reservoir –	Source and Sink
Planck and Clausius	3.To study a	Source and Sink	
statements, equivalence,	Compound Steam	3.2 Concept of Heat	ii)Second law of
reversible and	Engine	-	thermodynamics
irreversible processes,	6	Engine, Heat Pump	– Kelvin Planck
causes of irreversibility,		and Refrigerator	and Clausius
and the need for Carnot		3.3 Second law of	
theorem		thermodynamics –	Statements
SO3.3 Explore Carnot cycle,		Kelvin Planck and	
thermodynamic		Clausius Statements	
temperature scale, and		Equivalence of	ii)Entropy is
its equivalence with the		Clausius and Kelvin	Property of a
Ideal Gas Scale		Planck Statement	system
SO3.4 Understand Clausius		3.4 Reversible and	2
inequality, theorem, and		Irreversible Process	
the concept that entropy		3.5 Causes of	
is a property of a		Irreversibility,	
system.		Perpetual Motion	
SO3.5 Analyze isentropic		Machine of Second	
processes, temperature-		Kind	
entropy plots, entropy		3.6 Need of Carnot	
change during a process,		theorem and its	
and the interpretation of		corollaries	
the concept of entropy		3.7 Car not cycle,	
		-	
		3.8 Thermodynamic	
		Temperature Scale and	
		its equivalence with	
		Ideal Gas Scale	
		Entropy:	
		3.9 Clausius Inequality,	
		Clausius Theorem	
		3.10Entropy is Property of	
		a system, Isentropic	
		Process	
		3.11Temperature Entropy	
		Plot and its	

AKS University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

relationship with heat interactions 3.12Entropy Principle, Entropy change During a Process. Interpretation of concept of entropy.	

SW-3 Suggested Sessional Work(SW):

a. Assignments:

i) Concept of Heat Engine, Heat Pump and Refrigerator

- ii) Second law of thermodynamics Kelvin Planck and Clausius Statements Equivalence of Clausius and Kelvin Planck Statement
- iii) Reversible and Irreversible Process

b. Mini Project:

Describe the Kelvin Planck and Clausius Statements Equivalence of Clausius and Kelvin Planck Statement

c. Other Activities (Specify):

Entropy is Property of a system, Isentropic Process Temperature Entropy Plot and its relationship with heat interactions

ESC-ME203.4: To understand fundamental concepts related to vapor-liquid equilibrium including vapor pressure, boiling points and phase diagrams.

Approximate Hours

L' 1	
Item	AppXHrs
Cl	12
LI	6
SW	2
SL	1
Total	21

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)

A K S University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

 SO4.1 Explore reciprocal, cyclic, and Maxwell relations, TdS equations, and relationships in heat capacities, volume expansivity, and isothermal compressibility SO4.2 Differentiate high and low-grade energy, understand dead states, available and unavailable energy, and analyze second law efficiency with the Clausius-Clapeyron equation. SO4.3 Study phase changes, property diagrams (T-v, T-s, and p-h), and gain proficiency with Steam Tables and Mollier charts SO4.4 Understand dryness fraction, steam calorimeters (barrel, separating, throttling, combined), and their applications SO4.5 Analyze available energy in processes and cycles, and comprehend the decrease of available energy during heat transfer with a finite temperature difference 	1. To study a Simple Steam Engine With D-Slide Valve. 2 To study Meyer's Expansion Valve of Steam Engine. 3. To study Drop Valve of Steam Engine	 Unit-4 Thermodynamic Relations 4.1 Reciprocal Relation, Cyclic Property relations Maxwell Relations 4.2 TdS equations, Heat capacity relations, Volume Expansivity 4.3 Isothermal Compressibility, Clausius-Clapeyron Equation 4.4 Availability: High grade and Low Grade Energy Available and Unavailable Energy 4.5 Dead State, Available energy with respect to a process and a cycle, Decrease of Available Energy 4.6 When heat is transferred through a finite temperature Difference 4.7 Second Law efficiency 4.8 Properties of Pure Substance: Pure substance and Phase changes Phase change processes of pure substance, 4.9 Property diagrams for phase change process (T-v, T-s and p-h diagrams) 4.10 Understanding of Steam Table and Mollier chart with suitable examples 4.11 Dryness fraction and its determination 4.12 Study of steam calorimeters (Barrel, Separating, Throttling and 	 i) Properties of Pure Substance: Pure substance and Phase changes ii)TdS equations, Heat capacity relations, Volume Expansively
--	---	---	--

A K S University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

	combined	

SW-4 Suggested Sessional Work(SW):

a. Assignments:

i. Find out the expression Reciprocal Relation, Cyclic Property relations Maxwell Relations

ii. Write down the Property and diagrams for phase change process (T-v, T-s and p-h diagrams)

b. Mini Project:

Dryness fraction and its determination Study of steam calorimeters (Barrel, Separating),

c. Other Activities (Specify):

Power Point Presentation to describe **Availability:** High grade and Low Grade Energy Available and Unavailable Energy

ESC-ME203.5: To apply concepts related to thermodynamic cycle, properties of solutions such as volume, pressure, entropy, nthalpy of energy.

Item	AppXHrs
Cl	13
LI	8
SW	2
SL	2
Total	25

SessionOutcomes	LaboratoryInstruction	ClassroomInstruction	SelfLearning
(SOs)	(LI)	(Cl)	(SL)
SO5. 1 Grasp Carnot cycle limitations, analyze Rankine	 To study Two	Unit 5: Vapour Power	i) Carnot cycle
	Stroke Petrol Engine.	cycles	and its

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

mean temperature of heat addition.2. To study Four Stroke Petrol Engine 3.To study Four5.2	limitations as a vapour cycle	a vapour cycle
SO5.2 Learn methods to improve Rankine cycle efficiency, emphasizing reheat and regeneration cyclesStroke Petrol Engine5.3SO5.3 Understand Air Standard Cycle assumptions and operational principles for Otto, Diesel, Dual, and Brayton cycles.5.45.5SO5.4 Apply theoretical concepts practically, emphasizing real-world implications of power cycles5.75.7SO5.5 Develop skills to solve problems related to power cycles, optimizing thermodynamic systems5.85.8S.5.15.95.9SO5.35.55.9SO5.45.65.8SO5.55.95.95.9SO5.55.95.9SO5.65.95.9SO5.75.95.9SO5.75.05.9SO5.55.95.9SO5.55.95.9SO5.55.95.9SO5.55.95.9SO5.55.95.9SO5.55.95.9SO5.55.95.9SO5.55.95.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9SO5.55.9 <td> .2 , Rankine cycle .3 Rankine cycle with different turbine inlet conditions .4 Mean temperature of heat addition .5 Methods to improve thermal efficiency of Rankine cycle .6 Rankine cycle – Reheat cycle and Regeneration Cycle. .7 Gas Power cycles: Assumptions of Air Standard Cycle .8 Otto cycle .9 Diesel Cycle .9 Dual cycle .10 Brayton Cycle .11Numerical problem on otto cycle .12Numerical problem on Diesel cycle .13Numerical problem on Brayton cycle </td> <td>ii)Rankine cycle and Standard Cycle</td>	 .2 , Rankine cycle .3 Rankine cycle with different turbine inlet conditions .4 Mean temperature of heat addition .5 Methods to improve thermal efficiency of Rankine cycle .6 Rankine cycle – Reheat cycle and Regeneration Cycle. .7 Gas Power cycles: Assumptions of Air Standard Cycle .8 Otto cycle .9 Diesel Cycle .9 Dual cycle .10 Brayton Cycle .11Numerical problem on otto cycle .12Numerical problem on Diesel cycle .13Numerical problem on Brayton cycle 	ii)Rankine cycle and Standard Cycle

SW-5 SuggestedSessionalWork(SW):

a. Assignments:

i. Describe the equation for Assumptions of Air Standard Cycle and otto cycle.

.ii. Describe the equation for Assumptions of Air Standard Cycle and otto cycle

iii. Describeand draw the Rankine cycle with different turbine inlet conditions

b. MiniProject:

Visit the thermal power plant and Manufacturing factory

AKS University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

c. OtherActivities(Specify):

Power Point Presentation to describe the Carnot cycle and its limitations as a vapour cycle and Rankine cycle

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Lecture (LI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
ME203.1: Grasp fundamental thermodynamic concepts, systems, energy forms, and basic processes.	11	4	2	1	18
ME203.2: Apply energy conservation principles to closed and open systems, understanding their significance in various devices.	12	6	2	1	21
ME203.3: Comprehend entropy and the limitations it imposes on energy conversion processes	12	6	2	2	22
ME203.4: Understand gas equations, pure substance properties, and phase change diagrams.	12	6	2	1	21
ME203.5: Analyze different power cycles, evaluating efficiency and practical limitations.	13	8	2	2	25
Total Hours	60	30	10	7	107

Suggestion for End Semester Assessment

SuggestedSpecificationTable(ForESA)

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

СО	UnitTitles	N	1arksDi	stribution	Total
		R	U	Α	Marks
CO-1	Grasp fundamental thermodynamic concepts, systems, energy forms, and basic processes.	03	05	02	10
CO-2	Apply energy conservation principles to closed and open systems, understanding their significance in various devices.	02	06	02	10
CO-3	Comprehend entropy and the limitations it imposes on energy conversion processes	02	07	01	10
CO-4	Understand gas equations, pure substance properties, and phase change diagrams	02	04	04	10
CO-5	Analyze different power cycles, evaluating efficiency and practical limitations.	02	05	03	10
	Total	11	27	12	50

Legend:	R:Remember,	U:Understand,	A:Apply

The end of semester assessment for Introduction to Thermodynamics applications will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visit to power plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,Whats app,Mobile,Onlinesources)

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

9. Brainstorming Suggested Learning Resources:

(a) Books:

S.	Title	Author	Publisher	Edition&Year
No.				
1	Thermodynamics,	Yunus A. Cengel and Michael ABoles	ТМН	7 th Edition, 2018
2	Basic Engineering Thermodynamics	Rayner Joel,	Longman Publishers Engineering	5 th Edition, 2016
3	Thermodynamics	P K Nag	ТМН	5 st Edition, 2015
4	Thermodynamics	Onkar Singh,	New Age International	6 st Edition, 2017
5	Thermodynamics	C P Arora	TMH	2009

Curriculum Development Team Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg
- 13. Mr. Umesh Bagri , Assistant Professor , Dept. of Mechanichal Engg

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Cos,POs and PSOs Mapping

Course Title: B. Tech Mechanical Engineering

Course Code: ESC ME 203

Course Title: Applied thermodynamics

							ogram comes							Progra	m Specific C	Outcome
	PO1	PO2	PO3	PO4	PO 5	PO6	PO7	PO 8	PO9	PO1 0	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engin e ering knowl edge	Pro b lem anal ysis	Design/d evelop ment of solutions	igations	Mod en tool usag e	The engi neer and soci ety	Environ ment and sustain ability:	Eth ics	Indivi dual and team work:	Com mun ic atio n:	Project manage ment and finance:	Life-long learning	Mechani cal System Design and Analysis	Manufactur ing Processes and Automation	Computation al Modeling and Simulation.	Product Innovatio n and Develop ment
CO1 : Grasp fundamental thermodynami c concepts, systems, energy forms, and basic processes.	1	1	2	2	2	2	3	1	2	2	1	2	2	2	1	-
CO 2 : Apply energy conservation principles to closed and open systems, understanding their significance in various devices	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

CO3: Comprehend entropy and the limitations it imposes on energy conversion processes.	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2
CO 4: Understa nd gas equations , pure substance properties , and phase change diagrams	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
CO 5: Analyze different power cycles, evaluating efficiency and practical limitations	1	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6	CO1 : Grasp fundamental thermodynamic concepts,	SO1.1	1 ,2	Unit-1: Basic Concepts & definitions	
7,8,9,10,11,12	systems, energy forms, and basic processes	SO1.2			
		SO1.3			
PSO 1,2, 3, 4, 5		SO1.4		1.1,1.2,1.3,1.4,1.5,1.6,1.7	
		SO1.5			
PO 1,2,3,4,5,6	CO 2 : Apply energy conservation principles to closed and open systems, understanding their	SO2.1	1,2,3	Unit-2: First Law of Thermodynamics	
7,8,9,10,11,12	significance in various devices.	SO2.2			
		SO2.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4, 5		SO2.4		2.8,2.9,2.10	
		SO2.5			As mentioned in
					page number
PO 1,2,3,4,5,6	CO3 : Comprehend entropy and the limitations it imposes on energy	SO3.1	1.2.2	Unit-3 : Second Law of Thermodynamics	2 to 6
7,8,9,10,11,12	conversion processes .	SO3.2	1,2,3		
PSO 1,2, 3, 4, 5		SO3.3 SO3.4		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8	
		SO3.5			
PO 1,2,3,4,5,6	CO 4: Understand gas	SO4.1	1.0.0	Unit-4 Thermodynamic Relations	-
7,8,9,10,11,12	equations, pure substance properties, and	SO4.2	1,2,3	4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10	
	phase change diagrams.	SO4.3			
PSO 1,2, 3, 4, 5		SO4.4			
		SO4.5			

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 5: Analyze different power cycles, evaluating efficiency and practical limitations.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	1,2,3,4	Unit 5: Vapour Power cycles 5.1,5.2,5.3,5.4,5.5	
		SO5.5			

~ ~ .	Semester-III
Course Code:	ESC201
Course Title :	Basic Electronics Engineering
Pre-requisite:	Student should have basic knowledge of physics, Semiconductor Electronics andElectronic devices such as Diodes, Transistors, FET's etc.
Rationale:	Students will demonstrate an understanding of semiconductor physics and the operation of the most common semiconductor devices (pn junctions, metal-semiconductor devices, metal oxide semiconductor devices, and bipolar junction transistors), and will be prepared for subsequent courses with this course as a prerequisite.

Course Outcomes:

ESC201.1: Understanding of the concept of semiconductor materials, pnjunction,pn junction diodes and BJT and its types

ESC201.2: Understanding of Operational amplifier its construction working and its different types .

ESC201.3: Explain the principle, construction and working of different timing circuits and oscillator with its types.

ESC201.4:Explain the basic concepts of digital electronics,Boolean algebra, logic gates and different logic circuits

ESC201.5:Explain the principle of Electronics communication System its types and different modulation techniques

SchemeofStudies:

Board					Schem	e of stud	ies(Hours/Week)	TotalCredits
ofStud y	Course Code	CourseTitle	Cl	LI	SW	SL	Total StudyHours(CI+ LI+SW+SL)	(C)
Engg. Science course ESC	ESC201	Basic Electronics Engineering	4	2	1	1	8	5

Legend:

CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)andTutoria l (T)andothers),

LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop , field or other locations using different instructional strategies)

SW: Sessional Work(includesassignment, seminar, miniprojectetc.),

SU:SelfLearning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacherto ensureoutcomeofLearning.

SchemeofAssessment: Theory/ Practical

		, ,			Scher	ne of Asse	ssment (Mar	ks)		
				Progre	essive Asse	ssment (]	PRA)		End	Total
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3)	Semina r one	Class Activit y any one	Class Attendance	Total Marks	Semester Assessment	Mark s
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT +SA+C AT+AT)	(ESA)	(PRA + ESA)
PCC	ESC2 01	Basic Electronics Engineering	15	20	5	5	5	50	50	100

Board of	Couse	Course Title	Scheme	e of Assessment (Mark	(s)			
Study	Code		Progressive Asso	essment (PRA)			End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)		
ESC	ESC20 1-L	Basic Electroni cs Engineer ing	35	10	5	50	50	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC201.1: Understanding of the concept of semiconductor materials, pnjunction,pn junction diodes, BJT and its types

urs	Item	ApproxHrs
	Cl	10
	LI	3
	SW	1
	SL	1
	Total	15

SessionOutcomes (SOs)	LabInstr uction (LI)	ClassroomInstruction (CI)	Self-Learning (SL)
 SO1.1Understand the concept of semiconductor material SO1.2Understand the concept of PN junction diode and its characteristics SO1.3Understand the concept of BJT and its working SO1.4 understand the different type of BJT and characteristics 	 Study of PN junction diode . Study of half wave and full wave rectifier. study of CB CE CC of BJT. 	Unit-1:Semiconductor Devices and Applications 1.1 Introduction to semiconductor 1.2 Introduction to P-N Junction Diode and V-I characteristics, 1.3 Half wave and Full-wave rectifiers,capacitor filter. 1.4 Zener diode and its characteristics, 1.5 Zener diode as voltage regulator. 1.6 Regulated power supply IC based on 78XX and 79XX series, 1.7 Introduction to BJT, 1.8 its input-output and	 Semiconductor and its types Concept of PN junction

transfer characteristics, 1.9 BJT as a single stage CE amplifier, 1.10 frequency response and bandwidth.	
---	--

SW-1 SuggestedSessionalWork(SW):

a. Assignments:

- Explain forward biasing and reverse biasing of PN junction.
- Describe the application of rectifier.

ESC201.2: Understanding of Operational amplifier its construction working and its different types .

Item	ApproxHrs	
Cl	10	
LI	3	
SW	1	
SL	1	
Total	15	

SessionOutcomes (SOs)LaboratoryInstruction (LI)	ClassroomInstruction (CI)	SelfLearning (SL)
 SO2.1 Understanding of operational amplifier SO2.2Learn the working of OP-AMP as open loop and feedback circuit SO2.3Understandthe construction and working of OP-AMP as inverting and non inverting amplifier SO2.4 Understand the 	Unit-2:Operational amplifier and its applications 2.1 Introduction to operational amplifiers, 2.2 Op-amp input modes and parameters, 2.3 Op-amp in open loop configuration, 2.4 op-amp with negative feedback, 2.5study of practical op- amp IC 741, 2.6 inverting and noninverting amplifier 2.7 applications:	 Concept of BJT as an amplifier Concept of feedback circuit Operation Of integrators and differentiators

different application	summing and difference
of OP-AMP	amplifier,
	2.8 unity gain buffer,
	2.9 comparator,
	2.10 integrator and
	differentiator.

SW-2 SuggestedSessionalWork(SW):

a. Assignments:

- i. Theoretical Assignment related to different types of OP-AMP
- ii. Explain the working principle of OP-AMP as inverting and Non inverting OP-AMP

a. MiniProject:

i. Draw a Poster of different operations of OP-AMP

ESC201.3: Explain the principle, construction and working of different timing circuits and oscillator with its types.

Item	ApproxHrs
Cl	11
LI	3
SW	1
SL	1
Total	16

SessionOutcomes	LaboratoryInstruction	ClassroomInstruction	SelfLearning
(SOs)	(LI)	(CI)	(SL)
 SO3.1Tostudy of timing circuits and their types SO3.2 To understand the Design and Characteristic of Timing circuit SO3.3 To learn about the Oscillator SO3.3 To understand the Design and Characteristic of oscillator and its types. 	 study of Astable multi vibrator study of R-C phase shift oscillator study of Wein bridge oscillator 	Unit-3Timing Circuits and Oscillators 3.1 RC-timing circuits, 3.2 Introduction to IC 555 3.3 IC 555 and its applications 3.4 IC 555astable 3.5 IC 555 mono-stable 3.6 multi-vibrators, 3.7 Introduction of oscillators 3.8 positive Feedback oscillators 3.9 Barkhausen's criteria for oscillation, 3.10 R-C phase shift 3.11 Wein bridge oscillator.	 Significance of timing circuits Uses of oscillator

SW-3 SuggestedSessionalWork(SW):

b. Assignments:

- i. Make a poster of IC 555 timer
- ii. explain different types of oscillators

ESC201.4: Explain the basic concepts of digital electronics,Boolean algebra, logic gates and different logic circuits

Item	Approx Hrs
Cl	15
LI	3
SW	1
SL	1
Total	20

SessionOutcomes (SOs)	Laborato ryInstruct ion (LI)	ClassroomInstruction (CI)	Self-Learning (SL)
 SO4.1Understand the building Blocksof digital electronics SO4.2 Understand the building Blocks of Boolean algebra SO4.3Understand the concepts of logic gates and circuits SO4.4Understand the applications of logic gates and circuits 	 1.study of Microproces sor . 2. Study of Microcontro ller 3.Identificat ion of different logic gates. 	Unit-4:DigitalElectronicsFundamentals4.1 Difference between analog and digital signals,4.2 Boolean algebra,4.3 examples of Boolean algebra4.4 examples of Boolean algebra4.5 Basic and Universal Gates,Symbols, Truth tables, logic expressions,4.6 Logic simplification using K- map, 4.7 Logic ICs,4.8 half and fulladder4.9 half and full subtractor, 4.10 multiplexers, de-multiplexers, 4.11 flip-flops and its types4.12 shift registers,	 Difference between analog electronics and digital electronics Difference between logic gates and logic circuits

,	4.13 counters,	
	4.14 Block diagram of microprocessorand their applications.	
	4.15 microcontroller and their applications.	

SW-4 SuggestedSessionalWork(SW):

a. Assignments:

- i. Theoretical Assignments Based on Different types logic gates and circuits
- ii. Numerical Problems Based on Boolean algebra

ESC201.5: Explain the principle of Electronics communication System its types and different modulation techniques

Item	ApproxHrs
Cl	13
LI	3
SW	1
SL	1
Total	18

SessionOutcomes (SOs)	LaboratoryInstruction (LI)	ClassroomInstruction (CI)	Self-Learning (SL)
 SO5.1Discussion about the communication system and its types SO5.2Understand the concept of modulation techniques SO5.3Understand the 	 Study of Amplitude Modulation. study of Frequency modulation Study of AM and FM modulators 	Unit5:ElectronicCommunication Systems5.1 intoductionofcommunication system5.2blockdiagramofcommunication system5.3Theelementsof	 Structure and operation of communication system Types of communication system
Building blocks of communication system		communication system	

SO5.4Study of different types of modulation techniques,	5.4 IEEE frequency spectrum,5.5 Transmission media: wired andwireless,
	5.6 Introduction of Modulation
	5.7 need of modulation,
	5.8 types of modulation
	5.9 Introduction to AM 5.10 Introduction FM modulation schemes,
	5.11 Mobile communication systems:
	5.12 cellular concepts
	5.13 block diagram of GSM system.

SW-5 SuggestedSessionalWork(SW):

a. Assignments:

i. Theoretical Assignment based on Different types of communication system ii. explain different types of modulation techniques.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	LaboratoryInstruction (LI)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
ESC201.1: Understanding of the concept of semiconductor materials, pnjunction,pn junction diodes and special purpose diodes.	10	3	1	1	15
ESC201.2: Understanding of Operational amplifier its construction working and its different types .	10	3	1	1	15
ESC201.3: : Explain the principle, construction and working of different timing circuits and oscillator with its types.	11	3	1	1	16
ESC201.4: Explain the basic concepts of digital electronics,Boolean algebra, logic gates and different logic circuits	15	3	1	1	20
ESC201.5: Explain the principle of Electronics communication System its types and different modulation techniques	13	3	1	1	18
Total Hours	59	15	5	5	84

Suggestion for End Semester Assessment

SuggestedSpecificationTable(ForESA)

CO	UnitTitles	Ma	MarksDistribution					
		R	U	Α	Marks			
CO-1	Semiconductor Devices and Applications	02	05	03	10			
CO-2	Operational amplifier and its applications	04	06	00	10			
CO-3	Timing Circuits and Oscillators	02	06	02	10			
CO-4	Digital Electronics Fundamentals	03	07	00	10			
CO-5	Electronic Communication Systems	03	05	02	10			
	Total	14	29	07	50			

Legend: R:Remember, U:Understand, A:Apply

TheendofsemesterassessmentforProcess calculation willbeheld with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for end semester rassessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. GroupDiscussion
- 4. Practical Demonstration of Instruments.
- 5. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Bl og,Facebook,Twitter,WhatApp,Mobile,Onlinesources)
- 6. Brainstorming

SuggestedLearningResources:

(a) Books:

	(a) DOOKS:							
S.	Title	Author	Publisher	Edition&Year				
No.								
1	Solid State	H.S.Kalsi.	Tata McGraw Hill.	Fourth, 2019				
	Devices							
2	Applied electronics	R.S Sedha	S. Chand	Fifth ,2018				
3	Electronic Devices	Floyd,	Pearson Education	9th edition, 2012.				
4	—Communication	Frenzel,	Tata Mc Graw Hill,	, 3rd Edition,				
	Electronics: Principles							
	and Applications			2001				
5	Lecture note provide	d by	1	L				
	Dept. of Electrical Engineering, AKS University, Satna.							

Cos, Posand PSOs Mapping

Course Title: B.Tech. Mechanical

Course Code : ESC201

CourseTitle: Basic Electronic Engineering

		Program Outcomes					Р	rogram Specific (Dutcome							
Course Outcomes	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engin eerin g knowl edge	Pro ble m b anal ysis	Desig n/de velop ment of solut ions	Cond uctin vesti gatio nsofc ompl expro bl ems	Mod ern Tool usag e	The engi nee ran dso ciet y	Enviro nment and sustai nabilit y:	Ethics	Indiv idual andt eam work :	Com muni catio n:	Project manag ement and finance:	Life- longlea rning	Mechanical System Design and Analysis	Manufacturin g Processes and Automation	Computatio nal Modeling and Simulation.	Product Innovation and Developme nt
CO.1: Understanding of the concept of semiconductor materials, pnjunction,pn junction diodes and special purpose diodes.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO.2: Understanding of Operational amplifier its construction working and its different types .	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
C0.3: Explain the principle, construction and working of different timing circuits and oscillator with its types.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO.4: Explain the basic concepts of digital electronics,Boolean algebra, logic gates and different logic circuits	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO.5: Explain the principle of Electronics communication System its types and different modulation techniques	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

CourseCurriculumMap:

Pos&PSOs No.	CosNo.&Titles	SOsNo.	Laboratory Instruction(L I)	ClassroomInstruction(CI)	Self Learning(SL
PO 1,2,3,4,5,6	CO.1: Understanding of the concept of semiconductor	SO1.1	1,2,3	Unit-1.0Semiconductor Devices and Applications	
7,8,9,10,11,12	materials, pnjunction,pn	SO1.2			
	junction diodes and special purpose diodes.	SO1.3			
PSO1,2,3,4,		SO1.4		111212111151515171010110	
F301,2,3,4,				1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10	
PO 1,2,3,4,5,6	CO.2: Understanding of Operational amplifier its construction working and its different types .	SO2.1	1,2,3	Unit-2.0 Operational amplifier and its applications	
7,8,9,10,11,12		SO2.2			
		SO2.3		2.1,2.2,2.3,2.4,2.5,2.6,2.7,	
PSO1,2,3,4,		SO2.4		2.8,2.9,2.10,	
					As mentioned i
PO 1,2,3,4,5,6	C0.3: : Explain the principle,	SO3.1	1,2,3	Unit-3.0 : Timing Circuits and Oscillators	Page number 2 to 6
7,8,9,10,11,12	construction and working of different timing circuits and	SO3.2			
PSO1,2,3,4,	oscillator with its types	SO3.3		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11,	
F301,2,3,4,		SO3.4			
		SO3.5			
PO 1,2,3,4,5,6	CO.4: Explain the basic concepts of digital electronics,Boolean algebra, logic gates	SO4.1	1,2,3	Unit-4.0 : Digital Electronics Fundamentals	
7,8,9,10,11,12	and different logic circuits	SO4.2		4.1,	
PSO1,2,3,4,	_	SO4.3		4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11,4.12,4.13	
F301,2,3,4,		SO4.4		,4.14,4.15	
PO 1,2,3,4,5,6	CO.5: Explain the principle of	SO5.1	1,2,3	Unit 5.0 :Electronic Communication	
7,8,9,10,11,12	Electronics communication System its	SO5.2		Systems	
PSO1,2,3,4,	types and different modulation	SO5.3		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12	
1 30 1,2,3,4,	techniques	SO5.4		,5.13	

Semester-III

Course Code: Course Title :	BSC201 Engineering Mathematics III
Pre- requisite:	Students should review the fundamentals of calculus, linear algebra, and differential equations, and matrix operations
Rationale:	The program aims to develop advanced problem- solving and analytical skills and prepares students for careers in academia, research, industry, or other sectors that require advanced mathematical expertise.

Course Outcome :

CO1-BSC201.1 By the end of the course students are expected to have deep understanding in complex analysis with a focus on Cauchy-Riemann equations, analytic functions, harmonic functions, and conformal mappings.

- **CO2-BSC201.2** By the end of the course students are expected to understand the concept of a contour integral in the complex plane, concept of zeros of analytic functions and behavior of functions near essential singularities.
- **CO3-BSC201.3** The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course in elementary probability theory and random variables.
- **CO4-BSC201.4** The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering measures of central tendency and measures of dispersion.

CO5-BSC201.5- The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering correlation and regression, rank correlation, curve fitting, and various tests of significance.

Scheme of Studies:

Board of Study	Course Code	Course Title	Scheme of s	Scheme of studies (Hours/Week)					
			Cl	LI	sw	SL	Total Study Hours (CI+LI+SW+SL)		
BSC	201	Engineering Mathematics III	4[3+1]	0	1	1	6	4	

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Board of	Couse Code	Course Title	Scheme of Assessment (Marks)							
Study			Progressive Assessment (PRA)				End Semester Assessment (ESA)	Total Marks (PRA+ ESA)		
			Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Seminar one (SA)	Class Activity any one (CAT)	Class Attendanc e (AT)	Total Marks (CA+CT+SA +CAT+AT)		
BSC	201	Engineering Mathematics III	15	20	5	5	5	50	50	100

Theory

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

CO1- BSC201.1

.

By the end of the course students are expected to have deep understanding in complex analysis with a focus on Cauchy-Riemann equations, analytic functions, harmonic functions, and conformal mappings

Approximate nours					
Item	AppX Hrs				
Cl	12				
LI	0				
SW	1				
SL	1				
Total	14				

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO1.1 Understand and state the Cauchy- Riemann equations for a complex-valued function SO1.2 Determine the real and imaginary parts of a complex function and check for analyticity using the Cauchy- Riemann equations SO1.3 Identify and define analytic functions in the complex plane So1.5 Understand the concept of Represent functions as Taylor and Laurent series; classify singularities and poles; find residues and evaluate complex		Unit-1.0 Complex Variable : 1.1Definition of Analytic function 1.2 Cauchy-Riemann equations in Cartesian form and polar form 1.3 Questions of Analytic function based on Cartesian form 1.4 Questions of Analytic function based on polar form 1.5 Harmonic function and orthogonal functions 1.6 Conjugate Method for construction of an analytic function 1.7 Milne's method for construction of an analytic function 1.8 Totorial- 1 1.9 Conformal mappings, 1.10 questions of Conformal mappings 1.11 Mobius transformations 1.12 properties of Mobius transformations	SL.1 Apply the Cauchy- Riemann equations to verify the analyticity of a given function. SL.2 Explore the properties of trigonometric functions in the context of complex analysis SL.3 Define logarithmic functions and explore their behavior in the complex plane

integrals using the residue theorem.		

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. write the application of complex function. ii. Properties of Complex Variables.

iii. Write all formula of complete unit.

b. Other Activities (Specify):

Quiz, Class Test.

CO2-BSC201.2

By the end of the course students are expected to understand the concept of a contour integral in the complex plane, concept of zeros of analytic functions and behavior of functions near essential singularities.

Approxin	Approximate Hours			
Item	AppX Hrs			
Cl	12			
LI	0			
SW	1			
SL 1				
Total 14				

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO2.1		Unit-2.0	SL.1
Understand the concept of a contour integral in the complex plane.		Complex Variable (Integration). 2.1 Cauchy's integral formula for analytic	Apply contour integrals to evaluate complex integrals.
SO2.2 Evaluate contour integrals using parametrization and		function 2.2Questions of Cauchy's integral formula for simple poles.	SL.2 Compute Taylor series expansions for given functions
integration techniques. SO2.3		2.3 2Questions of Cauchy's integral formula for order	SL.3
Apply contour integrals		poles.	Define residues of complex functions and

to evaluate complex	2.4 Residues of an understand their
integrals.	analytic function significance
	2.5 Questions of
SO2.4	Residues for simple
	poles
State and understand	2.6 5 Questions of
the Cauchy Integral	Residues for order
formula for analytic	poles
functions	2.7 Residue theorem
	and based questions
SO2.5	2.8 Poles and
	singularities of analytic
Apply the Cauchy	function
Integral formula to	2.9 Zeros of analytic
calculate values of analytic functions	function
anarytic functions	2.10 questions of
	Singularity.
	2.11 tutorial 1
	2.12 tutorial 2

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. write a short notes on singularities.
- ii. Define poles and zeros with example.

b. Mini Project:

Oral presentation, Power Point Presentation.

c. Other Activities (Specify): Quiz, Class Test.

CO3-BSC201.3

The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course in elementary probability theory and random variables

ltem	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory	Class room Instruction	Self Learning
(SOs)	Instruction	(CI)	(SL)
	(LI)		
SO3.1		Unit-3.0	SL.1
Understand the		Probability and Random	
fundamental concepts of		Variable	Analyze
•		3.1 definition of probability	compound
probability theory SO3.2		3.2 Mathematical definition of	probability
Develop an appreciation		probability	involving
for the role of		3.3 Various types of events	multiple events
		3.4 Additive law of probability	
probability in modeling		3.5 Multiplicative law of	SL.2
uncertainty and		probability	
randomness		3.6 Compound probability	Define and
SO3. Define probability		3.7 Conditional probability	understand
using a mathematical		3.8 Bays rule of probability	conditional
framework		3.9 Discrete random variable	probability
Iramework		3.10 Continuous random variable	
SO3.4		3.11 Binomial distribution 3.12 Poisson distribution	SL.3
50011		5.12 Poisson distribution	
Understand probability			Define and
axioms and laws			understand the
governing probability			concept of a
measures			random variable
SO3.5			
Classify events as			
mutually exclusive,			
exhaustive, dependent,			
or independent			

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i) Define probability using a mathematical framework.

ii) write the application of probability in daily life.

b. Mini Project:

Oral presentation, Power Point Presentation.

CO4-BSC201.4

Students will compute the expression of permutation groups by using permutation multiplication.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes	Laboratory Instruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO4.1 Define arithmetic mean and understand its significance SO4.2 Compute the arithmetic mean for both grouped and ungrouped data SO4.3 Apply different methods (direct method, assumed mean method) for calculating the arithmetic mean. SO4.4 Understand the properties of the arithmetic mean, including its sensitivity to extreme values SO4.5 Define the median and understand its interpretation		Unit-4.0 Measures of Central Tendency 4.1 methods of calculating Arithmetic mean 4.2 methods of calculating median 4.3 properties of mean and median 4.4 numericals of mean for different data 4.5 4 numericals of median for different data 4.6 methods of calculating mode 4.8 relation based question of mean median and mode 4.9 Measures of dispersion 4.10 Range 4.11 quartile deviation and its properties	SL.1 Define mode and recognize its applications SL.2 Understand the concept of unimodal, bimodal, and multimodal distributions SL.3 Explore the relationships and patterns among the mean, median, and mode

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. write the application of mean median and mode .
- ii. Explain mean with real life example.
- **b.** Other Activities (Specify): Quiz, Class Test.

CO5-BSC201.5

The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering correlation and regression, rank correlation, curve fitting, and various tests of significance.

Item	AppX Hrs
Cl	12
LI	0
SW	1
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO5.1 Define correlation and understand its significance in statistical analysis. SO5.2 Recognize the types of relationships between variables (positive, negative, or none) based on correlation SO5.3 Calculate and interpret Pearson's correlation coefficient. SO5.4 Define and calculate		Unit-5.0 5.1 Defination of Correlation 5.2 formula of correlation coefficient 5.3 Questions of correlation coefficient 5.4 Defination of regrattion 5.5 question of line of regrattion 5.6 rank correlation 5.7 fitting of a straight line 5.7 fitting of a second degree parabola 5.8 fitting of different curves 5.9 Tutorial-1 5.10 Test of significance for large sample	SL.1Defineregressionanalysis and understandits purpose in modelingrelationshipsbetweenvariablesSL.2Apply the method ofleast squares to fitstraight lines, second-degree parabolas, andmore general curves todatasetsSL.3Test the differencebetween twoproportions
		5.11 Test of	

rank correlation	significance for small	
coefficients	sample	
SO5.5	5.12 Tutorial-2	
Understand the use of rank correlation in cases where variables may not have a linear relationship		

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1-BSC201.1 By the end of the course students are	12	1	1	14
expected to have deep understanding in complex analysis with a focus on Cauchy-Riemann equations, analytic functions, harmonic functions, and conformal mappings.				
CO2-BSC201.2	12	1	1	14
By the end of the course students are expected to understand the concept of a contour integral in the complex plane, concept of zeros of analytic functions and behavior of functions near essential singularities.	12	-		
CO3-BSC201.3 The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course in elementary probability theory and random variables.	12	1	1	14
CO4-BSC201.4 The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering measures of central tendency and measures of dispersion	12	1	1	14

CO5-BSC201.5 The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering correlation and regression, rank correlation, curve fitting, and various tests of significance.	12	1	1	14
Total Hours	60	5	5	70

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marl	ks Distrib	ution	Total Marks
		R	U	Α	
CO-1	Complex Variable – Differentiation	03	03	04	10
CO-2	Complex Variable – Integration	05	04	01	10
CO-3	Probability and Random Variable	03	04	03	10
CO-4	Measures of Central Tendency and Measures of Dispersion	05	03	02	10
CO-5	Statistics	04	04	02	10
Total		20	18	12	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Engineering Mathematics III will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies

1. Improved Lecture

2. Tutorial

- 3. Presentation
- 4. Group Discussion
- 5. Online sources
- 6. Seminar
- 7. Workshop

Suggested Learning Resources:

a) Books :

S.	Title	Author	Publisher	Edition & Year
Ν				
0.				
1	Engineering	D. K. Jain.	Shree Ram	1st edition, 2018
	Mathematics-III	Engineering	Prakashan.	
2	Engineering Mathematics-III	D.C.Agrawal	Shree Sai Prakashan	2022
3	Introduction to			
	Engineering	H.K.Dass	S Chand Prakashan.	2nd edition, 2014
	0 0			
4	Engineering	Sonendra Gupta	Dhanpat Rai Publishing	
4	Mathematics-III			

Curriculum Development Team:

- 1.Dr.Sudha Agrawal
- 2.Dr.Ekta Shrivastava
- 3. Mr.Neelkanth Napit
- 4.Mrs.Vandana Soni
- 5. Mr.Radhakrishna Shukla
- 6.Mr.Ghanhyam sen
- 7.Ms.Pushpa Kushwaha
- 8.Ms. Arpana Tripathi

Cos, POs and PSOs Mapping

Course Title: ENGG.MATHEMATICS-III Course Code: BSC201

	PO1	PO	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO 1	PSO	PSO 3	PSO
Course	Adva	2 Pr	Research	Qua	Teachi	Theo	Comm	Operat	Applica	Engine	1 Gove	Consul	Mechani	2 Man	Camp	4 Prod
Outcome	nced Mat hem atica I Kno	ob le m- sol vin	Abilities	ntita tive Anal ysis	ng and Acade mia	retic al Und ersta ndin	unicati on Skills	ions Resear ch	tion in Industr Y	ering and Techno logy	rnm ent and Publi c Sect	ting	cal System Design and Analysis	ufact uring Proc esse s and Auto	Comp utatio nal Mode ling and Simul	uct Inno vati on and dev
	wled ge	g Ski Ils 3	1	2	1	g 2	2	2	1	1	or 1	1		mati on	ation.	elop men t
CO1-BSC 201.1 Understand the importance of algebraic properties with regard to working within various number systems.													2	1	1	
CO2-BSC201.2. Students will determine whether a given binary operation on the given set gives a group structure by applying the axioms.	1	3	2	1	1	1	1	1	1	2	3	1	3	1	1	1
CO3-BSC201.3. Students will be able to describe all elements in a cyclic subgroup by using generators.	1	3	2	2	1	1	3	2	1	1	3	1	2	1	2	
CO4- BSC201.4 Students will compute the expression of permutation groups by using permutation multiplication.	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	2
CO5-BSC201.5 Students will create the concept of a group action to real life problems such as Counting.	2	3	2	2	1	1	3	2	1	1	3	1	2	1	2	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1-BSC 201.1 By the end of the course students are expected to have deep understanding in complex analysis with a focus on Cauchy-Riemann equations, analytic functions, harmonic functions, and conformal mappings	S01.1 S01.2 S01.3 S01.4 S01.5		Unit-1 Complex Variable (Differentiation) 1.1,1.2,1.3,1.4,1.5,1.6,1. 7,1.8,1.9,1.10,1.11,1.12	SL1.1 SL1.2 SL1.3
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2-BSC201.2. By the end of the course students are expected to understand the concept of a contour integral in the complex plane, concept of zeros of analytic functions and behavior of functions near essential singularities	S01.1 S01.2 S01.3 S01.4 S01.5		Unit-2 Complex Variable – (Integration) 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10 2.11,2.12	SL2.1 SL2.2 SL2.3
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3-BSC201.3. The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course in elementary probability theory and random variables.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-3 Probability and Random 3.1,3.2,3.3,3.4,3.5,3.6,3. 7,3.8,3.9,3.10,3.11,3.12	SL3.1 SL3.2 SL3.3
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4- BSC201.4 The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering measures of central tendency and measures of dispersion	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-4 Measures of Central Tendency and Measures of Dispersion 4.1,4.2,4.3,4.4,4.5,4.6,4. 7,4.8,4.9,4.10,4.11,4.12	SL4.1 SL4.2 SL4.3
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5-BSC201.5. The course provide a comprehensive overview of the skills and understanding that students are expected to gain from a course covering correlation and regression, rank correlation, curve fitting, and various tests of significance	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-5 Statistics 5.1,5.2,5.3,5.4,5.5,5.6,5. 7,5.8,5.9,5.10,5.11,5.12	SL5.1 SL5.2 SL5.3

Semester-III

Course Code:	ESC 202
Course Title:	Engineering Mechanics
Pre- requisite:	Student should have basic knowledge of mathematics and Physics up to higher secondary level.

Rationale: As a bridge between theory and application, engineering mechanics is used to formulate new ideas and theories, discover and interpret phenomena and develop experimental and computational tools.

Course Outcomes:

ESC 207.1: Understanding of term Mechanics and its classification.

ESC 207.2: Understanding Resolution and composition of force acting on the rigid body.

- ESC 207.3: Compute the resultant of force for different system of force and study of different laws related to different force system.
- ESC 207.4: compute the different types of load acting on a different types of beam.
- ESC 207.5: Compute the centroid, second moment of area, center of gravity, moment of inertia and mass moment of inertia.

Scheme of Studies:

Board of				Scheme of studies(Hours/Week)				Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (ESC)	ESC 202	Engineering Mechanics	4	2	1	1	8	5

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial
(T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Schem	e of Assessment	(Marks)		
				End Semester Assessment	Total Marks					
Board of Study	Course T		Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3)	Semina r one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
ESC	ESC 207	Engineering Mechanics	15	20	5	5	5	50	50	100

Practical

Board of	Couse	Course Title	Scheme	Scheme of Assessment (Marks)					
Study	Code		Progressive Ass	End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)				
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)			
ESC	ESC202-L	Engineeri ng mechanic s-L	35	10	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ESC 202.1: Understanding of term Mechanics and its classification.

Hours
Hrs
7

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 Understanding of basic knowledge of term Mechanics. SO1.2 Understanding how objects move when forces are applied to them. Newton's laws lay the foundation for comprehending how forces interact with objects to cause motion. SO1.3 Describing motion without considering its causes. This includes concepts like velocity, acceleration, displacement, and time. SO1.4 Understanding the causes of motion, mainly through the study of forces. This involves concepts like friction, tension, gravitational forces, and how they affect objects.	1.1 Introduction to laboratory1.2 Introduction to Tools and Equipments	Unit-1.0 Introduction to Mechanics 1.1 Introduction of term mechanics 1.2 classification of mechanics 1.3 static and dynamics 1.4 classification of dynamics 1.5 kinetic and kinematic 1.6 fundamental laws of mechanics 1.7 Gravitational law 1.8 Newton Laws 1.9 Numerical	 Numerical problem related to classification of mechanics Numerical problem related to basic laws

Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1.
- Explain Newton 2nd law of motion and its application Write the definition of basic term related to static and dynamic 2.

ESC 202.2: Resolution and composition of force acting on the rigid body.. Approximate Hours

Item

AppX Hrs

			Cl	13	
			LI	12	
			SW	0	
			SL	1	
			Total	26	
Session Outcomes	LaboratoryInstruction		Class room	Self	
(SOs)	(LI)		Instruction	Learn	ing
			(CI)	(SL)	0
SO2.1 Ability to break down a single force into its horizontal and vertical components. This involves understanding trigonometric concepts like sine and cosine functions to determine the components of a force along different axes. SO2.2 Ability to determine the resultant of multiple forces acting on an object. This includes finding the net force and direction when multiple forces are applied simultaneously. SO2.3 Applying these concepts to real-world scenarios, such as analyzing the forces acting on structures, machines, or systems. This could involve calculating the forces involved in bridges, buildings, or mechanical devices SO4. Understanding how to add multiple vectors together using the Polygon Law. This involves arranging vectors head-to-tail to form a closed polygon, where the resultant vector is the vector closing the polygon from the starting point to the end point.	 2.1 Introduction to Laws of forces 2.2 Verification of Parallelogram law of forces 2.3 Verification of Triangle law of forces 2.4 Verification of Polygon law of forces 2.5 Introduction to Lami's theorem 2.6 To verify the lami's theorem 	Composit 2.1 Force 2.2 Press 2.3 Com body di 2.4 Char of a Force 2.5 Syster 2.6 Resolu 2.7 Comp Resultant Force, 2.8 Law o Forces, 2.9. Law o Polygon I 2.10 Lami Theorem 2.11 Equi Under Tw Three For	acteristics and Effects n of Forces ation of a Force osition of Forces, / Equilibrant f Parallelogram of of Triangle of Forces, .aw of Forces. i's librium of a Body to / Three/More Than ces of Superposition		ion of cal m of logra

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Derivation of lamis theorem and its numerical problem
- 2. Derivation of Parallelogram and its numerical

ESC 202.3: Apply computer aided drafting techniques to represent line, surface or solid models in different Engineering viewpoints.

Approximate Hours AppX Hrs

Item	AppX Hrs
Cl	11
LI	4
SW	2
SL	2
Total	19

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO3.1 Calculating the resultant force by summing up all the individual forces acting on an object. The resultant force represents the net effect of all forces combined. SO3.2 Identifying the point where the resultant force is applied on the object or structure. This may involve finding the moment or torque caused by the forces and locating the resultant force's line of action. So.3 Checking whether the system of forces is in equilibrium. If the resultant force is zero, the system is in equilibrium; otherwise, the object or structure will experience acceleration or movement in the direction of the resultant force.	3.1 Introduction to moment and couple 3.2 To verify the principle of moment using by bell crank lever	 Unit-3.0 System of forces 3.1Introduction of system of forces 3.2 Moment of a force 3.3 Varignon'sTheorem 3.4 Resultant of Parallel Forces 3.5 Moment of a Couple 3.6 Resolution of Force into a Couple 3.7 Resultant of Coplanar,Non Con-Current Forces 3.8 Numericals on Moment 3.9 Numericals on system of forces 3.11 Practice class 	 Explanation of nature of moment and its types Numericals on resultant force

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

- a. Assignments:
 - I. Classify system of forces
 - 2. Explain the concept of couple

ESC 202.4: Compute the different types of load acting on a different types of beam.

			Ap	proximate Hours	
			Item	AppX Hrs]
			Cl	13	
			LI	4	
			SW	2	
			SL	2	
			Total	21	
Session Outcomes	LaboratoryInstruction	Cla	ss room	Self Lear	ning
(SOs)	(LI)	Ins	truction	(SL)	C
			(CI)		
SO4.1 Calculating the	4.1 Introduction to Trusses	Unit-4.0 Be	ams and	1. Numerical prob	olem of
forces and moments at	4.2 To calculate the forces in	Trusses		support reaction of	calculation
support points. This	members of simple roof truss	4.1 define be	eam and its type	in cantilever bean	n and
includes determining the	and find the percentage error		Supported Beam,	simply supported	beam.
vertical and horizontal	between the observed and	Overhanging		2. Numerical prob	
reactions, as well as any	calculated values	Cantilever B	Seam	truss analysis by j	
moments generated at		4.3 Simply S	Supported Beam,	method.	
these locations due to		Overhanging		methodi	
applied loads.		Cantilever B			
SO4.2 Supported at both		4.4 concept			
ends and can carry loads		4.5 Load on	theBeam or		
between the supports.		Frame			
They experience		4.6 Load on	theBeam or		
maximum bending		Frame			
moment at the center and			ion of support		
zero shear at the ends.		reaction and			
SO4.3 Fixed at one end		4.8 Support			
and free at the other. They		calculation i	n cantilever		
carry loads at the free end		beam			
and experience maximum		4.9 Support			
shear at the fixed end.		calculation i	▲		
SO 4.4 Assemblies of		supported b			
beams connected by		4.10 Conce			
joints, commonly used in		4.11 Analys	is of truss by		20

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

(Revised as on 01 August 2023)

bridges and roofs. They	analytical method (Joint	
rely on the framework of	method)	
triangles to distribute	4.12 Analysis of truss by	
loads efficiently.	analytical method (Section	
	method)	
	4.13 Practice class	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- **1.** Classify Beams and Load acting on it.
- 2. Explain types of truss.

ESC 202.5: Compute the centroid, second moment of area, center of gravity, moment of inertia and mass moment of inertia.

Ар	proximate Hours
ltem	AppX Hrs
Cl	14
LI	6
SW	1
SL	2
Total	23

Session Outcomes	LaboratoryInstruction	Class room	Se	lf Learning
(SOs)	(LI)	Instruction		(SL)
		(CI)		
SO5.1 Determining the	5.1 Introduction to Moment of	Unit-5.0 Center of gravity	1. Nu	umerical problem
point where the entire	inertia	and moment of inertia	re	lated to center of
weight of an object or	5.2 To determine the moment		gr	avity
system appears to act.	of inertia of a flywheel about its	5.1 Concept of Centroid,	2. Nu	umerical of MI of T
SO5.2 Quantifying an	own axis of rotation	Centre of Gravity.	se	ction
object's resistance to	5.3 Viva practice	5.2 Difference between	3. Nu	umerical of I
rotational motion around		Centroid, Centre of Gravity	se	ction.
a specific axis.		5.3 Centroid of Trianle		
		5.4 Centroid of I section		
		5.5 Centroid of angle section		
		5.6 Centroid of channel		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

(Revised as on of August 2025)									
	section								
	5.7 Theorems of Moment of								
	Inertia								
	5.8 Radius of								
	Gyration								
	5.9 Polar Moment of Inertia								
	of Standard Sections								
	5.10 Moment of Inertia of								
	Composite Section								
	5.11 Principal Moment of								
	Inertia								
	5.12 Concept of mass								
	moment of inertia								
	5.13 Mass moment of inertia								
	of basic solid figures.								
	5.14 Practice class								

SW-5 Suggested Sessional Work (SW):

a. Assignments:

1. Find the CG and MI of Circle, semicircle, and Rectangle and Triangle.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Lab	Sessio	Self	Total hour
	Lecture	Lecture	nal	Learni	(Cl+Ll+SW+SI)
	(CI)	(LI)	Work	ng	
ESC 202 1. Understanding of term			(SW)	(SI)	
ESC 202.1: Understanding of term					
Mechanics and its classification	9	4	2	2	17
ESC 202.2: Understanding Resolution and					
composition of force acting on the rigid					26
body.	13	12	0	1	20
ESC 202.3: Compute the resultant of force					
or different system of force and study of					
different laws related to different force	11	4	2	2	19
System.					
ESC 202.4: compute the different types of					
load acting on a different types of beam.	13	4	2	2	21
		•	_	2	
ESC 202.5: Compute the centroid, second					
moment of area, center of gravity, moment of					
inertia and mass moment of inertia					23
	14	6	1	2	
				2	
Total Hours	60	20	-	0	106
	60	30	7	9	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	Α	Marks
CO-1	ESC 202.1: Understanding of term Mechanics and its classification	03	01	01	05
CO-2	ESC 202.2: Understanding Resolution and composition of force acting on the rigid body.	02	06	02	10
CO-3	ESC 202.3: Compute the resultant of force for different system of force and study of different laws related to different force system.	03	07	05	15
CO-4	ESC 202.4: compute the different types of load acting on a different types of beam.	-	10	05	15
CO-5	ESC 202.5: Compute the centroid, second moment of area, center of gravity, moment of inertia and mass moment of inertia	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Engineering Graphics & Design will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

No.Year1Engineering MechanicsDr.R.K bansal Publicatio n(p) ltd.Laxmi Publicatio n(p) ltd.2Engineering mechanicsR.K Rajpoot Publication(p) ltd.Laxmi Publication(p) ltd.3Engineering Mechanics: Statics & DynamicsRussell C. HibbelerPearson Pearson14th Ec 20164Engineering MechanicsTimoshenko, and YoungTMH5 th 20 Point5Training ManualLecture note provided by14th Ec Point	on &
MechanicsPublicatio n(p) ltd.4rth a 20162Engineering mechanicsR.K RajpootLaxmi Publication(p) ltd.3rd and Publication(p) ltd.3Engineering Mechanics: Statics & DynamicsRussell C. HibbelerPearson14th Ed 20164Engineering MechanicsTimoshenko, and YoungTMH5th 20 5th 205Training ManualTotal and MenualTaken and Menual	
mechanicsPublication(p) ltd.3EngineeringRussell C. HibbelerPearson14th Ed 2014Engineering MechanicsTimoshenko, and YoungTMH5 th 2015Training Manual555	
Initial Statics & DynamicsHibbelerFourson4Engineering MechanicsTimoshenko, and YoungTMH55Training Manual	2016
Mechanics Young 5 Training Manual	
e)17
6 Lecture note provided by	
6 Lecture note provided by Dept. of Mechanical Engineering, AKS University, Satna.	

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- **11.** Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos,POs and PSOs Mapping

Course Title: B. Tech Mechanical Engineering

Course Code : ESC 202

Course Title: Engineering Mechanics

	Program Outcomes										Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Design/ develop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Moden tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
CO1 : Understanding of term Mechanics and its classification	1	1	2	2	2	2	3	1	2	2	1	2	2	2	1	-
CO 2 : Understanding Resolution and composition of force acting on the rigid body.	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1
CO3 : Compute the resultant of force for different system of force and study of different laws related to different force system.	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2
CO 4: compute the different types of load acting on a different types of beam.	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
CO 5: Compute the centroid, second moment of area, center of gravity, moment of inertia and mass moment of inertia	1	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(L I)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	CO1 : Understanding of term	SO1.1		Unit-1.0 Introduction to Mechanics	
7,8,9,10,11,12	Mechanics and its	SO1.2			
	classification	SO1.3			
PSO 1,2, 3, 4, 5		SO1.4		1.1,1.2,1.3,1.4,1.5,1.6,1.7	
		SO1.5			
PO 1,2,3,4,5,6	CO 2 : Understanding Resolution and composition of force acting on the rigid body.	SO2.1		Unit-2 Resolution and Composition of Forces	
7,8,9,10,11,12	on the fight body.	SO2.2			
		SO2.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4, 5		SO2.4		2.8,2.9,2.10	
		SO2.5			
PO 1,2,3,4,5,6	CO3 : Compute the resultant of force	SO3.1		Unit-3 : System of forces	-
7,8,9,10,11,12	for different system of force	SO3.2			
	and study of different laws related to different force system.	SO3.3		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8	
PSO 1,2, 3, 4, 5	different force system.	SO3.4			
		SO3.5			
PO 1,2,3,4,5,6	CO 4: compute the different	SO4.1		Unit-4 : Beams and Trusses	
7,8,9,10,11,12	types of load acting on a	SO4.2			
	different types of beam.	SO4.3		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10	
PSO 1,2, 3, 4, 5		SO4.4		4.1, 4.2,4.3,4.4,4.3,4.0,4.7,4.8,4.3,4.10	
		SO4.5			
PO 1,2,3,4,5,6	CO 5: Compute the centroid,	SO5.1		Unit 5: Center of gravity and moment of]
7,8,9,10,11,12	second moment of area, center of	SO5.2		inertia	
	gravity, moment of inertia and	SO5.3			
PSO 1,2, 3, 4, 5	mass moment of inertia	SO5.4		5.1,5.2,5.3,5.4,5.5	
		SO5.5			

Semester-III

Course Code:	PCC-ME-201
Course Title:	MECHANICS OF DEFORMABLE SOLIDS
Pre-requisite:	Students must have knowledge of Calculus, linear algebra, physics (classical mechanics), differential equations, materials science basics, and mechanics of materials concepts.
Rationale:	The study of Mechanics of Deformable Bodies is crucial for understanding structural behavior, enabling design, analysis, and optimization in engineering applications.

Course Outcomes:

- **ME 201.1** Apply elasticity principles to analyze and design structures, understanding stress-strain relationships, deformations, and temperature effects for practical engineering solutions."
- **ME 201.2** Analyze plane stresses using principal stresses, Mohr's circle, and transformations. Understand plain strain, principal strains, and combined loading in structures and pressure vessels.
- **ME 201.3** Develop shear force and bending moment diagrams for beams, understanding loading rate relationships and identifying maximum moments and contra flexure points.
- **ME 201.4** Derive flexural and shear formulas, analyze stress distribution, calculate slope and deflection using double integration method for standard cases.
- **ME 201.5** Analyze strain energy in axial loads, bending, torsion, determine torsion stresses, and study buckling of columns using Euler's and Rankine's formulas.

Scheme of Studies:

Course					Scher	ne of studi	es(Hours/Week)	Total Credits
Categor y	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
(Professio nal course category) PCC		MECHANICS OF DEFORMABLE BODIES	4	2	1	1	8	5

Legend: CI: Class room Instruction (Includes different instructional strategies i.e. Lecture(L) and Tutorial (T)and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Sche	me of Assessme	nt(Marks)		
6	6				Progress	ive Assess	ment(PRA)		End Semester Assessment	Total Marks
Course Catego ry	Coues Code	Course Title	Class/Ho meAssign ment5nu mber	ClassTest 2 (2bestout of3)	Semina r one	Class Activity any one	Class Attendance	Total Marks		
			3mar ksea ch (CA)	10marks each(CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
(Profession al course category)P CC	ME	MECHANI CS OF DEFORMA BLE BODIES	15	20	5	5	5	50	50	100

Practical

Board of	Couse	Course Title	Scheme	Scheme of Assessment (Marks)				
Study	Code		Progressive Ass	essment (PRA)			End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)		
PCC	ME201-L	Mechanic s of deformab le solids-L	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ME 201.1: Apply elasticity principles to analyze and design structures, understanding stress-strain relationships, deformations, and temperature effects for practical engineering solutions."

A	proximate nours
ltem	Appx. Hrs
Cl	10
LI	6
SW	2
SL	1
Total	19

Approximate Hours

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO1.1 Define stress, strain, elastic constants, and material behavior principles. SO1.2 Interpret stress-strain diagrams for ductile and brittle materials, ensuring safety factors. SO1.3 Evaluate stresses and strains in determinate, indeterminate, homogeneous, and composite bars. SO1.4 Analyze temperature-induced stresses in simple structural members. SO1.5 Understand and apply interrelations between various elastic constants.	Machine 1.2 To perform the Tensile Test of Mild Steel on U.T.M and To Draw Stress–	 1.1 Introduction 1.2 Stresses and strain, Hooke's law 1.3 Poisson's ratio, Modulus of Elasticity, Modulus of Rigidity 1.4 Modulus of Rigidity, Bulk Modulus. Interrelation between elastic constants, 1.5 Stress-strain diagram for ductile and brittle materials, factor of safety 1.6 Stresses and strains in determinate and indeterminate bars under self weight 1.7 Stresses and strains in determinate and indeterminate under concentrated loads. 1.8 Stresses and strains in homogeneous and composite bars under self weight. 1.9 Stresses and strains in homogeneous and composite bars under concentrated loads. 1.10 Temperature stresses in simple members. 	 Stresses and strains determinate and indeterminate unde concentrated loads.

SW-1Suggested Sessional Work (SW):

a. Assignments:

1. Stresses and strains in determinate and indeterminate bars under self weight

ME 201.2: Analyze plane stresses using principal stresses, Mohr's circle, and transformations. Understand plain strain, principal strains, and combined loading in structures and pressure vessels.

Approximate Hours			
ltem	Appx Hrs		
Cl	12		
LI	6		
SW	1		
SL	2		
Total	21		

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction (LI)	(CI)	Learning (SL)
 SO2.1 Apply Mohr's circle to analyze principal stresses and maximum shear stresses. SO2.2 Understand Mohr's circle for plain strain, principal strains, and maximum shear strain. SO2.3 Evaluate components under bending, torsion, and axial loads. SO2.4 Analyze stresses in thin-walled pressure vessels. SO2.5 Integrate knowledge to solve complex stress and strain scenarios. 	 2.1 To determine shear strength of Mild Steel on U.T.M. 2.2 To observe Flexural Behavior of Timber specimen and to determine it's strength under transverse loading on U.T.M. 2.3 To study the Impact Testing Machine and test specimen of Izod and Charpy 	 2.1 Principal stresses and strain 2.2 Transformation of plane stresses, Principal stresses 2.3Maximum shear stresses, 2.4 Numerical solving 2.5 Mohr's circle for plane stresses 2.6 Numerical solving 2.7 Plain strain and its Mohr's circle representation 2.8 Principal strains, 2.9 Maximum shear strain. 2.10 Combined Loading: Components subjected to bending, torsion & axial loads. 2.11 Analysis of thin pressure vessels. 2.12 Numerical solving 	1. Maximum shear strain

SW-2 Suggested Sessional Work (SW):

- a. Assignments: Plain strain and its Mohr's circle representation
- **ME 201.3:** Develop shear force and bending moment diagrams for beams, understanding loading rate relationships and identifying maximum moments and contra flexure points.

A	oproximate Hours
ltem	Appx Hrs
Cl	8
LI	6
SW	1
SL	1
Total	16

Session Outcomes	Laboratory	Classroom Instruction	Self		
(SOs)	Instruction (LI)	(CI)	Learning (SL)		
SO3.1 Construct shear force and bending moment diagrams for various loads. SO3.2 Understand the connection between loading rates, shear force, and bending moments. SO3.3 Identify and calculate maximum bending moments in statically determinate beams. SO3.4 Determine positions of points of contraflexure in beam structures.		moment 3.3 Shear force and bending moment diagrams for statically	 Shear force and bending moment diagrams for statically determinate beam due to uniformly varying load 		

SW-3Suggested Sessional Work(SW):

a. Assignments:

ME 201.4: Derive flexural and shear formulas, analyze stress distribution, calculate slope and deflection using double integration method for standard cases.

pproximate Hours
Appx Hrs
9
6
1
1
17

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
SO4.1 Derive flexural formula, stress distribution, moment of resistance. SO4.2 Derive distribution formula, analyze common sections. SO4.3 Relate bending moment, analyze determinate beams using integration. SO4.4 Calculate second moment for various cross sections, stress diagrams. SO4.5 Explore shear stresses, connections between flange and web.	 4.1To study the Rockwell Hardness Testing Machine and to determine the Rockwell Hardness of the given material. 4.2 To study the Brinell Hardness Machine and to determine the Brinell hardness of the given material. 4.3 To study the Vickers Hardness Machine and to conduct a test on the machine. 	 UNIT-4.0 4.1 Theory of simple bending, assumptions 4.2 Derivation of flexural formula, Second moment of area of common cross sections (rectangular, I,T,C) with respect to centroidal and parallel axes, 4.3 bending stress distribution diagrams, moment of resistance and section modulus. 4.4 Shear stresses: Concept, derivation of shear stress distribution formula, shear 4.5 stress distribution diagrams for common symmetrical sections, 4.6 maximum and average shears stresses, shear connection between flange and web. 4.7Slope and deflection of beams: Relation between bending moment and slope, slope and deflection of 4.8determinate beams, double integration method (Macaulay's method), derivation of formula for slope and deflection for standard cases. 	1. SFD BMD diagram

SW-4Suggested Sessional Work (SW):

17

ME 201.5 Analyze strain energy in axial loads, bending, torsion, determine torsion stresses, and study buckling of columns using Euler's and Rankine's formulas.

Item	AppX Hrs
Cl	9
LI	6
SW	1
SL	1
Total	17

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	
SO5.1 Analyze gradual, sudden, and impact scenarios. SO5.2 Examine stresses, strains, and deformations in determinate shafts. SO5.3 Derive Euler's formula, evaluate safe loads, consider end conditions. SO5.4 Investigate torsion, bending, and axial force interactions. SO5.5 Understand energy aspects in bending, torsion.	5.2 10 dotormino	5.7 Buckling of columns: Concept of buckling of columns, derivation of Euler's formula for buckling 5.8 loads for column with hinged ends, concept of equivalent length for various end	

SW-5Suggested Sessional Work (SW):

a. Assignments:

1. Numerical problem

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Laboratory	Sessiona	Self Learning	Total hour
	Lecture (Cl)	Instruction (LI)	l Work (SW	(SI)	(Cl+SW+Sl)
Apply elasticity principles to analyze and design structures, understanding stress-strain relationships, deformations, and temperature effects for practical engineering solutions."	9	6	2	1	18
Analyze plane stresses using principal stresses, Mohr's circle, and transformations. Understand plain strain, principal strains, and combined loading in structures and pressure vessels.	14	6	1	2	23
Develop shear force and bending moment diagrams for beams, understanding loading rate relationships and identifying maximum moments and contra flexure points.	12	6	1	1	20
Derive flexural and shear formulas, analyze stress distribution, calculate slope and deflection using double integration method for standard cases.	10	6	1	1	18
Analyze strain energy in axial loads, bending, and torsion, determine torsion stresses, and study buckling of columns using Euler's and Rankine's formulas.	15	6	1	1	23
Total Hours	60	30	6	6	102

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	Α	Marks
CO-1	Simple stresses and strains	03	01	01	05
CO-2	Principal stresses and strains	02	06	02	10
CO-3	Shear Force and Bending Moment Diagrams	03	07	05	15
CO-4	Stresses in Machine Elements, Slope and deflection of beams	-	10	05	15
CO-5	Strain energy and Buckling of columns:	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A:Apply

The end of semester assessment for Mechatronics it will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course-wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 2. Improved Lecture
- 3. Tutorial
- 4. Case Method
- 5. Group Discussion
- 6. Role-play
- 7. Visit to cement plant
- 8. Demonstration
- 9. ICT Based Teaching Learning (VideoDemonstration/Tutorials CBT, Blog, Facebook, Twitter, Whats-app, Mobile, Online sources)
- 10. Brainstorming

Suggested Learning Resources:

(a)]	Books:		
S. No.	Title	Author	Publisher
1	Strength of Materials	Gere &Timoshenko	CBS Publication
2	Strength of Materials	Ramamurtham	Dhanpat Rai Publication.
3	Strength of Material	S.S. Rattan	Tata McGraw Hill Publication Co. Ltd.
4	Strength of Materials- 3rd Edition	G. H. Ryder	Macmillan Pub, India
5	Strength of Material	Beer and Johnston	CBS Publication
6	Introduction to Mechanics of Solids	E.P. Popov	Prentice Hall Publication
7	Introduction to Mechanics of Solids	Singer and Pytel	Harper and row Publication.
8	Strength of Material	B.K. Sarkar	Tata McGraw Hill New Delhi

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos,POsandPSOsMapping

Course Title: B.Tech. Mechanical

Course Code : ME 201

Course Title: Mechanics of Deformable bodies

					Р	rogra	mOutco	omes					Р	rogramSpec	ificOutcome	9
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engine ering knowle dge	Prob lema naly sis	Desig n/dev elopm entof soluti ons	Condu ctinve stigati onsof compl expro bl ems	Mode m toolu sage	Thee ngin eera ndso ciety	Environ ment and sustain ability:	Ethics	Indivi duala ndtea mwor k:	Comm unicat ion:	Project manage ment and finance:	Life- longlear ning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
CO 1: Apply elasticity principles to analyze and design structures, understanding stress- strain relationships, deformations, and temperature effects for practical engineering solutions."	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO 2: Analyze plane stresses using principal stresses, Mohr's circle, and transformations. Understand plain strain, principal strains, and combined loading in structures and pressure vessels.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO 3: Develop shear force and bending moment diagrams for beams, understanding loading rate relationships and identifying maximum moments and contraflexure points.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2

co 4: Derive flexural and shear formulas, analyze stress distribution, calculate slope and deflection using double integration method for standard cases.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
co 5: Analyze strain energy in axial loads, bending, torsion, determine torsion stresses, and study buckling of columns using Euler's and Rankine's formulas.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend:1–Low,2–Medium,3– High

Course Curriculum Map:

Pos &PSOs No.	Cos No. &Titles	SOs No.	Laboratory Instruction(L	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5 PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO 1: Apply elasticity principles to analyze and design structures, understanding stress-strain relationships, deformations, and temperature effects for practical engineering solutions." CO 2: Analyze plane stresses using principal stresses, Mohr's circle, and transformations. Understand plain strain, principal strains, and combined loading in structures and pressure vessels.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO2.1 SO2.2 SO2.3 SO2.4)	Unit-1.0 Simple stresses and strains 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9 Unit-2.0 Principal stresses and strains 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8,2.9,2.10,2.11,2.12,2.13,2.14	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO 3: Develop shear force and bending moment diagrams for beams, understanding loading rate relationships and identifying maximum moments and contra flexure points.	SO2.5 SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3.0 : Shear Force and Bending Moment Diagrams 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11, 3.12	As mentioned in Page number 2 to 6
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	co 4: Derive flexural and shear formulas, analyze stress distribution, calculate slope and deflection using double integration method for standard cases.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4.0 : Stresses in Machine Elements, Slope and deflection of beams 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	co 5: Analyze strain energy in axial loads, bending, torsion, determine torsion stresses, and study buckling of columns using Euler's and Rankine's formulas.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5.0 Strain energy and Buckling of columns: 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12 ,5.13,5.14,5.15	308

Faculty of Engineering and Technology Department of Mechanical Engineering CurriculumofB.Tech.(Mech.Engg.)Program (Revised as on 01 August 2023)

Semester-III

Course Code:	BSC106-AU
CourseTitle:	EnvironmentalScience(Audit)
Pre-requisite:	$To study this course, the student must have a knowledge about the environmental components, pollution, biodiversity and ecosystemats eniors econdary, Class 12'^h level .$
Rationale:	Environmental awareness is today's need as pollution impact is highly increasing. Environmental legislation and Audit is the mechanism to enforce environment friendly techniques/methods to business and industries. And hence knowledge of environmental legislation and audit is an essential requirement for
	environment engineers. This course therefore aims to develop in students, knowledgeofthelegalconcepts, procedures and techniques which have evolved. The course also provides knowledge of tools about the environmental audit. The course will also help students to understand and carry out the environmental

CourseOutcomes:

BSC106-AU.1:Gain an understanding of the fundamental principles and components of environmentalauditing.

BSC106-AU.2: Traininconducting an environmental auditinany organization/institution

auditing and life cycle assessment.

BSC106-AU.3:Implement criticalthinkingtoward environmentalproblems and formulatelocal solutions for their Mitigation.

 $\label{eq:BSC106-AU.4:} Develop, Implement, maintain and Audit Environmental Management systems for Organizations. BSC106-AU.5: For environmental protection, social equity and sustainable development$

SchemeofStudies:

Course	CourseCode	CourseTitle		Schemeofstudies(Hours/Week)						
Category			CI	LI	SW	SL	TotalHours(CI+L			
							I+SW+SL)	(C)		
BSC	BSC106-AU	Environmental Science(Audit)	2	0	1	1	4	2		

- Legend: CI: ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)andTutorial (T)andothers), LI: LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies), SW: Sessional Work(includesassignment, seminar, miniprojectetc.), SL:SelfLearning, C: Credits.
- **Note:** SW&SLhastobeplannedandperformedunderthecontinuousguidanceand feedback ofteacherto ensureoutcomeofLearning.

Faculty of Engineering and Technology Department of Mechanical Engineering CurriculumofB.Tech.(Mech.Engg.)Program (Revised as on 01 August 2023)

SchemeofAssessment: Theory

			SchemeofAssessment(Marks)									
			P									
CourseCategory	CourseCode	CourseTitle	Class/HomeAssignment5 number 3 marks each (HA)	ClassTest2(2bestoutof 3)10 marks each (CT)	Seminarone(TSN)	ClassActivityanyone (TCA)	ClassAttendance(TA)	Total Mark (HA+CT+TSN+TCA+TA)	EndSemesterAssessment (ESA)	TotalMarks(PRA+ESA)		
BSC	BSC106-AU	Environmental Science(Audit)	15	20	5	5	5	50	50	100		

Course-CurriculumDetailing:

Thiscoursesyllabusillustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

BSC106-AU.1:Gainanunderstandingofthefundamentalprinciplesandcomponentsof environmental auditing.

ApproximateHours		
Item	Appx.Hrs	
CI	07	
LI	0	
SW	1	
SL	2	
Total	10	

SessionOutcomes	LaboratoryInstr	ClassroomInstruction	SelfLearning
(SOs)	uction(LI)	(CI)	(SL)

Faculty of Engineering and Technology Department of Mechanical Engineering CurriculumofB.Tech.(Mech.Engg.)Program

(Revised as on 01 August 2023)

801.1	Unit-1 Industrial pollution and its 1. Difference
Understandairpollutionand its	mitigation betweenpollution
sources.	AirPollution:Sources,and pollutants.classification of air pollutants2.Waterquality
SO1.2 Knowabout gaseousand	Classification of air pollutants 2. Water quality standards.
particulate pollutants.	Particulate matters and gaseous
501.2	pollutants
SO1.3 Observethesourcesofwater	Water Pollution: sources,
pollution.	classification Watersuality personators
	Waterqualityparameters, Control measures of water
SO1.4 Learnaboutwater quality	pollution
Learnaboutwater quality parameter.	Soil pollution and impacts, soil
	conservation,
SO1. 5	Noisepollution:sources,effects and
Evaluatetheeffectsofnoise	control measures.
pollution.	

SW-1SuggestedSessionalWork(SW):

a. Assignments:

- i. Classifytheairpollutantsondifferentbasis.
- ii. Describecontrolmeasuresof noisepollution.

b. MiniProject:

- i. Enlist the PPEs which used to minimize the effects of noise pollution.
- c. OtherActivities(Specify):
- ii. Measuretheair qualityofdifferentplacesbyusingSammerApp.

BSC106-AU.2: Traininconductinganenvironmental auditinany organization/institution

ApproximateHours

Itam	A may I Inc
Item	Appx.Hrs
CI	6
LI	0
SW	1
SL	1
Total	08

SessionOutcomes	LaboratoryInstruction	ClassroomInstruction	SelfLearning
(SOs)	(LI)	(CI)	(SL)

Faculty of Engineering and Technology Department of Mechanical Engineering CurriculumofB.Tech.(Mech.Engg.)Program

(Revised as on 01 August 2023)

SO2.1	Unit-2EnvironmentalLawandPolicy	i.Whatisthediff
Know about the environmental acts. SO2.2 TolearnaboutWater Pollutionact. SO2.3 Tounderstandtheair Pollution Act.	Highlights of the Environmental Acts, Institutional arrangements for The vater (Prevention & Control of pollution) Act 1974, The Air (Prevention & Control of pollution) Act 1981 The Environmental ProtectionAct 986, ThewastemanagementAct1996 The National Green Tribunal Act 2010.	erence betweenlaw andpolicies?

SW-2SuggestedSessionalWork(SW):

a. Assignments:

- i. Mentionthemeasureprovisionsofairpollutioncontrolact.
- ii. Describewastemanagement act.

BSC106-AU.3:Implement critical thinking toward environmental problems and formulate local solutions for their Mitigation

ApproximateHours

Item	Appx,Hrs
CI	06
LI	0
SW	1
SL	1
Total	8

SessionOutcomes (SOs)	LaboratoryInst ruction (LI)	ClassroomInstruction (CI)	SelfLearning (SL)
SO3.1 KnowaboutISO14000&		Unit-3:Environmental ManagementSystem	ISOCertification
14001 SO3.2 LearnapplicationsofEMS		 3.1 ISO14000-EMSasper ISO 14001- benefits and barriers of EMS 3.2 Concept of continual 	
SO3.3 Knowthemethodsof EIA		improvement and pollution prevention, 3.3 Applications of EMS, Environmental	
SO3.4			

Faculty of Engineering and Technology Department of Mechanical Engineering CurriculumofB.Tech.(Mech.Engg.)Program

(Revised as on 01 August 2023)

Applythemethodsof EIA	Managementplan.	
	Introduction and	
SO3.5	Principle – purpose of EIA	
Discussaboutsustainable	Sustainable development	
development.	and EIA	
de velopment.	The EIA Process –	
	methodologies and	
	practice.	
	Ĩ	

SW-3SuggestedSessionalWork(SW):

a. Assignments:

- i. MethodsofEIA
- ii. ApplicationsofEMS
- iii. EnvironmentalManagementPlan
- **b. MiniProject:**StudytheEIAreportsofdifferentdevelopmentalProjectsandcreateaEIAreport for cement plant.

BSC106-AU.4: Develop, Implement, maintain and AuditEnvironmental Management systems for Organizations.

ApproximateHours		
Item	Appx,Hrs	
CI	5	
LI	0	
SW	1	
SL	1	
Total	7	

SessionOutcomes (SOs)	LaboratoryInstruction (LI)	ClassroomInstruction (CI)	Self Learning (SL)
SO4.1 Defineenvironmental auditing. SO4.2 KnowtheScopesof Environmentalauditing. SO4.3 Learntheobjectivesof environmental auditing. SO4.4		Unit-4:EnvironmentalAudit-Scope and Requisites Introduction to Environmental Auditing, Objectives and scope, Types, Basic structure of Environmental Auditing, General Audit Methodology Elements of Audit Process:coverage- GOI notification on environmental audit- benefits to industry. Reporting environmental audit findings- Importanceofenvironmentalaudit	i.Basic introduction of environment al auditing.

Faculty of Engineering and Technology Department of Mechanical Engineering CurriculumofB.Tech.(Mech.Engg.)Program

(Revised as on 01 August 2023)

Applythemethodsof Auditing.	reporttoindustry,publicandthe government.	
SO4.5 Create the auditing reports.		

SW-4 SuggestedSessionalWork(SW):

- a. Assignments:
- i. Objectives, scope&Typesofenvironmental auditing.
- $b. \ Other Activities (Specify): Create an environmental auditreport for cement plant.$

BSC106-AU.5: For environmental protection, social equity and sustainable development

ApproximateHours

Item	Appx,Hrs
CI	6
LI	0
SW	1
SL	1
Total	8

SessionOutcomes (SOs)	LaboratoryInstruction (LI)	ClassroomInstruction (CI)	Self Learning (SL)
SO5.1Knowabout Environmental performance indicators SO5.2Understanding sustainability in the context of environmental auditing SO5.3 Learn about		 Unit5:ToolsandTechniquesfor EnvironmentalAuditing 5.1 Environmental performance indicators 5.2 Understanding sustainability in the context of environmental auditing 5.3 Introductory Risk Assessment and Management 	1. How to prepare audit report of Energy, waterand Waste
Risk Assessment and Management SO5.4Understanding		5.4 Introductory Life CycleAssessment (LCA)5.5BriefaboutWateraudit	
Life Cycle Assessment(LCA) SO5.5 Createreport ofEnergyaudit.		5.6 BriefaboutEnergyaudit	

Faculty of Engineering and Technology Department of Mechanical Engineering CurriculumofB.Tech.(Mech.Engg.)Program (Revised as on 01 August 2023)

SW-5SuggestedSessionalWork(SW):

a. Assignments:

Prepare an interpretive electricity consumption report of the organization/ institution over a fiveyear period (either actual or arbitrary data can be used).

BriefofHourssuggestedfortheCourseOutcome

CourseOutcomes	Class Lecture(CI)	Laboratory Instruction(LI)	Sessional Work(SW)	Self Learning(Sl)	Total hour(CI+SW+SI)
BSC106-AU.1 :Gainanunderstanding of the fundamental principles and componentsofenvironmental auditing	7	-	1	2	10
BSC106-AU.2 : Train in conductingan environmental audit in any organization/ institution	6	-	1	1	8
BSC106-AU.3 :Implement critical thinking toward environmental problemsandformulatelocal solutionsfortheirMitigation	6	-	1	1	8
BSC106-AU.4 :Develop, Implement, maintain and Audit Environmental Management systems for Organizations	5	-	1	1	7
BSC106-AU.5 :Forenvironmental protection, social equity and sustainable development	6	-	1	1	8
TotalHours	30	0	5	6	41

SuggestionforEndSemesterAssessment

SuggestedSpecificationTable(ForESA)

СО	UnitTitles	Mar	Total		
0	5 Omt Hues		U	Α	Marks
CO-1	Gainanunderstandingofthefundamentalprinciplesand componentsofenvironmentalauditing.	03	01	01	05
CO-2	Traininconductinganenvironmentalauditinany organization/ institution	02	06	02	10
CO-3	Implement critical thinking toward environmental problemsandformulatelocalsolutionsfortheirMitigation	03	07	05	15
CO-4	Develop,Implement,maintainandAuditEnvironmental Management systems for Organizations.	-	10	05	15
CO-5	Forenvironmentalprotection, social equity and sustainable development	03	02	-	05
	Total	11	26	13	50

Legend: I

R:Remember,

U:Understand,

Faculty of Engineering and Technology Department of Mechanical Engineering CurriculumofB.Tech.(Mech.Engg.)Program

(Revised as on 01 August 2023)

The end of semester assessment for Introduction to Portland cement will be held with written examination of 50 marks **Note**. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teacherscanalsodesigndifferenttasksasperrequirement, for endsemester assessment.

SuggestedInstructional/ImplementationStrategies:

- (a) ImprovedLecture
- (b) Tutorial
- (c) CaseMethod
- (d) GroupDiscussion
- (e) RolePlay
- (f) Visittocementplant
- (g) Demonstration
- (h) ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Fac ebook,Twitter,Whatsapp,Mobile,Onlinesources)
- (i) Brainstorming

SuggestedLearningResources:

Books

S.No.	Title	Publisher	Edition&Year		
1	EnvironmentalHealthandSafety Audits:ACompendiumofThoughts and Trends	Cahill,L.B	BernanPress.	2017	
2	HandbookofEnergyAudits	Thuman,A., Niehus, T., Younger,W.J.	RiverPublishers	2012	
3	Environmental Audits. Mercury Learning & Information.	Taylor and Francis Van Guilder,C.V.,	MercuryLearning and Information	2014	
4	AGuidetoLocalEnvironmental Auditing	Barton,H.,and Bruder N.,	Routledge	1993	
5	LecturenoteprovidedbyDept.ofEnvironme	entalScience,AKSU	University,Satna.		

CurriculumDevelopmentTeam

- 1. Prof.GCMishra, DirectorIQAC, AKS University
- 2. DrMahendraKumarTiwari, Professor&Head, Dept.Environmental Science
- 3. Dr.RLSSikarwar, ProfessorDept.EnvironmentalScience
- 4. MrsSumanPatelDept.Environmental Science

Faculty of Engineering and Technology Department of Mechanical Engineering CurriculumofB.Tech.(Mech.Engg.)Program

(Revised as on 01 August 2023)

5. DrRahulOmar, AssistantProfessor, Dept. of CementTechnology

FacultyofEngineeringandTechnology DepartmentofCementTechnology CurriculumofB.Tech.(CementTechnology)Program (Revisedas on01August2023)

Cos.PosandPSOs Mapping

ProgramTitle:B.TechCementTech

CourseCode:BSC106-AU

CourseTitle:EnvironmentalScience(Audit)

		ProgramOutcomes											ProgramSpecificOutcome			
		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Engineeringknowledge	Problemanalysis	Design/developmentof solutions	Conductinvestigationsofco mplex problems	Moderntoolusage	Theengineerand society	Environmentand sustainability	Ethics	Individualandteamwork	Communication	Projectmanagementandfin ance	Life-longlearning	Mechani cal System Design and Analysis	Manufa cturing Processe s and Automat ion	Compu tationa l Modeli ng and Simula tion.	Produ ct Innov ation and Devel opme nt
CO-1 : Gain an understanding of the fundamental principles and components of environmental auditing																
	1	3	2	2	2	3	3	2	2	2	2	3	2	3	2	3
CO-2 :Traininconductinganenvironmental audit in any organization/ institution																
	3	3	3	3	1	2	3	3	2	2	2	3	3	2	3	3
CO-3 : Implement critical thinking toward environmentalproblemsandformulatelocal solutions for their Mitigation	3	2	3	2	2	1	3	2	2	2	2	3	3	2	3	3
CO-4 : Develop, Implement, maintain and Audit Environmental Management systems for Organizations	3	3	2	2	2	2	3	3	2	2	2	2	2	3	3	3
CO-5 : For environmental protection, social equity and sustainable development	3	3	3	3	2	3	3	3	2	2	2	2	3	3	3	3

Legend:1-Low,2-Medium,3-High

FacultyofEngineeringandTechnology DepartmentofCementTechnology CurriculumofB.Tech.(CementTechnology)Program (Revisedas on01August2023)

CourseCurriculumMap:EnvironmentalScience(Audit)

POs&PSOsNo.	COsNo.&Titles	SOsNo.	Laboratory	Classroom	Self	
PUSAPSUSINO.	COSINO. & Hues	Instruction(LI)		Instruction(CI)	Learning(SL)	
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5 PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO-1:Gainanunderstandingofthe fundamentalprinciplesandcomponents ofenvironmentalauditing CO-2: Train in conducting an environmental audit in any organization/ institution			Unit-1.0Gainanunderstandingofthe fundamentalprinciplesand components of environmental auditing. 1.1,1.2,1.3,1.4,1.5,1.6,1.7 Unit-2Traininconductingan environmental audit in any organization/ institution 2.1,2.2,2.3,2.4,2.5,2.6,		
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO-3 :Implement critical thinking toward environmental problems and formulate local solutions for their Mitigation			Unit-3:Implement critical thinking towardenvironmentalproblemsand formulate local solutions for their Mitigation 3.1,3.2,3.3,3.4,3.5,3.6	Asmentioned, inabovepages	
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO-4 :Develop,Implement,maintainand Audit Environmental Management systemsforOrganizations	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4:Develop,Implement, maintainandAuditEnvironmental Managementsystemsfor Organizations. 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10		
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO-5 :Forenvironmentalprotection, socialequityandsustainabledevelopment	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit5:Forenvironmentalprotection, social equityandsustainable development 5.1,5.2,5.3,5.4,5.5,5.6		

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

Semester-IV

Course Code:	PCC-ME 206
Course Title:	Engineering Materials and Applications
Pre-requisite:	Prior knowledge in chemistry, physics, math, and introductory engineering principles is required for Engineering Materials and Applications.
Rationale:	Understanding foundational concepts in chemistry, physics, math, and engineering is crucial for comprehending the complexities of material behavior and selection in Engineering Materials and Applications. This prerequisite ensures students possess necessary background knowledge to engage effectively with course content and applications.

Course Outcomes:

- **PCC- ME 206.1:** Students will apply diverse material properties to engineering applications, considering cost and standards adherence.
- **PCC- ME 206.2:** Students will conduct and interpret mechanical tests, including tension, compression, fatigue, and hardness, while understanding key concepts like Young's modulus and yield strength, including an introduction to non-destructive testing techniques.
- **PCC- ME 206.3:** Students will learn about diverse materials, including steel, copper, aluminum, nickel-based alloys, and titanium, and their heat treatment techniques for enhancing properties in engineering applications..
- **PCC- ME 206.4:** Students will comprehend classification, applications, polymerization, properties, and applications of polymers, ceramics, composites, and advanced materials.
- **PCC- ME 206.5:** Students will analyze properties, applications, and types of conducting, semiconducting, magnetic, superconducting, dielectric, and smart materials..

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

Scheme of Studies:

Board of					Scher	ne of studi	es(Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	206	Engineering Materials and Applications	4	0	1	1	6	4

 Legend:
 CI: Class room Instruction (Includes different instructional strategies i.e. Lecture(L) and Tutorial (T)and others),

 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

 SW: Sessional Work (includes assignment, seminar, mini project etc.),

 SL: Self Learning,

 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment(Marks)							
Board of Course				Progressive Assessment(PRA)					End Semester Assessment	Total Mark s
Study	Code	Course Title	Class/Ho meAssig nment5n umber	ClassTest 2 (2bestout of3)	Seminar one	Class Activit y any one	Class Attendance	Total Marks		
			3ma rks eac h (CA)	10marks each(CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA +ES A)
Program Core (PCC)	PCC- ME	Engineering Materials	15	20	5	5	5	50	50	100
	206	and Applications								

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC- ME 206.1 Students will apply diverse material properties to engineering applications, considering cost and standards adherence.

Approximate Hours

FF	
Item	Appx. Hrs
Cl	12
LI	0
SW	2
SL	1
Total	15

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (CI)	Self Learning
	(LI)		(SL)
 SO1.1 Students will classify materials and analyze their physical, mechanical, thermal, electrical, and chemical properties, along with costs. SO1.2 Students will understand the range of applications for metals, plastics, ceramics, and composites, considering material designation and Ashby Diagrams. SO1.3 Students will evaluate selection criteria and processes for metals, enhancing understanding of material behavior and application suitability. 		 Unit-1.0 Engineering Materials and Classification 1.1 Metals, plastics, ceramics and composites. 1.2 Physical properties of metals, plastics, ceramics and composites 1.3 Mechanical properties of metals, plastics, ceramics and composites 1.4 Thermal properties of metals, plastics, ceramics and composites 1.5 Electrical properties of metals, plastics, ceramics and composites 1.6 Chemical properties of metals, plastics, ceramics and composites 1.7 Cost of metals, plastics, ceramics and composites 1.8 Range of applications. 1.9 Material designation and standards. 1.10 Ashby Diagrams 1.12 Process of metals 	1.1 Nano materialsExploration1.2 Sustainable Materials

Faculty of Engineering and Technology Department of Mechanical I Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revisedason01August2023)

SW-1Suggested Sessional Work (SW):

a) Assignments:

- 1. Ashby Diagrams Application in Material selection.
- 2. Chemical Properties Comparison and Impact on Applications

PCC- ME 206.2: Students will conduct and interpret mechanical tests, including tension, compression, fatigue, and hardness, while understanding key concepts like Young's modulus and yield strength, including an introduction to non-destructive testing techniques.

Approximate Hours				
Item	AppX Hrs			
Cl	12			
LI	0			
SW	2			
SL	2			
Total	16			

			10	tai	16
Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	n	Le	Self earning (SL)
SO2.1 Students will conduct and interpret tensile, compression, torsion, fatigue, fracture, and wear tests, understanding material behavior. SO2.2 Students will analyze Young's modulus, stress-strain relationships, Hooke's law, yield strength, ductility, resilience, and toughness. SO2.3 Students will assess hardness, SN curves, endurance limits, and NDT principles, enhancing materials testing proficiency.		Unit-2.0 Mechanical Proper and Testing 2.1 Tensile and compression to 2.2 Torsion and Fatigue test 2.3 Fracture and Wear test. 2.4 Young's modulus 2.5 Relations between true and engineering stress-stra curves 2.6 Generalized Hooke's law 2.7 Yielding and yield strength 2.8 ductility, resilience, toughr elastic recovery 2.9Hardness measurement their relation to strength 2.10 SN curve 2.11 endurance and fatigue lim 2.12 Introduction to non-destru- testing (NDT).	Nest ain ness and ir nits	2.1Wear R Aaterial H	esistance2.2 ardness

Faculty of Engineering and Technology Department of Mechanical Engineering

(Revisedason01August2023)

SW-2 Suggested Session HIT Welter (Sty) Tech. (Mechanical Engineering) Program

- a. Assignments:
 - 1. Ductility, Resilience, Toughness and Elastic Recovery Evaluation.
 - 2. Hardness, Measurement Techniques and Strength Correlation Study.
- **PCC- ME 206.3** Students will learn about diverse materials, including steel, copper, aluminum, nickel-based alloys, and titanium, and their heat treatment techniques for enhancing properties in engineering applications.

Approximate Hours

Item	Appx Hrs				
Cl	12				
LI	0				
SW	2				
SL	1				
Total	15				

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO3.1 Students will classify metal alloys and understand their compositions, including iron, steel, stainless steel, and tool steels. SO3.2 Students will analyze copper alloys, aluminum alloys, nickel-based superalloys, and titanium alloys, considering phase diagrams and microstructures. SO3.3 Students will comprehend heat treatment processes like annealing, tempering, normalizing, case hardening, and various hardening techniques.		Unit-3.0 : Metal ,Alloys and Heat Treatment 3.1 Iron and steel; Stainless steel and tool steels 3.2 Copper & its alloys – brass, bronze & cupro-nickel 3.3 Aluminium & Al-Cu-Mg alloys 3.4 Nickel based superalloys & Titanium alloys 3.5 Phase diagrams and interpretation of microstructure 3.6 Iron-carbide phase diagram and cooling (TTT) diagrams 3.7 Heat treatment of Steel; Annealing, tempering, normalizing 3.8 Spheroidising, austempering, martempering 3.9 case hardening, carburizing 3.10 nitriding, cyaniding, carbo- nitriding 3.11 flame and induction hardening 3.12 vacuum and plasma hardening	1. Phase Diagrams 2. Carbide Phase

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revisedason01August2023)

SW-3Suggested Sessional Work (SW):

a. Assignments:

- 1. Aluminum Alloys and Their Mechanical Properties Analysis
- 2. Superalloys vs. Titanium Alloys: Strengths and Limitations Contrast

PCC- ME 206.4: Students will comprehend classification, applications, polymerization, properties, and applications of polymers, ceramics, composites, and advanced materials.

Approximate Hours				
Item	AppX Hrs			
Cl	12			
LI	0			
SW	2			
SL	2			
Total	16			

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction	Self Lograming
(308)	(LI)	(CI)	Learning (SL)
SO4.1 Students will classify polymers, understanding their applications and polymerization techniques. SO4.2 Students will analyze ceramics, including oxide ceramics, ceramic insulators, bio-ceramics, and glasses. SO4.3 Students will comprehend composites, including reinforcement, matrix, ceramic, and polymer composites, and other advanced materials like biomaterials, optical materials, and nanomaterials.		Unit-4.0:Polymers, Ceramics and Composites 4.1 Polymers – Classification and applications 4.2 Polymerization Techniques 4.3 Ceramics – Oxide ceramics 4.4 ceramic insulators. 4.5 bio-ceramics and Glasses 4.6 Composites – Reinforcement, matrix, metal matrix composites 4.7 ceramic composites 4.8 polymer composites 4.8 polymer composites 4.9 Other Advanced materials – biomaterials 4.10 optical materials 4.11 high temperature materials 4.12 energy materials, And nano materials.	1. Polymer Basics 2. Ceramic Insights

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revisedason01August2023)

SW-4Suggested Sessional Work (SW):

a. Assignments:

- 1. Ceramic Properties Analysis: Focus on Oxide Ceramics.
- 2. Ceramic Insulators: Characteristics and Uses Examination.

PCC- ME 206.5: Students will analyze properties, applications, and types of conducting, semiconducting, magnetic, superconducting, dielectric, and smart materials.

Approximate Hours				
Item	Appx Hrs			
Cl	12			
LI	0			
SW	1			
SL	1			
Total	14			

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
 SO5.1 Students will classify conducting, resisting, semiconducting, and magnetic materials, understanding their properties and applications. SO5.2 Students will analyze superconductors, dielectric materials, and smart materials, grasping their properties and applications in sensors and actuators. SO5.3 Students will comprehend piezoelectric, magnetostrictive, and 		Unit 5.0 Electrical and Magnetic Materials 5.1 Conducting and resisting materials – types 5.2 Conducting and resisting materials – properties 5.3 Conducting and resisting materials – applications 5.4 Semiconducting materials – properties	1. Smart Material Basics
electrostrictive materials, enhancing understanding of their functionalities and applications.		 5.5 Semiconducting materials – applications 5.6 Magnetic materials – Soft and hard magnetic materials – applications 5.7 Magnetic materials –applications 5.8 Superconductors and dielectric materials – properties 5.9 Superconductors and dielectric materials – applications 5.10 Smart materials; Sensors and actuators 5.11 Piezoelectric, magnetostrictive 5.12 electrostrictive materials 	

SW-5 Suggested Sessional Work(SW):

a. Assignments:

Soft vs. Hard Magnetic Materials: Magnetic Properties and Applications Comparison
 Applications of Conducting and Resisting Materials in Various Industries: Case Studies and Examples Examination

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revisedason01August2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
PCC- ME 206.1: Students will apply diverse material properties to engineering applications, considering cost and standards adherence.	12	2	1	15
PCC- ME 206.2: Students will analyze properties, applications, and types of conducting, semiconducting, magnetic, superconducting, dielectric, and smart materials.	12	2	2	16
PCC- ME 206.3: Students will learn about diverse materials, including steel, copper, aluminum, nickel-based alloys, and titanium, and their heat treatment techniques for enhancing properties in engineering applications.	12	2	1	15
PCC- ME 206.4: Students will comprehend classification, applications, polymerization, properties, and applications of polymers, ceramics, composites, and advanced materials	12	2	2	16
PCC- ME 206.5 Students will analyze properties, applications, and types of conducting, semiconducting, magnetic, superconducting, dielectric, and smart materials.	12	1	1	14
Total Hours	60	9	7	76

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revisedason01August2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	А	Marks
CO-1	Engineering Materials and Classification	05	03	02	10
CO-2	Mechanical Properties and Testing	04	03	03	10
CO-3	Metal ,Alloys and Heat Treatment	04	04	02	10
CO-4	Polymers, Ceramics and Composites	04	04	02	10
CO-5	Electrical and Magnetic Materials	05	05	-	10
	Total	22	19	09	50

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment for **Engineering Materials and Applications** it will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course-wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role-play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Face book, Twitter, Whets-app, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revisedason01August2023)

Suggested Learning Resources:

(a)]	Books:		
S. No.	Title	Author	Publisher
1	Materials Science & Engineering	W. D. Callister	Wiley India, 2014
2	Engineering Materials	K. G. Budinski and M.K. Budinski	PHI India, 2002
3	Material Science and Engineering	V. Raghavan	PHI India, 2015
4	Engineering Materials and Metallurgy	U. C. Jindal	Pearson, 2011

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr Deepak Pandey , Assistant Professor , Dept. of Mechanical Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanical Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: B.Tech. Mechanical Course Code : PCC- ME 206 Course Title: Engineering Materials and Applications

		Program Outcomes						P	rogram Spe	cific Outco	me					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engin eering knowle dge	Pro ble m b anal ysis	Desig n/dev elopm entof soluti ons	Cond uctinv estiga tions of compl ex probl ems	Mode rn Tool usage	The engi neer ands ociet y	Enviro nment and sustain ability:	Ethics	Indiv idual andte amw ork:	Com munic ation:	Project manage ment and finance:	Life- longlear ning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
C01 Students will apply diverse material properties to engineering applications, considering cost and standards adherence.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO 2 : Students will analyze properties, applications, and types of conducting, semiconducting, magnetic, superconducting, dielectric, and smart materials	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO3 : Students will learn about diverse materials, including steel, copper, aluminum, nickel-based alloys, and titanium, and their heat treatment techniques for enhancing properties in engineering applications.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO4: Students will comprehend classification, applications, polymerization, properties, and applications of polymers, ceramics, composites, and advanced materials	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO5: Students will analyze properties, applications, and types of conducting, semiconducting, magnetic, superconducting, dielectric, and smart materials.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Course Curriculum Map:

Pos &PSOs No.	Cos No. &Titles	SOs No.	Laboratory Instruction(L I)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,	CO-1: Students will apply diverse material properties to engineering applications, considering cost and standards adherence.	SO1.1 SO1.2 SO1.3		Unit-1.0 Engineering Materials and Classification 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11,1 .12	
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO 2 : Students will analyze properties, applications, and types of conducting, semiconducting, magnetic, superconducting, dielectric, and smart materials	SO2.1 SO2.2 SO2.3		Unit-2.0 Mechanical Properties and Testing 2.1,2.2,2.3,2.4,2.5,2.6,2.7,	
PSO1,2,3,4,		502.5		2.8,2.9,2.10,2.11,2.12	As mentioned in Page number
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,	CO3: Students will learn about diverse materials, including steel, copper, aluminum, nickel-based alloys, and titanium, and their heat treatment techniques for enhancing properties in engineering applications.	SO3.1 SO3.2 SO3.3		Unit-3.0 : Metal ,Alloys and Heat Treatment 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11,3.12	2 to 6
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,	CO4: Students will comprehend classification, applications, polymerization, properties, and applications of polymers, ceramics, composites, and advanced materials	SO4.1 SO4.2 SO4.3		Unit-4.0: Polymers, Ceramics and Composites 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11,4 .12	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,	CO5: Students will analyze properties, applications, and types of conducting, semiconducting, magnetic, superconducting, dielectric, and smart materials.	SO5.1 SO5.2 SO5.3		Unit 5.0 Electrical and Magnetic Materials 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11, 5.12	

Semester-IV

Course Code: PCC- ME 203

Course Title : FLUID MECHANICS AND HYDRAULIC MACHINES

- **Pre-requisite:** Students are expected to know the fundamentals of engineering mechanics, resolving of forces, Statics, Dynamics and flow kinematics.
- **Rationale:** Fluid mechanics and hydraulics are core to engineering, offering vital insights into liquid and gas behavior for efficient system design across industries like power generation, aerospace, and infrastructure. Understanding fluid dynamics drives innovation, impacting energy, transportation, and environmental sectors globally, with applications reaching into fields like medicine and meteorology.

Course Outcomes:

- PCC- ME 203.1: Grasp fluid properties (density, viscosity, surface tension) and understand static principles (pressure laws, buoyancy).
- PCC- ME 203.2: Analyze fluid motion using Lagrangian/Eulerian methods, study flow lines and particle acceleration.
- PCC- ME 203.3: Apply Euler's/Bernoulli's equations, understand Venturimeter, Orifice meter, and implications of momentum equations.
- **PCC- ME 203.4:** Differentiate between laminar/turbulent flow, study pipe flow, energy losses, configurations, and pipe phenomena.
- **PCC- ME 203.5:** Master boundary layer theory, friction factors, and separation control, plus dimensional analysis methods and model laws in fluid dynamics.

Board					Scheme	Scheme of studies(Hours/Week)			
ofStudy			CI	LI	SW	SL	Total	(C)	
	Course	CourseTitle					StudyHours(CI		
	Code						+LI+SW+SL)		
Program	PCC-	Fluid Mechanics	4	2	1	1	8	5	
Core	ME203	and Hydraulic							
(PCC)		Machines							

Scheme of Studies:

Legend: CI: Class room Instruction (Includes different instructional strategies i.e. Lecture(L) and Tutorial (T)and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

SchemeofAssessment: Theory

			Scheme o	of Assessm	nent(Ma	arks)					
			Progress	Progressive Assessment(PRA)					End Semester Assessm nt	e Mark	
Board of Study	Cours e Code	Course Title	Class/ Home Assig nment 5num ber 3m ar ks ea ch (CA)	ClassT est2 (2bestout of3) 10mar kseach (CT)	Semi nar one (SA)		Class Attendar (AT)	nce	ll Marks +CT+SA+C AT)	(ESA)	s (PR A+ ES A)
Program Core (PCC		 Fluid Mechanics and Hydraulic Machines 		20	5	5	5	50		50	100
Board of	Couse	Course Title		C.	ahomo of	Assass	ont (Mar	1za)			
Study	Code			Scheme of Assessment (Marks) Progressive Assessment (PRA)				End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)		
			Assig numb	ks each	VI	VA		Class Attenda nce (AT)	Total Marks (CA+VV + AT)		
Progr am Core (PCC)	PCC- ME203 -L	Fluid Mechanics and Hydraulic Machines-		35		10		5	50	50	100

LAB Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC - ME 203.1 Grasp fluid properties (density, viscosity, surface tension) and understand static principles (pressure laws, buoyancy).

Approximate Hours

Item	AppX Hrs
	Hrs
Cl	13
LI	04
SW	01
SL	01
Total	19

SessionOutcomes (SOs)	LaboratoryInstruction (LI)	ClassroomInstruction (CI)	Self- Learning (SL)
SO1.1 Understand fluid characteristics like density, viscosity, and surface tension. SO1.2 Master pressure laws, buoyancy, and equilibrium in liquids. SO1.3 Apply fluid knowledge to solve real- world engineering challenges. SO1.4 Develop problem- solving skills in fluid statics scenarios. SO1.5 Use fluid principles for efficient system design across industries.	 1.1 Determination of Metacentric Height of Flat bottomed pantoon. 1.2 Study of Pressure Gauge 	 1.1 Introduction to fluid mechanics 1.2 Properties of fluid: Mass density, Weight density. Specific volume, Specific gravity, Viscosity, Surface tension. 1.3 Numericals on properties of fluid. 1.4 Capillarity, Vapour pressure, Compressibility and bulk modulus. 1.5 Newtonian and non- Newtonian fluids. 1.6 Fluid statics: Pressure, Pascal's law 7 Hydrostatic law, 8 Pressure measurement 9Hydrostatic force on submerged plane 1.10 Hydrostatic force on curved surface 1.11 Buoyancy 1.12 Floatation, Liquid in relative equilibrium. 1.13 Tutorial 1 	 Solve a set of practice problems related to hydrostatic law to reinforce your problem solving skills. Explore Online simulations or Virtual labs related to Fluid Properties, Buoyancy and Floatation.

SW-1 SuggestedSessionalWork(SW):

a. Assignments:

i. Explore and differentiate between Newtonian and non-Newtonian fluids. Provide real-world examples of each type and explain how their behavior diverges from conventional Newtonian fluid dynamics.

ii. Discuss the concept of pressure measurement in fluid systems. Explain at least three different methods of measuring fluid pressure and compare their advantages and limitations.

b. MiniProject:

i. Select diverse scenarios from everyday life where fluid dynamics play a crucial role (e.g., water flow in pipes, movement of liquids in different vessels, surface tension effects, etc.).

ii. Document and observe these scenarios, noting down relevant data such as fluid types, dimensions, and observed behaviors.

PCC- ME 203.2 : Analyze fluid motion using Lagrangian/Eulerian methods, study flow lines and particle acceleration.

Approximate Hours

Item	AppX Hrs
Cl	13
LI	06
SW	01
SL	01
Total	21

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i) Explain the differences between the Langragian and Eulerian approaches in describing fluid motion. Provide examples to illustrate situations where each approach is more applicable and why.

ii) Define laminar, turbulent, and transitional flow. Compare and contrast these types of flow, highlighting their characteristics and the factors influencing their occurrence. Provide real-world examples for each type of flow.

b. Mini Project:

a) Discuss the continuity equation and its significance in fluid dynamics.

b) Explore the acceleration of a fluid particle, considering both normal and tangential components along curved paths. Provide examples to illustrate these concepts.

PCC-ME 203.3: Apply Euler's/Bernoulli's equations, understand Venturimeter, Orifice meter, and implications of momentum equations.

Appro	ximate Hours
Item	AppX
	Hrs
Cl	11
LI	08
SW	1
SL	1
Total	21

SessionOutcomes	LaboratoryInstruction	ClassroomInstruction	Self-Learning
(SOs)	(LI)	(CI)	(SL)
SO3.1 Grasp Euler's and Bernoulli's equations and their practical applications in fluid dynamics. SO3.2 Explore Venturimeter, Orifice meter, Nozzle, and Pitot tube functionalities in measuring fluid flow. SO3.3 Apply impulse momentum and momentum of momentum equations for fluid behavior analysis. SO3.4 Understand kinetic energy and momentum correction factors in fluid systems' energy analysis. SO3.5 Apply Reynold's transport theorem to understand property transport in flowing fluids.	 3.1 Verification of Bernoulli's Theorem experimentally. 3.2 Determination of coefficient of Discharge of venturimeter. 3.3 To determine hydraulic Coefficients Cd, Cv and Cc of an Orifice. 3.4 Study of Reynolds transport theorem 	 3.1 Fluid dynamics: Euler's Equation 3.2 Bernoulli's equation and its practical application, 3.3 Venturimeter 3.4 Orifice meter 3.5 Nozzle 3.5 Pitot tube 3.6 Impulse momentum equation 3.7 Momentum of Momentum equation 3.8 Kinetic energy 3.9 Momentum correction factor. 3.10 Reynold's transport theorem 3.11 Tutorial 1. 	 Choose a real life example and demonstrate how Bernoulli's Equation can be applied to analyze the fluid mechanics. Choose a fluid flow scenario and apply the Renyold's Transport Theorem to analyze the changes in mass, Momentum and energy with in the system.

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Derive and explain the impulse momentum equation for a control volume. Discuss its significance in analyzing fluid flow problems and provide examples demonstrating its application.

b. Mini Project:

i. Collect and compile the data obtained from each flow measurement device.

ii. Analyze the data to calculate flow rates and compare the measurements obtained from different devices.

PCC- ME 203.4: Differentiate between laminar/turbulent flow, study pipe flow, energy losses, configurations, and pipe phenomena

Appro	ximate Hours
Item	AppX Hrs
	Hrs
Cl	11
LI	08
SW	2
SL	1
Total	22

SessionOutcomes	LaboratoryInstruction	ClassroomInstruction	SelfLearning
(SOs)	(LI)	(CI)	(SL)
 SO4:1 Understanding flow transitions from Reynold's experiment to viscous fluid behavior in pipes. SO4:2 Exploring shear stress and pressure gradient in Couette flow for parallel plate systems SO4:3 Grasping energy loss in pipes, hydraulic gradient, and optimizing pipe configurations. SO4:4 Applying equivalent pipe power transmission and managing water hammer effects in pipes. 	 4.1 To determine the minor head loss coefficient of different pipe fittings. 4.2 Determine the Renyold's no in different flow conditions. 4.3 Determination of Coefficient of Discharge of Rectangular and Triangular Notch. 4.4 Study of fluid flow through pipes 	 4.1 Laminar & Turbulent flow: Reynold's experiment 4.2 F low of viscous fluids in circular pipe 4.3 Shear stress & velocity distribution for turbulent. 4.4 Shear stress and pressure gradient between two parallel plates 4.5 Couette flow 4.6 Flow through pipes: Loss of energy in pipes 4.7 Hydraulic gradient and total energy line 4.8 Pipe in series and parallel. 4.9 Equivalent pipe power transmission through pipes. 4.10 Water hammer in pipes. 4.11 Tutorial 1 	 Explore the phenomenon of cavitation in fluid flow. Investigate the condition under which cavitation occurs, its effects on pipes and equipment, and methods to prevent or mitigate cavitation. Explore the principles of Syphon Systems in Fluid Transport.

SW-4 Suggested Sessional Work(SW):

a. Assignments:

i. Describe the characteristics of turbulent flow concerning shear stress and velocity distribution in a pipe. Compare and contrast these characteristics with those of laminar flow. Provide explanations supported by equations and graphical representations

b. Mini Project:

- i. Study the behavior of pipe configurations in series and parallel, measuring flow rates and pressure differences.
- ii. Simulate and analyze the occurrence and effects of water hammer in the pipe network.

PCC- ME 203.5: Master boundary layer theory, friction factors, and separation control, plus dimensional analysis methods and model laws in fluid dynamics.

Appro	ximate Hours
Item	AppX Hrs
	Hrs
Cl	12
LI	04
SW	01
SL	2
Total	19

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
 SO5.1 Use Darcy-Weisbach and Moody's diagram for internal flow friction calculations. SO5.2 Differentiate laminar and turbulent layers, explore growth, and solutions for momentum layers. SO5.3 Solve equations, grasp momentum principles, and separation factors. SO5.4 Use Rayleigh's and Buckingham's methods for fluid behavior using dimensionless numbers. SO5.5 Explain Reynold's, Fraude's, Euler's, Weber's, and Mach's laws in predicting varied fluid behaviors. 	5.1 Determination of Friction Factor 'f' for G.I pipes.5.2 Study of Boundary Layer theory	 5.1 Internal flows: Friction factor, Darcy- Weisbach friction factor 5.2 Moody's diagram 5.3 Boundary Layer theory 5.4 Boundary layer equation 5.5 Laminar and turbulent boundary layer and its growth over flat plat. 5.6 Momentum boundary layer and its solutions, separation of boundary layer and its control. 5.7 Dimensional analysis: Methods of dimensional analysis, Rayleigh's method 5.8 Buckingham's theorem, Limitations 5.9 Model analysis, Dimensionless number and their significance 5.10 Model laws, Reynolds model law, 5.11Fraude's model law, 5.12 Tutorial 1 	 Investigate methods to control and prevent boundary layer separation. Investigate the limitations of dimensional analysis. Choose a specific flow scenario and use Moody's Diagram to determine the friction Factor.

SW-5 SuggestedSessionalWork(SW):

a. Assignments:

i. Discuss real-world applications where understanding friction factors and boundary layer theory is crucial.

b. MiniProject:

i. Construct a setup simulating flow over a flat plate using a wind tunnel or a controlled airflow system.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Laboratory Instruction (LI)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+LI+SW+Sl)
PCC- ME 203.1: Grasp fluid properties (density, viscosity, surface tension) and understand static principles (pressure laws, buoyancy).	13	4	1	1	19
PCC- ME 203.2 : Analyze fluid motion using Lagrangian/Eulerian methods, study flow lines and particle acceleration.	13	6	1	1	21
PCC- ME 203.3: Apply Euler's/Bernoulli's equations, understand Venturimeter, Orifice meter, and implications of momentum equations.	11	8	1	1	21
PCC- ME 203.4: Differentiate between laminar/turbulent flow, study pipe flow, energy losses, configurations, and pipe phenomena.	11	8	2	1	22
PCC- ME 203.5: Master boundary layer theory, friction factors, and separation control, plus dimensional analysis methods and model laws in fluid dynamics.	12	4	1	2	19
Total Hours	60	30	6	6	102

Suggestion for End Semester Assessment

Suggested Specification Table(ForESA)

СО	Unit Titles	Ma	Marks Distribution							
co	Unit Titles	R	U	Α	Marks					
CO-1	Properties of Fluid and Fluid Statics	03	01	01	05					
CO-2	Fluid Kinematics	02	06	02	10					
CO-3	Fluid Dynamics	02	07	06	15					
CO-4	Laminar and Turbulent Flow and Flow through Pipes	02	07	06	15					
CO-5	Internal Flows and Dimensional Analysis	01	02	02	05					
	Total	10	23	17	50					

Legend: R: Remember, U:Understand, A:Apply

TheendofsemesterassessmentforProcess calculation willbeheldwith written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp,Mobile,Onlinesources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books:

S. No.	Title	Author	Publisher	Edition&Year	
1	Fluid Mechanics & Hydraulic Machines	S.S. Rattan	Khanna Book Publishing	2019	
2	Introduction to Fluid Mechanics,	P.J. Pritchard, A.T. McDonald and R.W. Fox	Wiley India	2012	
3	'Fluid Mechanics	F.M. White	Tata McGraw Hill	2011	
4	'Introduction to Fluid Mechanics and Fluid Machines	S. K. Som, G. Biswas and S. Chakraborty	Tata McGraw Hill	2017	
5	A Textbook of Fluid Mechanics and Hydraulic Machines	R. K. Bansal	Laxmi Publication	2005	
6	Mechanics of Fluids	Shames	McGraw Hill Book Co. New Delhi	1988	

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos.POs and PSOs Mapping

Course Title: B. Tech Mechanical Engineering Course Code : PCC- ME 203 Course Title: Fluid Mechanics and Hydraulic Machines

				anu nyurau			Outcome	s						Progra	m Specifi	
		U U										Outcome				
	РО	PO	PO3	PO4	PO	PO6	PO	PO8	PO	PO1	РО	РО	PSO 1	PSO 2	PSO 3	PSO 4
	1	2			5		7		9	0	11	12				
Course Outcomes	Engi	Pro	Design	Cond uct	Mode	The	Envir	Ethic	Indi	Com	Proje	Life-	Mecha	Manufa	Compu	Produc
	ne	b	/dev	invest	n tool	engi	on	s	vi	mun	ct	long	nical	cturing	tational	t
	ering	lem	elop	igations	usage	neer	ment		dual	ic	mana	learni	System	Process	Modeli	Innova
	know	ana	ment	of compl		and	and		and	atio	ge	ng	Design	es and	ng and	tion
	ledge		of soluti	ex probl		soci	sustai		tea	n:	ment and		and Analysi	Automa tion	Simulat ion.	and Develo
		ysis	ons	ems		ety	n abilit		m wor		financ		Analysi	uon	1011.	pment
			0115	CIIIS			y:		k:		e:		3			pinent
PCC- ME 203.1: Grasp fluid properties (density, viscosity, surface tension) and understand static principles (pressure laws, buoyancy).	3	2	3	1	1	1	1	-	3	2	1	3	2	2	2	2
PCC- ME 203.2 : Analyze fluid motion using Lagrangian/Eulerian methods, study flow lines and particle acceleration.	3	2	2	1	1	2	1	2	2	1	2	3	2	2	2	1
PCC- ME 203.3: Apply Euler's/Bernoulli's equations, understand Venturimeter, Orifice meter, and implications of momentum equations.	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2
PCC- ME 203.4: Differentiate between laminar/turbulent flow, study pipe flow, energy losses, configurations, and pipe phenomena.	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
PCC- ME 203.5: Master boundary layer theory, friction factors, and separation control,plus dimensional analysis methods and model laws in fluid dynamics.	2	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(L I)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4 PO 1,2,3,4,5,6 7,8,9,10,11,12	PCC- ME 203.1 Grasp fluid properties (density, viscosity, surface tension) and understand static principles (pressure laws, buoyancy).	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO2.1 SO2.2 SO2.3	1.1 1.2 2.1	Unit-1 Properties of Fluid and Fluid Statics 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11,1.12, 1.13 Unit-2 Fluid Kinematics 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4	PCC- ME 203.2 Analyze fluid motion using Lagrangian/Eulerian methods, study flow lines and particle acceleration.	agrangian/Eulerian methods, study flow SO2.4		2.8,2.9,2.10,2.11,2.12,2.13	As mentionedin page
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC- ME 203.3: Apply Euler's/Bernoulli's equations, understand Venturimeter, Orifice meter, and implications of momentum equations.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	3.1 3.2 3.3 3.4	Unit-3 : Fluid Dynamics 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11	number 4 to 11
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC- ME 203.4: Differentiate between laminar/turbulent flow, study pipe flow, energy losses, configurations, and pipe phenomena.	SO4.1 SO4.2 SO4.3 SO4.4	4.1 4.2 4.3 4.4	Unit-4 :laminar and turbulent flow and flow through pipes 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	PCC- ME 203.5: Master boundary layer theory, friction factors, and separation control, plus dimensional analysis methods and model laws in fluid dynamics.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	5.1 5.2	Unit 5: Internal flows and dimensional analysis 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12	

Semester-IVCourse Code:PCC- ME 202Course Title :HEAT TRANSFERPre-requisite:Student should have basic knowledge of Physics and Mathematics.Rationale:This course follows a unified approach to introduce the physical origins and rate equations of heat transfer. The principal topics covered include identification of the driving forces for heat transfer. The students will learn how to identify the fundamental heat transfer mechanisms.

Course Outcomes:

- **PCC- ME 202.1:** Explain different modes of heat transfer and Calculate heat transfer for onedimensional steady state conduction in solids.
- **PCC- ME 202.2:** Explain the phenomenon of transient heat transfer in one dimension. Define, classify and analyze the fins.
- **PCC- ME 202.3:** Discuss various correlations of natural and forced convection, Explain and solve heat transfer problems in forced and natural convection.
- **PCC- ME 202.4:** Define, classify and analyze the performance of heat exchanges such as parallel flow, counter flow and cross flow heat exchangers. Discuss various boiling and condensation regimes.
- **PCC- ME 202.5:** Discuss mechanism and various laws associated with Thermal radiation. Find out shape factors for the various geometries and evaluate the rate of heat exchange between them.

SchemeofStudies:

Board					Schem	e of stud	TotalCredits	
ofStud			Cl	LI	SW	SL	Total	(C)
У	Course	CourseTitle					StudyHours(CI+	
	Code						LI+SW+SL)	
Progra	PCC-	Heat transfer	4	0	1	1	6	4
m Core	ME 202							
(PCC)								

Legend:

CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)an dTutorial (T)andothers),
 LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies)
 SW: Sessional Work(includesassignment, seminar, miniprojectetc.),
 SL:SelfLearning,
 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacherto ensureoutcomeofLearning.

SchemeofAssessment: Theory

Board of	Couse	Course	Scheme of Assessment (Marks)	Marks)	
Study	Code	Title	Progressive Assessment (PRA)	End	Total

			Class/H ome Assignm ent 5 number	Class Test 2 (2 best out of 3) 10	Semi nar one	Class Activ ity any one	Class Attendan ce	Total Marks	Semester Assessme nt	Mark s
			3 marks each (CA)	marks each (CT)	(SA)	(CA T)	(AT)	(CA+CT+SA+ CAT+AT)	(ESA)	(PRA + ESA)
PCC	PCC- ME 202	HEAT TRAN SFER	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC- ME 202.1: Explain different modes of heat transfer and Calculate heat transfer for onedimensional steady state conduction in solids.

Approximate Hours			
Item	AppX Hrs		
Cl	12		
LI	0		
SW	2		
SL	1		
Total	15		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
 SO1.1Ability to understand the concept of heat and mass transfer, explain the different mode of heat transfer and their applications SO1.2Understand and Solve heat transfer by conduction in solids for steady state conditions. SO1.3The students will be able to Analyze examples of heat conduction in everyday objects and systems. 		Unit-1: Heat Transfer By Conduction 1.1 Introduction to heat transfer 1.2 General concepts of heat transfer by conduction, convection and radiation 1.3 Fourier's Law and Electrical analogy of thermal systems. 1.4 General heat conduction equation in three dimensions (3D) in Cartesian coordinates. 1.5 One dimensional (1D) conduction without heat generation: through plain walls. 1.6 1D conduction without heat generation: cylindrical surfaces 1.7 1D conduction without heat generation: spherical surface 1.8 1D conduction without heat generation: composite layers. 1.9 Critical thickness of insulation for cylinder and sphere. 1.10 Problems based on 1D conduction without heat generation: through plain walls 1.11D conduction with heat generation: cylindrical surfaces 1.12 Problems based on 1D conduction without heat generation	 Numerical problems based on critical radius of insulation for cylinders and spheres. Numerical problem solving on composite slabs using electrical analogy and Fourier's Law.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Derivation of general conduction equation in 3D for cylindrical & spherical surfaces.

ii. Numerical on one dimensional conduction with and without heat generation

b. Mini Project:

i. List down various thermal insulating materials used in thermal power plants and refrigeration and air conditioning applications.

PCC- ME 202.2: Analysis of Transient heat transfer in one dimension and Fins.

Approximate Hours

Item	Approx. Hrs
Cl	12
LI	0
SW	2
SL	2
Total	16

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning

	(LI)		(SL)
 SO2.1 The students will be able to understand the concept of lumped capacity analysis. SO2.2 The students will be able to use Heisler chart for unsteady state heat transfer problems. SO2.3 The students will be able to understand the concept and applications of fins. 		Unit-2: Transient Heat Conduction and Fins 2.1 Introduction: Unsteady state Heat Transfer conduction. 2.2 Lumped capacity method and its Validity.Biot no.& Fourier No. 2.3Response time of thermocouple 2.4 I-D Transient heat conduction in large plane walls,when Bi>0.1 2.5 I-D Transient heat conduction in long cylinders, whenBi>0.1 2.6 Equation of Heat conduction and temperature distribution through fins. 2.7 Design of fins for maximum heat transfer. 2.8 Fin effectiveness and fin efficiency. 2.9 Use of fin analysis for measuring temperature error of Thermometer.	 Numerical problems based on Heisler chart. Numerical problems based on design of fins.

SW-2 Suggested Sessional Work(SW):Assignments:

- i. Prepare a chart listing down all the formulae related to heat transfer and temperature distribution for unsteady heat transfer and fins.
- ii. Numerical problem on response of thermocouple.

a. Mini Project:

a. Prepare a chart classifying various types of fins with the help of neat sketch.

PCC- ME 202.3: Explanation and analysis of heat transfer by forced and natural convection.

Appro	ximate Hours
Item	Appx. Hrs
Cl	12
LI	0
SW	2
SL	3
Total	17

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO3.1 The students will be able to		Unit-3: Forced and Natural	1. Understanding
understand the mechanisms of		convection.	Dimensionless
forced and natural convection.		3.1 Physical Mechanism of	numbers.
SO3.2 The students will be able to apply the empirical equation for		Forced and Free convection 3.2 Dimension a analysis for forced convection.	2. Study the Boundary layer

calculation of heat transfer through	3.3 velocity and Thermal	theory.
natural convection.	Boundary layer	-
	3.4 Flow over plates	
SO3.3 The students will be able to	3.5 Flow across cylinders and	
apply the empirical equation for	spheres.	
calculation of heat transfer through	3.6 Reynold's analogy.	
forced convection.	3.7 Problem based on heat	
	transfer over flat surfaces.	
	3.8 Problem based on heat	
	transfer over cylinders and	
	spheres.	
	3.9 Physical Mechanism of	
	Natural Convection.	
	3.10 Dimensionless analysis of	
	natural convection	
	3.11 Empirical relationship for	
	natural convection.	
	3.12 Problem based on heat	
	transfer for natural	
	convection.	

SW-3 Suggested Sessional Work(SW):

a. Assignments:

i. Problem based on heat transfer for natural convection over flat plate.

b. Mini Project:

i. Write down all the heat transfer correlations for forced and natural convective heat transfer problem also list down the formulae of all the dimensionless numbers involved.

PCC- ME 202.4: Explanation and analysis of Two-Phase Heat Transfer and heat exchangers.

Appro	Approximate Hours				
Item	Appx. Hrs				
Cl	12				
LI	0				
SW	2				
SL	2				
Total	16				

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO4.1 To understand the regimes of boiling.		Unit-4:Two Phase Heat Transferand Heat Exchangers.	1. Analyze the cross-flow heat exchanger.
SO4.2 To understand the regimes of condensation.		4.1 Boiling regimes and boiling curve.4.2 Heat transfer correlations in	2. Problems on cross flow heat
SO4.3 . Analyzing& Solving Problems on heat exchangers.		pool boiling.4.3 condensation regimes and condensation curve.	exchangers.
SO4.4 .Design the heat exchangers		4.4 Derivation for the average heat transfer coefficient 'h' for the laminar film condensation over vertical plate.	
		4.5Heat transfer correlation for inclined plates and Vertical tubes.4.6Numerical problems on boiling.	

 4.7Numerical problems on condensation. 4.8LMTD analysis of parallel and counter flow heat exchangers. 4.9NTU analysis of parallel and counter flow heat exchangers. 4.10Effectiveness and efficiency of heat exchangers. 4.11Numerical problems on LMTD approach of heat exchangers.
exchangers. 4.12Numerical problems on NTU approach of heat exchangers.

SW-4 Suggested Sessional Work(SW):

a. Assignments:

- i. Numerical Problems on Heat exchangers
- ii. Neat sketches of various boiling & condensation regimes.

b. Mini Project:

i.

Make a chart classifying various heat exchangers with the help of neat sketches.

PCC- ME 202.5: Explanation and analysis of Thermal Radiation.

Appro	oximate Hours
Item	Appx. Hrs
C1	12
LI	0
SW	2
SL	1
Total	15

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
 SO5.1Understanding basic definitions. SO5.2Evaluate the Radiative heat exchange. SO5.3To determine the Emissive power 		Unit 5: Thermal Radiation 5.1 Black body radiation: Absorptivity, reflectivity & Transmissivity. 5.2 Kirchhoff'slaws 5.3 Shape factor: Algebra , salient features 5.4 Plank's experiment, Stefan Boltzman&wein'sequations. 5.5 Radiant heat exchange betweenparallelsurfaces,long concentric cylinders, small graybodies. 5.6 Radiation shields. 5.7 Numerical problems on shape factor. 5.8 Numerical problems on radiation shields. 5.9 Numerical Problems on gray surfaces. 5.10 Practical Problems 5.11 Tutorial 1 5.12 Tutorial 2	1. Electrical analogy to thermal radiation.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. Explain Errors in temperature measurement due to radiation.

b. Mini Project:

i. Explain Non-luminous gas radiation.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture	Sessional Work	Self Learning	Total hour (Cl+SW+Sl)
	(Cl)	(SW)	(SI)	
PCC-ME 201.1: Explain different modes of heat transfer and Calculate heat transfer for one-dimensional steady state conduction in solids.	12	2	1	15
PCC- ME 202.2: Explain the phenomenon of transient heat transfer in one dimension. Define, classify and analyze the fins.	12	2	2	16
PCC- ME 202.3: Discuss various correlations of natural and forced convection, Explain and solve heat transfer problems in forced and natural convection.	12	2	3	17
PCC- ME 202.4: Define, classify and analyze the performance of heat exchanges such as parallel flow, counter flow and cross flow heat exchangers. Discuss various boiling and condensation regimes.	12	2	2	16
PCC- ME 202.5: Discuss mechanism and various laws of Thermal radiation. Find out shape factors and evaluate the rate of heat exchange.	12	2	1	15
Total Hours	60	10	9	79

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	Α	Marks
CO-1	Heat transfer by conduction	02	05	05	12
CO-2	Transient heat transfer and fins	02	03	03	8
СО-3	Forced and free convection	02	05	05	12
CO-4	Two phase heat transfer and heat exchangers.	02	04	04	10
CO-5	Heat transfer by radiation	01	04	03	08
	Total	9	21	20	50

Legend: R: Remember, U:Understand, A:Apply

The end of semester assessment for Process calculation will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Fac ebook,Twitter,Whatsapp,Mobile,Onlinesources)
- 9. Brainstorming

Suggested Learning Resources:

(a)	Books:			
S. No.	Title	Author	Publisher	Edition&Year
1	Heat Transfer	Holman, J. P.	McGraw Hill	9th Edition, 2004
2	Heat Transfer - A Practical Approach	Cengel, Y.A.	McGraw-Hill	1998
3	Fundamentals of Heat and Mass Transfer	Incropera, F.P. and Dewitt, D.P.	John Wiley	5th Edition, 2002
4	Lecture note provided l Dept. of Mechanical en	•	versity, Satna.	·

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanical Engg
- 6. Mr K.P Tiwari, Assistant Professor, Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Course Code- PCC- ME 202

Course Title- Heat Transfer

							rogram itcomes						Р	rogram Spe	cific Outco	me
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engine eringk nowled ge	Pro ble man alysi s	Desig n/dev elop ment ofsolu tions	Conduc tinvestig ations ofcompl ex proble ms	lusag	The engi neer ands ociet y	Enviro nmenta ndsust ainabili ty:	Ethics	Indiv idual andte amw ork:	Com munic ation:	Project manage mentan dfinanc e:	Life- longlear ning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Development
CO-1: Explain different modes of heat transfer and Calculate heat transfer for 1-D steady state conduction in solids.	2	1	2	2	3	2	2	2	2	1	3	2	2	2	1	2
CO-2: Explain the phenomenon of transient heat transfer in one dimension. Define, classify and analyze the fins.	1	1	1	1	3	2	2	2	2	1	2	2	1	2	1	2
CO-3: Discuss various correlations of natural and forced convection, Explain and solve heat transfer problems in forced and natural convection.	2	2	1	1	3	1	2	2	2	1	1	2	1	2	1	1
CO-4: Define, classify and analyze the performance of heat exchanges such as parallel flow, counter flow and cross flow heat exchangers. Discuss various boiling & condensation regimes.	2	2	2	1	3	2	2	2	2	1	2	2	1	2	1	2
CO-5: Discuss mechanism and various laws associated with Thermal radiation. Find out shape factors for the various geometries and evaluate the rate of heat exchange between them	2	1	1	1	1	3	2	2	2	1	2	2	1	2	1	1

Cos No. & Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self Learning(SL)
	SO1.1		Unit -1.0 Heat transfer by conduction	
and Calculate heat transfer for 1-D steady state	SO1.2			
various boiling & condensation regimes.	\$01.3		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11,1.12	
	SO2.1		Unit-2.0 Transient heat transfer and fins	_
	SO2.2			
CO-2: Explain the phenomenon of transient heat transfer in one dimension. Define, classify and analyze the fins.	SO2.3		2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8,2.9,2.10,2.11,2.12	
				As mentioned in
CO-3: Discuss various correlations of natural	SO3.1 SO3.2		Unit-3.0 : Forced and free convection	Page number 2 to 6
	SO3.3		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12	
	SO4.1			_
performance of heat exchanges such as	SO4.2 SO4.3		Unit-4.0: Two phase heat transfer and heat exchangers.	
exchangers. Discuss various boiling & condensation regimes.	SO4.4		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11,4.12	
	SO5.1			-
CO-5: Discuss mechanism and various laws	SO5.2			
associated with Thermal radiation. Find out shape factors for the various geometries and evaluate the rate of heat exchange between them	SO5.3		Unit 5.0 Heat transfer by radiation 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12	
	and Calculate heat transfer for 1-D steady state conduction in solids. various boiling & condensation regimes. CO-2: Explain the phenomenon of transient heat transfer in one dimension. Define, classify and analyze the fins. CO-3: Discuss various correlations of natural and forced convection, Explain and solve heat transfer problems in forced and natural convection. CO-4:Define, classify and analyze the performance of heat exchanges such as parallel flow, counter flow and cross flow heat exchangers. Discuss various boiling & condensation regimes. CO-5: Discuss mechanism and various laws associated with Thermal radiation. Find out shape factors for the various geometries and evaluate the rate of heat exchange between	CO-1: Explain different modes of heat transfer and Calculate heat transfer for 1-D steady state conduction in solids. various boiling & condensation regimes.SO1.2 SO1.3 CO-2: Explain the phenomenon of transient heat transfer in one dimension. Define, classify and analyze the fins.SO2.1 SO2.2 SO2.3 CO-3: Discuss various correlations of natural and forced convection, Explain and solve heat transfer problems in forced and natural convection.SO3.1 SO3.2 SO3.3 CO-4: Define, classify and analyze the performance of heat exchanges such as parallel flow, counter flow and cross flow heat exchangers. Discuss various boiling & condensation regimes.SO4.1 SO4.2 SO4.3 SO4.3 SO4.3 SO4.3 SO4.3 SO4.3 SO4.3 SO4.3 SO4.3 SO4.3 SO4.3 SO4.4	CO-1: Explain different modes of heat transfer and Calculate heat transfer for 1-D steady state conduction in solids. various boiling & condensation regimes.SO1.2 SO1.3CO-2: Explain the phenomenon of transient heat transfer in one dimension. Define, classify and analyze the fins.SO2.1 SO2.3 SO2.3CO-3: Discuss various correlations of natural and forced convection, Explain and solve heat transfer problems in forced and natural convection.SO3.1 SO3.2 SO3.3CO-4:Define, classify and analyze the performance of heat exchanges such as parallel flow, counter flow and cross flow heat exchangers. Discuss various boiling & condensation regimes.SO4.1 SO4.2 SO4.3 SO4.3 SO4.4CO-5: Discuss mechanism and various laws associated with Thermal radiation. Find out shape factors for the various geometries and evaluate the rate of heat exchange betweenSO5.1 SO5.3	CO-1: Explain different modes of heat transfer and Calculate heat transfer for 1-D steady state conduction in solids. various boiling & condensation regimes.SOL1 SOL2 SOL3CO-2: Explain the phenomenon of transient heat transfer in one dimension. Define, classify and analyze the fins.SO2.1 SO2.2 SO2.3Unit-2.0 Transient heat transfer and fins 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8,2.9,2.10,2.11,2.12CO-3: Discuss various correlations of natural and forced convection.SO3.1 SO3.2 SO3.3Unit-3.0 : Forced and free convection 3.1, 3.2,3.3,4,3.5,3.6,3.7,3.8,3.9,3.10,3.11,3.12CO-4:Define, classify and analyze the performance of heat exchanges such as parallel flow, counter flow and cross flow heat condensation regimes.SO4.1 SO4.2 SO4.3 SO4.4Unit-4.0: Two phase heat transfer and heat exchangers. 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11,4.12CO-5: Discuss mechanism and various laws associated with Thermal radiation. Find out shape factors for the various geometries and evaluate the rate of heat exchanges between evaluate the rate of heat exchange between evaluate the rate of heat exchange between evaluate the rate of heat exchanges between evaluate

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SEMESTER- IV

Course Code:	РСС-МЕ-205
Course Title:	Kinematic and Dynamics of machines
Pre-requisite:	Student should have basic knowledge of Geometry, Geometrical Shapes, basic knowledge of Computer, Mouse and keyboard use, navigating menus and dialogs, managing files and directories, etc.
Rationale:	The theory helps engineers understand how different types of machines operate, from simple mechanisms to complex systems. It provides the foundational principles for designing machines that are efficient, safe, and reliable. It provides a framework for solving engineering problems related to the design and operation of machines.

Course Outcomes:

PCC-ME-205.1: Demonstrate a clear understanding of fundamental concepts related to kinematics and dynamics of machines and enumerate different link-based mechanisms with basic understanding of motion.

PCC-ME-205.2: Student will be able to understand fundamentals of gear theory which will be the prerequisite for gear design. Student will be able to perform force analysis of Spur, Helical, Bevel, Worm and Worm gear.

PCC-ME-205 .3: The student will analyze the different type of Governor and applicability in practical application The student will analyze the gyroscopic couple or effect for stabilization of Ship Aero plane and Four-wheeler vehicles

PCC-ME-205.4: Student will be able to design cam profile for given follower motions and understand cam Jump phenomenon, advance cam curves

PCC-ME-205.5: Understand the principles of balancing rotating and reciprocating masses and the importance of stability in machine design.

Scheme of Studies:

Board							e of studies rs/Week)	Total
of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credit s (C)
Program Core (PCC)	ME-205	Kinematic and Dynamics of machine	4	2	1	1	8	5

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Legend:CI:Class room Instruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)andTutorial
(T)and others),
LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop,fie
ldorotherlocationsusingdifferentinstructional strategies)
SW: SessionalWork(includesassignment,seminar,miniprojectetc.),
SL: SelfLearning,
C: Credits.

Note:

SW&SLhastobeplannedandperformedunderthecontinuousguidanceandfeedbackofteac hertoensureoutcomeof Learning.

Scheme of Assessment: Theory

				Scheme of Assessment(Marks)							
			Prog	gressive As	ssessme	nt(PRA)		End Semester Assessmen t	Total Marks	
oard of Study	Course Code	Course	Class/Hom eAssignme nt5number	(2bestout	Semin ar one	Class Activit y any one	Class Attendance	Total Marks		PRA+	
			markseach (CA)	markseac h(CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+C AT+AT)	(ESA)	ESA)	
РСС	PCC- ME- 205	Kinemat ic and Dynamic s of machine	15	20	5	5	5	50	50	100	

Practical:

Board of	Couse	Course Title	Scheme	Scheme of Assessment (Marks)						
Study	Code		Progressive Ass	essment (PRA)			End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)		
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)				
PC C	РСС- МЕ-205	Kinemati c and Dynamics of machine	35	10	5	50	50	100		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). Asthecourseprogresses, students should show case their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-ME 205 .1: Demonstrate a clear understanding of fundamental concepts related to kinematics and dynamics of machines. And enumerate different link-based mechanisms with basic understanding of motion

Ap	Approximate Hours	
Item	Appx.	
	Hrs	
Cl	12	
LI	08	
SW	01	
SL	01	
Total	22	

Constant Orteory	Lahawatawa Ingtwa at		Colf Looming
Session Outcomes	Laboratory Instruction	Classroom	Self-Learning
(SOs)	(LI)	Instruction	(SL)
		(CI)	
SO1.1 Students should be	1.1. To study various types of	Unit-1.0 Simple Mechanism	1.1 Analysis of
able to identify and	kinematics links, pairs, chains &	and Kinematic analysis	Inversion of single
classify different types of	Mechanisms	1.1 Definitions Link or	slider cranks chain
simple mechanisms such		Element.	mechanism.
as levers, linkages, gears,	1.2. To Study of Inversions of	1.2 Kinematic Pairs and iys	1.2 Numerical practice
and cams.	Four bar linkage.	classification.	of DOF
		1.3 Kinematic Chain,	
SO1.2 Students should	1.3.Draw the velocity and	Mechanism, Structure.	
understand the basic	acceleration diagram for the	1.4 Mobility of Mechanism	
principles of kinematics	given mechanism	1.5 Inversion of Mechanism	
and be able to describe		1.6 Inversions of Four Bar	
the motion of simple	1.4. study of inversions of single	Chain	
mechanisms using terms	slider crank mechanisms, double	1.7 Single Slider Crank	
like displacement,	slider crank mechanisms.	Chain	
velocity, and acceleration.		1.8 Double Slider Crank	
		Chain.	
SO1.3 Ability to analyze		1.9 Displacement, velocity	
the motion and forces in		Analysis	
planar linkages, including		1.10 Numerical problems	
determining the velocity		1.11 Acceleration analysis	
and acceleration of		1.12 Numerical problems	
various points within the		1.13 Coriolis component	
mechanism.		of acceleration	

SW-1Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical problem of Velocity Analysis by Relative velocity Approach
- ii. Numerical problem of Acceleration Analysis.
- iii. Classification of Kinematic Pair

PCC-ME-205 .2: Student will be able to understand fundamentals of gear theory which will be the prerequisite for gear design. Student will be able to perform force analysis of Spur, Helical, Bevel, Worm and Worm gear

	,	0			
			Item	Appx.	
			Cl	Hrs 12	
			LI	06	
			SW	01	
			SL	01	
			Total	20	
Session Outcomes	Laboratory Instruction	0	Classroom	Self-	
(SOs)	(LI)	Iı	nstruction	Learni	ng
			(CI)	(SL)	0
SO2.1 Students should be	2.1 to study various types of	Unit-2.0G	EAR AND GEAR	2.1 Nomenclatur	re of
able to explain the basic	gears.	TRAIN		gear	
terminology associated with		2.1 Introdu	ction to gear and	2.2 difference be	etween
gears, including pitch circle,	2.2. to study various types of gear	its classific		involute and cyc	loidal
pitch diameter, module, and	trains		e and cycloidal	teeth profile.	
pressure angle		profiles			
	2.3. Demonstrate the effect of	2.3 Gear pa			
SO2.2 Identify different types	gear ratios on the speed and		nental law of		
of gears (spur, helical, bevel,	torque of a system.	gearing			
and worm gears) and		00	ate action of gear		
understand their specific			is of spur gear		
applications in mechanical			ical problem on		
systems.		spur gear 2.8 Interfer	-onco		
SO2.3 Analyze and design			, bevel, worm, rack		
gear trains, considering the		& pinion g			
arrangement of gears to			rain and its		
achieve specific speed		classificatio			
reductions or increases.			clic and regular		
		gear train k			
SO2.4 Relate the concepts of			analysis of spur		
gears and gear trains to			-		
practical applications in					
various engineering fields,					
such as automotive systems					
and industrial machinery.					

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech .(Mechanical Engineering)Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Classify Gear
- 2. Numerical problem of Involutes gear analysis
- 3. Numerical problem of Epicyclical gear train.

PCC-ME-205 .3: The student will analyze the different type of Governor and applicability in practical application The student will analyze the gyroscopic couple or effect for stabilization of Ship Aero plane and Four-wheeler vehicles

Approximate Hours

Item	Appx.						
	Hrs						
Cl	12						
LI	06						
SW	01						
SL	01						
Total	20						

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
SO3.1 Students will be able to define governors and understand their role in controlling the speed of rotating machinery. SO2.2 Students will connect theoretical concepts to practical applications, understanding how governors are utilized in various engineering systems, such as steam engines and turbines SO3.3 Students will connect theoretical concepts to practical applications, understanding how governors are utilized in various engineering systems, such as steam engines and turbines. SO3.4 Students will be able to define gyroscopes	 3.1. To perform experiment on Hartnell governor to prepare performance characteristic Curves, and to find stability & sensitivity. 3.2To perform experiment on porter governor to prepare performance characteristic Curves, and to find stability & sensitivity 3.3to study gyroscopic effects through models. 	Unit-3.0 Governors and Gyroscope 3.1 Introduction of Governor 3.2 Types of governors 3.3 force analysis of Porter 3.4 force analysis of Porter 3.5 Hartnell governors 3.6 Numerical Problem 3.7 Controlling force, effort and power. 3.8 Introduction of gyroscope 3.9 Vectorial representation of angular motion 3.10 gyroscopic couple, Effect of gyroscopic couple on ship 3.11 Effect of gyroscopic couple plane disc, aero plane 3.12 Effect of gyroscopic couple stability of 4 wheelers	3.1. Numerical problem related to porter governor3.2. Numerical problem related to gyros couple

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech .(Mechanical Engineering)Program (Revised as on 01 August 2023)

	(Newsed as on of A	
and understand their		
fundamental role in		
maintaining stability and		
orientation in rotating		
systems		
SO3.5 Students will		
connect theoretical		
concepts to practical		
applications,		
understanding how		
gyroscopes are utilized in		
various engineering		
systems for stabilization		
and orientation control		

SW-3Suggested Sessional Work (SW):

a. Assignments:

- 1. Derive the expression for height of Porter governor
- 2. Derive the expression for stiffness of spring in Hartnell governor
- 3. Derive the expression for gyroscopic couple

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech .(Mechanical Engineering)Program (Revised as on 01 August 2023)

PCC-ME-205 .4: Student will be able to design cam profile for given follower motions and understand cam Jump phenomenon, advance cam curves.

phenomenon, a	dvance cam curves.	Approxima	ate Hours
		Item	Appx Hrs
		Cl	12
			04
		SW	01
		SL	01
		Total	18
Session Outcomes	Laboratory Instruction	Classroom	Self-Learning
(SOs)	(LI)	Instruction	(SL)
((CI)	
SO4.1 Students will be	4.1. Study of different type of	Unit-4.0 CAM AND	1. Draw the cam profile
able to define cam and	CAM and follower.	FOLLOWER	for SHM motion of
follower mechanisms and			follower
understand their	4.2. To draw displacement	4.1 Classification of CAM	2. Draw the cam profile
fundamental role in	diagram, velocity diagram &		for uniform
converting rotary motion	acceleration diagram of cam	4.2 Classification of follower	acceleration motion
to oscillatory or	follower for SHM motion of		of follower
reciprocating motion	follower	4.3 Terminology of CAM	
SO4.2 Students will be		4.4 Displacement, velocity,	
able to design cam		acceleration and jerk	
profiles for specific		diagrams Uniform velocity	
follower motions,		4.5 Displacement velocity	
considering factors such as displacement, velocity,		4.5 Displacement, velocity, acceleration and jerk	
and acceleration		diagrams uniform	
		acceleration	
SO4.3 Students will			
connect theoretical		4.6Displacement, velocity,	
concepts to practical		acceleration and jerk	
applications,		diagrams SHM	
understanding how cam		6	
and follower mechanisms		4.7Displacement, velocity,	
are utilized in various		acceleration and jerk	
engineering systems.		diagrams Cyclical profile	
SO4.4 Students will		4.8 Derivatives of follower	
develop problem-solving		motions; Circular and	
skills by applying cam		tangent cams	
and follower concepts to		4.9 Pressure angle and	
address engineering		undercutting	
challenges related to		4.10 Graphical and analytical	
motion control and		disc cam profile	
mechanism design.		4.11 syntheses for roller and	
		flat face followers. 4.12 Numerical	
		4.12 INUMERICAL	2

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech .(Mechanical Engineering)Program (Revised as on 01 August 2023)

SW-4Suggested Sessional Work(SW):

a. Assignments:

- 1. Explain the terminology of CAM
- 2. Numerical problem of CAM profile

PCC-ME-205 .5: Understand the principles of balancing rotating and reciprocating masses and the importance of stability in machine design.

-	Approximate Hours									
	Item	Appx.								
		Ĥrs								
	Cl	12								
	LI	06								
	SW	01								
	SL	01								
	Total	20								

Session	Laboratory	Classroom	Self-Learning
Outcomes	Instruction	Instruction	(SL)
(SOs)	(LI)	(CI)	
SO5.1 - Students will be	5.1. Perform static balancing of	Unit-5.0 Static and	5.1 Numerical Problem on
able to define static	a simple system.	dynamic balancing	static balancing
balancing and understand		5.1 Balancing of Rotating	5.2 Numerical Problem on
its significance in rotating	5.2. Demonstrate dynamic	Masses	balancing when masses are
machinery.	balancing of rotating masses.	5.2 Static and dynamic	rotating in different plane
		balancing	
SO5.2 - Students will	5.3 Experiment on balancing of	5.3 Balancing of single	
apply static balancing	rotating masses.	rotating mass by balancing	
principles to real-world		masses in same plane and in	
examples, such as		different planes	
balancing wheels,		5.4 Numerical Problem	
flywheels, and		5.5 Balancing of single	
crankshafts.		rotating mass by balancing	
		masses in different planes.	
SO5.3 - Students will		5.6 Numerical Problem	
develop problem-solving		5.5Balancing of several	
skills by applying static		rotating masses by balancing	
balancing concepts to		masses in same plane and in	
address engineering		different planes.	
challenges related to		5.5 Numerical Problem	
unbalanced systems.		5.6 Balancing of several	
SO5.4 Students will		rotating masses by balancing	
understand the concept of		masses in different planes	
dynamic balancing and its		5.7 Numerical Problem	
importance in reducing		5.8 Balancing of	
vibration in rotating		Reciprocating Masses	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech .(Mechanical Engineering)Program

(Revised as on 01 August 2023)

machinery.	5.9Numerical Problem	
SO5.5 Students will	5.10 Inertia effect of crank	
apply dynamic balancing	and connecting rod	
principles to real-world	5.11Balancing of single	
examples, such as	cylinder engine	
balancing crankshafts,	5.12 Numerical problem	
fans, and turbines.	-	
SO5.6 Students will		
develop problem-solving		
skills by applying		
dynamic balancing		
concepts to address		
engineering challenges		
related to vibration in		
rotating systems.		

SW-5Suggested Sessional Work (SW):

- a. Assignments:
 - 1. Explain the concept of balancing in reciprocating engine
 - **2.** Explain the balancing of in line 4 stroke engine.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech .(Mechanical Engineering)Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Lecture (LI)	Sessional Work (SW)	Self Learning (S l)	Total hour (Cl+LI+SW+SI)
PCC-ME-205 .1: Demonstrate a clear understanding of fundamental concepts related to kinematics and dynamics of machines. and enumerate different link-based mechanisms with basic understanding of motion.	12	08	01	01	22
PCC-ME-205 .2: Student will be able to understand fundamentals of gear theory which will be the prerequisite for gear design. Student will be able to perform force analysis of Spur, Helical, Bevel, Worm and Worm gear.	12	06	01	01	20
PCC-ME-205 .3:The student will analyze the different type of Governor and applicability in practical application The student will analyze the gyroscopic couple or effect for stabilization of Ship Aero plane and Four-wheeler vehicles	12	06	01	01	20
PCC-ME-205 .4: Student will be able to design cam profile for given follower motions and understand cam Jump phenomenon, advance cam curves	12	04	01	01	18
PCC-ME-205 .5: Understand the principles of balancing rotating and Reciprocating masses and the importance of stability in machine design	12	06	01	01	20
Total Hours	60	30	05	05	100

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech .(Mechanical Engineering)Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Μ	Total		
		R	U	Α	Marks
CO- 1	PCC-ME-205 .1: Demonstrate a clear understanding of fundamental concepts related to kinematics and dynamics of machines. and enumerate different link- based mechanisms with basic understanding of motion.	03	01	01	05
CO- 2	PCC-ME-205 .2: Student will be able to understand fundamentals of gear theory which will be the prerequisite for gear design. Student will be able to perform force analysis of Spur, Helical, Bevel, Worm and Worm gear.	02	06	02	10
CO- 3	PCC-ME-205 .3:The student will analyze the different type of Governor and applicability in practical application The student will analyze the gyroscopic couple or effect for stabilization of Ship Aero plane and Four-wheeler vehicles	03	07	05	15
CO- 4	PCC-ME-205 .4: Student will be able to design cam profile for given follower motions and understand cam Jump phenomenon, advance cam curves	-	10	05	15
CO- 5	PCC-ME-205 .5: Understand the principles of balancing rotating and Reciprocating masses and the importance of stability in machine design	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand,

A:Apply

The end of semester assessment for Kinematic and Dynamics of machinewillbeheldwithwrittenexaminationof50marks

 $Note. \ Detailed \ Assessment rubric need to be prepared by the course wise teachers for above tasks.$

 $Teachers can also design different tasks as {\tt per requirement}, for {\tt endsemester} as {\tt sessment}.$

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech .(Mechanical Engineering)Program (Revised as on 01 August 2023)

Suggested Instructional/Implementation Strategies:

- 3. Improved Lecture
- 4. Tutorial
- 5. Case Method
- 6. Group Discussion
- 7. Role Play
- 8. Visitto cement plant
- 9. Demonstration
- 10. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Fac ebook,Twitter,Whatsapp,Mobile,Onlinesources)
- 11. Brainstorming

Suggested Learning Resources:

(a)	Books:										
S.	Title	Author	Publisher	Edition&							
No.				Year							
1	Theory of Machines	Ballaney P L	Khanna	2003							
2	Theory of Machines	Rattan S S	TMH	3 rd and 2009							
3	Theory of Machines	R S Khurmi	S. Chand	2022							
			Publication.								
4	Theory of Machines	Sadhu Singh	TMH	3 rd and 2011							
5	Theory of Machines A GHOSH		East west	2015							
5	Training Manual										
6		Training N	Ianual								
7		Lecture note p	rovided by								
	Dept. of M	lechanical Engineeri	ng AKS University,	Satna.							

(a)Books:

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech .(Mechanical Engineering)Program (Revised as on 01 August 2023)

Curriculum Development Team

- 1. Mr.S.S. Parihar, Head of Deptt. Mech. Engg., AKSUniversity
- 2. Mr. Alok Ranjan Tiwari, Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey ,AssistantProfessor,Dept.ofMechanichalEngg
- 4. Mr., Keshav Pratap Singh, AssistantProfessor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, AssistantProfessor, Deptof MechanichalEngg
- 6. Mr K.P Tiwari , AssistantProfessor,Dept.ofMechanichalEngg
- 7. Mr. Ketan Agrawal, AssistantProfessor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, AssistantProfessor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal,Assistant Professor,Dept.of MechanichalEngg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of MechanichalEngg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, AssistantProfessor, Dept.of MechanichalEngg

Cos.Pos and PSOs Mapping

Course Title: B.Tech Mechanical Engineering

Course Code: PCC-ME-205

Course Title: Kinematic and Dynamics of machine

	Program Outcomes											Program Specific Outcome				
Course Outcomes	PO 1	2	PO3	PO 4	PO 5	PO 6	PO 7	PO8	PO 9	PO 10	PO1 1	PO1 2	PSO1 Mechanical	PSO2 Manufacturin	PSO3	PSO4
Course Outcomes	Engi neeri ngkn owle dge	obl em an aly	Desig n/dev elop ment ofsolu tions		Mod entoo lusag e	Th een gin eer an dso cie ty	Envi ronm enta ndsu stain abilit y:	Ethic s	Indi vid uala ndt eam wor k:	Co mm unic atio n:	Proje ctma nage ment andfi nance :	Life- longle	Mechanical System Design and Analysis	g Processes and	Modeling and	Product Innovation and Development
PCC-ME-205 .1: Demonstrate a clear understanding of fundamental concepts related to kinematics and dynamics of machines. and enumerate different link-based mechanisms with basic understanding of motion.	1	1	2	2	2	2	3	1	2	2	1	2	2	2	1	-
PCC-ME-205 .2: Student will be able to understand fundamentals of gear theory which will be the prerequisite for gear design. Student will be able to perform force analysis of Spur, Helical, Bevel, Worm and Worm gear.	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1

PCC-ME-205 .3: The student will analyze the different type of Governor and applicability in practical application The student will analyze the gyroscopic couple or effect for stabilization of Ship Aero plane and Four-wheeler vehicles	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2
PCC-ME-205.4: Student will be able to design cam profile for given follower motions and understand cam Jump phenomenon, advance cam curves	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
PCC-ME-205 .5: Understand the principles of balancing rotating and Reciprocating masses and the importance of stability in machine design	1	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Legend:1-Low,2-Medium,3-High

Course Curriculum Map:

POs& PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5 PO1,2,3,4,5,6 7,8,9,10,11,12	CO-1 PCC-ME-205 .1: Demonstrate a clear understanding of fundamental concepts related to kinematics and dynamics of machines. and enumerate different link-based mechanisms with basic understanding of motion. CO-2 PCC-ME-205 .2: Student will be able to understand fundamentals of gear theory which will be the prerequisite for gear design. Student will be able to perform force analysis	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5 SO2.1 SO2.2 SO2.3		Unit-1.0 Simple Mechanism and Kinematic analysis 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11, 1.12,1.13 Unit-2.0GEAR AND GEAR TRAIN 2.1,2.2,2.3,2.4,2.5,2.6,2.7,	
PSO1,2,3,4,5 PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO-3 PCC-ME-205 .3: The student will analyze the different type of Governor and applicability in practical application The student will analyze the gyroscopic couple or effect for stabilization of Ship Aero plane and Four-wheeler vehicles	SO2.4 SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		2.8,2.9,2.10,2.11,2.12,2.13 Unit-3.0 Governors and Gyroscope 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.83.9,3.10,3.11, 3.12,3.13,3.14,3.15,3.16	As mentioned in Page number 2to6
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO-4PCC-ME-205 .4: Student will be able to design cam profile for given follower motions and understand cam Jump phenomenon, advance cam curves	SO4.1 SO4.2 SO4.3 SO4.4		unit-4.0 Cam and Follower 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11	
PO1,2,3,4,5,6 7,8,9,10,11,12 PSO1,2,3,4,5	CO-5PCC-ME-205 .5: Understand the principles of balancing rotating and Reciprocating masses and the importance of stability in machine design	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5 SO5.6		Unit-5.0 Static and dynamic balancing 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revised as on 01 August 2023)

Semester-IV

Course Code:	PCC-ME204
Course Title:	Manufacturing Process
Pre- requisite:	Basic knowledge of mathematical skill with some scientific temperament
Rationale:	Manufacturing Processes is the course used to introduce the basic concepts of materials and manufacturing technology to the student. Upon completing the course the student should have basic knowledge of classes of materials and the achievement of their service characteristics developed by the manufacturing process and the follow on heat treatments and other surface treatments.

Course Outcomes:

PCC-ME204.1: Understand various manufacturing processes, selecting appropriate methods for different material,

optimizing manufacturing efficiency and ensuring product quality

PCC-ME204.2: Acquire fundamental knowledge and design widely used and very important primary manufacturing

processes such as casting, forming, forging rolling, extrusion

PCC-ME204.3:: Acquire knowledge about the various tools, equipment, machinery and operations required for material

removal processes

PCC-ME204.4.: understand the unconventional machining processes, like EDM,EBM, LBM etc.

PCC-ME204.5.: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application. **Scheme of Studies:**

Board of	Cours					Scheme of studies (Hours/Week)			
Study	e Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	s(C)	
Progra m Core (PCC)	3 4 1 3 4 4	Manufacturing Process	4	2	1	1	8	5	

AKS University Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

(Revised as on 01 August 2023)

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Sche	eme of Asses (Marks)			
						rogressi sment (End Semester Assessme nt	Tota l Mark s
Board of Study	Cour se Code	Course Title	Class/H ome Assign ment 5 number 3 mar ks each (CA)	Class Test2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Class Acti vity any one (CA T)	Class Attendan ce (A T)	Total Marks CA+CT+SA+C AT+AT)	(ESA)	(PR A+ ES A)
ESC	PCC- ME204	Manufact uring Process	15	20	5	5	5	50	50	100

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech.(Mechanical Engineering) Program (Revised as on 01 August 2023)

Р	ractical:							
Board of	Couse	Course Title	Scheme	e of Assessment (Mark	xs)			
Study	Code		Progressive Ass	essment (PRA)			End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)		
ESC	PCC- ME204- L	Manufactu ring Process- LAB	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

PCC-ME204.1:: Understand various manufacturing processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality

Approximate Hours					
Item	Appx.				
	Hrs				
Cl	12				
LI	06				
SW	1				
SL	1				
Total	20				

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO1.1 Define key concepts and applications of additive, subtractive, and shaping manufacturing processes. SO1.2 Analyze and compare the strengths and weaknesses of each process, considering factors like speed, flexibility, and material compatibility. SO1.3 Examine how design choices in geometry and material affect the selection of manufacturing processes. SO1.4 Study examples showcasing how geometry, material, and process choices impact manufacturability and product quality SO1.5 Learn criteria for selecting manufacturing processes, including considerations for volume, materials, and cost-effectiveness.	 1.1 Safety aspects pertaining to common manufacturing PROCESS. 1.2 Introduction of tools and machines used in each processes. 1.3 Drawing of a simple work piece for carrying out various milling/drilling operations 	 SUnit-1.0 Manufacturing processes an classification: Introduction of manufacturing processes 1.1 Define manufacturing And various methods 1.2 introduction of additives 1.3 subtractive process 1.4 shaping processes 1.5 Advantages of additives, subtractive and shaping processes 1.6 Limitations of additives, subtractive and shaping processes 1.7 Effect of material on product quality and cost 1.8 Effect of process on product quality 1.9 Effect of process on cost 1.10 Part design for manufacturability; 1.11 Process selection criteria 1.12 Inter-dependency of geometry 	1. Introduction to Inter-dependency of geometry

Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i.

Explain part design for manufacturability i.

PCC-ME204.2: Acquire fundamental knowledge and design widely used and very important primary manufacturing processes

such as casting, forming ,forging rolling, extrusion

			Appro	ximate Hours	
			Item	Appx.	
				Hrs	
			Cl	14	
			LI	06	
			SW	01	
			SL	02	
			Total	23	
Session Outcomes	LaboratoryInstruction		Class room	Self	
(SOs)	(LI)		Instruction	Learni	ng
			(CI)	(SL)	
SO2 .1 Understand metal	2.1 Demonstration of Metal	Unit-2.0	Material Shaping	1 Metal extrus	sion
casting methods (sand, die,	casting process	Processe		processes	
investment) and bulk			duction of		
forming techniques (forging,	2.2 Demonstration of forging		Shaping Processes	2 Metal injection	on
rolling, extrusion, drawing),	process	2.2 Intr	oduction of metal	molding	
including their applications		casting p			
and limitations.	2.3 Study of rolling,	2.3 Type	s of metal casting		
SO2.2 Grasp the distinctions	sheet forming(Shearing, deep	process			
between thermoplastic and	drawing and bending) process	2.4 Intro	duction of forming		
ther most plastics;		process			
comprehend injection			1 rolling processes		
molding and blow molding			al forging processes		
principles; and evaluate their			al drawing		
suitability for different		processe			
applications.			al extrusion		
SO2.3 Define powder		processe			
metallurgy, comprehend its			t forming (shearing,		
steps, and understand the		^	wing, bending)		
advantages of metal injection		processes	8		
molding for complex		2 10 T			
component production.			rmoplastic		
SO2.4 Identify glass shaping		processes	8		
processes (layup) and grasp		0.11 The	muss and mlastic		
the fundamentals of		2.11 The	rmo set plastic		

Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

composite materials, processes exploring their applications and challenges. SO2.5 Integrate knowledge 2.12Introduction of from previous sessions to Powder metallurgy solve manufacturing problems, analyze case 2.13 Metal injection molding studies, and discuss current trends in material shaping 2.14 Glass and composite technologies processes (layup).

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Thermoplastic processes

PCC-ME204.3: Acquire knowledge about the various tools, equipment, machinery and operations required for material removal processes

Approximate Hours					
Item	AppX				
	Hrs				
Cl	12				
LI	06				
SW	1				
SL	2				
Total	21				

Session Outcomes	Laboratory	Class room	Self Learning
(SOs)	Instruction	Instruction	(SL)
	(LI)	(CI)	
SO3.1 Understand key	3.1 Demonstration of material	Unit-3.0 Material Removal	 Milling process
material removal	removal process	Processes	2 surface finish, accuracy
processes, cutting tools,	3.2Demonstration of single	3.1 Introduction of material	
materials, and the role of	point cutting tools	removal processes	
cutting fluids.	3.3 Demonstration of multi point		
SO3.2 Demonstrate	cutting tools	3.2 introduction of Turning	
expertise in turning and		process	
drilling, considering			
material removal rates,		3.3Introduction of Drilling	
surface finish, accuracy,		process	
and integrity.			
SO3.3 Describe milling		3.4 Milling process	
operations, assess			
machining parameters,		3.5 grinding process	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

(Revised as on 01 August 2023)

and understand		
machinability for various	3.6 finishing processes	
materials.		
SO3.4 Explain grinding	3.7 Single and multi-point	
principles, surface finish	cutting tools	
requirements, and the	-	
impact of parameters on	3.8 Cutting tool materials	
material removal rates	-	
and accuracy.	3.9 Cutting fluids	
SO3.5 Integrate	3.10 Material removal rates	
knowledge for optimizing	3.11 surface finish, accuracy	
material removal	3.12 integrity and mach	
processes, analyze case	inability.	
studies, and discuss		
current trends in		
machining technologies.		

SW-3 Suggested Sessional Work (SW):

a. Assignments:

I. Explain single and multi-point cutting tools

PCC-ME204.4.: understand the unconventional machining processes, like EDM,EBM,LBM etc

		Approximate Hours					
			Item	Appx.			
				Hrs			
			Cl	12			
			LI	06			
			SW	1			
			SL	1			
			Total	20			
Session Outcomes	Laboratory	Cla	ass room	Self Learr	ning		
(SOs)	Instruction	Ins	truction	(SL)			
	(LI)		(CI)				
SO4.1 Understand key	4.1 Study of abrasive jet	Unit-4.0 Oth	ner	1. Micro and nano			
unconventional	machining	(unconventi	onal)	manufacturing			
manufacturing processes,	4.2 study of ultrasonic	Manufacturi	ng Processes				
including abrasive jet	machining						
machining, water jet	4.3 study of plasma arc	4.1Introduct					
machining, ultrasonic	machining		l manufacturing				
-		processes					
machining, EDM, wire		40.41	T . N . 1				
EDM, ECM, laser beam		4.2 Abrasive	e Jet Machining				
machining, plasma arc		4.2 334 4 1					
		4.3 Water Je	et Machining		07		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

1 1 1 1	•		
machining, and electron			
beam machining.		4.4 Ultrasonic Machining	
SO4.2 Explore diverse applications of unconventional		4.5 Electrical Discharge Machining	
machining techniques in different industries.		4.6 Wire EDM	
SO4.3 Develop the ability to choose the most suitable process based on material properties		4.7 Electro-Chemical Machining	
material properties, design requirements, and project constraints.		4.8 Laser Beam Machining	
project constraints.		4.9, Plasma Arc Machining	
SO4.4 Learn strategies to optimize efficiency and quality in unconventional machining.		4.10 Electron Beam Machining;4.11Micro manufacturing	
SO4.5 Learn how to integrate unconventional processes with traditional manufacturing for a comprehensive approach.		4.12 Nano manufacturing	

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Explain the procedure of water Jet Machining.

PCC-ME204.5.: Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.

Approxim	Approximate Hours								
Item	Appx.								
	Hrs								
Cl	10								
LI	06								
SW	01								
SL	01								
Total	18								

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

(Revised as on 01 August 2023)

Session Outcomes	LaboratoryInstruction	Class room	Self Learning
(SOs)	(LI)	Instruction	(SL)
		(CI)	
SO5.1 - understand	5.1Demonstration of arc	Unit-5.0 Joining and	1. GTAW (TIG
various welding methods,	welding	Fastening Processes	
including arc welding, gas	5.2 Demonstration of MIG	5.1Introduction of joining	
welding, shielded metal	welding	and fastening processes	
arc welding, GMAW	5.3 Demonstration of TIG		
(MIG), and GTAW	welding	5.2 Arc welding	
(TIG)		5.3 Gas welding	
		5.4Shielded metal arc	
SO5.2 - Students will		welding	
learn the process of in arc		5.5 GMAW (MIG)	
welding, focusing on		5.6 GTAW (TIG)	
safety, electrode		5.7 Brazing	
selection, and basic		5.8 soldering	
welding techniques.		5.9 Solid state joining	
		5.10Adhesive	
SO5.3 - learn advanced			
GMAW (MIG) and			
GTAW (TIG) welding			
techniques, focusing on			
electrode selection and			
welding parameters.			
SO5.4 Acquire skills in			
gas welding and brazing,			
mastering equipment			
usage, safety, and			
application techniques.			
SO5.5 learn about			
different types of			
adhesives, surface			
preparation, and bonding			
considerations			

SW-5 Suggested Sessional Work (SW):

a. Assignments:

1. Explain shielded metal arc welding

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Lab	Sessio	Self	Total hour
	Lecture (Cl)	Lecture (LI)	nal Work	Learning (Sl)	(Cl+LI+SW+SI
			(SW))
PCC-ME204.1 : Understand various manufacturing processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality.	12	06	01	01	20
PCC-ME204.2 : Acquire fundamental knowledge and design widely used and very important primary manufacturing processes such as casting, forming, forging rolling, extrusion.	14	06	01	02	23
PCC-ME204.3 : Acquire knowledge about the various tools, equipment, machinery and operations required for material removal processes.	12	06	01	02	21
PCC-ME204.4. : understand the unconventional machining processes ,like EDM,EBM,LBM etc.	12	06	01	01	20
PCC-ME204.5. : Analyze and access the importance of welding processes in manufacturing and apply knowledge to select appropriate welding process based on the type of industrial application.	10	06	01	01	18
Total Hours	60	30	05	07	102

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Μ	arks Dis	tribution	Total
		R	U	Α	Marks
CO- 1	Manufacturing processes and classification	03	01	01	05
CO- 2	Material shaping processes	02	06	02	10
CO- 3	Material removal processes	03	07	05	15
CO- 4	Unconventional manufacturing processes	03	05	07	15
CO- 5	Joining and Fastening processes.	03	02	-	05
	Total	14	21	15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Manufacturing Process will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Face book, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books:					
S. No.	Title	Author	Publisher	Edition & Year		
1	Manufacturing Science	Amitabha Ghosh and A.K. Mallick	Affiliated East- West Press Pvt Ltd.	Revised edition 2010		
2	Manufacturing Processes for Engineering Materials	Kalpakjian and Schmid	Pearson India	2014		
3	Manufacturing process	H.N. Gupta R.C.Gupta Arun Mittal	New Age International Publisher	Second edition 2009		
4	Manufacturing Technology	R.K. Rajput	Laxmi Publisher Ltd.	2007		
5	Training Manual					
6	Training Manual					
7	Lecture note provided Dept. of Mechanical E		niversity, Satna.			

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos.POs and PSOs Mapping

Course Title: B. Tech Mechanical Engineering

Course Code : PCC-ME204

Course Title: Manufacturing Process

	Program Outcomes											Program Specific Outcome				
Course Outcomes	PO1	PO 2	PO3	PO4	PO5	PO 6	PO7	PO8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3	PSO 4
	Engi ne ering know ledge	b lem ana l	Desig n/dev elop ment of soluti ons	d uct	Mode n tool usage	Th e eng i nee r and soci ety	Envir on ment and sustai n abilit y:	Ethic s	Indi vi dual and tea m wor k:	Co m mun ic atio n:	Proje ct mana ge ment and financ e:	Life- long learni ng	Mechanical System Design and Analysis	Manufactur ing Processes and Automation	Computat ional Modeling and Simulatio n.	Product Innovatio n and Developm ent
CO1 Understand various	3	1	2	2	2	2	3	1	2	2	1	2	2	2	1	2-
manufacturing processes,																
selecting appropriate																
methods for different																
material, optimizing																
manufacturing efficiency																
and ensuring product																
quality																
CO 2 Acquire fundamental knowledge and design widely used and very important primary manufacturing processes such as casting, forming forging rolling, extrusion.	2	2	31	2	1	2	2	1	1	1	2	3	2	2	2	1

CO3 : Acquire knowledge	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2
about the various tools,																
equipment, machinery and																
operations required for																
material removal processes																
CO 4: understand the	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
unconventional machining																
processes ,like																
EDM,EBM,LBM etc.																
CO 5: Analyze and access the importance of	2	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3
welding processes in manufacturing and apply																
knowledge to select																
appropriate welding process based on the																
type of industrial																
application.																

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (L I)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1 : Understand various manufacturing processes, selecting appropriate methods for different material, optimizing manufacturing efficiency and ensuring product quality	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5	1.1 1.2 1.3	Unit-1.0 Manufacturing Processes and Classification 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1.11, 1.12	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 2 : Acquire fundamental knowledge and design widely used and very important primary manufacturing processes such as casting, forming ,forging rolling, extrusion.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5	2.1 2.2 2.3	Unit-2 Material Shaping Processes 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12,2.13,2.14	As mentioned in page number
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3 : Acquire knowledge about the various tools, equipment, machinery and operations required for material removal processes	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5	3.1 3.2 3.3	Unit-3 : Material Removal Processes 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10 3.11,3.12	4 to 11
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO 4: : understand the unconventional machining processes ,like EDM,EBM,LBM etc.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	4.1 4.2 4.3	Unit-4 : Other (unconventional) Manufacturing Processes 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10 4.11, 4.12	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	9,10,11,12 importance of welding processes in manufacturing and apply		5.1 5.2 5.3	Unit 5: Joining and Fastening Processes 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B. Tech (Mechanical Engineering) Program (Revised as on 01 August 2023)

Semester-V

CourseCode:	HSMC304
CourseTitle:	Finance&Accounting
Pre-requisite:	StudentshouldhavebasicknowledgeofrecordingBusiness transaction under appropriate accounts in termof money
Rationale:	'It'sallaboutthemoney!' The students studying Financial accounting under the commerce should possess to develop the knowledge and skills to manage the financial affairs of individuals, communities, and businesses. StudentswilldeveloptheknowledgeandskillsnecessarytoPrepare and maintain financial records, Manage financial affairs, Act with integrity and Contribute to the wider community. Accountinggivesstudentsthetoolstomakereallifefinancial decisions in a constantly changing and uncertain world and enhances financial literacy

CourseOutcomes:

HSMC304.1: Acquire the knowledge in accounting system of maintenance of journal, ledger, Trial balance and final account.

 ${\tt HSMC304.2:} A cquire the basic concept of accounting of depreciation and Royalty.$

HSMC304.3: Exposed to various provision of hire purchase system and evaluate del credere commission, normal and abnormal loss, value of unsold stock in consignment account.

HSMC304.4: Familiarize and understand the basic accounting concepts of different type of branch and the Evaluate the unrealized profit under the departmental accounting.

HSMC304.5: Develop the application skills regarding the dissolution of a firm in case of insolvency

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B. Tech (Mechanical Engineering) Program (Revised as on 01 August 2023)

Schemeof Studies:

Boardof				TotalCredits				
Study	Course Code	CourseTitle	Cl	LI	SW	SL	TotalStudyHours (CI+LI+SW+SL)	(C)
HSMC	HSMC 304	Finance&Accounting	3	0	2	1	6	3

 Legend:
 CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)and Tutorial (T) and others),

 LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies)

 SW:SessionalWork(includesassignment,seminar,andminiprojectetc),

 SL:SelfLearning,

 C:Credits.

Note: SW& SL hastobeplannedandperformedunderthe continuousguidanceandfeedbackof teacher to ensure outcome of Learning.

SchemeofAssessment:

Theory

			SchemeofAssessment(Marks)							
			ProgressiveAssessment(PRA)						EndSemes terAssess ment	Total Mark s
Board ofStud y	Course Code	CourseTitle	Class/Home Assignment 5 number 3marks	ClassT est2 (2 best outof3)	Semin arone	Class Activi tyany one	ClassAtten dance	Total Marks		
			each (CA)	10marks each(CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT +AT)	(ESA)	(PRA+ ESA)
HSMC	HSM C304	Financial Accounting	15	20	5	5	5	50	50	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their masteryofSessionOutcomes(SOs), culminating inthe overallachievement ofCourse

Outcomes (COs) upon the course's conclusion

TopicCovered:

HSMC304.1: Acquire the knowledge in accounting system of maintenance of journal, ledger, Trial Balance and final account.

ApproximateHours			
Item	AppxHrs.		
Cl	9		
LI	0		
SW	2		
SL	1		
Total	12		

SessionOutcomes	(LI)	ClassroomInstruction	(SL)
(SOS) SO1.1Understand the Conceptandnatureof financial accounting principles SO1.2Understandthe Concept of Double Entry System, PreparationofJournal SO1.3Understandtheconcept Sub division ofJournal SO1.4PreparationofLedger and Trial Balance SO1.5PreparationofFinal A/c with Adjustment		(CI) Unit-1.0TheoreticalFramework and Accounting Process Conceptandnatureoffinancialaccounting Natureoffinancialaccountingprinciples Basicconceptsandconventions Salient features of Accounting StandardAS-11.5.ConceptandPrincipalof double Entry Classificationofaccount MeritanddemeritofdoubleEntrySystem Rulesregardingjournalentryof transaction SubdivisionofJournal	 Classification of account and golden rules of journal entry Items Debited and credited in tradingandprofit & loss account andthelistofasset and liabilities

SW-1SuggestedSessionalWork(SW):

a. Assignments: Modern approaches of journal entry for the business transaction and

Preparation of ledger and triple columnar cash book.

b. MiniProject:AscertainmentofCreditPurchasesCreditSalesandAscertainmentof Missing InformationthroughSummaryofCash

c. OtherActivities (Specify):

 ${\sf Diagram} for the effect of the item of adjustment when given outside of trail balance.$

 ${\tt HSMC304.2:} A cquire the basic concept of accounting of depreciation and Royalty$

Appro	oximate	Hours
-------	---------	-------

Item	AppxHours
Cl	10
LI	0
SW	2
SL	1
Total	13

SessionOutcomes		ClassroomInstruction	
(SOs)	(LI)	(CI)	(SL)
SO2.1Concept Meaning	•	Unit2.0AccountingforDepreciationandRoyalty	
&terminology of			
royalty		2.1Concept and meaning of Royalty,	
		withterminology	1. Terminology
SO2.2 Understanding		Conceptofminimumrentshortworking	of royalty like
abouttheshortworking		Accountingprocessforroyalty	less or lessee
and right of Short		JournalEntryinthebookofLessee	minimum rent
workingrecouped		Formatoflandlordandshortworkinga/c	dead rent and
		PPunderthechangingrateofminimumrent	shortworking
SO2.3Preparation of		PPwhenrightofshortworkingrecouped given	
landlord account		PPwhenpartlyshorting recouped	2. Accounting
short working a/c		PPincaseoflock out and strike	process of
androyaltyaccount		Accountingforroyaltyofpatent	depreciation in differentmethod
SO2.4Understandingthe			of depreciation
concept & method			with practical
ofdepreciation with characteristics			aspect
characteristics			
SO2.5Preparationofasset			
accountin various			
conditionmethods			

SW-2SuggestedSessionalWork(SW):

a. Assignments:Typesofroyaltyand the methodofcalculationofroyalty in caseoftrade Mark, Patent and copy Wright

b. MiniProject: IRCTCRailwayBookingSystemClone

c. OtherActivities(Specify): DistinguishbetweenStraight LineMethodandDiminishing Balance Method of Depreciation

HSMC304.3: Exposed to various provision of hire purchase system and evaluate del credere commission, normal and abnormal loss, value of unsold stock in consignment account.

ApproximateHours		
AppxHours		
8		
0		
2		
1		
11		

SessionOutcomes (SOs)	(LI)	ClassroomInstruction (Cl)	(SL)
SO3.1 Meaning and concept of hire purchase with cum and Ex interest installment		Unit-3:AccountingforHirePurchaseand Consignment 3.1MeaningofhirepurchaseSystemandhire	1. Provisionof
SO3.2 Practical problem related to calculation of cash price of asset		purchase contract Concept of cumand Exinterest installment Accounting for cum-interest and exinterest installment, Concept of Calculation of cash price of asset	Hirepurchase Systemregarding Repossession of asset in case of default ofpayment
SO3.3 Understanding the calculation of rate of interest and default of payment		PracticalproblemrelatedwithCalculationof cash price ConceptCalculationofinterestwhenrateof interest not given	2. Concept of discount of bill discountedwhen
SO3.4Understandingabout commission abnormal lossand calculationof unsold stock		PPofCalculationofinterest whenrateof interest not given Concept andmeaningofdefaultofpayment	billsprovidedby Consignee to Consignor
SO3.5 Preparation of consignmentaccountin different situation of normal loss and abnormalloss			

SW-3SuggestedSessionalWork(SW):

a. Assignments: Discuss the Advantages and features of HirePurchase System and explain The Accounting Treatment in the Hire Purchase System

b. MiniProject: ContentsofHirePurchaseAgreementAccordingtotheHirePurchase Act,

1972 (Section 4),

c. OtherActivities(Specify): prepareaflowchartshowingthedifferent terminologyused in Consignment agreement

HSMC304.4: Familiarize and understand the basic accounting concepts of different type of branch and the Evaluate the unrealized profit under the departmental accounting.

ApproximateHours		
ltem	AppxHours	
Cl	9	
LI	0	
SW	2	
SL	1	
Total	12	

	Ар	prox	imate	Hours
--	----	------	-------	-------

SessionOutcomes	(LI)	ClassroomInstruction	(SL)
(SOs)		(CI)	
SO4.1 Understanding about the		Unit-4:Accounting for	1.System of
concept and types of		Branch	calculation of
branches		Conceptmeaning&Characteristicsofbranc	profit or loss
		h	ofadependent
SO4.2 Preparation ofBranch		TypesofbranchlikeDependentandindepen	Branch
account in case of		dent	Inter departmental
dependent and independent		Conceptofdependentbranchesandtypes	
branches		4.5.Accounting of dependent branches	branches
		Numericalquestionofdependentbranches	transactionwith
SO4.3 Understanding about the		StockandDebtorSystemofdependentbranc	Entry
foreign branch and		hes	
preparation of final account		WholesaleandRetailBranches	
of foreign branch		AccountingtreatmentofIndependentbra	
		nches	
SO4.4 Understandingabout the		Numerical question of	
department and basis of		Independent branches	
allocation of joint expenses		-	
in case of Department			
SO4.5 Preparation of			
departmentaltrading and			
profit and loss account in			
different situations			

SW-4SuggestedSessionalWork(SW):

a. Assignments: Write the list of Item converted from the different type of exchange rate in Case of the foreign branch

b. MiniProject:Collect thelistofthebranchesofthepublicsectorBankandPrivatesector bankworkinginSatnadistrictwithminor Introduction

c. OtherActivities(**Specify**): preparealist ofdepartmentalstore situatedintheSatnadistrict and observe the working of such departmental store

HSMC304.5: Develop theapplicationskillsregardingthedissolutionofafirmincaseof insolvency

ltem	Appx.Hours
Cl	9
LI	0
SW	2
SL	1
Total	12

SessionOutcomes (SOs)	(LI)	ClassroomInstruction (Cl)	(SL)
 SO5.1Understand about the concept of dissolution of firm and preparation of Realization account and capital account SO5.2Preparation ofnecessary account and treatment when all partner being solvent 		Unit5:AccountingforDissolutionoft he Partnership Firm MeaningandconceptofDissoluti onofthe Partnership Firm JournalEntryincaseofDissolutio nofthe Partnership PreparationofRealizationAccount PreparationofCapitalaccount AccountingofDissolutionofthePar	1. Comparision betweenGarner vs murrey rule &ruleofIndian partnership act for Insolvent partner Howtoprevent amalgamation a cut
SO5.3 Preparation of necessary account and treatment in case of insolvency of partners		tnership Firm AccountingofDissolutionofPa rtnership Firm when asset taken be partner	throat comp- etition between two similar nature business
 SO5.4Understanding about the Sale to a limited companyand Preparation of necessary account SO5.5Understanding about the Amalgamation of firm and Preparation of necessary account 		MeaningofInsolvencyofaPartner Garnerv/sMurreyrule AccountingofDissolutionofthePartner ship Firm Including Insolvency of partners	

SW-5SuggestedSessionalWork(SW):

a. Assignments: procedure of creation and dissolution of a Partnership Firms

b. MiniProject: Prepareareportonthebusinessorcompaniesamalgamatedin India inlast 5 years including the merger of banks

BriefofHourssuggestedfortheCourseOutcome

Course Outcomes	Class	Sessional	Self	Totalhour
	Lecture	Work	Learning	(Cl+SW+SI)
	(CI)	(SW)	(SI)	
HSMC304.1: Acquire the knowledge in accounting system of maintenance of journal, ledger, Trial balance and final account	9	2	1	12
HSMC304.2: Acquirethebasicconceptofaccounting of depreciation and Royalty	10	2	1	13
HSMC304.3: Exposed to various provision of hire purchase system and Evaluate del credere commission, normalandabnormalloss,valueofunsoldstockin consignmentaccount.	8	2	1	11
HSMC304.4: Familiarize and understand the basic accounting concepts of different type of branch and the Evaluatetheunrealizedprofitunderthedepartmental	9	2	1	12
HSMC304.5 :Developtheapplicationskillsregarding the dissolution of a firm in case of insolvency	9	2	1	12
TotalHours	45	10	05	60

${\it Suggestion for EndSemester Assessment}$

SuggestedSpecificationTable(ForESA)

CO	UnitTitles	MarksD		ribution	Total
		R	U	Α	Marks
CO-1	Acquire the knowledge in accounting system of maintenanceofjournal,ledger,Trialbalanceand final account		01	03	05
CO-2	Acquirethebasicconceptofaccounting of depreciationandRoyalty		01	03	05
CO-3	Exposed to various provision of hire purchase system and evaluate del cruder commission, normalandabnormalloss,valueofunsoldstockin consignmentaccount	-	03	10	13
CO-4	Familiarize and understand the basic accounting concepts of different type of branch and the Evaluatetheunrealizedprofitunderthe departmentalaccounting	-	03	10	13
CO-5	Developtheapplicationskillsregardingthe dissolution of a firm in case of insolvency	01	03	10	14
	Total	03	12	36	50

Legend:R:Remember, U:Understand, A:Apply

Theendofsemester assessment for FinancialAccounting willbeheld withwrittenexamination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

SuggestedInstructional/ImplementationStrategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. Brainstorming

SuggestedLearningResources:

	(a)Books:			
S.	Title	Author	Publisher	Edition
No.				&Year
1	Advanced	Shukla, M.C., T.S.	S.Chand&Co.,	Revisededition
	Accounts.VolI.	GrewalandS.C.Gupta		21edition2020
2	FinancialAccounting	Maheshwari,S.N.and S.K.Maheshwari	VikasPublishing House	
3	FinancialAccounting	ShuklaS.M.	SahityaBhavan Publication House Agra	
4	Lecturenoteprovidedb Dept.ofCommerceAK	5		

AKSUniversity

FacultyofEngineeringandTechnology DepartmentofMechanicalEngineering CurriculumofB.Tech(Mechanical Engineering)Program (Revisedason01August2023)

Cos, Pos and PSOs Mapping

Course Title: B.TechME

CourseCode:HSMC304

CourseTitle:Finance&Accounting

		ProgramOutcomes									ProgramSpecificOutcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Comme rceand busines s- related areas	Solvin gthepr oblem s	Profess ion related scenari os	Start- upsandent repreneuri alventures:	Lead ershi pqua lities	Communic ationthrou ghdifferent modes	archinthefiel	Deci sion maki ng	Pathw ayspro grams	Environme ntandsustai nability:	Mechanical System Design and Analysis	Manufactu ring Processes and Automatio n	Computational Modeling and Simulation	P Podduct Innovation and Innova tione lopment and Developmen t
CO.1: Acquire the knowledge inaccounting system ofmaintenance of journal, ledger,Trial balance and final account.	3	2	1	1	1	1	3	1	1	1	3	3	1	2
CO.2:Acquirethebasicconceptofacco unting of depreciation andRoyalty.	3	2	1	1	1	1	3	1	1	1	2	3	1	1
CO.3:Exposedtovariousprovisiono f hire purchase system andevaluatedelcrederecommissio n,normal and abnormal loss	3	2	1	2	1	1	3	1	2	1	3	3	2	1
CO.4:Familiarizeandunderstandt hebasic accountingconceptsofdifferentty pe of branch and theEvaluate the unrealized profit	3	2	1	3	1	1	3	1	1	1	3	3	2	1

AKSUniversity

FacultyofEngineeringandTechnology DepartmentofMechanicalEngineering CurriculumofB.Tech(Mechanical Engineering)Program (Revisedason01August2023)

accounting.														
CO.5:Developtheapplicationskillsre garding the dissolution of a firmin case of insolvency	3	2	1	1	1	1	3	1	1	1	1	2	3	1

Legend:1-Slight(Low),2-Medium,3-High Course

Curriculum Map:

oretical Framework nting Process 1.4,1.5,1.6,1.7,1.81.9
e e
1.4,1.5,1.6,1.7,1.81.9
ccounting for
n and Royalty
2.4,2.5,2.6, 2.7,
counting for Hire As
nd Consignment mentionedin
3.4,3.5,3.6,3.7,3.8, pagenumber
18 to 22
101 3,2 10 cc

AKSUniversity

FacultyofEngineeringandTechnology DepartmentofMechanicalEngineering CurriculumofB.Tech(Mechanical Engineering)Program (Revisedason01August2023)

PO1,2,3,4,5,6 7,8,9,10, PSO1,2,3,4,5	CO 4: Familiarize and understand the basic accountingconceptsofdifferenttypeofbranch andtheEvaluatetheunrealizedprofitunderthe departmental accounting.	SO4.1SO 4.2SO4.3 SO4.4 SO4.5	Unit-4Accountingfor Branch and Department : 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8, 4.9
PO1,2,3,4,5,6 7,8,9,10, PSO1,2,3,4,5	CO5:Developtheapplicationskillsregardingthe dissolution of a firm in case of insolvency	SO5.1SO 5.2SO5.3 SO5.4 SO5.5	Unit5:Accountingfor Dissolution of the Partnership Firm 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8, 5.9

Semester-V

Course Code: Course Title: HSMC301 INDUSTRIAL PSYCHOLOGY

Pre- requisite: Basic understanding of psychology, research methods, statistics, and organizational dynamics is essential for studying workplace behavior in industrial psychology.

Rationale: Industrial psychology explores the interaction between individuals and their work environment. By applying psychological principles, it aims to optimize productivity, job satisfaction, and organizational effectiveness. This subject examines topics such as employee selection, motivation, leadership, and organizational culture, offering insights to enhance workplace dynamics and foster individual and collective well-being.

Course Outcomes:

After completing this course, the student will be able to:

HSMC301.1 Understanding of key concepts, theoretical perspectives, and trends in industrial psychology

HSMC301.2 Evaluate the problems thorough and systematic competency mode

HSMC301.3 Analyze the problems present in environment and design a job analysis method.

HSMC301.4 Create a better work environment for better performance.

HSMC301.5 Design a performance appraisal process and form for the human behavior.

Scheme of Studies:

Board of					Scher	ne of studi	es (Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
нѕмс	HSMC301	INDUSTRIAL PSYCHOLOGY	3	0	2	2	7	3

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
					Progressiv	ve Assessme	ent (PRA)		End Semester Assessment	Total Marks
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks each	Class Test 2 (2 best out of 3) 10 marks	Seminar one	Class Activity any one	Class Attendance	Total Marks	(564)	
			(CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
HSMC	HSMC3 01	INDUSTRI AL PSYCHOL OGY	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC301.1 Understanding of key concepts, theoretical perspectives, and trends in industrial psychology.

Approximat	te Hours
Item	Appx. Hrs
Cl	09
LI	
SW	01
SL	01
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO1.1 Define industrial psychology, its history, and relevance. SO1.2 Identify individual differences in abilities and attitudes. SO1. Evaluate employee selection methods and assessments. SO1.4 Apply motivational theories to enhance engagement. SO1.5 Analyze leadership styles and organizational dynamics for effective management.		 Unit-1.0 Introduction 1.1 Introduction of industrial Psychology 1.2 The role of the psychologist in industry 1.3 The field of occupational Psychology 1.4 Study of behavior in work situation 1.5 Applications of Psychological principles to problems of selection 1.6 Applications of Psychological principles to problems of Placement 1.7 Applications of Psychological principles to problems of Placement 1.8 Applications of Psychological principles to problems of counseling 1.8 Applications of Psychological principles to problems of training. 	1 Applications of Psychological principles to problems of selection

SW-1 Suggested Sessional Work (SW):

Assignments: The field of occupational Psychology

HSMC301.2 Evaluate the problems thorough and systematic competency mode

			Approximate	e Hours	
			Item	Appx. Hrs	
			Cl	10	
			LI		
			SW	01	
			SL	01	
			Total	12	
Session Outcomes	LaboratoryInstruction		Class room	Self	
(SOs)	(LI)		Instruction	Learni	ng
			(CI)	(SL)	
SO2.1 Evaluate the			Design of Work	1 Special study	
problems thorough and		Environm		problem of fati	gue
systematic competency			an engineering		
mode			es of job analysis		
SO2.2 Explore teamwork			cal environment		
dynamics and			es of job analysis I environment		
communication strategies			p dynamics in		
in industrial settings.			Personal psychology	,	
SO2.3 Learn about		-	nique of selection		
psychological assessment			nique of training		
methods for effective			otion, counseling,		
employee placement.		job motiv			
SO2.4 Identify factors		2.8 job sa	atisfaction		
influencing employee		2.9 Speci	al study of problem		
motivation and		of fatigue	e		
satisfaction.			cial study of		
SO2.5 Address issues of		•	of boredom and		
fatigue, boredom, and		accidents	5.		
accidents through					
proactive measures.					
prodetive medsures.		1		1	

SW-2 Suggested Sessional Work (SW):

a. Assignments: physical environment techniques of job analysi

HSMC301.3 Analyze the problems present in environment and design a job analysis method.

Approxim	Approximate Hours								
Item	Appx Hrs								
Cl	06								
LI									
SW	01								
SL	01								
Total	08								

			Total	08	
Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruct (Cl)	ion	Self Learning (SL)	
 so3.1 Grasp consumer behavior basics and how advertising shapes choices. so3.2 Learn to optimize product design and workplace environments using psychology. so3. Develop skills to analyze and target consumer preferences effectively. so3.4 Assess advertising effects on perceptions and purchase decisions. so3.5Implement strategies for improving workplace morale and productivity. 		Unit-3.0 Understanding Consumer Behavior 3.1 Consumer behavior 3.2 study of consumer pref 3.3 Effects of advertising 3.4 Industrial morale 3.5 The nature and scope o engineering psychology 3.6 Engineering psycholog application to industry	erence f	tudy of consumer preferenc	e

--

SW-3 Suggested Sessional Work (SW):

Assignments: Engineering psychology, application to industry

HSMC301.4 Create a better work environment for better performance.

Approximate Hours

Item	AppX Hrs
Cl	11
LI	
SW	01
SL	01
Total	13

		lotal	13		
Session Outcomes (SOs)					
so4.1 Define and grasp the significance of efficiency in the workplace. Work Curve Characteristics: Explore the typical features of the work curve and its implications for productivity. so4.2 Discuss different work methods, hours, nature, and factors affecting efficiency		 Unit-4.0 Work Methods 4.1 Efficiency at work, the concept of efficiency 4.2 The work curve, its characteristics 4.3 The work methods; hours of work 4.4 Nature of work, fatigue and boredom, rest pauses 4.5 The personal factors; age abilities, interest, job satisfaction 4.6 working environment, noise, illumination, atmospheric conditions 4.7 increasing efficiency at work 4.8 improving the work methods 4.9 Time and motion study 4.10 contribution and failure resistance to time and motion studies 4.11 Need for allowances in time and motion study 	1 Time and motion study		

so4.3 Identify how personal factors like age, abilities, and environmental factors such as noise impact work efficiency		

SW-4 Suggested Sessional Work (SW):

a. Assignments: working environment, noise, illumination, atmospheric conditions

HSMC301.5 Design a performance appraisal process and form for the human behavior.

Ар	proximate Hours
Item	AppX Hrs
Cl	09
LI	
SW	01
SL	01
Total	11

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction	Self Learning (SL)
(303)	(=)	(CI)	(31)
sos.1 - Identify key		Unit-5.0 Work and	1 Human factors in job
		Equipment Design	design. Accident and Safety
factors influencing		5.1 Criteria in evaluation of	
job design and		job-related factor	
5 5		5.2 job design	
explain how		5.3 Human factors	
human factors		5.4 Engineering information,	
contribute to		input processes	
		5.5 Mediation processes,	
safety and		action processes	
efficiency.		5.6 Methods design, work	
sos.2 - Introduce		space and its arrangement	
sos.z - introduce		5.7 Human factors in job	
engineering		design. Accident and Safety	

principles relevant	5.8 Human and economic costs of accidents, accident	
to work design and	record and statistics	
demonstrate their	5.9 The causes of accidents	
practical	situational and individual factors related to accident	
application.	reduction	
sos.3 - Analyze		
workplace accident		
causes and		
develop prevention		
strategies		
sos.4 Explore		
methods design		
techniques and		
workspace layout		
considerations to		
enhance safety.		
sos.s Discuss the		
benefits of		
involving workers		
in job design		
decisions and		
strategies for		
integrating human		
factors principles.		

SW-5 Suggested Sessional Work (SW):

a. Assignments: Engineering information, input processes

AKS University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Lab	Sessio	Self	Total hour
	Lecture	Lecture	nal	Learni	(Cl+Ll+SW+SI)
	(CI)	(LI)	Work	ng	
			(SW)	(SI)	
HSMC301.1 Understanding of key concepts, theoretical perspectives, and trends in industrial psychology	09		01	01	11
HSMC301.2 Evaluate the problems					
thorough and systematic competency					12
mode	10		01	01	
				01	
HSMC301.3 Analyse the problems					
present in environment and design a job analysis method	06		01	01	08
HSMC301.4 Create a better work				01	
environment for better performance	11		01	01	13
HSMC301.5 Design a performance					
appraisal process and form for the					
human behavior.				01	
	00		01	01	11
	09		01		
Total Hours	45		05	05	55
			05	05	

AKS University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	Α	Marks
CO-1	Introduction of industrial psychology	03	01	01	05
CO-2	Design of Work Environments	02	06	02	10
CO-3	Understanding Consumer Behavior.	03	07	05	15
CO-4	Work Methods	03	05	07	15
CO-5	Work and Equipment Design.	03	02	-	05
	Total	14	21	15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Industrial psychology will be held with writtenexamination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

AKS University

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books :			
S. No.	Title	Author	Publisher	Edition & Year
1	Industrial Psychology	Tiffin, J and McCormic E.J	Prentice Hall	6th Edn 1975
2				4th Edn.,1976.
	Human Factors Engineering and Design	McCormic E.J	McGraw Hill	
3				
4				
5	Training Manual			•
6	Training Manual			
7	Lecture note provided by Dept. of Mechanical Eng		ersity, Satna .	

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanical Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos,POs and PSOs Mapping

Course Title: M. Tech Mechanical Engineering

Course Code : HSMC301

Course Title: Industrial Psychology

					P	rograi	n Outco	omes					Р	rogram Spec	cific Outcom	e
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Design/ develop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Moden tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
co1 Understanding of key concepts, theoretical perspectives, and trends in industrial psychology ode	3	1	2	2	2	2	3	1	2	2	1	2	2	2	1	2-
CO2 Evaluate the problems thorough and systematic competency mode	2	2	31	2	1	2	2	1	1	1	2	3	2	2	2	1
co3 : Analyse the	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2 407

problems present																
in environment and																
design a job																
analysis method.																
CO 4 : Create a better work environment for better performance	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
co s : Design a performance appraisal process and form for the human behavior	2	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	CO1 : Understanding of key concepts,	SO1.1		Unit-1. Design a performance appraisal	
7,8,9,10,11,12	theoretical perspectives, and trends in industrial psychology code	SO1.2 SO1.3		process and form for the human behavior	
PSO 1,2, 3, 4		SO1.4 SO1.5		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,	
PO 1,2,3,4,5,6	CO 2 Evaluate the problems	SO2.1	3	Unit-2 Design of Work Environments	
7,8,9,10,11,12	thorough and systematic competency mode	SO2.2 SO2.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4		SO2.4 SO2.5		2.8,2.9,2.10	As mentioned in
PO 1,2,3,4,5,6 7,8,9,10,11,12	CO3 : Analyse the problems present	SO3.1 SO3.2		Unit-3 : Understanding Consumer Behavior	page number 4 to 11
PSO 1,2, 3, 4	in environment and design a job	SO3.3 SO3.4		3.1, 3.2, 3.3, 3.4, 3.5, 3.6,	
	analysis method.	SO3.5			
PO 1,2,3,4,5,6	CO 4 Create a better work	SO4.1		Unit-4 : Work Methods	-
7,8,9,10,11,12	environment for better performance	SO4.2 SO4.3		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10	
PSO 1,2, 3, 4	с.	SO4.4 SO4.5		4.11	
PO 1,2,3,4,5,6	CO 5: Design a performance	SO5.1		Unit 5: Work and Equipment Design	-
7,8,9,10,11,12	appraisal process and form for the	SO5.2		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,.5.9	
PSO 1,2, 3, 4	human behaviour	SO5.3 SO5.4 SO5.5			

Semester-V

Course Code:	PCC-ME 301
Course Title:	Machine Element and System Design
Pre-requisite:	Students should have a good knowledge of subjects such as Mathematics, Engineering Mechanics, Strength of Materials, Theory of Machines, Workshop Processes and Engineering Drawing.
Rationale:	Machine design is the single most important activity in the mechanical industries. Success or failure of a company has its roots in product design, whether it is done in-house or contracted out. It is here that manufacturing costs and profits are determined. Even the best of manufacturing facilities are of little use if the design of a product is inherently faulty.

Course Outcomes:

- **ME 301.1** Student will be able to define different phases in design process, standardization of parts, stress concentration of machine parts.
- **ME 301.2:** Students will be able to design different types of riveted joints, cotter and knuckle joint, threaded and welding joints.
- **ME 301.3:** Students will be able to design helical spring with axial loading and subjected to fatigue loadings.
- **ME 301.4:** Students will be able to design shafts based on strength, rigidity and critical speed.

ME 301.5: Students will be able to design different types of rigid and flexible coupling.

Scheme of Studies:

Board of					Scher	ne of studi	es(Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	Me 301	Machine Element and System Design	4	0	1	1	6	4

Legend:CI: Class room Instruction (Includes different instructional strategies i.e. Lecture(L) and Tutorial
(T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field
or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Sche	me of Assessmer	nt(Marks)		
		Progressive Assessment(PRA)					End Semester Assessment	Total Marks		
Board of Study	Couse Code	Course Title	Class/Ho meAssign ment5nu mber	ClassTest 2 (2bestout of3) 10marks	Seminar one	Class Activity any one	ClassAttendan ce	Total Marks		
			3mar ksea ch (CA)	each(CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
PCC	ME 301	Machine Element and System Design	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ME 301.1 Student will be able to define different phases in design process, standardization of parts, stress concentration of machine parts.

Approximate Hours				
ltem	AppX Hrs			
Cl	12			
LI	0			
SW	2			
SL	1			
Total	15			

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
		Unit-1.0 Introduction to Design	1.Hencky Theory
SO1.1 Understand design steps,			2. Von Mises
preferred numbers, stresses, and		1.1 Definition, steps in design	
calculations including shear,		process .	
bending, and torsional stresses.		1.2 preferred numbers,	
		standards and codes in	
SO1.2 Analyze fatigue, endurance,		design	
modifying factors, and surface		1.3 shear, bending and torsional	
strength considerations for		stresses, combined stresses,	
enhanced fatigue resistance.		stress concentration factor	
		1.4 Fatigue- Introduction to	
SO1.3 Explain failure theories and		design for fatigue strength. Endurance and modifying	
factors affecting endurance limit		factors. Surface strength.	
stress and safety considerations in		1.5 Theories of Failure	
design engineering.		1.6 Guest's Theory	
		1.7 Rankine's Theory	
		1.8 St. Venant's Theory	
		1.9 Haigh's Theory, and Von	
		Mises	
		1.10 Shock and impact loads,	
		fatigue loading	
		1.11 endurance limit stress	
		factors affecting endurance limit,	
		1.12 factor of safety	

SW-1Suggested Sessional Work (SW):

a. Assignments:

Explain shear, bending and tensional stresses, combined stresses, stress concentration factor i.

ME 301.2: Students will be able to design different types of riveted joints, cotter and knuckle joint, threaded and welding joints.

Approximate Hour				
ltem	AppX Hrs			
Cl	12			
LI	0			
SW	2			
SL	2			
Total	16			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO2. 1 Define thread terminology, standards, and identify different types of threads used in engineering applications. SO2.2 Analyze stresses in screw threads, understand the effect of initial tension in bolted joints. SO2.3 Design bolts for static and fatigue loading, and evaluate gasketed joints and power screws for engineering applications. 		Unit-2.0 Threaded Joints 2.1 Terminology, thread standards 2.2 types of threads 2.3 stresses in screw threads. 2.4 Bolted joints- effect of initial tension 2.5 eccentric loading 2.6 design of bolts for static and fatigue loading 2.7 gasketed joints 2.8 power screws 2.9 Design of riveted joints 2.10 . Material for rivets, modes of failure 2.11 efficiency of joint 2.12 design of boiler	 tank joints structural joints

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
- 1. design of bolts for static and fatigue loading
- **ME 301.3:** Students will be able to design helical spring with axial loading and subjected to fatigue loadings.

Approximate Hours			
ltem	AppX Hrs		
Cl	12		
LI	0		
SW	2		
SL	1		
Total	15		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
SO3.1 Understand Gib, Cotter, and Knuckle joints, and analyze their		Unit-3.0 : Cotter and Knuckle joints	1. Design of Axles
structural characteristics and		3.1 Gib joints	
applications.		3.2 Cotter Joint	
SO3.2 Design couplings, single and multiple plate clutches, and		3.3 analysis of knuckle joint	
centrifugal plate clutches for engineering applications.		3.4 Design of coupling	
SO3.3 Introduce braking systems,		3.5 Design of single plate clutch	
design band brakes, shoe brakes, and disc brakes for various mechanical setups.		3.6 Design of multiple plateclutch3.7 Design of centrifugal plateclutch	
		3.8 Introduction of brake	
		3.9 Design of band brake3.10 Design of shoe brake3.11 Design of Disc Brake3.12 Tutorial 1	

SW-3Suggested Sessional Work (SW):

a. Assignments:

i. Design of single plate clutch

ME 301.4: Students will be able to design shafts based on strength, rigidity and critical speed.

•	
ltem	AppX Hrs
Cl	12
LI	0
SW	2
SL	2
Total	16

Approximate Hours

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO4. 1 Classify springs and identify materials, analyze stresses, and deflections in helical springs under axial loading. SO4. 2 Understand the effects of curvature, resilience, and surging in helical springs under static and fatigue loading. SO4. 3 Design flat, semi-elliptical laminated leaf springs, and sliding bearings considering critical frequency and end construction. 		 Unit-4.0 : Springs 4.1 classification, spring materials 4.2 stresses and deflection of helical springs 4.3 axial loading, curvature effect, resilience 4.4 static and fatigue loading, surging, 4.5 critical frequency, concentric springs, end construction 4.6 Leaf springs- Flat springs 4.7 semi elliptical laminated leaf springs 4.8 design of leaf springs 4.9 nipping 4.10 Design of sliding bearings 4.11 Tutorial 1 4.12 Tutorial 2 	1. Design of rolling contact bearings

SW-4Suggested Sessional Work (SW):

a. Assignments:

i. Design of sliding bearings

.

ME 301.5: Students will be able to design different types of rigid and flexible coupling

Approximate Hou		
ltem	AppX Hrs	
Cl	12	
LI	0	
SW	1	
SL	1	
Total	14	

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
 SO5. 1 Analyze material properties and design considerations for shafts in engineering applications. SO5. 2 Identify causes of failure in shafts and design them based on strength considerations. SO5. 3 Understand rigidity, critical speed, and design shafts for static, fatigue, repeated, and reversed bending loads. 		Unit 5.0 Shafting 5.1 material, design considerations 5.2 causes of failure in shafts 5.3 design based on strength 5.4 rigidity and critical speed 5.5 design for static and fatigue loads 5.6 repeated loading 5.7 reversed bending 5.8 Design of Coupling 5.9 selection, classification. 5.10 Tutorial -1 5.11Tutorial -2 5.12 Tut5orial -3	 rigid and flexible coupling design of keys and pins

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. design for static and fatigue loads

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self	Total hour
course outcomes	Lecture	Work		
			Learning	(Cl+SW+SI)
	(Cl)	(SW)	(SI)	
ME 301.1: Student will be able to define different				
phases in design process, standardization of parts,	12	2	1	
stress concentration of machine parts.	12	2	1	
				15
ME 301.2: Students will be able to design different				
types of riveted joints, cotter and knuckle joint,	10	2	2	
threaded and welding joints.	12	2	2	
				16
ME 301.3: Students will be able to design helical				
spring with axial loading and subjected to fatigue	12	2	1	
loadings.				15
ME 301.4: Students will be able to design shafts		_	_	
based on strength, rigidity and critical speed.	12	2	2	16
ME 301.5 Students will be able to design				
different types of rigid and flexible coupling.				
	12	1	1	
	12	-	1	
				1.4
				14
Total Hours	60		_	76
	60	9	7	76

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	А	Marks
CO-1	Introduction to Design	03	01	01	05
CO-2	Threaded Joints	02	06	02	10
CO-3	Cotter and Knuckle joints	03	07	05	15
CO-4	Springs	-	10	05	15
CO-5	Shafting	03	02	-	05
	Total	11	26	13	50

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment for Machine Element and System Design it will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course-wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role-play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whats-app, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a)]	Books:		
S. No.	Title	Author	Publisher
1	mechanical engineering design	Budynas, R. G., & Nisbett, J. K Shigley's	McGraw-Hill.
2	Machine design	Norton, R. L.	Prentice Hall
3	Design of machine elements	Spotts, M. F., Shoup, T. E., & Hornberger, L. E.	Pearson /Prentice Hall
4	Design of Machine Elements	Bhandari, V. B	McGraw-Hill Education (India) Pvt Ltd.

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanical Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: B.Tech. Mechanical

Course Code : ME 301

Course Title: Machine Element and System Design

		Program Outcomes							Р	rogram Spec	ific Outcom	ie				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engine ering knowle dge	Prob lem b anal ysis	Desig n/dev elopm entof soluti ons	Condu ctinve stigati ons of compl ex probl ems	Mode m Tool usage	Thee ngin eera ndso ciety	Environ ment and sustain ability:	Ethics	Indivi dual andte amw ork:	Comm unicat ion:	Project manage ment and finance:	Life- longlear ning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
C01 Student will be able to define different phases in design process, standardization of parts, stress concentration of machine parts.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO 2 : Students will be able to design different types of riveted joints, cotter and knuckle joint, threaded and welding joints.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO3 : Students will be able to design helical spring with axial loading and subjected to fatigue loadings.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO4: Students will be able to design shafts based on strength, rigidity and critical speed.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO5: Students will be able to design different types of rigid and flexible coupling.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Course Curriculum Map:

Pos &PSOs No.	Cos No. &Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	CO-1: Student will be able to define different	SO1.1		Unit-1.0 Introduction of Mechatronics and its block diagram representation	
7,8,9,10,11,12	phases in design process, standardization of parts,	SO1.2 SO1.3			
PSO1,2,3,4,	stress concentration of machine parts.	301.5		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1. 11,1.12	
PO 1,2,3,4,5,6	CO 2 : Students will be able to design different types of	SO2.1		Unit-2.0 Selection of Sensors & Actuators	
7,8,9,10,11,12	riveted joints, cotter and knuckle joint, threaded and	SO2.2		Actuators	
PSO1,2,3,4,	welding joints.	SO2.3		2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8,2.9,2.10,2.11,2.12	
					As mentioned in
PO 1,2,3,4,5,6	CO3: Students will be able to	SO3.1		Unit-3.0 : Data Acquisition, Signal	Page number
7,8,9,10,11,12	design helical spring with axial loading and subjected to	SO3.2		Conditioning & Microcontroller System	2 to 6
PSO1,2,3,4,	fatigue loadings.	SO3.3		3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11, 3.12	
PO 1,2,3,4,5,6	CO 4: Students will be able	SO4.1		Unit-4.0 : Pneumatics and hydraulics	
7,8,9,10,11,12	to design shafts based on	SO4.2		4.1,	
PSO1,2,3,4,	strength, rigidity and critical speed.	SO4.3		4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.11, 4.12	
PO 1,2,3,4,5,6	CO 5: Students will be able to	SO5.1		Unit 5.0 Control System	
7,8,9,10,11,12	design different types of rigid	SO5.2		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12	
PSO1,2,3,4,	and flexible coupling.	SO5.3			

Semester-V

CourseCode:	PCC-ME-303
CourseTitle:	Measurement and Metrology
Pre-requisite:	Student should have basic knowledge of Geometry, Geometrical Shapes, basic knowledge of Computer, Mouse and keyboard use, navigating menus and dialogs, managing files and directories, etc.

Rationale: The rationale of measurement and metrology lies in ensuring precision, accuracy, and reliability across various fields. It is crucial for quality control, scientific research, safety, innovation, and international standards. Measurement and metrology contribute to efficiency, standardization, and progress in technology and society.

Course Out comes:

PCC-ME-303 .1: Student gain a comprehensive understanding of fundamental measurement principles, including precision, accuracy, and units of measurement.

PCC-ME-303 .2 student understood the suitable instrument for measurement of temperature, pressure and flow

PCC-ME-303 .3:Learn techniques and methodologies in metrology for calibration, inspection, and quality control purposes

PCC-ME-303 .4: Understood the different equipment for measurement of various mechanical properties.

PCC-ME-303 .5: Student get the knowledge about Electrical measurement and various measuring instrument related to it

Scheme of studies:

Board of					Scher	ne of studi	es (Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	303	Measurement and Metrology	1	4	1	1	7	3

 Legend:
 Cl:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)andTutorial (T)andothers),

 Ll:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop,fieldorothe rlocationsusingdifferentinstructional strategies)

 SW:SessionalWork(includesassignment,seminar,miniprojectetc.),

 SL:SelfLearning,

 C: Credits.

Note:

SW&SLhastobeplannedandperformedunderthecontinuousguidanceandfeedbackofteachertoe nsureoutcomeof Learning.

Scheme of Assessment:

						Schen	ne of Assessment	(Marks)		
Doord of Study	Course				Progressi	ve Assessm	nent(PRA)		End Semester Assessment	Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5number 3 marks each (CA)	Class Test2 (2bestout of3) 10 marksea ch(CT)	Semina r one (SA)	Class Activity any one (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
PCC	PCC- ME- 303	Measu rement and Metrol ogy	15	20	5	5	5	50	50	100

Practical

Board of	Couse	Course Title	Scheme	Scheme of Assessment (Marks)					
Study	Code		6				End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)	
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)			
PPC	PCC- ME- 303-L	Manufact uring Practice Worksho p lab	35	10	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). Asthecourseprogresses, students should show case their mastery of Session Outcomes (SOs), culminating int heoverallachievement of Course Outcomes (COs) upon the course's conclusion.

PCC-ME-303 .1: Student gain a comprehensive understanding of fundamental measurement principles, including precision, accuracy, and units of measurement.

Approximate Hours						
Item	AppX Hrs					
Cl	13					
LI	06					
SW	02					
SL	02					
Total	23					

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction	Self-Learning (SL)
		(CI)	
SO1.1 Develop a	Unit-1.0 Introduction to	Unit-1.0 Introduction to	1What are the Basic element
fundamental	Measurement System	Measurement System	of measurement system
understanding of	1.1Measure the dimensions of	Definition-basic	
measurement concepts,	standard objects using vernier	principles of	2.What are the different
including precision,	calipers and micrometers	measurement	technique used for the
accuracy, and the		measurement systems	measurement of
importance of	Demonstrate the use of a	Generalized	displacement.
standardized units.	ruler and tape measure for basic	configuration and functional	
SO1.2. Understand the	length measurements.	description of measuring	
importance of instrument		instruments.	
calibration and gain	Use a dial gauge to measure	Static performance	
practical knowledge of	linear displacements.	characteristics.	
calibration procedures.		Dynamic performance	
SO1.3. Apply		characteristics.	
measurement principles to		Errors in measurement.	
real-world scenarios,		Sources of error	
emphasizing hands-on		Classification and	
experience and problem-		methods to eliminate	
solving skills		errors	
SO1.4. Apply		Measurement of	
displacement		Displacement:	
measurement techniques		Variable resistance-	
to engineering scenarios,		linear motion potentiometer.	
including structural health		Variable inductance	
monitoring, robotics, and		LVTD	
mechanical systems.		variable capacitance	
SO1.5. Familiarize			

	•	0		
oneself with different		1.13 J	photo-electric	
instruments and		trans	ducers	
techniques used for				
measuring displacement,				
such as linear variable				
differential transformers				
(LVDTs), potentiometers,				
and optical encoders.				

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-1Suggested Sessional Work (SW):

- a. Assignments:
- i. Explain the working of Potentiometer
- ii. Explain static and dynamic characteristic

PCC-ME-303 .2 student understood the suitable instrument for measurement of temperature, pressure and flow

			Approxim	nate Hours	_
			Item	Appx Hrs	
			Cl	12	
			LI	08	
			SW	03	
			SL	02	
			Total	25	
Session Outcomes	Laboratory Instruction		Classroom	Self-	
(SOs)	(LI)		Instruction	Learni	ng
			(CI)	(SL)	
SO2.1 Understand principles	Unit-2.0Measurement of	Unit-2.0	Measurement of	1.Explain the f	unction of
and techniques for	Temperature, Pressure and	-	ature, Pressure and	RTD	
measuring temperature using various instruments like thermocouples, thermistors, and infrared sensors. SO2.2 Gain proficiency in measuring pressure using devices such as pressure gauges, manometers, and transducers, considering calibration and precision. SO2.3. Learn methodologies for measuring flow rates in fluids using instruments like flow meters, orifices, and venturis, with an emphasis on accuracy and applicability. SO2.4. Apply measurement techniques to industrial settings, considering the role of temperature, pressure, and	Flow rate. Demonstrate the application of different types of thermometers for temperature measurement. Demonstrate the application of different types ofmanometers for pressure measurement Demonstrate the application of Burdon tube pressure gauge for pressure measurement. Study of venturi meter, orifice meter and rotameter for flow measurement	Temperatu Classi principles Resist Detector (therm pyrometer Meas Classi measurem Bourd Gauge therm gauges Mcleo pressure g Flow	irement of ire fication, various of measurement ance Temperature RTD) istor, thermocouple, rs. surement of Pressure fication of pressure ent devices lon tube pressure al conductivity od and ionization	2. Explain the for thermocouple	

flow rate in processes like	2.12 magnetic flow meter.	
manufacturing, energy, and		
chemical engineering.		

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain the working of Bourdon tube pressure Gauge.
- 2. Explain the function of Mcleod and ionization pressure gauge
- 3. Write the principle and working of rot meter.

PCC-ME-303 .3: Learn techniques and methodologies in metrology for calibration, inspection, and quality control purposes

Approximate Hours			
Item	AppX Hrs		
Cl	15		
LI	06		
SW	02		
SL	03		
Total	18		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self-Learning (SL)
SO3.1Develop a clear understanding of limits and fits in engineering, including the role they play in ensuring proper assembly and functionality. SO3.2. Gain proficiency in tolerance concepts, understanding how variations in dimensions impact the functionality and interchangeability of mechanical components. SO3.3. Apply limits, fits, and tolerances in the design process, considering factors such as material properties, manufacturing processes, and functional requirements. SO3.4. Explore how limits, fits, and tolerances influence the selection of manufacturing processes	Unit-3.0 Limits, Fit and Tolerances: 3.1 Collect measurement data and calculate mean, median, and standard deviation Measure dimensions of a sample product and assess compliance with tolerances. Discuss the significance of normal distribution in metrology	Unit-3.0 Limits, Fit and Tolerances: Systems of Limits and Fits: Introduction , normal size, tolerance limits, deviations. allowance, fits and their types unilateral and bilateral tolerance system hole and shaft basis system interchangeability and selective assembly Indian Standard Institution system (BIS). International standard system 3.9. Taylor's principle, plug, ring and snap gauges Linear, Angular and Optical Measuring	 Write the short note on unilateral and bilateral tolerance system Write the short note on bevel protractor, angle slip gauges Write the short note on Slip gauges, dial test indicators

and impact the overall	Instruments
quality of produced	Slip gauges, dial test
components.	indicators
	bevel protractor, angle
	slip gauges.
	bevel protractor, angle
	slip gauges
	optical flat, N.P.L
	Flatness interferometer,
	Profile Projector

SW-3Suggested Sessional Work (SW):

a. Assignments:

- 1. What is a gauge? Explain the working of Go and No-Go gauge for hole and shaft
- 2. What is metrology? What are different types of measurement standards?

PCC-ME-303 .4: Understood the different equipment for measurement of various mechanical properties.

			Approximate Hours		
		Г	Item AppX		
			Cl	14	
			LI	06	
			SW	02	
			SL	02	
			Total	24	
Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self-	Learning (SL)	
SO4.1 Grasp fundamental	Unit-4.0 Mechanical	Unit-4.0 Mechanical	1.Explain th	ne following	
concepts such as	Measurements and Equipment	Measurements and	a. Vernie	r Caliper	
precision, accuracy, and error analysis in mechanical measurements. SO4.2. Proficiently use a range of mechanical measurement instruments for precise and accurate readings SO4.3. Apply mechanical measurement techniques to address engineering challenges in diverse industries.	Explore non-contact measurement methods such as laser scanning or optical measurement systems. Use a Coordinate Measuring Machine (CMM) for three-dimensional measurement Discuss the application of metrology in 3D printing and additive manufacturing	Equipment 4.1-Dimensional metrology. Vernier Caliper Micrometers LVDT Form metrology – form tester, surface profiler. CMM 3D scanning Surface metrology Optical microscopes Laser scanning microscopes. 4.11Electron microscopy (SEM/TEM) X-ray microscopy, Raman spectroscopy Tool wear, workpiece quality Process metrology.	b. Micron c. LVDT 2. write shor a. 3D scan b. Laser s microscopes	neters t note on ning canning	

SW-4Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain the following
 - a. Electron microscopy (SEM/TEM)
 - b. X-ray microscopy, Raman spectroscopy
- 2. Write short note on Process metrology.

PCC-ME-303 .5: Student get the knowledge about Electrical measurement and various measuring instrument related to it

Approximate Hours				
ltem	Appx Hrs			
Cl	09			
LI	04			
SW	02			
SL	02			
Total	17			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self-Learning (SL)
SO5.1. Grasp fundamental concepts related to electrical measurements, including voltage, current, resistance, and power. SO5.2. Proficiently use electrical measurement instruments such as voltmeters, ammeters, multimeters, and oscilloscopes. SO5.3. Apply electrical measurement techniques to solve engineering problems, especially in the design, analysis, and troubleshooting of electrical circuits. SO5.4. Explore the integration of electrical measurement instruments into control systems for automation and monitoring.	Unit 5 Electrical Measurements and Instruments Demonstrate different type of Transducers such as strain gages, displacement transducers. Demonstrate Interfacing transducers to electronics control and measuring system.	Unit 5 Electrical Measurements and Instruments Signal generators and analysis. Wave analyzer, Spectrum analyzer. Frequency counters – measurement errors. Extending the frequency range. Transducers – types, strain gages, displacement transducers. Digital data acquisition system. Interfacing transducers to electronics control and measuring system. Isolation amplifier. 5.9Computer controlled test system	 What do you mean by transfer function? Explain Write differences between open loop and close loop control system.

SW-5Suggested Sessional Work (SW):

a. Assignments:

- **1.** Explain Wave analyzer, Spectrum analyzer.
- **2.** Explain the Digital data acquisition system.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Lecture (LI)	Sessional Work (SW)	Self- Learni ng (SI)	Total hour (Cl+Ll+SW+SI)
PCC-ME-303.1 Student gain a comprehensive understanding of fundamental measurement principles, including precision, accuracy, and units of measurement.	13	06	02	02	23
PCC-ME-303.2: student understood the suitable instrument for measurement of temperature, pressure and flow.	12	08	03	02	25
PCC-ME-303.3: Learn techniques and methodologies in metrology for calibration, inspection, and quality control purposes.	15	06	02	03	18
PCC-ME-303.4: Understood the different equipment for measurement of various mechanical properties.	14	06	02	02	27
PCC-ME-303.5: Student get the knowledge about Electrical measurement and various measuring instrument related to it.	09	04	02	02	17
Total Hours	63	30	11	11	110

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	Α	Marks
CO-1	PCC-ME-303.1 Student gain a comprehensive understanding of fundamental measurement principles, including precision, accuracy, and units of measurement.	03	01	01	05
CO-2	PCC-ME-303.2: student understood the suitable instrument for measurement of temperature, pressure and flow.	02	06	02	10
CO-3	PCC-ME-303.3: Learn techniques and methodologies in metrology for calibration, inspection, and quality control purposes	03	07	05	15
CO-4	PCC-ME-303.4: Understood the different equipment for measurement of various mechanical properties.	-	10	05	15
CO-5	PCC-ME-303.5: Student get the knowledge about Electrical measurement and various measuring instrument related to it.	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U:Understand, A:Apply

TheendofsemesterassessmentforMeasurement and Metrologywillbeheldwithwrittenexaminationof50marks

 ${\it Note}. Detailed {\it Assessment rubric need to be prepared by the course wise teachers for above tasks}.$

 ${\it Teachers can also design different tasks a sperre quirement, for ends emester as sessment.}$

Suggested Instructional/Implementation Strategies:

- **3.** Improved Lecture
- 4. Tutorial
- **5.** Case Method
- 6. Group Discussion
- 7. Role Play
- 8. Visit to cement plant

- 9. Demonstration
- **10.** ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Fac ebook,Twitter,Whatsapp,Mobile,Onlinesources)
- **11.** Brainstorming

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition& Year
1	Measurement Systems	E.O Doebelinand Dhanesh Manik	McgrawHill	2017
2	Metrology & Measurement	Bewoor& Kulkarni,	ТМН	2009
3	Engineering Metrology and Instrumentation	R. K Rajpoot	S.K Kateria and Sons	2013
4	Engineering Metrology	I C Gupta	Dhanpat Rai	2018
5	Metrology And Measurements	A Anderson And Karthick Ysv	Air Walk	2016
5		TrainingN	/lanual	
6		TrainingN	/lanual	
7	Dept.ofN	Lecturenotep Aechanical Engineer	providedby ring,AKSUniversity,S	Satna.

- **Curriculum Development Team** 1. Mr.S.S. Parihar, Head of Deptt. Mech. Engg., AKSUniversity
 - 2. Mr. Alok Ranjan Tiwari, Assistant Professor, Dept. of Mechanichal Engg.
 - 3. Mr Deepak Pandey ,AssistantProfessor,Dept.ofMechanichalEngg
 - 4. Mr., Keshav Pratap Singh, AssistantProfessor, Dept. of MechanichalEngg
 - 5. Mr.Amar Soni, AssistantProfessor, Deptof Mechanichal Engg
 - 6. Mr K.P Tiwari , AssistantProfessor,Dept.ofMechanichalEngg
 - 7. Mr. Ketan Agrawal, AssistantProfessor, Dept. of Mechanichal Engg
 - 8. Mr. K.C. Kori, Faculty, AssistantProfessor, Dept. of Mechanichal Engg
 - 9. Mr,Lokesh Agrawal,AssistantProfessor,Dept.ofMechanichalEngg
 - 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
 - 11. Mr. Rishi Kumar Sharma, AssistantProfessor, Dept. of Mechanichal Engg
 - 12. Mr. Naveen Kumar Soni, AssistantProfessor, Dept.ofMechanichalEngg

Cos,POsandPSOsMapping

CourseTitle:B.Tech Mechanical Engineering

CourseCode: PCC-ME-303

CourseTitle:Engineering Graphics and Design

					Рі	rogran	n Outco	omes					F	Program Spe	cific Outcor	ne
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engine eringkn owledg e	lema naly	Design/ develop mentofs olutions	ctinve	Moden toolusa ge	The engi neer ands ocie ty	Environ mentan dsustai nability :	Ethics	Indivi duala ndtea mwor k:	Com munic ation:	Project manage mentan dfinanc e:	Life- longlear ning	Mechanical System Design and Analysis	Manufactu ring Processes and Automatio n	Manufacturi ng Processes Computa and Automation Modeling and Simulatio n.	Computation Pr al Modeling In and ovati an simulation. De on and t Develop t ment
PCC-ME-303.1 Student gain a comprehensive understanding of fundamental measurement principles, including precision, accuracy, and units of measurement.	1	1	2	2	2	2	3	1	2	2	1	2	2	2	1	-
PCC-ME-303.2: student understood the suitable instrument for measurement of temperature, pressure and flow.	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1
PCC-ME-303.3: Learn techniques and methodologies in metrology for calibration, inspection, and quality control purposes	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2
PCC-ME-303.4: Understood the different equipment for measurement of various mechanical properties.	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	² 439

PCC-ME-303.5: Student get the knowledge about Electrical measurement and various measuring instrument related to it.	1	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Legend:1–Low,2–Medium,3–High

Course Curriculum Map:

POs& PSOs No.	Cos No .& Titles	SOs No.	Laboratory Instruction	Classroom Instruction (CI)	Self-Learning (SL)
PO1,2,3,4,5,6	CO1:PCC-ME-303.1 Student gain a comprehensive understanding of	SO1.1	(LI)	Unit-1.0Introduction to Measurement System:	
7,8,9,10,11,12	fundamental measurement principles, including precision, accuracy, and units of measurement.	SO1.2 SO1.3		System	
PSO1,2,3,4,5		SO1.4		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10,1 .11,1.12,1.1.13	
		SO1.5			
PO1,2,3,4,5,6	CO 2:PCC-ME-303.2: student understood the suitable instrument for measurement of temperature, pressure and flow.	SO2.1		Unit-2Measurement of Temperature, Pressure and Flow rate.	
7,8,9,10,11,12		SO2.2			
		SO2.3		2.1,2.2,2.3,2.4,2.5,2.6,2.7,	
PSO1,2,3,4,5		SO2.4		2.8,2.9,2.10,2.11,2.12	
		SO2.5			As mentioned in
PO1,2,3,4,5,6	CO3 : PCC-ME-303.3: Learn techniques and	SO3.1		UNIT 3 Limits, Fit and Tolerances:	page number
7,8,9,10,11,12	methodologies in metrology for calibration,	SO3.2			2to6
	inspection, and quality control purposes	SO3.3		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8.3.9,3.10,3	
PSO1,2,3,4,5		SO3.4		.11,3.12,3.13,3.14,3.15	
		SO3.5			
PO1,2,3,4,5,6	CO 4: PCC-ME-303.4: Understood the	SO4.1		UNIT 4 Mechanical Measurements and	
7,8,9,10,11,12	different equipment for measurement of	SO4.2		Equipment:	
	various mechanical properties.	SO4.3		4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10,4.	
PSO1,2,3,4,5		SO4.4		11,4.12,4.13,4.14	
		SO4.5			
PO1,2,3,4,5,6	CO 5: PCC-ME-303.5: Student get the	SO5.1		Unit5Electrical Measurements and	
7,8,9,10,11,12	knowledge about Electrical measurement	SO5.2		Instruments:	
	and various measuring instrument related	SO5.3			
PSO1,2,3,4,5	to it.	SO5.4 SO5.5		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	
		565.5			

Semester-V

Course Code:	PCC-ME 302			
Course Title:	Mechatronics			
Pre-requisite:	Students should have basic knowledge of mathematics (geometry, trigonometry, and calculus), physics, computer science (especially computer-aided design), and mechanical drawing and shop.			
Rationale:	The rationale for studying mechatronics lies in its interdisciplinary nature, combining mechanical, electrical, and computer engineering. It equips students to design, develop, and operate advanced systems, fostering innovation in robotics, automation, and smart technologies essential for today's industrial and technological evolution.			

Course Outcomes:

ME 302.1: Identify key elements of mechatronics and its representation by block diagram.

ME 302.2: Understand the concept of sensors and use of interfacing systems.

ME 302.3: Understand the concept and applications of different actuators

ME 302.4: Illustrate various applications of mechatronic systems.

ME 302.5: Develop PLC ladder programming and implementation in real life problem.

Scheme of Studies:

Board of					Scher	ne of studi	es (Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	ME 302	Mechatronics	4	2	1	1	8	5

Legend:CI: Class room Instruction (Includes different instructional strategies i.e. Lecture(L) and Tutorial
(T)andothers),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field
or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Scheme of Assessment(Marks)							
				End Semester Assessment	Total Marks						
Board of Study	Couse Code	Course Title	Class/Ho meAssign ment5nu mber	ClassTest 2 (2bestout of3) 10marks	Seminar one	Class Activity any one	Class Attendance	Total Marks			
			3mar ksea ch (CA)	each(CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)	
PCC	ME 302	Mechatronics	15	20	5	5	5	50	50	100	

Practical

Board of	Couse	Course Title	Scheme	e of Assessment (Mark	as)			
Study	Code		Progressive Asse	essment (PRA)			End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)		
PCC	ME 302- L	Mechatronic s - Lab	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ME 302.1: Identify key elements of mechatronics and its representation by block diagram.

A	pproximate Hours
Item	AppX Hrs
Cl	09
LI	6
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (Cl)	Self Learning (SL)
()	(LI)	(
 SO1. 1Define key mechatronics elements and applications across diverse sectors. SO1.2 Construct and analyze block diagrams representing mechatronic systems, integrating transfer function concepts. SO1.3 Apply reduction methods and numerical treatments for complex system block diagrams. 		 and its block diagram representation: 1.1 Key elements of mechatronics 1.2 Applications of Mechatronics domestic, industrial etc. 1.3 Representation of mechatronic system in block diagram 1.4 transfer function for each element of mechatronic system 	1. Reduction methods and its numerical treatment for represented block diagram.

SW-1Suggested Sessional Work (SW):

a. Assignments:

i. Applications of Mechatronics

ME 302.2: Understand the concept of sensors and use of interfacing Systems.

Approximate Hours

Item	AppX Hrs		
Cl	14		
LI	6		
SW	1		
SL	2		
Total	17		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
 O2. 1 Select sensor based on specific needs and performance metrics for liverse measurements. O2.2 Evaluate actuators for various pplications considering performance nd safety. O2.3 Differentiate mechano-electrical ctuators by principles and selection riteria. O2.4Master sensor selection aligned with displacement, temperature, cceleration, force/pressure needs. O2.5 Apply actuator principles to hoose optimal types for operational equirements and safety 	2.1 Stepper motor interface 2.2 Traffic light interface. 2.3 Study of sensors for automotives	 Unit-2.0 Selection of Sensors & Actuators 2.1 Introduction of sensors 2.2 Criteria for selection of sensors based on requirements 2.3 principle of measurement 2.4 sensing method 2.5 performance chart etc. (Displacement, temperature, acceleration, force/pressure) based on static and dynamic characteristics. 2.6 Introduction of Actuators 2.7 Selection of actuators based on principle of operation 2.8 performance characteristics 2.9 maximum loading conditions, safety etc 2.10 . Principle and selection of mechano-electrical actuators 2.11 DC motors 2.12 Stepper Motors 2.13 Tutorial 1 	1. Solenoid Actuators 2. Servo Motors

SW-2 Suggested Sessional Work (SW):

- a. Assignments:
- 1. BLDC.

ME 302.3: Understand the concept and applications of different actuators

Approximate Hours						
Item	AppX Hrs					
Cl	12					
LI	6					
SW	2					
SL	1					
Total	15					

Session Outcomes	Laboratory	Classroom Instruction	Self			
(SOs)	Instruction	(CI)	Learning			
	(LI)		(SL)			
SO3.1 Understand bit accuracy/width		Unit-3.0 : Data Acquisition, Signal	1. Circuit			
and sampling speed in relation to	control of DC	Conditioning & Microcontroller	diagrams for simple			
precision and rate of signal capture.	motor.	System Theory	cases.			
	3.2 Study of	3.1 Concept of Bit accuracy/width				
SO3.2 Grasp sampling theorem,	various types of	5.1 Concept of <i>Dit</i> accuracy, width				
aliasing, and the Nyquist criteria for	transducers.	3.2 Concept of Sampling speed				
accurate signal reconstruction.	3.3 A/D and	5.2 Concept of Sampling Speed				
	D/A	3.3 Concept of sampling theorem,				
SO3.3 Comprehend ADC using	conversion.	aliasing				
successive approximation and sample		e				
and hold circuitry.		3.4 Nyquist criteria				
SO3.4 Explore DAC functionality using		3.5 ADC (Analog to Digital				
R-2R circuits, focusing on resolution		Convertor) Successive				
in digital-to-analog conversion.		approximation method and sample				
		and hold circuitry				
SO3.5 Learn signal filters (low-pass,		2 C DAC (Disitely Angles				
high-pass, band-pass) through		3.6 DAC (Digital to Analog				
simplified circuit diagrams for		Convertor) R-2R circuit				
practical implementation.		3.7 DAC resolution				
		5.7 Dire resolution				
		3.8 Signal Filters: Low pass				
		6 ··· ·· · · · · · ·				
		3.9 High Pass and Band Pass				
		3.10 Tutorial 1				
		3.11 Tutorial 2				
		3.12 Tutorial 3				

SW-3Suggested Sessional Work (SW):

a. Assignments:

i. Concept of sampling theorem, aliasing

ME 302.4: Illustrate various applications of mechatronic systems.

Approximate Hours

Item	Appx Hrs
Cl	10
LI	6
SW	2
SL	2
Total	14

Session Outcomes (SOs)	Laboratory Instruction	Classroom Instruction (Cl)	Self Learning
	(LI)		(SL)
 SO4. 1 Identify valves, actuators, and auxiliary elements in hydraulic and pneumatic systems, using ISO symbols. SO4. 2 Design circuits with up to two cylinders in pneumatic, electropneumatic, and hydraulic systems. SO4. 3 Apply electro hydraulic principles to create integrated circuit designs. SO4. 4 Select and apply components for specific applications in hydraulic and pneumatic systems. SO4. 5 Create functional circuit designs, integrating diverse components and ISO symbols. 	4.1 Study of hydraulic, pneumatic and electro- pneumatic circuits. 4.2 Modelling	 Unit-4.0 : Pneumatics and hydraulics 4.1 Introduction of Hydraulic devices 4.2 Introduction of pneumatic devices 4.3 Different types of valves 4.4 Actuators and auxiliary elements in Pneumatics 4.5 Actuators and auxiliary elements in hydraulics 4.6 applications and use of ISO symbols 4.7 Synthesis and design of circuits (up to 2 cylinders) 4.8 electro- pneumatics and hydraulics 4.9 Tutorial 1 4.10 Tutorial 2 	1. electro hydraulics

ME 302.5 Develop PLC ladder programming and implementation in reallife problem.

.

realine problem.	
Item	AppX Hrs
Cl	15
LI	0
SW	1
SL	1
Total	17

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
Response), analyzing stability with Nyquist and Bode diagrams. SO5. 2 Apply P, I, D actions in control	5.1 Study of PLC and its applications. 5.2 Study of image	Unit 5.0 Control System 5.1 Control system design and analysis by Root Locus Method 5.2 Control system Design by Frequency response method 5.3 stability margin 5.4 Nyquist diagram	1. Latching, Timers, Counter 2. Practical Examples of Ladder Programming
SO5. 3 Understand transient response metrics (overshoot, rise time, delay time, steady-state error), practice PID tuning methods like manual and Zigler.		5.5 Bode diagram P5.6 I and D control actions5.7 P, PI, PD and PID control systems	
SO5.4 Learn discrete control systems and PLC theory: architecture, ladder logic, timers, counters, with practical programming examples. SO5. 5 Gain expertise in designing		 5.8 Transient response:- Percentage overshoot 5.9 Rise time, Delay time 5.10 Steady state error, PID tuning (manual), Zigler Method. 	
control systems and PLC programming for diverse logic functions.		 5.11 Discrete Control System PLC (Programming Logic Control) Theory 5.12 Introduction to PLC 5.13 Introduction to Architecture 5.14 Ladder Logic programming for different types of logic gates 	
		5.15 Tutorial 1	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

i. P, PI, PD and PID control systems

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
ME 302.1: Identify key elements of mechatronics and its representation by block diagram.	9	2	1	12
ME 302.2: Understand the concept of sensors and use of interfacing systems.	14	1	2	17
ME 302.3: Understand the concept and applications of different actuators	12	2	1	15
ME 302.4: Illustrate various applications of mechatronic systems.	10	2	2	14
ME 302.5 Develop PLC ladder programming and implementation in reallife problem.	15	1	1	17
Total Hours	60	8	7	75

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Introduction of Mechatronics and its block diagram representation	03	01	01	05
CO-2	Selection of Sensors & Actuators	02	06	02	10
CO-3	Data Acquisition, Signal Conditioning & Microcontroller System Theory	03	07	05	15
CO-4	Pneumatics and hydraulics	-	10	05	15
CO-5	03	02	-	05	
	Total			13	50

Legend: R:Remember, U:Understand, A:Apply

The end of semester assessment for Mechatronics it will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course-wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role-play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Face book, Twitter, What-app, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a)	Books:		
S. No.	Title	Author	Publisher
1	Mechatronics	Kenji Uchino and Jayne R. Giniewicz	Marcel Dekker, Inc
2	Applied Mechatronics	A. Smaili and F. Mrad	OXFORD university press
3	Introduction to Mechatronics and Measurement Systems	Alciatore and Histand	Tata McGraw-Hill
4	Mechatronics System Design	Shetty and Kolk	Cengage Learning, India Edition

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: B.Tech. Mechanical

Course Code : ME 302

Course Title: Mechatronics

		ProgramOutcomes								ProgramSpecificOutcome						
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	P011	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engine ering knowle dge	Prob lem b anal ysis	Desig n/dev elopm entof soluti ons	Condu ctinve stigati ons of compl ex probl ems	Mode rn Tool usage	Thee ngin eera ndso ciety	Environ ment and sustain ability:	Ethics	Indivi dual andte amw ork:	Comm unicat ion:	Project manage ment and finance:	Life- longlear ning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
C01 Identify key elements of mechatronics and its representation by block diagram.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO 2 : Understand the concept of sensors and use of interfacing systems.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO3 : Understand the concept and applications of different actuators	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO4: Illustrate various applications of mechatronic systems.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO5: Develop PLC ladder programming and implementation in real life problem.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Course Curriculum Map:

Pos &PSOs No.	Cos No. &Titles	SOs No.	Laboratory Instruction(L I)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	CO-1: Identify key elements of mechatronics and its	SO1.1		Unit-1.0 Introduction of Mechatronics and its block diagram representation	
7,8,9,10,11,12	representation by block	SO1.2			
PSO1,2,3,4,	diagram.	SO1.3		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
PO 1,2,3,4,5,6	CO 2 : Understand the concept of sensors and use of interfacing	SO2.1		Unit-2.0 Selection of Sensors & Actuators	
7,8,9,10,11,12	Systems.	SO2.2			
		SO2.3		2.1,2.2,2.3,2.4,2.5,2.6,2.7,	
PSO1,2,3,4,		SO2.4		2.8,2.9,2.10,2.11,2.12,2.13,2.13,2.14	
		SO2.5			As mentioned in
PO 1,2,3,4,5,6	CO3: Understand the concept	SO3.1		Unit-3.0 : Data Acquisition, Signal	Page number
7,8,9,10,11,12	and applications of different	SO3.2		Conditioning & Microcontroller System	2 to 6
	actuators	SO3.3		3.1,	
PSO1,2,3,4,		SO3.4		3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9,3.10,3.11, 3.12	
		SO3.5			
PO 1,2,3,4,5,6	CO 4: Illustrate various	SO4.1		Unit-4.0 : Pneumatics and hydraulics	
7,8,9,10,11,12	applications of	SO4.2		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10	
	mechatronic systems.	SO4.3		1,2,3,,3,0,7,0,3,10	
PSO1,2,3,4,		SO4.4 SO4.5			
PO 1,2,3,4,5,6	CO 5: Dovelon BLC ladder	SO4.3		Unit 5.0 Control System	
7,8,9,10,11,12	CO 5: Develop PLC ladder programming and	SO5.1 SO5.2		Sint 3.5 Control System	
	implementation in real life	SO5.2		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5.11,5.12	
PSO1,2,3,4,	problem.	SO5.4		,5.13,5.14,5.15	
		SO5.5			
					45

CourseCode:	HSMC302
CourseTitle:	OperationsResearch
Pre-requisite:	Studentshould have basic knowledge of mathematics and business operations.
Rationale:	Executives are required to take prompt and accurate decisions, if decision is taken merely on the basis of experience and intuition that may not be fruitful and accurate, but decision taken on the basis of data is more accurate. Operation Research provides quantitative basis or data to take accurate decisions. The tools and models of operations research provide us optimal solutionsofthebusinessoperationsproblems;hencethestudyofoperations

researchisveryimportanttomanagementstudents.

CourseOutcomes:

HSMC302.1: The student will demonstrate the process of problems olving in Operations Research.

- **HSMC 302.2:** The student will apply the linear programming problem method to solve the various business management problems quantitatively.
- **HSMC302.3:**Thestudentwillusethetransportation and assignment problems quantitatively.
- **HSMC302.4:**Thestudent will applynetwork analysistechniqueslike PERT andCPMto solve he scheduling of activities and resource allocation related problems.
- **HSMC302.5:**Thestudentwillcalculatetheoptimumvalueofgameandoptimumreplacement period using game theory and replacement theory respectively.

SchemeofStudies:

Code					Schemeofstudies(HoursperWeek)			TotalCredits
	Course Code	CourseTitle	CI	LI	SW	SL	TotalStudyHours (CI+LI+SW+SL)	(C)
Program (HSMC)	HSMC 302	Operations Research	3	0	1	1	5	3

 Legend:
 CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)andTutorial (T)andothers),

 LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies)

 SW:SessionalWork(includesassignment,seminar,mini projectetc.),

 SL:SelfLearning,

 C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

SchemeofAssessment:

Theory

				Schemeof Assessment(Marks)						
				Ρ	rogressive	Assessmen	t(PRA)		EndSemeste rAssessment	Total Marks
Boardof Study	Couse Code	CourseTitle	Class/Home Assignment 5number	2hestout	Seminar one	ClassAc tivityan yone	ClassAttend ance	Total Marks		
			3mar ksea ch (CA)	seach (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
(HSMC)	HSMC 302	OperationsRes earch	15	20	5	5	5	50	50	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including ClassroomInstruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and SelfLearning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

HSMC302.1: ThestudentwilldemonstratetheprocessofproblemsolvinginOperationsResearch.

Appr	oximateHours
Item	AppXHrs
CI	07
LI	0
SW	1
SL	1
Total	9

SessionOutcomes	Laboratory	ClassroomInstruction	SelfLearning
(SOs)	Instruction	(CI)	(SL)
 SO1.1Studentwillexplainabout the development of Operations Research SO1.2 Studentwillexplainabout the characteristics and scope of Operations Research SO1.3 Student will demonstrate theprocessofoperations research to problem solving. SO1.4Studentwillclassify different models of operations research. 	(LI)	Unit-1 : Introduction to OperationsResearch(OR) MeaningandDefinitionsof Operations Research. HistoricalDevelopmentof Operations Research. DevelopmentofOperations Research in India. CharacteristicsofOperations Research ScopeofOperations Research. Scope of Operations Research. Scope of Operations Research. OperationsResearch Methodology.	 i. Quantitative approach to decision making. ii. Quantitative Analysis and Computer-Based Information System

SW-1SuggestedSessionalWork(SW):

a) Assignments:

i. Definitions, Historical Development, and Characteristics of OR. ii. Process and Models of OR.

b) MiniProject:

i. Preparea flowchartofprocessofOR toproblemsolvingina chartpaper.

c) OtherActivities(Specify):

 $HSMC302.2: The student\ will apply the linear programming problem method to solve the various business$

management problems quantitatively.

ApproximateHours				
Item	AppxHrs			
CI	10			
LI	0			
SW	2			
SL	2			
Total	14			

SessionOutcomes (SOs)	Laboratory Instruction (LI)	ClassroomInstruction (CI)	SelfLearning (SL)
SO2.1 StudentwillexplainabouttheConcept, Assumptions and Requirements of LPP.			Practice:- SolutionofLPP by Graphical Method
SO2.2StudentswillformulatetheLPP		Linear Programming.	Practice:-
SO2.3StudentwillsolvetheLPPbyGraphical Method		Programming. Formulation of two variable	SolutionofLPP by Simplex Method
SO2.4StudentwillSolvetheLPPbySimplex Method.		Maximization type Linear ProgrammingProblem	
SO2.5 Student will solve the LPP by Big-M and Two phase methods		Formulation of two variable Minimization type Linear ProgrammingProblem Formulation of more than two variables Maximization type Linear	
		Programming Problem. Formulation of more than two variables Minimization type Linear Programming Problem	

Formulation of Miscellaneous LPPS
Solution of Maximization Type LPP
by Graphical Method
Solution of Minimization Type LPP by
Graphical Method
Solution of LPP by Graphical Method:
Special Cases- Multiple Optimal
Solutions.

SW-2SuggestedSessionalWork(SW):

- a. Assignments:
 - i. FormulatetheLPP(Problemwill begivenbythesubjectteacher)
 - ii. SolvetheLPPbyGraphicalandSimplexMethods(Problemwillbegivenbythesubjectteacher)

b. MiniProject:

c. OtherActivities(Specify):

HSMC 302.3: The studentwill use the transportation and assignment techniques to solve the transportation and assignment problems quantitatively.

ApproximateHours			
Item	AppxHrs		
CI	10		
LI	0		
SW	2		
SL	2		
Total	14		

SessionOutcomes (SOs)	Laboratory Instruction (LI)	ClassroomInstruction (CI)	SelfLearning (SL)
SO3.1Studentwillformulatethe transportation problem	•	Unit-3:Transportationand Assignment Problem	
SO3.2 Studentwillsolvethe transportation problem			i) Practice- Solution of transportation Problems

SO3.3Studentwillformulatethe assignment problem SO3.4Studentwillsolvetheassignm ent problem.	Vogel's Approximation Method Ass	Practice- ution of ignment blems.
---	----------------------------------	--

SW-3SuggestedSessionalWork (SW):

- a. Assignments: i. Formulation and solution of the transportation problem ii. Formulation and solution of the assignment problem
- **b. MiniProject:**MakeflowchartofthesolutionofaTransportationandAssignment Problems in a chart paper.
- c. OtherActivities(Specify):

HSMC302.4: The student will apply network analysis techniques like PERT and CPM to solve the scheduling of

activities and resource allocation related problems.

ApproximateHours				
Item	AppxHrs			
CI	10			
LI	0			
SW	2			
SL	2			
Total	14			

SessionOutcomes (SOs)	Laboratory Instruction	ClassroomInstruction (CI)	SelfLearning (SL)
SessionOutcomes (SOs)SO4.1Studentwillbeabletodescribe the network construction rules.SO4.2 Studentwillbeabletousethe CPM in project management.SO4.3Studentwillbeabletousethe PERT in project management.SO4.4 Student will find out the shortest route and longest routesby dynamic programming.	Laboratory Instruction (LI)	(CI) Unit- 4: PERT and CPM, Dynamic Programming, and Simulation. Introduction to NetworkAnalysis RulesofNetworkConstruction Redundancy in precedence relationship: Location and removal NetworkConstruction Calculation of Earliest Start and Einigh Times and Latest Start and	(SL) i.Practice:- Network construction and determination of critical path ii. Practice:- Calculation of Earliest start and
SO4.5 Studentwillexplainaboutthe simulation and process of simulation.		Time-Cost Trade-off:Crashing ResourceLeveling ResourceAllocation	Finish Times as well as Latest Startingand Finish time ii.Practice-: PERT- Calculation of Expectedtimeand Variances.

SW-4SuggestedSessionalWork(SW):

a. Assignments:

i) Network Construction, CriticalPathDetermination, CalculationofEarliestandlatest starting and finish times, Calculation of float times. Resource analysis and allocation.
ii) PERT-CalculationofExpectedtimeandVariances

b. MiniProject:Constructionofa network and determination of critical path and project completion time for a real project (Project will be detailed by a subject teacher)

c. OtherActivities(Specify):

HSMC302.5:Thestudentwillcalculatetheoptimumvalueofgameandoptimumreplacementperiod using game theory and replacement theory respectively.

ApproximateHours		
Item	AppxHrs	
CI	8	
LI	0	
SW	2	
SL	2	
Total	12	

SessionOutcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	SelfLearning (SL)
 SO5.1 Student will be able to applythe game theory in the competitive business world as a strategic tool. SO5.2 Student will be able to determine the optimal replacement time which will help in the formulation of replacement policy SO5.3 Student will describe the general structure of aqueuing system. 		Unit 5: Game Theory, Replacement Theoryand Queuing Theory. Meaning of a Two Person Game, N Person Game, Pure Strategy Game, Mixed Strategy Game, Zero Sum Game, Non- Zero Sum Game, Fair Game. Solution of a game whensaddle point exists. Solution of a 2x2 game when saddle point does not exists. Solution of a m x n game with dominance rule Solution of a m x n game with joint (proportional) dominance rule Solution of a 2 x n or m x 2 game with graphical method Solution of a m x n or m x n game with simplex method Introduction and Scope of Replacement Theory in Management.	i.Practice:- Formulation and solution of a game. ii. Practice:- Solution of a replacement problem.

SW-5SuggestedSessionalWork(SW):

- a. Assignments:
 - i) FormulationandSolutionofagametheoryproblems
 - ii) Solutionofreplacementtheoryproblems
- **b. MiniProject:**i)Makeaflowchartofasolutiontoagametheoryproblem.
- c. OtherActivities(Specify):

BriefofHourssuggestedfortheCourseOutcome

Course Outcomes	Class Lecture (CI)	Sessional Work (SW)	Self Learning (SI)	Total hour (CI+SW+SI)
HSMC302.1:Thestudentwilldemonstrate the processof problemsolving in Operations Research.	7	1	1	9
HSMC 302.2: The student will apply the linear programming problem method to solve thevariousbusinessmanagementproblems quantitatively.	10	2	2	14
HSMC 302.3: The student will use the transportation and assignment techniques to solvethetransportationandassignment problemsquantitatively.	10	2	2	14
HSMC 302.4: Thestudent willapply network analysis techniques like PERT and CPM to solvetheschedulingofactivitiesandresource allocationrelatedproblems.	10	2	2	14
HSMC 302.5: The student will calculate the optimum value of game and optimum replacementperiodusinggametheoryand replacementtheoryrespectively.	8	2	2	12
TotalHours	45	9	9	63

SuggestionforEndSemesterAssessment

SuggestedSpecificationTable(ForESA)

СО	UnitTitles	Μ	arksDis	tributi	on	Total
		Ар	An	Ev	Cr	Marks
CO-1	INTRODUCTION TO OPERATIONS RESEARCH(OR)					
CO-2	LINEAR PROGRAMMING					
CO-3	TRANSPORTATIONANDASSIGNMENT PROBLEM					
CO-4	PERT AND CPM, DYNAMIC PROGRAMMING, AND SIMULATION.					
CO-5	GAME THEORY, REPLACEMENT THEORY AND QUEUING THEORY.					
	Total					50

Legend:	Ap:Apply,	An:Analyze,	Ev:Evaluate	Cr:Create
---------	-----------	-------------	--------------------	-----------

Theend of semester assessment for OperationsResearchwill beheld with written examination of 50 marks.

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

 $Teachers can also design different tasks as {\tt per requirement}, for {\tt endsemester} as {\tt sessment}.$

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Demonstration
- 7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog,Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 8. Brainstorming

SuggestedLearningResources:

	(a)Books:			
S. No.	Title	Author	Publisher	Edition& Year
1	Quantitative Techniques in Management	Vohra,N D	TMH,NewDelhi	Latest
2	ProblemsandSolutionsin Operations Research	V.K.Kapoor	SultanChandandSons, New Delhi	Latest
3	PrinciplesofOperations ResearchwithApplication to Managerial Decisions	H.M.Wagner	PHILearning	Latest
4	OperationsResearch	KantiSwarup,PK Gupta and Man Mohan	SultanChand&Sons, New Delhi	Latest
5	OperationsResearch	Heera&Gupta	S. Chand	Latest

CurriculumDevelopmentTeam

- 1. Professor(Dr.)HarshwardhanShrivastava,Dean,FacultyofManagementStudies,AKSUniversity
- 2. Dr.KausikMukherjee,HeadoftheDepartment,Dept.ofBusinessAdministration
- 3. Dr.PradeepChaurasia, AssociateProfessor,Dept.ofBusinessAdministration
- 4. Dr.ChandanSingh, AssistantProfessor, Dept. of Business Administration
- 5. Dr.PrakashKumarSen,Assistant Professor, Dept.ofBusinessAdministration
- 6. Dr.SeemaDwivedi, AssistantProfessor,Dept.ofBusinessAdministration
- 7. Mr.Pramod KumarDwivedi,AssistantProfessor,Dept.ofBusinessAdministration
- 8. Mrs.ShinuShukla,AssistantProfessor,Dept.ofBusinessAdministration
- 9. Mr.KrishnaKumarMishra,AssistantProfessor,Dept.ofBusinessAdministration
- 10. Mr.AnuragSinghParihar, TeachingAssociate, Dept.ofBusinessAdministration
- 11. Ms.KiranChhabariya, AssistantProfessor,Dept.ofBusinessAdministration

<u>Cos,POsandPSOs</u> <u>Mapping</u>

ProgrammeTitle:B.Tech.Mechanical

CourseCode:HSMC302

CourseTitle:OperationsResearch

	ProgramOutcome ProgramSpecific Outcome												
	PO1	PO2	РОЗ	PO4	PO5	PO6	PO7	PO8	PSO1	PSO2	PSO3	PSO4	
CourseOutcomes	BusinessEnv ironmentand DomainKno wledge	Critical &Analyticalthinkin g,Business Analysis,ProblemS olvingand Logical Solutions	InternationalE xposure andCross- CulturalUnder standing	SocialResponsive nessand Ethos	EffectiveB usinessCo mmunicati on	LeadershipD evelopmenta nd Synergy	R&DAp titude	Contemporary issues	Mechanical System Design and Analysis	and	Manuf ng Proi and tional Modeling and o Simulatio n.	acturi (esses a Product Innovati ation on and Develop ment	
Co1: Thestudent willdemonstrate the process of problems olving in Operations Research.	2	3	-	1	1	1	2	1	1	1	1	-	
Co2: The student willapply the linearprogramming problem method tosolvethevariousbusiness managementproblemsquantitatively.	2	3	-	1	1	1	3	1	2	2	1	-	
Co3: The student will use thetransportation and assignmenttechniques to solve the transportationand assignment problems quantitatively.	2	3	-	1	1	1	3	1	2	2	1	-	
Co4: The student will apply networkanalysis techniques like PERT andCPM to solve the scheduling ofactivitiesandresourceallocation relatedproblems.	2	3	-	1	1	1	3	1	2	2	1	-	
Co5: The student will calculate theoptimum value of game and optimumreplacementperiodusinggame theory andreplacementtheoryrespectively.	2	3	-	1	1	1	3	1	2	2	1	-	

CourseCurriculumMap:

POs&PSOs No.	COsNo.&Titles	SOs No.	Laboratory Instruction (LI)	ClassroomInstruction(CI)	Self Learning (SL)
PO1,2,3,4,5,6,7,8 PSO1,2,3,4	Co1: The student will demonstrate the process of problem solving in Operations Research.	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1:INTRODUCTIONTOOPERATIONS RESEARCH(OR) 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
PO1,2,3,4,5,6,7,8 PSO1,2,3,4	Co2: The student will apply thelinear programming problem method to solve the various business management problems quantitatively.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2LINEAR PROGRAMMING 2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9, 2.10,2.11,2.12,2.13,2.14,2.15,2.16, 2.17,2.18,2.19,2.20	
PO1,2,3,4,5,6,7,8 PSO1,2,3,4	Co3: The student will use the transportation and assignment techniques tosolvethetransportation and assignment problems quantitatively.	SO3.1 SO3.2 SO3.3 SO3.4		Unit-3:TRANSPORTATIONAND ASSIGNMENTPROBLEM 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9, 3.10,3.11,3.12,3.13,3.14,3.15,3.16	
PO1,2,3,4,5,6,7,8 PSO1,2,3,4	Co4: The student will applynetwork analysis techniques like PERT and CPM to solve the scheduling of activitiesandresourceallocation relatedproblems.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4 : PERT AND CPM, DYNAMIC PROGRAMMING,ANDSIMULATION. 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9, 4.10,4.11,4.12,4.13,4.14,4.15,4.16, 4.17	
PO1,2,3,4,5,6,7,8 PSO1,2,3,4	Co5: The student will calculate the optimum value of game andoptimum replacement period using gametheoryandreplacementtheory respectively.	SO5.1 SO5.2 SO5.3		Unit5:GAME THEORY, REPLACEMENT THEORY ANDQUEUING THEORY. 5.1,5.2,5.3,5.4,5.5, 5.6,5.7,5.8, 5.9, 5.10,5.11,5.12,5.13	

Semester-VI

Course Code:	PEC-ME06
Course Title :	Additive Manufacturing
Pre- requisite:	A fundamental understanding of materials science, engineering graphics, and basic manufacturing processes is essential. Proficiency in CAD (Computer-Aided Design) software and familiarity with 3D printing concepts are recommended. Students should possess critical thinking skills to analyze and optimize designs for additive manufacturing technologies.
Rationale: Course Outcomes:	Additive manufacturing curriculum cultivates expertise in cutting- edge 3D printing technologies. It equips students with skills essential for industry demands, fostering innovation and sustainability. This hands-on approach ensures graduates are adept in designing, prototyping, and optimizing production processes, meeting the evolving needs of diverse sectors.
course oucomes:	

- **PEC-ME06.1:** Students will comprehend the evolution, advantages, and classification of AM processes, distinguishing them from subtractive and forming techniques.
- **PEC-ME06.2:** Gain proficiency in Liquid State-based AM processes, focusing on Stereo lithography, Solid Ground Curing, and their applications in diverse industries.
- **PEC-ME06.3:** Acquire in-depth knowledge of Solid State-based AM processes, specifically Fused Deposition Modeling, Laminated Object Manufacturing, and other techniques, along with practical demonstrations.
- **PEC-ME06.4:** Develop expertise in Powder Bed Fusion Processes, understanding powder fusion mechanisms, and comparing various processes like Selective Laser Sintering and Electron Beam Melting.
- **PEC-ME06.5:** Apply AM techniques to product development lifecycle phases, exploring applications in rapid prototyping, tooling, aerospace, medical, and other sectors, emphasizing real-world scenarios and case studies.

Scheme of Studies:

Board of					Schei	Scheme of studies(Hours/Week)			
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
Professional Elective (PEC)	PEC- ME06	Additive Manufacturing	3	0	1	1	5	3	

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial
(T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Scheme of Assessment (Marks)							
					Progressiv	e Assessmo	ent (PRA)		End Semester Assessment	Total Marks	
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each	Class Test 2 (2 best out of 3) 10 marks	Semina Ir one	Class Activity any one	Class Attendance	Total Marks	(ESA)		
			(CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(LSA)	(PRA+ ESA)	
PEC	PEC- ME06	Additive Manufac turing	15	20	5	5	5	50	50	100	

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PEC-ME06.1: Students will comprehend the evolution, advantages, and classification of AM processes, distinguishing them from subtractive and forming techniques.

Ар	proximate Hours
ltem	AppX Hrs
Cl	09
LI	0
SW	1
SL	1
Total	11

				~
Session	LaboratoryInstruction	Class room Instruction		Self Learning
Outcomes	(LI)	(CI)		(SL)
(SOs)				
SO1.1 Grasp the historical		Unit-1.0 Introduction to Additive	1.	Comparison of
evolution of Additive		Manufacturing (AM):		additive
Manufacturing (AM) and 3D				manufacturing
printing, understanding key		1.1 Introduction to manufacturing.		process with
milestones that have shaped		1.2 Introduction to additive		subtractive and
its development.		manufacturing.		forming
SO1.2 analyzes and compares		1.3 Evolution of AM/3D printing.	2	processes.
AM with subtractive and		1.4 Comparison with subtractive.	2.	Key Features of
forming processes, elucidating		1.5 Comparison with forming process.1.6 Advantages of AM.		AM process.
the advantages of AM in terms		1.7 Classification of AM processes.		
of efficiency, design flexibility,		1.8 Key steps in AM.		
and material utilization. They		1.9 Application of AM.		
will also gain insights into the		- rr		
will also gain insights into the				

SW-1 Suggested Sessional Work (SW):

a. Assignments:

classification of AM processes and the fundamental steps involved in AM workflows.

Explain additive manufacturing process. Classify different method of additive manufacturing process.

PEC-ME06.2: Gain proficiency in Liquid State-based AM processes, focusing on Stereo lithography, Solid Ground Curing, and their applications in diverse industries.

Approximate Hours						
Item	AppX Hrs					
Cl	09					
LI	0					
SW	1					
SL	1					
Total	11					

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (Cl)	Self Learning (SL)
SO2.1 Understand Stereo Lithography's process, working principles, and applications. Explore equipment specifications, advantages, disadvantages, and real-world examples. SO2.2 Achieve proficiency in Solid Ground Curing, comprehending its process, working principles, and applications. Engage with equipment specifications and analyze advantages, disadvantages, and practical examples		Unit-2 Liquid State- based AM Processes: 2.1Stereo lithography Process and working principle. 2.2 Photopolymers. 2.3Photo polymerization, layering technology. 2.4 Laser and Laser scanning. 2.5 Micro stereo lithography; Equipment and specifications. 2.6 Micro stereo lithography Applications, advantages, disadvantages, examples. 2.7 Solid ground curing: Process, Working principle. 2.8 Solid ground curing Equipment and specifications. 2.9 Solid ground curing Applications, advantages, disadvantages, examples.	i. Micro stereo lithography; Equipment and specifications; Applications, advantages, disadvantages, examples.

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Explain solid ground curing process with advantages and disadvantages.

PEC-ME06.3: Acquire in-depth knowledge of Solid State-based AM processes, specifically Fused Deposition Modeling, Laminated Object Manufacturing, and other techniques, along with practical demonstrations.

Approximate Hours					
ltem	Appx Hrs				
Cl	09				
LI	0				
SW	1				
SL	1				
Total	11				

Session Outcomes	Laboratory	Classroom	Self
(SOs)	Instruction (LI)	Instruction (CI)	Learning (SL)
 S03.1 Gain a comprehensive understanding of FDM, including its process, working principles, and compatible materials. Explore equipment specifications, applications, advantages, disadvantages, and real-world examples. S03.2 Develop proficiency in LOM by delving into its process, working principles, and equipment specifications. S03.3 Explore alternative solid-state processes like Ultrasonic Consolidation, Gluing, and Thermal Bonding. Witness demonstrations of equipment, understanding their unique applications, advantages, disadvantages, and relevance in additive manufacturing 		Unit-3 : Solid State-based AM Processes: 3.1 Fused Deposition Modeling – Process, working principle. 3.2 Fused Deposition Modeling materials, equipment and specifications. 3.3 Laminated object manufacturing – Process and working principle. 3.4 Laminated object manufacturing equipment and specifications. 3.5 Laminated object manufacturing applications, advantages, disadvantages, examples. 3.6 Other solid-state processes. 3.7 Ultrasonic consolidation. 3.8 Gluing, Thermal bonding. 3.9 Demonstration of equipment.	 i. Equipment used in Fused Deposition Modeling. ii. Working principle of Laminated object manufacturing.

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Define working principle of laminated object manufacturing process.
- ii. Explain equipment used in laminated object manufacturing process.
- iii. Explain Ultrasonic consolidation process.

PEC-ME06.4: Develop expertise in Powder Bed Fusion Processes, understanding powder fusion mechanisms and comparing various processes like Selective Laser Sintering and Electron Beam Melting.

Approximate Hours						
AppX Hrs						
09						
0						
1						
1						
11						

Session Outcomes	LaboratoryInstruction	Class room Instruction	Self Learning
(SOs)	(LI)	(CI)	(SL)
SO4.1 Understand Powder Bed Fusion, materials, and handling, forging expertise in Laser-Based Fusion processes with real-world applications and examples. SO4.2 Analyze LBF processes intricately, identifying materials, applications, and limitations, optimizing choices based on material-process relationships for superior outcomes.		Unit-4 : Powder Based AM Processes: 4.1 Powder Bed Fusion Processes – Working principle and materials. 4.2 Powder fusion mechanism and powder handling 4.3 Various LBF processes (principle, materials, applications and examples). 4.4 Selective laser Sintering. 4.5 Electron Beam Melting. 4.6 Laser Engineered Net Shaping. 4.7 Binder Jetting and Direct Metal Deposition. 4.8 Comparison between LBF processes; Materials-process-structure- property relationships. 4.9 Relative advantages and limitations.	i. Comparison between LBF processes; Materials- process-structure- property relationships; relative advantages and limitations.

PEC-ME06.2: Gain proficiency in Liquid State-based AM processes, focusing on Stereo lithography, Solid Ground Curing, and their applications in diverse industries.

Approximate	Hours
Item	AppX Hrs
Cl	09
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
 SO5.1 Master AM applications in prototyping, visual aids, and replacement parts for an efficient product development lifecycle. SO5.2 Explore AM applications across aerospace, medical, automotive, and more, tailoring solutions for diverse industries with precision. 		Unit 5: Applications of AM: 5.1 Product development lifecycle applications – Rapid prototyping. 5.2 concept models, visualization aids. 5.3 replacement parts, tooling, jigs and fixtures. 5.4 moulds and casting. 5.5 Application sectors – aerospace. 5.6 Application sectors – automobile, medical. 5.7 Application sectors – jewelry, sports. 5.8 Application sectors – electronics, food 5.9 Application sectors – architecture, construction and others.	1. Details of rapid prototyping process. 2. Applications of additive manufacturing process in different field.

SW-5 Suggested Sessional Work (SW):

Assignments: Explain different application of additive manufacturing process. i.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
PEC-ME06.1: Students will comprehend the evolution, advantages, and classification of AM processes, distinguishing them from subtractive and forming techniques.	9	1	1	11
PEC-ME06.2: Gain proficiency in Liquid State- based AM processes, focusing on Stereo lithography, Solid Ground Curing, and their applications in diverse industries.	9	1	1	11
PEC-ME06.3: Acquire in-depth knowledge of Solid State-based AM processes, specifically Fused Deposition Modeling, Laminated Object Manufacturing, and other techniques, along with practical demonstrations.	9	1	1	11
PEC-ME06.4: Develop expertise in Powder Bed Fusion Processes, understanding powder fusion mechanisms, and comparing various processes like Selective Laser Sintering and Electron Beam Melting.	9	1	1	11
PEC-ME06.5: Apply AM techniques to product development lifecycle phases, exploring applications in rapid prototyping, tooling, aerospace, medical, and other sectors, emphasizing real-world scenarios and case studies	9	1	1	11
Total Hours	45	5	5	55

Suggestion for End Semester Assessment

CO **Marks Distribution Unit Titles** Total Marks R U Α Introduction to Additive Manufacturing. CO-1 03 02 5 -CO-2 Liquid State-based AM Processes. 04 04 02 10 CO-3 Solid State-based AM Processes. 04 04 02 10 Powder Based AM Processes. CO-4 07 03 05 15 Applications of AM. 03 02 CO-5 05 10 Total 21 20 09 50

Suggested Specification Table (For ESA)

Legend:	R: Remember,	U: Understand,	A: Apply
---------	--------------	----------------	----------

The end of semester assessment for Additive Manufacturing will be held with writteneemation of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Demonstration

7. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook,Twitter,

Whatsapp, Mobile, Online sources)

8. Brainstorming

Suggested Learning Resources:

(a)	Books :			
S. No.	Title	Author	Publisher	Edition & Year
1	3D Printing & Design	Sabrie Soloman.	Khanna Book Publishing Company, New Delhi	2020
2	Additive Manufacturing Technologies: 3D Printing, Rapid Prototyping and Direct Digital Manufacturing	lan Gibson, David W Rosen, Brent Stucker	Springer	2015
3	Additive Manufacturing: Principles, Technologies and Applications	C.P Paul, A.N Junoop	McGrawHill	2021
4	3D Printing and Additive Manufacturing: Principles & Applications	Chua Chee Kai, Leong Kah Fai	World Scientific	2015
5	Lecture note provided by Dept. of Mechanical Engineer	ing, AKS Univers	ity, Satna .	

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos,POs and PSOs Mapping

Course Title: B. Tech. Mechanical Engineering

Course Code : PEC-ME06

Course Title: Additive Manufacturing

	Program Outcomes											Program Specific Outcome			e	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Desig n/dev elop ment of soluti ons	Cond uct invest igations of compl ex probl ems	Mode rn tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
CO1 : Students will comprehend the evolution, advantages, and classification of AM processes, distinguishing them from subtractive and forming techniques.	2	1	2	2	3	2	2	2	2	1	3	2	2	2	1	2
CO 2 : Gain proficiency in Liquid State-based AM processes, focusing on Stereo lithography, Solid Ground Curing, and their applications in diverse industries.	1	1	1	1	3	2	2	2	2	1	2	2	1	2	1	2
CO3 : Acquire in-depth knowledge of Solid State-based AM processes, specifically Fused Deposition Modeling, Laminated Object Manufacturing, and other techniques, along with practical demonstrations.	2	2	1	1	3	1	2	2	2	1	1	2	1	2	1	1
CO 4: Develop expertise in Powder Bed Fusion Processes, understanding powder fusion mechanisms, and comparing various processes like Selective Laser Sintering and Electron Beam Melting.	2	2	2	1	3	2	2	2	2	1	2	2	1	2	1	2
CO 5: Apply AM techniques to product development lifecycle phases, exploring applications in rapid prototyping, tooling, aerospace, medical, and other sectors, emphasizing real-world scenarios and case studies.	2	1	1	1	1	3	2	2	2	1	2	2	1	2	1	1

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(L I)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	CO-1: Students will comprehend the evolution, advantages, and classification of AM processes, distinguishing them from	SO1.1		Unit-1.0 Introduction to Additive Manufacturing (AM)	
7,8,9,10,11,12	subtractive and forming techniques.	SO1.2		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
PSO 1,2, 3, 4					
PO 1,2,3,4,5,6	CO 2 : Gain proficiency in Liquid State-based AM processes, focusing on Stereo lithography, Solid Ground Curing, and their applications in diverse	SO2.1		Unit-2 Liquid State-based AM Processes	
7,8,9,10,11,12	industries.	SO2.2		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9	
PSO 1,2, 3, 4					As mentioned in page number
PO 1,2,3,4,5,6	CO3 : Acquire in-depth knowledge of Solid State-based AM processes, specifically Fused	SO3.1 SO3.2		Unit-3 : Solid State-based AM Processes	2 to 6
7,8,9,10,11,12 PSO 1,2, 3, 4	Deposition Modeling, Laminated Object Manufacturing, and other techniques, along with practical demonstrations.	SO3.3		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9	
PO 1,2,3,4,5,6	CO 4: Develop expertise in Powder Bed Fusion	SO4.1		Unit-4 : Powder Based AM Processes	
7,8,9,10,11,12	Processes, understanding powder fusion mechanisms, and comparing various	SO4.2		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	
PSO 1,2, 3, 4	processes like Selective Laser Sintering and Electron Beam Melting.				
PO 1,2,3,4,5,6	CO 5: Apply AM techniques to product	SO5.1		Unit 5: Applications of AM	
7,8,9,10,11,12	development lifecycle phases, exploring	SO5.2		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	
PSO 1,2, 3, 4	applications in rapid prototyping, tooling, aerospace, medical, and other sectors, emphasizing real-world scenarios and case studies.				
					18

	Semester-VI				
Course Code:	PEC-ME 05				
Course Title:	Computational fluid dynamics				
Pre- requisite:	Student should have basic knowledge of fluid mechanics, differential equation, numerical method and program skill like PYTHON, MATLAB languages.				
Rationale:	CFD offers a powerful means to simulate and analyze fluid behavior across diverse fields, enabling better design, optimization, understanding of complex systems, and aiding in decision-making processes across various industries and scientific domains				

Course Outcomes:

PEC-ME 05.1: . : Understand the classification of PDEs, governing equations

PEC-ME 05.2: . : Understand the basic principles of computational methods.

PEC-ME 05.3: . : Apply finite volume method to solve steady and unsteady diffusion, advection-diffusion problems

PEC-ME 05.4: . : Understand Solution algorithms and various discretization schemes

PEC-ME 05.5: . : Solve engineering problems using CFD software

Scheme of Studies:

Board of					Scher	Scheme of studies(Hours/Week)		
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PEC)	~-	Computational fluid dynamics	3	0	1	1	5	3

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial
(T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Schem	e of Assessment	(Marks)		
					Progressiv	e Assessme	ent (PRA)		End Semester Assessment	Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
PEC	PEC ME05	COMPUTATIO NAL FLUID DYNAMICS	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PEC ME 05.1: . Understand the classification of PDEs, governing equations...

Approximate Ho			
ltem	AppX Hrs		
Cl	9		
LI	0		
SW	2		
SL	1		
Total	12		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
.SO1.1 Apply mathematical concepts like calculus, differential equations, and linear algebra to solve CFD problems. Use CFD software to set up simulations and perform basic analyses. SO1.2 Assess the accuracy and reliability of CFD simulations by comparing results with experimental data or established benchmarks. Critically analyze the limitations and assumptions made in the simulation process. SO1.3 Develop and design CFD simulations for specific fluid flow scenarios. Innovate by proposing improvements or modifications to existing numerical models or simulation techniques.		 S Unit-1. Introduction to Computational Fluid Dynamics 1.1 Introduction to CFD . 1.2 Principles of Conservation 1.3 Continuity Equation, 1.4 Continuity Equation numerical problem 1.5 Navier Stokes Equation 1.6 Energy Equation and General Structure of Conservation Equations 1.7 Classification of Partial Differential Equations and Physical Behaviour 1.8 Approximate Solutions of Differential Equations 1.9 Error Minimization Principles 	 Application of continuity equation

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain Navier stoke equation?
- 2. Numerical problem

PEC ME 05.2: Understand the basic principles of computational methods

		Approximate	Hours
		ltem	AppX Hrs
		Cl	09
		LI	00
		SW	02
		SL	01
		Total	12
Session Outcomes	Laboratory	Class room	Self
(SOs)	Instruction	Instruction	Learning
	(LI)	(CI)	(SL)
SO2.1 . Apply discretization		Unit-2.0. Fundamentals	of 1. Types of
techniques to transform partial		Discretization.	Discretizati
differential equations (e.g., Navier-		2.1 . Concept in	on and its
Stokes equations) into discrete forms		Discretization	application
suitable for numerical solvers.		2.2 Finite Element Metho	d
Implement basic discretization		2.3 Finite Difference	
schemes for simple flow problems.		method	
SO2.2 : Evaluate the impact of		2.4 Finite Volume Method	л,
discretization errors on simulation		2.5 Consistency 2.6 Stability and	
results. Assess the sensitivity of		Convergence	
solutions to grid refinement and		2.7 1-D Steady State	
discretization choices. Critically		Diffusion Problems	
evaluate the appropriateness of		2.8 - Source term	
chosen discretization schemes for		linearization	
specific flow scenarios.		2.9 Implementation of	
SO2.3 Design and develop		boundary conditions	
discretization strategies for complex			
fluid flow problems. Innovate by			
proposing improvements or			
modifications to existing			
discretization methods to enhance			
accuracy or computational efficiency.			

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain finite volume method?
- 2. Numerical problem

PEC ME 05.3. Apply finite volume method to solve steady and unsteady diffusion, advection-diffusion problems

indsion, advection andsion problems				
	Approximate I	lours		
ltem	AppX Hrs			
Cl	09			
LI	00			
SW	02			
SL	01			
Total	12			

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO3.1 Apply mathematical formulations, such as the unsteady- state diffusion equation, to model and solve problems involving the time-dependent diffusion of substances in various medium SO3.2 Analyze the factors influencing unsteady state diffusion, such as concentration gradients, diffusion coefficients, boundary conditions, and material properties SO3.3 Evaluate the significance of unsteady state diffusion in practical scenarios, assessing its implications in fields like chemical engineering, material science, and biological systems. Critically assess the accuracy and limitations of mathematical models used for unsteady state diffusion		Unit-3.0 Unsteady state diffusion problems 3.11-D unsteady state diffusion problems 3.2 implicit, fully explicit 3.3 Finite volume discretization of convection-diffusion problem 3.4Central difference scheme, Upwind scheme 3.5Exponential scheme and Hybrid scheme 3.6 Power law scheme 3.7, Generalized convection-diffusion formulation 3.8 Finite volume discretization of two- dimensional convection- diffusion problem 3.9 The concept of false diffusion	1. Differentiate between steady-state and unsteady-state diffusion

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- 1. Understand how boundary and initial conditions affect the behavior of the diffusion process.
- 2. Numerical problem

PEC ME 05.4. Understand Solution algorithms and various discretization schemes

Approximate Hou				
ltem	AppX Hrs			
Cl	09			
LI	00			
SW	02			
SL	01			
Total	12			

		lotal	12
Session Outcomes	Laboratory	Classroom	Self Learning
(SOs)	Instruction	Instruction	(SL)
	(LI)	(CI)	
SO4.1 Apply Finite Volume Discretization techniques to set up the discretized forms of governing equations (e.g., diffusion or advection equations) for 2-D unsteady state problems. Implement numerical schemes (e.g., explicit or implicit) to solve these discretized equations. SO4.2 Assess the impact of different numerical schemes and variations in grid configurations on the accuracy and convergence of solutions for unsteady state problems.		Unit-4.0 Finite Volume Discretization of 2-D unsteady State 4.1 Finite Volume Discretization of 2-D unsteady State Diffusion type Problems 4.2 Solution of Systems of Linear Algebraic Equations 4.3 Elimination Methods 4.4, Iterative Methods 4.5 Discretization of Navier Stokes Equations 4.6 primitive variable approach 4.7 SIMPLE Algorithm 4.9 Unstructured Grid Formulation	1. Comprehend the concept of discretizing the domain into control volumes and the associated fluxes across their faces.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Critically evaluate the performance of the Finite Volume Method in capturing complex flow behaviors in two dimensions SO4.3 Design and construct Finite Volume-based simulations for various 2-D unsteady state scenarios. Innovate by proposing improvements or modifications to existing schemes to handle specific challenges or optimize computational		
-		

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - 1. state. the governing equations for unsteady-state problems in two dimensions.
 - 2. Numerical problem

PEC-ME05.5: Solve engineering problems using CFD software

Approximate Hour			
ltem	AppX Hrs		
Cl	09		
LI	00		
SW	2		
SL	1		
Total	12		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO5.1 Apply different turbulence models (e.g., k-epsilon, k-omega, large eddy simulation) to simulate turbulent flows in different scenarios. Implement these models within CFD software and understand how to set up simulations using these models. SO5.2 Analyze the performance of turbulence models by comparing simulation results with experimental data or benchmark cases. Evaluate the accuracy and applicability of different turbulence models for specific flow conditions and geometries. SO5.3 Design and develop turbulence modeling strategies for complex flow scenarios. Innovate by proposing modifications or combinations of existing turbulence models to improve accuracy and capture intricate turbulent behaviors.		Unit-5 Turbulence Modeling 5.1 . Introduction to Turbulence Modeling 5.2 Important features of turbulent flow 5.3 numericals-1 5.4 numericals-2 5.5 General Properties of turbulent quantities, 5.6 Reynolds average Navier stokes (RANS) equation 5.7 Closure problem in turbulence 5.8 Necessity of turbulence modeling 5.9 turbulence modeling application	 Comprehend the concept of Reynolds decomposition and time- averaging to handle turbulence

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
 - 1. Explain General Properties of turbulent quantities
 - 2. Write the turbulence modeling application.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

(Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Lab	Sessio	Self	Total hour
	Lecture	Lecture	nal	Learni	(Cl+Ll+SW+SI)
	(CI)	(LI)	Work	ng	
			(SW)	(SI)	
PEC-ME 05.1: : Understand the					
classification of PDEs, governing equations					12
	9	0	2	1	
PEC-ME 05.2: Understand the basic					
principles of computational methods					12
•	9	0	2	1	12
PEC-ME 05.3: : Apply finite volume					
method to solve steady and unsteady					
diffusion, advection-diffusion problems	9	0	2	1	12
PEC-ME 05.4: Understand Solution					
algorithms and various discretization					
schemes .	9	0	2	1	12
				_	
PEC-ME 05.5: Solve engineering problems					
using CFD software					
5					12
	9	0	2		
				1	
Total Hours	45	00	10	-	60
	45	00	10	5	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Introduction to Computational Fluid Dynamics	03	01	01	05
CO-2	Fundamentals of Discretization	02	06	02	10
CO-3	Unsteady state diffusion problems	03	07	05	15
CO-4	Finite Volume Discretization of 2- D unsteady State	-	10	05	15
CO-5	Turbulence Modeling	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Computational Fluid Dynamics will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 3. Improved Lecture
- 4. Tutorial
- 5. Case Method
- 6. Group Discussion
- 7. Role Play
- 8. Visit to cement plant
- 9. Demonstration
- 10. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 11. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books :			
S. No.	Title	Author	Publisher	Edition & Year
1	Applied computational fluid dynamics	S C Gupta	wiley	2019
2	Computational fluid dynamics and COMSOL multiphysics	Ashish S. Chaurasia	Apple academic pres inc.	2021
3	Computational fluid dynamics an introduction	J Anderson, G. Degrez, J.Degroote	springer	2008
4	An introduction to computational fluid dynamics the finite volume method	H. Versteeg, W. Malalaskra	pearson	2008
5	Training Manual			
6	Training Manual			
7	Lecture note provide Dept. of Mechanical		Jniversity, Satna .	

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr Deepak Pandey , Assistant Professor , Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos,POs and PSOs Mapping

Course Title: B. Tech Mechanical Engineering

Course Code : PEC ME 05

Course Title: Computational Fluid Dynamics

					Ρ	rogra	m Outco	omes					Р	rogram Spec	ific Outcom	е	
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Design/ develop ment of soluti ons	Cond uct invest igatio ns of compl ex probl	Moden tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Mechanical System Desigr and Analysis	Mechanical System Design System Design Automation	Chembardidian Schultzachember Participation and Analysis Automation Simulation.	the third tibe A solution of the	r R Pr Al Al
CO1 : Understand the classification of PDEs, governing equations	1	1	2	ems 2	2	2	3	1	2	2	1	2	2	2	1	-	
CO 2 . Understand the basic principles of computational methods	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1	
CO3 : Apply finite volume method to solve steady and unsteady diffusion, advection- diffusion problems	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2	
CO 4: : Understand Solution algorithms and various discretization schemes	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2	
CO 5: . Solve engineering problems using CFD software	1	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3	

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(L I)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	CO1 : Understand the classification of PDEs,	SO1.1		Unit-1.0 . Introduction to Computational Fluid Dynamics	
7,8,9,10,11,12	governing equations	SO1.2 SO1.3			
PSO 1,2, 3, 4, 5				1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
PO 1,2,3,4,5,6	CO 2 : Understand the basic principles of computational	SO2.1		Unit-2 . Fundamentals of Discretization	
7,8,9,10,11,12	methods	SO2.2 SO2.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4, 5				2.8,2.9	
					As mentioned in page number
PO 1,2,3,4,5,6	CO3 : Apply finite volume	SO3.1 SO3.2		Unit-3 : Unsteady state diffusion problems	2 to 6
7,8,9,10,11,12	method to solve steady and	SO3.2 SO3.3		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9	
PSO 1,2, 3, 4, 5	unsteady diffusion, advection- diffusion problems				
PO 1,2,3,4,5,6	CO 4: Understand	SO4.1		Unit-4 : Finite Volume Discretization of 2-D	-
7,8,9,10,11,12	Solution algorithms and various	SO4.2 SO4.3		unsteady State	
PSO 1,2, 3, 4, 5	discretization schemes	304.3		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	
PO 1,2,3,4,5,6	CO 5. Solve engineering	SO5.1		Unit 5: turbulence modelling	
7,8,9,10,11,12	problems using CFD software	SO5.2 SO5.3		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	
PSO 1,2, 3, 4, 5					
					494

	Semester-VI
Course Code:	PCC-ME 305
Course Title:	Computer Aided Design and Analysis
Pre- requisite:	Student should have Mathematical Skills, Computer Skills and Technical Knowledge of design principles, engineering
Rationale:	concepts. Computer-Aided Design and Analysis, enables manufacturers to create and modify product designs quickly and accurately, reducing development time and costs. It allows for easy prototyping, analysis, and optimization, improving product quality and performance.

Course Outcomes:

PCC-ME 305.1: Understanding of computer technology and CAD software

PCC-ME 305.2: To broaden and deepen their capabilities in doing Different types of Transformations in Design

PCC-ME 305.3: To impart knowledge of Curves and Surfaces in modelling

PCC-ME 305.4: Have abilities and capabilities for applying Solid modelling techniques

PCC-ME 305.5: Apply/develop solutions or to do research in the areas of Optimization of Design

Scheme of Studies:

Board of			Scheme of studies(Hours/Week)		es(Hours/Week)	Total Credits		
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Program Core (PCC)	305	computer aided design and analysis	4	2	1	1	8	5

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial
(T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C:Credits.

Scheme of Assessment:

Theory

			Scheme of Assessment (Marks)							
Develo	Board of Couse Study Code Course Title			End Semester Assessment	Total Marks					
			Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	each (CT)	(SA)	.) (CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
PCC	PCC- ME 305	comput er aided design and analysis		20	5	5	5	50	50	100

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Practical

Board of	Couse	Course Title	Scheme	e of Assessment (Ma	·ks)			
Study	Code		Progressive Ass	essment (PRA)			End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)		
PCC	PCC- ME 305	computer aided design and analysis	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC 305.1: Understanding of computer technology and CAD software.

Ар	proximate Hours
ltem	AppX Hrs
Cl	13
LI	6
SW	1
SL	2
Total	22

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO1.1 Understanding of basic knowledge CAD. SO1.2 CAD tools enable faster prototyping, iteration, and refinement of designs, accelerating the product development lifecycle. SO1.3 These tools allow for precise modeling and analysis, reducing errors and improving the overall accuracy of designs.	 1.1 Introduction to laboratory 1.2 Introduction to CAD and Graphics Hardware 1.3 Study and Application of Computer Graphics in CAD 	Unit-1.0 Introduction 1.1 Introduction to CAD 1.2 Introduction to computer technology 1.3 Application of computer technology 1.4 Role of computers in design process 1.5 Product cycle 1.6 Computer aided designing 1.7 Design processes 1.8 Computer aided analysis 1.9 Computer aided manufacturing 1.10 Computer integrated manufacturing 1.11 Benefits of CAD 1.12 CAD software 1.13 Popular CAD software used in industry	 Explanation of computer system Input and output devices in computer system

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

1. Explain design of a mechanical component

PCC 305.2: To broaden and deepen their capabilities in doing Different types of Transformations in Design. Approximate Hours

Approximate Hours					
ltem	AppX Hrs				
Cl	13				
LI	6				
SW	1				
SL	2				
Total	22				

		Total		22	
Session Outcomes	Laboratory	Classroom		Self	
(SOs)	Instruction	Instruction		Learning	
	(LI)	(CI)		(SL)	
SO2.1 Transformation in CAD has led to more powerful software tools that offer advanced functionalities. This includes 3D modeling, parametric modeling, generative design, and simulation capabilities that empower designers to create more complex and innovative designs. SO2.2 CAD has transformed by integrating with various other technologies such as augmented reality (AR), virtual reality (VR), additive manufacturing (3D printing), and cloud computing. This integration enhances visualization, collaboration, and the manufacturing process.	2.1 Study of Geometric Transformations 2.2 Transformation in 2D component 2.3 Transformation in 3D component	Unit-2.0 Transformations 2.1 Introduction to Transformations 2.2 Matrix represent of points 2.3 Matrix represent of lines 2.4 Matrix represent of planes 2.5 2D transformation 2.7 Scaling 2.8 rotation 2.9. reflection 2.10 Homogeneous representation 2.11 concatenation 2.12. Application of 2 transformations 2.13 3D transformation	tation tation tation ons	1. Explain t Cartesi coordir system 2. Importa of Transfo tions	an nate nce

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

1. Problems based on Transformations.

PCC 305.3: To impart knowledge of Curves and Surfaces in modelling

	Approximate Ho	ırs
Item	AppX Hrs	
Cl	11	
LI	4	
SW	1	
SL	1	
Total	17	

Session Outcomes	LaboratoryInstruction	Class room	Self Learning
(SOs)	(LI)	Instruction	(SL)
SO3.1 Curves and surfaces enable the creation of intricate and complex shapes that are challenging or impossible to achieve with traditional geometric primitives. This capability expands the design possibilities for engineers and designers. SO3.2 CAD tools with robust curve and surface manipulation capabilities allow for the creation of aesthetically pleasing designs, particularly in industries like automotive, product design, and architecture, where sleek and stylish appearances are crucial.	3.1 Study of Mathematical Elements of Curves 3.2 Algorithms Used for Generating 2D Output Primitives	(CI) Unit-3.0 Curves and Surfaces 3.1 Introduction to Curves and Surfaces 3.2 Representation of curves 3.3 Hermite curves and Bezier curves 3.4 B-spline curves and Rational curves 3.5 Surface modelling 3.6 parametric representation 3.7 planar surface, surface of revolution 3.8 Coons and bicubic patches 3.9 Bezier and B-spline surfaces 3.10 Application of surface modelling 3.11 Advantages of surface	1. Basics of curves and surfaces

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

1. Explain the importance of wire and surface modelling

PCC 305.4:	Have abilities and	d capabilities t	for applying Solid	modelling techniques
------------	--------------------	------------------	--------------------	----------------------

	is and capabilities for apprying 50	6		pproximate Hours	
			Item	AppX Hrs	
			Cl	12	
			LI	8	
			SW	1	
			SL	2	
			Total	23	
Session Outcomes (SOs)	LaboratoryInstruction (LI)		ss room truction (Cl)	Self Learr (SL)	ning
SO4.1 CAD models can be used directly in 3D printing or other rapid prototyping methods, speeding up the transition from design to physical prototype. SO4.2 With faster design iterations, fewer physical prototypes needed, and more accurate predictions, products can be brought to market more quickly.	 4.1 To study of Geometric Modeling (Part Modeling) 4.2 To study of Geometric Modeling (Assembly Modeling) 4.3 To draw 2D component 4.4 To draw 3D component 	 4.1 Introduct Modelling 4.2 Solid motechniques 4.3 sweep (left curved) 4.4 Boolean solid geometer 4.5 Some off 4.6 Solid motechniques 4.6 Solid motechniques 4.7 Boundar Constructive Geometry 4.8 Applicat modelling 4.9 Advanta modelling 4.10 Medic 4.11 pixels, voxels 4.12 Exchart 	id Modelling tion to Solid odelling inear and (constructive etry) her techniques odel on ry and e Solid ion of solid ges of solid al modelling	1. Model of a com 2. Three dimensio of a component	

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - **1.** Explain different types modeling.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

PCC 305.5: Apply/develop solutions or to do research in the areas of Optimization of Design

rs

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO5.1 Engineers can perform simulations to optimize designs for various parameters such as strength, weight, and cost-effectiveness, leading to better- performing products. SO5.2 CAD tools can assist in ensuring designs meet industry standards and regulatory requirements by performing analysis and simulations related to safety, durability, and other criteria. SO5.3 CAD provides detailed documentation of designs, aiding in manufacturing, assembly, and maintenance. It also allows for realistic visualizations of products for presentations and marketing purposes.	 5.1 To study of design optimization 5.2 Design of Machine Elements 5.3 Case-Study on Applications of CAD 	Unit-5.0 Design Optimization 5.1 Introduction to Design Optimization 5.2 Purpose of optimum design 5.3 Application of optimum design 5.4 Primary design equations 5.5 Subsidiary design equations 5.6 Limit Equations 5.7 Normal and redundant problems 5.8 Incompatible specifications problems 5.9 Application of design equations 5.10 Computer-aided design optimization 5.11 Benefits of design optimization	 The concept of optimization The importance of design equations in optimization

SW-5 Suggested Sessional Work (SW):

a. Assignments:

1. How does design optimization is important ?

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Lab	Sessio	Self	Total hour
	Lecture	Lecture	nal	Learni	(Cl+Ll+SW+SI)
	(CI)	(LI)	Work	ng	
			(SW)	(SI)	
PCC 305.1: Understanding of computer					
technology and CAD software.					22
	13	6	1	2	22
	10	Ũ	-		
PCC 305.2: To broaden and deepen their					
capabilities in doing Different types of					22
Transformations in Design.	13	6	1		22
	15	Ū	-	2	
PCC 305.3: To impart knowledge of Curves					
and Surfaces in modelling					17
	11	4	1	1	
PCC 305 .4: Have abilities and capabilities for					
applying Solid modelling techniques	12	8	1	2	23
		U U	-	Z	
PCC 305.5: Apply/develop solutions					
or to do research in the areas of					
Optimization of design					
					20
	11	6	1	2	
				-	
Total Hours					104
	60	30	5	9	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Introduction	03	01	01	05
CO-2	Transformations	02	06	02	10
CO-3	Curves and Surfaces	03	07	05	15
CO-4	Solid Modelling	-	10	05	15
CO-5	Design Optimization	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Computer Aided Design and Analysis** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 2. Improved Lecture
- 3. Tutorial
- 4. Case Method
- 5. Group Discussion
- 6. Role Play
- 7. Visit to cement plant
- 8. Demonstration
- 9. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 10. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books :			
S. No.	Title	Author	Publisher	Edition & Year
1	Mastering CAD CAM	Ibrahim Zeid	Tata McGra Hill Publishig Co.	2007
2	CAD/CAM Principles	C. McMohan and J. Browne	Pearson Education	2nd Edition 1999
3	Geometric Modeling	Michael E. Mortenson	Tata McGraw Hill	2013
4	Principles of Computer Graphics	W. M. Neumann and R.F. Sproul	Tata McGraw Hill	1989
5		Training	Manual	
6	Dept. of M	Lecture note p echanical Engineerin	provided by ng, AKS University,	Satna .

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos,POs and PSOs Mapping

Course Title: B. Tech Mechanical Engineering

Course Code: PCC-ME 305

Course Title: Computer Aided Design and Analysis

						Progr	am Outcome	es					Pi	ogram Specific Outco	me	
Course Outcomes	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
	Engine ering knowle dge	Prob lem anal ysis	Design/d evelop ment of solutions	Cond uct invest igatio ns of compl ex probl ems	Moden tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
CO1 : Understanding of computer technology and CAD software.	1	1	2	2	2	2	3	1	2	2	1	2	2	2	1	-
CO 2 : To broaden and deepen their capabilities in doing Different types of Transformations in Design.	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1
CO3 : To impart knowledge of Curves and Surfaces in modelling	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2
CO 4: Have abilities and capabilities for applying Solid modelling techniques	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
CO 5: Apply/develop solutions or to do research in the areas of Optimization of design	1	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(L I)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO1 : Understanding of computer technology and CAD software.	SO1.1 SO1.2 SO1.3	UNIT – 1 1.1 1.2 1.3	Unit-1.0 Introduction 1.1,1.2,1.3,1.4,1.5,1.6,1.71.8,1.9,1.10, 1.11,1.12,1.13	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 2 : To broaden and deepen their capabilities in doing Different types of Transformations in Design.	SO2.1 SO2.2	UNIT – 2 2.1 2.2 2.3	Unit-2 Transformations 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9,2.10,2.11,2.12,2.13	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO3 : To impart knowledge of Curves and Surfaces in modelling	SO3.1 SO3.2	UNIT – 3 3.1 3.2 3.3	Unit-3 : Curves and Surfaces 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8, 3.9,3.10,3.11	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 4: Have abilities and capabilities for applying Solid modelling techniques	SO4.1 SO4.2	UNIT – 4 4.1 4.2 4.3	Unit-4 : Solid Modelling 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,4.10, 4.11,4.12	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 5: Apply/develop solutions or to do research in the areas of Optimization of design	SO5.1 SO5.2 SO5.3	UNIT – 5 5.1 5.2 5.3	Unit 5: Design Optimization 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10, 5.11	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Semester-VI

Course Code:	PROJ-ME 301
Course Title :	Engineering Project-1(Literature Review)
Pre-requisite:	Students should have basic knowledge for design, development and analysis of project.
Rationale:	Students should be well-versed in the Mechanical manufacturing process and concrete production. Keeping abreast of the latest technological trends is crucial for identifying contemporary R&D topics. A fundamental understanding of the physical and chemical properties of Material is essential. Additionally, students must be proficient in statistical methods for effective data analysis and interpretation. Competence in Microsoft Word and Excel is necessary for report writing and documentation. By combining technical knowledge with analytical and software skills, students will be well-prepared to tackle challenges in the field and contribute meaningfully to research and development efforts.

Course Outcomes:

PROJ-ME 301.1:Methodology for projectdesign and project scheduling
PROJ-ME 301.2: Methods of Data collection and data compiliation
PROJ-ME 301.3:Product development
PROJ-ME 301.4: Data analysis and data interpretation
PROJ-ME 301.5: Concluding remark and future work

SchemeofStudies:

Course	Course	Course		Scheme o	of studie	s(Hours	/Week)	Total
Category	Code	Title	Title CL LL SW SL		Total Hours (CI+LI+SW+SL)	Credits (C)		
PROJ	PROJ-ME 301	Engineering Project- 1(Literature Review)	2		1	1	4	2

Legend:

CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)an dTutorial (T)andothers),

LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies)

SW: Sessional Work(includesassignment, seminar, miniprojectetc.),

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

SL:SelfLearning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacherto ensureoutcomeofLearning.

Scheme of Assessment:

							Scheme	e of As	sessment	t (Mar	ks)	
		F	Progressi	ve As	sessmen	t (PRA)		End Semester Assessment			
Course Category	Course Category Course Code Course Title		Project Scheduling	Data collection and sampling	Product design	Product analysis and data interporetaion	Report writing and concluding remark	Total Mark	Seminar	Project Viva	Total Marks	Total Marks (PRA+ESA)
PROJ	PROJ- ME 301	Engineerin g Project- 1(Literatur e Review)	05	05	05	25	10	50	15	35	50	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Lab Work Assignment (LA) Best of 5 of the total, Viva-Voice on Lab Work (VV), and Lab Attendance (LA). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Course Outcome	Activities	Time Schedule (in hours)		
		Class	Self	
		Activity Per week (5	Learning /Home activity	
		Credit)	Per week	
PROJ-ME 301:	1. Literature review and identification of Cement and concrete related projects and project	5	10	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

CO.1: Methodology for	scheduling		
design and project scheduling	Examining recent literature on Materials projects unveils advancements, methodologies, and applications. This review identifies emerging trends, innovative materials, and sustainable practices, significantly impacting construction, durability, and environmental outcomes. Noteworthy projects illustrate novel approaches, enriching insights and guiding future developments in Material technology.		
	Project scheduling : Project scheduling involves planning and organizing tasks to ensure timely completion. It includes defining activities, setting deadlines, and allocating resources efficiently. Effective scheduling helps manage time, costs, and personnel, enhancing productivity and project success. It's crucial for meeting goals, coordinating efforts, and maintaining project momentum		
PROJ-ME 301: CO.2: Methods of Data collection and data compiliation	2. Design and formulation projects i. Methods of data collection and data compiletion ii. Design and formulation projects concentrate on innovating products through meticulous recipe development and methodological refinement. These initiatives prioritize material optimization, functional enhancement, and quality assurance. By blending creativity with technical prowess, they propel advancements across industries, fostering the creation of distinctive, efficient, and commercially viable solutions.	8	15
PROJ-ME 301: CO.3: Product development	3. Sample analysis and product development Testing samples determines their suitability by assessing quality, performance, and compliance with standards. It involves rigorous analysis and evaluation to ensure materials meet project requirements. This process identifies strengths and weaknesses, guiding decision-making and ensuring the reliability and effectiveness of the chosen	10	25

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

	samples for intended applications.		
	Product design and analysis in R&D involve creating and refining products to meet market needs. This process includes conceptualizing, prototyping, and testing to optimize functionality and performance. Analyzing results helps improve designs, ensuring products are innovative, efficient, and ready for successful market introduction.		
PROJ-ME 301. CO.4: Data analysis and data interpretation	 i. Product Dataanalysis &compilation Project data compilation involves collecting and organizing all relevant information for analysis and reporting. This process ensures data accuracy and completeness, facilitating informed decision-making and efficient project management. It helps track progress, identify trends, and generate insights, supporting successful project outcomes and future planning. ii. Statistical data analysis and data interpretation Statistical data analysis involves examining and processing data to uncover patterns and trends. Data interpretation translates these findings into meaningful insights, aiding decision-making and strategy development. This process enhances understanding, supports evidence-based conclusions, 	40	15
PROJ-ME 301. CO.5: Concluding remark and future work	5. Report Writing, Conclusion, Recommendations and Future work in Research work Report Writing : Comprehensive project report writing		
	Conclusion: The study successfully demonstrated key findings. It underscores implications, validating hypothesis/objectives. This contributes field significance, laying groundwork for applications. Recommendation : Future research should explore expansion areas, emphasizing methodological improvements. Collaboration partners/stakeholders	12	25

Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

would enrich knowledge transfer. Future Work: Innovations in technology/techniques could advance potential benefits. Addressing challenges would refine outcomes, fostering industry/government support.		
Total	75	90

Suggestion for End Semester Assessment

	SuggestedSpecificationTa			-	
Course Outcome	UnitTitles	Ma	rksDistribut	ion	
		R	U	Α	Total Marks 5 8 12 20 5
PROJ-ME 301: CO.1: Methodology for design and project scheduling	 Literature review and identification of Material related projects and project scheduling 	02	03	-	5
PROJ-ME 301: CO.2: Methods of Data collection and data compiliation	2. Design and formulation projects	_	05	03	8
PROJ-ME 301: CO.3: Product development	3. Sample analysis and product development	-	08	04	12
PROJ-ME 301. CO.4: Data analysis and data interpretation	4. Product Data analysis, data interpretation and findings	-	08	12	20
PROJ-ME 301. CO.5: Concluding remark and future work	5. Report writing, concluding remark and future work		03	02	5
Total		02	27	21	50

a 4 10 • •• ...

A:Apply U:Understand, Legend: **R:Remember**,

TheendofsemesterassessmentforEngineering Project-1 (Literature Review) willbeheld with written examination of 50 marks

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp, Mobile,Onlinesources)
- 9. Brainstorming

SuggestedLearningResources:

(a) Books:

S.No.	Title	Author	Publisher	Edition
				&Year
1	The literature review : six	Lawrence A.	Corwin	2022
	steps to success	Machi, Brenda T.	Press, Inc	
		McEvoy.		
2	Lee			
3	Tylor			
4	Manufacturing Processes			
5				

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

.....

COs, POsandPSOs Mapping

ProgramTitle:B.Tech Mechanical Engineering

Course Code:PROJ-ME 301; **CourseTitle:** Engineering Project-1(Literature Review)

						Progra	am Out	comes]	ProgramSpe	cificOutcon	ne
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation.	Product Innovation and Development
PROJ-ME 301: CO.1: Methodology for design and project scheduling	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 301: CO.2: Methods of Data collection and data compiliation	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 301: CO.3: Product development	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 301. CO.4: Data analysis and data interpretation	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 301. CO.5: Concluding remark and future work	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3

Legend:1–Low,2–Medium,3–High

CourseCurriculumMap: Engineering Project-1(Literature Review)

POs&PSOsNo.	COsNo.&Titles	SOsNo.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning(SL)
	PROJ-ME 301: CO.1: Methodology for design and project scheduling				
	PROJ-ME 301: CO.2: Methods of Data collection and data compiliation				
	PROJ-ME 301: CO.3: Product development				
	PROJ-ME 301. CO.4: Data analysis and data interpretation				
	PROJ-ME 301. CO.5: Concluding remark and future work				

Semester-VI

Course Code:	PCC-ME 306
Course Title:	Manufacturing Automation
Pre-requisite:	Student should have basic knowledge of Geometry, Geometrical Shapes, basic knowledge of Computer, Mouse and keyboard use, navigating menus and dialogs, managing files and directories, etc.
Rationale:	The theory helps engineers understand how different types of machines operate, from simple mechanisms to complex systems. It provides the foundational principles for designing machines that are efficient, safe, and reliable. It provides a framework for solving engineering problems related to the design and operation of machines.

Course Outcomes:

PCC-ME-306.1: Students should gain a comprehensive understanding of the concepts, principles, and technologies involved in manufacturing automation, including robotics, programmable logic controllers (PLCs), sensors, actuators, and human-machine interfaces.

PCC-ME-306.2: Students should be able to describe and analyze different types of automation systems used in manufacturing processes, such as fixed automation, programmable automation, and flexible automation.

PCC-ME-306.3: Students should develop programming skills necessary for configuring and controlling automated systems, including programming languages such as ladder logic, Structured Text, Function Block Diagrams, or other relevant languages used in PLC programming.

PCC-ME-306.4: Students should learn how to troubleshoot common issues with automation systems and perform routine maintenance tasks to ensure optimal performance and uptime.

PCC-ME-306.5: Awareness of emerging trends and technologies in manufacturing automation, such as Industrial Internet of Things (IIoT), Artificial Intelligence (AI), Machine Learning (ML), and advanced robotics, and their potential applications in improving manufacturing processes.

Scheme of Studies:

Board of					Schei	Scheme of studies (Hours/Week)					
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)			
Program Core (PCC)	PCC- ME-306	Manufacturing Automation	4	2	1	1	8	5			

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture(L) and Tutorial
(T) And others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field
or other locations using different instructional strategies)
SW: Sessional Work(includesassignment,seminar,miniprojectetc.),
SL: Self Learning,
C: Credits.

Note:

SW&SLhastobeplannedandperformedunderthecontinuousguidanceandfeedbackofteachertoe nsureoutcomeof Learning.

Scheme of Assessment:

				Scheme of Assessment (Marks)						
			Progressive Assessment(PRA)					End Semester Assessment	Total Marks	
Board of Study	Couse Code	Course Title	Class/Home Assignment 5number 3 marks each	Class Test2 (2bestout of3) 10 marksea ch(CT)	Semina r one (SA)	Class Activity anyone (CAT)	Class Attendance (AT)	Total Marks (CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
PCC	PCC- ME-	Manufa cturing Automa tion	(CA) 15	20	5	5	5	50	50	100
	306									

Practical

Board of	Couse	Course Title	Scheme	Scheme of Assessment (Marks)				
Study	Code		Progressive Ass	End Semester Assessme nt (ESA)	Total Marks (PRA+ ESA)			
			Class/Home Assignment 5 number 7 marks each (CA)	VIVA	Class Attenda nce (AT)	Total Marks (CA+VV + AT)		
PCC	PCC- ME- 306	Manufac turing Automat ion	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL).As thecourseprogresses, students

should show case their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-ME-306 .1: Students should gain a comprehensive understanding of the concepts, principles, and technologies involved in manufacturing automation, including robotics, programmable logic controllers (PLCs), sensors, actuators, and human-machine interfaces.

proximate Hours
AppXHrs
12
06
02
02
22

Session Outcomes	Laboratory Instruction	Classroom Instruction	Self-Learning
(SOs)	(LI)	(Cl)	(SL)
SO5.1 - Gain knowledge of the various technologies used in machine and process automation, including sensors, actuators, controllers, and communication protocols. SO5.2 - Develop the ability to identify opportunities for automation within manufacturing processes, considering factors such as repetitive tasks, safety requirements, and efficiency improvements. SO5.3 - Understand the process of integrating automation systems with existing machinery and processes, including interfacing with legacy systems and implementing communication protocols for data exchange.	Unit-1.0 Introduction and Process Automation 1.1. introduction of Automation lab 1.2. To study the fundamentals of automation and its types. 1.3 Tools introduction	 Unit-1.0 Introduction and Process Automation Definition; Reasons for automating; Strategies Types of automation; Numerical control (NC, CNC, DNC) Introduction to CNC programming and computer-aided process planning Machine and Process Automation CNC machines, Automated flow lines (types, selection); Work part transport and transfer mechanisms Feedback systems and control Modular and reconfigurable machines Jadaptive machine controls. Tutorial I Tutorial II Tutorial III 	 1.1Analysis of CNC programming and computer-aided process planning 1.2 study of feedback system

SW-1 Suggested Sessional Work (SW):

a. Assignments:

1. how would you recommend implementing process automation to achieve these goals.

2. Provide specific examples of tasks or processes that could be automated and explain the potential benefits for the company.

PCC-ME-306 .2: Students should be able to describe and analyze different types of automation systems used in manufacturing processes, such as fixed automation, programmable automation, and flexible automation

01 ,	such as fixed automation, program	Item	Appx Hrs
		Cl	12
		LI	06
		SW	02
		SL	02
		Total	22
Session Outcomes	Laboratory	Classroom	Self-
(SOs)	Instruction	Instruction	Learning
	(LI)	(CI)	(SL)
${ m SO2.1}$ Learn about different	Unit-2.0 Automated assembly	Unit-2.0 Automated	2.1 Analysis of
types of automated assembly	systems and factory	assembly systems and	transfer lines
systems, such as fixed	automation	factory automation	without storage;
sequence, flexible, and	1. Study and report on		2.2 Partial and full
modular systems, and	Pneumatic and	2.1 Historical developments;	
understand their respective applications and benefits.	Hydraulic Automation	Choice of assembly methods	
applications and benefits.	system	2.2 Design for automated	
SO2.2 Understand the key	2. Study and report on micro controller and its	assembly	
design considerations for	application.	2.3 Transfer systems;	
automated assembly systems,	3. Instructions for using	2.4 ; Vibratory and non-	
including layout optimization,	machine in the correct	vibratory feeders	
workstation design, part	way	2.5 Feed tracks, part	
feeding mechanisms, and		orienting and placing	
ergonomic considerations		mechanisms	
		2.6 Factory Automation:	
SO2.3 Understand the key		Lean manufacturing	
design considerations for automated assembly systems,		2.7 Automation scalability	
including layout optimization,		(fixed, programmable,	
workstation design, part		flexible and reconfigurable); 2.8 Design and analysis of	
feeding mechanisms, and		automated flow lines	
ergonomic considerations.		2.9 ; Average production	
-		time, production rate	
		2.10 line efficiency.	
		2.11 Tutorial I	
		2.12 Tutorial II	
		2.12 10(010111	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech.(Mechanical Engineering)Program (Revisedason01August2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

1. Explain the following -

i. Production Requirements

ii. Cost-Benefit Analysis:

2. Write short note on -

i. Scalability and Flexibility:

ii. Environmental Impact:

PCC-ME-306.3: Students should develop programming skills necessary for configuring and controlling automated systems, including programming languages such as ladder logic, Structured Text, Function Block Diagrams, or other relevant languages used in PLC programming.

Approximate Hours

ltem	Appx Hrs				
Cl	12				
LI	06				
SW	02				
SL	02				
Total	22				

Session Outcomes	Laboratory	Classroom Instruction	Self-
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
SO3.1 Participants will grasp the fundamentals of automated assembly systems, including their components, functionalities, and applications across various industries. SO2.2 Identify and analyze the key components and technologies utilized in automated assembly systems and factory automation, such as robotics, conveyors, sensors, PLCs, and human- machine interfaces SO3.3 Develop basic proficiency in programming and controlling automated assembly systems using relevant software tools and programming languages, with a focus on PLC programming and robot programming various.	Unit-3.0 Automation Tools and Techniques. 3.1 Study and report on flexible manufacturing system. 3.2 Study and report on Industrial Robotics: Sensors and Actuators 3.3 Instructions for using machine in the correct way	Unit-3.0 Automation Tools and Techniques 3.1 Mechanical, electro-mechanical 3.2 pneumatic and hydraulic systems 3.3 Sensors integration; Process monitoring 3.4 data analysis and control using actuators 3.5 Robots (pick, place, assembly, welding, painting, etc.) 3.6 Automatic Guided Vehicles 3.7 Automated inspection and measurement (CMM and 3D Scanning) 3.8 Machine vision 3.9 AI and machine learning. 3.10 Tutorial I 3.11 Tutorial II 3.12 Tutorial III	3.1. Human machine interfaces3.2. Examples and case studies

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech.(Mechanical Engineering)Program (Revisedason01August2023)

a. Assignments:

1. Define Feasibility Assessment:

2. What do you understand by Integration and Compatibility

PCC-ME-306.4: Students should learn how to troubleshoot common issues with automation systems and perform routine maintenance tasks to ensure optimal performance and uptime

		Approximate Hours			
			ltem	Appx Hrs	
			Cl	12	
			LI	06	
			SW	02	
			SL	02	
			Total	22	
Session Outcomes	Laboratory	Cla	assroom	Self-Learn	ning
(SOs)	Instruction	Ins	truction	(SL)	
	(LI)		(CI)		
SO4.1 Participants may have	Unit-4.0 Advanced	Unit-4.0 Adv	/anced	1.Analysis	
gained insights into the latest	Automation Trends	Automation	Trends	distributed	
advancements in automation	4.1 Study and report on			manufactu	U
technologies, including artificial	Different Automated	4.1 Digital, i			Intelligent
intelligence (AI), machine learning	Machinery	4.2 smart ma		machines	to Smart
(ML), robotic process automation	4.2 Study and report on		ed manufacturing	Machines	
(RPA), Internet of Things (IoT),	Modular Automation	4.4 Industry			
and autonomous systems.	System: Casting shop,		ransformations in		
SO4.2 The session may have	Machine shop, Press Shop	shop-floors	Smart factory;		
included discussions on how	4.3 Instructions for using		nt machines to		
advanced automation is being	machine in the correct	Smart Mach			
applied across various industries	way and safety aspect.		automation to		
such as manufacturing,		Distributed a			
healthcare, finance,		4.9 Human s	sense to system		
transportation, and agriculture.		sensed).	•		
Case studies may have been		4.10 Tutoria	1 I		
presented to illustrate successful		4.11 Tutoria			
implementations and their impact		4.12 Tutoria	1 III		
SO4 3 S Thore might have been					
SO4.3 S There might have been discussions on the skills and					
education needed to thrive in an					
increasingly automated world,					
including the importance of					
lifelong learning, up skilling, and					
deskilling.					

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- 1. What do you understand by Technological Advancements
- 2. Explain Collaboration and Innovation

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech.(Mechanical Engineering)Program (Revisedason01August2023)

PCC-ME-306 .5: Awareness of emerging trends and technologies in manufacturing automation, such as Industrial Internet of Things (IIoT), Artificial Intelligence (AI), Machine Learning (ML), and advanced robotics, and their potential applications in improving manufacturing processes

Approximate Hours					
ltem	Appx Hrs				
Cl	12				
LI	06				
SW	02				
SL	02				
Total	22				

Session	Laboratory	Classroom	Self-Learning
Outcomes	Instruction	Instruction	(SL)
(SOs)	(LI)	(CI)	
SO5.1 - Participants	Unit-5.0 Examples and Case	Unit-5.0 Examples and Case	5.1 data acquired from the
explore how IoT sensors	Studies	Studies	resources
can provide real-time	5.1 Study and report on		5.2 Analysis of
insights into supply chain	Economic analysis of	5.1 Pick and place robots	manufacturing automation
operations, enabling	Automation.	5.2 testing and sorting based	
proactive decision-making	5.2 Study of Orientation of	systems	
	parts: in-bowl and out-of-bowl	5.3 Orientation of parts: in-	
SO5.2 - Logistics Company	tooling's	bowl and out-of-bowl	
Z deployed IoT sensors	5.3 Instructions for using	tooling's	
across its supply chain to track the location,	machine in the correct way and	5.4 Manufacturing	
temperature, and condition	safety aspect.	equipment embedded with	
of goods in transit		digital data	
		5.5 driven by adoptive controls;	
SO5.3 - Participants learn		5.6 Manufacturing	
how computer vision		automation	
technologies can automate		5.7 autonomous decisions	
visual inspections and		taken by computers based on	
quality control processes		the realistic	
		process/machines	
		5.8 production conditions	
		5.9 Tutorial I	
		5.10 Tutorial II	
		5.11 Tutorial III	
		5.12 Tutorial IV	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- 1. What specific challenges or inefficiencies did the organization face before implementing the solution
- 2. How did the organization overcome these challenges, and what strategies were employed to mitigate

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech.(Mechanical Engineering)Program (Revisedason01August2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Lecture (LI)	Sessio nal Work (SW)	Self- Learni ng (SI)	Total hour (Cl+Ll+SW+SI)
PCC-ME-306 .1: Students should gain a comprehensive understanding of the concepts, principles, and technologies involved in manufacturing automation, including robotics, programmable logic controllers (PLCs), sensors, actuators, and human-machine interfaces.	12	06	02	02	22
PCC-ME-306 .2: Students should be able to describe and analyze different types of automation systems used in manufacturing processes, such as fixed automation, programmable automation, and flexible automation.	12	06	02	02	22
PCC-ME-306 .3: Students should develop programming skills necessary for configuring and controlling automated systems, including programming languages such as ladder logic, Structured Text, Function Block Diagrams, or other relevant languages used in PLC programming.	12	06	02	02	22
PCC-ME-306.4 : Students should learn how to troubleshoot common issues with automation systems and perform routine maintenance tasks to ensure optimal performance and uptime.	12	06	02	02	22
PCC-ME-306 .5 : Awareness of emerging trends and technologies in manufacturing automation, such as Industrial Internet of Things (IIoT), Artificial Intelligence (AI), Machine Learning (ML), and advanced robotics, and their potential applications in improving manufacturing processes	12	06	02	02	22
Total Hours	60	30	10	10	110

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech.(Mechanical Engineering)Program (Revisedason01August2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	А	Marks
CO-1	Introduction and Process Automation	03	01	01	05
CO-2	Automated assembly systems and factory automation	02	06	02	10
CO-3	Automation Tools and Techniques	03	07	05	15
CO-4	Advanced Automation Trends	-	10	05	15
CO-5	Examples and Case Studies	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U:Understand, A:Apply

The end of semester assessment for **Manufacturing Automation** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above asks. Teachers can also design different tasks as per requirement, for endse master assessment.

Suggested Instructional/ Implementation Strategies:

- 2. Improved Lecture
- 3. Tutorial
- 4. Case Method
- 5. Group Discussion
- 6. Role Play
- 7. Visit to cement plant
- 8. Demonstration
- 9. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp,Mobile,Onlinesources)
- 10. Brainstorming

Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of B.Tech. (Mechanical Engineering) Program (Revisedason01August2023)

Suggest

S. No.	Title	Author	Publisher	Edition& Year
1	Automation, Production Systems and Computer- integrated Manufacturing	M. P. Groover	Prentice Hall	2018
2	Manufacturing Engineering and Technology	S. Kalpakjian and S. R. Schmid,	McGraw Hill	2006
3	Computer Control of Manufacturing Systems,	Yoram Koren,	McGraw Hill	2005
4	CAD/CAM Principles and Applications,	P.N. Rao	McGraw Hill	2010
5		TrainingM	anual	
6		Training M	anual	
7	Dept.of	Lecture note pr Mechanical Engineerir	ovided by 1g,AKSUniversity,Satn	a.

- Curricul
 - 1. Mr.S.S. Parihar, Head of Deptt. Mech. Engg., AKSUniversity
 - Mr. Alok Ranjan Tiwari, Assistant Professor, Dept. of Mechanichal Engg. 2.
 - 3. Mr Deepak Pandey ,AssistantProfessor,Dept.ofMechanichalEngg
 - 4. Mr., Keshav Pratap Singh, AssistantProfessor, Dept. of MechanichalEngg
 - 5. Mr.Amar Soni, AssistantProfessor, Deptof Mechanichal Engg
 - Mr K.P Tiwari, AssistantProfessor,Dept.ofMechanichalEngg 6.
 - 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
 - 8. Mr. K.C. Kori, Faculty, AssistantProfessor, Dept. of Mechanichal Engg
 - 9. Mr, Lokesh Agrawal, AssistantProfessor, Dept. of Mechanichal Engg
 - 10. Mr. Ram Narayan Shukla, AssistantProfessor, Dept. of Mechanichal Engg
 - 11. Mr. Rishi Kumar Sharma, AssistantProfessor, Dept. of Mechanichal Engg
 - 12. Mr. Naveen Kumar Soni, AssistantProfessor, Dept. of Mechanichal Engg

Cos,POsandPSOsMapping

CourseTitle: B.Tech Mechanical Engineering

CourseCode: PCC-ME-306

CourseTitle: Manufacturing Automation

			-		Рі	rogran	n Outco	omes					Р	rogram Spec	cific Outcon	ne
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Engine eringkn owledg e		Design/ develop mentofs olutions	Condu ctinve stigati ons ofcom plex proble ms	toolusa	The engi neer ands ocie ty	Environ mentan dsustai nability :	Ethics	Indivi duala ndtea mwor k:	Com munic ation:	Project manage mentan dfinanc e:	Life- longlear ning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
PCC-ME-306 .1: Students should gain a comprehensive understanding of the concepts, principles, and technologies involved in manufacturing automation, including robotics, programmable logic controllers (PLCs), sensors, actuators, and human- machine interfaces.	1	1	2	2	2	2	3	1	2	2	1	2	2	2	1	-
PCC-ME-306 .2: Students should be able to describe and analyze different types of automation systems used in manufacturing processes, such as fixed automation, programmable automation, and flexible automation		2	2	2	1	2	2	1	1	1	2	3	2	2	2	1
PCC-ME-306 .3: Students should develop programming skills necessary for configuring and controlling automated systems, including programming languages such as ladder logic, Structured Text, Function	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2

Block Diagrams, or other relevant languages used in PLC programming.																
PCC-ME-306.4 : Students should learn how to troubleshoot common issues with automation systems and perform routine maintenance tasks to ensure optimal performance and uptime.	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
PCC-ME-306 .5: Awareness of emerging trends and technologies in manufacturing automation, such as Industrial Internet of Things (IIoT), Artificial Intelligence (AI), Machine Learning (ML), and advanced robotics, and their potential applications in improving manufacturing processes	1	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Legend:1-Low,2-Medium,3-High

Course Curriculum Map:

Pos & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning (SL)
PO1,2,3,4,5,6	CO-1 PCC-ME-306 .1 : Students should gain a comprehensive understanding of the concepts, principles, and technologies involved in manufacturing automation, including robotics,	SO1.1	UNIT -1 1.1	Unit-1.0 Introduction and Process Automation	
7,8,9,10,11,12	programmable logic controllers (PLCs), sensors, actuators, and human-machine interfaces.	SO1.2 SO1.3	1.2 1.3		
PSO1,2,3,4,5				1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9,1.10, 1.11,1.12	
PO1,2,3,4,5,6	CO-2 PCC-ME-306 .2: Students should be able to describe and analyze different types of automation systems used in manufacturing processes, such as fixed automation, programmable automation, and flexible automation	SO2.1	UNIT -2 2.1 2.2 2.3	Unit-2.0 Automated assembly systems and factory automation	-
7,8,9,10,11,12		SO2.2			
PSO1,2,3,4,5		SO2.3		2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8,2.9,2.10,2.11,2.12	
					As mentioned in
PO1,2,3,4,5,6 7,8,9,10,11,12	CO-3 PCC-ME-306 .3: Students should develop programming skills necessary for configuring and controlling automated systems, including programming languages such as ladder logic,	SO3.1 SO3.2	UNIT -3 3.1 3.2	Unit-3.0 Automation Tools and Techniques	Page number 2to6
PSO1,2,3,4,5	Structured Text, Function Block Diagrams, or other relevant languages used in PLC programming.	SO3.3	3.3	3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9, 3.10,3.11,3.12	
PO1,2,3,4,5,6	CO-4 PCC-ME-306.4: Students should learn how to	SO4.1	UNIT -4	unit-4.0 Advanced Automation Trends	-
7,8,9,10,11,12	troubleshoot common issues with automation systems and perform routine maintenance tasks to ensure optimal	SO4.2	4.1 4.2		
PSO1,2,3,4,5	performance and uptime.	SO4.3	4.3	4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9 4.10,4.11,4.12	
PO1,2,3,4,5,6	CO-5 PCC-ME-306 .5: Awareness of emerging trends and	SO5.1	UNIT -5	Unit-5.0 Examples and Case Studies	_
PSO1,2,3,4,3,0 7,8,9,10,11,12 PSO1,2,3,4,5	technologies in manufacturing automation, such as Industrial Internet of Things (IIoT), Artificial Intelligence (AI), Machine Learning (ML), and advanced robotics, and their potential applications in improving manufacturing processesdesign	SO5.2 SO5.3	5.1 5.2 5.3	5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9, 5.10,5.11,5.12	
					530

Semester-VI

Course Code:	PCC- ME 308
Course Title :	Product Innovation & Entrepreneurship
Pre- requisite:	Student should have basic knowledge of Entrepreneurship and also delineate the evolution and development of the concept of the term entrepreneur.
Rationale:	'It's all about the Start-up and New enterprise!' The students studying Entrepreneurship development under the Computer science engineering should possess to develop the knowledge and skills to manage the enterprise affairs of individuals, communities, and businesses based on IT . Students will develop the knowledge and skills necessary to establish and maintain Enterprise, based on internet and technology, Manage financial affairs, Act with integrity and Contribute to the wider community. Entrepreneurship development gives students the tools to make real life business decisions in a constantly changing and uncertain world and enhances business literacy.

Course Outcomes:

CO.1: Acquire the knowledge of Entrepreneurship and different theories of Entrepreneurship, challenges and process of Entrepreneurship.

CO.2: Acquire the basic concept of Entrepreneurial mindset and creativity with innovative ideasrelated to technology.

CO.3:Exposed to various methods of Opportunity analysis which includes opportunity sighting, opportunity evaluation process and different business models.

CO.4: Familiarize and understand Various techniques of pitching, various sources of funds, Types of investors and understanding of the three financial statements: Profit and loss account, Balance sheet, and cash flow statement.

CO.5: Acquire the concept of Collaboration it's types, Networking and it's types and Intellectual property rights.

Faculty of Engineering and technology

Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Scheme of Studies:

Board of					Schen	ne of studi	es (Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
PCC		Product Innovation & Entrepreneurship	4	0	2	1	7	4

Legend: Cl: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

			Scheme	of Assessme	nt (Mark	s)				
				Pro	gressive A	ssessmen	t (PRA)		End Semester Assessment	Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks each	Class Test 2 (2 best out of 3)	one	Class Activity any one	Class Attendance	Total Marks		
			(CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)

PCC	PCC- ME 308	Product Innovati on & Entrepre neurship		20	5	5	5	50	50	100	
-----	-------------------	---	--	----	---	---	---	----	----	-----	--

CO.1: Acquire the knowledge of Entrepreneurship and different theories of Entrepreneurship, challenges and process of Entrepreneurship.

Approximate Hours

ltem	Appx Hrs.
Cl	12
LI	0
SW	2
SL	3
Total	17

Session Outcomes	(LI)	Class room Instruction	(SL)
(SOs)		(CI)	
SO1.1 Understand the Concept		Unit-1 Introduction of Entrepreneurship	
and nature of			1. Identify features
Entrepreneurship		1.1 Concept of Entrepreneurship	and functions of
r r r r		1.2 Evolution of Entrepreneurship theories	Entrepreneurship
SO1.2 Understand Various		1.3 Theory of Achievement motivation	
Entrepreneurship theories		1.4 Theory of Entrepreneur as a risk taker	
		1.5 Theory of Creative Destruction	2. Comperative
SO1.3 Understand Challenges		1.6 Entrepreneurship categories: by Chance,	study between old
and Process of		Need, Choice, Force, and Myths	and new start-up
Entrepreneurship		1.7 Challenges and Process of Entrepreneurship	
		1.8 Start-up and it's types	
SO1.4 Understand Start-up and		1.9 Internet based start-up	
internet based start-up		1.10 Tutorial I	
		1.11 Tutorial II	
SO1.5 Understand Myths related		1.12 Tutorial III	
to entreprenneurship and those			
forces which affects it			

SW-1 Suggested Sessional Work (SW):

a. Assignments: Different between entrepreneur and intrapreneur

b. Mini Project: Identification of function performed by an entrepreneur

c. Other Activities (Specify): Distinguish with examples between an entrepreneur and manager

CO.2: Acquire the basic concept of Entrepreneurial mindset and creativity with innovative ideasrelated to technology.

Approximat	e Hours
Item	Appx Hr.
Cl	12
LI	0
SW	2
SL	3
Total	17

Session Outcomes		Class room Instruction	
(SOs)	(LI	(CI)	(SL)
SO2.1 Concept Meaning& terminology of creativity		 Unit 2 Creativity and innovatin 2.1 Concept of creativity and innovation 2.2 Difference between Scientist, Entrepreneur, and Manager 	1.Terminology
SO2.2 Understanding about the character of creative climate		 2.3Characteristics of Entrepreneur 2.4 Entrepreneurial Mindset and its enablers, 2.5 difference between idea and opportunity, 2.6 Link between creativity and innovation, 2.7 character of creative climate with cases of world most 	of Entrepreneurial mindset and it's enablers 2. How creativity an
O2.3 Preparation of Entrepreneurial mindset and it's enablers		creative companies, 2.8 types of innovation, 2.9 link between technology and innovation. 2.10 Tutorial I 2.11 Tutorial II	innovation link
SO2.4 Understanding the Difference Between scientist, Entrepreneur and manager		2.12 Tutorial III	

SW-2 Suggested Sessional Work (SW):

- a. Assignments: Differentiation between creativity and innovation
- b. Mini Project: write new innovation in the feald of IT sector
- c. Other Activities (Specify): Visit any successful entrepreneur innovative idea

CO.3: Exposed to various methods of Opportunity analysis which includes opportunity sighting, opportunity evaluation process and different business models.

Approximate Hours				
Item	Appx Hours			
Cl	12			
LI	0			

Cl	12
LI	0
SW	2
SL	3
Total	17

Session Outcomes	(LI)	Class room Instruction	(SL)
(SOs)		(CI)	
SO3.1 Meaning and concept of		Unit 3: Opportunity Analysis	
Opportunity sightings		3.1 Opportunity sighting:	
(Market and people driven)			1 How to get idea
			1.How to get idea and after that how to
SO3.2 Practical problem related			utilise opportunity

to Opportunity analysis	3.3 Opportunity Evaluation Process,	2 Concept of
SO3.3 Understanding the	3.4 Approaches to ideation,	2. Concept of Ideation and it's
Opportunity Evaluation process	3.5 Ideation techniques,	techniques
502 4 Un deresten din e ab aut	3.6 Idea to Opportunity Mapping.	
SO3.4 Understanding about Ideation and ideation	3.7 Business Model	
techniques	3.8 Functions of business models	
SO3.5 Preparation of	3.9 Factors of Business Model	
Opportunity mapping and business models	3.10 Tutorial I	
	3.11 Tutorial II	
	3.12 Tutorial III	

SW-3 Suggested Sessional Work (SW):

- a. Assignments: Justify the Need for and significance of opportunity identification and selection
- **b.** Mini Project: Understand by project identification with examples
- c. Other Activities (Specify): visit to any Entrepreneur.

CO.4: Familiarize and understand various techniques of pitching, various sources of funds, Typesof investors and understanding of the three financial statements: Profit and loss account, Balance sheet, and cash flow statement.

A	pproximate Hours
Item	Appx Hours
Cl	12
LI	0
SW	2
SL	3
Total	17

Session Outcomes (SOs)	(LI)	Class room Instruction (Cl)	(SL)
SO4.1 Understanding about the concept and types of		Unit4:	
pitching		Sources of funds and types of Financial statements	1.System of
SO4.2 Preparation of		4.1 Introduction to Pitching, types of pitch,	Pitching and it's techniques
Financial statements		4.2 Aspects of funds, types of capital,	-
SO4.3 Understanding about the Types of capital and		4.3 concept of break- even,	2.Inter into a bank and ask about the
break even analysis		4.4 sources of funds,	process how to get funds
SO4.4 Understanding about		4.5 Types and nature of investors,	
the Source of funds and types of investors		4.6 Understanding of the three financial statements: profit and loss account,	
SO4.5 Preparation of		4.7 Balance sheet, cash flow statement,	
business plan it's types and different sections		4.8 Introduction to Business Plan	
and different sections		4.9 Types and different sections of business plan.	
		4.10 Tutorial I	
		4.11 Tutorial II	
		4.12 Tutorial III	

SW-4 Suggested Sessional Work (SW):

- **a.** Assignments: Write different sources of funds near you.
- **b. Mini Project:** Collect the list of those sources which are easily available and those which are difficult.
- c. Other Activities (Specify): Bank loan procedure.

CO.5: Acquire the concept of Collaboration it's types, Networking and it's types and Intellectual property rights.

Item	Appx Hours
Cl	12
LI	0
SW	2
SL	3
Total	17

Session Outcomes (SOs)	(LI)	Class room Instruction (Cl)	(SL)
SO5.1 Understand about the concept of collaboration and it's types with approaches		Unit 5: Collaboration 5.1 Introduction of Collaboration, 5.2 Types and approaches of collaboration;	1.Comparision
SO5.2 Understand about Networking and it's stages		5.3 Networking: Why Network:	between data information and intelligence
SO5.3 Understand about Intellectual property rights and it's types		5.4 Places of networking,5.5 stages of networking,5.6 Good networking practices;	2. How to collaborate one Organisation with another
SO5.4 Understanding the Different between data, information and intelligence		5.7 Distinction between data, information, intelligence and knowledge,	
SO5.5 Understanding how collaboration affects an organisation		5.8 Components of Knowledge;5.9 Intellectual Property: Its life cycle, its types and IP Rights	
		5.10 Tutorial I 5.11 Tutorial II 5.12 Tutorial III	

SW-5 Suggested Sessional Work (SW):

- a. Assignments: Collaboration and it's importance in an organisation
- **b.** Mini Project: Prepare a report on the business or companies Collaboration
- c. Other Activities (Specify): Power Point Presentation of Networking

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self	Total hour
	Lecture	Work	Learning	(Cl+SW+Sl)
	(CI)	(SW)	(SI)	
CO.1: Acquire the knowledge of Entrepreneurship and				
different theories of Entrepreneurship, challenges and process	12	2	3	
of Entrepreneurship	12	2	5	
				17
CO.2: Acquire the basic concept of Entrepreneurial				
mindset and creativity with innovative ideas related to	12	2	3	
technology.	12	-	5	
				17
CO.3: Exposed to various methods of Opportunity analysis				
which includes opportunity sighting, opportunity evaluation	12	2	3	
process and different business models.				47
				17
CO.4: Familiarize and understand Various techniques of				
pitching, various sources of funds, Types of investors and				
understanding of the three financial statements: Profit and	12	2	3	
loss account, Balance sheet, and cash flow statement.				
				17
CO.5: Acquire the concept of Collaboration it's types,				
Networking and it's types and Intellectual property rights.	12	2	3	17
Total Hours				1/
	60	10	15	ог
	60	10	15	85

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

	CO Unit Titles Marks Distribution Total						
CO	Unit Titles	Ma	Total				
		R	U	Α	Marks		
CO-1	Introduction of Entrepreneurship	01	01	03	05		
CO-2	Creativity and innovation	01	01	03	05		
CO-3	Opportunity Analysis	-	03	10	13		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

CO-4	Sources of funds and types of Financial statements	-	03	10	13
CO-5	Collaboration	01	03	10	14
	Total	03	12	36	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Product Innovation & Entrepreneurship will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Brainstorming

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition & Year
1	Entrepreneurship development	Dr. S.S. khanka	S. Chand	
2	Entrepreneurship of small scaler industries	Deshpande, M.U.	Deep and Deep	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

3	Entrepreneurship theory and practice	Raj Shankar				
4	Lecture note provided Dept. of Commerce A	l by KS University, Satna .				

(a) Books :

.....

COs, Pos and PSOs Mapping

ProgramTitle:B.Tech Mechanical Engineering

Course Code: PCC ME 308; CourseTitle: Product Innovation & Entrepreneurship

						Progra	am Out	comes]	ProgramSpe	cificOutcon	ie
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation.	Product Innovation and Development
PROJ-ME 301: CO.1: Methodology for design and project scheduling	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 301: CO.2: Methods of Data collection and data compiliation	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 301: CO.3: Product development	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 301. CO.4: Data analysis and data interpretation	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 301. CO.5: Concluding remark and future work	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3

Legend:1–Low,2–Medium,3–High

Course Curriculum Map: Product Innovation & Entrepreneurship

POs & PSOs No.	COs No.& Titles	SOs No.	Class room
PO 1,2,3,4,5,6	CO-1: Acquire the knowledge of Entrepreneurship and different theories of Entrepreneurship, challenges	SO1.1	Unit1 Introduction of
7,8,9,10,11,12	and process of Entrepreneurship	SO1.2 SO1.3	Entrepreneurship 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8
PSO 1,2, 3, 4,		SO1.4 SO1.5	1.9,1.10,1.11,1.12
PO 1,2,3,4,5,6	CO 2 : Acquire the basic concept of Entrepreneurial mindset and	SO2.1	Unit-2 Creativity and
7,8,9,10,11,12	creativity with innovative ideas related to technology.	SO2.2	innovation
PSO 1,2, 3, 4,		SO2.3 SO2.4	2.1, 2.2,2.3,2.4,2.5,2.6,2.72.8, 2.9,2.10,2.11,2.12
PO 1,2,3,4,5,6	CO.3:Exposed to various methods of Opportunity analysis	SO3.1	Unit-3 : Opportunity Analysis
7,8,9,10,11,12	which includes opportunity sighting, opportunity evaluation	SO3.2	3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8
PSO 1,2, 3, 4,	process and different businessmodels.	SO3.3 SO3.4 SO3.5	3.9,3.10,3.11,3.12
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4,	CO.4: Familiarize and understand Various techniques of pitching, various sources of funds, Types of investors and understanding of the three financial statements: Profit and loss account, Balance sheet, and cash flow statement.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5	Unit-4 : Sources of funds and types of Financial statements 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8 4.9,4.10,4.11,4.12
	CO.5: Acquire the concept of Collaboration it's types, Networking and it's types and Intellectual property rights.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5	Unit 5: Collaboration 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8 5.9,5.10,5.11,5.12

Semester-VI

Course Code:	PCC-ME307
Course Title:	Production & Operation Management
Pre-requisite:	Understanding of basic engineering principles and fundamental manufacturing processes.
Rationale:	Production and Operation Management is essential in the B. Tech. Mechanical Engineering curriculum to equip students with the knowledge and skills required for effective planning, organizing, and controlling manufacturing processes. This subject provides a comprehensive understanding of optimizing resources, improving efficiency, and ensuring quality in industrial production, preparing students for key roles in the field of manufacturing and operations.

Course Outcomes:

- **PCC-ME307.1:** Understanding of the intricacies of production systems and resources, the classification of production types and the pivotal roles played by line supervisors and production managers.
- **PCC-ME307.2:** Students will be able to effectively manage the entire project life cycle, from concept phase to execution and completion, while ensuring quality, handling risks, and achieving project objectives.
- **PCC-ME307.3:** Students will be able to effectively plan, control, and manage production and supply chain operations to achieve optimal efficiency and cost-effectiveness.
- **PCC-ME307.4:** Understand the principles of factory management and their application in modern manufacturing systems. Apply the concepts of factory management to improve productivity, quality, and sustainability.
- **PCC-ME307.5:** Students will be able to apply mathematical and problem-solving techniques to optimize resource allocation and decision-making in various operational and logistical systems.

Scheme of Studies:

Board of				Scheme of studies (Hours/Week)					
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
Program Core (PCC)	PCC- ME307	Production & Operation Management	4	0	1	1	6	4	
Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others), LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.),						itorial			

SL: Self Learning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

						Scheme o	of Assessment (N	1arks)		
		Progressive Assessment (PRA)							Total Marks	
Board of Study	Course Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test2 (2 best out Of 3)	Seminar one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+A T)	(ESA)	(PRA+ ESA)
PCC	PCC- ME307	Production & Operation Managem ent	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PCC-ME307.1: Understanding of the intricacies of production systems and resources, the classification of production types and the pivotal roles played by line supervisors and production managers.

Approximate Hours			
ltem	AppX Hrs		
Cl	7		
LI	0		
SW	2		
SL	1		
Total	10		

Laboratory	Classroom Instruction	Self
	(CI)	Learning (SL)
	 Unit-1.0 Introduction 1.1 Introduction of the subject 1.2 Scope of production management. 1.3 Production system and resources (machines, tooling, etc.) 1.4 Types of production (batch, flow and unit) 1.5 Roles of line supervisors 1.6 Roles of production managers. 1.7 Tutorial-1 	1. Historical development and evolution of production management.
	Laboratory Instruction (LI)	Instruction (L)(Cl).Unit-1.0 Introduction.1.1 Introduction of the subject1.2 Scope of production management.1.3 Production system and resources (machines, tooling, etc.)1.4 Types of production (batch, flow and unit)1.5 Roles of line supervisors1.6 Roles of production managers.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Analyze real-world examples of successful production management strategies.

b. Other Activities(Role play):

A role play where students take on the roles of line supervisors and production managers, making strategic decisions in a simulated production environment.

PCC-ME307.2: Students will be able to effectively manage the entire project life cycle, from concept phase to execution and completion, while ensuring quality, handling risks, and achieving project objectives.

Approximate Hours		
AppX Hrs		
13		
0		
2		
2		
17		

Session Outcomes	(LI)	Classroom Instruction	Self
(SOs)		(CI)	Learning (SL)
 SO2.1 Analyze and prepare quotations and proposals. SO2.2 Demonstrate to prepare a Detailed Project Report 		 Unit-2 Project life cycle 2.1 Concept phase (RFQ, Quotations, Proposals), 2.2 Project initiations, 	 Study various methods of cost estimation in project management.
(DPR).		2.3 DPR preparation (project value)	ii. Analyze case
SO2.3 Understand the process of acquiring financing for projects.		 2.4 Business case development 2.5 Feasibility study 2.6 Project planning 2.7 Project team, producing quality 	studies related to feasibility in projects.
SO2.4 Identify potential risks in project management.		2.8 Handling risk2.9 Acceptance criteria	
SO2.5 Develop project schedules and timelines.		2.10 Project execution : allocation of resources	
		2.11 Project execution : scheduling2.12 Tutorial-12.13 Tutorial-2	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

SW-2 Suggested Sessional Work(SW):

a. Assignments:

- i. Analyze real-world case studies highlighting challenges and solutions in production management.
- ii. Simulate the process of acquiring resources for a hypothetical project.

PCC-ME307.3: Students will be able to effectively plan, control, and manage production and supply chain operations to achieve optimal efficiency and cost-effectiveness.

A	pproximate Hours
ltem	AppX Hrs
Cl	16
LI	0
SW	2
SL	2
Total	20

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO3.1 Understand the importance of production planning and control in manufacturing processes. SO3.2 Ability to formulate production plans based on demand forecasting. SO3.3 Apply aggregate production planning techniques to balance demand and capacity. SO3.4 Calculate Economic Order Quantity (EOQ) and apply it in inventory management. SO3.5 Analyze JIT and supply chain management. 		 Unit-3: Production Planning and Control 3.1 Ordinary Production planning 3.2 Process planning 3.3 Resource planning 3.4 Introduction of Forecasting methods 3.5 Types of Forecasting methods 3.6 Numerical analysis on various forecasting methods 3.7 Aggregate production planning 3.8 Materials requirement planning 3.9 Inventory Management 3.10 Economic order Quantity 3.11 Discount models, 3.12 Stochastic inventory models, 3.13 JIT 3.14 Supply chain management. 3.15 Tutorial-1 3.16 Tutorial-1 	i. Identificati on and assessment of supply chain risks ii. Strategies for mitigating supply chain disruptions

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Analyze real-world cases of successful production planning and control implementation.
- ii. Evaluate challenges faced and solutions implemented.

b. Project:

I. Develop a comprehensive production plan for a hypothetical manufacturing unit.

PCC-ME307.4: Understand the principles of factory management and their application in modern manufacturing systems. Apply the concepts of factory management to improve productivity, quality, and sustainability.

Approximate Hours				
Item	AppXHrs			
Cl	14			
LI	0			
SW	2			
SL	2			
Total	18			

Session	(LI)	Classroom Instruction	Self Learning
Outcomes (SOs)		(Cl)	(SL)
 SO4.1 Understand the key principles of effective factory management. SO4.2 Understand the principles of lean manufacturing and its application in the industry. SO4.3 Analyze the importance of training in enhancing workforce skills. SO4.4 Gain knowledge of block chain technology and its applications in the manufacturing industry. SO4.5 Analyze process capability in manufacturing and its impact on quality. 		 Unit-4 : Factory Management 4.1 Factory layout 4.2 line balancing 4.3 material flow and handling 4.4 Lean and green manufacturing 4.5 Human resource management 4.6 Advantage and opportunities for Digitalization 4.7 TQM; Important acts, regularities and safety norms 4.8 Reliability assessment of processes 4.9 Block chain 4.10 Energy management, Efficiency & throughput 4.11 Overall equipment effectiveness 4.12 Process capability 4.13 Tutorial-1 4.14 Tutorial-2 	 i. Importance and Types of Factory Layouts. ii. Opportunities and Challenges of Digitalization in Manufacturing

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Analyze the layout of a local manufacturing facility and suggest improvements.
- ii. Evaluate the environmental impact of a manufacturing facility and suggest green improvements.

PCC-ME307.5: students will be able to apply mathematical and problem-solving techniques to optimize resource allocation and decision-making in various operational and logistical systems.

Approximate Hours			
Item	Appx Hrs		
Cl	10		
LI	0		
SW	1		
SL	1		
Total	12		

Session Outcomes (SOs)	(LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO5.1 Define LP and its applications in production and operation management. SO5.2 Identify feasible and optimal solutions using graphical methods. SO5.3 Apply algorithms to solve LP problems and optimize solutions. SO5.4 Formulate transportation and assignment problems. SO5.5 Apply queuing models to analyze and optimize system performance. 		Unit5: Operation Management5.1 Linear programming5.2 Objective function5.3 Constraints5.4 Graphical method5.5 Simplex method5.6 Duplex algorithms5.7 Transportation5.8 Assignment5.9 Simple queuing theory models5.10Tutorial-1	1. Application of simplex and duplex methods in solving LP problems.

SW-5 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Formulate a real-world problem as an LP model.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture	Sessional Work	Self Learning	Total hour (Cl+SW+Sl)
	(CL)	(SW)	(SI)	
PCC-ME307.1: Understanding of the intricacies of production systems and resources, the classification of production types and the pivotal roles played by line supervisors and production managers.	7	2	1	10
PCC-ME307.2 : students will be able to effectively manage the entire project life cycle, from concept phase to execution and completion, while ensuring quality, handling risks, and achieving project objectives.	13	2	2	17
PCC-ME307.3 : Students will be able to effectively plan, control, and manage production and supply chain operations to achieve optimal efficiency and cost-effectiveness.	16	2	2	20
PCC-ME307.4 : Understand the principles of factory management and their application in modern manufacturing systems. Apply the concepts of factory management to improve productivity, quality, and sustainability.	14	2	2	18
PCC-ME307.5 : students will be able to apply mathematical and problem-solving techniques to optimize resource allocation and decision-making in various operational and logistical systems.	10	1	1	12
Total Hours	60	09	08	77

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Introduction	01	02	03	06
CO-2	Project Management	01	03	07	11
CO-3	Production Planning and Control	01	07	04	12
CO-4	Factory Management	01	06	04	11
CO-5	Operation Management	01	06	03	10
	Total	5	24	21	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Production and Operation Management** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to industry
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/ Tutorials CBT, Blog, Facebook, Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B. Tech. (Mechanical Engineering) Program (Revised as on 01August2023)

Suggested Learning Resources:

(a)	(a)Books:								
S. No.	Title	Author	Publisher	Edition &Year					
1	Operations Management: Strategy and Analysis	L.J. Krajewski and L.P Ritzmen	Pearson	2010					
2	Operations Management for Competitive Advantage	R.B. Chase, F.R. Jacobs and N.J. Aquilano	Tata McGraw Hill	2011					
3	Factory Physics: Foundations of Manufacturing Management	W. J. Hopp and M. L. Spearman	McGraw Hill International Edition	2008					
4	Operations Management: Theory and Practice	Mahadevan. B.	Pearson	2015					
5	Operations Research	Taha H. A.	PHI India	2003					
6	Lecture notes provided Dept. of Mechanical Er		ersity, Satna	·					

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanical Engg.
- 3. Mr. Deepak Pandey, Assistant Professor, Dept. of Mechanical Engg
- 4. Mr. Keshav Pratap Singh, Assistant Professor, Dept. of Mechanical Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanical Engg
- 6. Mr Krishn Pratap Tiwari , Assistant Professor , Dept. of Mechanical Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 8. Mr. K.C. Kori, Assistant Professor, Dept. of Mechanical Engg
- 9. Mr. Lokesh Agrawal, Assistant Professor, Dept. of Mechanical Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanical Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanical Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, Pos and PSOs Mapping

Course Title: B. Tech. Mechanical Engineering

Course Code: PCC-ME307

Course Title: Production and Operation Management

						-	gram omes						Р	rogram Spec	cific Outcom	ie
	PO 1	PO2	PO3	PO4	PO5	PO6	P07	PO 8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engi neer ing know ledge	Prob lem anal ysis	Design /devel opme nt of soluti ons	Conduct investiga tions of complex problems	Mod ern Tool usag e	The engine er and society	Environ ment and sustain ability	Eth ics		Com munic ation	Project manage ment And finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation	Product Innovation and Developmen t
CO1: Understanding of the intricacies of production systems and resources, the classification of production types and the pivotal roles played by line supervisors and production managers.	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO 2 : students will be able to effectively manage the entire project life cycle, from concept phase to execution and completion, while ensuring quality, handling risks, and achieving project objectives.	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO3: Students will be able to effectively plan, control, and manage production and supply chain operations to achieve optimal efficiency and cost- effectiveness.	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO 4: Understand the principles of factory management and their application in modern manufacturing systems. Apply the concepts of factory management to improve productivity, quality, and sustainability.	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO5: students will be able to apply mathematical and problem- solving techniques to optimize resource allocation and decision- making in various operational and logistical systems.	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Course Curriculum Map:

POs & PSOs No.	Cos No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self Learning (SL)
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO-1: Understanding of the intricacies of production systems and resources, the classification of production types and the pivotal roles played by line supervisors and production managers.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Introduction 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 2: students will be able to effectively manage the entire project life cycle, from concept phase to execution and completion, while ensuring quality, handling risks, and achieving project objectives.	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 Project Management 2.1,2.2,2.3,2.4,2.5,2.6,2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13	As mentioned in
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5		SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3 : Production Planning and Control 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16	Page number 2 to 6
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 4: Understand the principles of factory management and their application in modern manufacturing systems. Apply the concepts of factory management to improve productivity, quality, and sustainability.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4: Factory Management 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14	
PO 1, 2, 3, 4, 5, 6 7, 8, 9, 10, 11, 12 PSO 1, 2, 3, 4, 5	CO 5: students will be able to apply mathematical and problem-solving techniques to optimize resource allocation and decision-making in various operational and logistical systems.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit-5: Operation Management 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 5.10	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Semester-VII

Course Code:	OEC12
Course Title:	Big Data Analytics
Pre- requisite:	Student should have a basic understanding of data mining, statistics, data visualization and a degree of programming knowledge.
Rationale:	Big data analytics is important because it helps organizations use data to identify new opportunities.

Course Outcome: After completion of this course the students will be able to

- **OEC12.1:** Understand and apply big data flow to actual projects as well as apply data analytics life cycle to big data projects.
- **OEC12.2:** Apply appropriate techniques and tools to solve big data problems
- **OEC12.3:** Describe big data and use cases from selected business domains
- **OEC12.4:** Explain NoSQL big data management
- **OEC12.5:** Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics

Scheme of Studies:

Board of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Total Credits (C)
OEC	OEC12	Big Data Analytics	3	2	1	1	7	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e., Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory

workshop, field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Scheme of Assessment:

Theory

				Sch	eme of .	Assessme	nt (Ma	rks)		
			P	rogressive	End	Total				
Board of Study	Course Code	Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one (SA)	Class Activity any one (CAT)	Class Atten danc e (AT)	Total Marks (CA + CT + SA + CAT + AT)	Semester Assessme nt (ESA)	
OEC	OEC41 2	Big Data Analytic s	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC12.1. Understand and apply big data flow to actual projects as well as apply data analytics life cycle to big data projects.

Approximate Hours:

Item	AppX Hrs
Cl	7
LI	0
SW	2
SL	1
Total	10

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO1.1 Understand about concept of Big data SO1.2 Understand about Traits of Big data SO1.3 Understand about Challenges of Conventional Systems SO1.4 Web Data, Evolution of Analytic, Scalability. SO1.5 Understand about Analysis vs Reporting SO1.6 use of Statistical Concepts SO1.7 Learn about Re- Sampling, Statistical Inference, Prediction Error 		 Module 1: Introduction to big data 1.1 Introduction to Big data Platform 1.2 Traits of Big data, 1.3 Challenges of Conventional Systems 1.4 Web Data, Evolution of Analytic, Scalability 1.5 Analysis vs Reporting 1.6 Statistical Concepts: Sampling Distributions 1.7 Re-Sampling, Statistical Inference, Prediction Error. 	1. Learn about different source of data

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. What is difference between structure, unstructured and semi structure data.
- ii Explain various challenge associated with big data.

b. Mini Project:

i. What is benefit you can derive from data analysis?

c. Other Activities (Specify):

- i. Main problems in using Concurrency
- **OEC12.2.** Apply appropriate techniques and tools to solve big data problems.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Approximate Hours:

Item	AppX Hrs
Cl	8
LI	0
SW	2
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO2.1 Understand about Regression Modelling. SO2.2 About Multivariate Analysis, Bayesian Modelling. SO2.3 About Inference and Bayesian 		Module 2: Basic data analysis and data analytic methods using R 2.1 Regression Modelling 2.2 Multivariate Analysis, Bayesian Modelling 2.3 Inference and Bayesian Networks 2.4 Support Vector and Kernel Methods	1. Learn about basics of data analysis
Networks SO2.4 Understand about Vector and Kernel Methods SO2.5 Analysis of Time Series.		 2.5 Analysis of Time Series: Linear Systems Analysis, Nonlinear Dynamics, Rule Induction 2.6 Neural Networks: Learning and 	
SO2.6 understand Neural Networks SO2.7 understand Fuzzy Logic		Generalization, Competitive Learning, Principal Component	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

SO2.8 about	Analysis and Neural	
Introduction to R.	Networks	
	2.7 Fuzzy Logic:	
	Extracting Fuzzy	
	Models from Data	
	Fuzzy Decision Trees,	
	Stochastic Search	
	Methods.	
	2.8 Introduction to R,	
	Statistics for Model	
	Building and	
	Evaluation.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain Bayesian Networks.
- ii Explain challenges of Neural Networks

b. Mini Project:

i. Read Dataset with Pandas

c. Other Activities (Specify):

i. Explain Kernel Methods with example

OEC12.3. Describe big data and use cases from selected business domains

Approximate Hours:

Item	AppX Hrs
Cl	6
LI	0
SW	2
SL	1
Total	9

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
 SO3.1 Mining Frequent item sets: Market Based Model SO3.2 Understand about Apriori Algorithm. SO3.3 Understand about Handling Large Data Sets in Main Memory SO3.4 Understand about Limited Pass Algorithm SO3.5 Learn about Counting Frequent item sets in a Stream SO3.6 understand about different Clustering Techniques 		 Module-3.0 Frequent item sets and clustering 1.1 Mining Frequent item sets: Market Based Model 1.2 Apriori Algorithm 1.3 Handling Large Data Sets in Main Memory 1.4 Limited Pass Algorithm 1.5 Counting Frequent item sets in a Stream 1.6 Clustering Techniques: Hierarchical, K-Means, Frequent Pattern based Clustering Methods 	1. various types of Locks in Detail.

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. What are the Requirements of Clustering Data Mining Techniques?
- b. Mini Project:
 - i. Write a program to implement clustering in R programming.

c. Other Activities (Specify):

i. Explain application of clustering.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

OEC12.4. Explain NoSQL big data management

Approximate Hours:

Item	AppX Hrs
Cl	6
LI	0
SW	2
SL	1
Total	9

Session Outcomes	Laboratory Instruction	Class room Instruction (CI)	Self-Learning (SL)
(SOs) SO4.1 Understand about Stream Data SO4.2 About Stream Computing SO4.3 understand about Sampling Data in a Stream: Filtering Streams, Counting Distinct Elements in a Stream	(LI)	Module-4.0 Mining data streams4.1 Introduction to Streams Concepts: Stream Data Model and Architecture4.2 Stream Computing4.3 Sampling Data in a Stream: Filtering Streams, Counting Distinct	 Source of data About Unstructured text
 SO4.4 learn about Estimating Moments, Counting Oneness in a Window SO4.5 learn about Decaying Window, Real time Analytics Platform (RTAP) Applications SO4.6 Analysis and case studies 		 Elements in a Stream. 4.4 Estimating Moments, Counting Oneness in a Window 4.5 Decaying Window, Real time Analytics Platform (RTAP) Applications 4.6 Case Studies, Real Time Sentiment Analysis, Stock Market Predictions 	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Explain REAL TIME ANALYTICS PLATFORM (RTAP) APPLICATION.

b. Mini Project:

i. Why the rapid growth of unstructured data is putting greater pressure on businesses. Explain it.

c. Other Activities (Specify):

i. CASE STUDIES - REAL TIME SENTIMENT ANALYSIS, STOCK MARKET PREDICTIONS.

OEC12.5: Design a database scenario for handling big data

. Approximate Hours:

Item	AppX Hrs
Cl	7
LI	0
SW	2
SL	1
Total	10

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
 SO5.1 Understand about Hadoop SO5.2 Understand about MapR SO5.3 Learn about NoSQL Database and Hadoop Distributes File System SO5.4 Understand about Visual Data Analysis. SO5.5 Learn about Interaction Techniques SO5.6 Use of Statistical packages SO5.7 Understand about Application of Analytics 		 Module -5.0 Framework, technologies, tools and visualization 5.1 Map Reduce: Hadoop 5.2 Hive, MapR, Sharding 5.3 NoSQL Databases: S3, Hadoop Distributed File Systems 5.4 Visualizations: Visual Data Analysis Techniques, 5.5 Interaction Techniques; Systems and Analytics Applications. 5.6 Analytics using Statistical packages 5.7 Industry challenges and application of Analytics 	1.Big Data

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Create Word Count Map Reduce program to understand Map Reduce Paradigm

b. Mini Project:

- i. To setup Hadoop.
- ii. To run sample program using hadoop.

c. Other Activities (Specify):

i. Implementing Matrix Multiplication with Hadoop Map Reduce

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Sessional	Self-	Total hour
	Lecture	Work	Learning	(Cl+SW+Sl)
	(Cl)	(SW)	(Sl)	
OEC12.1. Understand and apply big data flow				
to actual projects as well as apply data analytics life cycle to big data projects.	7	2	1	10
OEC12.2. Apply appropriate techniques and tools to solve big data problems	8	2	2	12

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B Toch (Mechanical Engineering) Program

Curriculum of B.Tech. (Mechanical Engineering) Program

OEC12.3. Describe big data and use cases from selected business domains	6	2	2	10
OEC12.4. Explain NoSQL big data management	6	2	1	9
OEC12.5. Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics	7	2	1	10
Total Hours	34	10	7	51

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	Marks Distribution			Total
CO	Unit Titles	R	U	Α	Marks
CO1	Introduction to big data	03	04	03	10
CO2	Basic data analysis and data analytic methods using R	05	03	02	10
CO3	Frequent item sets and clustering	05	03	02	10
CO4	Mining data streams	04	05	01	10
CO5 Framework, technologies, tools and visualization		03	05	2	10
	Total		17	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Big data analytics will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to IT Industry.
- 7. Demonstration

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition & Year
1	Analytics in a Big Data World: The Essential Guide to data Science and its Applications	Bart Baesens,	Wiley publications	2014
2	Big Data & Hadoop	V.K. Jain	Khanna Book Publishing Co., Delhi (ISBN 978- 93-82609-131)	2017
3	Intelligent Data Analysis",	Michael Berthold, David J. Hand	Springer	2003
4	Mining of Massive Datasets	Anand Rajaraman and Jeffrey David Ullman	Cambridge University Press, 2020.	2020
5	Beginner's Guide for Data Analysis using R Programming	Jeeva Jose	Khanna Book Publishing House, 2019	2019

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: OEC12 Course Title: Big data analytics.

		Program Outcomes										Program Specific Outcome				
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes		Problem Solving		Laborat ory Skills	Team work	Skille		Lifelong Learnin g	Global and Societa l Impact	Project Manage ment	Adaptab	Professi onal Develop ment	Mechanical System Design and Analysis	Manufacturi ng Processes and Automation	Computatio nal Modeling and Simulation.	Product Innovation and Developme nt
CO1 Understand and apply big data flow to actual projects as well as apply data analytics life cycle to big data projects.	3	1	2	2	2	2	3	1	2	2	1	2	2	2	1	2
CO2 Apply appropriate techniques and tools to solve big data problems	2	2	3	2	1	2	2	1	1	1	2	3	2	2	2	3
CO3 Describe big data and use cases from selected business domains	2	2	1	1	2	2	2	1	1	2	1	2	2	1	1	2
CO4 Explain NoSQL big data management	3	2	2	2	3	1	3	1	2	1	2	2	3	3	2	2
CO5 Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics	2	2	2	2	1	1	3	1	1	1	2	2	3	3	2	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No. Laboratory Instruction (L I)		Classroom Instruction(CI)	Self-Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1 Understand and apply big data flow to actual projects as well as apply data analytics life cycle to big data projects.	SO1.1, SO1.2 SO1.3, SO1.4 SO1.5, SO1.6 SO1.7		Unit-1. Introduction to big data 1.1,1.2,1.3,1.4,1.5,1.6,1.7	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2 Apply appropriate techniques and tools to solve big data problems	SO2.1, SO2.2 SO2.3, SO2.4 SO2.5, SO2.6 SO2.7, SO2.8		Unit-2 Basic data analysis and data analytic methods using R 2.1, 2.2, 2.3, 2.4,2.5.2.6,2.7,2.8	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3 Describe big data and use cases from selected business domains	SO3.1,SO3.2 SO3.3,SO3.4 SO3.5, SO3.6		Unit-3 : Frequent item sets and clustering 3.1, 3.2, 3.3, 3.4, 3.5, 3.6	1
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4 Explain NoSQL big data management	SO4.1, SO4.2 SO4.3, SO4.4 SO4.5, SO4.6		Unit-4 : Mining data streams 4.1, 4.2,4.3,4.4,4.5,4.6	1,2
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5 Use Hadoop related tools such as HBase, Cassandra, Pig, and Hive for big data analytics	SO5.1, SO5.2 SO5.3, SO5.4 SO5.5, SO5.6 SO5.7		Unit 5: Framework, technologies, tools and visualization 5.1,5.2,5.3,5.4,5.5,5.6,5.7	1

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Semester VII

Course Code:	OEC04
Course Title:	Computer Networks
Pre- requisite:	Fundamentals of Computer.
Rationale:	Problem solving skills can help people develop more skills and build a Computer Network.

Course Outcome:

OEC04.1: Understand the architecture principles that have enabled the orders of magnitude expansion of the Internet

- **OEC04**.2: Understand networked applications and their protocols, their installation, operation, and performance tuning
- OEC04.3: Understand layering as a means of tackling complexity, layering applied to the Internet

OEC04.4: Understand protocols as a structured means of reliable communications

OEC04.5: Be familiar with tools for configuring, monitoring and tuning the Internet and hosts

Scheme of Studies:

Board				Scheme of studies(Hours/Week)							
of Stud y	Course Code	Course Title	Cl	LI	S W	SL	Total Study Hours (CI+LI+SW+ SL)	10tal Crodits(C)			
Open Electiv e Course (OEC)	OEC04	Computer Networks	3	0	1	1	5	3			

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

Note: SW & SL must be planned and performed under the continuous guidance and feedback ofteacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

Scheme of Assessment: Theory

			Scher	ne of Assess	sment	(Marks	;)			
			Progressiv	ve Assessme	nt (P	-		End	Tota	
Boar d of Stud y	Cou se Co de	Course Title	Class/Home Assignment 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Se min ar one (SA)	Class Activ ity any one (CA T)	Class Attenda nce (AT)	Total Marks (CA+C T+SA+ CAT+A T)	Semeste r Assessm ent (ES A)	l Mar ks (PR A+ ES A)
OEC	OEC0 4	Comput er Network ing.	15	20	5	5	5	50	5 0	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC04.1. Understand the architecture principles that have enabled the orders of magnitude expansion of the Internet

Item	AppX Hrs
Cl	7
LI	0
SW	1
SL	1
Total	9

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

Session	Laboratory	Class room	Self-
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
SO1.1 Understand the Fundamentals of Internet Operation SO1.2 Grasp Internet Design Principles SO1.3 Comprehend Performance Metrics and Measurement SO1.4 Introduction to Internet Layers		 Module-1.0 Introduction: 1.1 Importance of the Internet in modern computing. 1.2 Present a high- level overview of the processes involved when browsing a website. 1.3 Discuss the roles of browsers, web servers, 1.4 URLs, domain names, 1.5 IPaddresses, and packets in this process. 1.6 Explain the concepts of packet switching and circuit switching. 1.7 Discuss the advantages of store-and-forward networks. 	1. learn Basics of Computer Fundamental

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Define and explain the following performance metrics in the context of computer networking: end-to-end throughput, delay, jitter, and drop rates.
- ii. Discuss the practical implications of each metric on the user experience and network efficiency.

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

b. Mini Project:

i. Network Performance Analysis of Popular Websites

OEC04.2. Understand networked applications and their protocols, their installation, operation, and performance tuning.

Item	AppX Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcom es(SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1 Understanding InternetNames and DNS SO2.2 Application LayerProtocols SO2.3 Web Applications andtheir Architecture SO2.4 Peer-to-Peer Applications and P2PFile Distribution SO2.5 Audio and Video Streaming Challenges 		Module- 2.0Application LayerProtocols & WebApplications, P2P,and StreamingChallenges.2.1 Emphasize the importance of domain names and URLs.2.2 Explain DNS and its role in translating domain names to IP addresses.2.3 Discuss the	1. Enhance the understandin g of Internet Protocol (IP) versions, IPv4 and IPv6, and their significance in modern networking.

A K S University Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Identify and explain at least three types of HTTP requests (e.g., GET, POST) and their purposes in the context of the chosen website.

ii. Explain the role of Simple Mail Transfer Protocol (SMTP) in the process of sending and receiving emails.

b. Mini Project:

i. Web Application Performance Analysis.

OEC04.3. Understand layering as a means of tackling complexity, layering applied to the Internet

Item	AppX Hrs		
Cl	6		
LI	0		
SW	2		
SL	1		
Total	9		

Faculty of Engineering and Technology **Department of Mechanical Engineering**

Curriculum of B.Tech. (Mechanical Engineering) Program

Session	Laboratory	Classroom Instruction	Self-
Outcomes (SOs)	Instruction (LI)	(CI)	Learning (SL)
 SO3.1 Understanding of Socket Programming SO3.2 Building a Simple Client-Server Application SO3.3 Understanding UDP Sockets SO3.4 Hands-On Linux Network Programming SO3.5 Discussion on Practical Applications SO3.6 Q&A and Problem- Solving Session 		 Module-3.0 T Socket Programming & Building a Simple Client-Server Application 3.1 Socket programming and its role in network communication. 3.2 The fundamental concepts of sockets, including client and server roles. 3.3 The types of sockets and their applications. 3.4 multi-cycle processor 3.5 Brief demonstration of a simple socket programming scenario. 3.6 The steps involved in establishing a connection between a client and server. 	1. Proficiency in Linux network programming, specifically focusing on socket programming

SW-1 Suggested Sessional Work (SW):

a. **Assignments:**

- The fundamental differences between TCP (Transmission Control Protocol) and UDP (User i. Datagram Protocol) in the context of socket programming.
- TCP would be more appropriate than UDP and vice versa, considering factors like reliability, ii. connection-oriented nature, and overhead.

Mini Project: b.

Secure Chat Application using Sockets i

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

OEC04.4. Understand protocols as a structured means of reliable communications.

Item	AppX Hrs		
Cl	9		
LI	0		
SW	1		
SL	1		
Total	11		

Session Outco	Laboratory Instruction	Class room Instruction (CI)	Self-Learning (SL)
mes (SOs)	(LI)		
(SOs) SO4.1 Understanding of Transport Layer Protocols SO4.2 Process-to- Process Delivery and Multiplexing SO4.3 Port Numbers and Header Structure SO4.4 Reliable Transmission Mechanisms SO4.5 TCP Connection Setup and Teardown SO4.6. Hands-On Exercise: Implementing		 Unit-4.0 Transport Layer & Process-to-Process Delivery and Multiplexing. 4.1 Differentiate between TCP (Transmission Control Protocol) and UDP (User Datagram Protocol). 4.2 The concept of process-to- process delivery facilitated by the transport layer. 4.3 Multiple processes on a host can communicate over a network 4.4 The concept of multiplexing and its role in 	1.Enhance your understand ing of the Transport Layer protocols, TCP and UDP, by engaging in self- directed learning activities.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

		p
a Basic TCP	transport layer	
Application	communication	
	4.5 Emphasize the role of port	
	numbers in distinguishing	
	different applications.	
	4.6 The mechanisms used by	
	TCP for reliable	
	communication, including	
	sequence numbers,	
	acknowledgments (ACKs),	
	timeout, and	
	retransmissions.	
	4.7 Break down the three-way	
	handshake process for TCP	
	connection establishment.	
	4.8 Address any uncertainties	
	and clarify concepts.	
	4.9Ask where students	
	investigate and present a	
	comparison between TCP	
	and UDP in a specific	
	application or use case.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Packet analyzer tool (e.g., Wireshark) to capture network traffic during a file download, and identify instances of TCP and UDP packets.
- ii. The implications of using TCP or UDP in this specific scenario and how the choice of protocol might impact the overall performance of the file transfer.

Mini Project:

I Reliable File Transfer Application

OEC04.5. How the data is stored, and input-output is performed in computers.

A K S University Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of B.Tech. (Mechanical Engineering) Program

Item	AppX Hrs		
Cl	9		
LI	0		
SW	1		
SL	1		
Total	11		

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO5.1 Understand about Memory.		Unit-5.0 Storage and I/O, Superscalarprocessors and multicore systems	1.Computer Memory
SO5.2 Use of flash memory.		5.1 Introduction to magnetic disks (notion of tracks,	
SO5.3 learn about I/O and memory mapping.		sectors) 5.2 flash memory.	
SO5.4 learn about data transfer techniques.		5.3 I/O mapped, and	
SO5.5. learn Limitation of ILP.		memorymapped I/O. 5.4 I/O data transfer techniques:	
SO5.6 use of SMT processor.		5.5 programmed I/O,	
SO5.7 Learn about multicore systems and cache coherence		5.6 Interrupt- driven I/O, and DMA.	
issues		5.7 Limits of ILP	
		 5.8 SMT processors 5.9 Introduction to multicoresystems and cache coherence issues 	

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

SW-1 Suggested Sessional Work (SW):

a. Assignments:

i. Write the difference between memory mapped I/O and Isolated I/O.

ii What is the drawback of programmed I/O method and how it can be resolved by interrupt initiated I/O.

b. Mini Project:

i. Explain asynchronous serial transmission.

Other Activities (Specify):

Explain booth multiplication algorithm with the help of example.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learnin g (Sl)	Total hour (Cl+SW+ Sl)
OEC04.1. Understand the architecture principles that have enabled the orders of magnitude expansion of the Internet	7	1	1	9
OEC04.2. Understand networked applications and their protocols, their installation, operation, and performance tuning	9	2	2	13
OEC04.3. Understand layering as a means of tackling complexity, layering applied to the Internet	6	2	2	10
OEC04.4. Understand protocols as a structured means of reliable communications	9	1	1	11
OEC04.5. Be familiar with tools for configuring, monitoring and tuning the Internet and hosts	9	1	1	11
Total Hours	40	7	7	54

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

	Unit Titles	M	Marks Distribution		
СО		R	U	А	Mark s
CO1	Introduction	03	04	03	10
CO2	Application Layer Protocols & Web Applications, P2P, and Streaming Challenges.	05	03	02	10
CO3	T Socket Programming & Building a Simple Client-Server Application	05	02	03	10
CO4	Transport Layer & Process- to-Process Delivery and Multiplexing.	04	04	02	10
CO5	Storage and I/O, Superscalarprocessors and multicore system	03	05	2	10
	Total	20	15	15	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for Computer Network will be held with writtene xamination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks.

Teachers can also design different tasks as per requirement, for end semester assessment.

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to IT Industry.
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT,Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

S.	Title	Author	Publisher	Edition
No.				&Year
1	Introduction to the Theory of Computation	• 1		3
2		John Hopcroft,	John Wiley and Sons	3
	Introduction to Automata,	Rajeev Motwani,		
	Theory	Jeffrey D.		
		Ullmann		
3	Automata and Computability	Dexter C.	McGraHill Higher Education	
	Automata and Computatinty	Kozen		
4	Elements of the Theory of	John P. Hayes	WCB/McGraw-Hill	2
	Computation			
5	Computer Organization and Architecture: Designing for Performance",	William Stallings	Pearson Education.	10th Edition

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: OEC04

Course Title: Computer Network

	Program Outcomes						Program Specific Outcome									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 2	PSO 2
Course Outcomes	Engi neeri ng know ledge	Prob lem Solvi ng	Desig n Skills	Lab o rato ry Skills	Tea m wor k	Com muni catio n Skills	Ethic al and Profe ssion al Beha vior	Lifel ong Lea r nin g	Glo bal and Soci etal Imp a ct	Project Mana gement	Adap t abilit y	Profe s sional Devel o pment	Mechanical System Design and Analysis	Manufacturi ng Processes and Automation	Computati onal Modeling and Simulation.	Product Innovation and Developme nt
CO1: Understand the architecture principles that have enabled the orders of magnitude expansion of the Internet	2	2	3	3	3	1	1	3	1	1	1	3	2	3	3	2
CO2: Understand networkedapplications and their protocols, their installation, operation, and performancetuning	1	3	2	3	2	2	2	2	1	1	1	3	3	3	2	3
CO3 Understand layering asa means of tackling complexity, layering appliedto the Internet	2	2	2	3	3	2	1	2	1	1	1	3	2	3	3	2
CO4 Understand protocolsas a structured means of reliable communications	1	2	3	2	3	2	1	3	1	2	1	3	3	2	3	3
CO5 Be familiar with toolsfor configuring, monitoring and tuning the Internet andhosts	1	2	2	2	3	2	1	3	1	1	1	3	3	2	3	3

Legend: 1 – Low, 2 – Medium, 3 – High

POs & PSOs No.	COs No.& Titles	SOs No.	Laborat ory Instruct ion(LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO1: Understand the architecture principles that have enabled the orders of magnitude expansion of the Internet	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1: Introduction 1.1,1.2,1.3,1.4,1.5,1.6,1.7	1
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO2: Understand networked applications and their protocols, their installation, operation, and performance tuning	SO2.1,SO2.2 SO2.3 SO2.4 SO2.5		Unit-2: Application Layer Protocols & Web Applications, P2P, and Streaming Challenges. 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9.	1
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO3 Understand layering as a means of tackling complexity, layering applied to the Internet	SO3.1,SO3.2 SO3.3 SO3.4 SO3.5 SO3.6		Unit-3 T Socket Programming & Building a Simple Client-Server Application 3.1,3.2,3.3,3.4,3.5,3.6	1
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO4 Understand protocols as a structured means of reliable communications	SO4.1, SO4.2 SO4.3 SO4.4 SO4.5 SO4.6		Unit-4 : Transport Layer & Process-to-Process Delivery and Multiplexing. 4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	1
PO:1,2,3,4,5,6,7,8, 9,10,11,12 PSO 1,2	CO5 Be familiar with tools for configuring, monitoring and tuning the Internet and hosts	SO5.1,SO5.2 SO5.3,SO5.4 SO5.5 SO5.6 SO5.7		Unit 5: Storage and I/O, Superscalar processors and multicore system 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	1

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

	Semester-VII
Course Code:	OEC02
Course Title :	DATA STRUCTURE AND ALGORITHMS
Pre- requisite:	Basics of programming
Rationale:	Study of Data structures will help students to understand structuring and managing of data. Insights from data structures help students in industry placements. Good knowledge of Data structure will provide students chance to appear in product bases companies also students will able to develop problem solving skills after the study of this subject.
Course Outcomes: On suc	cassful completion of this course, the students will be able to:

Course Outcomes: On successful completion of this course, the students will be able to:
OEC02.1: Understanding abstract specification of data-structures and their implementation.
OEC02.2: Understanding time and space complexity of programs and data-structures.
OEC02.3: Knowledge of basic data-structures, their applications and relative merits.
OEC02.4: Ability to convert an algorithmic solution to a program using suitable data-structures and analyze the trade-offs involved in terms of time and space complexity
OEC02.5: Acquire basic knowledge of the graphs.

Scheme of Studies:

Board				Scher	ne of stu	dies(Ho	urs/Week)	Total
of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Open Electiv e Course (OEC)	OEC02	DATA STRUCTURE AND ALGORITHMS	3	0	2	1	6	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Scheme of Assessment: Theory

Theor	J			S	Scheme	of Asse	ssment (Marks)		
				Progressi	ve Asse	ssment	(PRA)		End	
Board of Study	Cours e Code	Course Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semi nar one (SA)	Class Activ ity any one (CAT)	Class Attend ance (AT)	Total Marks (CA+CT+S A+CAT+A T)	Semester Assessm ent (ESA)	Total Mark s (PRA + ESA)
OEC	OEC 302	DATA STRU CTUR E AND ALGO RITH MS	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC02.1 Understanding abstract specification of data-structures and their implementation. **Approximate Hours**

Item	AppX Hrs
Cl	07
LI	0
SW	2
SL	1
Total	10

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes Laboratory **Class room Instruction** Self Instruction Learning (SOs) (CI)(LI) (SL) **SO1.1** Understand the **Unit-1: Introduction and** 1. Learning requirement of about various basic terminology data structure. complexities. 1. Notion of data- structures and algorithms. SO1.2 Understanding 2. $logn, n, 2^n$: understanding standard for data growth of these functions, structure. and applications (binary **SO1.3** Understanding search and extensions to types of similar problems) complexity. 3. $logn, n, 2^n$: understanding growth of these functions, **SO1.4** Critically evaluate various and applications (binary types of search and extensions to complexity. similar problems) 4. Worst-case complexity SO1.5 Understand 5. average-case time asymptotic complexity Notation. 6. average-case time . complexity 7. Asymptotic Notation: 0(), Ω()

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Critically evaluate worst case complexity,
- ii. Explain Asymptotic Notation.

b. Mini Project:

Compare various Complexities.

OEC02.2. Understanding time and space complexity of programs and data-structures.

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

Approximate Hours

Item	AppX Hrs
Cl	8
LI	0
SW	2
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1 To Understand the need for Abstract data types. SO2.2 To learn about array . SO2.3 To understand the role of link list. SO2.4 To understand doubly link list. 		 Unit-2 : Abstract Data Types (ADTs): arrays and linked list ADTs. 1. Stacks, Queues: ADTs and implementations using arrays, linked lists. 2. Doubly linked lists: ADT and implementation 3. Dictionary ADT: implementation using array. 4. Dictionary ADT: implementation using linked lists. 5. Dictionary ADT: implementation using binary search. 6. Tree ADT and examples 7. Implementation of trees and basic traversal algorithms 	1. Try to Implement Link list.
		8. Binary trees and in order traversal and Project metrics.	

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Prepare a program of Binary tree insertion.
- ii. Explain TREE traversal.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

b. Mini Project:

Implement basic tree traversal.

OEC02.3 Knowledge of basic data-structures, their applications and relative merits **Approximate Hours**

Item	AppX Hrs
Cl	7
LI	0
SW	2
SL	2
Total	11

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning
(503)	(LI)		(SL)
SO3.1 Learning about priority		Unit-3: Priority Queues	1. Learning
queue design concept.		and Heaps	various
		3.1 Priority Queue ADT	approaches of
SO3.2 Understand heap.		3.2 Definition of heaps	implementing
		3.3 Implementation of	heap and queues.
SO3.3 Differentiate between		Priority Queues using	
queue and heap.		heaps	
		3.4 Implementation of	
SO3.4 Understand heap sort		Priority Queues using	
		running time analysis	
		3.5 Implementation of	
		heaps using arrays.	
		3.6 Heap-sort -1	
		3.7 Heap-sort-2	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain top-down and bottom-up approach of heap.
- ii. Evaluate types of queue.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

b. Mini Project:

- i. Create a program on priority queue.
- c. Other Activities (Specify):
 - i. Design and develop a program on heap.
- **OEC02.4** Ability to convert an algorithmic solution to a program using suitable data-structures and analyse the trade-offs involved in terms of time and space complexity.

Item	AppX Hrs
Cl	8
LI	0
SW	2
SL	2
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO4.1 Understanding different types of trees. SO4.2 Learn about different types of tree insertion. SO4.3 Creating M-way search trees. 		 Unit-4 : Binary Search Trees, AVL Trees, 2-4 trees 4.1 Binary Search Trees: definition and some basic algorithms. 4.2 Implementation of Dictionary ADTs using Binary Search trees 4.3 Implementation of Dictionary ADTs using running time analysis 4.4 AVL trees: height balance condition, rotations, and 	1. Differentiat e between binary tree and 2-3 trees.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

implementation of dictionary
ADT -1
4.5 AVL trees: height balance
condition, rotations, and
implementation of dictionary
ADT -2
4.6 2-4 Trees: Multi-way search
trees
4.7 implementation of dictionary
ADT
4.8 Informal discussion of
extension to B-trees and
removal

SW-4 Suggested Sessional Work (SW):

a. Assignments:

- i. Write down the types of trees.
- ii. Explain the working of red black trees.

b. Mini Project:

i. Write a program to implement all types of trees.

c. Other Activities (Specify):

Develop the ability to create height balance trees..

OEC02.5 Acquire basic knowledge on hashing. Approximate Hours

Item	AppX Hrs
Cl	10
LI	0
SW	2
SL	2
Total	14

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes (SOs)	Laboratory Instruction	Class room Instruction (CI)	Self Learning
	(LI)		(SL)
SO5.1 Understand the scope		Unit 5- Hashing and sorting	1. Learn
of sorting		5.1.Map ADT	different sorting
		5.2 Hash Tables and	techniques.
SO5.2 Understand the need of		implementation of Map	
Hashing		using Hash Tables	
		5.3 Design of hash functions	
SO5.3 Learn about different		5.4 Collision resolution	
sorting techniques.		schemes: chaining, open	
		addressing schemes like	
		linear probing, quadratic	
		probing, double hashing	
		5.5 Applications of Hashing:	
		finding duplicates, set	
		intersection, etc.	
		5.6 Tries: implementation of	
		Map ADT using tries.	
		5.7 Compressed tries and	
		suffix tries.	
		5.8 Bubble sort, insertion	
		sort, selection sort.	
		5.9 Merge sort and divide	
		and conquer paradigm	
		5.10. Quick sort	

SW-5 Suggested Sessional Work (SW):

a. Assignments

- i. Find out challenges in different sorting methods.
- ii. what is hashing? Explain different methods of hashing.

b. Mini Project:

i. Implement sorting in C.

c. Other Activities (Specify):

Explain hashing.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
OEC02.1 Understanding abstract specification of data-structures and their implementation	7	2	1	10
OEC02.2. Understanding time and space complexity of programs and data- structures	8	2	1	11
OEC02.3 Knowledge of basic data-structures, their applications and relative merits	7	2	2	11
OEC02.4 Ability to convert an algorithmic solution to a program using suitable data-structures and analyse the trade- offs involved in terms of time and space complexity.	8	2	2	12
OEC02.5 Acquire basic knowledge on hashing.	10	2	2	14
Total Hours	40	10	8	58

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Μ	Total		
0	Unit Titles	R	U	А	Marks
C01	Introduction and basic terminology	02	01	01	04
CO 2	Abstract Data Types (ADTs): arrays and linked list ADTs.	02	04	02	08
CO 3	Priority Queues and Heaps	03	05	04	12
CO 4	Binary Search Trees, AVL Trees, 2-4 trees	02	08	05	15
CO 5	Hashing and sorting.	03	05	03	11
	Total	12	23	15	50

Legend: R: Remember,

U: Understand,

A: Apply

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

The end of semester assessment for Data Structures and Algorithms will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit any software development company
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatsApp, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a) Books :

S. No.	Title	Author	Publisher	Edition & Year
1	Data Structures and	Michael T. Goodrich	McGraw Hill	3rd Edition 2004
	Algorithms in Java	and Roberto Tamassia, John Wiley & Sons;	International edition	
2	Data Structures and Algorithms in Python	Michael T. Goodrich and Robert	Khanna Publishing Co.	1 st edition.

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

Cos, POs and PSOs Mapping

Programming Title: B. Tech. Electrical Engineering

Course Code: OEC02

Course Title: Data Structure and Algorithm

	Program Outcomes							Program	Program Specific Outcome								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4	
Course Outcomes	Engi neer ing kno wled ge	Probl em Solvi ng	Desig n Skills	Labo rator y Skills	Team work	Com muni catio n Skills	Ethic al and Profe ssion al Beha vior	Lifelo ng Lear ning	Glob al and Societ al Impa ct	Proje ct Mana geme nt	Adap tabilit y	Profe ssion al Devel opme nt	Mechanical System Design and Analysis	Manufactur ing Processes and Automation	Computational Modeling and Simulation.	Product Innovation and Developme nt	
CO1 Understanding																	
abstract specification of																	
data-structures and their	3	3	2	3	3	2	1	2	3	2	2	3	3	3	2	2	
implementation																	
CO2. Understanding time																	
and space complexity of	3	3	3	3	2	2	1	2	1	2	2	2	2	3	2	2	
programs and data-structures	_		-	_													
CO3 Knowledge of basic																	
data-structures, their																	
applications and relative	3	3	2	2	3	1	2	2	1	2	2	3	2	2	2	1	
merits																	
CO4 Ability to convert an																	
algorithmic solution to a																	
program using suitable data-																	
structures and analyse the	3	3	2	2	2	1	1	3	2	2	2	2	3	2	3	1	
trade-offs involved in terms																	
of time and space complexity.																	
CO5 Acquire basic																	
knowledge on hashing.	3	3	3	3	2	3	2	3	2	2	2	2	3	3	3	3	

Legend: 1 – Low, 2 – Medium, 3 – High

POs & PSOs No. COs No.& Titles		SOs No.	Laboratory Instruction(LI)	Classroom Instruction(CI)	Self-Learning (SL)	
PO:1,2,3,4,5,6,7,8,9,	CO1 Understanding abstract	SO1.1				
10,11,12	specification of data-structures	SO1.2		Unit-1 Introduction and basic		
PSO 1,2	and their implementation	SO1.3		terminology	1	
		SO1.4		1.1,1.2,1.3,1.4,1.5,1.6,1.7		
		SO1.5				
PO:1,2,3,4,5,6,7,8,9,	CO2. Understanding time and	SO2.1		Unit-2 Abstract Data Types (ADTs):		
10,11,12	space complexity of programs	SO2.2		arrays and linked list ADTs	1	
PSO 1,2	and data-structures	SO2.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8	1	
		SO2.4				
PO:1,2,3,4,5,6,7,8,9,	CO3 Knowledge of basic data-	SO3.1		Unit-3: Priority Queues and Heaps		
10,11,12	structures, their applications		3.1,3.2,3.3,3.4,3.5,3.6,3.7	1		
PSO 1,2	and relative merits	SO3.3		012)012)010)011)010)011		
		SO3.4				
PO:1,2,3,4,5,6,7,8,9,	CO4 Ability to convert an					
10,11,12	algorithmic solution to a program using suitable data-	SO4.1		Unit-4 : Binary Search Trees, AVL		
	structures and analyse the	SO4.2		Trees, 2-4 trees	1	
PSO 1,2	trade-offs involved in terms of	SO4.3		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8		
	time and space complexity.					
PO:1,2,3,4,5,6,7,8,9,	CO5 Acquire basic knowledge	SO5.1				
10,11,12	on hashing.	SO5.2		Unit 5: Hashing and sorting		
PSO 1,2		SO5.3		5.1,5.2,5.3,5.4,5.5,5.6,	1	
		SO4.4		5.7,5.8,5.9,5.10		
		SO4.5				

Course Curriculum Map:

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Course Code:	Semester-VII OEC01
Course Title :	Electronic Devices
Pre- requisite:	Student should have basic knowledge of physics, Semiconductor Electronics and Electronic devices such as Diodes, Transistors, FET's etc.
Rationale:	Students will demonstrate an understanding of semiconductor physics and the operation of the most common semiconductor devices (PN junctions, metal-semiconductor devices, metal oxide semiconductor devices, and bipolar junction transistors), and will be prepared for subsequent courses with this course as a prerequisite.

Course Outcomes:

OEC01.1: Understanding of the concept of semiconductor materials, pn junction, pn junction diodes and special purpose diodes.

OEC01.2: Understanding of Diode Applications as Rectifiers , filters for rectifiers, voltage regulators. **OEC01.3:** Explain the principle, construction and working of Transistor , and different biasing techniques. **OEC01.4:** Explain the principle, construction and working of FET's , JFET's, MOSFET's **OEC01.5:** Explain the principle, construction and working of feedback .amplifiers, Oscillators and its types

Scheme of Studies:

			1	Scheme of studies(Hours/Week)						
Board of Study	Cours e Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SI)	Total Credits (C)		
Open Elective Course (OEC)	OEC01	Electronic Devices	3	0	1	1	5	3		

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C: Credits.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory										
				Progres	Scheme sive Asso		ssment (M) (PRA)	larks)	End	Tota
Boar d of Stud y	Couse Code	Course Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one (SA)	Class Activi ty any one (CAT)	Class Attendan ce (AT)	Total Marks (CA+ CT+S A+CA T+AT)	Semester Assessme nt (ESA)	l Mar ks (PR A+ ESA
OEC	OEC3 01	Electro nic Devices	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC01.1: Understanding of the concept of semiconductor materials, PN junction, PN junction diodes and special purpose diodes.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Item	Approx Hrs
Cl	07
LI	0
SW	1
SL	1
Total	09

Session Outcomes (SOs)	Lab Instr uctio n	Class room Instruction (CI)	Self-Learning (SL)
	(LI)		
 SO1.1 Understand the concept of semiconductor material SO1.2 Understand the concept of PN junction and its characteristics SO1.3 Understand the concept of PN junction diode and its working SO1.4 understand the different type of diode 		 Unit-1:Diode and its types 1.1 Pn junction diode, equivalent circuit and its V-I characteristics 1.2 Junction capacitance of diode 1.3 applications as Clipping, Clamping circuits, 1.4 Voltage doublers, 1.5 special purpose diodes- photodiode, LED, 1.6 tunnel diode, Varactor diode, 1.7 pin diode. 	 Semiconductor and its types Concept of PN junction

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Explain forward biasing and reverse biasing of PN junction.
- ii. Describe the application of clipping and clamping circuit.

OEC01.2: Understanding of Diode Applications as Rectifiers ,filters for rectifiers, voltage regulators.

Item	Approx Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO2.1 Understanding of		Unit-2: Electronic power	
diodes.		supply component	1. Concept of
		2.1 Construction and	diode and its
SO2.2 Learn the working of		working of rectifier	types
rectifier		2.2 Construction and	2. Concept of
		working of half wave	power supply
SO2.3 Understand the		rectifier	in Electronics
construction and		2.3 Construction and	3. Operation Of
working of filters and its		working of full wave	regulators
types		rectifier	
SO2.4 Understand the working		2.4 Construction and	
of voltage regulator. And		working of bridge	
its types		rectifier	
		2.5 Construction and	
		working of filters	
		2.6 Series inductor filter,	
		Shunt capacitor	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

voltage regulator

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignment related to different parts of power supply components.
- ii. Explain the working principle of Rectifier, filters and voltage regulators.

Mini Project:

i. Draw a Poster of Power supply of electronic devices

OEC01.3: Explain the principle, construction and working of Transistor, and its types with configuration and different biasing techniques.

Item	Approx Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes	Laboratory	Class room Instruction	Self
(SOs)	Instruction	(CI)	Learning
	(LI)		(SL)
	•	Unit-3: Transistor	
SO3.1 To study of Transistor,		3.1 Construction and	
their types		working of transistor	
		and its types	1. Significance
SO3.2 To understand the		3.2 CB CE CC	of holes and
Design and Characteristic		configuration of	electrons
of transistor using its		transistor and its input	2. Forward and
different configuration and		output characteristics	reverse
biasing techniques		3.3 Purpose of biasing,	biasing
		DC operating point	techniques
SO3.3 Analysis using h		and DC load line	
parameters and cascading.		3.4 Base bias, Emitter	
		bias	
		3.5 Voltage divider bias,	
		Collector feedback	
		bias	
		3.6 Graphical analysis of	
		Thermal Runaway,	
		Thermal stability. ac	
		load line,	
		3.7 Current gain voltage	
		gain and power gain	
		3.8 input and output	
		impedance	
		3.9 analysis using h-	
		parameters,	
	L	cascading.	

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- i. Make a poster of different biasing techniques.
- ii. explain different biasing techniques.

OEC01.4: Explain the principle, construction and working of FET's, JFET's, MOSFET's

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Item	Approx Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
 SO4.1 Understand the building Blocks construction and operation of different types of FET's SO4.2 Understand the building Blocks construction and operation of JFET's and its types. SO4.3 Understand the construction and working of MOSFET's and its types SO4.4 Understand the applications of FET JFET and MOSFET 		 Unit-4 : FET and MOSFET 4.1 construction and working of JFET and its types 4.2 V-I characteristics of JFET and pinch off voltage 4.3 Construction and working of MOSFET 4.4 Construction and working of Depletion MOSFET 4.5 Construction and working of enhancement MOSFET 4.6 low frequency common source and common drain amplifiers 4.7 FET biasing techniques 4.8 The common source and common drain amplifier at high frequencies 4.9 FET as a voltage variable resistor 4.10MOSFET as a source 	 Difference between BJT and FET Difference between FET and MOSFET

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i.

- i. Theoretical Assignments Based on Different types of FET's
- ii. Numerical Problems Based on JFET's

Mini Project:

Draw a table of difference between BJT, JFET and MOSFET.

OEC01.5: Explain the principle, construction and working of feedback .amplifiers, Oscillators and its types

Item	Approx Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self-Learning (SL)
SO5.1 Discussion about the difference between amplifier and feedback amplifier		Unit 5: Feedback amplifiers and oscillators 5.1 General feedback theory 5.2 Types of feedback	1. Structure and operation of
SO5.2 Understand the concept of feedback and its types		 5.2 Types of recuback current and voltage feedback 5.3 Negation and positive feedback and its effect 	Amplifiers 2. Characteristics of amplifier
SO5.3 Understand the Building blocks and Operations of Oscillators		5.4 Feedback amplifiers5.5 Types of feedback amplifiers	

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

SO5.4 Study of different	5.6 Working and	
types oscillators	construction of	
· · ·	oscillators	
	5.7 Condition for	
	oscillation, Wein bridge	
	oscillator, RC phase	
	shift oscillator	
	5.8Hartley oscillator	
	5.9 colpitts oscillator,	
	crystal oscillator, Tunnel	
	diode oscillator	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Theoretical Assignment based on Different oscillators

b. Mini Project:

Draw the chart of Different Types of feedback amplifier and oscillators.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
OEC01.1: Understanding of the concept of semiconductor materials, pn junction,pn junction diodes and special purpose diodes.	7	1	1	09
OEC01.2: Understanding of Diode Applications as Rectifiers ,filters for rectifiers, voltage regulators.	9	1	1	11
OEC01.3: Explain the principle, construction and working of Transistor and its different biasing techniques.	9	1	1	11
OEC01.4: Explain the principle, construction and working of FET's ,JFET's, MOSFET's	9	1	1	11
OEC01.5: Explain the principle, construction and working of feedback . amplifiers, Oscillators and its types	9	1	1	11
Total Hours	43	5	5	53

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Μ	Total		
0	Omt Titles	R	U	А	Marks
CO-1	Diode and its types	02	05	03	10
CO-2	Electronics power supply components	04	06	00	10
CO-3	Transistor	02	06	02	10
CO-4	FET's and MOSFET's	03	07	00	10
CO-5	Feedback amplifier and oscillators	03	05	02	10
	Total	14	29	07	50

Legend:	R: Remember,	U: Understand,	A: Apply

The end of semester assessment for Electronic Device will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- **1.** Improved Lecture
- **2.** Tutorial
- 3. Group Discussion
- 4. Practical Demonstration of Instruments.
- **5.** ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

Suggested Learning Resources:

	(a) Books :								
S. No.	Title	Author	Publisher	Edition & Year					
1	Solid State Devices	H.S.Kalsi.	Tata McGraw Hill.	Fourth, 2019					
2	Applied electronics	R.S Sedha	S. Chand	Fifth ,2018					
3	Solid state electronics devices	Ben G. Streetman and Sanjay Banerjee	prentice Hall India Learning Private Limited	Sixth,2006					
	Semiconductor physics and devices	Donald A. Neamen	Tata McGraw Hill.	Fourth,2016					
5	Lecture note provided by Dept. of Electrical Engineering, AKS University, Satna.								

Curriculum Development Team

- 1. Dr. Rama Shukla, HOD, Department of Electrical Engineering.
- 2. Dr. Gauri Richhariya, Assistant Professor, Department of Electrical Engineering.
- 3. Mr. Umesh Kumar Soni, Assistant Professor, Department of Electrical Engineering.
- 4. Mr. Achyut Pandey, Assistant Professor, Department of Electrical Engineering.
- 5. Mr. Ashutosh Dubey, Assistant Professor, Department of Electrical Engineering.
- 6. Mr. Ajay Singh, Assistant Professor, Department of Electrical Engineering.
- 7. Mr. Krishna Kumar Tripathi, Assistant Professor, Department of Electrical Engineering.
- 8. Ms. Deepa Shukla, Assistant Professor, Department of Electrical Engineering.
- 9. Mr. Pranjal Devendra Mishra, Teaching Associate, Department of Electrical Engineering

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering

Course Code: OEC01

Course Title: Electronic Devices

	Program Outcomes								Program Specific Outcome							
Course Outcomes	PO1 Engi neer ing kno wled ge	PO2 Probl em Solvi ng	PO3 Desig n Skills	PO4 Labo rator y Skills	PO5 Tea m wor k	PO6 Com muni catio n Skills	PO7 Ethic al and Profe ssion al Beha vior	PO8 Lifel ong Lear ning	PO9 Glob al and Societ al Impa ct	PO10 Proje ct Mana geme nt	PO11 Adap tabilit y	PO12 Profe ssion al Devel opme nt	PSO 1 Mechanical System Design and Analysis	PSO 2 Manufacturin g Processes and Automation	PSO 3 Computatio nal Modeling and Simulation.	PSO 4 Product Innovation and Developmen t
CO1: Understanding of the concept of semiconductor materials, pn junction,pn junction diodes and special purpose diodes.	3	3	2	3	3	2	1	2	3	2	2	3	3	2	2	3
CO.2: Understanding of Diode Applications as Rectifiers ,filtersfor rectifiers, voltage regulators.	3	3	3	3	2	2	1	2	1	2	2	2	2	3	2	1
CO 3: Explain the principle, construction and working of Transistor and its different biasing techniques.	3	3	2	2	3	1	2	2	1	2	2	3	2	2	2	1
CO 4: Explain the principle, construction and working of FET's ,JFET's, MOSFET's	3	3	2	2	2	1	1	3	2	2	2	2	3	2	3	2
CO 5: Explain the principle, construction and working of feedback . amplifiers, Oscillatorsand its types	3	3	3	3	2	3	2	3	2	2	2	2	3	3	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(Ll)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO1: Understanding of the concept of semiconductor materials, pn junction,pn junction diodes and special purpose diodes.	SO1.1 SO1.2 SO1.3 SO1.4		Unit-1 Diode and its types 1.1,1.2,1.3,1.4,1.5,1.6,1.7	1,2
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO.2: Understanding of Diode Applications as Rectifiers ,filters for rectifiers, voltage regulators.	SO2.1 SO2.2 SO2.3 SO2.4		Unit-2 Electronics power supply components 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,2.9	1,2,3
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO 3: Explain the principle, construction and working of Transistor and its different biasing techniques.	SO3.1 SO3.2 SO3.3		Unit-3 : Transistor 3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	1,2
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO 4: Explain the principle, construction and working of FET's ,JFET's, MOSFET's	SO4.1 SO4.2 SO4.3 SO4.4		Unit-4 : FET's and MOSFET's 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	1,2
PO:1,2,3,4,5,6,7,8,9, 10,11,12 PSO 1,2	CO5: Operate and maintain solid state drives for speed control of 3 phase Synchronous motor.	SO5.1 SO5.2 SO5.3 SO4.4		Unit 5: Feedback amplifier and oscillators 5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	1,2

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Semester-VII

Course Code: Course Title :	OEC05 Embedded System
Pre- requisite:	Student should have basic knowledge of fundamental of electrical
Tre-requisite.	components, digital Electronics, C programming on PC, Computer Organization and Microcontrollers.
Rationale:	In the rapidly growing digital world ,role of a embedded systems is increasingly vital in various domains such as industrial and home automation, entertainment systems, medical equipments and many more. The core of all such systems is powered by electronic hardware and associated software.it is therefore evident to impart the knowledge of the related technology and hands on skills to develop and maintain electronics hardware based embedded systems.

Course Outcomes:

OEC05.1: Identify hardware and software components of an embedded system

- OEC05.2: Learn the basics of OS and RTOS
- **OEC05.3:** Illustrate different Inter Process Communication (IPC) mechanisms used by tasks/process/tasks to communicate in multitasking environment
- **OEC05.4:** Design simple embedded system-based applications
- **OEC05.5:** To introduce the typical components of an embedded system & different communication interfaces

Board			Scheme of studies(Hours/Week)					Total
of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits (C)
Open electiv e core (OEC)	OEC05	Embedded System	3	0	1	1	5	3

Scheme of Studies:

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C: Credits.

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Theory

					Scheme	e of Asse	ssment (M	arks)		
				Progres	sive Asso			u 115)	End	Tatal
Boar d of Stud y	Cous e Code	Course Title	Class/Ho me Assignme nt 5 number 3 marks each (CA)	Class Test 2 (2 best out of 3) 10 marks each (CT)	Semin ar one (SA)	Class Activi ty any one (CAT)	Class Attendan ce (AT)	Total Marks (CA+C T+SA+ CAT+ AT)	Semeste r Assess ment (ESA)	Total Mark s (PRA + ESA)
OEC	OEC 305	Embedde d System	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC05.1: Identify hardware and software components of an embedded system

Item	Approx Hrs
Cl	07
LI	0
SW	1
SL	1
Total	09

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes (SOs)	Lab Instru ction (LI)	Class room Instruction (CI)	Self- Learning (SL)
SO1.1 Understand the	•	Unit-1: Introduction To	
concept of embedded		Embedded Systems	1. C
system		1.1 History of embedded systems,	programming
		1.2 Classification of embedded	2. Basics of
SO1.2 Understand the		systems based on generation	embedded
concept of purpose of		and Complexity	system.
embedded system		1.3 Purpose of embedded systems	
		1.4 The embedded system design	
SO1.3 Design simple		process-requirements,	
embedded system-		Specification	
based applications		1.5 Architecture design, designing	
		hardware and software,	
SO1.4 To Understand the		components, system	
architecture design of		integration,	
hardware and		1.6 Applications of embedded	
software.		systems,	
		1.7 characteristics of embedded	
		systems.	

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- i. Theoretical Assignments of embedded system design process requirements.
- ii. Poster of Architecture designing of hardware and software.

OEC05.2: Learn the basics of OS and RTOS

Item	Approx Hrs
Cl	11
LI	0
SW	1
SL	1
Total	13

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
 SO2.1 Understanding of Different core of the embedded system SO2.2 Learn the Procedure of general purpose and specific domain processors SO2.3 Understand the structure and operation of memory shadowing SO2.4 Understand the structure and operation of sensors and actuators. 		 Unit-2: Typical Embedded System 2.1 Core of the embedded system- 2.2 general purpose and domain specific processors, 2.3 ASICs, PLDs, COTs 2.4 Memory-ROM, RAM, memory according to the type of interface 2.5 Memory shadowing, memory selection for embedded systems, 2.6 Sensors, actuators, 2.7 I/O components: seven segment LED, relay, 2.8 piezo buzzer, push button switch, other sub-systems: reset circuit, 2.9 brownout protection circuit, 2.10 oscillator circuit real time clock, 2.11 watch dog timer. 	 Concept of C programming on PC Basics of RAM and ROM Operation Of oscillator circuit

SW-2 Suggested Sessional Work (SW):

a. Assignments:

i. Theoretical Assignment related to different parts and different types RAM and ROM

b. Mini Project:

- i. Draw a Poster of I/O components seven segment LED display
- ii. Make demonstrative model of oscillator circuit real time clock or watch dog timer.

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

OEC05.3: Design simple embedded system-based applications

Item	Approx Hrs
Cl	08
LI	0
SW	1
SL	1
Total	10

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self Learning (SL)
SO3.1 To discuss role of	•	Unit-3: Communication	
embedded system in		Interface	
communication		3.1 Introduction to	1. Basics of
interface		Onboard	communication
		communication	system
SO3.2 To study the different		interfaces	2. Structure and
type of communication		3.2 Explanation of I2C,	working of
interfaces		SPI, CAN	USB Bluetooth
		3.3 Introduction to	3. Interfacing
SO3.3 To understand the		parallel interface;	devices.
Design and		3.4 Introduction to	
Characteristic of		External	
external		communication	
communication		interfaces	
interfaces.		3.5 RS232 and RS485,	
		3.6 USB, infrared,	
		3.7 Bluetooth, Wi-Fi,	
		3.8 ZigBee, GPRS,	
		GSM.	

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

SW-3 Suggested Sessional Work (SW):

a. Assignments:

i. Theoretical Assignments related to different transducers, their structure and operation.

Mini Project:

- i. Draw a Poster of different types of Communication interfaces.
- ii. Make demonstrative model of USB and Bluetooth .

OEC05.4: Design simple embedded system-based applications Approximate Hours

Item	Approx Hrs
Cl	07
LI	0
SW	1
SL	1
Total	09

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
 SO4.1 Discuss the role of embedded firmware design SO4.2 Understand the building Blocks and operation of different design approaches and its types SO4.3 Understand the building Blocks and operation of different types of development languages Along with their Applications 		 Unit-4: Embedded Firmware Design And Development 4.1 Introduction of Embedded firmware design 4.2 Design approaches and types of approaches – 4.3 super Loop based approach, 4.4 operating system based approach; 4.5 introduction to embedded firmware development languages- 4.6 assembly Language based development, 4.7 high level Language based development. 	 Embedded system Operating systems Computer languages

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

SW-4 Suggested Sessional Work (SW):

a. Assignments:

i. Theoretical Assignments based on Design approaches

Mini Project:

i. Draw a chart of embedded firmware development languages.

OEC05.5: To introduce the typical components of an embedded system & different communication interfaces

Item	Approx Hrs
Cl	11
LI	0
SW	2
SL	1
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Class room Instruction (CI)	Self- Learning (SL)
 SO5.1 Discuss about the basics of RTOS, SO5.2 Understand the operating system and iyts types SO5.3 Understand the Building blocks and Operations of multiprocessing and multitasking. SO5.4 Study of different types of task 		 Unit 5: RTOS Based Embedded System Design 5.1 Operating system 5.2 basics, types of operating systems, 5.3 tasks, process and threads, 5.4 multiprocessing and multitasking, 5.5 task scheduling: non-preemptive and pre-emptive scheduling; 5.6 task communication shared memory, 5.7 message passing, 5.8 Remote Procedure Call and 	 Basics of operating system and its types. Basics of Embedded system design

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

synchronization	Sockets,	
techniques	5.9 Task Synchronization:	
_	5.10 Task	
	Communication/	
	Synchronization	
	Issues,	
	5.11 Task	
	Synchronization	
	Techniques	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

Theoretical Assignment based on operating system and types of operating system

b. Mini Project:

Draw the chart of Different Types of multitasking and multiprocessing

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self- Learning (Sl)	Total hour (Cl+SW+Sl)
OEC05.1: Identify hardware and software components of an embedded system	7	1	1	09
OEC05.2: Learn the basics of OS and RTOS	11	1	1	13
OEC05.3: Illustrate different Inter Process Communication (IPC) mechanisms used by tasks/process/tasks to communicate in multitasking environment	8	1	1	10
OEC05.4: Design simple embedded systembased applications	7	1	1	09
OEC05.5: To introduce the typical components of an embedded system & different communication interfaces	11	2	1	14
Total Hours	44	6	5	55

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Lu:4 7:41cc	Μ	Marks Distribution					
CO	Unit Titles	R	U	Α	Marks			
CO-1	Introduction To Embedded Systems	02	05	03	10			
CO-2	Typical Embedded System	04	06	00	10			
CO-3	Communication Interface	02	06	02	10			
CO-4	mbedded Firmware Design And Development	03	07	00	10			
CO-5	RTOS Based Embedded System Design	03	05	02	10			
	Total	14	29	07	50			
Legend:	R: Remember, U: Under	stand,		A: Apply				

The end of semester assessment for Embedded System will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Group Discussion
- 4. Practical Demonstration of Instruments.
- 5. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, WhatApp, Mobile, Online sources)
- 6. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Suggested Learning Resources:

	(a) Books :			
S.	Title	Author	Publisher	Edition &
No.				Year
1	Embedded System	H.S.Kalsi.	Tata McGraw Hill.	Fourth, 2019
2	Electrical	E.W. Golding,	Sir Isaac Pitman and	1940
	Measurement and		Sons,	
	Measuring		Ltd. London	
3	Electrical and	A.K. Sawhney,	Dhanpat Rai and	2012
	Electronic		Co	
	measurements and			
	Instrumentation,			
4	Electronic	K. Lala Kishore	Pearson Education	Kindle Edition,
	Measurements and			2009
	Instrumentation			
5		Lecture note p	rovided by	
	Dep	ot. of Electrical Engineeri	ng, AKS University, Satna	

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

COs,POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: OEC05

Course Title: Embedded System

	Program Outcomes										Program	Program Specific Outcome				
Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO1 0	PO 11	PO 12	PSO 1	PSO 2	PSO 3	PSO 4
	Engin eerin g know ledge	Probl em Solvi ng	Desig n Skills	Lab o rato ry Skills	Tea m wor k	Com mun icati on Skill s	Ethi cal and Prof essio nal Beh avio r	Life l ong Lea r nin g	Glo bal and Soci etal Imp act	Proj ect Man age ment	Ad a pta b ilit y	Pro f essi o nal Dev elo p me nt	Mechanical System Design and Analysis	Manufact uring Processes and Automati on	Computatio nal Modeling and Simulation.	Product Innovati on and Develop ment
CO1: Identify hardware and softwarecomponents of an embedded system	3	3	2	2	2	1	1	2	2	1	2	2	2	2	3	2
CO 2: Learn the basics of OS and RTOS	3	3	3	3	2	2	1	3	2	2	2	3	3	3	2	2
CO3: Illustrate different Inter Process Communication (IPC) mechanisms used by tasks/process/tasks to communicate in multitasking environment	3	3	2	2	1	1	2	2	1	2	2	3	2	2	3	1
CO 4: Design simple embedded system-based applications	3	3	2	2	2	1	1	3	2	2	2	2	3	2	3	2
CO 5: To introduce the typical components of an embedded system & different communication interfaces	3	3	3	3	2	3	2	3	2	2	2	2	3	3	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction(CI)	Self-Learning (SL)
PO:1,2,3,4,5,6,7,8	CO1: Identify hardware and	SO1.1		Unit-1:: Introduction To	
,9,10,11,12	software components of an	SO1.2		Embedded Systems	
	embedded system	SO1.3			1,2
PSO 1,2		SO1.4		1.1,1.2,1.3,1.4,1.5,1.6,1.7.	
PO:1,2,3,4,5,6,7,8	CO 2: Learn the basics of OS and	SO2.1		Unit-2: Typical Embedded Systems	
,9,10,11,12	RTOS	SO2.2			102
		SO2.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	1,2,3
PSO 1,2		SO2.4		2.8,2.9,2.10,2.11	
PO:1,2,3,4,5,6,7,8	CO3: Illustrate different Inter	SO3.1		Unit-3: Communication Interface	
)3)=3)=2)==)==	Process Communication (IPC)	SO3.2			
	mechanisms used by	SO3.3		3.1,3.2,3.3,3.4,3.5,3.6,3.7,3.8.	1,2,3
	tasks/process/tasks to				y y-
	communicate in multitasking environment				
PO:1,2,3,4,5,6,7,8	CO 4: Design simple embedded	SO4.1		Unit-4 : Embedded Firmware Design	
,9,10,11,12	system-based applications	SO4.2		And Development	1,2,3
PSO 1,2		SO4.3		4.1,4.2,4.3,4.4,4.5,4.6,4.7.	
PO:1,2,3,4,5,6,7,8	CO 5: To introduce the typical	SO5.1		Unit 5: RTOS Based Embedded	
,9,10,11,12	components of an embedded	SO5.2		System Design	1.2
	system & different communication	SO5.3		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9,5.10,5	1,2
PSO 1,2	interfaces	SO5.4		.11	

Course Curriculum Map:

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Semester-VII PROJ-ME 401

Course Title :Engineering Project-2 (Design & Analysis)Pre-requisite:Students should have basic knowledge for design, development and

analysis of project.

Rationale: Students should be well-versed in the Mechanical manufacturing process and concrete production. Keeping abreast of the latest technological trends is crucial for identifying contemporary R&D topics. A fundamental understanding of the physical and chemical properties of Material is essential. Additionally, students must be proficient in statistical methods for effective data analysis and interpretation. Competence in Microsoft Word and Excel is necessary for report writing and documentation. By combining technical knowledge with analytical and software skills, students will be well-prepared to tackle challenges in the field and contribute meaningfully to research and development efforts.

Course Outcomes:

Course Code:

PROJ-ME 401.1:Methodology for projectdesign and project scheduling PROJ-ME 401.2: Methods of Data collection and data compiliation PROJ-ME 401.3:Product development PROJ-ME 401.4: Data analysis and data interpretation PROJ-ME 401.5: Concluding remark and future work

SchemeofStudies:

Course	Course	Course		Scheme o	of studie	s(Hours	(Hours/Week)		
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)	
PROJ	PROJ-ME 401	Engineering Project-2 (Design & Analysis)	2	6	1	1	10	5	

Legend:

CI:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)an dTutorial (T)andothers),

LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies)

SW: Sessional Work(includesassignment, seminar, miniprojectetc.),

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

SL:SelfLearning, **C:** Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback ofteacherto ensureoutcomeofLearning.

Scheme of Assessment:

							sessment	(Mar	ks)			
			Progressive Assessment (PRA)						End Semester Assessment			
Course Category	Course Code	Course Title	Project Scheduling	Data collection and sampling	Product design	Product analysis and data interporetaion	Report writing and concluding remark	Total Mark	Seminar	Project Viva	Total Marks	Total Marks (PRA+ESA)
PROJ	PROJ- ME 401	Engineerin g Project-2 (Design & Analysis)	05	05	05	25	10	50	15	35	50	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Lab Work Assignment (LA) Best of 5 of the total, Viva-Voice on Lab Work (VV), and Lab Attendance (LA). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Course Outcome	Activities		nedule (in
		ho	urs)
		Class	Self
		Activity	Learning
		Per week	/Home
		(5	activity
		Credit)	Per week
PROJ-ME 401:	1. Literature review and identification of	_	
	Mechanical and Material related projects and	5	10

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

CO.1:	project scheduling		
Methodology for design and project scheduling	Examining recent literature on Materials projects unveils advanMechanicals, methodologies, and applications. This review identifies emerging trends, innovative materials, and sustainable practices, significantly impacting construction, durability, and environmental outcomes. Noteworthy projects illustrate novel approaches, enriching insights and guiding future developments in Material technology.		
	Project scheduling : Project scheduling involves planning and organizing tasks to ensure timely completion. It includes defining activities, setting deadlines, and allocating resources efficiently. Effective scheduling helps manage time, costs, and personnel, enhancing productivity and project success. It's crucial for meeting goals, coordinating efforts, and maintaining project momentum		
PROJ-ME 401: CO.2: Methods of Data collection and data compiliation	2. Design and formulation projects i. Methods of data collection and data compiletion ii. Design and formulation projects concentrate on innovating products through meticulous recipe development and methodological refinement. These initiatives prioritize material optimization, functional enhanMechanical, and quality assurance. By blending creativity with technical prowess, they propel advanMechanicals across industries, fostering the creation of distinctive, efficient, and commercially viable solutions.	8	15
PROJ-ME 401: CO.3: Product development	3. Sample analysis and product development Testing samples determines their suitability by assessing quality, performance, and compliance with standards. It involves rigorous analysis and evaluation to ensure materials meet project requirements. This process identifies strengths and weaknesses, guiding decision-making and ensuring the reliability and effectiveness of the chosen	10	25

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

	samples for intended applications.		
	Product design and analysis in R&D involve creating and refining products to meet market needs. This process includes conceptualizing, prototyping, and testing to optimize functionality and performance. Analyzing results helps improve designs, ensuring products are innovative, efficient, and ready for successful market introduction.		
PROJ-ME 401. CO.4:	i. Product Dataanalysis & compilation		
Data analysis and data interpretation	 Project data compilation involves collecting and organizing all relevant information for analysis and reporting. This process ensures data accuracy and completeness, facilitating informed decision-making and efficient project management. It helps track progress, identify trends, and generate insights, supporting successful project outcomes and future planning. ii. Statistical data analysis and data interpretation 	40	15
	Statistical data analysis involves examining and processing data to uncover patterns and trends. Data interpretation translates these findings into meaningful insights, aiding decision-making and strategy development. This process enhances understanding, supports evidence-based conclusions,		
PROJ-ME 401. CO.5:	5. Report Writing, Conclusion, Recommendations and Future work in Research work		
Concluding remark and future work	Report Writing : Comprehensive project report writing		
	Conclusion: The study successfully demonstrated key findings. It underscores implications, validating hypothesis/objectives. This contributes field significance, laying groundwork for applications. Recommendation : Future research should explore expansion areas, emphasizing methodological improvements. Collaboration partners/stakeholders	12	25

Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

	would enrich knowledge transfer. Future Work: Innovations in technology/techniques could advance potential benefits. Addressing challenges would refine outcomes, fostering industry/government support.		
	75	90	

Suggestion for End Semester Assessment

SuggestedSpecificationTable(ForESA)							
Course Outcome	UnitTitles	MarksDistribution Tota					
		R	U	Α	Marks		
PROJ-ME 401: CO.1: Methodology for design and project scheduling	1. Literature review and identification of Material related projects and project scheduling	02	03	-	5		
PROJ-ME 401: CO.2: Methods of Data collection and data compiliation	2. Design and formulation projects	-	05	03	8		
PROJ-ME 401: CO.3: Product development	3. Sample analysis and product development	-	08	04	12		
PROJ-ME 401. CO.4: Data analysis and data interpretation	 Product Data analysis, data interpretation and findings 	-	08	12	20		
PROJ-ME 401. CO.5: Concluding remark and future work	5. Report writing, concluding remark and future work		03	02	5		
Total		02	27	21	50		

a 4 10 • •• ...

U:Understand, Legend: **R:Remember**, A:Apply

TheendofsemesterassessmentforEngineering Project-1 (Literature Review) willbeheld with written examination of 50 marks

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visit to Mechanical plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp, Mobile,Onlinesources)
- 9. Brainstorming

SuggestedLearningResources:

(a) Books:

S.No.	Title	Author	Publisher	Edition &Year
1	The literature review : six	Lawrence A.	Corwin	2022
	steps to success	Machi, Brenda T. McEvoy.	Press, Inc	
2	Lee			
3	Tylor			
4	Manufacturing Processes			
5				

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg

AKSUniversity

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

- 5. Mr.Amar Soni , Assistant Professor , Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

COs, POsandPSOs Mapping

ProgramTitle:B.Tech Mechanical Engineering

Course Code:PROJ-ME 401; CourseTitle: Engineering Project-2 (Design & Analysis)

						Progra	am Out	comes		0		X B	ProgramSpecificOutcome			ne
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation.	Product Innovation and Development
PROJ-ME 401: CO.1: Methodology for design and project scheduling	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 401: CO.2: Methods of Data collection and data compiliation	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 401: CO.3: Product development	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 401. CO.4: Data analysis and data interpretation	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 401. CO.5: Concluding remark and future work	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3

Legend:1-Low,2-Medium,3-High

CourseCurriculumMap: Engineering Project-2 (Design & Analysis)

POs&PSOsNo.	COsNo.&Titles	SOsNo.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self-Learning(SL)
	PROJ-ME 401: CO.1: Methodology for design and project scheduling				
	PROJ-ME 401: CO.2: Methods of Data collection and data compiliation				
	PROJ-ME 401: CO.3: Product development				
	PROJ-ME 401. CO.4: Data analysis and data interpretation				
	PROJ-ME 401. CO.5: Concluding remark and future work				

AKS University Faculty of Engineering & Technology Department of Mechanical Engineering Curriculum & Syllabus of B.Tech. Mechanical Engineering program

	Semester-VII
Course Code:	PEC-ME 04
Course Title :	Finite Element Analysis
Pre-requisite:	Student should have basic knowledge of Mathematics such as matrix algebra, differential equation etc. and knowledge of core engineering subjects such as SOM, Mechanical vibrations and HMT etc.
Rationale:	Familiarize with the fundamental concepts of finite element method. Inculcate the formulation of finite element models by selecting a suitable element, developing element matrices & vectors, and incorporating boundary conditions. Familiarize with finite element procedures to solve structural, thermal, and fluid flow problems using commercial finite element packages

Course Outcomes:

PEC-ME 04.1: Understand the fundamental concepts of finite element method to solve engineering problems.

PEC-ME 04.2: Formulate finite element models using appropriate element selection, development of stiffness & force matrices, and application of boundary conditions

PEC-ME 04.3: Solve structural, thermal, and fluid flow problems in one dimensionusing the developed finite element formulations

PEC-ME 04.4: Formulate Two-Dimensional Finite Element models and shape function derivation for triangular and rectangular elements.

PEC-ME 04.5: Solve two dimensional problems for plane stresses-strains and for dynamic systems using the developed finite element formulations.

Scheme of Studies:

Board of					Schem	ne of stud	Total Credits	
Study			Cl	LI	SW	SL	Total Study Hours	(C)
	Course	Course					(CI+LI+SW+SL)	
	Code	Title						
Professional	ME 04	Finite	3	0	1	1	5	3
Elective		Element						
courses(PEC)		Analysis						

 Legend:
 Cl:ClassroomInstruction(Includesdifferentinstructionalstrategiesi.e.Lecture(L)andTutorial (T)andothers),

 Ll:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or other locations using different instructional strategies)

 SW: Sessional Work(includesassignment, seminar, miniprojectetc.),

 SL: Self Learning,

 C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Pro	gressive	Assessn	nent (PRA)		End	Total
Board of Study	Couse Code	Course Title	Class/Ho me Assignm ent 5 number 3 marks	Class Test 2 (2 best out of 3) 10	Semi nar one	Class Activi ty any one	Class Attendan ce	Total Marks	Semester Assessme nt	Marks
			each (CA)	marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CA T+AT)	(ESA)	(PRA+ ESA)
PEC	PEC-ME 04	Finite Eleme nt Analysi s	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PEC-ME 04.1: Explain Introductory Concepts, general FEM procedure and approximate methods to solve differential equations.

Ap	proximate Hours
Item	AppX Hrs
Cl	5
LI	0
SW	2
SL	1
Total	8

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO1.1Ability to understand the FEM procedure. SO1.2Ability to Understand various weighted integral methods used to get approximate solutions. SO1.3The students will be able to Analyze and solve field problems in engineering practices. 		Unit-1: Introductory Concepts: 1.1 General FEM procedure, Applications of FEM in various fields Advantages and disadvantages of FEM 1.2 Mathematical Modeling of field problems in engineering practices. 1.3 Governing equations, Differential equations in different fields. 1.4 Approximate solution of differential equations using Least square method. 1.5 Approximate solution of differential equations using Galerikin method.	Numerical problems based on Galerik in method.

SW-1 Suggested Sessional Work(SW):

- a. Assignments: Numerical problem solving on least square method.
- b. Mini Project: Prepare a chart listing down various approximate methods used in FEM.

PEC-ME 04.2: Analyzing and solving problems using Weighted Residual Methods - Ritz Technique.

Item	Approx. Hrs
Cl	9
LI	0
SW	2
SL	1
Total	12

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
 SO2.1 The students will be able to understand the FEA Procedure. SO2.2 The students will be able to understand Global & local boundary conditions. SO2.3The students will be able to apply the Rayleigh-Ritz method in design offins. 		Unit-2:FEA Procedure: 2.1 Weighted Residual Methods - Ritz Technique. 2.2 Definitions of various terms used in FEM like element, order of the element, internal and external node/s, degree of freedom, primary and secondary variables 2.3 Global & local boundary conditions. 2.4 Minimization of a functional. 2.5 Principle of minimum total potential. 2.6 Piecewise Rayleigh-Ritz method 2.7 Design of fins for maximum heat transfer. 2.8 Formulation of 'stiffness matrix'. 2.9 Transformation and assembly concepts	Numerical problem on heat conduction using Piecewise Rayleigh-Ritz method.

SW-2 Suggested Sessional Work(SW):

a. Assignments: Numerical problem on a cantilever beam using Piecewise Rayleigh-Ritz method. MiniProject: Prepare a mind map explaining the Formulation of 'stiffness matrix'.

PEC-ME 04.3: Analyzing and solving one Dimensional Problem using FEA.

0	
Approxima	ate Hours
Item	AppX Hrs
Cl	8
LI	0
SW	2
SL	1
Total	11

	(CI)	Learning (SL)
 SO3.1 The students will be able to understand discretization element types - linear and higher, order elements. SO3.2 The students will be able to solve problems in one dimensional for structural beams. SO3.3 The students will be able to solve problems in one dimensional for spring cart. 	 Unit-3 :One Dimensional Problems: 3.1 One dimensional second order equations- discretization element types - linear and higher, order elements 3.2 stiffness matrices and force vectors, Assembly of Matrices 3.3 solution of problems in one dimensional for structural beams. 3.4 solution of problems in one dimensional for taper bars. 3.5 solution of problems in one dimensional for Fluid flow network. 3.6 solution of problems in one dimensional for planer truss. 3.7 solution of problems in one dimensional for heat conduction. 3.8 solution of problems in one dimensional for spring cart 	Revise the discretization and assembly procedure.

SW-3 Suggested Sessional Work(SW):

a. Assignments:

Problem on one dimensional for Fluid flow network.

b. Mini Project:

.

Problems of designing a taper bar subjected to axial loading.

PEC-ME 04.4: Two-Dimensional Finite Element Formulations.

Appr	oximate Hours
Item	Appx. Hrs
Cl	10
LI	0
SW	2
SL	2
Total	14

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
SO4.1 To understand serendipity and Lagrange's methods for deriving shape functions		Unit-4:Two-Dimensional Finite Element Formulations: 4.1 serendipity and Lagrange's methods for deriving shape	1. Numerical Problem on three noded triangular element.
SO4.2To derives the shape function of three noded triangular elements.SO4.3. To analyse and solve the		functions. 4.2Derivation of shape function for three noded triangular elements. 4.3Derivation of shape function	2.Numerical Problem on three noded triangular element.
problems on shape function of three and fournoded elements.		for four nodedrectangular element. 4.4Derivation of shape function for four node quadrilateral elements.	
		 4.5Derivation of shape function for the eight-node quadrilateral element 4.6Natural coordinates and coordinates transformations 4.7Numerical problems on 	
		boiling. 4.8Sub parametric, Isoparametric,	

super parametric elements. 4.9Compatibility and Patch test. 4.10Convergence criterion, sources of errors.

SW-4 SuggestedSessionalWork(SW):

a. Assignments:

- i. Explain Natural coordinates and coordinates transformations?
- ii. Write a short note on sources of errors?
- b. Mini Project:

Prepare a mind map for Two-Dimensional Finite Element Formulation method.

PEC-ME 4.5: Two Dimensional Vector Variable Problems and Finite Element Formulation of Dynamic systems.

Appro	ximate Hours
ltem	AppX Hrs
Cl	9
LI	0
SW	2
SL	2
Total	13

Session Outcomes (SOs)	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning (SL)
SO5.1 To Understand stress analysis in a plane using FEA.		Unit 5: 2-D Vector Variable Problems and Finite Element Formulation of Dynamic	1. Free vibration problem of a beam.
SO5.2To Analyze stress of CST element.SO5.3To determines transverse deflections of a beam.		systems. 5.1Equations of elasticity - Plane stress, plane strain and ax symmetric problems 5.2 stress analysis of CST element. 5.3 stress analysis of four node Quadratic element. 5.4 free vibration problems of a beam. 5.5 Lumped and consistent mass matrices Solutions techniques to	2. Longitudinal vibration problem of a beam.

SW-5 Suggested Sessional Work (SW):

a. Assignments:

- i. Numerical problems on radiation shields.
- ii. Numerical problem on transverse deflections and natural frequencies of beams

Mini Project:

Explain how the frequencies and mode shapes of longitudinal vibration can be determined using FEA?

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
PEC-ME 04.1: Explain Introductory Concepts, general FEM procedure and approximate methods to solve differential equations.	7	2	1	10
PEC-ME 04.2: Analysing and solving problems using Weighted Residual Methods - Ritz Technique	10	2	1	13
PEC-ME 04.3: Analyzing and solving one Dimensional Problems using FEA.	8	2	2	12
PEC-ME 04.4: Explain Two-Dimensional Finite Element Formulation method and shape functions.	10	2	2	14
PEC-ME 04.5: Analyze and solve Two- Dimensional Vector Variable Problems and Finite Element Formulation of Dynamic systems	10	2	2	14
Total Hours	45	10	8	63

Suggestion for End Semester Assessment

СО	Unit Titles	Ma	Total		
		R	U	Α	Marks
CO-1	Introductory Concepts, general FEM procedure and approximate methods.	02	05	05	12
CO-2	Analyzing and solving problems using Weighted Residual Methods - Ritz Technique.	02	03	03	8
CO-3	Analyzing and solving one Dimensional Problems using FEA.	02	05	05	12
CO-4	Two-Dimensional Finite Element Formulation method and shape functions.	02	04	04	10
CO-5	Two-Dimensional Vector Variable Problems and Finite Element Formulation of Dynamic systems	01	04	03	08
	Total	9	21	20	50

Suggested Specification Table (For ESA)

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Finite Element Analysis** will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/ Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Faceb ook,Twitter,Whatsapp,Mobile,Onlinesources)
- 9. Brainstorming

Suggested Learning Resources:

S. No.	Title	Author	Publisher	Edition & Year
1	Finite Element Method	JNReddy,	McGraw Hill	9th Edition, 2004
2	'Introduction to Finite Elements in Engineering	Chandrupatla and Belegundu	Pearson Education	1998
3	A first course in Finite Element Method	Logan D L, Thomson.	Asia PvtLtd	5th Edition, 2002
4	The Finite Element Method in Engineering	SS, Rao, Butter WorthHeinemann	Wiley Sons	4th Edition, 2018
5	Lecture notes provided	by Dept. of Mechar	nical engineering, AK	S University, Satna.

Cos, Pos and PSOs Mapping

Programme Title: B.Tech Mechanical Engineering

Course Code: PEC-ME 04

Course Title-Finite Element Analysis

		Program Outcomes											Р	Program Specific Outcome			
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4	
CourseOutcomes	Enginee ringkno wledge	Prob lema naly sis	Desig n/dev elop ment ofsolu tions	Conduct investig ations ofcompl ex proble ms	Mode rntool usage	The engi neer ands ocie ty	Environ mentan dsustai nability :	Ethics	Indivi duala ndtea mwor k:	Com munic ation:	Project manage mentan dfinanc e:	Life- Ionglear ning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Development	
CO-1 :Introductory Concepts, general FEM procedure and approximate methods.	2	1	2	2	3	2	2	2	2	1	3	2	2	2	1	2	
CO-2: Analyzing and solving problems using Weighted Residual Methods - Ritz Technique.	1	1	1	1	3	2	2	2	2	1	2	2	1	2	1	2	
CO-3: Analyzing and solving one Dimensional Problems using FEA.	2	2	1	1	3	1	2	2	2	1	1	2	1	2	1	1	
CO-4: 2-D Finite ElementFormulation method and shape functions.	2	2	2	1	3	2	2	2	2	1	2	2	1	2	1	2	
CO-5: Two-Dimensional Vector Variable Problems and Finite Element Formulation of Dynamic systems	2	1	1	1	1	3	2	2	2	1	2	2	1	2	1	1	

Pos &PSOs No.	Cos No.& Titles	SOs No.	Classroom Instruction (CI)
PO1,2,3,4,5,6	CO-1 : Understand the fundamental concepts of	SO1.1	Unit-1.0: Introductory Concepts, general FEM procedure and
			approximate methods.
7,8,9,10,11,12	finite element method to solve engineering	SO1.2	
	problems.		
PSO1,2,3,4			
PO1,2,3,4,5,6	CO -2: Formulate finite element models using appropriate element selection, development	SO2.1	Unit-2: Analyzing and solving problems using
7,8,9,10,11,12	of stiffness & force matrices, and	SO2.2	Weighted Residual Methods - Ritz Technique
7,0,9,10,11,12	application of boundary conditions	302.2	
PSO1,2,3,4			
		602.4	
PO1,2,3,4,5,6	CO3: Solve structural, thermal, and fluid flow problems in one dimension using	SO3.1 SO3.2	Unit-3: Analyzing and solving one Dimensional Problems
7,8,9,10,11,12	the developed finite element	SO3.3	using FEA.
PSO1,2,3,4	-	303.5	3.1,3.2,3.3
PO1,2,3,4,5,6		SO4.1	Unit-4:2-D Finite Element Formulation method and shape
7,8,9,10,11,12	CO -4: Formulate Two-Dimensional Finite		functions.
	Element models and shape function derivation		4.1,4.2,4.3
PSO1,2,3,4	for triangular and rectangular elements.		
PO1,2,3,4,5,6	CO -5: Solve two dimensional problems for	SO5.1	Unit5:Two-Dimensional Vector Variable Problems
7,8,9,10,11,12	plane stresses-strains and for dynamic systems	SO5.2	and Finite Element Formulation of Dynamic systems.
PSO1,2,3,4	using the developed finite element		5.1,5.2,5.3

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Semester-VII

Course Code: Course Title :	OEC11 Internet of Things
Pre-requisite:	Student should know basic knowledge of computer & digital electronics.
Rationale:	IoT is the super set of information technology driven by the sensors and cloud to make the real things like smart things for your network. The object of this course is to understand the concepts of web of Things, Cloud of Things and emphasis on Mobile cloud.
Course Outcomes:	

OEC11.1: Learn the basics of databases and data management.

OEC11.2: Understand various theoretical and practical principles involved in the design and use of databases systems with the help of database.

OEC11.3: Learn the Transaction management with grant and revoke.

OEC11.4: Design and implement databases for various scenarios.

OEC11.5: Design a database scenario for handling any organizations centralized data.

Scheme of Studies:

			Scheme of studies(Hours/Week)					Total
Board of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	Credits
Open Elective (OEC)	OEC11	Internet of Things	3	0	0	0	3	3

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e., Lecture (L) and Tutorial

(T) and others),

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies) SW: Sessional Work (includes assignment, seminar, mini project etc.), SL: Self-Learning, C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Scheme of Assessment: Theory

			Scheme of Assessment (Marks)							
				Progressive Assessment			it (PRA)			
			Class/Ho	Class Test	G .	Cla	Clas	T (1	Sem	Tota
			me	2	Semi nar	ss Acti	S	Total Marks	ester Asse	ı Mar
	Cou		Assignm ent 5	(2 best out	one	vity	Atte	IVIALKS	ssm	ks
Board of	se	Course	number	of 3) 10 marks		any	ndan	(CA+CT	ent	
Study	Cod	Title	3 marks	each		one	ce	+SA+C		(PR
2 ca a y	e		each	(CT)	(SA)	(CA	(AT)	AT+AT)		A+
			(CA)			T)			(ES A)	ESA
		Internet)
OEC	OEC 411	of	15	20	5	5	5	50	50	100
	711	Things								

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self-Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

OEC11.1: Introduction to IoT, Definition, Characteristics of IoT, IoT Conceptual framework, IoT Architectural view, Physical design of IoT, Logical design of Io, Application of IoT.

Item	AppX Hrs.
Cl	8
LI	0
SW	0
SL	0
Total	8

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes (SOs)	Laboratory Instructions (LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO1.1Understand the Definition and concept of Internet of Things. SO1.2 Understand the concept of Characteristics of IoT SO1.3 Understand the IoT Conceptual framework. SO1.4 Preparation of Physical design, Logical design of IoT with Architectural view. SO1.5 Preparation of IoT. 		Unit-1.0 Theoretical Framework of IoT 1.1. Introduction to IoT 1.2 Definition of IoT 1.3 Characteristics of IoT 1.4 IoT Conceptual framework 1.5 IoT Architectural view 1.6 Physical design of IoT 1.7 Logical design of IoT 1.8 Application of IoT	

OEC11.2: Machine-to-Machine (M2M), SDN (Software defined networking) and NFV (Network function virtualization) for IoT, Data Storage in IoT, IoT cloud Based Services

Item	Appx Hrs
Cl	4
LI	0
SW	0
SL	0
Total	4

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes (SOs)	Laboratory Instructions (LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO2.1 Concept of Machine-to-Machine (M2M) SO2.2 Understanding about the SDN (Software defined networking). SO2.3 Concept of NFV (Network function virtualization) for IoT. SO2.4 Understanding the Data Storage in IoT. SO2.5 Preparation of IoT cloud Based Services. 		Unit 2.0 Machine-to- Machine (M2M)2.1 SDN (Software defined networking) and2.2 NFV (Network function virtualization) for IoT2.3 Data Storage in IoT2.4 IoT cloud2.4 IoT cloud	

OEC11.3:Design principles for web connectivity, Web communication Protocols for connected devices, Message communication Protocols for connected devices, SOAP, REST, HTTP Restful and web Sockets, Internet Connectivity Principles: Internet Connectivity, Internet based communication, IP addressing in IoT, Media Access Control.

Approximate Hours

Item	Appx Hrs
Cl	8
LI	0
SW	0
SL	0
Total	8

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instructions (LI)	(CI)	Learning (SL)
SO3.1 concept of Design principles for web connectivity		Unit-3.0 : Design principles for web connectivity	
SO3.2 Understanding Web communication Protocols for connected devices		3.1 Web communication Protocols for connected devices	
SO3.3 Understanding the Message communication Protocols for connected devices.		 3.2 Message communication Protocols for connected devices. 3.3 SOAP, REST, HTTP 	
SO3.4 Understanding about SOAP, REST, HTTP Restful and web Sockets.		Restful and web Sockets. 3.4 Internet Connectivity	
SO3.5 Concept of Internet Connectivity, Internet based communication, IP addressing in IoT and Media Access Control.		Principles: 3.5 Internet Connectivity 3.6 Internet based communication 3.7 IP addressing in IoT 3.8 Media Access Control	

OEC11.4: Sensor Technology, Participatory Sensing, Industrial IoT and Automotive IoT Actuator, Sensor data Communication Protocols, Radio Frequency Identification Technology Wireless sensor Network Technology.

Approximate Hours

Item	Appx Hrs
Cl	8
LI	0
SW	0
SL	0
Total	8

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes	Laboratory	Classroom Instruction	Self
(SOs)	Instructions	(CI)	Learning
	(LI)		(SL)
SO4.1 Understanding about the Sensor		Unit 4.0 Sensor Technology	
Technology			
		4.1 Participatory Sensing	
SO4.2 Preparation of Participatory		4.2 Industrial IoT	
Sensing		4.3 Automotive IoT	
~ •		4.4 Actuator	
SO4.3 Understanding about the		4.5 Sensor	
Industrial IoT and Automotive		4.6 Data Communication	
IoT		Protocols	
101		4.7 Radio Frequency	
SO4.4 Actuator, Sensor data		Identification	
Communication Protocols		Technology	
		4.8 Wireless Sensor	
SO4.5 Understanding about the Radio		Network	
Frequency Identification		Technology.	
· ·			
Technology and Wireless Sensor			
Network Technology.			

OEC11.5: IoT Design methodology: Specification- Requirement, Process, Model, service Functional & Operational View, IoT Privacy and security solutions, Raspberry Pi & Arduino devices. **IoT Case Studies: Smart City Streetlights control & monitoring.**

Approximate Hours

Item	Appx Hrs
Cl	7
LI	0
SW	0
SL	0
Total	7

Faculty of Engineering and Technology **Department of Mechanical Engineering** Curriculum of B.Tech. (Mechanical Engineering) Program

Session Outcomes (SOs)	Laboratory Instructions (LI)	Classroom Instruction (CI)	Self Learning (SL)
 SO5.1 Understand about the concept of oT Design methodology: SO5.2 Preparation of Specification- Requirement, Process, Model, service. SO5.3 Preparation of necessary Functional & Operational View SO5.4 Understanding about the IoT Privacy and security solutions, Raspberry Pi & Arduino devices SO5.5 Understanding about the IoT Case Studies: Smart City Streetlights control & monitoring. 		 Unit 5.0: IoT Design methodology: 5.1 Specification-Requirement 5.2 Process, Model, service 5.3 Functional & Operational View 5.4 IoT Privacy and security solutions 5.5 Raspberry Pi 5.6 Arduinodevices. 5.7 IoT Case Studies: Smart City Streetlights control & monitoring. 	

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (Sl)	Total hour (Cl+SW+Sl)
OEC11.1: Acquire the knowledge of IoT concept and its Architecture.	8	0	0	8
OEC11.2: Acquire the basic concept of Softwaredefined networking and Machine-to-Machine (M2M).	4	0	0	4
OEC11.3: Exposed to various web communication Protocols for connected devices & Message communication Protocols for connected devices.	8	0	0	8
OEC11.4: Familiarize and understand the basic Sensor data Communication Protocols.	8	0	0	8
OEC11.5: Smart City Streetlights control & monitoring.	7	0	0	7
Total Hours	35	00	00	35

Faculty of Engineering and Technology Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Ν	Total		
	o ont mes		U	Α	Marks
CO-1	Theoretical Framework of IoT.	01	01	03	05
CO-2	Machine-to-Machine (M2M)	01	01	03	05
CO-3	Design principles for web connectivity	-	03	10	13
CO-4	Sensor Technology	-	03	10	13
CO-5	IoT Design methodology:	01	03	10	14
	Total	03	12	36	50

Legend: R:Remember,

U:Understand,

A:Apply

The end of semester assessment for 'Internet of things' will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Brainstorming

Suggested Learning Resources:

(a) Books:

	(d) DOORS.								
S. No.	Title	Author	Publisher	Edition &Year					
1	"Internet of Things (A Hand book approach)	Vijay Madisetti & Arshdeeep Bahga	Universa 1 Press	First Edition					
2	"The Internet of Things: Connecting Objects"	Hakima Chaouchi	Wiley publication	2017					
3	"MySQL for The Internet of Things"	Charless Bell	A Press publication.	2016					
5	Lecture note provided by Department of Computer Engineering, AKS University, Satna								

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

Curriculum Development Team

- 1. Dr. Akhilesh K. Waoo, HOD, Department of Computer Science and Engineering.
- 2. Dr. Pramod Singh, Assistant Professor, Department of Computer Science and Engineering.
- 3. Ms. Shruti Gupta, Assistant Professor, Department of Computer Science and Engineering.
- 4. Ms. Pragya Shrivastava, Assistant Professor, Department of Computer Science and Engineering.
- 5. Mr. Lokendra Gaur, Assistant Professor, Department of Computer Science and Engineering.
- 6. Mr. Vinay Kumar Dwivedi, Assistant Professor, Department of Computer Science and Engineering.
- 7. Ms. Pinki Sharma, Assistant Professor, Department of Computer Science and Engineering.
- 8. Ms. Pushpa Kushwaha, Assistant Professor, Department of Computer Science and Engineering.

Cos, POs and PSOs Mapping

Programme Title: B. Tech. Electrical Engineering Course Code: OEC11 Course Title: Internet of Things.

		Program Outcomes									Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO1	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engineer ing knowled ge	Problem Solving	Design Skills	Labor atory Skills	Team work	Comm u nicatio nSkills	Ethical and Professio nal Behavior	Lifelong Learnin g	Global and Societal Impact	Project Manage ment	Adapta b ility	Professio nal Develop ment	Analysis	Manufacturi ng Processes and Automation	Computatio nal Modeling and Simulation.	Product Innovati on and Develop ment
CO1: Acquire the knowledge of IoTconcept and its Architecture.	3	1	2	2	2	2	3	1	2	2	1	2	2	2	2	1
CO2: Acquire the basic concept of Software defined networking and Machine-to-Machine (M2M).	2	2	3	2	1	2	2	1	1	1	2	3	2	1	2	2
CO3: Exposed to various web communicationProtocols for connected devices & Message communication Protocols for connected devices.	2	2	1	1	2	2	2	1	1	2	1	2	2	2	1	2
CO4: Familiarize and understand the basicSensor data Communication Protocols.	3	2	2	2	3	1	3	1	2	1	2	2	3	3	3	2
CO5: Smart City Streetlights control & monitoring.	2	2	2	2	1	1	3	1	1	1	2	2	3	1	3	2

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (L I)	Classroom Instruction(CI)	Self- Learning(SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO1: Acquire the knowledge of IoT concept and its Architecture.	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1.0 Theoretical Framework of IoT 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO2: Acquire the basic concept of Software defined networking and Machine-to-Machine (M2M).	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit-2 Machine-to-Machine (M2M) 2.1, 2.2, 2.3, 2.4	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO3: Exposed to various web communication Protocols for connected devices & Message communication Protocols for connected devices.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3 : Design principles for web connectivity 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO4: Familiarize and understand the basic Sensor data Communication Protocols.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4 : Sensor Technology 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4	CO5: Smart City Streetlights control & monitoring.	SO5.1 SO5.2 SO5.3 SO5.4 SO5.5		Unit 5: IoT Design methodology: 5.1,5.2,5.3,5.4,5.5,5.6,5. 7	

Semester-VII

Course Code:	PEC-ME 02
Course Title:	Power Plant Engineering
Pre- requisite:	Student should have basic knowledge engineering thermodynamics, mechanical engineering fundamentals and electrical engineering basics.
Rationale:	Its primary rationale is to generate electrical power efficiently and reliably to meet the demands of industries, businesses, and households.

Course Outcomes:

PEC-ME 02.1: Discuss various components of steam power plant and the factors influencing the site selection for the plant.

PEC-ME 02.2: Illustrate the working of gas turbine and combined power plant and its components.

PEC-ME 02.3: Explain the components, principles and working of nuclear power plant

PEC-ME 02.4: Explain the working of hydroelectric power plant and renewable power system

PEC-ME02.5: Explain the economics involved in Power Plant and identify the factors related to selection of plant.

Scheme of Studies:

					Schen	Scheme of studies(Hours/Week)			
Board of Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)	
Program Core (PCC)	PEC-ME 02	Power Plant engineering	3	0	1	1	5	3	

Legend:CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial
(T) and others),
LI: Laboratory Instruction (Includes Practical performances in laboratory workshop,
field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

					Scheme of	Assessmen	t (Marks)			
			Progressive Assessment (PRA)				End Semester Assessment	Total Marks		
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3)	Semina r one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	10 marks each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
PEC		Power plant engineering	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PEC ME 02.1: Discuss various components of steam power plant and the factors influencing the site selection for the plant.

Approximate Hours			
Item	Appx. Hrs		
Cl	9		
LI	0		
SW	1		
SL	2		
Total	12		

Session Outcomes (SOs)	(SOs) Instruction Instruction (LI) (CI)		Self Learning (SL)
 SO1.1. Demonstrate how to conduct routine maintenance on specific plant equipment. Apply safety protocols when operating machinery in the plant. 		S Unit-1.0 Introduction and Coal based Thermal Power Plants 1.1 Introduction of power plant 1.2 classification based on energy sources 1.3 Basic Rankine cycle and its modifications	 Subsystems of thermal power plants Numerical problem related to thermodynamics laws
 SO1.2. Evaluate the efficiency of different types of coal in power generation. Assess the environmental impact of a coal-based thermal power plant. Analyze data related to energy output and consumption. 		 1.4 ; Layout of modern coal power plant; 1.5 ; Super critical boilers, FBC boilers 1.6 Turbines, condensers, steam and heating rates 1.7; Fuel and ash handling; Draught system 1.8 ; Feed water treatment; 1.9 Binary cycles and cogeneration systems 	
SO1.3. Judge the effectiveness of new technologies in reducing emissions from coal- based power plants. SO1.4. Design a proposal for optimizing the efficiency of a coal-based thermal power plant.			

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-1 Suggested Sessional Work (SW):

a. Assignments:

- 1. Explain classification of power plant based on energy sources.
- 2. Explain working and construction of Rankine cycle?

PEC ME 02-.2: Illustrate the working of gas turbine and combined power plant and its components.

FEC IME 022. mustrate tr		Approximate Hours			
		Item	Appx. Hrs		
		Cl	09		
		LI	00		
		SW	02		
		SL	01		
		Total	12		
Session Outcomes	Laboratory	Class room	Self Learnin		
(SOs)	Instruction	Instruction	(SL)		
	(LI)	(CI)			
• SO2.1. Describe		Unit-2.0. Gas Turbine and	1. Numerical		
the Brayton cycle		Combined Cycle Power	of brayton		
and its application		Plants:	cycle		
in gas turbine		2.1 Brayton cycle			
engines.		2.2 Brayton cycle analysis			
Understand the		and optimization			
concept of waste		2.3 numerical based on			
heat recovery and		brayton cycle			
its role in		2.4 introduction of gas			
combined cycle		turbine			
efficiency		2.5 component of gas			
• SO2.2		turbine power plants			
Demonstrate the		2.6 Combined cycle power			
ability to calculate		plants			
efficiency ratios		2.7 expression for			
for gas turbine		efficiency of combined			
		cycle power plants			
power plants.		2.8 Integrated Gasifier			
Apply knowledge		based Combined Cycle			
of gas turbine		(IGCC) systems.			
components to		2.9 numerical based on			
troubleshoot		IGCC systems.			
common issues.					
Utilize software					
tools to simulate					
and optimize the					

		performance of a			
		combined cycle			
		power plant.			
	•	SO2.3 Assess the			
		environmental			
		impact of gas			
		turbine power			
		plants in			
		comparison to coal			
		or nuclear plants.			
	•	Evaluate the			
		economic			
		feasibility of			
		implementing			
		combined cycle			
		technology in			
		different regions.			
	•	SO2.4 Design a			
		proposal for			
		enhancing the			
		efficiency of a gas			
		turbine power			
		plant.			
	•	Develop a plan for			
		integrating			
		renewable energy			
		sources into a			
		combined cycle			
		power plant.			
	•	Create a model or			
		presentation			
		outlining the			
		future			
		advancements in			
		gas turbine			
		technology for			
		power generation.			
L			1	I	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

- 1. Drive the expression for efficiency of brayton cycle.
- 2. Explain working and construction of IGCC system.

PEC ME 02 2.3. : Explain the components, principles and working of nuclear power plant

Approximate Hours			
Item	AppX Hrs		
Cl	09		
LI	00		
SW	01		
SL	02		
Total	12		

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO3.1 Comprehending		Unit-3.0 Nuclear Power	1. Safetys
the principles of		Plants:	measures
nuclear reactions,		2.1 lateration of such as	in formation in a
reactor dynamics, and		3.1 Introduction of nuclear power plant	functioning of nuclear
the significance of		3.2 Basics of nuclear	power
safety measures.		energy conversion	plant
SO3.2 Applying		3.3 ; Layout and	2. Eniviromen
knowledge to operate		subsystems of nuclear	tal impact
control systems,		power plants	of nuclear
manage reactor		3.4 Boiling Water Reactor	power
parameters, and		And Pressurized Water	plant
respond to routine		Reactor 3.5 CANDU Reactor	
operational scenarios.		3.6 Pressurized Heavy	
SO3.3 Assessing		Water Reactor (PHWR)	
reactor performance		3.7); Fast Breeder	
data, identifying		Reactors (FBR)	
anomalies, and		3.8 Gas cooled and liquid	
troubleshooting		metal cooled reactors	
operational issues.		3.9 ; Safety measures for nuclear power plants.	
SO3.4 Critically		nuclear power plants.	
evaluating safety			

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

procedures, emergency		
response plans, and		
proposing		
improvements based		
on past incidents or		
industry best practices.		
SO3.5 Developing		
innovative approaches		
to enhance plant		
safety, designing new		
training methodologies		
for operators, or		
implementing novel		
reactor control		
strategies.		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

a. Assignments:

- I. Explain working and construction of nuclear power plant with neat sketch diagram.
- 2. Explain fast breeder reactor.

PEC ME 02-2.4. Explain the working of hydroelectric power plant and renewable power system

Ap	proximate Hours
Item	AppX Hrs
Cl	09
LI	00
SW	01
SL	02
Total	12

		_	Total	12	
Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (CI)		Self Learn (SL)	
 SO4.1. Apply knowledge of hydroelectric power to solve simple problems related to energy production or efficiency. Analyze case studies of hydroelectric power plants and propose improvements for better performanCe. SO4.2 Assess the sustainability and long-term 		power plan Renewable 4.1 .Introduc hydroelectri plants 4.2 classific hydroelectri plants 4.3 Typical component hydroelectri 4.4 introduc renewable 4.5 : Princip working of power plan 4.6 Principl of solar pho-	Power Systems action of ric power ation of ric power layout and ric power plant ction of power systems oles and wind and tidal t es and working oto-voltaic and hal power plant es and working	1. environmental i hydroelectric pow	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

(Revised as on 01 August 2023)

		101 August 2023
	viability of	4.8 Principles and working
	hydroelectric	of biogas power plant
	power	4.9 Principles and working
	compared to	of fuel cell power systems
	other	power plant
	renewable	
	energy sources.	
•	SO4.3 Design a	
	hypothetical	
	hydroelectric	
	power system	
	considering	
	geographical,	
	environmental,	
	and economic	
	factors.	
•	Develop a	
	proposal for	
	optimizing	
	existing	
	hydroelectric	
	power plants	
	for increased	
	efficiency or	
	reduced	
	environmental	
	impaCt.	

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
 - **1.** Explain working and construction of tidal power plant.
 - 2. Make layout of hydroelectric power system..

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

PEC-ME02.5: Explain the economics involved in Power Plant and identify the factors related to selection of plant.

Ар	proximate Hours
Item	AppX Hrs
Cl	09
LI	00
SW	2
SL	1
Total	12

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO5.1 Understand the factors influencing energy pricing, such as market forces, government policies, and global trends SO5.2 Apply economic models to analyze the impact of policy changes (e.g., carbon pricing, subsidies) on energy markets. SO5.3 Evaluate the costs and benefits of different energy policies on both the economy and the environment SO5.4 Develop a proposal for an energy strategy that optimizes resource allocation while minimizing environmental impact		Unit-5. Energy Economics and Environment 5.1 introduction to energy economics and environment 5.2 Economic and environmental issues 5.3 Power tariffs 5.4 ; Load distribution parameters 5.5 Load curve 5.6 Capital and operating cost of different power plants 5.7 Pollution control technologies 5.8 waste disposal options for coal and nuclear plants 5.9 calculation of energy economics	 Explain the factors influencing energy prices,

SW-5 Suggested Sessional Work (SW):

a. Assignments:

1. Explain renewable energy economics.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class	Lab	Sessional	Self	Total hour
	Lecture	Lecture	Work	Learning	(Cl+Ll+SW+SI)
	(CI)	(LI)	(SW)	(SI)	
PEC-ME 02.1: Discuss various components					
of steam power plant and the factors				2	12
influencing the site selection for the plant	9	0	1	2	
. PEC-ME 02.2: Illustrate the working of gas					
turbine and combined power plant and its					
components	9	0	2		12
	5	0	2	1	
PEC-ME 02.3: Explain the components,					
principles and working of nuclear power					
plant	9	0	2	1	12
	-				
PEC-ME 02.4: Explain the working of					
hydroelectric power plant and renewable					
power system	9	0	2	1	12
				1	
PEC-ME02.5: Explain the economics					
involved in Power Plant and identify the					
factors related to selection of plant					12
	9	0	2		
				1	
Total Hours	45	00	09	6	60
	45	00	09	D	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

CO	Unit Titles	M	arks Dis	Total	
		R	U	Α	Marks
CO-1	. Introduction and Coal based Thermal Power Plants	03	01	01	05
CO-2	Gas Turbine and Combined Cycle Power Plants	02	06	02	10
CO-3	Nuclear Power Plants	03	07	05	15
CO-4	Hydroelectric Power Plants and Renewable Power Systems:	-	10	05	15
CO-5	Energy Economics and Environment	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment .for power plant engineering will be held with writtenexamination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 2. Improved Lecture
- 3. Tutorial
- 4. Case Method
- 5. Group Discussion
- 6. Role Play
- 7. Visit to cement plant
- 8. Demonstration
- 9. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 10. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Suggested Learning Resources:

(a)	Books:							
S. No.	Title	Author	Publisher	Edition & Year				
1	Power Plant Engineering,	Nag P.K	Tata McGraw Hill	2008				
2	Power Plant Technology	El Wakil M.M	Tata McGraw Hill	2010				
3	Power Plant Engineering	Elliot T.C., Chen K and Swanekamp R C	McGraw Hill	1998				
4	Power plant engineering	Er. R.K. Rajput	Laxmi publications.	.2016				
5	Training Manual							
6	Training Manual							
7	Lecture note provided by Dept. of Mechanical Engi		sity, Satna .					

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanical Engg

Cos, POs and PSOs Mapping

Programme Title: B. Tech Mechanical Engineering

Course Code: PEC ME 02

Course Title: Power plant engineering

		Program Outcomes									Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engine ering knowle dge		Design/ develop ment of soluti ons	uct	Moden tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
CO1 : Discuss various components of steam power plant and the factors influencing the site selection for the plant.	1	1	2	2	2	2	3	1	2	2	1	2	2	2	1	-
CO 2 . Illustrate the working of gas turbine and combined power plant and its components.	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1
CO3 Explain the components, principles and working of nuclear power plant	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2
CO 4: Explain the working of hydroelectric power plant and renewable power system	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
CO 5: Explain the economics involved in Power Plant and identify the factors related to selection of plant	1	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction(L I)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	CO1 : . Discuss various	SO1.1		Unit-1.0 . Introduction and	
	components of steam			Coal based Thermal Power Plants	
7,8,9,10,11,12	power plant and the	SO1.2			
	factors influencing the	SO1.3			
PSO 1,2, 3, 4, 5	site selection for the plant.	SO1.4		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
PO 1,2,3,4,5,6	CO 2 : Illustrate the working of	SO2.1		Unit-2 Gas Turbine and Combined Cycle	
, , , , , ,	gas turbine and combined power			Power Plants	
7,8,9,10,11,12	plant and its components .	SO2.2			
		SO2.3		2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7,	
PSO 1,2, 3, 4, 5		SO2.4		2.8,2.9	
					As mentioned in
PO 1,2,3,4,5,6	CO3 : . : Explain the components,	SO3.1		Unit-3 : Nuclear Power Plants	page number
7,8,9,10,11,12	principles and working of nuclear	SO3.2			2 to 6
	power plant	SO3.3		3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9	
PSO 1,2, 3, 4, 5		SO3.4			
		SO3.5			
PO 1,2,3,4,5,6	CO 4: . Explain the working of	SO4.1		Unit-4 : . Hydroelectric and	
7,8,9,10,11,12	hydroelectric power plant and	SO4.2		Renewable Power System	
	renewable power system	SO4.3		41 4242444545474840	
PSO 1,2, 3, 4, 5				4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	
PO 1,2,3,4,5,6	CO 5: Explain the economics	SO5.1		Unit 5: Energy Economics and Environment	
7,8,9,10,11,12	involved in Power Plant and	SO5.2			
	identify the factors related to	SO5.3		5.1,5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	
PSO 1,2, 3, 4, 5	selection of plant	SO5.4			

Semester-VI

Course Code:	PEC-ME 01
Course Title:	REFRIGERATION AND AIR CONDITIONING
Pre-requisite:	Students should have basic knowledge in thermodynamics, heat transfer, and fluid mechanics, along with familiarity with HVAC concepts, psychometry, and refrigeration cycles."
Rationale:	Refrigeration and air conditioning ensure comfort, preserve perishables, and maintain industrial processes by controlling temperature, humidity, and air quality for various applications and environments."

Course Outcomes:

- **ME 01.1:** Grasp refrigeration principles, analyze vapor compression systems, and understand limitations for practical applications.".
- **ME 01.2:** Comprehend multi-stage and multi-evaporator systems, including flash gas removal, intercooling, and diverse configurations with applications, advantages, and limitations."
- **ME 01.3:** Students will grasp gas cycle refrigeration concepts, aircraft applications, and cooling tower types, performance, operation, and energy-saving opportunities

ME 01.4:. Master psychrometry, moist air properties, psychrometric processes, heat transfer rates, and applications including SHF, bypass factor, ADP, and air washers."

ME 01.5: apply design conditions, understand thermal comfort, psychometric calculations, and design various summer air conditioning systems, considering ventilation, bypass factors, and reheat strategies."

SchemeofStudies:

Course					Scher	neofstudies	s(Hours/Week)	TotalCredits
Categor y	Course Code	CourseTitle	Cl	LI	SW	SL	TotalStudyHours (CI+LI+SW+SL)	(C)
Profession al elective		REFRIGERATION AND AIR	3	0	1	1	5	3
course (PEC)		CONDITIONING						

Legend: CI: Class room Instruction(Includes different instructional strategies i.e. Lecture(L) and Tutorial (T)andothers),
 LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
 SW: Sessional Work (includes assignment, seminar, mini project etc.),
 SL: Self Learning,
 C:Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

SchemeofAssessment:

Theory

				Scheme of Assessment (Marks)									
					Progress	sive Assess	ment(PRA)		End Semester Assessment	Total Marks			
Course Catego ry	Couse Code	Course Title	Class/Ho meAssign ment5nu mber	ClassTest 2 (2bestout of3)	Semina r one	Class Activity any one	Class Attendance	Total Marks					
			3mar ksea ch (CA)	10marks each(CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)			
Professional elective course (PEC)	ME 01	REFRIGER ATION AND AIR CONDITIO NING	15	20	5	5	5	50	50	100			

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

ME 302.1: Grasp refrigeration principles, analyze vapor compression systems, and understand limitations for practical applications.".

Approximate Hours								
ltem	Appx. Hrs							
Cl	9							
LI	0							
SW	1							
SL	1							
Total	11							

Session	Laboratory		Classroom		Self
Outcomes	Instruction				Learning
(SOs)	(LI)	(CI)			(SL)
 S01.1 Understand refrigeration principles and the second law of thermodynamics. S01.2 Evaluate practical limitations of the reversed Carnot cycle in refrigeration. S01.3 Analyze standard vapor compression refrigeration system performance under various conditions. S01.4 Explore modifications and criteria for optimum superheat in refrigeration systems. S01.5 Assess limitations and 	Instruction (LI)		Understanding the Basics of tion and Second Law of	1.	0
challenges of single-stage vapor compression refrigeration systems.		1.6 1.7 1.8	condensing temperatures. Modifications, its effects, Liquid-to-Suction heat exchanger, Effect of Superheat and criteria For optimum		

1.9	superheat, Actual vapor compression refrigeration systems, Limitations of single stage.	

SW-1 Suggested Sessional Work(SW):

a. Assignments:

1. Describe the Reversed Carnot Cycle and its significance in refrigeration systems. Explain its practical limitations and why it cannot be achieved in real-world applications.

ME 302.2: Comprehend multi-stage and multi-evaporator systems, including flash gas removal, intercooling, and diverse configurations with applications, advantages, and limitations."

Approximate Hours			
ltem	AppX Hrs		
Cl	9		
LI	0		
SW	1		
SL	1		
Total	11		

Session	Laboratory	Classroom	Self
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
S02.1 Understand concepts of flash		UNT 2.0- Multi-Stage Systems	1. Simple
gas removal, intercooling, and flash		And Multi–Evaporator	nVapour
tanks.		Systems:	Absorption
S02.2 Evaluate applications,		2.1 Introduction to Multi-Stage	Refrigeratio n System.
advantages, and compare single and		Systems	2. Practical
multi-evaporator systems.		2.2: Concept of flash gas	vapour
S02.3 Analyze systems with single		removal using flash tank in	absorption
compressors, multiple expansion		multi stage system, inter	system.
valves, and cascade configurations.		cooling in multi stage system	
S02.4 Explore the use of flash tanks		2.3 Flash gas removal and	
for gas removal and intercooling.		inter cooling 2.4 Limitations of multi-stage	
S02.5 Assess limitations inherent in		systems.	
multi-stage refrigeration and		2.5 Introduction to Multi-	
evaporator systems.		Evaporator Systems,	
		Application, comparison	
		Advantages	
		2.6 Systems using single	
		compressor and a pressure	
		reducing valve with Individual	
		expansion valves	
		2.7 Systems using single	
		compressor and a pressure	
		reducing valve with multiple	
		expansion valves 2.8 Systems with multi	
		compression, inter cooling and	
		flash gas removal, with	
		individual compressors	
		2.9 Systems with multi	
		compression, inter cooling and	
		flash gas removal, with	
		individual compressors,	
		Cascade systems	
		Caseade systems	

SW-2 Suggested Sessional Work (SW):

- **a.** Assignments: Discuss advanced multi-compression systems with intercooling and flash gas removal. Analyze the benefits of using multiple compressors and expansion valves in improving system efficiency and capacity modulation.
- **ME 302.3:** Students will grasp gas cycle refrigeration concepts, aircraft applications, and cooling tower types, performance, operation, and energy-saving opportunities

Approximate Hours				
ltem	AppX Hrs			
Cl	9			
LI	0			
SW	1			
SL	1			
Total	11			

Session	Laboratory	Classroom	Self
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(CI)	(SL)
 SO3.1 Examine limitations of Carnot and reversed Carnot cycles in refrigeration. SO3.2 Explore modified cycles, reversed Bell-Colemann, and actual Bell-Colemann cycles. SO3.3 Apply gas cycle refrigeration principles to the unique context of aircraft. SO3.4 Compare diverse air cooling methods, including simple, evaporative, and regenerative. SO3.5 Evaluate types, performance, flow control, and energy-saving opportunities in cooling towers. 		 UNIT-3.0 Gas Cycle Refrigeration And Cooling Tower 3.1 Limitation of Carnot and reversed Carnot Cycle 3.2 Modified Cycle 3.3 Reversed Bell- Colemann cycle 3.4 Actual Bell-Colemann Cycle 3.5 Application of Aircraft RefrigerationL, Overview of simple air cooling, 3.6 Evaporative Air cooling, boot Strap, Boot Strap with evaporative, Reduced ambient, 3.7 Regenerative and comparison of different air cooling system in Air Craft. 3.8 Cooling Tower: Types and perormance evaluation, efficient system operation, 3.9 Flow control strategies and energy saving opportunities, Assessment of cooling towers. 	 Develop a comprehensive assessment plan for cooling towers. Compare regenerative air cooling systems with other air cooling systems used in aircraft.

SW-3Suggested Sessional Work (SW):

a. Assignments:

i. Conduct an assessment of cooling towers used in aircraft applications, considering factors such as thermal efficiency, water consumption, environmental impact, and cost-effectiveness.

ME 302.4: Master psychrometry, moist air properties, psychrometric processes, heat transfer rates, and applications including SHF, bypass factor, ADP, and air washers."

Approximate Hours			
ltem	AppX Hrs		
Cl	9		
LI	0		
SW	1		
SL	1		
Total	11		

673

Session	Laboratory	Classroom	Self
Outcomes	Instruction	Instruction	Learning
(SOs)	(LI)	(Cl)	(SL)
 SO4. 1 Understand psychrometry, estimating moist air properties, and utilizing psychrometric charts. SO4. 2 Analyze adiabatic saturation and thermodynamic wet bulb temperature in psychrometry. SO4. 3 Explore psychrometer use, precautions, and instrument-related considerations in psychrometric measurements. SO4. 4 Apply equations for heat and mass transfer rates in psychrometric processes. SO4. 5 Comprehend concepts of SHF, bypass factor, ADP, and air washers for system optimization. 		UNIT-4.0 Psychrometry 4.1 Psychrometry, Estimating properties of moist air 4.2 psychrometry chart, 4.3 Straight line law, 4.4 Adiabatic saturation and thermodynamic wet bulb temperature, 4.5 Psychrometer and the precautions, 4.6 psychrometric presses and their representation, 4.7 equations for heat and mass transfer rates, 4.8 Concept of SHF, By pass factor and ADP, 4.9 Air washer and its use.	 Psychrome tric principles in creating healthier living and working environme nts Impact of psychromet ry on agriculture or industrial processes beyond HVAC

SW-4Suggested Sessional Work (SW):

a. Assignments:

i. Describe the construction and use of a psychrometric chart for analyzing the properties of moist air. Explain how to read and interpret a psychrometric chart, including the representation of psychrometric processes and the calculation of various psychrometric properties.

ME 01.5: Apply design conditions, understand thermal comfort, psychometric calculations, and design various summer air conditioning systems, considering ventilation, bypass factors, and reheat strategies."

ltem	AppX Hrs
Cl	9
LI	0
SW	1
SL	1
Total	11

Session Outcomes	Laboratory	Classroom		Self
(SOs)	Instruction	Instruction		Learning
	(LI)	(CI)		(SL)
 SO5.1 Grasp criteria for suitable indoor/outdoor conditions and factors affecting thermal comfort. SO5.2 Analyze heat balance equations, thermal indices, and the ASHRAE comfort chart. SO5.3 Evaluate criteria for outdoor conditions, considering typical summer design conditions. SO5.4 Apply psychometric calculations to a simple air conditioning system with re-circulated air. SO5.5 Design various summer air conditioning systems with ventilation, considering reheat and bypass factors. 		UNIT-5.0 ENVIRONMENTAL COMFORT AND HVAC SYSTEMS DESIGN 5.1 Introduction to indoor and outdoor design conditions. 5.2 Fixing suitable indoor and outdoor design conditions, thermal comfort, metabolic rate, heat balance equation, equations for all modes of heat losses from the skin, thermoregulatory mechanism. 5.3 Factors affecting thermal comfort, thermal indices, presents ASHRE comfort chart 5.4 Concept of Predicted Mean Vote (PMV) and percent of people Dissatisfied(PPD) 5.5 criteria used for selecting outside design conditions and present typical summer design conditions. 5.6 Psychometric calculations 5.7 Simple summer air conditioning system with 100% re-circulated air 5.8, various Summer air conditioning systems with ventilation and with zero and non zero by pass factor, 5.9 with re-heat for high latent cooling load applications	1.	Selection guidelines for supply air conditions. impact of ventilation

SW-5Suggested Sessional Work (SW):

a. Assignments:

i) Explore the heat balance equation and its application in assessing thermal comfort. Discuss the components of the heat balance equation, including metabolic heat production, sensible heat exchange, and latent heat exchange.

i.

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Sessional Work (SW)	Self Learning (SI)	Total hour (Cl+SW+Sl)
CO1: Grasp refrigeration principles, analyze vapor compression systems, and understand limitations for practical applications.".	9	1	1	11
CO2: Comprehend multistage and multi- evaporator systems, including flash gas removal, intercooling, and diverse configurations with applications, advantages, and limitations."	9	1	1	11
CO:3 Students will grasp gas cycle refrigeration concepts, aircraft applications, and cooling tower types, performance, operation, and energy-saving opportunities	9	1	1	11
CO:4 Master psychrometry, moist air properties, psychrometric processes, heat transfer rates, and applications including SHF, bypass factor, ADP, and air washers."	9	1	1	11
CO5: Apply design conditions, understand thermal comfort, psychometric calculations, and design various summer air conditioning systems, considering ventilation, bypass factors, and reheat strategies."	9	1	1	11
Total Hours	45	5	5	55

Suggestion for End Semester Assessment

Suggested Specification Table (For ESA)

СО	Unit Titles	Marks Distribution		Total	
		R	U	Α	Marks
CO-1	Understanding the Basics of Refrigeration and Second Law of Thermodynamics	03	01	01	05
CO-2	Multi-Stage Systems And Multi– Evaporator Systems:	02	06	02	10
CO-3	Gas Cycle Refrigeration And Cooling Tower	03	07	05	15
CO-4	Psychrometry	-	10	05	15
CO-5	Environmental Comfort and HVAC Systems Design	03	02	-	05
	Total	11	26	13	50

Legend: R: Remember, U:Understand, A:Apply

The end of semester assessment for REFRIGERATION AND AIR CONDITIONING will be held with written examination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course-wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role-play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook, Twitter, Whats-app, Mobile, Online sources)
- 9. Brainstorming

Suggested Learning Resources:

(a)	(a)Books:												
S. No.	Title	Author	Publisher										
1	Refrigeration And Air Conditioning	C.P. Arora	Tata McGraw- Hill										
2	Refrigeration And Air Conditioning	R.K. Rajput	Katson Publication										
3	Refrigeration And Air Conditioning	Arora & Domkundwar	Dhanpat raj Sons										
4	Refrigeration And Air Conditioning	W.F. STOECKER & J.W JONES	Tata McGraw- Hill										
5	Refrigeration And Air Conditioning	Ahmadaul Ameen	PHI publication										
6	Handbook of Refrigeration And Air Conditioning	Shan K.Wang	Tata McGraw- Hill										

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos, Pos and PSOs Mapping

Programme Title: B. Tech Mechanical

Engineering

Course Code : ME 01

Course Title: REFRIGERATION AND AIR CONDITIONING

	Program Outcomes										Program Specific Outcome					
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engine ering knowle dge	Prob lema naly sis	Desig n/dev elopm entof soluti ons	Condu ctinve stigati onsof compl expro bl ems	Mode m toolu sage	Thee ngin eera ndso ciety	Environ ment and sustain ability:	Ethics	Indivi duala ndtea mwor k:	Comm unicat ion:	Project manage ment and finance:	Life- longlear ning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
CO1: Grasp refrigeration principles, analyze vapor compression systems, and understand limitations for practical applications.".	1	1	2	2	3	2	3	2	2	1	3	2	2	3	3	1
CO2: Comprehend multistage and multi-evaporator systems, including flash gas removal, intercooling, and diverse configurations with applications, advantages, and limitations."	1	1	2	2	1	2	3	2	1	1	2	2	2	2	2	1
CO:3 Students will grasp gas cycle refrigeration concepts, aircraft applications, and cooling tower types, performance, operation, and energy-saving opportunities	2	2	1	1	1	2	2	2	1	2	1	2	1	1	2	2
CO:4 Master psychrometry, moist air properties, psychrometric processes, heat transfer rates, and applications including SHF, bypass factor, ADP, and air washers."	3	2	2	2	3	2	3	2	2	1	2	3	3	3	3	2
CO5: Apply design conditions, understand thermal comfort, psychometric calculations, and design various summer air conditioning systems, considering ventilation, bypass factors, and reheat strategies."	-	-	-	1	1	3	3	3	1	1	2	2	3	3	1	3

Legend:1–Low,2–Medium,3– High

Course Curriculum Map:

Pos &PSOs No.	Cos No. &Titles	SOs No.	Laboratory Instruction(L I)	Classroom Instruction(CI)	Self Learning(SL)
PO 1,2,3,4,5,6	CO1: Grasp refrigeration	SO1.1			
7,8,9,10,11,12	principles, analyze vapor compression systems, and understand	SO1.2		Unit-1.0 Understanding the Basics of Refrigeration and Second Law of Thermodynamics	
	limitations for practical	SO1.3		inciniou ynamies	
PSO1,2,3,4,5	applications.".	SO1.4		1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
		SO1.5			
PO 1,2,3,4,5,6	CO2: Comprehend multistage and multi-evaporator systems,	SO2.1		UNT 2.0- Multi-Stage Systems And Multi–Evaporator Systems:	-
7,8,9,10,11,12	including flash gas removal, intercooling, and diverse	SO2.2			
	configurations with	SO2.3		2.1,2.2,2.3,2.4,2.5,2.6,2.7,	
PSO1,2,3,4,5	applications, advantages, and	SO2.4		2.8,2.9,	
	limitations."	SO2.5			As mentioned in
PO 1,2,3,4,5,6	CO:3 Students will grasp gas cycle	SO3.1		UNIT-3.0 Gas Cycle Refrigeration And	Page number
7,8,9,10,11,12	refrigeration concepts, aircraft	SO3.2		Cooling Tower	2 to 6
	applications, and cooling tower types, performance,	SO3.3		3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9	
PSO1,2,3,4,5	operation, and energy-saving	SO3.4			
	opportunities	SO3.5			-
PO 1,2,3,4,5,6	CO:4 Master psychrometry,	SO4.1		UNIT-4.0 Psychrometry	
7,8,9,10,11,12	moist air properties,	SO4.2			
	psychrometric processes,	SO4.3		4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9	
PSO1,2,3,4,5	heat transfer rates, and	SO4.4			
	applications including SHF, bypass factor, ADP,	SO4.5			
	and air washers."				
PO 1,2,3,4,5,6	CO5: Apply design conditions,	SO5.1		UNIT-5.0 ENVIRONMENTAL COMFORT AND	-
7,8,9,10,11,12	understand thermal comfort,	SO5.2		HVAC SYSTEMS DESIGN	
	psychometric calculations, and	SO5.3		5.1, 5.2,5.3,5.4,5.5,5.6,5.7,5.8,5.9	
PSO1,2,3,4,5	design various summer air	SO5.4			
	conditioning systems,	SO5.5			
	considering ventilation, bypass				
	factors, and reheat strategies.				68

Course Code:	PEC -ME 03
Course Title :	Renewable Energy Engineering
Pre- requisite:	Knowledge of thermodynamics, heat transfer, energy engineering, applied thermodynamics and heat cycles
Rationale:	The combustion of fossil fuels releases greenhouse gases, such as carbon dioxide, contributing to climate change. Renewable energy sources like solar, wind, and hydropower produce electricity with significantly lower or
	zero emissions, helping to mitigate climate change.
Course Outcomes:	

PEC-ME03.1 understanding of basic energy concepts, including the principles of energy conversion and the environmental impact of energy utilization.

PEC-ME03.2: Analyze solar radiation data, estimate solar radiation on different surfaces, and comprehend the functioning of various solar thermal systems and photovoltaic systems. They will also gain knowledge about thermal energy storage methods..

PEC-ME03.3: Acquire expertise in wind energy, including the basics of fluid mechanics, wind turbine aerodynamics, and the different types of wind turbines. They will be capable of evaluating wind turbine siting and understanding wind energy conversion systems.

PEC-ME03.4: understanding of various renewable energy sources, including fuel cells and biomass energy. They will be able to classify fuel cells, grasp their operating principles and thermodynamics, as well as comprehend biomass conversion technologies and urban waste to energy conversion.

PEC-ME03.5.: Recognize the significance of nuclear, ocean, and geothermal energy.

Board of					Schei	ne of studi	es(Hours/Week)	Total Credits
Study	Course Code	Course Title	Cl	LI	SW	SL	Total Study Hours (CI+LI+SW+SL)	(C)
Professi onal elective course (PEC)	ME 03	Renewable Energy Engineering	3		1	1	5	3

Legend:

CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

Li: Laboratory Instruction (Includes Practical performances in laboratory workshop,

field or other locations using different instructional strategies)

SW: Sessional Work (includes assignment, seminar, mini project etc.),

SL: Self Learning,

C:Credits.

teacher to ensure outcome of Learning.

Scheme of Assessment:

Theory

				Scheme of Assessment (Marks)						
Decidef					Progressiv	e Assessme	ent (PRA)		End Semester Assessment	Total Marks
Board of Study	Couse Code	Course Title	Class/Home Assignment 5 number 3 marks	Class Test 2 (2 best out of 3) 10 marks	Semina r one	Class Activity any one	Class Attendance	Total Marks		
			each (CA)	each (CT)	(SA)	(CAT)	(AT)	(CA+CT+SA+CAT+AT)	(ESA)	(PRA+ ESA)
PEC	ME 03	Renewa ble Energy Enginee ring	15	20	5	5	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

PEC-ME03.1 understanding of basic energy concepts, including the principles of energy conversion and the environmental impact of energy utilization.

Ар	proximate Hours
ltem	AppX Hrs
Cl	09
LI	
SW	01
SL	01
Total	11

Session Outcomes (SOs)	LaboratoryInstruction (LI)	Class room Instruction (Cl)	Self Learning (SL)
SO1.1 Understand fundamental energy concepts, types, and conversion principles. SO1.2 Identify and explain key renewable energy technologies and their applications. SO1. Grasp environmental impacts of energy, focusing on global warming and ozone layer depletion. SO1.4 Analyze the current status, trends, and challenges in global and Indian renewable energy landscapes. SO1.5 Recognize the significance of energy storage and explore methods like batteries and pumped hydro storage		Unit-1.0 Introduction 1. Basic concepts of energy 1.2 Introduction to Renewable Energy Technologies 1.3 Energy and Environment 1.4 global warming, 1.5 Acid rains 1.6 Depletion of ozone layer 1.7 Global and Indian Scenario of renewable energy sources 1.8 Energy storage - necessity 1.9 Energy storage methods.	1. Global warming

SW-1 Suggested Sessional Work (SW):

a. Assignments: Explain energy storage methods

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

PEC-ME03.2: Analyze solar radiation data, estimate solar radiation on different surfaces, and comprehend the functioning of various solar thermal systems and photovoltaic systems. They will also gain knowledge about thermal energy storage methods **Approximate Hours**

about thermal energy storage i	methous		Approx	mate Hours	
			ltem	AppX Hrs	
			Cl	10	
			LI		
			SW	01	
			SL	02	
			Total	13	
Session Outcomes	LaboratoryInstruction		Class room	Self	
(SOs)	(LI)		Instruction	Learni	ng
			(CI)	(SL)	
S O2.1 Define key concepts			Solar Energy and	1Flat plate colle	ector
related to solar energy,			ermal Systems	2 Solar air colle	ctor
including solar radiation,			lamentals of Solar		
photovoltaics, and solar		Radiatio			
thermal technologies.			nation of solar n on horizontal and		
5			surfaces		
SO2.2 Describe the basic			urement of solar		
principles of		radiatio			
thermodynamics and heat		2.4Basic			
transfer as they apply to		thermod	lynamics and heat		
solar thermal systems.		transfer			
SO2.3 Explain the		-	latecollector		
operation of flat plate			uated Tubular		
collectors and evacuated		Collecto			
tubular collectors.		concent	air collector; Solar		
SO2.4 Understand the			r distillation, Solar		
principles of solar		cooker	alistillation, solar		
concentrators and their		2.9 Solar	r refrigeration and		
role in enhancing solar		air cond	itioning		
energy utilization.		2.10The	rmal energy		
SO2.5 Evaluate the use of		storage	systems		
solar energy in practical					
applications such as solar					
distillation, cooking,					
refrigeration, and air					
conditioning.					

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-2 Suggested Sessional Work (SW):

a. Assignments:

Explain Solar distillation system.

PEC-ME03.3: Acquire expertise in wind energy, including the basics of fluid mechanics, wind turbine aerodynamics, and the different types of wind turbines. They will be capable of evaluating wind turbine siting and understanding wind energy conversion systems.

Ар	proximate Hours
Item	AppX Hrs
Cl	11
LI	
SW	1
SL	1
Total	13

(SOs)(L)Instruction(SL)S03.1Understand the basic principles of the photovoltaic effect and semiconductor properties.Unit-3.0 Solar Photovoltaic Systems and wind energy 3.1Introduction1. Solar cell Mode and ArrayS03.2 Describe key solar cell characteristics and classify solar cells based on materials and structure3.3 Characteristics and classification of Solar cell 3.4 Solar cell Module, panel and Array1. Solar cell Module, and ArrayS03.3 Learn techniques for constructing solar cell modules, panels,3.6 Introduction, Origin3.6 Introduction, Origin	(Cl)erstand the ciples of the aic effect and actorUnit-3.0 Solar Photovoltaic Systems and wind energy 3.1Introduction 3.2 Solar cell Fundamentals 3.3 Characteristics and classification of Solar cell 3.4 Solar cell Module, panel and Array1. Solar cell Module, panel and Array		(LI) Instruction	-
SO3.1Understand the basic principles of the photovoltaic effect and semiconductor properties.Unit-3.0 Solar Photovoltaic Systems and wind energy 3.1Introduction1. Solar cell Mod and ArraySO3.2 Describe key solar cell characteristics and classify solar cells based on materials and structure3.2 Solar cell Fundamentals 3.3 Characteristics and classification of Solar cell 3.4 Solar cell Module, panel and Array 3.5constructionof Photovoltaic thermal systems.SO3.3 Learn techniques for constructing solar cell modules, panels,3.6 Introduction, Origin	erstand the ciples of the aic effect and uctorUnit-3.0 Solar Photovoltaic Systems and wind energy 3.1Introduction 3.2 Solar cell Fundamentals 3.3 Characteristics and classification of Solar cell 3.4 Solar cell Module, panel and Array1. Solar cell Module, panel and Array		(/	(SL)
basic principles of the photovoltaic effect and semiconductor properties.Systems and wind energy 3.1Introductionand ArraySO3.2 Describe key solar cell characteristics and classify solar cells based on materials and structure3.3 Characteristics and classification of Solar cell 3.4 Solar cell Module, panel and Array 3.5constructionofand ArraySO3.3 Learn techniques for constructing solar cell modules, panels,3.6 Introduction, Origin	ciples of the aic effect and actor 5. Cribe key solar cteristics and lar cells based als and Array Systems and wind energy 3.1Introduction 3.2 Solar cell Fundamentals 3.3 Characteristics and classification of Solar cell 3.4 Solar cell Module, panel and Array		(CI)	
and arrays.and nature of windsSO3.4 Acquire3.7Wind turbine sittingknowledge on factors3.8Basics of fluidinfluencing windmechanics	rn techniques Photovoltaic thermal ucting solar systems. es, panels, 3.6 Introduction, Origin and nature of winds and nature of winds	basic principles of the photovoltaic effect and semiconductor properties. SO3.2 Describe key solar cell characteristics and classify solar cells based on materials and structure SO3.3 Learn techniques for constructing solar cell modules, panels, and arrays. SO3.4 Acquire knowledge on factors influencing wind turbine siting and grasp basic fluid mechanics	(CI) Unit-3.0 Solar Photovoltaic Systems and wind energy 3.1Introduction 3.2 Solar cell Fundamentals 3.3 Characteristics and classification of Solar cell 3.4 Solar cell Module, panel and Array 3.5constructionof Photovoltaic thermal systems. 3.6 Introduction, Origin and nature of winds 3.7Wind turbine sitting 3.8Basics of fluid mechanics 3.9Wind turbine	1. Solar cell Module, panel
basic fluid mechanics principles relevant to	a on factors 3.8Basics of fluid g wind mechanics ing and grasp 3.9Wind turbine mechanics aerodynamics	principles relevant to	3.10 wind turbine types	
turbine siting and grash	e on factors 3 8Basics of fluid	turbine siting and grasp		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

SW-3 Suggested Sessional Work (SW):

- a. Assignments:
 - i. Explain types of wind turbine

PEC-ME03.4: understanding of various renewable energy sources, including fuel cells and biomass energy. They will be able to classify fuel cells, grasp their operating principles and thermodynamics, as well as comprehend biomass conversion technologies and urban waste to energy conversion.

			Ар	proximate Hours	_
			ltem	AppX Hrs	
			Cl	09	
			LI		
			SW	1	
			SL	2	
			Total	12	
Session Outcomes	LaboratoryInstruction	Cla	ss room	Self Learr	ning
(SOs)	(LI)	Ins	truction	(SL)	
			(CI)		
SO4. 1 Understand the			uel cells and	1. Biofuels	
fundamentals of fuel		Biomass er		2. Photosyr	nthesis
cells.			iction of fuel	process	
SO4.2 Explore the			ssification of		
operating principles of		fuel cells			
various fuel cell types.			ing principles		
SO4.3 Explain the		Fuel cell			
electrochemical		thermodyn			
processes during power		4.4Introdu			
generatio		biomass en	0.		
SO4.4 Learn the		4.5Photosy			
thermodynamics behind		Process 4.6			
fuel cell efficiency.			s Resources		
-			s conversion		
SO4.5 Learn about		technologie 4.9 Urban			
biomass resources and					
conversion		energy con			
technologies.		Biomass ga	isilication.		

SW-4 Suggested Sessional Work (SW):

- a. Assignments:
- 1 Explain operating principles Fuel cell.

Faculty of Engineering and Technology

Department of Mechanical Engineering

Curriculum of B.Tech. (Mechanical Engineering) Program

(Revised as on 01 August 2023)

PEC-ME03.5.: Recognize the significance of nuclear, ocean, and geothermal energy

	Approximate Hours
ltem	AppX Hrs
Cl	06
LI	
SW	01
SL	01
Total	08

Session Outcomes	LaboratoryInstruction	Class room	Self Learning
(SOs)	(LI)	Instruction	(SL)
		(CI)	
SO5.1 - Explain nuclear energy principles,		Unit-5.0 Other forms of Energy	1. Working principles of ocean energy
including fission and		5.1 Introduction of	
fusion.		nuclear energy ,ocean and	
SO5.2 Explore tidal,		geothermal energy	
wave, and thermal		5.2Applications of nuclear	
energy from the ocean. SO5.3 Understand		,ocean and geothermal	
geothermal energy		energy	
origins and working		5.3 Origin and types of	
principles.		nuclear ,ocean and	
SO5.4 Discuss		geothermal energy 5.4 Working principles of	
variations in energy		nuclear energy	
production methods		5.8Working principles of	
within each category.		ocean energy	
		occur chergy	
		5.6Working principles of	
		geothermal energy	

SW-5 Suggested Sessional Work (SW):

a. Assignments:

1 Discuss about nuclear, ocean and geothermal energy

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023)

Brief of Hours suggested for the Course Outcome

Course Outcomes	Class Lecture (Cl)	Lab Lecture (LI)	Sessio nal Work (SW)	Self Learni ng (SI)	Total hour (Cl+Ll+SW+SI)
PEC-ME03.1 understanding of basic energy concepts, including the principles of energy conversion and the environmental impact of energy utilization	09		01	01	11
PEC-ME03.2: Analyze solar radiation data, estimate solar radiation on different surfaces, and comprehend the functioning of various solar thermal systems and photovoltaic systems. They will also gain knowledge about thermal energy storage methods	10		01	02	13
PEC-ME03.3: Acquire expertise in wind energy, including the basics of fluid mechanics, wind turbine aerodynamics, and the different types of wind turbines. They will be capable of evaluating wind turbine siting and understanding wind energy conversion systems	11		01	01	13
PEC-ME03.4: understanding of various renewable energy sources, including fuel cells and biomass energy. They will be able to classify fuel cells, grasp their operating principles and thermodynamics, as well as comprehend biomass conversion technologies and urban waste to energy conversion.	09		01	02	12
PEC-ME03.5.: Recognize the significance of nuclear, ocean, and geothermal energy	06		01	01	08
Total Hours	45		05	07	57

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program (Revised as on 01 August 2023) Suggested Specification Table (For ESA)

СО	Unit Titles	Ma	arks Dis	tribution	Total
		R	U	Α	Marks
CO-1	Introduction	01	10	-	11
CO-2	Solar Energy and Solar Thermal Systems.	01	04	02	07
CO-3	Solar Photovoltaic Systems and wind energy.	03	08	05	16
CO-4	Fuel cells and biomass energy	01	10	05	16
CO-5	Other forms of Energy.	03	02	05	10
	Total	09	34	17	50

Legend: R: Remember, U: Understand, A: Apply

The end of semester assessment for **Renewable Energy Engineering** will be held with writtenexamination of 50 marks

Note. Detailed Assessment rubric need to be prepared by the course wise teachers for above tasks. Teachers can also design different tasks as per requirement, for end semester assessment.

Suggested Instructional/Implementation Strategies:

- 1. Improved Lecture
- 2. Tutorial
- 3. Case Method
- 4. Group Discussion
- 5. Role Play
- 6. Visit to cement plant
- 7. Demonstration
- 8. ICT Based Teaching Learning (Video Demonstration/Tutorials CBT, Blog, Facebook,Twitter, Whatsapp, Mobile, Online sources)
- 9. Brainstorming

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mechanical Engineering) Program

(Revised as on 01 August 2023)

. ,	Books:			<u>.</u>
S.	Title	Author	Publisher	Edition &
No.				Year
1				
	Energy Technology	O.P. Gupta	Khanna Book Publishing, New Delhi	
2				
	Renewable Energy Engineering and Technology	V.V.N. Kishore	Routledge	1st Edition, 2019.
3				
	Renewable Energy Engineering	N. Jenkins and J. Ekanayake	Cambridge University Press	1st Edition, 2017
4				
	Renewable Energy	G. Boyle	OUP Oxford	2nd Edition, 2009.
5	Training Manual	1		
6	Training Manual			
7	Lecture note provided by Dept. of Mechanical Eng		ersity, Satna.	

Curriculum Development Team

(a) Rooks.

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr,Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

Cos,POs and PSOs Mapping

Programme Title: B. Tech Mechanical

Engineering

Course Code : PEC ME03

Course Title: Renewable Energy Engineering

				-	Pi	rograi	m Outco	omes					Р	rogram Spec	cific Outcom	ie
	P01	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3	PSO 4
Course Outcomes	Engine ering knowle dge	Prob lem anal ysis	Design/ develop ment of soluti ons	Cond uct invest igatio ns of compl ex probl ems	Moden tool usage	The engi neer and soci ety	Environ ment and sustain ability:	Ethics	Indivi dual and team work:	Com munic ation:	Project manage ment and finance:	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computation al Modeling and Simulation.	Product Innovation and Developmen t
CO1 : Understand fundamental energy concepts, types, and conversion principles	1	1	2	2	2	2	3	1	2	2	1	2	2	2	1	-
CO 2 : Analyze solar radiation data, estimate solar radiation on different surfaces, and comprehend the functioning of various solar thermal systems and photovoltaic systems. They will also gain knowledge about thermal energy storage methods	1	2	2	2	1	2	2	1	1	1	2	3	2	2	2	1
CO3 : Acquire expertise in wind energy, including the basics of fluid mechanics, wind turbine aerodynamics, and the different types of wind turbines. They	2	2	1	1	2	2	2	1	1	2	1	2	2	1	2	2

will be capable of evaluating wind turbine siting and understanding wind energy conversion systems.																
CO 4: understanding of various renewable energy sources, including fuel cells and biomass energy. They will be able to classify fuel cells, grasp their operating principles and thermodynamics, as well as comprehend biomass conversion technologies and urban waste to energy conversion	3	2	2	-	3	1	3	1	2	1	-	2	3	3	3	2
CO 5: Recognize the significance of nuclear, ocean, and geothermal energy.	1	2	2	-	1	1	3	1	1	1	2	2	3	3	1	3

Legend: 1 – Low, 2 – Medium, 3 – High

Course Curriculum Map:

			Loborator		Colf Learning
POs & PSOs No.	COs No.& Titles	SOs No.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self Learning (SL)
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO1 : Understand fundamental energy concepts, types, and conversion principles	SO1.1 SO1.2 SO1.3 SO1.4 SO1.5		Unit-1Introduction 1.1,1.2,1.3,1.4,1.5,1.6,1.7,1.8,1.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 2 : Analyze solar radiation data, estimate solar radiation on different surfaces, and comprehend the functioning of various solar thermal systems and photovoltaic systems. They will also gain knowledge about thermal energy storage methods	SO2.1 SO2.2 SO2.3 SO2.4 SO2.5		Unit -2 Solar Energy and Solar Thermal Systems. 2.1,2.2,2.3,2.4,2.5,2.6,2.7,2.8,2.9, 2.10	As mentionedin
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO3 : Acquire expertise in wind energy, including the basics of fluid mechanics, wind turbine aerodynamics, and the different types of wind turbines. They will be capable of evaluating wind turbine siting and understanding wind energy conversion systems.	SO3.1 SO3.2 SO3.3 SO3.4 SO3.5		Unit-3 : Solar Photovoltaic Systems an wind energy 3.1, 3.2,3.3,3.4,3.5,3.6,3.7,3.8,3.9 3.10,3.11	page number 2 to 6
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 4: understanding of various renewable energy sources, including fuel cells and biomass energy. They will be able to classify fuel cells, grasp their operating principles and thermodynamics, as well as comprehend biomass conversion technologies and urban waste to energy conversion.	SO4.1 SO4.2 SO4.3 SO4.4 SO4.5		Unit-4 : Fuel cells and biomass energy 4.1, 4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9	
PO 1,2,3,4,5,6 7,8,9,10,11,12 PSO 1,2, 3, 4, 5	CO 5: Recognize the significance of nuclear, ocean, and geothermal energy	SO5.1 SO5.2 SO5.3 SO5.4		Unit 5: Other forms of Energy 5.1,5.2,5.3,5.4,5.5 5.6	

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Semester VIII

Course Code:	PROJ-ME 402
Course Title:	Engineering Project-3 (Prototype & Testing)
Pre- requisite:	Basic Knowledge of Mechanical Industries
Rationale:	The objectives of the Industrial Training include: To give students the opportunity to apply the knowledge and skills they have acquired on campus in a real-life work situation. To provide students with opportunities for practical, hands-on learning from practitioners in the student's areas of specialization. To expose students to a work environment, common practices, employment opportunities and work ethics in their relevant field. To enhance the employability skills of the students. To provide opportunities for students to be offered jobs in the organizations in which they undergo their Industrial Training.
C	

Course Outcomes:

PROJ-ME 402.1: Understand the organizational environment and recognize the requirement of the organization and cope with the organizational scenario.

PROJ-ME 402.2: Identify career paths taking into account their individual strengths and aptitude and prepare a report about the work experience in the organization.

PROJ-ME 402.3: Develop the employability skills and Start-Up skills to increase his/her ability to engage in life-long learning

PROJ-ME 402.4: Develop individual confidence to handle various engineering assignments and acquire life skills to meet societal challenges.

Course	Course	Course Title	e Scheme of studies (Hours/Week)			Total		
Category	Code		CI	LI	SW	SL	Total Hours	Credits
							(CI+LI+SW+SL)	(C)
PROJ	PROJ-ME	Engineering Project-3	2	0	1	1	2	12
rkuj	402	(Prototype & Testing)	3	0	1	1	3	12

Scheme of Studies:

Legend: CI: Classroom Instruction (Includes different instructional strategies i.e. Lecture (L) and Tutorial (T) and others),

(Revised as on 01 August 2023)

LI: Laboratory Instruction (Includes Practical performances in laboratory workshop, field or other locations using different instructional strategies)
SW: Sessional Work (includes assignment, seminar, mini project etc.),
SL: Self Learning,
C: Credits.

Note: SW & SL has to be planned and performed under the continuous guidance and feedback of teacher to ensure outcome of Learning.

Scheme of Assessment: Engineering Project

			S	cheme of As	sessment (Marks)		
			Progres	sive Assess	ment (PI	RA)	H	
Course Category	Course Code	Course Title	5 Internal Progress Report Monthly 7 marks each (IPR)	Seminar one (TSN)	Class Attendance (TA)	Total Marks (IPR+TSN+TA)	End Semester Assessment Final Project Report + Seminar + Viva (ESA)	Total Marks (PRA+ESA)
PROJ	PROJ-ME 402	Engineering Project-3 (Prototype & Testing)	35	10	5	50	50	100

Course-Curriculum Detailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Classroom Instruction (CI), Laboratory Instruction (LI), Sessional Work (SW), and Self Learning (SL). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program

(Revised as on 01 August 2023)

	On Job Industrial Training & Time Schedule	
Activity	Broad Area of Training	Time Schedule
Plant Data	Product information, Capacity of the plant, is the company quoted on the stock exchange, locally, international, if so how has their share price varied during your time with the company? (Type of industry - Public Limited, Private Limited, Co- operative sector etc.) Site Plan, /Plant Layout, Flow Diagram / Process Diagram	48 Hours (1Week)
Process Technology	Manufacturing processes, Drawings (if available), specification of the machinery in use, The type of fuel, process control parameters, CCR operation	48 Hours (1Week)
Raw Materials	Quality and source of the various raw materials used by the Mechanical plant.	96 Hours (2Weeks)
Limestone Mining	Limestone Mining practices, quarry scale of operation, Pit head Quality control	96 Hours (2Week)
Homogenization and Raw meal preparation	Crushing of limestone pre homogenization stock pile, grinding and homogenisation of raw meal	96 Hours (2Weeks)
Fuel	Quality, source and preparation of fuel for firing including Alternate Fuel (if used by the plant)	96 Hours (2Weeks)
Pyro-processing and Clinker manufacture	Rotary kiln operation, pre heater, pre calciner technique, process control	96 Hours (2Weeks)
Clinker cooling	Clinker cooling practices	96 Hours (2Weeks)
Energy Management	The energy requirements of the company (machinery, lighting, heating and or air conditioning): Source, connected load, Sur- plus electricity, Correlate items that can reveal major outcomes, e.g. how power factor in electricity bill reveals production rate. Waste heat recovery system and cogeneration of power.	48 Hours (1Week)
Material Handling Systems	Material handling system of Mechanical plant	48 Hours (1Week)
Maintenance Practices of the plant	Maintenance schedule / Programmers: Preventive Maintenance, Stoppages, Breakdown Maintenance, Calibration Systems	48 Hours (1Week)

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Instrumentation and control	Process automation, Type of Instrumentation and Control, Fully / Partially automated, Office Automation, Value and system analysis	48 Hours (1Week)
Plant Utilities:	Own source of water or else, Water reservoir, Boiler, DM Plant, Electricity, Power, Compressor, Air Conditioning, Effluent Treatment Plant Production of Mechanical and Despatch Systems	48 Hours (1Week)
Quality Control & Quality Assurance	Quality control system of the Mechanical plant and quality assurance practices in Mechanical manufacturing process of Mechanical	48 Hours (1Week)
Human Resource Planning and Management	Technical, Non-Technical, Administrative, Direct employment, Indirect employment, Turnover-capital employed	48 Hours (1Week)
Materials Management	Purchasing, Write-off policy, Inventory Control, Competitors, Export achievements, Building and Construction, Budgetary provisions, control and cost analysis, Budgets/Project planning/scheduling	48 Hours (1Week)
Safety and Hygiene	Environmental norms, Fire Safety norms, Industrial Safety norms.	48 Hours (1Week)
Marketing Strategy and Consumer Satisfaction measure	Marketing practices and consumer satisfaction measure taken by the Mechanical plant	48 Hours (1Week)
Total Hours		1152 Hours (24 Weeks)

OR (In campus Training)

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Prototype & Testing & Time Schedule							
Activity	Broad Area of Training	Time Schedule					
Project Planning/ Problem Designing /Gap Identification	This involves clearly defining the problem or research question that needs to be addressed in the laboratory. It includes understanding the context, scope, and significance of the problem.	144 Hours (3 Weeks)					
Literature Review	This helps in identifying gaps in knowledge and determining the best approach to address the problem.	144 Hours (3 Weeks)					
Experimental Methodology Development & Interpretation	Analysis and interpretation in lab research involve processing data for patterns, using statistical methods for insights, and contextualizing findings to draw conclusions that advance scientific understanding and guide further research.	384 Hours (8 Weeks)					
Result & Discussion	Results and discussion in laboratory research entail presenting findings, interpreting their significance, and contextualizing them within existing knowledge to address research objectives and implications effectively.	192 Hours (4 Weeks)					
Report Writing	Research writing involves synthesizing literature, presenting methods and findings, interpreting results, and discussing implications succinctly to contribute knowledge, validate findings, and propose further exploration in the field.	288 Hours (6 Weeks)					
Total Hours		1152 Hours (24 Weeks)					

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg

Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg

9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg

10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg

11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg

12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg

13. Mr. Umesh Bagri ,Assistant Professor , Dept. of Mechanichal Engg

Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

COs, POs and PSOs Mapping

Course Title: B. Tech Mechanical Engineering

Course Code: PROJ-ME 402

Course Title: Engineering Project-3 (Prototype & Testing)

				71	J	Progra	um Out	tcomes	5				Pr	ogram Spe	cific Outco	ome
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
Course Outcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation.	Product Innovation and Development
PROJ-ME402.1:Understandtheorganizational environmentandrecognizetherequirementoftheorganizationandcopewiththeorganizational scenario.	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
PROJ-ME 402.2: Identify career paths taking into account their individual strengths and aptitude and	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program

(Revised as on 01 August 2023)

prepare a report about the work experience in the organization.																
PROJ-ME 402.3: Develop the employability skills and Start-Up skills to increase his/her ability to engage in life-long learning	3	3	3	3	3	3	3	2	3	1	3	3	3	2	3	1
PROJ-ME 402.4: Develop individual confidence to handle various engineering assignments and acquire life skills to meet societal challenges.	3	3	3	3	3	3	3	2	3	2	3	2	3	3	3	1

Legend: 1 – Low, 2 – Medium, 3 – High

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Semester-VIII

Course Code:	SEM-ME 403
Course Title :	Seminar
Pre-requisite:	Students should have basic knowledge on design and presentation of technical seminar.
Rationale:	The student possesses knowledge of the processes involved in the manufacture of Machines. Additionally, the student should be familiar with the latest trends in Mechaniacal manufacturing and the challenges faced by the Mechaniacal industry. Presenting the latest technological advanMechanicals in Mechanical manufacturing is essential for the seminar.

Course Outcomes:

- **CO.1:** Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.
- **CO.2:** In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples.
- **CO.3:** Preparation and delivery of the seminar presentation, including a question and answer session.

SchemeofStudies:

Course	Course	Course		Total				
Category	Code	Title	CI	LI	SW	SL	Total Hours (CI+LI+SW+SL)	Credits (C)
PROJ	SEM-ME 403	Seminar		2		3	3	1

Legend:

	eq:ClassroomInstruction(Includes different instructional strategies i.e. Lecture (L) and the
	dTutorial (T)andothers),
	LI:LaboratoryInstruction(IncludesPracticalperformancesinlaboratoryworkshop, field or
	other locations using different instructional strategies)
	SW: Sessional Work(includesassignment, seminar, miniprojectetc.),
	SL:SelfLearning,
	C: Credits.
Note:	SW & SL has to be planned and performed under the continuous guidance and feedback ofteacherto ensureoutcomeofLearning.

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

Scheme of Assessment:

						Sch	eme of A	Assessmer	nt (Ma	rks)	
			Progressive Assessment (PRA)				nt	End Ass			
Course Category	Course Code	Course Title	Identification of seminar topic	Data collection	Prepartionpresenation	Seminar presentation	Total Mark	Seminarcontent	Presentation and Questionanswer	Total Marks	Total Marks (PRA+ESA)
PROJ	SEM- ME 403	Seminar	05	05	25	15	50	10	40	50	100

Course-CurriculumDetailing:

This course syllabus illustrates the expected learning achievements, both at the course and session levels, which students are anticipated to accomplish through various modes of instruction including Lab Work Assignment (LA) Best of 5 of the total, Viva-Voice on Lab Work (VV), and Lab Attendance (LA). As the course progresses, students should showcase their mastery of Session Outcomes (SOs), culminating in the overall achievement of Course Outcomes (COs) upon the course's conclusion.

Course Outcome	Activities	Time Sche	dule (in
		hou	rs)
		Class	Self
		Activity	Learning
		Per week	/Home
		(1 Credit)	activity
			Per week
CO.1: Identification and objective of the	1. Introduction and fundamentals Seminar		
seminar topic, along with a literature	- Objectives of the Seminar		
review that includes recent	- Identification and Overview of Topics to be	3	5
technological trends.	Covered		
	- Importance and Relevance of the Seminar		

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

	in Current Industry Trends - Introduction to the Technical Field - Basic Concepts and Terminology - Historical Development and Milestones - Current State of the Technology		
CO.2: In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples	 2.0 In-depth Technical Sessions and preparation of presentation Module 1: Advanced Theoretical Concepts Key Theories and Principles Mathematical Foundations Models and Algorithms Module 2: Practical Applications Industry Applications Case Studies Real-world Scenarios Module 3: Practical Implementation Step-by-step Guide to Solving a Problem Coding and Development Debugging and Optimization 	7	15
CO.3: Preparation and delivery of the seminar presentation, including a question and answer session.	Prepartion of seminar content in proper presentation format and seminar presentationPrsentationPrsentaion andQuartion answer sessionSeminar feed back and over view	5	10
1	otal	15	30

Suggestion for End Semester Assessment

Course Outcome	UnitTitles	Ma	ion	Total	
		R	U	Α	Marks
CO.1: Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.	Introduction and fundamentals Seminar	05	05		10
CO.2: In-depth analysis and	In-depth Technical Sessions		10	05	15
interpretation of technical	and preparation of				-

SuggestedSpecificationTable(ForESA)

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

data related to the seminar presentation topic, including case studies and practical implementation examples CO.3: Preparation and Prepartion of seminar content in delivery of the seminar proper presentation format and 10 15 20 presentation, including a seminar presentation question and answer session Total 05 25 20 50

Legend:	R:Remember,	U:Understand,	A:Apply
Legena	in inclusion,	c.cnuci stana,	····PP1

Note. Detailed Assessment rubric need to be prepared by the course wiseteachers for above tasks. Teachers can also design different tasks as per requirement, for endsemesterassessment.

SuggestedInstructional/ImplementationStrategies:

- 1. ImprovedLecture
- 2. Tutorial
- 3. CaseMethod
- 4. GroupDiscussion
- 5. RolePlay
- 6. Visit to Mechanical plant
- 7. Demonstration
- 8. ICTBasedTeachingLearning(VideoDemonstration/TutorialsCBT,Blog,Facebook,Twitter,Whatsapp, Mobile,Onlinesources)
- 9. Brainstorming

SuggestedLearningResources:

(a) Books:

S.No.	Title	Author	Publisher	Edition &Year
1				
2				

Faculty of Engineering and Technology Department of Mechanical Engineering Curriculum of B.Tech. (Mech. Engg.) Program (Revised as on 01 August 2023)

3			
4	Manufacturing process		
5			

Curriculum Development Team

- 1. Mr. S.S. Parihar, Head of Deptt. Mech. Engg., AKS University
- 2. Mr. Alok Ranjan Tiwari , Assistant Professor, Dept. of Mechanichal Engg.
- 3. Mr Deepak Pandey, Assistant Professor, Dept. of Mechanichal Engg
- 4. Mr., Keshav Pratap Singh, Assistant Professor, Dept. of Mechanichal Engg
- 5. Mr.Amar Soni, Assistant Professor, Dept of Mechanichal Engg
- 6. Mr K.P Tiwari , Assistant Professor , Dept. of Mechanichal Engg
- 7. Mr. Ketan Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 8. Mr. K.C. Kori, Faculty, Assistant Professor, Dept. of Mechanichal Engg
- 9. Mr, Lokesh Agrawal, Assistant Professor, Dept. of Mechanichal Engg
- 10. Mr. Ram Narayan Shukla, Assistant Professor, Dept. of Mechanichal Engg
- 11. Mr. Rishi Kumar Sharma, Assistant Professor, Dept. of Mechanichal Engg
- 12. Mr. Naveen Kumar Soni, Assistant Professor, Dept. of Mechanichal Engg
- 13. Mr. Umesh Bagri , Assistant Professor , Dept. of Mechanichal Engg

COs, POsandPSOs Mapping

ProgramTitle:B.Tech Mechanical Engineering

Course Code:SEM-ME 403; CourseTitle: Seminar

	Program Outcomes											ProgramSpecificOutcome				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CourseOutcomes	Engineering knowledge	Problem analysis	Design/development of solutions	Conduct investigations of complex problems	Modern tool usage	The engineer and society	Environment and sustainability	Ethics	Individual and team work	Communication	Project management and finance	Life-long learning	Mechanical System Design and Analysis	Manufacturing Processes and Automation	Computational Modeling and Simulation.	Product Innovation and Development
CO.1: Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.	2	1	1	1	1	3	3	1	1	1	1	2	3	3	3	3
CO.2: In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples	3	1	2	2	2	3	3	1	1	1	1	2	3	3	3	3
CO.3: Preparation and delivery of the seminar presentation, including a question and answer session.	3	3	3	3	3	3	3	2	3	1	3	3	3	2	3	1

Legend:1-Low,2-Medium,3-High

CourseCurriculumMap: Seminar

POs&PSOsNo.	COsNo.&Titles	SOsNo.	Laboratory Instruction (LI)	Classroom Instruction (CI)	Self- Learning(SL)
	CO.1: Identification and objective of the seminar topic, along with a literature review that includes recent technological trends.				
	CO.2: In-depth analysis and interpretation of technical data related to the seminar topic, including case studies and practical implementation examples				
	CO.3: Preparation and delivery of the seminar presentation, including a question and answer session.				